WO2021196068A1 - Channel state reporting types - Google Patents

Channel state reporting types Download PDF

Info

Publication number
WO2021196068A1
WO2021196068A1 PCT/CN2020/082699 CN2020082699W WO2021196068A1 WO 2021196068 A1 WO2021196068 A1 WO 2021196068A1 CN 2020082699 W CN2020082699 W CN 2020082699W WO 2021196068 A1 WO2021196068 A1 WO 2021196068A1
Authority
WO
WIPO (PCT)
Prior art keywords
duplex mode
time
frequency resources
wireless device
uplink
Prior art date
Application number
PCT/CN2020/082699
Other languages
French (fr)
Inventor
Min Huang
Sony Akkarakaran
Hui Guo
Original Assignee
Qualcomm Incorporated
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Qualcomm Incorporated filed Critical Qualcomm Incorporated
Priority to PCT/CN2020/082699 priority Critical patent/WO2021196068A1/en
Publication of WO2021196068A1 publication Critical patent/WO2021196068A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/14Two-way operation using the same type of signal, i.e. duplex
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • H04L5/0057Physical resource allocation for CQI

Definitions

  • the following relates generally to wireless communications and more specifically to channel state reporting types.
  • Wireless communications systems are widely deployed to provide various types of communication content such as voice, video, packet data, messaging, broadcast, and so on. These systems may be capable of supporting communication with multiple users by sharing the available system resources (e.g., time, frequency, and power) .
  • Examples of such multiple-access systems include fourth generation (4G) systems such as Long Term Evolution (LTE) systems, LTE-Advanced (LTE-A) systems, or LTE-A Pro systems, and fifth generation (5G) systems which may be referred to as New Radio (NR) systems.
  • 4G systems such as Long Term Evolution (LTE) systems, LTE-Advanced (LTE-A) systems, or LTE-A Pro systems
  • 5G systems which may be referred to as New Radio (NR) systems.
  • a wireless multiple-access communications system may include one or more base stations or one or more network access nodes, each simultaneously supporting communication for multiple communication devices, which may be otherwise known as user equipment (UE) .
  • UE user equipment
  • a UE may be capable of both transmitting uplink traffic to a base station and receiving downlink traffic from a base station (from a same or different base station, using different antennas, etc. ) using time and frequency resources that are at least partially overlapping (e.g., concurrently or simultaneously) .
  • This capability of communicating in two directions at the same time may be referred to as a full duplex (FD) capability of the UE.
  • FD full duplex
  • the concurrent uplink and downlink transmissions of the UE may result in a self-interference at the UE, which can impact successful transmission or receipt of downlink traffic, uplink traffic, or both.
  • a full duplex (FD) -capable user equipment (UE) may operate in an FD mode or in non-FD modes based on self-interference at the UE.
  • the UE may determine a duplex mode depending on data rates of the FD-mode and the non-FD mode and whether channel state information (CSI) for the FD mode may be determined.
  • FD full duplex
  • CSI channel state information
  • a UE may report CSI for FD downlink transmissions based on measuring self-interference from an uplink signal on a downlink received signal (e.g., by measuring interference due to transmitting an uplink signal and receiving a reference signal (e.g., a CSI reference signal (CSI-RS) ) on a same set of resources in the FD mode) .
  • a base station may be unaware of self-interference at the UE without an indication from the UE and may thus be unaware that the received CSI is affected by the self-interference.
  • the duplex mode of the CSI may serve as an indication of self-interference to the base station.
  • a base station may indicate a duplex mode at the UE based on uplink channel quality. For example, if the uplink channel quality is sufficient (e.g., if a channel quality metric is higher than a threshold) , the base station may indicate to the UE to implicitly indicate the duplex mode in a CSI report.
  • the implicit indication may convey the duplex mode of the UE to the base station, which the base station may use when decoding the CSI report received from the UE.
  • the implicit indication may help prevent loss of CSI report coverage caused by an explicit indication included within the CSI report.
  • the base station may indicate to the UE to explicitly indicate the duplex mode of the UE.
  • the explicit indication may be one or more bits within the CSI report, and may be used by the base station to decode the CSI report. The explicit indication and may help prevent a misinterpretation of the duplex mode at the UE, which may be caused by the insufficient uplink channel quality.
  • a method of wireless communications at a first wireless device may include receiving, from a second wireless device, a reference signal via a first set of time-frequency resources of a channel configured for the first wireless device, receiving a signal transfer configuration indicating a second set of time-frequency resources of the channel for signal transmission by the first wireless device, determining a duplex mode for CSI of the reference signal based on an overlap between the second set of time-frequency resources and the first set of time-frequency resources, and transmitting, to the second wireless device, a report including the CSI of the reference signal based on the duplex mode.
  • the apparatus may include a processor, memory coupled with the processor, and instructions stored in the memory.
  • the instructions may be executable by the processor to cause the apparatus to receive, from a second wireless device, a reference signal via a first set of time-frequency resources of a channel configured for the first wireless device, receive a signal transfer configuration indicating a second set of time-frequency resources of the channel for signal transmission by the first wireless device, determine a duplex mode for CSI of the reference signal based on an overlap between the second set of time-frequency resources and the first set of time-frequency resources, and transmit, to the second wireless device, a report including the CSI of the reference signal based on the duplex mode.
  • the apparatus may include means for receiving, from a second wireless device, a reference signal via a first set of time-frequency resources of a channel configured for the first wireless device, receiving a signal transfer configuration indicating a second set of time-frequency resources of the channel for signal transmission by the first wireless device, determining a duplex mode for CSI of the reference signal based on an overlap between the second set of time-frequency resources and the first set of time-frequency resources, and transmitting, to the second wireless device, a report including the CSI of the reference signal based on the duplex mode.
  • a non-transitory computer-readable medium storing code for wireless communications at a first wireless device is described.
  • the code may include instructions executable by a processor to receive, from a second wireless device, a reference signal via a first set of time-frequency resources of a channel configured for the first wireless device, receive a signal transfer configuration indicating a second set of time-frequency resources of the channel for signal transmission by the first wireless device, determine a duplex mode for CSI of the reference signal based on an overlap between the second set of time-frequency resources and the first set of time-frequency resources, and transmit, to the second wireless device, a report including the CSI of the reference signal based on the duplex mode.
  • determining the duplex mode may include operations, features, means, or instructions for determining the duplex mode to be a full duplex mode based on transmission of a signal via a portion of the second set of time-frequency resources and the portion of the second set of time-frequency resources overlapping with at least a portion of the first set of time-frequency resources.
  • determining the duplex mode may include operations, features, means, or instructions for determining the duplex mode to be a non-full duplex mode based on transmission of a signal via a portion of the second set of time-frequency resources and the portion of the second set of time-frequency resources excluding the first set of time-frequency resources.
  • determining the duplex mode may include operations, features, means, or instructions for determining the duplex mode to be a non-full duplex mode based on an absence of transmission of a signal via a portion of the second set of time-frequency resources and the portion of the second set of time-frequency resources overlapping with the first set of time-frequency resources.
  • Some examples of the method, apparatuses, and non-transitory computer-readable medium described herein may further include operations, features, means, or instructions for encoding the report based on the determined duplex mode.
  • Some examples of the method, apparatuses, and non-transitory computer-readable medium described herein may further include operations, features, means, or instructions for receiving, from the second wireless device, a configuration for indicating the duplex mode based on a channel quality of the channel, where the configuration includes one of an implicit indication or an explicit indication.
  • Some examples of the method, apparatuses, and non-transitory computer-readable medium described herein may further include operations, features, means, or instructions for transmitting an indication of the duplex mode in the report.
  • the indication includes a 1 bit indication.
  • Some examples of the method, apparatuses, and non-transitory computer-readable medium described herein may further include operations, features, means, or instructions for determining the duplex mode to be a full duplex mode based on at least a portion of the first set of time-frequency resources overlapping the second set of time-frequency resources, transmitting a signal via the second set of time-frequency resources, measuring interference on the reference signal based on the transmitted signal, and transmitting the CSI of the reference signal based on the measured interference in the report.
  • Some examples of the method, apparatuses, and non-transitory computer-readable medium described herein may further include operations, features, means, or instructions for receiving, from the second wireless device, a semi-persistent grant for uplink shared data, where the semi-persistent grant indicates a set of periodic time occasions for uplink shared transmissions, determining to perform an uplink shared data transmission using at least one of the set of periodic time occasions, and determining the duplex mode based on whether the at least one of the set of periodic time occasions at least partially overlaps the first set of time-frequency resources.
  • Some examples of the method, apparatuses, and non-transitory computer-readable medium described herein may further include operations, features, means, or instructions for determining the duplex mode to be a full duplex mode based on the at least one of the set of periodic time occasions at least partially overlapping the first set of time-frequency resources.
  • Some examples of the method, apparatuses, and non-transitory computer-readable medium described herein may further include operations, features, means, or instructions for determining the duplex mode to be a non-full duplex mode based on the at least one of the set of periodic time occasions excluding the first set of time-frequency resources.
  • Some examples of the method, apparatuses, and non-transitory computer-readable medium described herein may further include operations, features, means, or instructions for receiving the semi-persistent grant via radio resource control (RRC) signaling.
  • RRC radio resource control
  • Some examples of the method, apparatuses, and non-transitory computer-readable medium described herein may further include operations, features, means, or instructions for receiving, from the second wireless device, a configuration for scheduling requests, where the configuration indicates a set of periodic resources for scheduling requests, determining to transmit a scheduling request using a subset of the periodic resources, and determining the duplex mode based on whether the subset of the periodic resources at least partially overlaps the first set of time-frequency resources.
  • Some examples of the method, apparatuses, and non-transitory computer-readable medium described herein may further include operations, features, means, or instructions for determining the duplex mode to be a full duplex mode based on the subset of the periodic resources at least partially overlapping the first set of time-frequency resources.
  • Some examples of the method, apparatuses, and non-transitory computer-readable medium described herein may further include operations, features, means, or instructions for determining the duplex mode to be a non-full duplex mode based on the subset of the periodic resources excluding the first set of time-frequency resources.
  • Some examples of the method, apparatuses, and non-transitory computer-readable medium described herein may further include operations, features, means, or instructions for receiving the configuration for scheduling requests via RRC signaling.
  • Some examples of the method, apparatuses, and non-transitory computer-readable medium described herein may further include operations, features, means, or instructions for receiving, from the second wireless device, a dynamic grant for uplink messages, where the dynamic grant indicates a set of uplink resources for uplink messages, determining to transmit an uplink message using at least a subset of the uplink resources, and determining the duplex mode based on whether the subset of the uplink resources at least partially overlaps the first set of time-frequency resources.
  • Some examples of the method, apparatuses, and non-transitory computer-readable medium described herein may further include operations, features, means, or instructions for determining the duplex mode to be a full duplex mode based on the subset of the uplink resources at least partially overlapping the first set of time-frequency resources.
  • Some examples of the method, apparatuses, and non-transitory computer-readable medium described herein may further include operations, features, means, or instructions for determining the duplex mode to be a non-full duplex mode based on the subset of the uplink resources excluding the first set of time-frequency resources.
  • the uplink message includes an uplink shared data channel transmission, an uplink control channel transmission, a random access channel transmission, a sounding reference signal, or any combination thereof.
  • Some examples of the method, apparatuses, and non-transitory computer-readable medium described herein may further include operations, features, means, or instructions for receiving the dynamic grant via downlink control information (DCI) .
  • DCI downlink control information
  • the first wireless device includes a UE and the second wireless device includes a base station.
  • the first wireless device includes a child integrated access and backhaul (IAB) node and the second wireless device includes a parent IAB node.
  • IAB child integrated access and backhaul
  • a method of wireless communications at a first wireless device may include transmitting, to a second wireless device, a reference signal via a first set of time-frequency resources of a channel configured for the second wireless device, transmitting a signal transfer configuration indicating a second set of time-frequency resources of the channel for signal transmission by the second wireless device, receiving, from the second wireless device, a report including CSI of the reference signal, determining a duplex mode for the CSI of the reference signal based on the report, and decoding the report based on the duplex mode.
  • the apparatus may include a processor, memory coupled with the processor, and instructions stored in the memory.
  • the instructions may be executable by the processor to cause the apparatus to transmit, to a second wireless device, a reference signal via a first set of time-frequency resources of a channel configured for the second wireless device, transmit a signal transfer configuration indicating a second set of time-frequency resources of the channel for signal transmission by the second wireless device, receive, from the second wireless device, a report including CSI of the reference signal, determine a duplex mode for the CSI of the reference signal based on the report, and decode the report based on the duplex mode.
  • the apparatus may include means for transmitting, to a second wireless device, a reference signal via a first set of time-frequency resources of a channel configured for the second wireless device, transmitting a signal transfer configuration indicating a second set of time-frequency resources of the channel for signal transmission by the second wireless device, receiving, from the second wireless device, a report including CSI of the reference signal, determining a duplex mode for the CSI of the reference signal based on the report, and decoding the report based on the duplex mode.
  • a non-transitory computer-readable medium storing code for wireless communications at a first wireless device is described.
  • the code may include instructions executable by a processor to transmit, to a second wireless device, a reference signal via a first set of time-frequency resources of a channel configured for the second wireless device, transmit a signal transfer configuration indicating a second set of time-frequency resources of the channel for signal transmission by the second wireless device, receive, from the second wireless device, a report including CSI of the reference signal, determine a duplex mode for the CSI of the reference signal based on the report, and decode the report based on the duplex mode.
  • Some examples of the method, apparatuses, and non-transitory computer-readable medium described herein may further include operations, features, means, or instructions for receiving, from the second wireless device, a signal via a portion of the second set of time-frequency resources, and determining the duplex mode based on an overlap between the first set of time-frequency resources and the portion of the second set of time-frequency resources.
  • Some examples of the method, apparatuses, and non-transitory computer-readable medium described herein may further include operations, features, means, or instructions for determining the duplex mode to be a full duplex mode based on at least a portion of the first set of time-frequency resources overlapping the portion of the second set of time-frequency resources.
  • Some examples of the method, apparatuses, and non-transitory computer-readable medium described herein may further include operations, features, means, or instructions for determining the duplex mode to be a non-full duplex mode based on the first set of time-frequency resources excluding the portion of second set of time-frequency resources.
  • Some examples of the method, apparatuses, and non-transitory computer-readable medium described herein may further include operations, features, means, or instructions for determining the duplex mode based on an indication of the duplex mode in the report.
  • the indication includes a 1 bit indication.
  • Some examples of the method, apparatuses, and non-transitory computer-readable medium described herein may further include operations, features, means, or instructions for determining a channel quality of the channel configured for the second wireless device, and transmitting, to the second wireless device, a configuration for indicating the duplex mode based on the channel quality, where the configuration includes one of an implicit indication or an explicit indication.
  • Some examples of the method, apparatuses, and non-transitory computer-readable medium described herein may further include operations, features, means, or instructions for transmitting, to the second wireless device, a semi-persistent grant for uplink shared data, where the semi-persistent grant indicates a set of periodic time occasions for uplink shared transmissions, and receiving, from the second wireless device, an uplink shared data message via at least one occasion of the set of periodic time occasions based on the semi-persistent grant, where the duplex mode may be based on receiving the uplink shared data message.
  • Some examples of the method, apparatuses, and non-transitory computer-readable medium described herein may further include operations, features, means, or instructions for transmitting the semi-persistent grant via RRC signaling.
  • Some examples of the method, apparatuses, and non-transitory computer-readable medium described herein may further include operations, features, means, or instructions for transmitting, to the second wireless device, a configuration for scheduling requests, where the configuration indicates a set of periodic resources for scheduling requests, and receiving, from the second wireless device, a scheduling request via a subset of the periodic resources based on the configuration, where the duplex mode may be based on receiving the scheduling request.
  • Some examples of the method, apparatuses, and non-transitory computer-readable medium described herein may further include operations, features, means, or instructions for transmitting the configuration for scheduling requests via RRC signaling.
  • Some examples of the method, apparatuses, and non-transitory computer-readable medium described herein may further include operations, features, means, or instructions for transmitting, to the second wireless device, a dynamic grant for uplink messages, where the dynamic grant indicates a set of uplink resources for uplink messages, and receiving, from the second wireless device, an uplink message via a subset of the uplink resources based on the dynamic grant, where the duplex mode may be based on receiving the uplink message.
  • the uplink message includes an uplink shared data channel transmission, an uplink control channel transmission, a random access channel transmission, a sounding reference signal, or any combination thereof.
  • Some examples of the method, apparatuses, and non-transitory computer-readable medium described herein may further include operations, features, means, or instructions for transmitting the dynamic grant via DCI.
  • the first wireless device includes a base station and the second wireless device includes a UE.
  • the first wireless device includes a parent IAB node and the second wireless device includes a child IAB node.
  • FIGs. 1 and 2 illustrate example wireless communications systems that support channel state reporting types in accordance with aspects of the present disclosure.
  • FIGs. 3 through 5 illustrate example process flows that support channel state reporting types in accordance with aspects of the present disclosure.
  • FIG. 6 illustrates an example of a process flow that supports channel state reporting types in accordance with aspects of the present disclosure.
  • FIGs. 7 and 8 show block diagrams of devices that support channel state reporting types in accordance with aspects of the present disclosure.
  • FIG. 9 shows a block diagram of a communications manager that supports channel state reporting types in accordance with aspects of the present disclosure.
  • FIG. 10 shows a diagram of a system including a user equipment (UE) that supports channel state reporting types in accordance with aspects of the present disclosure.
  • UE user equipment
  • FIG. 11 shows a diagram of a system including a base station that supports channel state reporting types in accordance with aspects of the present disclosure.
  • FIGs. 12 through 19 show flowcharts illustrating methods that support channel state reporting types in accordance with aspects of the present disclosure.
  • a user equipment may be capable of full duplex (FD) communications.
  • the UE may be able to transmit and receive on a same set of resources thereby increasing data rates and spectral efficiency.
  • the UE may experience self-interference due to the shared resources as an uplink transmission from the UE may interfere with a downlink signal received at the UE, which may cause interference at the UE.
  • FD full duplex
  • An FD-capable UE may operate in an FD mode or in a non-FD mode (e.g., a half-duplex mode) .
  • the mode of operation of the UE may depend on a number of factors including data rates for the FD mode and the non-FD modes, or whether channel state information (CSI) for the FD mode may be determined, etc.
  • the UE may not be able to accurately predict CSI for FD mode and may measure self-interference by receiving a CSI reference signal (CSI-RS) from a base station while transmitting an uplink signal. For example, if a UE reports CSI for FD downlink, the UE may measure the self-interference caused by the uplink transmitted signal on the received downlink CSI-RS.
  • CSI-RS CSI reference signal
  • a base station may grant resources to the UE for an uplink signal, but the base station may be unaware of whether the resources over which a downlink CSI-RS is transmitted overlaps a portion of the resources used by the UE to transmit the uplink signal. For instance, the resources used to receive the CSI-RS and transmit the uplink signal at the UE may overlap in time, or frequency, or both.
  • an FD-capable UE may be able to indicate the existence of self-interference by determining a type of CSI to report (either FD or non-FD) and indicate the type to the base station.
  • an implicit indication may allow for increased the coverage of the CSI report and an explicit indication may help prevent a CSI-type misinterpretation by the base station.
  • the base station may transmit a number of signaling messages to the FD-capable UE for reporting CSI. For example, the base station may transmit a CSI report configuration message, a CSI-RS, an uplink transfer configuration to UE, etc. The signaling received by the UE may cause the UE to transmit uplink data or signaling and report CSI to the base station.
  • the UE may determine to generate the FD CSI or the non-FD CSI based on an overlapping condition of the signaling received from the base station and the transmitted uplink data/signaling. For example, the UE may generate an FD CSI if the CSI-RS time-frequency resources overlap with the time-frequency resources of the uplink transmission and may generate the non-FD CSI if the CSI-RS time-frequency resources do not overlap with the time-frequency resources of the UL transmission.
  • the UE may report the CSI-type implicitly to the base station, in which the CSI-type may be based on the duplex mode (e.g., FD CSI, non-FD CSI) .
  • the UE may transmit the CSI report and the CSI-type may be indicated implicitly (e.g., without an explicit indication) .
  • the base station may determine the CSI-type based on the received CSI report by determining whether resources used for a downlink CSI-RS transmission overlaps with the time-frequency resources of the uplink transmission by the UE.
  • the base station may determine the type of the received CSI based upon whether the associated CSI-RS resource overlaps in time, frequency, or both with the time-frequency resources of the uplink transmission.
  • the base station may decode the received CSI based on the determined CSI-type.
  • the UE may report the CSI-type explicitly to the base station, in which the CSI-type may be based on the duplex mode (e.g., FD CSI, non-FD CSI) .
  • the UE may transmit the CSI report that includes an explicit indication of the duplex mode (e.g., one or more bits indicating FD or non-FD) .
  • the UE may transmit a 1-bit indication to the base station indicating the CSI-type (e.g., FD CSI, non-FD CSI) .
  • the base station may determine the CSI-type based on the received indication and the received CSI report.
  • the base station may decode the received CSI based on the indicated CSI-type (e.g., FD CSI, non-FD CSI) .
  • the base station may determine how the CSI-type is reported. For example, the base station may indicate to the UE to report the CSI-type based on an implicit indication (e.g., if the uplink channel quality satisfies a threshold) . If the uplink channel quality does not satisfy a threshold, the base station may determine that the CSI-type is to be reported explicitly. The base station may indicate the reporting type (e.g., explicit, implicit) to the UE via a CSI report configuration message or other signaling.
  • an implicit indication e.g., if the uplink channel quality satisfies a threshold
  • the base station may indicate the reporting type (e.g., explicit, implicit) to the UE via a CSI report configuration message or other signaling.
  • aspects of the disclosure are initially described in the context of wireless communications systems. Aspects are then described with respect to process flows. Aspects of the disclosure are further illustrated by and described with reference to apparatus diagrams, system diagrams, and flowcharts that relate to channel state reporting types.
  • FIG. 1 illustrates an example of a wireless communications system 100 that supports channel state reporting types in accordance with aspects of the present disclosure.
  • the wireless communications system 100 may include one or more base stations 105, one or more UEs 115, and a core network 130.
  • the wireless communications system 100 may be a Long Term Evolution (LTE) network, an LTE-Advanced (LTE-A) network, an LTE-A Pro network, or a New Radio (NR) network.
  • LTE Long Term Evolution
  • LTE-A LTE-Advanced
  • LTE-A Pro LTE-A Pro
  • NR New Radio
  • the wireless communications system 100 may support enhanced broadband communications, ultra-reliable (e.g., mission critical) communications, low latency communications, communications with low-cost and low-complexity devices, or any combination thereof.
  • ultra-reliable e.g., mission critical
  • the base stations 105 may be dispersed throughout a geographic area to form the wireless communications system 100 and may be devices in different forms or having different capabilities.
  • the base stations 105 and the UEs 115 may wirelessly communicate via one or more communication links 125.
  • Each base station 105 may provide a coverage area 110 over which the UEs 115 and the base station 105 may establish one or more communication links 125.
  • the coverage area 110 may be an example of a geographic area over which a base station 105 and a UE 115 may support the communication of signals according to one or more radio access technologies.
  • the UEs 115 may be dispersed throughout a coverage area 110 of the wireless communications system 100, and each UE 115 may be stationary, or mobile, or both at different times.
  • the UEs 115 may be devices in different forms or having different capabilities. Some example UEs 115 are illustrated in FIG. 1.
  • the UEs 115 described herein may be able to communicate with various types of devices, such as other UEs 115, the base stations 105, or network equipment (e.g., core network nodes, relay devices, integrated access and backhaul (IAB) nodes, or other network equipment) , as shown in FIG. 1.
  • network equipment e.g., core network nodes, relay devices, integrated access and backhaul (IAB) nodes, or other network equipment
  • the base stations 105 may communicate with the core network 130, or with one another, or both.
  • the base stations 105 may interface with the core network 130 through one or more backhaul links 120 (e.g., via an S1, N2, N3, or other interface) .
  • the base stations 105 may communicate with one another over the backhaul links 120 (e.g., via an X2, Xn, or other interface) either directly (e.g., directly between base stations 105) , or indirectly (e.g., via core network 130) , or both.
  • the backhaul links 120 may be or include one or more wireless links.
  • One or more of the base stations 105 described herein may include or may be referred to by a person having ordinary skill in the art as a base transceiver station, a radio base station, an access point, a radio transceiver, a NodeB, an eNodeB (eNB) , a next-generation NodeB or a giga-NodeB (either of which may be referred to as a gNB) , a Home NodeB, a Home eNodeB, or other suitable terminology.
  • a base transceiver station a radio base station
  • an access point a radio transceiver
  • a NodeB an eNodeB (eNB)
  • eNB eNodeB
  • a next-generation NodeB or a giga-NodeB either of which may be referred to as a gNB
  • gNB giga-NodeB
  • a UE 115 may include or may be referred to as a mobile device, a wireless device, a remote device, a handheld device, or a subscriber device, or some other suitable terminology, where the “device” may also be referred to as a unit, a station, a terminal, or a client, among other examples.
  • a UE 115 may also include or may be referred to as a personal electronic device such as a cellular phone, a personal digital assistant (PDA) , a tablet computer, a laptop computer, or a personal computer.
  • PDA personal digital assistant
  • a UE 115 may include or be referred to as a wireless local loop (WLL) station, an Internet of Things (IoT) device, an Internet of Everything (IoE) device, or a machine type communications (MTC) device, among other examples, which may be implemented in various objects such as appliances, or vehicles, meters, among other examples.
  • WLL wireless local loop
  • IoT Internet of Things
  • IoE Internet of Everything
  • MTC machine type communications
  • the UEs 115 described herein may be able to communicate with various types of devices, such as other UEs 115 that may sometimes act as relays as well as the base stations 105 and the network equipment including macro eNBs or gNBs, small cell eNBs or gNBs, or relay base stations, among other examples, as shown in FIG. 1.
  • devices such as other UEs 115 that may sometimes act as relays as well as the base stations 105 and the network equipment including macro eNBs or gNBs, small cell eNBs or gNBs, or relay base stations, among other examples, as shown in FIG. 1.
  • the UEs 115 and the base stations 105 may wirelessly communicate with one another via one or more communication links 125 over one or more carriers.
  • the term “carrier” may refer to a set of radio frequency spectrum resources having a defined physical layer structure for supporting the communication links 125.
  • a carrier used for a communication link 125 may include a portion of a radio frequency spectrum band (e.g., a bandwidth part (BWP) ) that is operated according to one or more physical layer channels for a given radio access technology (e.g., LTE, LTE-A, LTE-A Pro, NR) .
  • BWP bandwidth part
  • Each physical layer channel may carry acquisition signaling (e.g., synchronization signals, system information) , control signaling that coordinates operation for the carrier, user data, or other signaling.
  • the wireless communications system 100 may support communication with a UE 115 using carrier aggregation or multi-carrier operation.
  • a UE 115 may be configured with multiple downlink component carriers and one or more uplink component carriers according to a carrier aggregation configuration.
  • Carrier aggregation may be used with both frequency division duplex (FDD) and time division duplex (TDD) component carriers.
  • the communication links 125 shown in the wireless communications system 100 may include uplink transmissions from a UE 115 to a base station 105, or downlink transmissions from a base station 105 to a UE 115.
  • Carriers may carry downlink or uplink communications (e.g., in an FDD mode) or may be configured to carry downlink and uplink communications (e.g., in a TDD mode) .
  • a carrier may be associated with a particular bandwidth of the radio frequency spectrum, and in some examples the carrier bandwidth may be referred to as a “system bandwidth” of the carrier or the wireless communications system 100.
  • the carrier bandwidth may be one of a number of determined bandwidths for carriers of a particular radio access technology (e.g., 1.4, 3, 5, 10, 15, 20, 40, or 80 megahertz (MHz) ) .
  • Devices of the wireless communications system 100 e.g., the base stations 105, the UEs 115, or both
  • the wireless communications system 100 may include base stations 105 or UEs 115 that support simultaneous communications via carriers associated with multiple carrier bandwidths.
  • each served UE 115 may be configured for operating over portions (e.g., a sub-band, a BWP) or all of a carrier bandwidth.
  • Signal waveforms transmitted over a carrier may be made up of multiple subcarriers (e.g., using multi-carrier modulation (MCM) techniques such as orthogonal frequency division multiplexing (OFDM) or discrete Fourier transform spread OFDM (DFT-S-OFDM) ) .
  • MCM multi-carrier modulation
  • OFDM orthogonal frequency division multiplexing
  • DFT-S-OFDM discrete Fourier transform spread OFDM
  • a resource element may consist of one symbol period (e.g., a duration of one modulation symbol) and one subcarrier, where the symbol period and subcarrier spacing are inversely related.
  • the number of bits carried by each resource element may depend on the modulation scheme (e.g., the order of the modulation scheme, the coding rate of the modulation scheme, or both) .
  • a wireless communications resource may refer to a combination of a radio frequency spectrum resource, a time resource, and a spatial resource (e.g., spatial layers or beams) , and the use of multiple spatial layers may further increase the data rate or data integrity for communications with a UE 115.
  • Time intervals of a communications resource may be organized according to radio frames each having a specified duration (e.g., 10 milliseconds (ms) ) .
  • Each radio frame may be identified by a system frame number (SFN) (e.g., ranging from 0 to 1023) .
  • SFN system frame number
  • Each frame may include multiple consecutively numbered subframes or slots, and each subframe or slot may have the same duration.
  • a frame may be divided (e.g., in the time domain) into subframes, and each subframe may be further divided into a number of slots.
  • each frame may include a variable number of slots, and the number of slots may depend on subcarrier spacing.
  • Each slot may include a number of symbol periods (e.g., depending on the length of the cyclic prefix prepended to each symbol period) .
  • a slot may further be divided into multiple mini-slots containing one or more symbols. Excluding the cyclic prefix, each symbol period may contain one or more (e.g., N f ) sampling periods. The duration of a symbol period may depend on the subcarrier spacing or frequency band of operation.
  • a subframe, a slot, a mini-slot, or a symbol may be the smallest scheduling unit (e.g., in the time domain) of the wireless communications system 100 and may be referred to as a transmission time interval (TTI) .
  • TTI duration e.g., the number of symbol periods in a TTI
  • the smallest scheduling unit of the wireless communications system 100 may be dynamically selected (e.g., in bursts of shortened TTIs (sTTIs) ) .
  • Physical channels may be multiplexed on a carrier according to various techniques.
  • a physical control channel and a physical data channel may be multiplexed on a downlink carrier, for example, using one or more of time division multiplexing (TDM) techniques, frequency division multiplexing (FDM) techniques, or hybrid TDM-FDM techniques.
  • a control region e.g., a control resource set (CORESET)
  • CORESET control resource set
  • a control region for a physical control channel may be defined by a number of symbol periods and may extend across the system bandwidth or a subset of the system bandwidth of the carrier.
  • One or more control regions (e.g., CORESETs) may be configured for a set of the UEs 115.
  • one or more of the UEs 115 may monitor or search control regions for control information according to one or more search space sets, and each search space set may include one or multiple control channel candidates in one or more aggregation levels arranged in a cascaded manner.
  • An aggregation level for a control channel candidate may refer to a number of control channel resources (e.g., control channel elements (CCEs) ) associated with encoded information for a control information format having a given payload size.
  • Search space sets may include common search space sets configured for sending control information to multiple UEs 115 and UE-specific search space sets for sending control information to a specific UE 115.
  • a base station 105 may be movable and therefore provide communication coverage for a moving geographic coverage area 110.
  • different geographic coverage areas 110 associated with different technologies may overlap, but the different geographic coverage areas 110 may be supported by the same base station 105.
  • the overlapping geographic coverage areas 110 associated with different technologies may be supported by different base stations 105.
  • the wireless communications system 100 may include, for example, a heterogeneous network in which different types of the base stations 105 provide coverage for various geographic coverage areas 110 using the same or different radio access technologies.
  • the wireless communications system 100 may be configured to support ultra-reliable communications or low-latency communications, or various combinations thereof.
  • the wireless communications system 100 may be configured to support ultra-reliable low-latency communications (URLLC) or mission critical communications.
  • the UEs 115 may be designed to support ultra-reliable, low-latency, or critical functions (e.g., mission critical functions) .
  • Ultra-reliable communications may include private communication or group communication and may be supported by one or more mission critical services such as mission critical push-to-talk (MCPTT) , mission critical video (MCVideo) , or mission critical data (MCData) .
  • MCPTT mission critical push-to-talk
  • MCVideo mission critical video
  • MCData mission critical data
  • Support for mission critical functions may include prioritization of services, and mission critical services may be used for public safety or general commercial applications.
  • the terms ultra-reliable, low-latency, mission critical, and ultra-reliable low-latency may be used interchangeably herein.
  • a UE 115 may also be able to communicate directly with other UEs 115 over a device-to-device (D2D) communication link 135 (e.g., using a peer-to-peer (P2P) or D2D protocol) .
  • D2D device-to-device
  • P2P peer-to-peer
  • One or more UEs 115 utilizing D2D communications may be within the geographic coverage area 110 of a base station 105.
  • Other UEs 115 in such a group may be outside the geographic coverage area 110 of a base station 105 or be otherwise unable to receive transmissions from a base station 105.
  • groups of the UEs 115 communicating via D2D communications may utilize a one-to-many (1: M) system in which each UE 115 transmits to every other UE 115 in the group.
  • a base station 105 facilitates the scheduling of resources for D2D communications. In other cases, D2D communications are carried out between the UEs 115 without the involvement of a base station 105.
  • the core network 130 may provide user authentication, access authorization, tracking, Internet Protocol (IP) connectivity, and other access, routing, or mobility functions.
  • the core network 130 may be an evolved packet core (EPC) or 5G core (5GC) , which may include at least one control plane entity that manages access and mobility (e.g., a mobility management entity (MME) , an access and mobility management function (AMF) ) and at least one user plane entity that routes packets or interconnects to external networks (e.g., a serving gateway (S-GW) , a Packet Data Network (PDN) gateway (P-GW) , or a user plane function (UPF) ) .
  • EPC evolved packet core
  • 5GC 5G core
  • MME mobility management entity
  • AMF access and mobility management function
  • S-GW serving gateway
  • PDN Packet Data Network gateway
  • UPF user plane function
  • the control plane entity may manage non-access stratum (NAS) functions such as mobility, authentication, and bearer management for the UEs 115 served by the base stations 105 associated with the core network 130.
  • NAS non-access stratum
  • User IP packets may be transferred through the user plane entity, which may provide IP address allocation as well as other functions.
  • the user plane entity may be connected to the network operators IP services 150.
  • the operators IP services 150 may include access to the Internet, Intranet (s) , an IP Multimedia Subsystem (IMS) , or a Packet-Switched Streaming Service.
  • Some of the network devices may include subcomponents such as an access network entity 140, which may be an example of an access node controller (ANC) .
  • Each access network entity 140 may communicate with the UEs 115 through one or more other access network transmission entities 145, which may be referred to as radio heads, smart radio heads, or transmission/reception points (TRPs) .
  • Each access network transmission entity 145 may include one or more antenna panels.
  • various functions of each access network entity 140 or base station 105 may be distributed across various network devices (e.g., radio heads and ANCs) or consolidated into a single network device (e.g., a base station 105) .
  • the wireless communications system 100 may operate using one or more frequency bands, typically in the range of 300 megahertz (MHz) to 300 gigahertz (GHz) .
  • the region from 300 MHz to 3 GHz is known as the ultra-high frequency (UHF) region or decimeter band because the wavelengths range from approximately one decimeter to one meter in length.
  • UHF waves may be blocked or redirected by buildings and environmental features, but the waves may penetrate structures sufficiently for a macro cell to provide service to the UEs 115 located indoors.
  • the transmission of UHF waves may be associated with smaller antennas and shorter ranges (e.g., less than 100 kilometers) compared to transmission using the smaller frequencies and longer waves of the high frequency (HF) or very high frequency (VHF) portion of the spectrum below 300 MHz.
  • HF high frequency
  • VHF very high frequency
  • the wireless communications system 100 may utilize both licensed and unlicensed radio frequency spectrum bands.
  • the wireless communications system 100 may employ License Assisted Access (LAA) , LTE-Unlicensed (LTE-U) radio access technology, or NR technology in an unlicensed band such as the 5 GHz industrial, scientific, and medical (ISM) band.
  • LAA License Assisted Access
  • LTE-U LTE-Unlicensed
  • NR NR technology
  • an unlicensed band such as the 5 GHz industrial, scientific, and medical (ISM) band.
  • devices such as the base stations 105 and the UEs 115 may employ carrier sensing for collision detection and avoidance.
  • operations in unlicensed bands may be based on a carrier aggregation configuration in conjunction with component carriers operating in a licensed band (e.g., LAA) .
  • Operations in unlicensed spectrum may include downlink transmissions, uplink transmissions, P2P transmissions, or D2D transmissions, among other examples.
  • a base station 105 or a UE 115 may be equipped with multiple antennas, which may be used to employ techniques such as transmit diversity, receive diversity, multiple-input multiple-output (MIMO) communications, or beamforming.
  • the antennas of a base station 105 or a UE 115 may be located within one or more antenna arrays or antenna panels, which may support MIMO operations or transmit or receive beamforming.
  • one or more base station antennas or antenna arrays may be co-located at an antenna assembly, such as an antenna tower.
  • antennas or antenna arrays associated with a base station 105 may be located in diverse geographic locations.
  • a base station 105 may have an antenna array with a number of rows and columns of antenna ports that the base station 105 may use to support beamforming of communications with a UE 115.
  • a UE 115 may have one or more antenna arrays that may support various MIMO or beamforming operations.
  • an antenna panel may support radio frequency beamforming for a signal transmitted via an antenna port.
  • the base stations 105 or the UEs 115 may use MIMO communications to exploit multipath signal propagation and increase the spectral efficiency by transmitting or receiving multiple signals via different spatial layers. Such techniques may be referred to as spatial multiplexing.
  • the multiple signals may, for example, be transmitted by the transmitting device via different antennas or different combinations of antennas. Likewise, the multiple signals may be received by the receiving device via different antennas or different combinations of antennas.
  • Each of the multiple signals may be referred to as a separate spatial stream and may carry bits associated with the same data stream (e.g., the same codeword) or different data streams (e.g., different codewords) .
  • Different spatial layers may be associated with different antenna ports used for channel measurement and reporting.
  • MIMO techniques include single-user MIMO (SU-MIMO) , where multiple spatial layers are transmitted to the same receiving device, and multiple-user MIMO (MU-MIMO) , where multiple spatial layers are transmitted to multiple devices.
  • SU-MIMO single-user MIMO
  • Beamforming which may also be referred to as spatial filtering, directional transmission, or directional reception, is a signal processing technique that may be used at a transmitting device or a receiving device (e.g., a base station 105, a UE 115) to shape or steer an antenna beam (e.g., a transmit beam, a receive beam) along a spatial path between the transmitting device and the receiving device.
  • Beamforming may be achieved by combining the signals communicated via antenna elements of an antenna array such that some signals propagating at particular orientations with respect to an antenna array experience constructive interference while others experience destructive interference.
  • the adjustment of signals communicated via the antenna elements may include a transmitting device or a receiving device applying amplitude offsets, phase offsets, or both to signals carried via the antenna elements associated with the device.
  • the adjustments associated with each of the antenna elements may be defined by a beamforming weight set associated with a particular orientation (e.g., with respect to the antenna array of the transmitting device or receiving device, or with respect to some other orientation) .
  • a base station 105 or a UE 115 may use beam sweeping techniques as part of beam forming operations.
  • a base station 105 may use multiple antennas or antenna arrays (e.g., antenna panels) to conduct beamforming operations for directional communications with a UE 115.
  • Some signals e.g., synchronization signals, reference signals, beam selection signals, or other control signals
  • the base station 105 may transmit a signal according to different beamforming weight sets associated with different directions of transmission.
  • Transmissions in different beam directions may be used to identify (e.g., by a transmitting device, such as a base station 105, or by a receiving device, such as a UE 115) a beam direction for later transmission or reception by the base station 105.
  • a transmitting device such as a base station 105
  • a receiving device such as a UE 115
  • Some signals may be transmitted by a base station 105 in a single beam direction (e.g., a direction associated with the receiving device, such as a UE 115) .
  • the beam direction associated with transmissions along a single beam direction may be determined based on a signal that was transmitted in one or more beam directions.
  • a UE 115 may receive one or more of the signals transmitted by the base station 105 in different directions and may report to the base station 105 an indication of the signal that the UE 115 received with a highest signal quality or an otherwise acceptable signal quality.
  • transmissions by a device may be performed using multiple beam directions, and the device may use a combination of digital precoding or radio frequency beamforming to generate a combined beam for transmission (e.g., from a base station 105 to a UE 115) .
  • the UE 115 may report feedback that indicates precoding weights for one or more beam directions, and the feedback may correspond to a configured number of beams across a system bandwidth or one or more sub-bands.
  • the base station 105 may transmit a reference signal (e.g., a cell-specific reference signal (CRS) , a CSI reference signal (CSI-RS) ) , which may be precoded or unprecoded.
  • a reference signal e.g., a cell-specific reference signal (CRS) , a CSI reference signal (CSI-RS)
  • the UE 115 may provide feedback for beam selection, which may be a precoding matrix indicator (PMI) or codebook-based feedback (e.g., a multi-panel type codebook, a linear combination type codebook, a port selection type codebook) .
  • PMI precoding matrix indicator
  • codebook-based feedback e.g., a multi-panel type codebook, a linear combination type codebook, a port selection type codebook
  • these techniques are described with reference to signals transmitted in one or more directions by a base station 105, a UE 115 may employ similar techniques for transmitting signals multiple times in different directions (e.g., for identifying a beam direction for subsequent transmission or reception by the UE 115) or for transmitting a signal in a single direction (e.g., for transmitting data to a receiving device) .
  • a receiving device may try multiple receive configurations (e.g., directional listening) when receiving various signals from the base station 105, such as synchronization signals, reference signals, beam selection signals, or other control signals.
  • receive configurations e.g., directional listening
  • a receiving device may try multiple receive directions by receiving via different antenna subarrays, by processing received signals according to different antenna subarrays, by receiving according to different receive beamforming weight sets (e.g., different directional listening weight sets) applied to signals received at multiple antenna elements of an antenna array, or by processing received signals according to different receive beamforming weight sets applied to signals received at multiple antenna elements of an antenna array, any of which may be referred to as “listening” according to different receive configurations or receive directions.
  • receive beamforming weight sets e.g., different directional listening weight sets
  • a receiving device may use a single receive configuration to receive along a single beam direction (e.g., when receiving a data signal) .
  • the single receive configuration may be aligned in a beam direction determined based on listening according to different receive configuration directions (e.g., a beam direction determined to have a highest signal strength, highest signal-to-noise ratio (SNR) , or otherwise acceptable signal quality based on listening according to multiple beam directions) .
  • SNR signal-to-noise ratio
  • the wireless communications system 100 may be a packet-based network that operates according to a layered protocol stack.
  • communications at the bearer or Packet Data Convergence Protocol (PDCP) layer may be IP-based.
  • a Radio Link Control (RLC) layer may perform packet segmentation and reassembly to communicate over logical channels.
  • RLC Radio Link Control
  • a Medium Access Control (MAC) layer may perform priority handling and multiplexing of logical channels into transport channels.
  • the MAC layer may also use error detection techniques, error correction techniques, or both to support retransmissions at the MAC layer to improve link efficiency.
  • the Radio Resource Control (RRC) protocol layer may provide establishment, configuration, and maintenance of an RRC connection between a UE 115 and a base station 105 or a core network 130 supporting radio bearers for user plane data.
  • RRC Radio Resource Control
  • transport channels may be mapped to physical channels.
  • the UEs 115 and the base stations 105 may support retransmissions of data to increase the likelihood that data is received successfully.
  • Hybrid automatic repeat request (HARQ) feedback is one technique for increasing the likelihood that data is received correctly over a communication link 125.
  • HARQ may include a combination of error detection (e.g., using a cyclic redundancy check (CRC) ) , forward error correction (FEC) , and retransmission (e.g., automatic repeat request (ARQ) ) .
  • FEC forward error correction
  • ARQ automatic repeat request
  • HARQ may improve throughput at the MAC layer in poor radio conditions (e.g., low signal-to-noise conditions) .
  • a device may support same-slot HARQ feedback, where the device may provide HARQ feedback in a specific slot for data received in a previous symbol in the slot. In other cases, the device may provide HARQ feedback in a subsequent slot, or according to some other time interval.
  • the base station 105 may transmit and the UE 115 may receive, a reference signal on a first set of time-frequency resources. In some cases, the base station may transmit a signal transfer configuration indicating a second set of time-frequency resources.
  • the UE may determine a duplex mode for CSI of the reference signal based on an overlapping status (e.g., an overlap) of the signal transfer resources and the reference signal resources and may transmit, to the base station 105, a CSI report based on the determined duplex mode.
  • the base station 105 may determine the duplex mode based on the received CSI-RS and may decode the report based at least in part on the duplex mode.
  • FIG. 2 illustrates an example of a wireless communications system 200 that supports channel state reporting types in accordance with aspects of the present disclosure.
  • wireless communications system 200 may implement aspects of wireless communications system 100.
  • Wireless communications system 200 may include a base station 105-b, a UE 115-b, which may be examples of corresponding devices as described herein with reference to FIG. 1.
  • the base station 105-b may have separate sets of antennas, including uplink antennas 205 and downlink antennas 210, that may be located at the base station 105-b or one or more of the antennas may be located away from the base station 105-b (e.g., which may be implemented as radio heads associated with an access network controller of base station 105-b) .
  • the downlink antennas 210 may be located remotely from the uplink antennas 205 to reduce inter-antenna interference. In other cases, the downlink antennas 210 may be located relatively close to or even be integrated with the uplink antennas 205 as one antenna set.
  • downlink antennas 210 may transmit downlink communications 215 to the UE 115-b, which may include a downlink CSI-RS. Further, uplink antennas 205 may receive uplink communications 230 from the UE 115-b, which may include a CSI report. In some cases, the CSI report may be based on an estimation of self-interference 245 at the UE 115-b from FD operation at the UE 115-b. In some cases, the UE 115-b, as a FD capable device, may not operate in FD mode, which may be referred to as non-FD mode.
  • Whether the UE 115-b operates under FD mode or non-FD mode may depend on one or more of a number of factors, such as whether the FD mode can achieve higher data rates than the non-FD mode, a power status or thermal status of the UE 115-b (e.g., that may indicate whether the UE 115-b can transmit, receive, and process concurrent FD transmissions) , an amount of data traffic at the UE 115-b or other UEs in wireless communications system 200, or the like.
  • the UE 115-b may indicate the existence of self-interference to the base station 105-b by determining a CSI-type and reporting the determined CSI-type to the base station 105-b.
  • the base station 105-b may transmit a number of signaling messages in the downlink communication 215 to the UE 115-b for reporting CSI.
  • the base station 105-b may transmit a CSI report configuration message, a CSI-RS, an uplink transfer configuration, etc.
  • the received signaling messages may cause the UE 115-b to transmit uplink data or signaling and transmit a CSI report to the base station 105-b on the uplink communications 230.
  • the UE 115-b may determine to generate a FD CSI or a non-FD CSI based on an overlapping condition of the signaling received from the base station 105-b and the transmitted uplink data. For example, the UE 115-b may generate a FD CSI if the CSI-RS time-frequency resources overlap with the time-frequency resources of the uplink transmission and may generate a non-FD CSI otherwise. For example, the UE 115-b may generate a non-FD CSI if the CSI-RS time-frequency resources do not overlap with the time-frequency resources of the uplink transmission.
  • the UE 115-b may report the CSI-type implicitly to the base station 105-b, and the CSI-type may be based on a duplex mode (e.g., FD CSI, non-FD CSI) .
  • a UE 115-b may transmit the CSI report of a generated CSI to the base station 115-b and the CSI-type may be indicated implicitly (e.g., without including an explicit indication) .
  • the base station 105-b may determine the CSI-type based on the received CSI report and may determine that downlink CSI-RS resources overlap with the time-frequency resources of a received uplink transmission.
  • the base station 105-b may decode the received CSI based on the determined CSI-type.
  • the UE 115-b may avoid including an explicit indication of CSI-type that may increase the CSI report payload. Further, implementing the implicit indication may allow for increased coverage area for the CSI report, and thus may avoid decreasing a downlink coverage area in which the PDSCH is based on a CSI report.
  • the UE 115-b may report the CSI-type explicitly to the base station. For example, the UE 115-b may transmit the CSI report to transfer a generated CSI to the base station 105-b and the CSI-type may be indicated explicitly (e.g., by including an explicit indication) . For example, the UE 115-b may transmit a one or more bit indication to the base station 105-b indicating the CSI-type (e.g., FD CSI, non-FD CSI) . The base station 105-b may determine the CSI-type based on the indication in the received CSI report.
  • the CSI-type may be indicated explicitly (e.g., by including an explicit indication) .
  • the UE 115-b may transmit a one or more bit indication to the base station 105-b indicating the CSI-type (e.g., FD CSI, non-FD CSI) .
  • the base station 105-b may determine the CSI-type based on the indication in the
  • the base station 105-b may decode the received CSI based on the indicated CSI-type (e.g., FD CSI, non-FD CSI) . Including the explicit indication may avoid misinterpretation of the CSI- type by the base station 105-b that may be caused by unreceived messages from the UE 115-b (e.g., due to the poor channel quality) .
  • the indicated CSI-type e.g., FD CSI, non-FD CSI
  • Including the explicit indication may avoid misinterpretation of the CSI- type by the base station 105-b that may be caused by unreceived messages from the UE 115-b (e.g., due to the poor channel quality) .
  • the base station 105-b may determine a CSI-type reporting method. For example, the base station 105-b may indicate to the UE 115-b to report the CSI-type based on an implicit indication. For example, if the uplink channel quality is acceptable (e.g., signal to interference plus noise ratio (SINR) , reference signal received power (RSRP) , or other channel quality metric is higher than a threshold value) the base station 105-b may determine that the CSI-type is to be reported implicitly. The base station 105-b may also indicate to the UE 115-b to report the CSI-type using an explicit indication. For example, if the uplink channel quality is unacceptable (e.g., SINR, RSRP, etc.
  • SINR signal to interference plus noise ratio
  • RSRP reference signal received power
  • the base station 105-b may determine that the CSI-type is to be reported explicitly.
  • the base station 105-b may indicate the reporting type (e.g., explicit, implicit) to the UE 115-b via a signaling message (e.g., CSI report configuration message) .
  • FIG. 3 illustrates an example of a process flow 300 that supports channel state reporting types in accordance with aspects of the present disclosure.
  • process flow 300 may implement aspects of wireless communication systems 100 or 200, as described with reference to FIGs. 1 and 2, respectively.
  • the process flow 300 may include a base station 105-c and a UE 115-c, which may be examples of the corresponding devices as described with reference to FIGs. 1 and 2.
  • the operations between the base station 105-c and the UE 115-c may be performed in a different orders or at different times than as shown. Some operations may be omitted from the process flow 300, and other operations may be added to the process flow 300 without departing from the scope of the present disclosure.
  • the base station 105-c may transmit a CSI report configuration to the UE 115-c.
  • the base station 105-c determines how the CSI-type is to be reported and includes an indication of how the UE 115-c is to report the CSI-type in the CSI report configuration message. For example, if the uplink channel quality is acceptable (e.g., SINR, RSRP, etc. is higher than a threshold value) the base station 105-c may determine that the CSI-type is to be reported implicitly.
  • the base station 105-c may also indicate to the UE 115-c to report the CSI-type based on an explicit indication.
  • the base station 105-c may determine that the CSI-type is to be reported explicitly (e.g., in a 1 or more bit indication) in the CSI report.
  • the base station 105-c may indicate the reporting type (e.g., explicit, implicit) to the UE 115-c via the CSI report configuration message transmitted to the UE at 305.
  • the base station 105-c may transmit an signal configuration (e.g., an uplink transfer configuration) to the UE 115-c.
  • the base station 105-c may grant uplink resources to the UE 115-c on which the UE 115-c may transmit various uplink signaling or data.
  • the base station 105-c may transmit a CSI-RS to the UE 115-c over time-frequency resources.
  • the CSI-RS may indicate to the UE 115-c to generate and transmit a CSI report.
  • the UE 115-c may receive the CSI-RS and may generate a CSI-report.
  • the CSI-RS resources may overlap with the granted uplink resources of 310.
  • the UE 115-c may transmit an uplink transfer message (e.g., data, control information, signaling) to the base station 105-c on the granted uplink resources.
  • an uplink transfer message e.g., data, control information, signaling
  • the UE 115-c may determine the duplex mode based on receiving the CSI-RS and transmitting the uplink transfer message.
  • the UE 115-c may determine the CSI-type to be an FD CSI or a non-FD CSI based on an overlapping condition (e.g., self-interference) of the CSI-RS received from the base station 115-c and the transmitted uplink signal.
  • the UE 115-c may determine the CSI-type to be FD CSI based on the time-frequency resources of the CSI-RS overlapping with the time-frequency resources of the uplink signal.
  • the UE 115-c may determine the CSI-type to be non-FD CSI otherwise.
  • the UE 115-c may determine a non-FD CSI based on the CSI-RS time-frequency resources being separate from (or non-overlapping with) the time-frequency resources of the uplink signal (or, e.g., if the UE 115-c does not transmit the uplink signal on overlapping resources) .
  • the UE 115-c may transmit a CSI report to the base station 105-c.
  • the CSI report may include the indication of CSI-type according to the CSI report configuration received from the base station 105-c.
  • the indication may provide the base station 105-c with information about the presence of self-interference at the UE 115-c.
  • the UE 115-c may determine to generate a FD CSI or a non-FD CSI based on an overlapping condition of the CSI-RS received from the base station 105-c and the uplink data/signaling transmitted by the UE 105-c.
  • the UE 115-c may generate a FD CSI if the CSI-RS time-frequency resources overlap with the time-frequency resources of the uplink transmission and may generate a non-FD CSI otherwise.
  • the UE may generate a non-FD CSI if the CSI-RS time-frequency resources do not overlap with the time-frequency resources of the uplink transmission.
  • the UE 115-c may report the CSI-type implicitly to the base station, in which case the CSI-type may be based on the duplex mode (e.g., FD CSI, non-FD CSI) .
  • the transmitted CSI report may transfer the generated CSI to the base station 105-c and the CSI-type may be indicated implicitly (e.g., without including an explicit indication) .
  • the UE 115-c may report the CSI-type explicitly to the base station 105-c, in which case the CSI-type may be based on the duplex mode (e.g., FD CSI, non-FD CSI) .
  • the UE 115-c may transmit the CSI report to transfer the generated CSI to the base station 105-c and the CSI-type may be indicated explicitly (e.g., the UE 115-c may include an explicit indication within the CSI report) .
  • the UE 115-c may transmit the CSI report including a 1 or more bit indication to the base station 105-c indicating the CSI-type (e.g., FD CSI, non-FD CSI) .
  • the base station 105-c may determine the duplex mode (e.g., CSI-type) based on the indication received in the CSI report.
  • the CSI report may include the implicit indication of the duplex mode.
  • the base station 105-c may determine the CSI-type based on the received CSI report.
  • the base station may determine that an associated CSI-RS resource overlaps with the time-frequency resource of the received uplink transmission and the base station 105-c may determine the received CSI-type based on whether the associated CSI-RS resource overlaps with the time-frequency resource of the uplink signal.
  • the base station 105-c may determine the CSI-type to be FD CSI which may serve as an indication of self-interference at the UE 115-c.
  • the base station 105-c may determine the CSI-type to be non-FD CSI which may serve as an indication of an absence of self-interference at the UE 115-c.
  • the CSI report may include an explicit indication of the duplex mode.
  • the indication may be 1 or more bits and may be included in the CSI report received from the UE 115-c.
  • the base station 105-c may determine the CSI-type based on the explicit indication within the received CSI report.
  • the base station 105-c may decode the CSI report based on the determined duplex mode. For example, the base station 105-c may determine the CSI-type to be FD or non-FD based on the indication received in the CSI report and may decode the CSI according to the CSI-type and thus may be informed of self-interference at the UE 115-c.
  • the described methods may be applicable to other communications between different devices.
  • the methods describes herein are described in relation to communication between a base station 105-c and a FD-capable UE 115-c, the methods may be applied in different scenarios.
  • the methods may be applied to communications between a network node (e.g., a parent IAB node) and other network nodes (e.g., a child IAB node) .
  • a network node e.g., a parent IAB node
  • other network nodes e.g., a child IAB node
  • FIG. 4 illustrates an example of a process flow 400 that supports channel state reporting types in accordance with aspects of the present disclosure.
  • process flow 400 may implement aspects of wireless communications systems 100 or 200, as described with reference to FIGs. 1 and 2.
  • the process flow 400 may include a base station 105-d, and a UE 115-d.
  • the base station 105-d and the UE 115-d may be examples of devices as described with reference to FIGs. 1 and 2.
  • the operations between the base station 105-d and the UE 115-d may be performed in a different orders or at different times than as shown. Some operations may be omitted from the process flow 400, and other operations may be added to the process flow 400 without departing from the scope of the present disclosure.
  • the base station 105-d may transmit a CSI report configuration message to the UE 115-d.
  • the base station 105-d determines how the CSI-type is reported. For example, the base station may indicate to the UE 115-d to report the CSI-type based on an implicit indication in the CSI report configuration message. For example, if the uplink channel quality is acceptable (e.g., SINR, RSRP, etc. is higher than a threshold value) the base station 105-d may determine that the CSI-type is to be reported implicitly.
  • the base station 105-d may also indicate to the UE 115-d to report the CSI-type based on an explicit indication.
  • the base station 105-d may determine that the CSI-type is to be reported explicitly (e.g., in a one or more bit indication) in the CSI report.
  • the base station 105-d may indicate the reporting type (e.g., explicit, implicit) to the UE 115-d via the CSI report configuration message.
  • the UE 115-d may receive the CSI report configuration and may include the explicit or implicit indication in a related CSI report.
  • the base station 105-d may transmit a signal configuration to the UE 115-d including a semi-persistent PUSCH resource grant.
  • the semi-persistent granted PUSCH resource configuration may be transmitted by the base station 105-d via dedicated RRC-layer signaling or other signaling and may include periodically-configured time resources (e.g., the interval between granted resources may be configured and may be consistent between each set of granted resources in time, or may be dynamic or aperiodic) .
  • the base station 105-d may grant semi-persistent PUSCH resources to the UE 115-d on which the UE 115-d may transmit various uplink signals.
  • the UE 115-d may transmit an acknowledgement message to the base station 105-d (e.g., in response to receiving the dedicated RRC signaling) .
  • the acknowledgment message may indicate whether the semi-persistent PUSCH resource configuration was successful and thus may inform the base station 105-d of the semi-persistent PUSCH resource occasions.
  • the base station 105-d may transmit a CSI-RS to the UE 115-d over time-frequency resources.
  • the CSI-RS may indicate to the UE 115-d to generate and transmit a CSI report.
  • the UE 115-d may receive the CSI-RS and may generate a CSI-report.
  • the granted semi-persistent PUSCH resource may overlap with the CSI-RS resources.
  • the UE 115-d may transmit an uplink signal to the base station 105-d on the granted semi-persistent PUSCH resource. For example, as a semi-persistent PUSCH occasion occurs, the UE 115-d may transmit during the instant PUSCH occasion depending if the UE 115-d has uplink data or signaling in its buffer (e.g., CSI) . Otherwise, the UE 115-d may refrain from transmitting in the instant semi-persistent PUSCH occasion.
  • CSI uplink data or signaling in its buffer
  • the UE 115-d may determine to generate a FD CSI or a non-FD CSI based on an overlapping status of the CSI-RS and any occasion of the semi-persistent PUSCH resource (e.g., including a demodulation reference signal (DMRS) ) in which the UE 115-d transmitted data or signaling.
  • the periodic CSI-RS resource may have the same periodic pattern (e.g., a same period, same start position etc. ) as the semi-persistent PUSCH resource.
  • the UE 115-d may determine the duplex mode based on receiving the CSI-RS and transmitting the uplink signal.
  • the received CSI-RS may overlap with at least an occasion of the semi-persistent PUSCH resource and the UE 115-d may determine the CSI-type to be FD CSI based on transmitting the PUSCH and receiving the CSI-RS on the overlapping resources.
  • the UE may determine the CSI-type to be non-FD CSI based on receiving the CSI-RS on the CSI-RS resources that do not overlap with the uplink signal.
  • the UE 115-d may transmit a CSI report to the base station 105-d.
  • the CSI report may include the indication of CSI-type according to the CSI report configuration received from the base station 105-d.
  • the indication may provide the base station 105-d with information about the presence of self-interference at the UE 115-d.
  • the UE 115-d may determine to include a FD CSI or a non-FD CSI in the CSI report based on an overlapping condition of the CSI-RS received from the base station 105-d and the semi-persistent PUSCH transmitted by the UE 115-d.
  • the UE 115-d may generate a FD CSI if the CSI-RS time-frequency resources overlap with the time-frequency resources of the uplink transmission and may generate a non-FD CSI otherwise.
  • the UE may generate a non-FD CSI if the CSI-RS time-frequency resources do not overlap with the time-frequency resources of the uplink transmission.
  • the UE 115-d may report the CSI-type implicitly to the base station where the CSI-type may be based on the duplex mode (e.g., FD CSI, non-FD CSI) .
  • the transmitted CSI report may transfer the generated CSI to the base station 105-d and the CSI-type may be indicated implicitly (e.g., without including an explicit indication) .
  • the UE 115-d may report the CSI-type explicitly to the base station 105-d, where the CSI-type may be based on the duplex mode (e.g., FD CSI, non-FD CSI) .
  • the UE 115-d may transmit the CSI report to transfer the generated CSI to the base station 105-d and the CSI-type may be indicated explicitly by an explicit indication within the CSI report.
  • the UE 115-d may transmit the CSI report including a 1 or more bit indication to the base station 105-d indicating the CSI-type (e.g., FD CSI, non-FD CSI) .
  • the base station 105-d may determine the duplex mode (e.g., CSI-type) based on the indication received in the CSI report.
  • the CSI report may include the implicit indication of the duplex mode.
  • the base station 105-d may determine the CSI-type by determining whether the associated CSI-RS overlapped with any occasion of the semi-persistent PUSCH resource (including DMRS) that included data or signaling based on the received acknowledgement message.
  • the base station 105-d may determine that the PUSCH data is received in a semi-persistent PUSCH resource occasion that overlaps with the CSI-RS, and may determine that the CSI is for a FD mode.
  • the base station 105-d may successfully decode the PUSCH data at the same time-frequency resources as the CSI-RS and may determine that the CSI-type is FD CSI.
  • the base station 105-d may determine that the PUSCH data is received on resources different from the semi-persistent PUSCH resource occasions that overlap with the CSI-RS, and may determine that the CSI is for a non-FD mode.
  • the base station 105-d may fail to decode the PUSCH data at the same time-frequency resources as the CSI-RS and may determine that the CSI-type is non-FD CSI.
  • the received CSI report may include the explicit indication of the duplex mode.
  • the indication may be 1 or more bits and may be included in the CSI report received from the UE 115-d.
  • the base station 105-d may determine the CSI-type based on the explicit indication within the received CSI report.
  • the base station may decode the CSI report based on the determined duplex mode.
  • the base station 105-d may determine the CSI-type to be FD or non-FD based on the indication received in the CSI report and may decode the CSI according to the CSI-type and thus may be informed of self-interference at the UE 115-d.
  • FIG. 5 illustrates an example of a process flow 500 that supports channel state reporting types in accordance with aspects of the present disclosure.
  • process flow 500 may implement aspects of wireless communication systems 100 or 200, as described with reference to FIGs. 1 and 2, respectively.
  • the process flow 500 may include a base station 105-e and a UE 115-e, which may be examples of the corresponding devices as described with reference to FIGs. 1 and 2.
  • the operations between the base station 105-e and the UE 115-e may be performed in a different orders or at different times than as shown. Some operations may be omitted from the process flow 500, and other operations may be added to the process flow 500 without departing from the scope of the present disclosure.
  • the base station 105-e may transmit a CSI report configuration message to the UE 115-e.
  • the base station 105-e determines how the CSI-type is reported. For example, the base station may indicate to the UE 115-e to report the CSI-type based on an implicit indication in the CSI report configuration message. For example, if the uplink channel quality is acceptable (e.g., channel quality metric is higher than a threshold value) the base station 105-e may determine that the CSI-type is to be reported implicitly.
  • the base station 105-e may also indicate to the UE 115-e to report the CSI-type based on an explicit indication.
  • the base station 105-e may determine that the CSI-type is to be reported explicitly (e.g., in a 1 or more bit indication) in the CSI report.
  • the base station 105-e may indicate the reporting type (e.g., explicit, implicit) to the UE 115-e via the CSI report configuration message.
  • the UE 115-e may receive the CSI report configuration and may include the explicit or implicit indication in a related CSI report.
  • the base station 105-e may transmit an SR configuration message to the UE 115-e.
  • the base station 105-e may transmit the message to the UE 115-e including periodic SR resources to transmit an SR message for applying an uplink PUSCH grant.
  • the periodic SR resource configuration may be transmitted by the base station 105-e via dedicated RRC-layer signaling or other signaling and may include periodically-configured time resources (e.g., the interval between granted resources may be configured and may be consistent between each set of granted resources, or may be dynamic or aperiodic) .
  • the periodic SR resources may overlap with the CSI-RS resources.
  • the UE 115-e may transmit a positive SR message to the base station 105-e on the granted periodic SR resources.
  • the UE 115-e may transmit a positive SR message during the instant occasion if the UE 115-e has uplink data or signaling in its buffer (e.g., CSI) and if configured PUSCH resources are insufficient. Otherwise, the UE 115-e may refrain from transmitting in the instant periodic SR occasion.
  • periodic CSI-RS resources may have a same periodic pattern (e.g., a same period, same start position etc. ) as the periodic SR resources.
  • the base station 105-e may transmit a CSI-RS to the UE 115-e over time-frequency resources.
  • the CSI-RS may indicate to the UE 115-e to generate and transmit a CSI report.
  • the UE 115-e may receive the CSI-RS and may generate a CSI-report.
  • the UE 115-e may determine the duplex mode (e.g., CSI-type) based on receiving the CSI-RS and transmitting the positive SR message.
  • the CSI-RS may overlap with at least an occasion of the periodic SR resources and the UE 115-e may determine the CSI-type to be FD based on transmitting the positive SR and receiving the CSI-RS on the overlapping resources.
  • the UE 115-e may determine the CSI-type to be non-FD CSI based on only receiving CSI-RS on CSI-RS resources.
  • the UE 115-e may transmit a CSI report to the base station 105-e.
  • the CSI report may include the indication of CSI-type according to the CSI report configuration received from the base station 105-e.
  • the UE 115-e may determine to generate a FD CSI or a non-FD CSI based on the overlapping status of the CSI-RS and any occasion of the periodic SR resource in which the UE transmitted data or signaling and may indicate the CSI-type in the CSI report either implicitly or explicitly.
  • the indication may provide the base station 105-e with information about the presence of self-interference at the UE 115-e.
  • the UE 115-e may report the CSI-type implicitly to the base station, in which case the CSI-type may be based on the duplex mode (e.g., FD CSI, non-FD CSI) .
  • the transmitted CSI report may transfer the generated CSI to the base station 105-e and the CSI-type may be indicated implicitly (e.g., without including an explicit indication) by an overlapping status of the CSI-RS and any occasion of the periodic SR resource in which data or signaling was transmitted.
  • the UE 115-e may report the CSI-type explicitly to the base station 105-e, where the CSI-type may be based on the duplex mode (e.g., FD CSI, non-FD CSI) .
  • the UE 115-e may transmit the CSI report to transfer the generated CSI to the base station 105-e and the CSI-type may be indicated explicitly (e.g., the UE 115-e may include an explicit indication within the CSI report) .
  • the UE 115-e may transmit the CSI report including a 1 or more bit indication to the base station 105-e indicating the CSI-type (e.g., FD CSI, non-FD CSI) .
  • the base station 105-e may determine the duplex mode (e.g., CSI-type) based on the indication received in the CSI report.
  • the CSI report may include the implicit indication of the duplex mode.
  • the base station 105-e may determine the CSI-type based on the received CSI report.
  • the base station 105-e may determine the CSI-type by determining whether the associated CSI-RS overlapped with any occasion of the periodic SR resource that included a positive SR message.
  • the base station 105-e may determine that the positive SR message was received in a periodic SR resource occasion that overlaps with the CSI-RS, and may determine that the CSI is for a FD mode.
  • the base station 105-e may determine that the positive SR message was not received on a periodic SR resource occasion that overlaps with the CSI-RS, and may determine that the CSI is for a non-FD mode.
  • the CSI report may include an explicit indication of the duplex mode.
  • the indication may be 1 or more bits and may be included in the CSI report received from the UE 115-e.
  • the base station 105-e may determine the CSI-type based on the explicit indication within the received CSI report.
  • the base station 105-e may decode the CSI report based on the determined duplex mode. For example, the base station 105-e may determine the CSI-type to be FD or non-FD based on the indication received in the CSI report and may decode the CSI according to the CSI-type and thus may be informed of self-interference at the UE 115-e.
  • the described methods may be applicable to other communications between different devices.
  • the methods describes herein are described in relation to communication between a base station 105-e and an FD-capable UE 115-e, the methods may be applied in different scenarios.
  • the methods may be applied to communications between a network node (e.g., a parent IAB node) and other network nodes (e.g., a child IAB node) .
  • a network node e.g., a parent IAB node
  • other network nodes e.g., a child IAB node
  • FIG. 6 illustrates an example of a process flow 600 that supports channel state reporting types in accordance with aspects of the present disclosure.
  • process flow 600 may implement aspects of wireless communication systems 100 or 200, as described with reference to FIGs. 1 and 2, respectively.
  • the process flow 600 may include a base station 105-f and a UE 115-f, which may examples of the corresponding devices as described with reference to FIGs. 1 and 2.
  • the operations between the base station 105-f and the UE 115-f may be performed in a different orders or at different times than as shown. Some operations may be omitted from the process flow 600, and other operations may be added to the process flow 600 without departing from the scope of the present disclosure.
  • the base station 105-f may transmit a CSI report configuration message to the UE 115-f.
  • the base station 105-f determines how the CSI-type is reported. For example, the base station may indicate to the UE 115-f to report the CSI-type based on an implicit indication in the CSI report configuration message. For example, if the uplink channel quality is acceptable (e.g., channel quality metric is higher than a threshold value) the base station 105-f may determine that the CSI-type is to be reported implicitly.
  • the base station 105-f may also indicate to the UE 115-f to report the CSI-type based on an explicit indication.
  • the base station 105-f may determine that the CSI-type is to be reported explicitly (e.g., in a 1 or more bit indication) in the CSI report.
  • the base station 105-f may indicate the reporting type (e.g., explicit, implicit) to the UE 115-f via the CSI report configuration message.
  • the UE 115-f may receive the CSI report configuration and may include the explicit or implicit indication in a related CSI report.
  • the base station 105-f may transmit a dynamic uplink resource configuration to the UE 115-f.
  • the base station 105-f may transmit an uplink transfer configuration to the UE including a dynamic uplink resources for transmitting dynamic (e.g., aperiodic) SSR, dynamic (e.g., aperiodic) PUSCH or dynamic (e.g., aperiodic) PUCCH which may be used for transmitting ACK/NACK information of a dynamic (e.g., aperiodic) PDSCH.
  • the dynamic uplink resource configuration may be transmitted by the base 105-f via dedicated downlink control information (DCI) or other signaling.
  • DCI dedicated downlink control information
  • the base station 105-f may transmit a CSI-RS to the UE 115-f over time-frequency resources.
  • the CSI-RS may indicate to the UE 115-f to generate and transmit a CSI report.
  • the UE 115-f may receive the CSI-RS and may generate a CSI-report.
  • the UE 115-f may successfully receive the dynamic uplink resource configuration and may transmit uplink data or signaling according to the received configuration. In some cases, the UE 115-f may fail to receive the dynamic uplink resource configuration and may not transmit uplink data or signaling according to the received configuration.
  • the UE 115-f may determine the duplex mode (e.g., CSI-type) based on receiving the CSI-RS and transmitting uplink data or signaling according to the received configuration.
  • the UE 115-f may determine the CSI-type to be a FD CSI or a non-FD CSI based on an overlapping condition (e.g., self-interference) of the CSI-RS received from the base station 115-f and the dynamic uplink transmission.
  • the CSI-RS may overlap with at least an occasion of the dynamic uplink resource and the UE may determine the CSI-type to be a FD CSI based on transmitting the uplink data/signaling and receiving the CSI-RS on the overlapping resources. In other examples, the UE may determine the CSI-type to be a non-FD CSI based on only receiving CSI-RS on CSI-RS resources.
  • the UE 115-f may transmit a CSI report to the base station 105-f.
  • the CSI report may include the indication of CSI-type according to the CSI report configuration received from the base station 105-f.
  • the indication may provide the base station 105-f with information about the presence of self-interference at the UE 115-f.
  • the UE 115-f may determine to generate a FD CSI or a non-FD CSI based on the overlapping condition of the CSI-RS received from the base station 105-f and the uplink data/signaling transmitted by the UE 105-f.
  • the UE 115-f may generate a FD CSI if the CSI-RS time-frequency resources overlap with the time-frequency resources of the uplink transmission and may generate a non-FD CSI otherwise.
  • the UE may generate a non-FD CSI if the CSI-RS time-frequency resources do not overlap with the time-frequency resources of the uplink transmission.
  • the UE 115-e may report the CSI-type implicitly to the base station, in which case the CSI-type may be based on the duplex mode (e.g., FD CSI, non-FD CSI) .
  • the transmitted CSI report may transfer the generated CSI to the base station 105-e and the CSI-type may be indicated implicitly (e.g., without including an explicit indication) .
  • the UE 115-f may report the CSI-type implicitly to the base station, in which case the CSI-type may be based on the duplex mode (e.g., FD CSI, non-FD CSI) .
  • the transmitted CSI report may transfer the generated CSI to the base station 105-f and the CSI-type may be indicated implicitly (e.g., without including an explicit indication) .
  • the UE 115-f may report the CSI-type explicitly to the base station 105-f, in which case the CSI-type may be based on the duplex mode (e.g., FD CSI, non-FD CSI) .
  • the UE 115-f may transmit the CSI report to transfer the generated CSI to the base station 105-f and the CSI-type may be indicated explicitly (e.g., the UE 115-f may include an explicit indication within the CSI report) .
  • the UE 115-f may transmit the CSI report including a 1 or more bit indication to the base station 105-f indicating the CSI-type (e.g., FD CSI, non-FD CSI) .
  • the base station 105-f may determine the duplex mode (e.g., CSI-type) based on the indication received in the CSI report.
  • the CSI report may include the implicit indication of the duplex mode.
  • the base station 105-f may determine the CSI type by determining whether the associated CSI-RS overlapped with any occasion of the dynamic uplink resources.
  • the base station 105-f may determine that the dynamic uplink transmission is received in a dynamic uplink resource occasion that overlaps with the CSI-RS, and may determine that the CSI is for a FD mode.
  • the base station may determine that the dynamic uplink transmission is not received on the dynamic uplink resource occasion that overlaps with the CSI-RS, and may determine that the CSI is for a non-FD mode.
  • the base station 105-f may determine the CSI-type to be FD CSI which may serve as an indication of self-interference at the UE 115-f.
  • the base station 105-f may determine the CSI-type to be non-FD CSI which may serve as an indication of an absence of self-interference at the UE 115-f.
  • the CSI report may include an explicit indication of the duplex mode.
  • the indication may be 1 or more bits and may be included in the CSI report received from the UE 115-f.
  • the base station 105-f may determine the CSI-type based on the explicit indication within the received CSI report.
  • the base station 105-f may decode the CSI report based on the determined duplex mode. For example, the base station 105-f may determine the CSI type to be FD or non-FD based on the indication received in the CSI report and may decode the CSI according to the CSI-type and thus may be informed of self-interference at the UE 115-f.
  • the described methods may be applicable to other communications between different devices.
  • the methods describes herein are described in relation to communication between a base station 105-f and an FD-capable UE 115-f, the methods may be applied in different scenarios.
  • the methods may be applied to communications between a network node (e.g., a parent IAB node) and other network nodes (e.g., a child IAB node) .
  • a network node e.g., a parent IAB node
  • other network nodes e.g., a child IAB node
  • FIG. 7 shows a block diagram 700 of a device 705 that supports channel state reporting types in accordance with aspects of the present disclosure.
  • the device 705 may be an example of aspects of a UE 115 or base station 105 as described herein.
  • the device 705 may include a receiver 710, a communications manager 715, and a transmitter 720.
  • the device 705 may also include a processor. Each of these components may be in communication with one another (e.g., via one or more buses) .
  • Receiver 710 may receive information such as packets, user data, or control information associated with various information channels (e.g., control channels, data channels, and information related to channel state reporting types, etc. ) . Information may be passed on to other components of the device 705.
  • the receiver 710 may be an example of aspects of the transceiver 1020 or 1120 as described with reference to FIGs. 10 and 11.
  • the receiver 710 may utilize a single antenna or a set of antennas.
  • the communications manager 715 may receive, from a second wireless device, a reference signal via a first set of time-frequency resources of a channel configured for the first wireless device, receive a signal transfer configuration indicating a second set of time-frequency resources of the channel for signal transmission by the first wireless device, determine a duplex mode for CSI of the reference signal based on an overlap between the second set of time-frequency resources and the first set of time-frequency resources, and transmit, to the second wireless device, a report including the CSI of the reference signal based on the duplex mode.
  • the communications manager 715 may also transmit, to a second wireless device, a reference signal via a first set of time-frequency resources of a channel configured for the second wireless device, transmit a signal transfer configuration indicating a second set of time-frequency resources of the channel for signal transmission by the second wireless device, receive, from the second wireless device, a report including CSI of the reference signal, determine a duplex mode for the CSI of the reference signal based on the report, and decode the report based on the duplex mode.
  • the communications manager 715 may be an example of aspects of the communications manager 1010 or 1110 as described herein.
  • the communications manager 715 may be implemented in hardware, code (e.g., software or firmware) executed by a processor, or any combination thereof. If implemented in code executed by a processor, the functions of the communications manager 715, or its sub-components may be executed by a general-purpose processor, a digital signal processor (DSP) , an application-specific integrated circuit (ASIC) , a field programmable gate array (FPGA) or other programmable logic device, discrete gate or transistor logic, discrete hardware components, or any combination thereof designed to perform the functions described in the present disclosure.
  • DSP digital signal processor
  • ASIC application-specific integrated circuit
  • FPGA field programmable gate array
  • the communications manager 715 may be physically located at various positions, including being distributed such that portions of functions are implemented at different physical locations by one or more physical components.
  • the communications manager 715, or its sub-components may be a separate and distinct component in accordance with various aspects of the present disclosure.
  • the communications manager 715, or its sub-components may be combined with one or more other hardware components, including but not limited to an input/output (I/O) component, a transceiver, a network server, another computing device, one or more other components described in the present disclosure, or a combination thereof in accordance with various aspects of the present disclosure.
  • I/O input/output
  • Transmitter 720 may transmit signals generated by other components of the device 705.
  • the transmitter 720 may be collocated with a receiver 710 in a transceiver module.
  • the transmitter 720 may be an example of aspects of the transceiver 1020 or 1120 as described with reference to FIGs. 10 and 11.
  • the transmitter 720 may utilize a single antenna or a set of antennas.
  • the communications manager 715 may be implemented as an integrated circuit or chipset for a mobile device modem, and the receiver 710 and transmitter 720 may be implemented as analog components (e.g., amplifiers, filters, antennas) coupled with the mobile device modem to enable wireless transmission and reception over one or more bands.
  • analog components e.g., amplifiers, filters, antennas
  • the communications manager 715 as described herein may be implemented to realize one or more potential advantages.
  • One implementation may allow the device 705 to provide an indication of FD or non-FD CSI type information to a base station. Such information may aide in determining whether the CSI of the CSI report is based on self-interference at the device 705. Based on the techniques for reporting CSI type at the device 505, the device 505 may be provided with more accurate scheduling information or resources for future communications based on the CSI.
  • the device 505 may increase the likelihood of successfully transmitting and receiving messages with a base station. In some examples, based on a greater likelihood of successful communications, the device 505 may more efficiently power a processor or one or more processing units associated with CSI reporting and transmitting and receiving communications, which may enable the device to save power and increase battery life.
  • FIG. 8 shows a block diagram 800 of a device 805 that supports channel state reporting types in accordance with aspects of the present disclosure.
  • the device 805 may be an example of aspects of a device 705, a UE 115, or a base station 105 as described herein.
  • the device 805 may include a receiver 810, a communications manager 815, and a transmitter 860.
  • the device 805 may also include a processor. Each of these components may be in communication with one another (e.g., via one or more buses) .
  • Receiver 810 may receive information such as packets, user data, or control information associated with various information channels (e.g., control channels, data channels, and information related to channel state reporting types, etc. ) . Information may be passed on to other components of the device 805.
  • the receiver 810 may be an example of aspects of the transceiver 1020 or 1120 as described with reference to FIGs. 10 and 11.
  • the receiver 810 may utilize a single antenna or a set of antennas.
  • the communications manager 815 may be an example of aspects of the communications manager 715 as described herein.
  • the communications manager 815 may include a signal receiver 820, a configuration receiver 825, a duplex mode manager 830, a report transmitter 835, a signal transmitter 840, a configuration transmitter 845, a report receiver 850, and a report decoder 855.
  • the communications manager 815 may be an example of aspects of the communications manager 1010 or 1110 as described herein.
  • the signal receiver 820 may receive, from a second wireless device, a reference signal via a first set of time-frequency resources of a channel configured for the first wireless device.
  • the configuration receiver 825 may receive a signal transfer configuration indicating a second set of time-frequency resources of the channel for signal transmission by the first wireless device.
  • the duplex mode manager 830 may determine a duplex mode for CSI of the reference signal based on an overlap between the second set of time-frequency resources and the first set of time-frequency resources.
  • the report transmitter 835 may transmit, to the second wireless device, a report including the CSI of the reference signal based on the duplex mode.
  • the signal transmitter 840 may transmit, to a second wireless device, a reference signal via a first set of time-frequency resources of a channel configured for the second wireless device.
  • the configuration transmitter 845 may transmit a signal transfer configuration indicating a second set of time-frequency resources of the channel for signal transmission by the second wireless device.
  • the report receiver 850 may receive, from the second wireless device, a report including CSI of the reference signal.
  • the duplex mode manager 830 may determine a duplex mode for the CSI of the reference signal based on the report.
  • the report decoder 855 may decode the report based on the duplex mode.
  • Transmitter 860 may transmit signals generated by other components of the device 805.
  • the transmitter 860 may be collocated with a receiver 810 in a transceiver module.
  • the transmitter 860 may be an example of aspects of the transceiver 1020 or 1120 as described with reference to FIGs. 10 and 11.
  • the transmitter 860 may utilize a single antenna or a set of antennas.
  • FIG. 9 shows a block diagram 900 of a communications manager 905 that supports channel state reporting types in accordance with aspects of the present disclosure.
  • the communications manager 905 may be an example of aspects of a communications manager 715, a communications manager 815, or a communications manager 1010 described herein.
  • the communications manager 905 may include a signal receiver 910, a configuration receiver 915, a duplex mode manager 920, a report transmitter 925, a report encoder 930, an indication transmitter 935, a signal transmitter 940, an interference manager 945, a grant receiver 950, a configuration transmitter 955, a report receiver 960, a report decoder 965, a channel quality component 970, and a grant transmitter 975.
  • Each of these modules may communicate, directly or indirectly, with one another (e.g., via one or more buses) .
  • the signal receiver 910 may receive, from a second wireless device, a reference signal via a first set of time-frequency resources of a channel configured for the first wireless device. In some examples, the signal receiver 910 may receive, from the second wireless device, a signal via a portion of the second set of time-frequency resources. In some cases, the signal receiver 910 may receive, from the second wireless device, an uplink shared data message via at least one occasion of the set of periodic time occasions based on the semi-persistent grant, where the duplex mode is based on receiving the uplink shared data message. In some aspects, the signal receiver 910 may receive, from the second wireless device, a scheduling request via a subset of the periodic resources based on the configuration, where the duplex mode is based on receiving the scheduling request. In some instances, the signal receiver 910 may receive, from the second wireless device, an uplink message via a subset of the uplink resources based on the dynamic grant, where the duplex mode is based on receiving the uplink message.
  • the first wireless device includes a UE and the second wireless device includes a base station. In some cases, the first wireless device includes a child IAB node and the second wireless device includes a parent IAB node. In some cases, the uplink message includes an uplink shared data channel transmission, an uplink control channel transmission, a random access channel transmission, a sounding reference signal, or any combination thereof.
  • the configuration receiver 915 may receive a signal transfer configuration indicating a second set of time-frequency resources of the channel for signal transmission by the first wireless device. In some examples, receiving, from the second wireless device, a configuration for indicating the duplex mode based on a channel quality of the channel, where the configuration includes one of an implicit indication or an explicit indication. In some cases, the configuration receiver 915 may receive, from the second wireless device, a configuration for scheduling requests, where the configuration indicates a set of periodic resources for scheduling requests. In some aspects, the configuration receiver 915 may receive the configuration for scheduling requests via RRC signaling.
  • the duplex mode manager 920 may determine a duplex mode for CSI of the reference signal based on an overlap between the second set of time-frequency resources and the first set of time-frequency resources. In some examples, the duplex mode manager 920 may determine a duplex mode for the CSI of the reference signal based on the report. In some cases, the duplex mode manager 920 may determine the duplex mode to be a full duplex mode based on transmission of a signal via a portion of the second set of time-frequency resources and the portion of the second set of time-frequency resources overlapping with at least a portion of the first set of time-frequency resources.
  • the duplex mode manager 920 may determine the duplex mode to be a non-full duplex mode based on transmission of a signal via a portion of the second set of time-frequency resources and the portion of the second set of time-frequency resources excluding the first set of time-frequency resources. In some instances, the duplex mode manager 920 may determine the duplex mode to be a non-full duplex mode based on an absence of transmission of a signal via a portion of the second set of time-frequency resources and the portion of the second set of time-frequency resources overlapping with the first set of time-frequency resources.
  • the duplex mode manager 920 may determine the duplex mode to be a full duplex mode based on at least a portion of the first set of time-frequency resources overlapping the second set of time-frequency resources. In some examples, the duplex mode manager 920 may determine the duplex mode based on whether the at least one of the set of periodic time occasions at least partially overlaps the first set of time-frequency resources. In some cases, the duplex mode manager 920 may determine the duplex mode to be a full duplex mode based on the at least one of the set of periodic time occasions at least partially overlapping the first set of time-frequency resources.
  • the duplex mode manager 920 may determine the duplex mode to be a non-full duplex mode based on the at least one of the set of periodic time occasions excluding the first set of time-frequency resources. In some instances, the duplex mode manager 920 may determine the duplex mode based on whether the subset of the periodic resources at least partially overlaps the first set of time-frequency resources.
  • the duplex mode manager 920 may determine the duplex mode to be a full duplex mode based on the subset of the periodic resources at least partially overlapping the first set of time-frequency resources. In some cases, the duplex mode manager 920 may determine the duplex mode to be a non-full duplex mode based on the subset of the periodic resources excluding the first set of time-frequency resources. In some aspects, the duplex mode manager 920 may determine the duplex mode based on whether the subset of the uplink resources at least partially overlaps the first set of time-frequency resources. In some instances, the duplex mode manager 920 may determine the duplex mode to be a full duplex mode based on the subset of the uplink resources at least partially overlapping the first set of time-frequency resources. In some cases, the duplex mode manager 920 may determine the duplex mode to be a non-full duplex mode based on the subset of the uplink resources excluding the first set of time-frequency resources.
  • the duplex mode manager 920 may determine the duplex mode based on an overlap between the first set of time-frequency resources and the portion of the second set of time-frequency resources. In some aspects, the duplex mode manager 920 may determine the duplex mode to be a full duplex mode based on at least a portion of the first set of time-frequency resources overlapping the portion of the second set of time-frequency resources. In some instances, the duplex mode manager 920 may determine the duplex mode to be a non-full duplex mode based on the first set of time-frequency resources excluding the portion of second set of time-frequency resources. In some examples, the duplex mode manager 920 may determine the duplex mode based on an indication of the duplex mode in the report. In some cases, the indication includes a 1 bit indication.
  • the report transmitter 925 may transmit, to the second wireless device, a report including the CSI of the reference signal based on the duplex mode. In some examples, the report transmitter 925 may transmit the CSI of the reference signal based on the measured interference in the report.
  • the signal transmitter 940 may transmit, to a second wireless device, a reference signal via a first set of time-frequency resources of a channel configured for the second wireless device. In some examples, the signal transmitter 940 may transmit a signal via the second set of time-frequency resources. In some examples, the signal transmitter 940 may determine to perform an uplink shared data transmission using at least one of the set of periodic time occasions. In some examples, the signal transmitter 940 may determine to transmit a scheduling request using a subset of the periodic resources. In some examples, the signal transmitter 940 may determine to transmit an uplink message using at least a subset of the uplink resources.
  • the uplink message includes an uplink shared data channel transmission, an uplink control channel transmission, a random access channel transmission, a sounding reference signal, or any combination thereof.
  • the first wireless device includes a base station and the second wireless device includes a UE.
  • the first wireless device includes a parent IAB node and the second wireless device includes a child IAB node.
  • the configuration transmitter 955 may transmit a signal transfer configuration indicating a second set of time-frequency resources of the channel for signal transmission by the second wireless device. In some examples, transmitting, to the second wireless device, a configuration for indicating the duplex mode based on the channel quality, where the configuration includes one of an implicit indication or an explicit indication. In some examples, the configuration transmitter 955 may transmit, to the second wireless device, a configuration for scheduling requests, where the configuration indicates a set of periodic resources for scheduling requests. In some examples, the configuration transmitter 955 may transmit the configuration for scheduling requests via RRC signaling.
  • the report receiver 960 may receive, from the second wireless device, a report including CSI of the reference signal.
  • the report decoder 965 may decode the report based on the duplex mode.
  • the report encoder 930 may encode the report based on the determined duplex mode.
  • the indication transmitter 935 may transmit an indication of the duplex mode in the report.
  • the indication includes a 1 bit indication.
  • the interference manager 945 may measure interference on the reference signal based on the transmitted signal.
  • the grant receiver 950 may receive, from the second wireless device, a semi-persistent grant for uplink shared data, where the semi-persistent grant indicates a set of periodic time occasions for uplink shared transmissions. In some examples, the grant receiver 950 may receive the semi-persistent grant via RRC signaling. In some cases, the grant receiver 950 may receive, from the second wireless device, a dynamic grant for uplink messages, where the dynamic grant indicates a set of uplink resources for uplink messages. In some aspects, the grant receiver 950 may receive the dynamic grant via DCI.
  • the channel quality component 970 may determine a channel quality of the channel configured for the second wireless device.
  • the grant transmitter 975 may transmit, to the second wireless device, a semi-persistent grant for uplink shared data, where the semi-persistent grant indicates a set of periodic time occasions for uplink shared transmissions. In some examples, the grant transmitter 975 may transmit the semi-persistent grant via RRC signaling. In some cases, the grant transmitter 975 may transmit, to the second wireless device, a dynamic grant for uplink messages, where the dynamic grant indicates a set of uplink resources for uplink messages. In some aspects, the grant transmitter 975 may transmit the dynamic grant via DCI.
  • FIG. 10 shows a diagram of a system 1000 including a device 1005 that supports channel state reporting types in accordance with aspects of the present disclosure.
  • the device 1005 may be an example of or include the components of device 705, device 805, or a UE 115 as described herein.
  • the device 1005 may include components for bi-directional voice and data communications including components for transmitting and receiving communications, including a communications manager 1010, a transceiver 1020, an antenna 1025, memory 1030, a processor 1040, and an I/O controller 1050. These components may be in electronic communication via one or more buses (e.g., bus 1055) .
  • buses e.g., bus 1055
  • the communications manager 1010 may receive, from a second wireless device, a reference signal via a first set of time-frequency resources of a channel configured for the first wireless device, receive a signal transfer configuration indicating a second set of time-frequency resources of the channel for signal transmission by the first wireless device, determine a duplex mode for CSI of the reference signal based on an overlap between the second set of time-frequency resources and the first set of time-frequency resources, and transmit, to the second wireless device, a report including the CSI of the reference signal based on the duplex mode.
  • the communications manager 1010 may also transmit, to a second wireless device, a reference signal via a first set of time-frequency resources of a channel configured for the second wireless device, transmit a signal transfer configuration indicating a second set of time-frequency resources of the channel for signal transmission by the second wireless device, receive, from the second wireless device, a report including CSI of the reference signal, determine a duplex mode for the CSI of the reference signal based on the report, and decode the report based on the duplex mode.
  • Transceiver 1020 may communicate bi-directionally, via one or more antennas, wired, or wireless links as described herein.
  • the transceiver 1020 may represent a wireless transceiver and may communicate bi-directionally with another wireless transceiver.
  • the transceiver 1020 may also include a modem to modulate the packets and provide the modulated packets to the antennas for transmission, and to demodulate packets received from the antennas.
  • the wireless device may include a single antenna 1025. However, in some cases the device may have more than one antenna 1025, which may be capable of concurrently transmitting or receiving multiple wireless transmissions.
  • the memory 1030 may include random access memory (RAM) , read only memory (ROM) , or a combination thereof.
  • the memory 1030 may store computer-readable code 1035 including instructions that, when executed by a processor (e.g., the processor 1040) cause the device to perform various functions described herein.
  • a processor e.g., the processor 1040
  • the memory 1030 may contain, among other things, a basic I/O system (BIOS) which may control basic hardware or software operation such as the interaction with peripheral components or devices.
  • BIOS basic I/O system
  • the processor 1040 may include an intelligent hardware device, (e.g., a general-purpose processor, a DSP, a central processing unit (CPU) , a microcontroller, an ASIC, an FPGA, a programmable logic device, a discrete gate or transistor logic component, a discrete hardware component, or any combination thereof) .
  • the processor 1040 may be configured to operate a memory array using a memory controller.
  • a memory controller may be integrated into the processor 1040.
  • the processor 1040 may be configured to execute computer-readable instructions stored in a memory (e.g., the memory 1030) to cause the device 1005 to perform various functions (e.g., functions or tasks supporting channel state reporting types) .
  • the I/O controller 1050 may manage input and output signals for the device 1005.
  • the I/O controller 1050 may also manage peripherals not integrated into the device 1005.
  • the I/O controller 1050 may represent a physical connection or port to an external peripheral.
  • the I/O controller 1050 may utilize an operating system such as or another known operating system.
  • the I/O controller 1050 may represent or interact with a modem, a keyboard, a mouse, a touchscreen, or a similar device.
  • the I/O controller 1050 may be implemented as part of a processor.
  • a user may interact with the device 1005 via the I/O controller 1050 or via hardware components controlled by the I/O controller 1050.
  • the code 1035 may include instructions to implement aspects of the present disclosure, including instructions to support wireless communications.
  • the code 1035 may be stored in a non-transitory computer-readable medium such as system memory or other type of memory. In some cases, the code 1035 may not be directly executable by the processor 1040 but may cause a computer (e.g., when compiled and executed) to perform functions described herein.
  • FIG. 11 shows a diagram of a system 1100 including a device 1105 that supports channel state reporting types in accordance with aspects of the present disclosure.
  • the device 1105 may be an example of or include the components of device 705, device 805, or a base station 105 as described herein.
  • the device 1105 may include components for bi-directional voice and data communications including components for transmitting and receiving communications, including a communications manager 1110, a network communications manager 1115, a transceiver 1120, an antenna 1125, memory 1130, a processor 1140, and an inter-station communications manager 1145. These components may be in electronic communication via one or more buses (e.g., bus 1155) .
  • buses e.g., bus 1155
  • the communications manager 1110 may receive, from a second wireless device, a reference signal via a first set of time-frequency resources of a channel configured for the first wireless device, receive a signal transfer configuration indicating a second set of time-frequency resources of the channel for signal transmission by the first wireless device, determine a duplex mode for CSI of the reference signal based on an overlap between the second set of time-frequency resources and the first set of time-frequency resources, and transmit, to the second wireless device, a report including the CSI of the reference signal based on the duplex mode.
  • the communications manager 1110 may also transmit, to a second wireless device, a reference signal via a first set of time-frequency resources of a channel configured for the second wireless device, transmit a signal transfer configuration indicating a second set of time-frequency resources of the channel for signal transmission by the second wireless device, receive, from the second wireless device, a report including CSI of the reference signal, determine a duplex mode for the CSI of the reference signal based on the report, and decode the report based on the duplex mode.
  • Network communications manager 1115 may manage communications with the core network (e.g., via one or more wired backhaul links) .
  • the network communications manager 1115 may manage the transfer of data communications for client devices, such as one or more UEs 115.
  • Transceiver 1120 may communicate bi-directionally, via one or more antennas, wired, or wireless links as described herein.
  • the transceiver 1120 may represent a wireless transceiver and may communicate bi-directionally with another wireless transceiver.
  • the transceiver 1120 may also include a modem to modulate the packets and provide the modulated packets to the antennas for transmission, and to demodulate packets received from the antennas.
  • the device 1105 may include a single antenna 1125, or the device 1105 may have more than one antenna 1125, which may be capable of concurrently transmitting or receiving multiple wireless transmissions.
  • the memory 1130 may include RAM, ROM, or a combination thereof.
  • the memory 1130 may store computer-readable code 1135 including instructions that, when executed by a processor (e.g., the processor 1140) cause the device to perform various functions described herein.
  • the memory 1130 may contain, among other things, a BIOS which may control basic hardware or software operation such as the interaction with peripheral components or devices.
  • the processor 1140 may include an intelligent hardware device, (e.g., a general-purpose processor, a DSP, a CPU, a microcontroller, an ASIC, an FPGA, a programmable logic device, a discrete gate or transistor logic component, a discrete hardware component, or any combination thereof) .
  • the processor 1140 may be configured to operate a memory array using a memory controller.
  • a memory controller may be integrated into the processor 1140.
  • the processor 1140 may be configured to execute computer-readable instructions stored in a memory (e.g., the memory 1130) to cause the device 1105 to perform various functions (e.g., functions or tasks supporting channel state reporting types) .
  • Inter-station communications manager 1145 may manage communications with other base station 105, and may include a controller or scheduler for controlling communications with UEs 115 in cooperation with other base stations 105. For example, the inter-station communications manager 1145 may coordinate scheduling for transmissions to UEs 115 for various interference mitigation techniques such as beamforming or joint transmission. In some examples, inter-station communications manager 1145 may provide an X2 interface within an LTE/LTE-A wireless communication network technology to provide communication between base stations 105.
  • the code 1135 may include instructions to implement aspects of the present disclosure, including instructions to support wireless communications.
  • the code 1135 may be stored in a non-transitory computer-readable medium such as system memory or other type of memory. In some cases, the code 1135 may not be directly executable by the processor 1140 but may cause a computer (e.g., when compiled and executed) to perform functions described herein.
  • FIG. 12 shows a flowchart illustrating a method 1200 that supports channel state reporting types in accordance with aspects of the present disclosure.
  • the operations of method 1200 may be implemented by a UE 115 or base station 105 or its components as described herein.
  • the operations of method 1200 may be performed by a communications manager as described with reference to FIGs. 7 through 11.
  • a UE or base station may execute a set of instructions to control the functional elements of the UE or base station to perform the functions described herein.
  • a UE or base station may perform aspects of the functions described herein using special-purpose hardware.
  • the UE or base station may receive, from a second wireless device, a reference signal via a first set of time-frequency resources of a channel configured for the first wireless device.
  • the operations of 1205 may be performed according to the methods described herein. In some examples, aspects of the operations of 1205 may be performed by a signal receiver as described with reference to FIGs. 7 through 11.
  • the UE or base station may receive a signal transfer configuration indicating a second set of time-frequency resources of the channel for signal transmission by the first wireless device.
  • the operations of 1210 may be performed according to the methods described herein. In some examples, aspects of the operations of 1210 may be performed by a configuration receiver as described with reference to FIGs. 7 through 11.
  • the UE or base station may determine a duplex mode for CSI of the reference signal based on an overlap between the second set of time-frequency resources and the first set of time-frequency resources.
  • the operations of 1215 may be performed according to the methods described herein. In some examples, aspects of the operations of 1215 may be performed by a duplex mode manager as described with reference to FIGs. 7 through 11.
  • the UE or base station may transmit, to the second wireless device, a report including the CSI of the reference signal based on the duplex mode.
  • the operations of 1220 may be performed according to the methods described herein. In some examples, aspects of the operations of 1220 may be performed by a report transmitter as described with reference to FIGs. 7 through 11.
  • FIG. 13 shows a flowchart illustrating a method 1300 that supports channel state reporting types in accordance with aspects of the present disclosure.
  • the operations of method 1300 may be implemented by a UE 115 or base station 105 or its components as described herein.
  • the operations of method 1300 may be performed by a communications manager as described with reference to FIGs. 7 through 11.
  • a UE or base station may execute a set of instructions to control the functional elements of the UE or base station to perform the functions described herein.
  • a UE or base station may perform aspects of the functions described herein using special-purpose hardware.
  • the UE or base station may receive, from a second wireless device, a reference signal via a first set of time-frequency resources of a channel configured for the first wireless device.
  • the operations of 1305 may be performed according to the methods described herein. In some examples, aspects of the operations of 1305 may be performed by a signal receiver as described with reference to FIGs. 7 through 11.
  • the UE or base station may receive a signal transfer configuration indicating a second set of time-frequency resources of the channel for signal transmission by the first wireless device.
  • the operations of 1310 may be performed according to the methods described herein. In some examples, aspects of the operations of 1310 may be performed by a configuration receiver as described with reference to FIGs. 7 through 11.
  • the UE or base station may determine a duplex mode for CSI of the reference signal based on an overlap between the second set of time-frequency resources and the first set of time-frequency resources.
  • the operations of 1315 may be performed according to the methods described herein. In some examples, aspects of the operations of 1315 may be performed by a duplex mode manager as described with reference to FIGs. 7 through 11.
  • the UE or base station may determine the duplex mode to be a full duplex mode based on transmission of a signal via a portion of the second set of time-frequency resources and the portion of the second set of time-frequency resources overlapping with at least a portion of the first set of time-frequency resources.
  • the operations of 1320 may be performed according to the methods described herein. In some examples, aspects of the operations of 1320 may be performed by a duplex mode manager as described with reference to FIGs. 7 through 11.
  • the UE or base station may transmit, to the second wireless device, a report including the CSI of the reference signal based on the duplex mode.
  • the operations of 1325 may be performed according to the methods described herein. In some examples, aspects of the operations of 1325 may be performed by a report transmitter as described with reference to FIGs. 7 through 11.
  • FIG. 14 shows a flowchart illustrating a method 1400 that supports channel state reporting types in accordance with aspects of the present disclosure.
  • the operations of method 1400 may be implemented by a UE 115 or base station 105 or its components as described herein.
  • the operations of method 1400 may be performed by a communications manager as described with reference to FIGs. 7 through 11.
  • a UE or base station may execute a set of instructions to control the functional elements of the UE or base station to perform the functions described herein.
  • a UE or base station may perform aspects of the functions described herein using special-purpose hardware.
  • the UE or base station may receive, from a second wireless device, a reference signal via a first set of time-frequency resources of a channel configured for the first wireless device.
  • the operations of 1405 may be performed according to the methods described herein. In some examples, aspects of the operations of 1405 may be performed by a signal receiver as described with reference to FIGs. 7 through 11.
  • the UE or base station may receive a signal transfer configuration indicating a second set of time-frequency resources of the channel for signal transmission by the first wireless device.
  • the operations of 1410 may be performed according to the methods described herein. In some examples, aspects of the operations of 1410 may be performed by a configuration receiver as described with reference to FIGs. 7 through 11.
  • the UE or base station may determine a duplex mode for CSI of the reference signal based on an overlap between the second set of time-frequency resources and the first set of time-frequency resources.
  • the operations of 1415 may be performed according to the methods described herein. In some examples, aspects of the operations of 1415 may be performed by a duplex mode manager as described with reference to FIGs. 7 through 11.
  • the UE or base station may determine the duplex mode to be a non-full duplex mode based on transmission of a signal via a portion of the second set of time-frequency resources and the portion of the second set of time-frequency resources excluding the first set of time-frequency resources.
  • the operations of 1420 may be performed according to the methods described herein. In some examples, aspects of the operations of 1420 may be performed by a duplex mode manager as described with reference to FIGs. 7 through 11.
  • the UE or base station may transmit, to the second wireless device, a report including the CSI of the reference signal based on the duplex mode.
  • the operations of 1425 may be performed according to the methods described herein. In some examples, aspects of the operations of 1425 may be performed by a report transmitter as described with reference to FIGs. 7 through 11.
  • FIG. 15 shows a flowchart illustrating a method 1500 that supports channel state reporting types in accordance with aspects of the present disclosure.
  • the operations of method 1500 may be implemented by a UE 115 or base station 105 or its components as described herein.
  • the operations of method 1500 may be performed by a communications manager as described with reference to FIGs. 7 through 11.
  • a UE or base station may execute a set of instructions to control the functional elements of the UE or base station to perform the functions described herein.
  • a UE or base station may perform aspects of the functions described herein using special-purpose hardware.
  • the UE or base station may receive, from a second wireless device, a reference signal via a first set of time-frequency resources of a channel configured for the first wireless device.
  • the operations of 1505 may be performed according to the methods described herein. In some examples, aspects of the operations of 1505 may be performed by a signal receiver as described with reference to FIGs. 7 through 11.
  • the UE or base station may receive a signal transfer configuration indicating a second set of time-frequency resources of the channel for signal transmission by the first wireless device.
  • the operations of 1510 may be performed according to the methods described herein. In some examples, aspects of the operations of 1510 may be performed by a configuration receiver as described with reference to FIGs. 7 through 11.
  • the UE or base station may determine a duplex mode for CSI of the reference signal based on an overlap between the second set of time-frequency resources and the first set of time-frequency resources.
  • the operations of 1515 may be performed according to the methods described herein. In some examples, aspects of the operations of 1515 may be performed by a duplex mode manager as described with reference to FIGs. 7 through 11.
  • the UE or base station may determine the duplex mode to be a non-full duplex mode based on an absence of transmission of a signal via a portion of the second set of time-frequency resources and the portion of the second set of time-frequency resources overlapping with the first set of time-frequency resources.
  • the operations of 1520 may be performed according to the methods described herein. In some examples, aspects of the operations of 1520 may be performed by a duplex mode manager as described with reference to FIGs. 7 through 11.
  • the UE or base station may transmit, to the second wireless device, a report including the CSI of the reference signal based on the duplex mode.
  • the operations of 1525 may be performed according to the methods described herein. In some examples, aspects of the operations of 1525 may be performed by a report transmitter as described with reference to FIGs. 7 through 11.
  • FIG. 16 shows a flowchart illustrating a method 1600 that supports channel state reporting types in accordance with aspects of the present disclosure.
  • the operations of method 1600 may be implemented by a UE 115 or base station 105 or its components as described herein.
  • the operations of method 1600 may be performed by a communications manager as described with reference to FIGs. 7 through 11.
  • a UE or base station may execute a set of instructions to control the functional elements of the UE or base station to perform the functions described herein.
  • a UE or base station may perform aspects of the functions described herein using special-purpose hardware.
  • the UE or base station may transmit, to a second wireless device, a reference signal via a first set of time-frequency resources of a channel configured for the second wireless device.
  • the operations of 1605 may be performed according to the methods described herein. In some examples, aspects of the operations of 1605 may be performed by a signal transmitter as described with reference to FIGs. 7 through 11.
  • the UE or base station may transmit a signal transfer configuration indicating a second set of time-frequency resources of the channel for signal transmission by the second wireless device.
  • the operations of 1610 may be performed according to the methods described herein. In some examples, aspects of the operations of 1610 may be performed by a configuration transmitter as described with reference to FIGs. 7 through 11.
  • the UE or base station may receive, from the second wireless device, a report including CSI of the reference signal.
  • the operations of 1615 may be performed according to the methods described herein. In some examples, aspects of the operations of 1615 may be performed by a report receiver as described with reference to FIGs. 7 through 11.
  • the UE or base station may determine a duplex mode for the CSI of the reference signal based on the report.
  • the operations of 1620 may be performed according to the methods described herein. In some examples, aspects of the operations of 1620 may be performed by a duplex mode manager as described with reference to FIGs. 7 through 11.
  • the UE or base station may decode the report based on the duplex mode.
  • the operations of 1625 may be performed according to the methods described herein. In some examples, aspects of the operations of 1625 may be performed by a report decoder as described with reference to FIGs. 7 through 11.
  • FIG. 17 shows a flowchart illustrating a method 1700 that supports channel state reporting types in accordance with aspects of the present disclosure.
  • the operations of method 1700 may be implemented by a UE 115 or base station 105 or its components as described herein.
  • the operations of method 1700 may be performed by a communications manager as described with reference to FIGs. 7 through 11.
  • a UE or base station may execute a set of instructions to control the functional elements of the UE or base station to perform the functions described herein.
  • a UE or base station may perform aspects of the functions described herein using special-purpose hardware.
  • the UE or base station may transmit, to a second wireless device, a reference signal via a first set of time-frequency resources of a channel configured for the second wireless device.
  • the operations of 1705 may be performed according to the methods described herein. In some examples, aspects of the operations of 1705 may be performed by a signal transmitter as described with reference to FIGs. 7 through 11.
  • the UE or base station may transmit a signal transfer configuration indicating a second set of time-frequency resources of the channel for signal transmission by the second wireless device.
  • the operations of 1710 may be performed according to the methods described herein. In some examples, aspects of the operations of 1710 may be performed by a configuration transmitter as described with reference to FIGs. 7 through 11.
  • the UE or base station may receive, from the second wireless device, a signal via a portion of the second set of time-frequency resources.
  • the operations of 1715 may be performed according to the methods described herein. In some examples, aspects of the operations of 1715 may be performed by a signal receiver as described with reference to FIGs. 7 through 11.
  • the UE or base station may receive, from the second wireless device, a report including CSI of the reference signal.
  • the operations of 1720 may be performed according to the methods described herein. In some examples, aspects of the operations of 1720 may be performed by a report receiver as described with reference to FIGs. 7 through 11.
  • the UE or base station may determine a duplex mode for the CSI of the reference signal based on the report.
  • the operations of 1725 may be performed according to the methods described herein. In some examples, aspects of the operations of 1725 may be performed by a duplex mode manager as described with reference to FIGs. 7 through 11.
  • the UE or base station may determine the duplex mode based on an overlap between the first set of time-frequency resources and the portion of the second set of time-frequency resources.
  • the operations of 1730 may be performed according to the methods described herein. In some examples, aspects of the operations of 1730 may be performed by a duplex mode manager as described with reference to FIGs. 7 through 11.
  • the UE or base station may decode the report based on the duplex mode.
  • the operations of 1735 may be performed according to the methods described herein. In some examples, aspects of the operations of 1735 may be performed by a report decoder as described with reference to FIGs. 7 through 11.
  • FIG. 18 shows a flowchart illustrating a method 1800 that supports channel state reporting types in accordance with aspects of the present disclosure.
  • the operations of method 1800 may be implemented by a UE 115 or base station 105 or its components as described herein.
  • the operations of method 1800 may be performed by a communications manager as described with reference to FIGs. 7 through 11.
  • a UE or base station may execute a set of instructions to control the functional elements of the UE or base station to perform the functions described herein.
  • a UE or base station may perform aspects of the functions described herein using special-purpose hardware.
  • the UE or base station may transmit, to a second wireless device, a reference signal via a first set of time-frequency resources of a channel configured for the second wireless device.
  • the operations of 1805 may be performed according to the methods described herein. In some examples, aspects of the operations of 1805 may be performed by a signal transmitter as described with reference to FIGs. 7 through 11.
  • the UE or base station may transmit a signal transfer configuration indicating a second set of time-frequency resources of the channel for signal transmission by the second wireless device.
  • the operations of 1810 may be performed according to the methods described herein. In some examples, aspects of the operations of 1810 may be performed by a configuration transmitter as described with reference to FIGs. 7 through 11.
  • the UE or base station may receive, from the second wireless device, a signal via a portion of the second set of time-frequency resources.
  • the operations of 1815 may be performed according to the methods described herein. In some examples, aspects of the operations of 1815 may be performed by a signal receiver as described with reference to FIGs. 7 through 11.
  • the UE or base station may receive, from the second wireless device, a report including CSI of the reference signal.
  • the operations of 1820 may be performed according to the methods described herein. In some examples, aspects of the operations of 1820 may be performed by a report receiver as described with reference to FIGs. 7 through 11.
  • the UE or base station may determine a duplex mode for the CSI of the reference signal based on the report.
  • the operations of 1825 may be performed according to the methods described herein. In some examples, aspects of the operations of 1825 may be performed by a duplex mode manager as described with reference to FIGs. 7 through 11.
  • the UE or base station may determine the duplex mode based on an overlap between the first set of time-frequency resources and the portion of the second set of time-frequency resources.
  • the operations of 1830 may be performed according to the methods described herein. In some examples, aspects of the operations of 1830 may be performed by a duplex mode manager as described with reference to FIGs. 7 through 11.
  • the UE or base station may determine the duplex mode to be a full duplex mode based on at least a portion of the first set of time-frequency resources overlapping the portion of the second set of time-frequency resources.
  • the operations of 1835 may be performed according to the methods described herein. In some examples, aspects of the operations of 1835 may be performed by a duplex mode manager as described with reference to FIGs. 7 through 11.
  • the UE or base station may decode the report based on the duplex mode.
  • the operations of 1840 may be performed according to the methods described herein. In some examples, aspects of the operations of 1840 may be performed by a report decoder as described with reference to FIGs. 7 through 11.
  • FIG. 19 shows a flowchart illustrating a method 1900 that supports channel state reporting types in accordance with aspects of the present disclosure.
  • the operations of method 1900 may be implemented by a UE 115 or base station 105 or its components as described herein.
  • the operations of method 1900 may be performed by a communications manager as described with reference to FIGs. 7 through 11.
  • a UE or base station may execute a set of instructions to control the functional elements of the UE or base station to perform the functions described herein.
  • a UE or base station may perform aspects of the functions described herein using special-purpose hardware.
  • the UE or base station may transmit, to a second wireless device, a reference signal via a first set of time-frequency resources of a channel configured for the second wireless device.
  • the operations of 1905 may be performed according to the methods described herein. In some examples, aspects of the operations of 1905 may be performed by a signal transmitter as described with reference to FIGs. 7 through 11.
  • the UE or base station may transmit a signal transfer configuration indicating a second set of time-frequency resources of the channel for signal transmission by the second wireless device.
  • the operations of 1910 may be performed according to the methods described herein. In some examples, aspects of the operations of 1910 may be performed by a configuration transmitter as described with reference to FIGs. 7 through 11.
  • the UE or base station may receive, from the second wireless device, a signal via a portion of the second set of time-frequency resources.
  • the operations of 1915 may be performed according to the methods described herein. In some examples, aspects of the operations of 1915 may be performed by a signal receiver as described with reference to FIGs. 7 through 11.
  • the UE or base station may receive, from the second wireless device, a report including CSI of the reference signal.
  • the operations of 1920 may be performed according to the methods described herein. In some examples, aspects of the operations of 1920 may be performed by a report receiver as described with reference to FIGs. 7 through 11.
  • the UE or base station may determine a duplex mode for the CSI of the reference signal based on the report.
  • the operations of 1925 may be performed according to the methods described herein. In some examples, aspects of the operations of 1925 may be performed by a duplex mode manager as described with reference to FIGs. 7 through 11.
  • the UE or base station may determine the duplex mode based on an overlap between the first set of time-frequency resources and the portion of the second set of time-frequency resources.
  • the operations of 1930 may be performed according to the methods described herein. In some examples, aspects of the operations of 1930 may be performed by a duplex mode manager as described with reference to FIGs. 7 through 11.
  • the UE or base station may determine the duplex mode to be a non-full duplex mode based on the first set of time-frequency resources excluding the portion of second set of time-frequency resources.
  • the operations of 1935 may be performed according to the methods described herein. In some examples, aspects of the operations of 1935 may be performed by a duplex mode manager as described with reference to FIGs. 7 through 11.
  • the UE or base station may decode the report based on the duplex mode.
  • the operations of 1940 may be performed according to the methods described herein. In some examples, aspects of the operations of 1940 may be performed by a report decoder as described with reference to FIGs. 7 through 11.
  • LTE, LTE-A, LTE-A Pro, or NR may be described for purposes of example, and LTE, LTE-A, LTE-A Pro, or NR terminology may be used in much of the description, the techniques described herein are applicable beyond LTE, LTE-A, LTE-A Pro, or NR networks.
  • the described techniques may be applicable to various other wireless communications systems such as Ultra Mobile Broadband (UMB) , Institute of Electrical and Electronics Engineers (IEEE) 802.11 (Wi-Fi) , IEEE 802.16 (WiMAX) , IEEE 802.20, Flash-OFDM, as well as other systems and radio technologies not explicitly mentioned herein.
  • UMB Ultra Mobile Broadband
  • IEEE Institute of Electrical and Electronics Engineers
  • Wi-Fi Institute of Electrical and Electronics Engineers
  • WiMAX IEEE 802.16
  • IEEE 802.20 Flash-OFDM
  • Information and signals described herein may be represented using any of a variety of different technologies and techniques.
  • data, instructions, commands, information, signals, bits, symbols, and chips that may be referenced throughout the description may be represented by voltages, currents, electromagnetic waves, magnetic fields or particles, optical fields or particles, or any combination thereof.
  • a general-purpose processor may be a microprocessor, but in the alternative, the processor may be any processor, controller, microcontroller, or state machine.
  • a processor may also be implemented as a combination of computing devices (e.g., a combination of a DSP and a microprocessor, multiple microprocessors, one or more microprocessors in conjunction with a DSP core, or any other such configuration) .
  • the functions described herein may be implemented in hardware, software executed by a processor, firmware, or any combination thereof. If implemented in software executed by a processor, the functions may be stored on or transmitted over as one or more instructions or code on a computer-readable medium. Other examples and implementations are within the scope of the disclosure and appended claims. For example, due to the nature of software, functions described herein may be implemented using software executed by a processor, hardware, firmware, hardwiring, or combinations of any of these. Features implementing functions may also be physically located at various positions, including being distributed such that portions of functions are implemented at different physical locations.
  • Computer-readable media includes both non-transitory computer storage media and communication media including any medium that facilitates transfer of a computer program from one place to another.
  • a non-transitory storage medium may be any available medium that may be accessed by a general-purpose or special purpose computer.
  • non-transitory computer-readable media may include RAM, ROM, electrically erasable programmable ROM (EEPROM) , flash memory, compact disk (CD) ROM or other optical disk storage, magnetic disk storage or other magnetic storage devices, or any other non-transitory medium that may be used to carry or store desired program code means in the form of instructions or data structures and that may be accessed by a general-purpose or special-purpose computer, or a general-purpose or special-purpose processor.
  • any connection is properly termed a computer-readable medium.
  • the software is transmitted from a website, server, or other remote source using a coaxial cable, fiber optic cable, twisted pair, digital subscriber line (DSL) , or wireless technologies such as infrared, radio, and microwave
  • the coaxial cable, fiber optic cable, twisted pair, DSL, or wireless technologies such as infrared, radio, and microwave are included in the definition of computer-readable medium.
  • Disk and disc include CD, laser disc, optical disc, digital versatile disc (DVD) , floppy disk and Blu-ray disc where disks usually reproduce data magnetically, while discs reproduce data optically with lasers. Combinations of the above are also included within the scope of computer-readable media.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

Methods, systems, and devices for wireless communications are described. A communication device otherwise known as a user equipment (UE) may receive from a base station a reference signal on a first set of time-frequency resources and may also receive a signal transfer configuration indicating a second set of time-frequency resources. The UE may also determine a duplex mode for channel state information (CSI) of the reference signal based on self-interference. The duplex mode may be determined based on an overlapping status of the signal transfer resources and the reference signal resources. The UE may transmit a CSI report based on the determined duplex mode. The base station may receive the CSI report and may determine the duplex mode and may decode the report based at least in part on the duplex mode.

Description

CHANNEL STATE REPORTING TYPES
FIELD OF TECHNOLOGY
The following relates generally to wireless communications and more specifically to channel state reporting types.
BACKGROUND
Wireless communications systems are widely deployed to provide various types of communication content such as voice, video, packet data, messaging, broadcast, and so on. These systems may be capable of supporting communication with multiple users by sharing the available system resources (e.g., time, frequency, and power) . Examples of such multiple-access systems include fourth generation (4G) systems such as Long Term Evolution (LTE) systems, LTE-Advanced (LTE-A) systems, or LTE-A Pro systems, and fifth generation (5G) systems which may be referred to as New Radio (NR) systems. These systems may employ technologies such as code division multiple access (CDMA) , time division multiple access (TDMA) , frequency division multiple access (FDMA) , orthogonal FDMA (OFDMA) , or discrete Fourier transform spread orthogonal frequency division multiplexing (DFT-S-OFDM) . A wireless multiple-access communications system may include one or more base stations or one or more network access nodes, each simultaneously supporting communication for multiple communication devices, which may be otherwise known as user equipment (UE) .
In some wireless communications systems, a UE may be capable of both transmitting uplink traffic to a base station and receiving downlink traffic from a base station (from a same or different base station, using different antennas, etc. ) using time and frequency resources that are at least partially overlapping (e.g., concurrently or simultaneously) . This capability of communicating in two directions at the same time may be referred to as a full duplex (FD) capability of the UE. When operating in a FD mode, the concurrent uplink and downlink transmissions of the UE may result in a self-interference at the UE, which can impact successful transmission or receipt of downlink traffic, uplink traffic, or both.
SUMMARY
The described techniques relate to improved methods, systems, devices, and apparatuses that support channel state reporting types. A full duplex (FD) -capable user equipment (UE) may operate in an FD mode or in non-FD modes based on self-interference at the UE. In some cases, the UE may determine a duplex mode depending on data rates of the FD-mode and the non-FD mode and whether channel state information (CSI) for the FD mode may be determined. A UE may report CSI for FD downlink transmissions based on measuring self-interference from an uplink signal on a downlink received signal (e.g., by measuring interference due to transmitting an uplink signal and receiving a reference signal (e.g., a CSI reference signal (CSI-RS) ) on a same set of resources in the FD mode) . A base station may be unaware of self-interference at the UE without an indication from the UE and may thus be unaware that the received CSI is affected by the self-interference. In some cases, the duplex mode of the CSI may serve as an indication of self-interference to the base station.
A base station may indicate a duplex mode at the UE based on uplink channel quality. For example, if the uplink channel quality is sufficient (e.g., if a channel quality metric is higher than a threshold) , the base station may indicate to the UE to implicitly indicate the duplex mode in a CSI report. The implicit indication may convey the duplex mode of the UE to the base station, which the base station may use when decoding the CSI report received from the UE. The implicit indication may help prevent loss of CSI report coverage caused by an explicit indication included within the CSI report. If the uplink channel quality is insufficient (e.g., if a channel quality metric is lower than a threshold) , the base station may indicate to the UE to explicitly indicate the duplex mode of the UE. The explicit indication may be one or more bits within the CSI report, and may be used by the base station to decode the CSI report. The explicit indication and may help prevent a misinterpretation of the duplex mode at the UE, which may be caused by the insufficient uplink channel quality.
A method of wireless communications at a first wireless device is described. The method may include receiving, from a second wireless device, a reference signal via a first set of time-frequency resources of a channel configured for the first wireless device, receiving a signal transfer configuration indicating a second set of time-frequency resources of the channel for signal transmission by the first wireless device, determining a duplex mode  for CSI of the reference signal based on an overlap between the second set of time-frequency resources and the first set of time-frequency resources, and transmitting, to the second wireless device, a report including the CSI of the reference signal based on the duplex mode.
An apparatus for wireless communications at a first wireless device is described. The apparatus may include a processor, memory coupled with the processor, and instructions stored in the memory. The instructions may be executable by the processor to cause the apparatus to receive, from a second wireless device, a reference signal via a first set of time-frequency resources of a channel configured for the first wireless device, receive a signal transfer configuration indicating a second set of time-frequency resources of the channel for signal transmission by the first wireless device, determine a duplex mode for CSI of the reference signal based on an overlap between the second set of time-frequency resources and the first set of time-frequency resources, and transmit, to the second wireless device, a report including the CSI of the reference signal based on the duplex mode.
Another apparatus for wireless communications at a first wireless device is described. The apparatus may include means for receiving, from a second wireless device, a reference signal via a first set of time-frequency resources of a channel configured for the first wireless device, receiving a signal transfer configuration indicating a second set of time-frequency resources of the channel for signal transmission by the first wireless device, determining a duplex mode for CSI of the reference signal based on an overlap between the second set of time-frequency resources and the first set of time-frequency resources, and transmitting, to the second wireless device, a report including the CSI of the reference signal based on the duplex mode.
A non-transitory computer-readable medium storing code for wireless communications at a first wireless device is described. The code may include instructions executable by a processor to receive, from a second wireless device, a reference signal via a first set of time-frequency resources of a channel configured for the first wireless device, receive a signal transfer configuration indicating a second set of time-frequency resources of the channel for signal transmission by the first wireless device, determine a duplex mode for CSI of the reference signal based on an overlap between the second set of time-frequency resources and the first set of time-frequency resources, and transmit, to the second wireless device, a report including the CSI of the reference signal based on the duplex mode.
In some examples of the method, apparatuses, and non-transitory computer-readable medium described herein, determining the duplex mode may include operations, features, means, or instructions for determining the duplex mode to be a full duplex mode based on transmission of a signal via a portion of the second set of time-frequency resources and the portion of the second set of time-frequency resources overlapping with at least a portion of the first set of time-frequency resources.
In some examples of the method, apparatuses, and non-transitory computer-readable medium described herein, determining the duplex mode may include operations, features, means, or instructions for determining the duplex mode to be a non-full duplex mode based on transmission of a signal via a portion of the second set of time-frequency resources and the portion of the second set of time-frequency resources excluding the first set of time-frequency resources.
In some examples of the method, apparatuses, and non-transitory computer-readable medium described herein, determining the duplex mode may include operations, features, means, or instructions for determining the duplex mode to be a non-full duplex mode based on an absence of transmission of a signal via a portion of the second set of time-frequency resources and the portion of the second set of time-frequency resources overlapping with the first set of time-frequency resources.
Some examples of the method, apparatuses, and non-transitory computer-readable medium described herein may further include operations, features, means, or instructions for encoding the report based on the determined duplex mode.
Some examples of the method, apparatuses, and non-transitory computer-readable medium described herein may further include operations, features, means, or instructions for receiving, from the second wireless device, a configuration for indicating the duplex mode based on a channel quality of the channel, where the configuration includes one of an implicit indication or an explicit indication.
Some examples of the method, apparatuses, and non-transitory computer-readable medium described herein may further include operations, features, means, or instructions for transmitting an indication of the duplex mode in the report.
In some examples of the method, apparatuses, and non-transitory computer-readable medium described herein, the indication includes a 1 bit indication.
Some examples of the method, apparatuses, and non-transitory computer-readable medium described herein may further include operations, features, means, or instructions for determining the duplex mode to be a full duplex mode based on at least a portion of the first set of time-frequency resources overlapping the second set of time-frequency resources, transmitting a signal via the second set of time-frequency resources, measuring interference on the reference signal based on the transmitted signal, and transmitting the CSI of the reference signal based on the measured interference in the report.
Some examples of the method, apparatuses, and non-transitory computer-readable medium described herein may further include operations, features, means, or instructions for receiving, from the second wireless device, a semi-persistent grant for uplink shared data, where the semi-persistent grant indicates a set of periodic time occasions for uplink shared transmissions, determining to perform an uplink shared data transmission using at least one of the set of periodic time occasions, and determining the duplex mode based on whether the at least one of the set of periodic time occasions at least partially overlaps the first set of time-frequency resources.
Some examples of the method, apparatuses, and non-transitory computer-readable medium described herein may further include operations, features, means, or instructions for determining the duplex mode to be a full duplex mode based on the at least one of the set of periodic time occasions at least partially overlapping the first set of time-frequency resources.
Some examples of the method, apparatuses, and non-transitory computer-readable medium described herein may further include operations, features, means, or instructions for determining the duplex mode to be a non-full duplex mode based on the at least one of the set of periodic time occasions excluding the first set of time-frequency resources.
Some examples of the method, apparatuses, and non-transitory computer-readable medium described herein may further include operations, features, means, or instructions for receiving the semi-persistent grant via radio resource control (RRC) signaling.
Some examples of the method, apparatuses, and non-transitory computer-readable medium described herein may further include operations, features, means, or instructions for  receiving, from the second wireless device, a configuration for scheduling requests, where the configuration indicates a set of periodic resources for scheduling requests, determining to transmit a scheduling request using a subset of the periodic resources, and determining the duplex mode based on whether the subset of the periodic resources at least partially overlaps the first set of time-frequency resources.
Some examples of the method, apparatuses, and non-transitory computer-readable medium described herein may further include operations, features, means, or instructions for determining the duplex mode to be a full duplex mode based on the subset of the periodic resources at least partially overlapping the first set of time-frequency resources.
Some examples of the method, apparatuses, and non-transitory computer-readable medium described herein may further include operations, features, means, or instructions for determining the duplex mode to be a non-full duplex mode based on the subset of the periodic resources excluding the first set of time-frequency resources.
Some examples of the method, apparatuses, and non-transitory computer-readable medium described herein may further include operations, features, means, or instructions for receiving the configuration for scheduling requests via RRC signaling.
Some examples of the method, apparatuses, and non-transitory computer-readable medium described herein may further include operations, features, means, or instructions for receiving, from the second wireless device, a dynamic grant for uplink messages, where the dynamic grant indicates a set of uplink resources for uplink messages, determining to transmit an uplink message using at least a subset of the uplink resources, and determining the duplex mode based on whether the subset of the uplink resources at least partially overlaps the first set of time-frequency resources.
Some examples of the method, apparatuses, and non-transitory computer-readable medium described herein may further include operations, features, means, or instructions for determining the duplex mode to be a full duplex mode based on the subset of the uplink resources at least partially overlapping the first set of time-frequency resources.
Some examples of the method, apparatuses, and non-transitory computer-readable medium described herein may further include operations, features, means, or instructions for  determining the duplex mode to be a non-full duplex mode based on the subset of the uplink resources excluding the first set of time-frequency resources.
In some examples of the method, apparatuses, and non-transitory computer-readable medium described herein, the uplink message includes an uplink shared data channel transmission, an uplink control channel transmission, a random access channel transmission, a sounding reference signal, or any combination thereof.
Some examples of the method, apparatuses, and non-transitory computer-readable medium described herein may further include operations, features, means, or instructions for receiving the dynamic grant via downlink control information (DCI) .
In some examples of the method, apparatuses, and non-transitory computer-readable medium described herein, the first wireless device includes a UE and the second wireless device includes a base station.
In some examples of the method, apparatuses, and non-transitory computer-readable medium described herein, the first wireless device includes a child integrated access and backhaul (IAB) node and the second wireless device includes a parent IAB node.
A method of wireless communications at a first wireless device is described. The method may include transmitting, to a second wireless device, a reference signal via a first set of time-frequency resources of a channel configured for the second wireless device, transmitting a signal transfer configuration indicating a second set of time-frequency resources of the channel for signal transmission by the second wireless device, receiving, from the second wireless device, a report including CSI of the reference signal, determining a duplex mode for the CSI of the reference signal based on the report, and decoding the report based on the duplex mode.
An apparatus for wireless communications at a first wireless device is described. The apparatus may include a processor, memory coupled with the processor, and instructions stored in the memory. The instructions may be executable by the processor to cause the apparatus to transmit, to a second wireless device, a reference signal via a first set of time-frequency resources of a channel configured for the second wireless device, transmit a signal transfer configuration indicating a second set of time-frequency resources of the channel for signal transmission by the second wireless device, receive, from the second wireless device, a  report including CSI of the reference signal, determine a duplex mode for the CSI of the reference signal based on the report, and decode the report based on the duplex mode.
Another apparatus for wireless communications at a first wireless device is described. The apparatus may include means for transmitting, to a second wireless device, a reference signal via a first set of time-frequency resources of a channel configured for the second wireless device, transmitting a signal transfer configuration indicating a second set of time-frequency resources of the channel for signal transmission by the second wireless device, receiving, from the second wireless device, a report including CSI of the reference signal, determining a duplex mode for the CSI of the reference signal based on the report, and decoding the report based on the duplex mode.
A non-transitory computer-readable medium storing code for wireless communications at a first wireless device is described. The code may include instructions executable by a processor to transmit, to a second wireless device, a reference signal via a first set of time-frequency resources of a channel configured for the second wireless device, transmit a signal transfer configuration indicating a second set of time-frequency resources of the channel for signal transmission by the second wireless device, receive, from the second wireless device, a report including CSI of the reference signal, determine a duplex mode for the CSI of the reference signal based on the report, and decode the report based on the duplex mode.
Some examples of the method, apparatuses, and non-transitory computer-readable medium described herein may further include operations, features, means, or instructions for receiving, from the second wireless device, a signal via a portion of the second set of time-frequency resources, and determining the duplex mode based on an overlap between the first set of time-frequency resources and the portion of the second set of time-frequency resources.
Some examples of the method, apparatuses, and non-transitory computer-readable medium described herein may further include operations, features, means, or instructions for determining the duplex mode to be a full duplex mode based on at least a portion of the first set of time-frequency resources overlapping the portion of the second set of time-frequency resources.
Some examples of the method, apparatuses, and non-transitory computer-readable medium described herein may further include operations, features, means, or instructions for  determining the duplex mode to be a non-full duplex mode based on the first set of time-frequency resources excluding the portion of second set of time-frequency resources.
Some examples of the method, apparatuses, and non-transitory computer-readable medium described herein may further include operations, features, means, or instructions for determining the duplex mode based on an indication of the duplex mode in the report.
In some examples of the method, apparatuses, and non-transitory computer-readable medium described herein, the indication includes a 1 bit indication.
Some examples of the method, apparatuses, and non-transitory computer-readable medium described herein may further include operations, features, means, or instructions for determining a channel quality of the channel configured for the second wireless device, and transmitting, to the second wireless device, a configuration for indicating the duplex mode based on the channel quality, where the configuration includes one of an implicit indication or an explicit indication.
Some examples of the method, apparatuses, and non-transitory computer-readable medium described herein may further include operations, features, means, or instructions for transmitting, to the second wireless device, a semi-persistent grant for uplink shared data, where the semi-persistent grant indicates a set of periodic time occasions for uplink shared transmissions, and receiving, from the second wireless device, an uplink shared data message via at least one occasion of the set of periodic time occasions based on the semi-persistent grant, where the duplex mode may be based on receiving the uplink shared data message.
Some examples of the method, apparatuses, and non-transitory computer-readable medium described herein may further include operations, features, means, or instructions for transmitting the semi-persistent grant via RRC signaling.
Some examples of the method, apparatuses, and non-transitory computer-readable medium described herein may further include operations, features, means, or instructions for transmitting, to the second wireless device, a configuration for scheduling requests, where the configuration indicates a set of periodic resources for scheduling requests, and receiving, from the second wireless device, a scheduling request via a subset of the periodic resources based on the configuration, where the duplex mode may be based on receiving the scheduling request.
Some examples of the method, apparatuses, and non-transitory computer-readable medium described herein may further include operations, features, means, or instructions for transmitting the configuration for scheduling requests via RRC signaling.
Some examples of the method, apparatuses, and non-transitory computer-readable medium described herein may further include operations, features, means, or instructions for transmitting, to the second wireless device, a dynamic grant for uplink messages, where the dynamic grant indicates a set of uplink resources for uplink messages, and receiving, from the second wireless device, an uplink message via a subset of the uplink resources based on the dynamic grant, where the duplex mode may be based on receiving the uplink message.
In some examples of the method, apparatuses, and non-transitory computer-readable medium described herein, the uplink message includes an uplink shared data channel transmission, an uplink control channel transmission, a random access channel transmission, a sounding reference signal, or any combination thereof.
Some examples of the method, apparatuses, and non-transitory computer-readable medium described herein may further include operations, features, means, or instructions for transmitting the dynamic grant via DCI.
In some examples of the method, apparatuses, and non-transitory computer-readable medium described herein, the first wireless device includes a base station and the second wireless device includes a UE.
In some examples of the method, apparatuses, and non-transitory computer-readable medium described herein, the first wireless device includes a parent IAB node and the second wireless device includes a child IAB node.
BRIEF DESCRIPTION OF THE DRAWINGS
FIGs. 1 and 2 illustrate example wireless communications systems that support channel state reporting types in accordance with aspects of the present disclosure.
FIGs. 3 through 5 illustrate example process flows that support channel state reporting types in accordance with aspects of the present disclosure.
FIG. 6 illustrates an example of a process flow that supports channel state reporting types in accordance with aspects of the present disclosure.
FIGs. 7 and 8 show block diagrams of devices that support channel state reporting types in accordance with aspects of the present disclosure.
FIG. 9 shows a block diagram of a communications manager that supports channel state reporting types in accordance with aspects of the present disclosure.
FIG. 10 shows a diagram of a system including a user equipment (UE) that supports channel state reporting types in accordance with aspects of the present disclosure.
FIG. 11 shows a diagram of a system including a base station that supports channel state reporting types in accordance with aspects of the present disclosure.
FIGs. 12 through 19 show flowcharts illustrating methods that support channel state reporting types in accordance with aspects of the present disclosure.
DETAILED DESCRIPTION
In some examples, a user equipment (UE) may be capable of full duplex (FD) communications. For example, the UE may be able to transmit and receive on a same set of resources thereby increasing data rates and spectral efficiency. In such cases, the UE may experience self-interference due to the shared resources as an uplink transmission from the UE may interfere with a downlink signal received at the UE, which may cause interference at the UE.
An FD-capable UE may operate in an FD mode or in a non-FD mode (e.g., a half-duplex mode) . The mode of operation of the UE may depend on a number of factors including data rates for the FD mode and the non-FD modes, or whether channel state information (CSI) for the FD mode may be determined, etc. The UE may not be able to accurately predict CSI for FD mode and may measure self-interference by receiving a CSI reference signal (CSI-RS) from a base station while transmitting an uplink signal. For example, if a UE reports CSI for FD downlink, the UE may measure the self-interference caused by the uplink transmitted signal on the received downlink CSI-RS.
A base station may grant resources to the UE for an uplink signal, but the base station may be unaware of whether the resources over which a downlink CSI-RS is transmitted overlaps a portion of the resources used by the UE to transmit the uplink signal.  For instance, the resources used to receive the CSI-RS and transmit the uplink signal at the UE may overlap in time, or frequency, or both.
According to some aspects, an FD-capable UE may be able to indicate the existence of self-interference by determining a type of CSI to report (either FD or non-FD) and indicate the type to the base station. In some cases, an implicit indication may allow for increased the coverage of the CSI report and an explicit indication may help prevent a CSI-type misinterpretation by the base station. In some cases, the base station may transmit a number of signaling messages to the FD-capable UE for reporting CSI. For example, the base station may transmit a CSI report configuration message, a CSI-RS, an uplink transfer configuration to UE, etc. The signaling received by the UE may cause the UE to transmit uplink data or signaling and report CSI to the base station. In some examples, the UE may determine to generate the FD CSI or the non-FD CSI based on an overlapping condition of the signaling received from the base station and the transmitted uplink data/signaling. For example, the UE may generate an FD CSI if the CSI-RS time-frequency resources overlap with the time-frequency resources of the uplink transmission and may generate the non-FD CSI if the CSI-RS time-frequency resources do not overlap with the time-frequency resources of the UL transmission.
In some examples, the UE may report the CSI-type implicitly to the base station, in which the CSI-type may be based on the duplex mode (e.g., FD CSI, non-FD CSI) . For example, the UE may transmit the CSI report and the CSI-type may be indicated implicitly (e.g., without an explicit indication) . In such cases, the base station may determine the CSI-type based on the received CSI report by determining whether resources used for a downlink CSI-RS transmission overlaps with the time-frequency resources of the uplink transmission by the UE. For example, the base station may determine the type of the received CSI based upon whether the associated CSI-RS resource overlaps in time, frequency, or both with the time-frequency resources of the uplink transmission. The base station may decode the received CSI based on the determined CSI-type.
In some examples, the UE may report the CSI-type explicitly to the base station, in which the CSI-type may be based on the duplex mode (e.g., FD CSI, non-FD CSI) . The UE may transmit the CSI report that includes an explicit indication of the duplex mode (e.g., one or more bits indicating FD or non-FD) . For example, the UE may transmit a 1-bit  indication to the base station indicating the CSI-type (e.g., FD CSI, non-FD CSI) . The base station may determine the CSI-type based on the received indication and the received CSI report. The base station may decode the received CSI based on the indicated CSI-type (e.g., FD CSI, non-FD CSI) .
In some examples, the base station may determine how the CSI-type is reported. For example, the base station may indicate to the UE to report the CSI-type based on an implicit indication (e.g., if the uplink channel quality satisfies a threshold) . If the uplink channel quality does not satisfy a threshold, the base station may determine that the CSI-type is to be reported explicitly. The base station may indicate the reporting type (e.g., explicit, implicit) to the UE via a CSI report configuration message or other signaling.
Aspects of the disclosure are initially described in the context of wireless communications systems. Aspects are then described with respect to process flows. Aspects of the disclosure are further illustrated by and described with reference to apparatus diagrams, system diagrams, and flowcharts that relate to channel state reporting types.
FIG. 1 illustrates an example of a wireless communications system 100 that supports channel state reporting types in accordance with aspects of the present disclosure. The wireless communications system 100 may include one or more base stations 105, one or more UEs 115, and a core network 130. In some examples, the wireless communications system 100 may be a Long Term Evolution (LTE) network, an LTE-Advanced (LTE-A) network, an LTE-A Pro network, or a New Radio (NR) network. In some examples, the wireless communications system 100 may support enhanced broadband communications, ultra-reliable (e.g., mission critical) communications, low latency communications, communications with low-cost and low-complexity devices, or any combination thereof.
The base stations 105 may be dispersed throughout a geographic area to form the wireless communications system 100 and may be devices in different forms or having different capabilities. The base stations 105 and the UEs 115 may wirelessly communicate via one or more communication links 125. Each base station 105 may provide a coverage area 110 over which the UEs 115 and the base station 105 may establish one or more communication links 125. The coverage area 110 may be an example of a geographic area over which a base station 105 and a UE 115 may support the communication of signals according to one or more radio access technologies.
The UEs 115 may be dispersed throughout a coverage area 110 of the wireless communications system 100, and each UE 115 may be stationary, or mobile, or both at different times. The UEs 115 may be devices in different forms or having different capabilities. Some example UEs 115 are illustrated in FIG. 1. The UEs 115 described herein may be able to communicate with various types of devices, such as other UEs 115, the base stations 105, or network equipment (e.g., core network nodes, relay devices, integrated access and backhaul (IAB) nodes, or other network equipment) , as shown in FIG. 1.
The base stations 105 may communicate with the core network 130, or with one another, or both. For example, the base stations 105 may interface with the core network 130 through one or more backhaul links 120 (e.g., via an S1, N2, N3, or other interface) . The base stations 105 may communicate with one another over the backhaul links 120 (e.g., via an X2, Xn, or other interface) either directly (e.g., directly between base stations 105) , or indirectly (e.g., via core network 130) , or both. In some examples, the backhaul links 120 may be or include one or more wireless links.
One or more of the base stations 105 described herein may include or may be referred to by a person having ordinary skill in the art as a base transceiver station, a radio base station, an access point, a radio transceiver, a NodeB, an eNodeB (eNB) , a next-generation NodeB or a giga-NodeB (either of which may be referred to as a gNB) , a Home NodeB, a Home eNodeB, or other suitable terminology.
UE 115 may include or may be referred to as a mobile device, a wireless device, a remote device, a handheld device, or a subscriber device, or some other suitable terminology, where the “device” may also be referred to as a unit, a station, a terminal, or a client, among other examples. A UE 115 may also include or may be referred to as a personal electronic device such as a cellular phone, a personal digital assistant (PDA) , a tablet computer, a laptop computer, or a personal computer. In some examples, a UE 115 may include or be referred to as a wireless local loop (WLL) station, an Internet of Things (IoT) device, an Internet of Everything (IoE) device, or a machine type communications (MTC) device, among other examples, which may be implemented in various objects such as appliances, or vehicles, meters, among other examples.
The UEs 115 described herein may be able to communicate with various types of devices, such as other UEs 115 that may sometimes act as relays as well as the base stations  105 and the network equipment including macro eNBs or gNBs, small cell eNBs or gNBs, or relay base stations, among other examples, as shown in FIG. 1.
The UEs 115 and the base stations 105 may wirelessly communicate with one another via one or more communication links 125 over one or more carriers. The term “carrier” may refer to a set of radio frequency spectrum resources having a defined physical layer structure for supporting the communication links 125. For example, a carrier used for a communication link 125 may include a portion of a radio frequency spectrum band (e.g., a bandwidth part (BWP) ) that is operated according to one or more physical layer channels for a given radio access technology (e.g., LTE, LTE-A, LTE-A Pro, NR) . Each physical layer channel may carry acquisition signaling (e.g., synchronization signals, system information) , control signaling that coordinates operation for the carrier, user data, or other signaling. The wireless communications system 100 may support communication with a UE 115 using carrier aggregation or multi-carrier operation. A UE 115 may be configured with multiple downlink component carriers and one or more uplink component carriers according to a carrier aggregation configuration. Carrier aggregation may be used with both frequency division duplex (FDD) and time division duplex (TDD) component carriers.
The communication links 125 shown in the wireless communications system 100 may include uplink transmissions from a UE 115 to a base station 105, or downlink transmissions from a base station 105 to a UE 115. Carriers may carry downlink or uplink communications (e.g., in an FDD mode) or may be configured to carry downlink and uplink communications (e.g., in a TDD mode) .
A carrier may be associated with a particular bandwidth of the radio frequency spectrum, and in some examples the carrier bandwidth may be referred to as a “system bandwidth” of the carrier or the wireless communications system 100. For example, the carrier bandwidth may be one of a number of determined bandwidths for carriers of a particular radio access technology (e.g., 1.4, 3, 5, 10, 15, 20, 40, or 80 megahertz (MHz) ) . Devices of the wireless communications system 100 (e.g., the base stations 105, the UEs 115, or both) may have hardware configurations that support communications over a particular carrier bandwidth or may be configurable to support communications over one of a set of carrier bandwidths. In some examples, the wireless communications system 100 may include base stations 105 or UEs 115 that support simultaneous communications via carriers  associated with multiple carrier bandwidths. In some examples, each served UE 115 may be configured for operating over portions (e.g., a sub-band, a BWP) or all of a carrier bandwidth.
Signal waveforms transmitted over a carrier may be made up of multiple subcarriers (e.g., using multi-carrier modulation (MCM) techniques such as orthogonal frequency division multiplexing (OFDM) or discrete Fourier transform spread OFDM (DFT-S-OFDM) ) . In a system employing MCM techniques, a resource element may consist of one symbol period (e.g., a duration of one modulation symbol) and one subcarrier, where the symbol period and subcarrier spacing are inversely related. The number of bits carried by each resource element may depend on the modulation scheme (e.g., the order of the modulation scheme, the coding rate of the modulation scheme, or both) . Thus, the more resource elements that a UE 115 receives and the higher the order of the modulation scheme, the higher the data rate may be for the UE 115. A wireless communications resource may refer to a combination of a radio frequency spectrum resource, a time resource, and a spatial resource (e.g., spatial layers or beams) , and the use of multiple spatial layers may further increase the data rate or data integrity for communications with a UE 115.
The time intervals for the base stations 105 or the UEs 115 may be expressed in multiples of a basic time unit which may, for example, refer to a sampling period of T s=1/(Δf max·N f) seconds, where Δf max may represent the maximum supported subcarrier spacing, and N f may represent the maximum supported discrete Fourier transform (DFT) size. Time intervals of a communications resource may be organized according to radio frames each having a specified duration (e.g., 10 milliseconds (ms) ) . Each radio frame may be identified by a system frame number (SFN) (e.g., ranging from 0 to 1023) .
Each frame may include multiple consecutively numbered subframes or slots, and each subframe or slot may have the same duration. In some examples, a frame may be divided (e.g., in the time domain) into subframes, and each subframe may be further divided into a number of slots. Alternatively, each frame may include a variable number of slots, and the number of slots may depend on subcarrier spacing. Each slot may include a number of symbol periods (e.g., depending on the length of the cyclic prefix prepended to each symbol period) . In some wireless communications systems 100, a slot may further be divided into multiple mini-slots containing one or more symbols. Excluding the cyclic prefix, each symbol  period may contain one or more (e.g., N f) sampling periods. The duration of a symbol period may depend on the subcarrier spacing or frequency band of operation.
A subframe, a slot, a mini-slot, or a symbol may be the smallest scheduling unit (e.g., in the time domain) of the wireless communications system 100 and may be referred to as a transmission time interval (TTI) . In some examples, the TTI duration (e.g., the number of symbol periods in a TTI) may be variable. Additionally or alternatively, the smallest scheduling unit of the wireless communications system 100 may be dynamically selected (e.g., in bursts of shortened TTIs (sTTIs) ) .
Physical channels may be multiplexed on a carrier according to various techniques. A physical control channel and a physical data channel may be multiplexed on a downlink carrier, for example, using one or more of time division multiplexing (TDM) techniques, frequency division multiplexing (FDM) techniques, or hybrid TDM-FDM techniques. A control region (e.g., a control resource set (CORESET) ) for a physical control channel may be defined by a number of symbol periods and may extend across the system bandwidth or a subset of the system bandwidth of the carrier. One or more control regions (e.g., CORESETs) may be configured for a set of the UEs 115. For example, one or more of the UEs 115 may monitor or search control regions for control information according to one or more search space sets, and each search space set may include one or multiple control channel candidates in one or more aggregation levels arranged in a cascaded manner. An aggregation level for a control channel candidate may refer to a number of control channel resources (e.g., control channel elements (CCEs) ) associated with encoded information for a control information format having a given payload size. Search space sets may include common search space sets configured for sending control information to multiple UEs 115 and UE-specific search space sets for sending control information to a specific UE 115.
In some examples, a base station 105 may be movable and therefore provide communication coverage for a moving geographic coverage area 110. In some examples, different geographic coverage areas 110 associated with different technologies may overlap, but the different geographic coverage areas 110 may be supported by the same base station 105. In other examples, the overlapping geographic coverage areas 110 associated with different technologies may be supported by different base stations 105. The wireless communications system 100 may include, for example, a heterogeneous network in which  different types of the base stations 105 provide coverage for various geographic coverage areas 110 using the same or different radio access technologies.
The wireless communications system 100 may be configured to support ultra-reliable communications or low-latency communications, or various combinations thereof. For example, the wireless communications system 100 may be configured to support ultra-reliable low-latency communications (URLLC) or mission critical communications. The UEs 115 may be designed to support ultra-reliable, low-latency, or critical functions (e.g., mission critical functions) . Ultra-reliable communications may include private communication or group communication and may be supported by one or more mission critical services such as mission critical push-to-talk (MCPTT) , mission critical video (MCVideo) , or mission critical data (MCData) . Support for mission critical functions may include prioritization of services, and mission critical services may be used for public safety or general commercial applications. The terms ultra-reliable, low-latency, mission critical, and ultra-reliable low-latency may be used interchangeably herein.
In some examples, a UE 115 may also be able to communicate directly with other UEs 115 over a device-to-device (D2D) communication link 135 (e.g., using a peer-to-peer (P2P) or D2D protocol) . One or more UEs 115 utilizing D2D communications may be within the geographic coverage area 110 of a base station 105. Other UEs 115 in such a group may be outside the geographic coverage area 110 of a base station 105 or be otherwise unable to receive transmissions from a base station 105. In some examples, groups of the UEs 115 communicating via D2D communications may utilize a one-to-many (1: M) system in which each UE 115 transmits to every other UE 115 in the group. In some examples, a base station 105 facilitates the scheduling of resources for D2D communications. In other cases, D2D communications are carried out between the UEs 115 without the involvement of a base station 105.
The core network 130 may provide user authentication, access authorization, tracking, Internet Protocol (IP) connectivity, and other access, routing, or mobility functions. The core network 130 may be an evolved packet core (EPC) or 5G core (5GC) , which may include at least one control plane entity that manages access and mobility (e.g., a mobility management entity (MME) , an access and mobility management function (AMF) ) and at least one user plane entity that routes packets or interconnects to external networks (e.g., a  serving gateway (S-GW) , a Packet Data Network (PDN) gateway (P-GW) , or a user plane function (UPF) ) . The control plane entity may manage non-access stratum (NAS) functions such as mobility, authentication, and bearer management for the UEs 115 served by the base stations 105 associated with the core network 130. User IP packets may be transferred through the user plane entity, which may provide IP address allocation as well as other functions. The user plane entity may be connected to the network operators IP services 150. The operators IP services 150 may include access to the Internet, Intranet (s) , an IP Multimedia Subsystem (IMS) , or a Packet-Switched Streaming Service.
Some of the network devices, such as a base station 105, may include subcomponents such as an access network entity 140, which may be an example of an access node controller (ANC) . Each access network entity 140 may communicate with the UEs 115 through one or more other access network transmission entities 145, which may be referred to as radio heads, smart radio heads, or transmission/reception points (TRPs) . Each access network transmission entity 145 may include one or more antenna panels. In some configurations, various functions of each access network entity 140 or base station 105 may be distributed across various network devices (e.g., radio heads and ANCs) or consolidated into a single network device (e.g., a base station 105) .
The wireless communications system 100 may operate using one or more frequency bands, typically in the range of 300 megahertz (MHz) to 300 gigahertz (GHz) . Generally, the region from 300 MHz to 3 GHz is known as the ultra-high frequency (UHF) region or decimeter band because the wavelengths range from approximately one decimeter to one meter in length. The UHF waves may be blocked or redirected by buildings and environmental features, but the waves may penetrate structures sufficiently for a macro cell to provide service to the UEs 115 located indoors. The transmission of UHF waves may be associated with smaller antennas and shorter ranges (e.g., less than 100 kilometers) compared to transmission using the smaller frequencies and longer waves of the high frequency (HF) or very high frequency (VHF) portion of the spectrum below 300 MHz.
The wireless communications system 100 may utilize both licensed and unlicensed radio frequency spectrum bands. For example, the wireless communications system 100 may employ License Assisted Access (LAA) , LTE-Unlicensed (LTE-U) radio access technology, or NR technology in an unlicensed band such as the 5 GHz industrial,  scientific, and medical (ISM) band. When operating in unlicensed radio frequency spectrum bands, devices such as the base stations 105 and the UEs 115 may employ carrier sensing for collision detection and avoidance. In some examples, operations in unlicensed bands may be based on a carrier aggregation configuration in conjunction with component carriers operating in a licensed band (e.g., LAA) . Operations in unlicensed spectrum may include downlink transmissions, uplink transmissions, P2P transmissions, or D2D transmissions, among other examples.
base station 105 or a UE 115 may be equipped with multiple antennas, which may be used to employ techniques such as transmit diversity, receive diversity, multiple-input multiple-output (MIMO) communications, or beamforming. The antennas of a base station 105 or a UE 115 may be located within one or more antenna arrays or antenna panels, which may support MIMO operations or transmit or receive beamforming. For example, one or more base station antennas or antenna arrays may be co-located at an antenna assembly, such as an antenna tower. In some examples, antennas or antenna arrays associated with a base station 105 may be located in diverse geographic locations. A base station 105 may have an antenna array with a number of rows and columns of antenna ports that the base station 105 may use to support beamforming of communications with a UE 115. Likewise, a UE 115 may have one or more antenna arrays that may support various MIMO or beamforming operations. Additionally or alternatively, an antenna panel may support radio frequency beamforming for a signal transmitted via an antenna port.
The base stations 105 or the UEs 115 may use MIMO communications to exploit multipath signal propagation and increase the spectral efficiency by transmitting or receiving multiple signals via different spatial layers. Such techniques may be referred to as spatial multiplexing. The multiple signals may, for example, be transmitted by the transmitting device via different antennas or different combinations of antennas. Likewise, the multiple signals may be received by the receiving device via different antennas or different combinations of antennas. Each of the multiple signals may be referred to as a separate spatial stream and may carry bits associated with the same data stream (e.g., the same codeword) or different data streams (e.g., different codewords) . Different spatial layers may be associated with different antenna ports used for channel measurement and reporting. MIMO techniques include single-user MIMO (SU-MIMO) , where multiple spatial layers are  transmitted to the same receiving device, and multiple-user MIMO (MU-MIMO) , where multiple spatial layers are transmitted to multiple devices.
Beamforming, which may also be referred to as spatial filtering, directional transmission, or directional reception, is a signal processing technique that may be used at a transmitting device or a receiving device (e.g., a base station 105, a UE 115) to shape or steer an antenna beam (e.g., a transmit beam, a receive beam) along a spatial path between the transmitting device and the receiving device. Beamforming may be achieved by combining the signals communicated via antenna elements of an antenna array such that some signals propagating at particular orientations with respect to an antenna array experience constructive interference while others experience destructive interference. The adjustment of signals communicated via the antenna elements may include a transmitting device or a receiving device applying amplitude offsets, phase offsets, or both to signals carried via the antenna elements associated with the device. The adjustments associated with each of the antenna elements may be defined by a beamforming weight set associated with a particular orientation (e.g., with respect to the antenna array of the transmitting device or receiving device, or with respect to some other orientation) .
base station 105 or a UE 115 may use beam sweeping techniques as part of beam forming operations. For example, a base station 105 may use multiple antennas or antenna arrays (e.g., antenna panels) to conduct beamforming operations for directional communications with a UE 115. Some signals (e.g., synchronization signals, reference signals, beam selection signals, or other control signals) may be transmitted by a base station 105 multiple times in different directions. For example, the base station 105 may transmit a signal according to different beamforming weight sets associated with different directions of transmission. Transmissions in different beam directions may be used to identify (e.g., by a transmitting device, such as a base station 105, or by a receiving device, such as a UE 115) a beam direction for later transmission or reception by the base station 105.
Some signals, such as data signals associated with a particular receiving device, may be transmitted by a base station 105 in a single beam direction (e.g., a direction associated with the receiving device, such as a UE 115) . In some examples, the beam direction associated with transmissions along a single beam direction may be determined based on a signal that was transmitted in one or more beam directions. For example, a UE  115 may receive one or more of the signals transmitted by the base station 105 in different directions and may report to the base station 105 an indication of the signal that the UE 115 received with a highest signal quality or an otherwise acceptable signal quality.
In some examples, transmissions by a device (e.g., by a base station 105 or a UE 115) may be performed using multiple beam directions, and the device may use a combination of digital precoding or radio frequency beamforming to generate a combined beam for transmission (e.g., from a base station 105 to a UE 115) . The UE 115 may report feedback that indicates precoding weights for one or more beam directions, and the feedback may correspond to a configured number of beams across a system bandwidth or one or more sub-bands. The base station 105 may transmit a reference signal (e.g., a cell-specific reference signal (CRS) , a CSI reference signal (CSI-RS) ) , which may be precoded or unprecoded. The UE 115 may provide feedback for beam selection, which may be a precoding matrix indicator (PMI) or codebook-based feedback (e.g., a multi-panel type codebook, a linear combination type codebook, a port selection type codebook) . Although these techniques are described with reference to signals transmitted in one or more directions by a base station 105, a UE 115 may employ similar techniques for transmitting signals multiple times in different directions (e.g., for identifying a beam direction for subsequent transmission or reception by the UE 115) or for transmitting a signal in a single direction (e.g., for transmitting data to a receiving device) .
A receiving device (e.g., a UE 115) may try multiple receive configurations (e.g., directional listening) when receiving various signals from the base station 105, such as synchronization signals, reference signals, beam selection signals, or other control signals. For example, a receiving device may try multiple receive directions by receiving via different antenna subarrays, by processing received signals according to different antenna subarrays, by receiving according to different receive beamforming weight sets (e.g., different directional listening weight sets) applied to signals received at multiple antenna elements of an antenna array, or by processing received signals according to different receive beamforming weight sets applied to signals received at multiple antenna elements of an antenna array, any of which may be referred to as “listening” according to different receive configurations or receive directions. In some examples, a receiving device may use a single receive configuration to receive along a single beam direction (e.g., when receiving a data signal) . The single receive configuration may be aligned in a beam direction determined  based on listening according to different receive configuration directions (e.g., a beam direction determined to have a highest signal strength, highest signal-to-noise ratio (SNR) , or otherwise acceptable signal quality based on listening according to multiple beam directions) .
The wireless communications system 100 may be a packet-based network that operates according to a layered protocol stack. In the user plane, communications at the bearer or Packet Data Convergence Protocol (PDCP) layer may be IP-based. A Radio Link Control (RLC) layer may perform packet segmentation and reassembly to communicate over logical channels. A Medium Access Control (MAC) layer may perform priority handling and multiplexing of logical channels into transport channels. The MAC layer may also use error detection techniques, error correction techniques, or both to support retransmissions at the MAC layer to improve link efficiency. In the control plane, the Radio Resource Control (RRC) protocol layer may provide establishment, configuration, and maintenance of an RRC connection between a UE 115 and a base station 105 or a core network 130 supporting radio bearers for user plane data. At the physical layer, transport channels may be mapped to physical channels.
The UEs 115 and the base stations 105 may support retransmissions of data to increase the likelihood that data is received successfully. Hybrid automatic repeat request (HARQ) feedback is one technique for increasing the likelihood that data is received correctly over a communication link 125. HARQ may include a combination of error detection (e.g., using a cyclic redundancy check (CRC) ) , forward error correction (FEC) , and retransmission (e.g., automatic repeat request (ARQ) ) . HARQ may improve throughput at the MAC layer in poor radio conditions (e.g., low signal-to-noise conditions) . In some examples, a device may support same-slot HARQ feedback, where the device may provide HARQ feedback in a specific slot for data received in a previous symbol in the slot. In other cases, the device may provide HARQ feedback in a subsequent slot, or according to some other time interval.
The base station 105 may transmit and the UE 115 may receive, a reference signal on a first set of time-frequency resources. In some cases, the base station may transmit a signal transfer configuration indicating a second set of time-frequency resources. The UE may determine a duplex mode for CSI of the reference signal based on an overlapping status (e.g., an overlap) of the signal transfer resources and the reference signal resources and may  transmit, to the base station 105, a CSI report based on the determined duplex mode. The base station 105 may determine the duplex mode based on the received CSI-RS and may decode the report based at least in part on the duplex mode.
FIG. 2 illustrates an example of a wireless communications system 200 that supports channel state reporting types in accordance with aspects of the present disclosure. In some examples, wireless communications system 200 may implement aspects of wireless communications system 100. Wireless communications system 200 may include a base station 105-b, a UE 115-b, which may be examples of corresponding devices as described herein with reference to FIG. 1. In this example, the base station 105-b may have separate sets of antennas, including uplink antennas 205 and downlink antennas 210, that may be located at the base station 105-b or one or more of the antennas may be located away from the base station 105-b (e.g., which may be implemented as radio heads associated with an access network controller of base station 105-b) . For example, in some cases the downlink antennas 210 may be located remotely from the uplink antennas 205 to reduce inter-antenna interference. In other cases, the downlink antennas 210 may be located relatively close to or even be integrated with the uplink antennas 205 as one antenna set.
In wireless communications system 200, downlink antennas 210 may transmit downlink communications 215 to the UE 115-b, which may include a downlink CSI-RS. Further, uplink antennas 205 may receive uplink communications 230 from the UE 115-b, which may include a CSI report. In some cases, the CSI report may be based on an estimation of self-interference 245 at the UE 115-b from FD operation at the UE 115-b. In some cases, the UE 115-b, as a FD capable device, may not operate in FD mode, which may be referred to as non-FD mode. Whether the UE 115-b operates under FD mode or non-FD mode may depend on one or more of a number of factors, such as whether the FD mode can achieve higher data rates than the non-FD mode, a power status or thermal status of the UE 115-b (e.g., that may indicate whether the UE 115-b can transmit, receive, and process concurrent FD transmissions) , an amount of data traffic at the UE 115-b or other UEs in wireless communications system 200, or the like.
The UE 115-b may indicate the existence of self-interference to the base station 105-b by determining a CSI-type and reporting the determined CSI-type to the base station 105-b. In some examples, the base station 105-b may transmit a number of signaling  messages in the downlink communication 215 to the UE 115-b for reporting CSI. For example, the base station 105-b may transmit a CSI report configuration message, a CSI-RS, an uplink transfer configuration, etc. The received signaling messages may cause the UE 115-b to transmit uplink data or signaling and transmit a CSI report to the base station 105-b on the uplink communications 230. In some examples, the UE 115-b may determine to generate a FD CSI or a non-FD CSI based on an overlapping condition of the signaling received from the base station 105-b and the transmitted uplink data. For example, the UE 115-b may generate a FD CSI if the CSI-RS time-frequency resources overlap with the time-frequency resources of the uplink transmission and may generate a non-FD CSI otherwise. For example, the UE 115-b may generate a non-FD CSI if the CSI-RS time-frequency resources do not overlap with the time-frequency resources of the uplink transmission.
In some examples, the UE 115-b may report the CSI-type implicitly to the base station 105-b, and the CSI-type may be based on a duplex mode (e.g., FD CSI, non-FD CSI) . For example, a UE 115-b may transmit the CSI report of a generated CSI to the base station 115-b and the CSI-type may be indicated implicitly (e.g., without including an explicit indication) . The base station 105-b may determine the CSI-type based on the received CSI report and may determine that downlink CSI-RS resources overlap with the time-frequency resources of a received uplink transmission. The base station 105-b may decode the received CSI based on the determined CSI-type. In such cases, the UE 115-b may avoid including an explicit indication of CSI-type that may increase the CSI report payload. Further, implementing the implicit indication may allow for increased coverage area for the CSI report, and thus may avoid decreasing a downlink coverage area in which the PDSCH is based on a CSI report.
In some examples, the UE 115-b may report the CSI-type explicitly to the base station. For example, the UE 115-b may transmit the CSI report to transfer a generated CSI to the base station 105-b and the CSI-type may be indicated explicitly (e.g., by including an explicit indication) . For example, the UE 115-b may transmit a one or more bit indication to the base station 105-b indicating the CSI-type (e.g., FD CSI, non-FD CSI) . The base station 105-b may determine the CSI-type based on the indication in the received CSI report. The base station 105-b may decode the received CSI based on the indicated CSI-type (e.g., FD CSI, non-FD CSI) . Including the explicit indication may avoid misinterpretation of the CSI- type by the base station 105-b that may be caused by unreceived messages from the UE 115-b (e.g., due to the poor channel quality) .
In some examples, the base station 105-b may determine a CSI-type reporting method. For example, the base station 105-b may indicate to the UE 115-b to report the CSI-type based on an implicit indication. For example, if the uplink channel quality is acceptable (e.g., signal to interference plus noise ratio (SINR) , reference signal received power (RSRP) , or other channel quality metric is higher than a threshold value) the base station 105-b may determine that the CSI-type is to be reported implicitly. The base station 105-b may also indicate to the UE 115-b to report the CSI-type using an explicit indication. For example, if the uplink channel quality is unacceptable (e.g., SINR, RSRP, etc. is lower than a threshold value) the base station 105-b may determine that the CSI-type is to be reported explicitly. The base station 105-b may indicate the reporting type (e.g., explicit, implicit) to the UE 115-b via a signaling message (e.g., CSI report configuration message) .
FIG. 3 illustrates an example of a process flow 300 that supports channel state reporting types in accordance with aspects of the present disclosure. In some examples, process flow 300 may implement aspects of  wireless communication systems  100 or 200, as described with reference to FIGs. 1 and 2, respectively. For example, the process flow 300 may include a base station 105-c and a UE 115-c, which may be examples of the corresponding devices as described with reference to FIGs. 1 and 2.
In the following description of the process flow 300, the operations between the base station 105-c and the UE 115-c may be performed in a different orders or at different times than as shown. Some operations may be omitted from the process flow 300, and other operations may be added to the process flow 300 without departing from the scope of the present disclosure.
At 305, the base station 105-c may transmit a CSI report configuration to the UE 115-c. In some examples, the base station 105-c determines how the CSI-type is to be reported and includes an indication of how the UE 115-c is to report the CSI-type in the CSI report configuration message. For example, if the uplink channel quality is acceptable (e.g., SINR, RSRP, etc. is higher than a threshold value) the base station 105-c may determine that the CSI-type is to be reported implicitly. The base station 105-c may also indicate to the UE 115-c to report the CSI-type based on an explicit indication. For example, if the uplink  channel quality is unacceptable (e.g., SINR, RSRP, etc. is lower than a threshold value) the base station 105-c may determine that the CSI-type is to be reported explicitly (e.g., in a 1 or more bit indication) in the CSI report. The base station 105-c may indicate the reporting type (e.g., explicit, implicit) to the UE 115-c via the CSI report configuration message transmitted to the UE at 305.
At 310, the base station 105-c may transmit an signal configuration (e.g., an uplink transfer configuration) to the UE 115-c. For example, the base station 105-c may grant uplink resources to the UE 115-c on which the UE 115-c may transmit various uplink signaling or data.
At 315, the base station 105-c may transmit a CSI-RS to the UE 115-c over time-frequency resources. The CSI-RS may indicate to the UE 115-c to generate and transmit a CSI report. The UE 115-c may receive the CSI-RS and may generate a CSI-report. In some cases, the CSI-RS resources may overlap with the granted uplink resources of 310.
At 320, in response to receiving the signal configuration, the UE 115-c may transmit an uplink transfer message (e.g., data, control information, signaling) to the base station 105-c on the granted uplink resources.
At 325, the UE 115-c may determine the duplex mode based on receiving the CSI-RS and transmitting the uplink transfer message. In some examples, the UE 115-c may determine the CSI-type to be an FD CSI or a non-FD CSI based on an overlapping condition (e.g., self-interference) of the CSI-RS received from the base station 115-c and the transmitted uplink signal. For example, the UE 115-c may determine the CSI-type to be FD CSI based on the time-frequency resources of the CSI-RS overlapping with the time-frequency resources of the uplink signal. The UE 115-c may determine the CSI-type to be non-FD CSI otherwise. For example, the UE 115-c may determine a non-FD CSI based on the CSI-RS time-frequency resources being separate from (or non-overlapping with) the time-frequency resources of the uplink signal (or, e.g., if the UE 115-c does not transmit the uplink signal on overlapping resources) .
At 330, the UE 115-c may transmit a CSI report to the base station 105-c. The CSI report may include the indication of CSI-type according to the CSI report configuration received from the base station 105-c. The indication may provide the base station 105-c with information about the presence of self-interference at the UE 115-c. For example, The UE  115-c may determine to generate a FD CSI or a non-FD CSI based on an overlapping condition of the CSI-RS received from the base station 105-c and the uplink data/signaling transmitted by the UE 105-c. For example, the UE 115-c may generate a FD CSI if the CSI-RS time-frequency resources overlap with the time-frequency resources of the uplink transmission and may generate a non-FD CSI otherwise. For example, the UE may generate a non-FD CSI if the CSI-RS time-frequency resources do not overlap with the time-frequency resources of the uplink transmission.
In some examples, the UE 115-c may report the CSI-type implicitly to the base station, in which case the CSI-type may be based on the duplex mode (e.g., FD CSI, non-FD CSI) . For example, the transmitted CSI report may transfer the generated CSI to the base station 105-c and the CSI-type may be indicated implicitly (e.g., without including an explicit indication) .
In some examples, the UE 115-c may report the CSI-type explicitly to the base station 105-c, in which case the CSI-type may be based on the duplex mode (e.g., FD CSI, non-FD CSI) . For example, the UE 115-c may transmit the CSI report to transfer the generated CSI to the base station 105-c and the CSI-type may be indicated explicitly (e.g., the UE 115-c may include an explicit indication within the CSI report) . For example, the UE 115-c may transmit the CSI report including a 1 or more bit indication to the base station 105-c indicating the CSI-type (e.g., FD CSI, non-FD CSI) .
At 335, the base station 105-c may determine the duplex mode (e.g., CSI-type) based on the indication received in the CSI report. In some cases, the CSI report may include the implicit indication of the duplex mode. For example, the base station 105-c may determine the CSI-type based on the received CSI report. The base station may determine that an associated CSI-RS resource overlaps with the time-frequency resource of the received uplink transmission and the base station 105-c may determine the received CSI-type based on whether the associated CSI-RS resource overlaps with the time-frequency resource of the uplink signal. The base station 105-c may determine the CSI-type to be FD CSI which may serve as an indication of self-interference at the UE 115-c. Alternatively, the base station 105-c may determine the CSI-type to be non-FD CSI which may serve as an indication of an absence of self-interference at the UE 115-c.
In some cases, the CSI report may include an explicit indication of the duplex mode. The indication may be 1 or more bits and may be included in the CSI report received from the UE 115-c. The base station 105-c may determine the CSI-type based on the explicit indication within the received CSI report.
At 340, the base station 105-c may decode the CSI report based on the determined duplex mode. For example, the base station 105-c may determine the CSI-type to be FD or non-FD based on the indication received in the CSI report and may decode the CSI according to the CSI-type and thus may be informed of self-interference at the UE 115-c.
In some cases, the described methods may be applicable to other communications between different devices. For example, while the methods describes herein are described in relation to communication between a base station 105-c and a FD-capable UE 115-c, the methods may be applied in different scenarios. As one example, the methods may be applied to communications between a network node (e.g., a parent IAB node) and other network nodes (e.g., a child IAB node) .
FIG. 4 illustrates an example of a process flow 400 that supports channel state reporting types in accordance with aspects of the present disclosure. In some examples, process flow 400 may implement aspects of  wireless communications systems  100 or 200, as described with reference to FIGs. 1 and 2. For example, the process flow 400 may include a base station 105-d, and a UE 115-d. The base station 105-d and the UE 115-d may be examples of devices as described with reference to FIGs. 1 and 2.
In the following description of the process flow 400, the operations between the base station 105-d and the UE 115-d may be performed in a different orders or at different times than as shown. Some operations may be omitted from the process flow 400, and other operations may be added to the process flow 400 without departing from the scope of the present disclosure.
At 405, the base station 105-d may transmit a CSI report configuration message to the UE 115-d. In some examples, the base station 105-d determines how the CSI-type is reported. For example, the base station may indicate to the UE 115-d to report the CSI-type based on an implicit indication in the CSI report configuration message. For example, if the uplink channel quality is acceptable (e.g., SINR, RSRP, etc. is higher than a threshold value) the base station 105-d may determine that the CSI-type is to be reported implicitly. The base  station 105-d may also indicate to the UE 115-d to report the CSI-type based on an explicit indication. For example, if the uplink channel quality is unacceptable (e.g., SINR, RSRP, etc. is lower than a threshold value) the base station 105-d may determine that the CSI-type is to be reported explicitly (e.g., in a one or more bit indication) in the CSI report. The base station 105-d may indicate the reporting type (e.g., explicit, implicit) to the UE 115-d via the CSI report configuration message. The UE 115-d may receive the CSI report configuration and may include the explicit or implicit indication in a related CSI report.
At 410, the base station 105-d may transmit a signal configuration to the UE 115-d including a semi-persistent PUSCH resource grant. The semi-persistent granted PUSCH resource configuration may be transmitted by the base station 105-d via dedicated RRC-layer signaling or other signaling and may include periodically-configured time resources (e.g., the interval between granted resources may be configured and may be consistent between each set of granted resources in time, or may be dynamic or aperiodic) . For example, the base station 105-d may grant semi-persistent PUSCH resources to the UE 115-d on which the UE 115-d may transmit various uplink signals.
At 415, the UE 115-d may transmit an acknowledgement message to the base station 105-d (e.g., in response to receiving the dedicated RRC signaling) . The acknowledgment message may indicate whether the semi-persistent PUSCH resource configuration was successful and thus may inform the base station 105-d of the semi-persistent PUSCH resource occasions.
At 420, the base station 105-d may transmit a CSI-RS to the UE 115-d over time-frequency resources. The CSI-RS may indicate to the UE 115-d to generate and transmit a CSI report. The UE 115-d may receive the CSI-RS and may generate a CSI-report. In some cases, the granted semi-persistent PUSCH resource may overlap with the CSI-RS resources.
At 425, in response to receiving the semi-persistent PUSCH resources, the UE 115-d may transmit an uplink signal to the base station 105-d on the granted semi-persistent PUSCH resource. For example, as a semi-persistent PUSCH occasion occurs, the UE 115-d may transmit during the instant PUSCH occasion depending if the UE 115-d has uplink data or signaling in its buffer (e.g., CSI) . Otherwise, the UE 115-d may refrain from transmitting in the instant semi-persistent PUSCH occasion. The UE 115-d may determine to generate a FD CSI or a non-FD CSI based on an overlapping status of the CSI-RS and any occasion of  the semi-persistent PUSCH resource (e.g., including a demodulation reference signal (DMRS) ) in which the UE 115-d transmitted data or signaling. In some cases, the periodic CSI-RS resource may have the same periodic pattern (e.g., a same period, same start position etc. ) as the semi-persistent PUSCH resource.
At 430, the UE 115-d may determine the duplex mode based on receiving the CSI-RS and transmitting the uplink signal. In some examples, the received CSI-RS may overlap with at least an occasion of the semi-persistent PUSCH resource and the UE 115-d may determine the CSI-type to be FD CSI based on transmitting the PUSCH and receiving the CSI-RS on the overlapping resources. In other examples, the UE may determine the CSI-type to be non-FD CSI based on receiving the CSI-RS on the CSI-RS resources that do not overlap with the uplink signal.
At 435, the UE 115-d may transmit a CSI report to the base station 105-d. The CSI report may include the indication of CSI-type according to the CSI report configuration received from the base station 105-d. The indication may provide the base station 105-d with information about the presence of self-interference at the UE 115-d. For example, the UE 115-d may determine to include a FD CSI or a non-FD CSI in the CSI report based on an overlapping condition of the CSI-RS received from the base station 105-d and the semi-persistent PUSCH transmitted by the UE 115-d. For example, the UE 115-d may generate a FD CSI if the CSI-RS time-frequency resources overlap with the time-frequency resources of the uplink transmission and may generate a non-FD CSI otherwise. For example, the UE may generate a non-FD CSI if the CSI-RS time-frequency resources do not overlap with the time-frequency resources of the uplink transmission.
In some examples, the UE 115-d may report the CSI-type implicitly to the base station where the CSI-type may be based on the duplex mode (e.g., FD CSI, non-FD CSI) . For example, the transmitted CSI report may transfer the generated CSI to the base station 105-d and the CSI-type may be indicated implicitly (e.g., without including an explicit indication) .
In some examples, the UE 115-d may report the CSI-type explicitly to the base station 105-d, where the CSI-type may be based on the duplex mode (e.g., FD CSI, non-FD CSI) . For example, the UE 115-d may transmit the CSI report to transfer the generated CSI to the base station 105-d and the CSI-type may be indicated explicitly by an explicit indication  within the CSI report. For example, the UE 115-d may transmit the CSI report including a 1 or more bit indication to the base station 105-d indicating the CSI-type (e.g., FD CSI, non-FD CSI) .
At 440, the base station 105-d may determine the duplex mode (e.g., CSI-type) based on the indication received in the CSI report. In some cases, the CSI report may include the implicit indication of the duplex mode. For example, the base station 105-d may determine the CSI-type by determining whether the associated CSI-RS overlapped with any occasion of the semi-persistent PUSCH resource (including DMRS) that included data or signaling based on the received acknowledgement message. The base station 105-d may determine that the PUSCH data is received in a semi-persistent PUSCH resource occasion that overlaps with the CSI-RS, and may determine that the CSI is for a FD mode. For example, the base station 105-d may successfully decode the PUSCH data at the same time-frequency resources as the CSI-RS and may determine that the CSI-type is FD CSI. In other cases, the base station 105-d may determine that the PUSCH data is received on resources different from the semi-persistent PUSCH resource occasions that overlap with the CSI-RS, and may determine that the CSI is for a non-FD mode. For example, the base station 105-d may fail to decode the PUSCH data at the same time-frequency resources as the CSI-RS and may determine that the CSI-type is non-FD CSI.
In some cases, the received CSI report may include the explicit indication of the duplex mode. The indication may be 1 or more bits and may be included in the CSI report received from the UE 115-d. The base station 105-d may determine the CSI-type based on the explicit indication within the received CSI report.
At 445, the base station may decode the CSI report based on the determined duplex mode. For example, the base station 105-d may determine the CSI-type to be FD or non-FD based on the indication received in the CSI report and may decode the CSI according to the CSI-type and thus may be informed of self-interference at the UE 115-d.
FIG. 5 illustrates an example of a process flow 500 that supports channel state reporting types in accordance with aspects of the present disclosure. In some examples, process flow 500 may implement aspects of  wireless communication systems  100 or 200, as described with reference to FIGs. 1 and 2, respectively. For example, the process flow 500  may include a base station 105-e and a UE 115-e, which may be examples of the corresponding devices as described with reference to FIGs. 1 and 2.
In the following description of the process flow 500, the operations between the base station 105-e and the UE 115-e may be performed in a different orders or at different times than as shown. Some operations may be omitted from the process flow 500, and other operations may be added to the process flow 500 without departing from the scope of the present disclosure.
At 505, the base station 105-e may transmit a CSI report configuration message to the UE 115-e. In some examples, the base station 105-e determines how the CSI-type is reported. For example, the base station may indicate to the UE 115-e to report the CSI-type based on an implicit indication in the CSI report configuration message. For example, if the uplink channel quality is acceptable (e.g., channel quality metric is higher than a threshold value) the base station 105-e may determine that the CSI-type is to be reported implicitly. The base station 105-e may also indicate to the UE 115-e to report the CSI-type based on an explicit indication. For example, if the uplink channel quality is unacceptable (e.g., channel quality metric is lower than a threshold value) the base station 105-e may determine that the CSI-type is to be reported explicitly (e.g., in a 1 or more bit indication) in the CSI report. The base station 105-e may indicate the reporting type (e.g., explicit, implicit) to the UE 115-e via the CSI report configuration message. The UE 115-e may receive the CSI report configuration and may include the explicit or implicit indication in a related CSI report.
At 510, the base station 105-e may transmit an SR configuration message to the UE 115-e. For example, the base station 105-e may transmit the message to the UE 115-e including periodic SR resources to transmit an SR message for applying an uplink PUSCH grant. The periodic SR resource configuration may be transmitted by the base station 105-e via dedicated RRC-layer signaling or other signaling and may include periodically-configured time resources (e.g., the interval between granted resources may be configured and may be consistent between each set of granted resources, or may be dynamic or aperiodic) . In some cases, the periodic SR resources may overlap with the CSI-RS resources.
At 515, in response to receiving the periodic SR resources, the UE 115-e may transmit a positive SR message to the base station 105-e on the granted periodic SR resources. As a periodic SR occasion occurs, the UE 115-e may transmit a positive SR  message during the instant occasion if the UE 115-e has uplink data or signaling in its buffer (e.g., CSI) and if configured PUSCH resources are insufficient. Otherwise, the UE 115-e may refrain from transmitting in the instant periodic SR occasion. In some cases, periodic CSI-RS resources may have a same periodic pattern (e.g., a same period, same start position etc. ) as the periodic SR resources.
At 520, the base station 105-e may transmit a CSI-RS to the UE 115-e over time-frequency resources. The CSI-RS may indicate to the UE 115-e to generate and transmit a CSI report. The UE 115-e may receive the CSI-RS and may generate a CSI-report.
At 525, the UE 115-e may determine the duplex mode (e.g., CSI-type) based on receiving the CSI-RS and transmitting the positive SR message. In some examples, the CSI-RS may overlap with at least an occasion of the periodic SR resources and the UE 115-e may determine the CSI-type to be FD based on transmitting the positive SR and receiving the CSI-RS on the overlapping resources. In other examples, the UE 115-e may determine the CSI-type to be non-FD CSI based on only receiving CSI-RS on CSI-RS resources.
At 530, the UE 115-e may transmit a CSI report to the base station 105-e. The CSI report may include the indication of CSI-type according to the CSI report configuration received from the base station 105-e. For example, the UE 115-e may determine to generate a FD CSI or a non-FD CSI based on the overlapping status of the CSI-RS and any occasion of the periodic SR resource in which the UE transmitted data or signaling and may indicate the CSI-type in the CSI report either implicitly or explicitly. The indication may provide the base station 105-e with information about the presence of self-interference at the UE 115-e.
In some examples, the UE 115-e may report the CSI-type implicitly to the base station, in which case the CSI-type may be based on the duplex mode (e.g., FD CSI, non-FD CSI) . For example, the transmitted CSI report may transfer the generated CSI to the base station 105-e and the CSI-type may be indicated implicitly (e.g., without including an explicit indication) by an overlapping status of the CSI-RS and any occasion of the periodic SR resource in which data or signaling was transmitted.
In some examples, the UE 115-e may report the CSI-type explicitly to the base station 105-e, where the CSI-type may be based on the duplex mode (e.g., FD CSI, non-FD CSI) . For example, the UE 115-e may transmit the CSI report to transfer the generated CSI to the base station 105-e and the CSI-type may be indicated explicitly (e.g., the UE 115-e may  include an explicit indication within the CSI report) . For example, the UE 115-e may transmit the CSI report including a 1 or more bit indication to the base station 105-e indicating the CSI-type (e.g., FD CSI, non-FD CSI) .
At 535, the base station 105-e may determine the duplex mode (e.g., CSI-type) based on the indication received in the CSI report. In some cases, the CSI report may include the implicit indication of the duplex mode. For example, the base station 105-e may determine the CSI-type based on the received CSI report. In such cases, the base station 105-e may determine the CSI-type by determining whether the associated CSI-RS overlapped with any occasion of the periodic SR resource that included a positive SR message. The base station 105-e may determine that the positive SR message was received in a periodic SR resource occasion that overlaps with the CSI-RS, and may determine that the CSI is for a FD mode. In other cases, the base station 105-e may determine that the positive SR message was not received on a periodic SR resource occasion that overlaps with the CSI-RS, and may determine that the CSI is for a non-FD mode.
In some cases, the CSI report may include an explicit indication of the duplex mode. The indication may be 1 or more bits and may be included in the CSI report received from the UE 115-e. The base station 105-e may determine the CSI-type based on the explicit indication within the received CSI report.
At 540, the base station 105-e may decode the CSI report based on the determined duplex mode. For example, the base station 105-e may determine the CSI-type to be FD or non-FD based on the indication received in the CSI report and may decode the CSI according to the CSI-type and thus may be informed of self-interference at the UE 115-e.
In some cases, the described methods may be applicable to other communications between different devices. For example, while the methods describes herein are described in relation to communication between a base station 105-e and an FD-capable UE 115-e, the methods may be applied in different scenarios. As one example, the methods may be applied to communications between a network node (e.g., a parent IAB node) and other network nodes (e.g., a child IAB node) .
FIG. 6 illustrates an example of a process flow 600 that supports channel state reporting types in accordance with aspects of the present disclosure. In some examples, process flow 600 may implement aspects of  wireless communication systems  100 or 200, as  described with reference to FIGs. 1 and 2, respectively. For example, the process flow 600 may include a base station 105-f and a UE 115-f, which may examples of the corresponding devices as described with reference to FIGs. 1 and 2.
In the following description of the process flow 600, the operations between the base station 105-f and the UE 115-f may be performed in a different orders or at different times than as shown. Some operations may be omitted from the process flow 600, and other operations may be added to the process flow 600 without departing from the scope of the present disclosure.
At 605, the base station 105-f may transmit a CSI report configuration message to the UE 115-f. In some examples, the base station 105-f determines how the CSI-type is reported. For example, the base station may indicate to the UE 115-f to report the CSI-type based on an implicit indication in the CSI report configuration message. For example, if the uplink channel quality is acceptable (e.g., channel quality metric is higher than a threshold value) the base station 105-f may determine that the CSI-type is to be reported implicitly. The base station 105-f may also indicate to the UE 115-f to report the CSI-type based on an explicit indication. For example, if the uplink channel quality is unacceptable (e.g., channel quality metric is lower than a threshold value) the base station 105-f may determine that the CSI-type is to be reported explicitly (e.g., in a 1 or more bit indication) in the CSI report. The base station 105-f may indicate the reporting type (e.g., explicit, implicit) to the UE 115-f via the CSI report configuration message. The UE 115-f may receive the CSI report configuration and may include the explicit or implicit indication in a related CSI report.
At 610, the base station 105-f may transmit a dynamic uplink resource configuration to the UE 115-f. For example, the base station 105-f may transmit an uplink transfer configuration to the UE including a dynamic uplink resources for transmitting dynamic (e.g., aperiodic) SSR, dynamic (e.g., aperiodic) PUSCH or dynamic (e.g., aperiodic) PUCCH which may be used for transmitting ACK/NACK information of a dynamic (e.g., aperiodic) PDSCH. The dynamic uplink resource configuration may be transmitted by the base 105-f via dedicated downlink control information (DCI) or other signaling.
At 615, the base station 105-f may transmit a CSI-RS to the UE 115-f over time-frequency resources. The CSI-RS may indicate to the UE 115-f to generate and transmit a CSI report. The UE 115-f may receive the CSI-RS and may generate a CSI-report.
At 620, in some cases, the UE 115-f may successfully receive the dynamic uplink resource configuration and may transmit uplink data or signaling according to the received configuration. In some cases, the UE 115-f may fail to receive the dynamic uplink resource configuration and may not transmit uplink data or signaling according to the received configuration.
At 625, the UE 115-f may determine the duplex mode (e.g., CSI-type) based on receiving the CSI-RS and transmitting uplink data or signaling according to the received configuration. In some examples, the UE 115-f may determine the CSI-type to be a FD CSI or a non-FD CSI based on an overlapping condition (e.g., self-interference) of the CSI-RS received from the base station 115-f and the dynamic uplink transmission. In some examples, the CSI-RS may overlap with at least an occasion of the dynamic uplink resource and the UE may determine the CSI-type to be a FD CSI based on transmitting the uplink data/signaling and receiving the CSI-RS on the overlapping resources. In other examples, the UE may determine the CSI-type to be a non-FD CSI based on only receiving CSI-RS on CSI-RS resources.
At 630, the UE 115-f may transmit a CSI report to the base station 105-f. The CSI report may include the indication of CSI-type according to the CSI report configuration received from the base station 105-f. The indication may provide the base station 105-f with information about the presence of self-interference at the UE 115-f. For example, The UE 115-f may determine to generate a FD CSI or a non-FD CSI based on the overlapping condition of the CSI-RS received from the base station 105-f and the uplink data/signaling transmitted by the UE 105-f. For example, the UE 115-f may generate a FD CSI if the CSI-RS time-frequency resources overlap with the time-frequency resources of the uplink transmission and may generate a non-FD CSI otherwise. For example, the UE may generate a non-FD CSI if the CSI-RS time-frequency resources do not overlap with the time-frequency resources of the uplink transmission.
In some examples, the UE 115-e may report the CSI-type implicitly to the base station, in which case the CSI-type may be based on the duplex mode (e.g., FD CSI, non-FD CSI) . For example, the transmitted CSI report may transfer the generated CSI to the base station 105-e and the CSI-type may be indicated implicitly (e.g., without including an explicit indication) .
In some examples, the UE 115-f may report the CSI-type implicitly to the base station, in which case the CSI-type may be based on the duplex mode (e.g., FD CSI, non-FD CSI) . For example, the transmitted CSI report may transfer the generated CSI to the base station 105-f and the CSI-type may be indicated implicitly (e.g., without including an explicit indication) .
In some examples, the UE 115-f may report the CSI-type explicitly to the base station 105-f, in which case the CSI-type may be based on the duplex mode (e.g., FD CSI, non-FD CSI) . For example, the UE 115-f may transmit the CSI report to transfer the generated CSI to the base station 105-f and the CSI-type may be indicated explicitly (e.g., the UE 115-f may include an explicit indication within the CSI report) . For example, the UE 115-f may transmit the CSI report including a 1 or more bit indication to the base station 105-f indicating the CSI-type (e.g., FD CSI, non-FD CSI) .
At 635, the base station 105-f may determine the duplex mode (e.g., CSI-type) based on the indication received in the CSI report. In some cases, the CSI report may include the implicit indication of the duplex mode. The base station 105-f may determine the CSI type by determining whether the associated CSI-RS overlapped with any occasion of the dynamic uplink resources. The base station 105-f may determine that the dynamic uplink transmission is received in a dynamic uplink resource occasion that overlaps with the CSI-RS, and may determine that the CSI is for a FD mode. In other cases, the base station may determine that the dynamic uplink transmission is not received on the dynamic uplink resource occasion that overlaps with the CSI-RS, and may determine that the CSI is for a non-FD mode. The base station 105-f may determine the CSI-type to be FD CSI which may serve as an indication of self-interference at the UE 115-f. Alternatively, the base station 105-f may determine the CSI-type to be non-FD CSI which may serve as an indication of an absence of self-interference at the UE 115-f.
In some cases, the CSI report may include an explicit indication of the duplex mode. The indication may be 1 or more bits and may be included in the CSI report received from the UE 115-f. The base station 105-f may determine the CSI-type based on the explicit indication within the received CSI report.
At 640, the base station 105-f may decode the CSI report based on the determined duplex mode. For example, the base station 105-f may determine the CSI type to be FD or  non-FD based on the indication received in the CSI report and may decode the CSI according to the CSI-type and thus may be informed of self-interference at the UE 115-f.
In some cases, the described methods may be applicable to other communications between different devices. For example, while the methods describes herein are described in relation to communication between a base station 105-f and an FD-capable UE 115-f, the methods may be applied in different scenarios. As one example, the methods may be applied to communications between a network node (e.g., a parent IAB node) and other network nodes (e.g., a child IAB node) .
FIG. 7 shows a block diagram 700 of a device 705 that supports channel state reporting types in accordance with aspects of the present disclosure. The device 705 may be an example of aspects of a UE 115 or base station 105 as described herein. The device 705 may include a receiver 710, a communications manager 715, and a transmitter 720. The device 705 may also include a processor. Each of these components may be in communication with one another (e.g., via one or more buses) .
Receiver 710 may receive information such as packets, user data, or control information associated with various information channels (e.g., control channels, data channels, and information related to channel state reporting types, etc. ) . Information may be passed on to other components of the device 705. The receiver 710 may be an example of aspects of the  transceiver  1020 or 1120 as described with reference to FIGs. 10 and 11. The receiver 710 may utilize a single antenna or a set of antennas.
The communications manager 715 may receive, from a second wireless device, a reference signal via a first set of time-frequency resources of a channel configured for the first wireless device, receive a signal transfer configuration indicating a second set of time-frequency resources of the channel for signal transmission by the first wireless device, determine a duplex mode for CSI of the reference signal based on an overlap between the second set of time-frequency resources and the first set of time-frequency resources, and transmit, to the second wireless device, a report including the CSI of the reference signal based on the duplex mode.
The communications manager 715 may also transmit, to a second wireless device, a reference signal via a first set of time-frequency resources of a channel configured for the second wireless device, transmit a signal transfer configuration indicating a second set of  time-frequency resources of the channel for signal transmission by the second wireless device, receive, from the second wireless device, a report including CSI of the reference signal, determine a duplex mode for the CSI of the reference signal based on the report, and decode the report based on the duplex mode. The communications manager 715 may be an example of aspects of the  communications manager  1010 or 1110 as described herein.
The communications manager 715, or its sub-components, may be implemented in hardware, code (e.g., software or firmware) executed by a processor, or any combination thereof. If implemented in code executed by a processor, the functions of the communications manager 715, or its sub-components may be executed by a general-purpose processor, a digital signal processor (DSP) , an application-specific integrated circuit (ASIC) , a field programmable gate array (FPGA) or other programmable logic device, discrete gate or transistor logic, discrete hardware components, or any combination thereof designed to perform the functions described in the present disclosure.
The communications manager 715, or its sub-components, may be physically located at various positions, including being distributed such that portions of functions are implemented at different physical locations by one or more physical components. In some examples, the communications manager 715, or its sub-components, may be a separate and distinct component in accordance with various aspects of the present disclosure. In some examples, the communications manager 715, or its sub-components, may be combined with one or more other hardware components, including but not limited to an input/output (I/O) component, a transceiver, a network server, another computing device, one or more other components described in the present disclosure, or a combination thereof in accordance with various aspects of the present disclosure.
Transmitter 720 may transmit signals generated by other components of the device 705. In some examples, the transmitter 720 may be collocated with a receiver 710 in a transceiver module. For example, the transmitter 720 may be an example of aspects of the  transceiver  1020 or 1120 as described with reference to FIGs. 10 and 11. The transmitter 720 may utilize a single antenna or a set of antennas.
In some examples, the communications manager 715 may be implemented as an integrated circuit or chipset for a mobile device modem, and the receiver 710 and transmitter 720 may be implemented as analog components (e.g., amplifiers, filters, antennas) coupled  with the mobile device modem to enable wireless transmission and reception over one or more bands.
The communications manager 715 as described herein may be implemented to realize one or more potential advantages. One implementation may allow the device 705 to provide an indication of FD or non-FD CSI type information to a base station. Such information may aide in determining whether the CSI of the CSI report is based on self-interference at the device 705. Based on the techniques for reporting CSI type at the device 505, the device 505 may be provided with more accurate scheduling information or resources for future communications based on the CSI.
As such, the device 505 may increase the likelihood of successfully transmitting and receiving messages with a base station. In some examples, based on a greater likelihood of successful communications, the device 505 may more efficiently power a processor or one or more processing units associated with CSI reporting and transmitting and receiving communications, which may enable the device to save power and increase battery life.
FIG. 8 shows a block diagram 800 of a device 805 that supports channel state reporting types in accordance with aspects of the present disclosure. The device 805 may be an example of aspects of a device 705, a UE 115, or a base station 105 as described herein. The device 805 may include a receiver 810, a communications manager 815, and a transmitter 860. The device 805 may also include a processor. Each of these components may be in communication with one another (e.g., via one or more buses) .
Receiver 810 may receive information such as packets, user data, or control information associated with various information channels (e.g., control channels, data channels, and information related to channel state reporting types, etc. ) . Information may be passed on to other components of the device 805. The receiver 810 may be an example of aspects of the  transceiver  1020 or 1120 as described with reference to FIGs. 10 and 11. The receiver 810 may utilize a single antenna or a set of antennas.
The communications manager 815 may be an example of aspects of the communications manager 715 as described herein. The communications manager 815 may include a signal receiver 820, a configuration receiver 825, a duplex mode manager 830, a report transmitter 835, a signal transmitter 840, a configuration transmitter 845, a report  receiver 850, and a report decoder 855. The communications manager 815 may be an example of aspects of the  communications manager  1010 or 1110 as described herein.
The signal receiver 820 may receive, from a second wireless device, a reference signal via a first set of time-frequency resources of a channel configured for the first wireless device.
The configuration receiver 825 may receive a signal transfer configuration indicating a second set of time-frequency resources of the channel for signal transmission by the first wireless device.
The duplex mode manager 830 may determine a duplex mode for CSI of the reference signal based on an overlap between the second set of time-frequency resources and the first set of time-frequency resources.
The report transmitter 835 may transmit, to the second wireless device, a report including the CSI of the reference signal based on the duplex mode.
The signal transmitter 840 may transmit, to a second wireless device, a reference signal via a first set of time-frequency resources of a channel configured for the second wireless device.
The configuration transmitter 845 may transmit a signal transfer configuration indicating a second set of time-frequency resources of the channel for signal transmission by the second wireless device.
The report receiver 850 may receive, from the second wireless device, a report including CSI of the reference signal.
The duplex mode manager 830 may determine a duplex mode for the CSI of the reference signal based on the report.
The report decoder 855 may decode the report based on the duplex mode.
Transmitter 860 may transmit signals generated by other components of the device 805. In some examples, the transmitter 860 may be collocated with a receiver 810 in a transceiver module. For example, the transmitter 860 may be an example of aspects of the  transceiver  1020 or 1120 as described with reference to FIGs. 10 and 11. The transmitter 860 may utilize a single antenna or a set of antennas.
FIG. 9 shows a block diagram 900 of a communications manager 905 that supports channel state reporting types in accordance with aspects of the present disclosure. The communications manager 905 may be an example of aspects of a communications manager 715, a communications manager 815, or a communications manager 1010 described herein. The communications manager 905 may include a signal receiver 910, a configuration receiver 915, a duplex mode manager 920, a report transmitter 925, a report encoder 930, an indication transmitter 935, a signal transmitter 940, an interference manager 945, a grant receiver 950, a configuration transmitter 955, a report receiver 960, a report decoder 965, a channel quality component 970, and a grant transmitter 975. Each of these modules may communicate, directly or indirectly, with one another (e.g., via one or more buses) .
The signal receiver 910 may receive, from a second wireless device, a reference signal via a first set of time-frequency resources of a channel configured for the first wireless device. In some examples, the signal receiver 910 may receive, from the second wireless device, a signal via a portion of the second set of time-frequency resources. In some cases, the signal receiver 910 may receive, from the second wireless device, an uplink shared data message via at least one occasion of the set of periodic time occasions based on the semi-persistent grant, where the duplex mode is based on receiving the uplink shared data message. In some aspects, the signal receiver 910 may receive, from the second wireless device, a scheduling request via a subset of the periodic resources based on the configuration, where the duplex mode is based on receiving the scheduling request. In some instances, the signal receiver 910 may receive, from the second wireless device, an uplink message via a subset of the uplink resources based on the dynamic grant, where the duplex mode is based on receiving the uplink message.
In some cases, the first wireless device includes a UE and the second wireless device includes a base station. In some cases, the first wireless device includes a child IAB node and the second wireless device includes a parent IAB node. In some cases, the uplink message includes an uplink shared data channel transmission, an uplink control channel transmission, a random access channel transmission, a sounding reference signal, or any combination thereof.
The configuration receiver 915 may receive a signal transfer configuration indicating a second set of time-frequency resources of the channel for signal transmission by  the first wireless device. In some examples, receiving, from the second wireless device, a configuration for indicating the duplex mode based on a channel quality of the channel, where the configuration includes one of an implicit indication or an explicit indication. In some cases, the configuration receiver 915 may receive, from the second wireless device, a configuration for scheduling requests, where the configuration indicates a set of periodic resources for scheduling requests. In some aspects, the configuration receiver 915 may receive the configuration for scheduling requests via RRC signaling.
The duplex mode manager 920 may determine a duplex mode for CSI of the reference signal based on an overlap between the second set of time-frequency resources and the first set of time-frequency resources. In some examples, the duplex mode manager 920 may determine a duplex mode for the CSI of the reference signal based on the report. In some cases, the duplex mode manager 920 may determine the duplex mode to be a full duplex mode based on transmission of a signal via a portion of the second set of time-frequency resources and the portion of the second set of time-frequency resources overlapping with at least a portion of the first set of time-frequency resources. In some aspects, the duplex mode manager 920 may determine the duplex mode to be a non-full duplex mode based on transmission of a signal via a portion of the second set of time-frequency resources and the portion of the second set of time-frequency resources excluding the first set of time-frequency resources. In some instances, the duplex mode manager 920 may determine the duplex mode to be a non-full duplex mode based on an absence of transmission of a signal via a portion of the second set of time-frequency resources and the portion of the second set of time-frequency resources overlapping with the first set of time-frequency resources.
In some examples, the duplex mode manager 920 may determine the duplex mode to be a full duplex mode based on at least a portion of the first set of time-frequency resources overlapping the second set of time-frequency resources. In some examples, the duplex mode manager 920 may determine the duplex mode based on whether the at least one of the set of periodic time occasions at least partially overlaps the first set of time-frequency resources. In some cases, the duplex mode manager 920 may determine the duplex mode to be a full duplex mode based on the at least one of the set of periodic time occasions at least partially overlapping the first set of time-frequency resources. In some aspects, the duplex mode manager 920 may determine the duplex mode to be a non-full duplex mode based on the at least one of the set of periodic time occasions excluding the first set of time-frequency  resources. In some instances, the duplex mode manager 920 may determine the duplex mode based on whether the subset of the periodic resources at least partially overlaps the first set of time-frequency resources.
In some examples, the duplex mode manager 920 may determine the duplex mode to be a full duplex mode based on the subset of the periodic resources at least partially overlapping the first set of time-frequency resources. In some cases, the duplex mode manager 920 may determine the duplex mode to be a non-full duplex mode based on the subset of the periodic resources excluding the first set of time-frequency resources. In some aspects, the duplex mode manager 920 may determine the duplex mode based on whether the subset of the uplink resources at least partially overlaps the first set of time-frequency resources. In some instances, the duplex mode manager 920 may determine the duplex mode to be a full duplex mode based on the subset of the uplink resources at least partially overlapping the first set of time-frequency resources. In some cases, the duplex mode manager 920 may determine the duplex mode to be a non-full duplex mode based on the subset of the uplink resources excluding the first set of time-frequency resources.
In some examples, the duplex mode manager 920 may determine the duplex mode based on an overlap between the first set of time-frequency resources and the portion of the second set of time-frequency resources. In some aspects, the duplex mode manager 920 may determine the duplex mode to be a full duplex mode based on at least a portion of the first set of time-frequency resources overlapping the portion of the second set of time-frequency resources. In some instances, the duplex mode manager 920 may determine the duplex mode to be a non-full duplex mode based on the first set of time-frequency resources excluding the portion of second set of time-frequency resources. In some examples, the duplex mode manager 920 may determine the duplex mode based on an indication of the duplex mode in the report. In some cases, the indication includes a 1 bit indication.
The report transmitter 925 may transmit, to the second wireless device, a report including the CSI of the reference signal based on the duplex mode. In some examples, the report transmitter 925 may transmit the CSI of the reference signal based on the measured interference in the report.
The signal transmitter 940 may transmit, to a second wireless device, a reference signal via a first set of time-frequency resources of a channel configured for the second  wireless device. In some examples, the signal transmitter 940 may transmit a signal via the second set of time-frequency resources. In some examples, the signal transmitter 940 may determine to perform an uplink shared data transmission using at least one of the set of periodic time occasions. In some examples, the signal transmitter 940 may determine to transmit a scheduling request using a subset of the periodic resources. In some examples, the signal transmitter 940 may determine to transmit an uplink message using at least a subset of the uplink resources.
In some cases, the uplink message includes an uplink shared data channel transmission, an uplink control channel transmission, a random access channel transmission, a sounding reference signal, or any combination thereof. In some cases, the first wireless device includes a base station and the second wireless device includes a UE. In some cases, the first wireless device includes a parent IAB node and the second wireless device includes a child IAB node.
The configuration transmitter 955 may transmit a signal transfer configuration indicating a second set of time-frequency resources of the channel for signal transmission by the second wireless device. In some examples, transmitting, to the second wireless device, a configuration for indicating the duplex mode based on the channel quality, where the configuration includes one of an implicit indication or an explicit indication. In some examples, the configuration transmitter 955 may transmit, to the second wireless device, a configuration for scheduling requests, where the configuration indicates a set of periodic resources for scheduling requests. In some examples, the configuration transmitter 955 may transmit the configuration for scheduling requests via RRC signaling.
The report receiver 960 may receive, from the second wireless device, a report including CSI of the reference signal.
The report decoder 965 may decode the report based on the duplex mode.
The report encoder 930 may encode the report based on the determined duplex mode.
The indication transmitter 935 may transmit an indication of the duplex mode in the report. In some cases, the indication includes a 1 bit indication.
The interference manager 945 may measure interference on the reference signal based on the transmitted signal.
The grant receiver 950 may receive, from the second wireless device, a semi-persistent grant for uplink shared data, where the semi-persistent grant indicates a set of periodic time occasions for uplink shared transmissions. In some examples, the grant receiver 950 may receive the semi-persistent grant via RRC signaling. In some cases, the grant receiver 950 may receive, from the second wireless device, a dynamic grant for uplink messages, where the dynamic grant indicates a set of uplink resources for uplink messages. In some aspects, the grant receiver 950 may receive the dynamic grant via DCI.
The channel quality component 970 may determine a channel quality of the channel configured for the second wireless device.
The grant transmitter 975 may transmit, to the second wireless device, a semi-persistent grant for uplink shared data, where the semi-persistent grant indicates a set of periodic time occasions for uplink shared transmissions. In some examples, the grant transmitter 975 may transmit the semi-persistent grant via RRC signaling. In some cases, the grant transmitter 975 may transmit, to the second wireless device, a dynamic grant for uplink messages, where the dynamic grant indicates a set of uplink resources for uplink messages. In some aspects, the grant transmitter 975 may transmit the dynamic grant via DCI.
FIG. 10 shows a diagram of a system 1000 including a device 1005 that supports channel state reporting types in accordance with aspects of the present disclosure. The device 1005 may be an example of or include the components of device 705, device 805, or a UE 115 as described herein. The device 1005 may include components for bi-directional voice and data communications including components for transmitting and receiving communications, including a communications manager 1010, a transceiver 1020, an antenna 1025, memory 1030, a processor 1040, and an I/O controller 1050. These components may be in electronic communication via one or more buses (e.g., bus 1055) .
The communications manager 1010 may receive, from a second wireless device, a reference signal via a first set of time-frequency resources of a channel configured for the first wireless device, receive a signal transfer configuration indicating a second set of time-frequency resources of the channel for signal transmission by the first wireless device, determine a duplex mode for CSI of the reference signal based on an overlap between the  second set of time-frequency resources and the first set of time-frequency resources, and transmit, to the second wireless device, a report including the CSI of the reference signal based on the duplex mode.
The communications manager 1010 may also transmit, to a second wireless device, a reference signal via a first set of time-frequency resources of a channel configured for the second wireless device, transmit a signal transfer configuration indicating a second set of time-frequency resources of the channel for signal transmission by the second wireless device, receive, from the second wireless device, a report including CSI of the reference signal, determine a duplex mode for the CSI of the reference signal based on the report, and decode the report based on the duplex mode.
Transceiver 1020 may communicate bi-directionally, via one or more antennas, wired, or wireless links as described herein. For example, the transceiver 1020 may represent a wireless transceiver and may communicate bi-directionally with another wireless transceiver. The transceiver 1020 may also include a modem to modulate the packets and provide the modulated packets to the antennas for transmission, and to demodulate packets received from the antennas.
In some cases, the wireless device may include a single antenna 1025. However, in some cases the device may have more than one antenna 1025, which may be capable of concurrently transmitting or receiving multiple wireless transmissions.
The memory 1030 may include random access memory (RAM) , read only memory (ROM) , or a combination thereof. The memory 1030 may store computer-readable code 1035 including instructions that, when executed by a processor (e.g., the processor 1040) cause the device to perform various functions described herein. In some cases, the memory 1030 may contain, among other things, a basic I/O system (BIOS) which may control basic hardware or software operation such as the interaction with peripheral components or devices.
The processor 1040 may include an intelligent hardware device, (e.g., a general-purpose processor, a DSP, a central processing unit (CPU) , a microcontroller, an ASIC, an FPGA, a programmable logic device, a discrete gate or transistor logic component, a discrete hardware component, or any combination thereof) . In some cases, the processor 1040 may be configured to operate a memory array using a memory controller. In other cases, a memory  controller may be integrated into the processor 1040. The processor 1040 may be configured to execute computer-readable instructions stored in a memory (e.g., the memory 1030) to cause the device 1005 to perform various functions (e.g., functions or tasks supporting channel state reporting types) .
The I/O controller 1050 may manage input and output signals for the device 1005. The I/O controller 1050 may also manage peripherals not integrated into the device 1005. In some cases, the I/O controller 1050 may represent a physical connection or port to an external peripheral. In some cases, the I/O controller 1050 may utilize an operating system such as 
Figure PCTCN2020082699-appb-000001
or another known operating system. In other cases, the I/O controller 1050 may represent or interact with a modem, a keyboard, a mouse, a touchscreen, or a similar device. In some cases, the I/O controller 1050 may be implemented as part of a processor. In some cases, a user may interact with the device 1005 via the I/O controller 1050 or via hardware components controlled by the I/O controller 1050.
The code 1035 may include instructions to implement aspects of the present disclosure, including instructions to support wireless communications. The code 1035 may be stored in a non-transitory computer-readable medium such as system memory or other type of memory. In some cases, the code 1035 may not be directly executable by the processor 1040 but may cause a computer (e.g., when compiled and executed) to perform functions described herein.
FIG. 11 shows a diagram of a system 1100 including a device 1105 that supports channel state reporting types in accordance with aspects of the present disclosure. The device 1105 may be an example of or include the components of device 705, device 805, or a base station 105 as described herein. The device 1105 may include components for bi-directional voice and data communications including components for transmitting and receiving communications, including a communications manager 1110, a network communications manager 1115, a transceiver 1120, an antenna 1125, memory 1130, a processor 1140, and an inter-station communications manager 1145. These components may be in electronic communication via one or more buses (e.g., bus 1155) .
The communications manager 1110 may receive, from a second wireless device, a reference signal via a first set of time-frequency resources of a channel configured for the  first wireless device, receive a signal transfer configuration indicating a second set of time-frequency resources of the channel for signal transmission by the first wireless device, determine a duplex mode for CSI of the reference signal based on an overlap between the second set of time-frequency resources and the first set of time-frequency resources, and transmit, to the second wireless device, a report including the CSI of the reference signal based on the duplex mode.
The communications manager 1110 may also transmit, to a second wireless device, a reference signal via a first set of time-frequency resources of a channel configured for the second wireless device, transmit a signal transfer configuration indicating a second set of time-frequency resources of the channel for signal transmission by the second wireless device, receive, from the second wireless device, a report including CSI of the reference signal, determine a duplex mode for the CSI of the reference signal based on the report, and decode the report based on the duplex mode.
Network communications manager 1115 may manage communications with the core network (e.g., via one or more wired backhaul links) . For example, the network communications manager 1115 may manage the transfer of data communications for client devices, such as one or more UEs 115.
Transceiver 1120 may communicate bi-directionally, via one or more antennas, wired, or wireless links as described herein. For example, the transceiver 1120 may represent a wireless transceiver and may communicate bi-directionally with another wireless transceiver. The transceiver 1120 may also include a modem to modulate the packets and provide the modulated packets to the antennas for transmission, and to demodulate packets received from the antennas.
In some cases, the device 1105 may include a single antenna 1125, or the device 1105 may have more than one antenna 1125, which may be capable of concurrently transmitting or receiving multiple wireless transmissions.
The memory 1130 may include RAM, ROM, or a combination thereof. The memory 1130 may store computer-readable code 1135 including instructions that, when executed by a processor (e.g., the processor 1140) cause the device to perform various functions described herein. In some cases, the memory 1130 may contain, among other  things, a BIOS which may control basic hardware or software operation such as the interaction with peripheral components or devices.
The processor 1140 may include an intelligent hardware device, (e.g., a general-purpose processor, a DSP, a CPU, a microcontroller, an ASIC, an FPGA, a programmable logic device, a discrete gate or transistor logic component, a discrete hardware component, or any combination thereof) . In some cases, the processor 1140 may be configured to operate a memory array using a memory controller. In other cases, a memory controller may be integrated into the processor 1140. The processor 1140 may be configured to execute computer-readable instructions stored in a memory (e.g., the memory 1130) to cause the device 1105 to perform various functions (e.g., functions or tasks supporting channel state reporting types) .
Inter-station communications manager 1145 may manage communications with other base station 105, and may include a controller or scheduler for controlling communications with UEs 115 in cooperation with other base stations 105. For example, the inter-station communications manager 1145 may coordinate scheduling for transmissions to UEs 115 for various interference mitigation techniques such as beamforming or joint transmission. In some examples, inter-station communications manager 1145 may provide an X2 interface within an LTE/LTE-A wireless communication network technology to provide communication between base stations 105.
The code 1135 may include instructions to implement aspects of the present disclosure, including instructions to support wireless communications. The code 1135 may be stored in a non-transitory computer-readable medium such as system memory or other type of memory. In some cases, the code 1135 may not be directly executable by the processor 1140 but may cause a computer (e.g., when compiled and executed) to perform functions described herein.
FIG. 12 shows a flowchart illustrating a method 1200 that supports channel state reporting types in accordance with aspects of the present disclosure. The operations of method 1200 may be implemented by a UE 115 or base station 105 or its components as described herein. For example, the operations of method 1200 may be performed by a communications manager as described with reference to FIGs. 7 through 11. In some examples, a UE or base station may execute a set of instructions to control the functional  elements of the UE or base station to perform the functions described herein. Additionally or alternatively, a UE or base station may perform aspects of the functions described herein using special-purpose hardware.
At 1205, the UE or base station may receive, from a second wireless device, a reference signal via a first set of time-frequency resources of a channel configured for the first wireless device. The operations of 1205 may be performed according to the methods described herein. In some examples, aspects of the operations of 1205 may be performed by a signal receiver as described with reference to FIGs. 7 through 11.
At 1210, the UE or base station may receive a signal transfer configuration indicating a second set of time-frequency resources of the channel for signal transmission by the first wireless device. The operations of 1210 may be performed according to the methods described herein. In some examples, aspects of the operations of 1210 may be performed by a configuration receiver as described with reference to FIGs. 7 through 11.
At 1215, the UE or base station may determine a duplex mode for CSI of the reference signal based on an overlap between the second set of time-frequency resources and the first set of time-frequency resources. The operations of 1215 may be performed according to the methods described herein. In some examples, aspects of the operations of 1215 may be performed by a duplex mode manager as described with reference to FIGs. 7 through 11.
At 1220, the UE or base station may transmit, to the second wireless device, a report including the CSI of the reference signal based on the duplex mode. The operations of 1220 may be performed according to the methods described herein. In some examples, aspects of the operations of 1220 may be performed by a report transmitter as described with reference to FIGs. 7 through 11.
FIG. 13 shows a flowchart illustrating a method 1300 that supports channel state reporting types in accordance with aspects of the present disclosure. The operations of method 1300 may be implemented by a UE 115 or base station 105 or its components as described herein. For example, the operations of method 1300 may be performed by a communications manager as described with reference to FIGs. 7 through 11. In some examples, a UE or base station may execute a set of instructions to control the functional elements of the UE or base station to perform the functions described herein. Additionally or  alternatively, a UE or base station may perform aspects of the functions described herein using special-purpose hardware.
At 1305, the UE or base station may receive, from a second wireless device, a reference signal via a first set of time-frequency resources of a channel configured for the first wireless device. The operations of 1305 may be performed according to the methods described herein. In some examples, aspects of the operations of 1305 may be performed by a signal receiver as described with reference to FIGs. 7 through 11.
At 1310, the UE or base station may receive a signal transfer configuration indicating a second set of time-frequency resources of the channel for signal transmission by the first wireless device. The operations of 1310 may be performed according to the methods described herein. In some examples, aspects of the operations of 1310 may be performed by a configuration receiver as described with reference to FIGs. 7 through 11.
At 1315, the UE or base station may determine a duplex mode for CSI of the reference signal based on an overlap between the second set of time-frequency resources and the first set of time-frequency resources. The operations of 1315 may be performed according to the methods described herein. In some examples, aspects of the operations of 1315 may be performed by a duplex mode manager as described with reference to FIGs. 7 through 11.
At 1320, the UE or base station may determine the duplex mode to be a full duplex mode based on transmission of a signal via a portion of the second set of time-frequency resources and the portion of the second set of time-frequency resources overlapping with at least a portion of the first set of time-frequency resources. The operations of 1320 may be performed according to the methods described herein. In some examples, aspects of the operations of 1320 may be performed by a duplex mode manager as described with reference to FIGs. 7 through 11.
At 1325, the UE or base station may transmit, to the second wireless device, a report including the CSI of the reference signal based on the duplex mode. The operations of 1325 may be performed according to the methods described herein. In some examples, aspects of the operations of 1325 may be performed by a report transmitter as described with reference to FIGs. 7 through 11.
FIG. 14 shows a flowchart illustrating a method 1400 that supports channel state reporting types in accordance with aspects of the present disclosure. The operations of method 1400 may be implemented by a UE 115 or base station 105 or its components as described herein. For example, the operations of method 1400 may be performed by a communications manager as described with reference to FIGs. 7 through 11. In some examples, a UE or base station may execute a set of instructions to control the functional elements of the UE or base station to perform the functions described herein. Additionally or alternatively, a UE or base station may perform aspects of the functions described herein using special-purpose hardware.
At 1405, the UE or base station may receive, from a second wireless device, a reference signal via a first set of time-frequency resources of a channel configured for the first wireless device. The operations of 1405 may be performed according to the methods described herein. In some examples, aspects of the operations of 1405 may be performed by a signal receiver as described with reference to FIGs. 7 through 11.
At 1410, the UE or base station may receive a signal transfer configuration indicating a second set of time-frequency resources of the channel for signal transmission by the first wireless device. The operations of 1410 may be performed according to the methods described herein. In some examples, aspects of the operations of 1410 may be performed by a configuration receiver as described with reference to FIGs. 7 through 11.
At 1415, the UE or base station may determine a duplex mode for CSI of the reference signal based on an overlap between the second set of time-frequency resources and the first set of time-frequency resources. The operations of 1415 may be performed according to the methods described herein. In some examples, aspects of the operations of 1415 may be performed by a duplex mode manager as described with reference to FIGs. 7 through 11.
At 1420, the UE or base station may determine the duplex mode to be a non-full duplex mode based on transmission of a signal via a portion of the second set of time-frequency resources and the portion of the second set of time-frequency resources excluding the first set of time-frequency resources. The operations of 1420 may be performed according to the methods described herein. In some examples, aspects of the operations of 1420 may be performed by a duplex mode manager as described with reference to FIGs. 7 through 11.
At 1425, the UE or base station may transmit, to the second wireless device, a report including the CSI of the reference signal based on the duplex mode. The operations of 1425 may be performed according to the methods described herein. In some examples, aspects of the operations of 1425 may be performed by a report transmitter as described with reference to FIGs. 7 through 11.
FIG. 15 shows a flowchart illustrating a method 1500 that supports channel state reporting types in accordance with aspects of the present disclosure. The operations of method 1500 may be implemented by a UE 115 or base station 105 or its components as described herein. For example, the operations of method 1500 may be performed by a communications manager as described with reference to FIGs. 7 through 11. In some examples, a UE or base station may execute a set of instructions to control the functional elements of the UE or base station to perform the functions described herein. Additionally or alternatively, a UE or base station may perform aspects of the functions described herein using special-purpose hardware.
At 1505, the UE or base station may receive, from a second wireless device, a reference signal via a first set of time-frequency resources of a channel configured for the first wireless device. The operations of 1505 may be performed according to the methods described herein. In some examples, aspects of the operations of 1505 may be performed by a signal receiver as described with reference to FIGs. 7 through 11.
At 1510, the UE or base station may receive a signal transfer configuration indicating a second set of time-frequency resources of the channel for signal transmission by the first wireless device. The operations of 1510 may be performed according to the methods described herein. In some examples, aspects of the operations of 1510 may be performed by a configuration receiver as described with reference to FIGs. 7 through 11.
At 1515, the UE or base station may determine a duplex mode for CSI of the reference signal based on an overlap between the second set of time-frequency resources and the first set of time-frequency resources. The operations of 1515 may be performed according to the methods described herein. In some examples, aspects of the operations of 1515 may be performed by a duplex mode manager as described with reference to FIGs. 7 through 11.
At 1520, the UE or base station may determine the duplex mode to be a non-full duplex mode based on an absence of transmission of a signal via a portion of the second set  of time-frequency resources and the portion of the second set of time-frequency resources overlapping with the first set of time-frequency resources. The operations of 1520 may be performed according to the methods described herein. In some examples, aspects of the operations of 1520 may be performed by a duplex mode manager as described with reference to FIGs. 7 through 11.
At 1525, the UE or base station may transmit, to the second wireless device, a report including the CSI of the reference signal based on the duplex mode. The operations of 1525 may be performed according to the methods described herein. In some examples, aspects of the operations of 1525 may be performed by a report transmitter as described with reference to FIGs. 7 through 11.
FIG. 16 shows a flowchart illustrating a method 1600 that supports channel state reporting types in accordance with aspects of the present disclosure. The operations of method 1600 may be implemented by a UE 115 or base station 105 or its components as described herein. For example, the operations of method 1600 may be performed by a communications manager as described with reference to FIGs. 7 through 11. In some examples, a UE or base station may execute a set of instructions to control the functional elements of the UE or base station to perform the functions described herein. Additionally or alternatively, a UE or base station may perform aspects of the functions described herein using special-purpose hardware.
At 1605, the UE or base station may transmit, to a second wireless device, a reference signal via a first set of time-frequency resources of a channel configured for the second wireless device. The operations of 1605 may be performed according to the methods described herein. In some examples, aspects of the operations of 1605 may be performed by a signal transmitter as described with reference to FIGs. 7 through 11.
At 1610, the UE or base station may transmit a signal transfer configuration indicating a second set of time-frequency resources of the channel for signal transmission by the second wireless device. The operations of 1610 may be performed according to the methods described herein. In some examples, aspects of the operations of 1610 may be performed by a configuration transmitter as described with reference to FIGs. 7 through 11.
At 1615, the UE or base station may receive, from the second wireless device, a report including CSI of the reference signal. The operations of 1615 may be performed  according to the methods described herein. In some examples, aspects of the operations of 1615 may be performed by a report receiver as described with reference to FIGs. 7 through 11.
At 1620, the UE or base station may determine a duplex mode for the CSI of the reference signal based on the report. The operations of 1620 may be performed according to the methods described herein. In some examples, aspects of the operations of 1620 may be performed by a duplex mode manager as described with reference to FIGs. 7 through 11.
At 1625, the UE or base station may decode the report based on the duplex mode. The operations of 1625 may be performed according to the methods described herein. In some examples, aspects of the operations of 1625 may be performed by a report decoder as described with reference to FIGs. 7 through 11.
FIG. 17 shows a flowchart illustrating a method 1700 that supports channel state reporting types in accordance with aspects of the present disclosure. The operations of method 1700 may be implemented by a UE 115 or base station 105 or its components as described herein. For example, the operations of method 1700 may be performed by a communications manager as described with reference to FIGs. 7 through 11. In some examples, a UE or base station may execute a set of instructions to control the functional elements of the UE or base station to perform the functions described herein. Additionally or alternatively, a UE or base station may perform aspects of the functions described herein using special-purpose hardware.
At 1705, the UE or base station may transmit, to a second wireless device, a reference signal via a first set of time-frequency resources of a channel configured for the second wireless device. The operations of 1705 may be performed according to the methods described herein. In some examples, aspects of the operations of 1705 may be performed by a signal transmitter as described with reference to FIGs. 7 through 11.
At 1710, the UE or base station may transmit a signal transfer configuration indicating a second set of time-frequency resources of the channel for signal transmission by the second wireless device. The operations of 1710 may be performed according to the methods described herein. In some examples, aspects of the operations of 1710 may be performed by a configuration transmitter as described with reference to FIGs. 7 through 11.
At 1715, the UE or base station may receive, from the second wireless device, a signal via a portion of the second set of time-frequency resources. The operations of 1715 may be performed according to the methods described herein. In some examples, aspects of the operations of 1715 may be performed by a signal receiver as described with reference to FIGs. 7 through 11.
At 1720, the UE or base station may receive, from the second wireless device, a report including CSI of the reference signal. The operations of 1720 may be performed according to the methods described herein. In some examples, aspects of the operations of 1720 may be performed by a report receiver as described with reference to FIGs. 7 through 11.
At 1725, the UE or base station may determine a duplex mode for the CSI of the reference signal based on the report. The operations of 1725 may be performed according to the methods described herein. In some examples, aspects of the operations of 1725 may be performed by a duplex mode manager as described with reference to FIGs. 7 through 11.
At 1730, the UE or base station may determine the duplex mode based on an overlap between the first set of time-frequency resources and the portion of the second set of time-frequency resources. The operations of 1730 may be performed according to the methods described herein. In some examples, aspects of the operations of 1730 may be performed by a duplex mode manager as described with reference to FIGs. 7 through 11.
At 1735, the UE or base station may decode the report based on the duplex mode. The operations of 1735 may be performed according to the methods described herein. In some examples, aspects of the operations of 1735 may be performed by a report decoder as described with reference to FIGs. 7 through 11.
FIG. 18 shows a flowchart illustrating a method 1800 that supports channel state reporting types in accordance with aspects of the present disclosure. The operations of method 1800 may be implemented by a UE 115 or base station 105 or its components as described herein. For example, the operations of method 1800 may be performed by a communications manager as described with reference to FIGs. 7 through 11. In some examples, a UE or base station may execute a set of instructions to control the functional elements of the UE or base station to perform the functions described herein. Additionally or  alternatively, a UE or base station may perform aspects of the functions described herein using special-purpose hardware.
At 1805, the UE or base station may transmit, to a second wireless device, a reference signal via a first set of time-frequency resources of a channel configured for the second wireless device. The operations of 1805 may be performed according to the methods described herein. In some examples, aspects of the operations of 1805 may be performed by a signal transmitter as described with reference to FIGs. 7 through 11.
At 1810, the UE or base station may transmit a signal transfer configuration indicating a second set of time-frequency resources of the channel for signal transmission by the second wireless device. The operations of 1810 may be performed according to the methods described herein. In some examples, aspects of the operations of 1810 may be performed by a configuration transmitter as described with reference to FIGs. 7 through 11.
At 1815, the UE or base station may receive, from the second wireless device, a signal via a portion of the second set of time-frequency resources. The operations of 1815 may be performed according to the methods described herein. In some examples, aspects of the operations of 1815 may be performed by a signal receiver as described with reference to FIGs. 7 through 11.
At 1820, the UE or base station may receive, from the second wireless device, a report including CSI of the reference signal. The operations of 1820 may be performed according to the methods described herein. In some examples, aspects of the operations of 1820 may be performed by a report receiver as described with reference to FIGs. 7 through 11.
At 1825, the UE or base station may determine a duplex mode for the CSI of the reference signal based on the report. The operations of 1825 may be performed according to the methods described herein. In some examples, aspects of the operations of 1825 may be performed by a duplex mode manager as described with reference to FIGs. 7 through 11.
At 1830, the UE or base station may determine the duplex mode based on an overlap between the first set of time-frequency resources and the portion of the second set of time-frequency resources. The operations of 1830 may be performed according to the  methods described herein. In some examples, aspects of the operations of 1830 may be performed by a duplex mode manager as described with reference to FIGs. 7 through 11.
At 1835, the UE or base station may determine the duplex mode to be a full duplex mode based on at least a portion of the first set of time-frequency resources overlapping the portion of the second set of time-frequency resources. The operations of 1835 may be performed according to the methods described herein. In some examples, aspects of the operations of 1835 may be performed by a duplex mode manager as described with reference to FIGs. 7 through 11.
At 1840, the UE or base station may decode the report based on the duplex mode. The operations of 1840 may be performed according to the methods described herein. In some examples, aspects of the operations of 1840 may be performed by a report decoder as described with reference to FIGs. 7 through 11.
FIG. 19 shows a flowchart illustrating a method 1900 that supports channel state reporting types in accordance with aspects of the present disclosure. The operations of method 1900 may be implemented by a UE 115 or base station 105 or its components as described herein. For example, the operations of method 1900 may be performed by a communications manager as described with reference to FIGs. 7 through 11. In some examples, a UE or base station may execute a set of instructions to control the functional elements of the UE or base station to perform the functions described herein. Additionally or alternatively, a UE or base station may perform aspects of the functions described herein using special-purpose hardware.
At 1905, the UE or base station may transmit, to a second wireless device, a reference signal via a first set of time-frequency resources of a channel configured for the second wireless device. The operations of 1905 may be performed according to the methods described herein. In some examples, aspects of the operations of 1905 may be performed by a signal transmitter as described with reference to FIGs. 7 through 11.
At 1910, the UE or base station may transmit a signal transfer configuration indicating a second set of time-frequency resources of the channel for signal transmission by the second wireless device. The operations of 1910 may be performed according to the methods described herein. In some examples, aspects of the operations of 1910 may be performed by a configuration transmitter as described with reference to FIGs. 7 through 11.
At 1915, the UE or base station may receive, from the second wireless device, a signal via a portion of the second set of time-frequency resources. The operations of 1915 may be performed according to the methods described herein. In some examples, aspects of the operations of 1915 may be performed by a signal receiver as described with reference to FIGs. 7 through 11.
At 1920, the UE or base station may receive, from the second wireless device, a report including CSI of the reference signal. The operations of 1920 may be performed according to the methods described herein. In some examples, aspects of the operations of 1920 may be performed by a report receiver as described with reference to FIGs. 7 through 11.
At 1925, the UE or base station may determine a duplex mode for the CSI of the reference signal based on the report. The operations of 1925 may be performed according to the methods described herein. In some examples, aspects of the operations of 1925 may be performed by a duplex mode manager as described with reference to FIGs. 7 through 11.
At 1930, the UE or base station may determine the duplex mode based on an overlap between the first set of time-frequency resources and the portion of the second set of time-frequency resources. The operations of 1930 may be performed according to the methods described herein. In some examples, aspects of the operations of 1930 may be performed by a duplex mode manager as described with reference to FIGs. 7 through 11.
At 1935, the UE or base station may determine the duplex mode to be a non-full duplex mode based on the first set of time-frequency resources excluding the portion of second set of time-frequency resources. The operations of 1935 may be performed according to the methods described herein. In some examples, aspects of the operations of 1935 may be performed by a duplex mode manager as described with reference to FIGs. 7 through 11.
At 1940, the UE or base station may decode the report based on the duplex mode. The operations of 1940 may be performed according to the methods described herein. In some examples, aspects of the operations of 1940 may be performed by a report decoder as described with reference to FIGs. 7 through 11.
It should be noted that the methods described herein describe possible implementations, and that the operations and the steps may be rearranged or otherwise  modified and that other implementations are possible. Further, aspects from two or more of the methods may be combined.
Although aspects of an LTE, LTE-A, LTE-A Pro, or NR system may be described for purposes of example, and LTE, LTE-A, LTE-A Pro, or NR terminology may be used in much of the description, the techniques described herein are applicable beyond LTE, LTE-A, LTE-A Pro, or NR networks. For example, the described techniques may be applicable to various other wireless communications systems such as Ultra Mobile Broadband (UMB) , Institute of Electrical and Electronics Engineers (IEEE) 802.11 (Wi-Fi) , IEEE 802.16 (WiMAX) , IEEE 802.20, Flash-OFDM, as well as other systems and radio technologies not explicitly mentioned herein.
Information and signals described herein may be represented using any of a variety of different technologies and techniques. For example, data, instructions, commands, information, signals, bits, symbols, and chips that may be referenced throughout the description may be represented by voltages, currents, electromagnetic waves, magnetic fields or particles, optical fields or particles, or any combination thereof.
The various illustrative blocks and components described in connection with the disclosure herein may be implemented or performed with a general-purpose processor, a DSP, an ASIC, a CPU, an FPGA or other programmable logic device, discrete gate or transistor logic, discrete hardware components, or any combination thereof designed to perform the functions described herein. A general-purpose processor may be a microprocessor, but in the alternative, the processor may be any processor, controller, microcontroller, or state machine. A processor may also be implemented as a combination of computing devices (e.g., a combination of a DSP and a microprocessor, multiple microprocessors, one or more microprocessors in conjunction with a DSP core, or any other such configuration) .
The functions described herein may be implemented in hardware, software executed by a processor, firmware, or any combination thereof. If implemented in software executed by a processor, the functions may be stored on or transmitted over as one or more instructions or code on a computer-readable medium. Other examples and implementations are within the scope of the disclosure and appended claims. For example, due to the nature of software, functions described herein may be implemented using software executed by a  processor, hardware, firmware, hardwiring, or combinations of any of these. Features implementing functions may also be physically located at various positions, including being distributed such that portions of functions are implemented at different physical locations.
Computer-readable media includes both non-transitory computer storage media and communication media including any medium that facilitates transfer of a computer program from one place to another. A non-transitory storage medium may be any available medium that may be accessed by a general-purpose or special purpose computer. By way of example, and not limitation, non-transitory computer-readable media may include RAM, ROM, electrically erasable programmable ROM (EEPROM) , flash memory, compact disk (CD) ROM or other optical disk storage, magnetic disk storage or other magnetic storage devices, or any other non-transitory medium that may be used to carry or store desired program code means in the form of instructions or data structures and that may be accessed by a general-purpose or special-purpose computer, or a general-purpose or special-purpose processor. Also, any connection is properly termed a computer-readable medium. For example, if the software is transmitted from a website, server, or other remote source using a coaxial cable, fiber optic cable, twisted pair, digital subscriber line (DSL) , or wireless technologies such as infrared, radio, and microwave, then the coaxial cable, fiber optic cable, twisted pair, DSL, or wireless technologies such as infrared, radio, and microwave are included in the definition of computer-readable medium. Disk and disc, as used herein, include CD, laser disc, optical disc, digital versatile disc (DVD) , floppy disk and Blu-ray disc where disks usually reproduce data magnetically, while discs reproduce data optically with lasers. Combinations of the above are also included within the scope of computer-readable media.
As used herein, including in the claims, “or” as used in a list of items (e.g., a list of items prefaced by a phrase such as “at least one of” or “one or more of” ) indicates an inclusive list such that, for example, a list of at least one of A, B, or C means A or B or C or AB or AC or BC or ABC (i.e., A and B and C) . Also, as used herein, the phrase “based on” shall not be construed as a reference to a closed set of conditions. For example, an example step that is described as “based on condition A” may be based on both a condition A and a condition B without departing from the scope of the present disclosure. In other words, as used herein, the phrase “based on” shall be construed in the same manner as the phrase “based at least in part on. ”
In the appended figures, similar components or features may have the same reference label. Further, various components of the same type may be distinguished by following the reference label by a dash and a second label that distinguishes among the similar components. If just the first reference label is used in the specification, the description is applicable to any one of the similar components having the same first reference label irrespective of the second reference label, or other subsequent reference label.
The description set forth herein, in connection with the appended drawings, describes example configurations and does not represent all the examples that may be implemented or that are within the scope of the claims. The term “example” used herein means “serving as an example, instance, or illustration, ” and not “preferred” or “advantageous over other examples. ” The detailed description includes specific details for the purpose of providing an understanding of the described techniques. These techniques, however, may be practiced without these specific details. In some instances, known structures and devices are shown in block diagram form in order to avoid obscuring the concepts of the described examples.
The description herein is provided to enable a person having ordinary skill in the art to make or use the disclosure. Various modifications to the disclosure will be apparent to a person having ordinary skill in the art, and the generic principles defined herein may be applied to other variations without departing from the scope of the disclosure. Thus, the disclosure is not limited to the examples and designs described herein, but is to be accorded the broadest scope consistent with the principles and novel features disclosed herein.

Claims (160)

  1. A method for wireless communications at a first wireless device, comprising:
    receiving, from a second wireless device, a reference signal via a first set of time-frequency resources of a channel configured for the first wireless device;
    receiving a signal transfer configuration indicating a second set of time-frequency resources of the channel for signal transmission by the first wireless device;
    determining a duplex mode for channel state information of the reference signal based at least in part on an overlap between the second set of time-frequency resources and the first set of time-frequency resources; and
    transmitting, to the second wireless device, a report comprising the channel state information of the reference signal based at least in part on the duplex mode.
  2. The method of claim 1, wherein determining the duplex mode comprises:
    determining the duplex mode to be a full duplex mode based at least in part on transmission of a signal via a portion of the second set of time-frequency resources and the portion of the second set of time-frequency resources overlapping with at least a portion of the first set of time-frequency resources.
  3. The method of claim 1, wherein determining the duplex mode comprises:
    determining the duplex mode to be a non-full duplex mode based at least in part on transmission of a signal via a portion of the second set of time-frequency resources and the portion of the second set of time-frequency resources excluding the first set of time-frequency resources.
  4. The method of claim 1, wherein determining the duplex mode comprises:
    determining the duplex mode to be a non-full duplex mode based at least in part on an absence of transmission of a signal via a portion of the second set of time- frequency resources and the portion of the second set of time-frequency resources overlapping with the first set of time-frequency resources.
  5. The method of claim 1, further comprising:
    encoding the report based at least in part on the determined duplex mode.
  6. The method of claim 1, further comprising:
    receiving, from the second wireless device, a configuration for indicating the duplex mode based at least in part on a channel quality of the channel, wherein the configuration comprises one of an implicit indication or an explicit indication.
  7. The method of claim 1, further comprising:
    transmitting an indication of the duplex mode in the report.
  8. The method of claim 7, wherein the indication comprises a 1 bit indication.
  9. The method of claim 1, further comprising:
    determining the duplex mode to be a full duplex mode based at least in part on at least a portion of the first set of time-frequency resources overlapping the second set of time-frequency resources;
    transmitting a signal via the second set of time-frequency resources;
    measuring interference on the reference signal based at least in part on the transmitted signal; and
    transmitting the channel state information of the reference signal based at least in part on the measured interference in the report.
  10. The method of claim 1, further comprising:
    receiving, from the second wireless device, a semi-persistent grant for uplink shared data, wherein the semi-persistent grant indicates a set of periodic time occasions for uplink shared transmissions;
    determining to perform an uplink shared data transmission using at least one of the set of periodic time occasions; and
    determining the duplex mode based at least in part on whether the at least one of the set of periodic time occasions at least partially overlaps the first set of time-frequency resources.
  11. The method of claim 10, further comprising:
    determining the duplex mode to be a full duplex mode based at least in part on the at least one of the set of periodic time occasions at least partially overlapping the first set of time-frequency resources.
  12. The method of claim 10, further comprising:
    determining the duplex mode to be a non-full duplex mode based at least in part on the at least one of the set of periodic time occasions excluding the first set of time-frequency resources.
  13. The method of claim 10, further comprising:
    receiving the semi-persistent grant via radio resource control (RRC) signaling.
  14. The method of claim 1, further comprising:
    receiving, from the second wireless device, a configuration for scheduling requests, wherein the configuration indicates a set of periodic resources for scheduling requests;
    determining to transmit a scheduling request using a subset of the periodic resources; and
    determining the duplex mode based at least in part on whether the subset of the periodic resources at least partially overlaps the first set of time-frequency resources.
  15. The method of claim 14, further comprising:
    determining the duplex mode to be a full duplex mode based at least in part on the subset of the periodic resources at least partially overlapping the first set of time-frequency resources.
  16. The method of claim 14, further comprising:
    determining the duplex mode to be a non-full duplex mode based at least in part on the subset of the periodic resources excluding the first set of time-frequency resources.
  17. The method of claim 14, further comprising:
    receiving the configuration for scheduling requests via radio resource control (RRC) signaling.
  18. The method of claim 1, further comprising:
    receiving, from the second wireless device, a dynamic grant for uplink messages, wherein the dynamic grant indicates a set of uplink resources for uplink messages;
    determining to transmit an uplink message using at least a subset of the uplink resources; and
    determining the duplex mode based at least in part on whether the subset of the uplink resources at least partially overlaps the first set of time-frequency resources.
  19. The method of claim 18, further comprising:
    determining the duplex mode to be a full duplex mode based at least in part on the subset of the uplink resources at least partially overlapping the first set of time-frequency resources.
  20. The method of claim 18, further comprising:
    determining the duplex mode to be a non-full duplex mode based at least in part on the subset of the uplink resources excluding the first set of time-frequency resources.
  21. The method of claim 18, wherein the uplink message comprises an uplink shared data channel transmission, an uplink control channel transmission, a random access channel transmission, a sounding reference signal, or any combination thereof.
  22. The method of claim 18, further comprising:
    receiving the dynamic grant via downlink control information (DCI) .
  23. The method of claim 1, wherein the first wireless device comprises a user equipment (UE) and the second wireless device comprises a base station.
  24. The method of claim 1, wherein the first wireless device comprises a child integrated access and backhaul (IAB) node and the second wireless device comprises a parent IAB node.
  25. A method for wireless communications at a first wireless device, comprising:
    transmitting, to a second wireless device, a reference signal via a first set of time-frequency resources of a channel configured for the second wireless device;
    transmitting a signal transfer configuration indicating a second set of time-frequency resources of the channel for signal transmission by the second wireless device;
    receiving, from the second wireless device, a report comprising channel state information of the reference signal;
    determining a duplex mode for the channel state information of the reference signal based at least in part on the report; and
    decoding the report based at least in part on the duplex mode.
  26. The method of claim 25, further comprising:
    receiving, from the second wireless device, a signal via a portion of the second set of time-frequency resources; and
    determining the duplex mode based at least in part on an overlap between the first set of time-frequency resources and the portion of the second set of time-frequency resources.
  27. The method of claim 26, further comprising:
    determining the duplex mode to be a full duplex mode based at least in part on at least a portion of the first set of time-frequency resources overlapping the portion of the second set of time-frequency resources.
  28. The method of claim 26, further comprising:
    determining the duplex mode to be a non-full duplex mode based at least in part on the first set of time-frequency resources excluding the portion of second set of time-frequency resources.
  29. The method of claim 25, further comprising:
    determining the duplex mode based at least in part on an indication of the duplex mode in the report.
  30. The method of claim 29, wherein the indication comprises a 1 bit indication.
  31. The method of claim 25, further comprising:
    determining a channel quality of the channel configured for the second wireless device; and
    transmitting, to the second wireless device, a configuration for indicating the duplex mode based at least in part on the channel quality, wherein the configuration comprises one of an implicit indication or an explicit indication.
  32. The method of claim 25, further comprising:
    transmitting, to the second wireless device, a semi-persistent grant for uplink shared data, wherein the semi-persistent grant indicates a set of periodic time occasions for uplink shared transmissions; and
    receiving, from the second wireless device, an uplink shared data message via at least one occasion of the set of periodic time occasions based at least in part on the semi-persistent grant, wherein the duplex mode is based at least in part on receiving the uplink shared data message.
  33. The method of claim 32, further comprising:
    transmitting the semi-persistent grant via radio resource control (RRC) signaling.
  34. The method of claim 25, further comprising:
    transmitting, to the second wireless device, a configuration for scheduling requests, wherein the configuration indicates a set of periodic resources for scheduling requests; and
    receiving, from the second wireless device, a scheduling request via a subset of the periodic resources based at least in part on the configuration, wherein the duplex mode is based at least in part on receiving the scheduling request.
  35. The method of claim 34, further comprising:
    transmitting the configuration for scheduling requests via radio resource control (RRC) signaling.
  36. The method of claim 25, further comprising:
    transmitting, to the second wireless device, a dynamic grant for uplink messages, wherein the dynamic grant indicates a set of uplink resources for uplink messages; and
    receiving, from the second wireless device, an uplink message via a subset of the uplink resources based at least in part on the dynamic grant, wherein the duplex mode is based at least in part on receiving the uplink message.
  37. The method of claim 36, wherein the uplink message comprises an uplink shared data channel transmission, an uplink control channel transmission, a random access channel transmission, a sounding reference signal, or any combination thereof.
  38. The method of claim 36, further comprising:
    transmitting the dynamic grant via downlink control information (DCI) .
  39. The method of claim 25, wherein the first wireless device comprises a base station and the second wireless device comprises a user equipment (UE) .
  40. The method of claim 25, wherein the first wireless device comprises a parent integrated access and backhaul (IAB) node and the second wireless device comprises a child IAB node.
  41. An apparatus for wireless communications at a first wireless device, comprising:
    a processor,
    memory coupled with the processor; and
    instructions stored in the memory, wherein the instructions are executable by the processor to cause the apparatus to:
    receive, from a second wireless device, a reference signal via a first set of time-frequency resources of a channel configured for the first wireless device;
    receive a signal transfer configuration indicating a second set of time-frequency resources of the channel for signal transmission by the first wireless device;
    determine a duplex mode for channel state information of the reference signal based at least in part on an overlap between the second set of time-frequency resources and the first set of time-frequency resources; and
    transmit, to the second wireless device, a report comprising the channel state information of the reference signal based at least in part on the duplex mode.
  42. The apparatus of claim 41, wherein the instructions executable by the processor to determine the duplex mode are executable by the processor to:
    determine the duplex mode to be a full duplex mode based at least in part on transmission of a signal via a portion of the second set of time-frequency resources and the portion of the second set of time-frequency resources overlapping with at least a portion of the first set of time-frequency resources.
  43. The apparatus of claim 41, wherein the instructions executable by the processor to determine the duplex mode are executable by the processor to:
    determine the duplex mode to be a non-full duplex mode based at least in part on transmission of a signal via a portion of the second set of time-frequency resources and the portion of the second set of time-frequency resources excluding the first set of time-frequency resources.
  44. The apparatus of claim 41, wherein the instructions executable by the processor to determine the duplex mode are executable by the processor to:
    determine the duplex mode to be a non-full duplex mode based at least in part on an absence of transmission of a signal via a portion of the second set of time-frequency resources and the portion of the second set of time-frequency resources overlapping with the first set of time-frequency resources.
  45. The apparatus of claim 41, wherein the instructions executable by the processor are further executable by the processor to:
    encode the report based at least in part on the determined duplex mode.
  46. The apparatus of claim 41, wherein the instructions are further executable by the processor to:
    receive, from the second wireless device, a configuration for indicating the duplex mode based at least in part on a channel quality of the channel, wherein the configuration comprises one of an implicit indication or an explicit indication.
  47. The apparatus of claim 41, wherein the instructions are further executable by the processor to:
    transmit an indication of the duplex mode in the report.
  48. The apparatus of claim 47, wherein the indication comprises a 1 bit indication.
  49. The apparatus of claim 41, wherein the instructions are further executable by the processor to:
    determine the duplex mode to be a full duplex mode based at least in part on at least a portion of the first set of time-frequency resources overlapping the second set of time-frequency resources;
    transmit a signal via the second set of time-frequency resources;
    measure interference on the reference signal based at least in part on the transmitted signal; and
    transmit the channel state information of the reference signal based at least in part on the measured interference in the report.
  50. The apparatus of claim 41, wherein the instructions are further executable by the processor to:
    receive, from the second wireless device, a semi-persistent grant for uplink shared data, wherein the semi-persistent grant indicates a set of periodic time occasions for uplink shared transmissions;
    determine to perform an uplink shared data transmission using at least one of the set of periodic time occasions; and
    determine the duplex mode based at least in part on whether the at least one of the set of periodic time occasions at least partially overlaps the first set of time-frequency resources.
  51. The apparatus of claim 50, wherein the instructions are further executable by the processor to:
    determine the duplex mode to be a full duplex mode based at least in part on the at least one of the set of periodic time occasions at least partially overlapping the first set of time-frequency resources.
  52. The apparatus of claim 50, wherein the instructions are further executable by the processor to:
    determine the duplex mode to be a non-full duplex mode based at least in part on the at least one of the set of periodic time occasions excluding the first set of time-frequency resources.
  53. The apparatus of claim 50, wherein the instructions are further executable by the processor to:
    receive the semi-persistent grant via radio resource control (RRC) signaling.
  54. The apparatus of claim 41, wherein the instructions are further executable by the processor to:
    receive, from the second wireless device, a configuration for scheduling requests, wherein the configuration indicates a set of periodic resources for scheduling requests;
    determine to transmit a scheduling request using a subset of the periodic resources; and
    determine the duplex mode based at least in part on whether the subset of the periodic resources at least partially overlaps the first set of time-frequency resources.
  55. The apparatus of claim 54, wherein the instructions are further executable by the processor to:
    determine the duplex mode to be a full duplex mode based at least in part on the subset of the periodic resources at least partially overlapping the first set of time-frequency resources.
  56. The apparatus of claim 54, wherein the instructions are further executable by the processor to:
    determine the duplex mode to be a non-full duplex mode based at least in part on the subset of the periodic resources excluding the first set of time-frequency resources.
  57. The apparatus of claim 54, wherein the instructions are further executable by the processor to:
    receive the configuration for scheduling requests via radio resource control (RRC) signaling.
  58. The apparatus of claim 41, wherein the instructions are further executable by the processor to:
    receive, from the second wireless device, a dynamic grant for uplink messages, wherein the dynamic grant indicates a set of uplink resources for uplink messages;
    determine to transmit an uplink message using at least a subset of the uplink resources; and
    determine the duplex mode based at least in part on whether the subset of the uplink resources at least partially overlaps the first set of time-frequency resources.
  59. The apparatus of claim 58, wherein the instructions are further executable by the processor to:
    determine the duplex mode to be a full duplex mode based at least in part on the subset of the uplink resources at least partially overlapping the first set of time-frequency resources.
  60. The apparatus of claim 58, wherein the instructions are further executable by the processor to:
    determine the duplex mode to be a non-full duplex mode based at least in part on the subset of the uplink resources excluding the first set of time-frequency resources.
  61. The apparatus of claim 58, wherein the uplink message comprises an uplink shared data channel transmission, an uplink control channel transmission, a random access channel transmission, a sounding reference signal, or any combination thereof.
  62. The apparatus of claim 58, wherein the instructions are further executable by the processor to:
    receive the dynamic grant via downlink control information (DCI) .
  63. The apparatus of claim 41, wherein the first wireless device comprises a user equipment (UE) and the second wireless device comprises a base station.
  64. The apparatus of claim 41, wherein the first wireless device comprises a child integrated access and backhaul (IAB) node and the second wireless device comprises a parent IAB node.
  65. An apparatus for wireless communications at a first wireless device, comprising:
    a processor,
    memory coupled with the processor; and
    instructions stored in the memory wherein the instructions are executable by the processor to cause the apparatus to:
    transmit, to a second wireless device, a reference signal via a first set of time-frequency resources of a channel configured for the second wireless device;
    transmit a signal transfer configuration indicating a second set of time-frequency resources of the channel for signal transmission by the second wireless device;
    receive, from the second wireless device, a report comprising channel state information of the reference signal;
    determine a duplex mode for the channel state information of the reference signal based at least in part on the report; and
    decode the report based at least in part on the duplex mode.
  66. The apparatus of claim 65, wherein the instructions are further executable by the processor to:
    receive, from the second wireless device, a signal via a portion of the second set of time-frequency resources; and
    determine the duplex mode based at least in part on an overlap between the first set of time-frequency resources and the portion of the second set of time-frequency resources.
  67. The apparatus of claim 66, wherein the instructions are further executable by the processor to:
    determine the duplex mode to be a full duplex mode based at least in part on at least a portion of the first set of time-frequency resources overlapping the portion of the second set of time-frequency resources.
  68. The apparatus of claim 66, wherein the instructions are further executable by the processor to:
    determine the duplex mode to be a non-full duplex mode based at least in part on the first set of time-frequency resources excluding the portion of second set of time-frequency resources.
  69. The apparatus of claim 65, wherein the instructions are further executable by the processor to:
    determine the duplex mode based at least in part on an indication of the duplex mode in the report.
  70. The apparatus of claim 69, wherein the indication comprises a 1 bit indication.
  71. The apparatus of claim 65, wherein the instructions are further executable by the processor to:
    determine a channel quality of the channel configured for the second wireless device; and
    transmit, to the second wireless device, a configuration for indicating the duplex mode based at least in part on the channel quality, wherein the configuration comprises one of an implicit indication or an explicit indication.
  72. The apparatus of claim 65, wherein the instructions are further executable by the processor:
    transmit, to the second wireless device, a semi-persistent grant for uplink shared data, wherein the semi-persistent grant indicates a set of periodic time occasions for uplink shared transmissions; and
    receive, from the second wireless device, an uplink shared data message via at least one occasion of the set of periodic time occasions based at least in part on the semi-persistent grant, wherein the duplex mode is based at least in part on receiving the uplink shared data message.
  73. The apparatus of claim 72, wherein the instructions are further executable by the processor to:
    transmit the semi-persistent grant via radio resource control (RRC) signaling.
  74. The apparatus of claim 65, wherein the instructions are further executable by the processor to:
    transmit, to the second wireless device, a configuration for scheduling requests, wherein the configuration indicates a set of periodic resources for scheduling requests; and
    receive, from the second wireless device, a scheduling request via a subset of the periodic resources based at least in part on the configuration, wherein the duplex mode is based at least in part on receiving the scheduling request.
  75. The apparatus of claim 74, wherein the instructions are further executable by the processor to:
    transmit the configuration for scheduling requests via radio resource control (RRC) signaling.
  76. The apparatus of claim 65, wherein the instructions are further executable by the processor to:
    transmit, to the second wireless device, a dynamic grant for uplink messages, wherein the dynamic grant indicates a set of uplink resources for uplink messages; and
    receive, from the second wireless device, an uplink message via a subset of the uplink resources based at least in part on the dynamic grant, wherein the duplex mode is based at least in part on receiving the uplink message.
  77. The apparatus of claim 76, wherein the uplink message comprises an uplink shared data channel transmission, an uplink control channel transmission, a random access channel transmission, a sounding reference signal, or any combination thereof.
  78. The apparatus of claim 76, wherein the instructions are further executable by the processor to:
    transmit the dynamic grant via downlink control information (DCI) .
  79. The apparatus of claim 65, wherein the first wireless device comprises a base station and the second wireless device comprises a user equipment (UE) .
  80. The apparatus of claim 65, wherein the first wireless device comprises a parent integrated access and backhaul (IAB) node and the second wireless device comprises a child IAB node.
  81. An apparatus for wireless communications at a first wireless device, comprising:
    means for receiving, from a second wireless device, a reference signal via a first set of time-frequency resources of a channel configured for the first wireless device;
    means for receiving a signal transfer configuration indicating a second set of time-frequency resources of the channel for signal transmission by the first wireless device;
    means for determining a duplex mode for channel state information of the reference signal based at least in part on an overlap between the second set of time-frequency resources and the first set of time-frequency resources; and
    means for transmitting, to the second wireless device, a report comprising the channel state information of the reference signal based at least in part on the duplex mode.
  82. The apparatus of claim 81, wherein the means for determining the duplex mode comprises:
    means for determining the duplex mode to be a full duplex mode based at least in part on transmission of a signal via a portion of the second set of time-frequency resources and the portion of the second set of time-frequency resources overlapping with at least a portion of the first set of time-frequency resources.
  83. The apparatus of claim 81, wherein the means for determining the duplex mode comprises:
    means for determining the duplex mode to be a non-full duplex mode based at least in part on transmission of a signal via a portion of the second set of time-frequency resources and the portion of the second set of time-frequency resources excluding the first set of time-frequency resources.
  84. The apparatus of claim 81, wherein the means for determining the duplex mode comprises:
    means for determining the duplex mode to be a non-full duplex mode based at least in part on an absence of transmission of a signal via a portion of the second set of time- frequency resources and the portion of the second set of time-frequency resources overlapping with the first set of time-frequency resources.
  85. The apparatus of claim 81, further comprising:
    means for encoding the report based at least in part on the determined duplex mode.
  86. The apparatus of claim 81, further comprising:
    means for receiving, from the second wireless device, a configuration for indicating the duplex mode based at least in part on a channel quality of the channel, wherein the configuration comprises one of an implicit indication or an explicit indication.
  87. The apparatus of claim 81, further comprising:
    means for transmitting an indication of the duplex mode in the report.
  88. The apparatus of claim 127, wherein the indication comprises a 1 bit indication.
  89. The apparatus of claim 81, further comprising:
    means for determining the duplex mode to be a full duplex mode based at least in part on at least a portion of the first set of time-frequency resources overlapping the second set of time-frequency resources;
    means for transmitting a signal via the second set of time-frequency resources;
    means for measuring interference on the reference signal based at least in part on the transmitted signal; and
    means for transmitting the channel state information of the reference signal based at least in part on the measured interference in the report.
  90. The apparatus of claim 81, further comprising:
    means for receiving, from the second wireless device, a semi-persistent grant for uplink shared data, wherein the semi-persistent grant indicates a set of periodic time occasions for uplink shared transmissions;
    means for determining to perform an uplink shared data transmission using at least one of the set of periodic time occasions; and
    means for determining the duplex mode based at least in part on whether the at least one of the set of periodic time occasions at least partially overlaps the first set of time-frequency resources.
  91. The apparatus of claim 130, further comprising:
    means for determining the duplex mode to be a full duplex mode based at least in part on the at least one of the set of periodic time occasions at least partially overlapping the first set of time-frequency resources.
  92. The apparatus of claim 130, further comprising:
    means for determining the duplex mode to be a non-full duplex mode based at least in part on the at least one of the set of periodic time occasions excluding the first set of time-frequency resources.
  93. The apparatus of claim 130, further comprising:
    means for receiving the semi-persistent grant via radio resource control (RRC) signaling.
  94. The apparatus of claim 81, further comprising:
    means for receiving, from the second wireless device, a configuration for scheduling requests, wherein the configuration indicates a set of periodic resources for scheduling requests;
    means for determining to transmit a scheduling request using a subset of the periodic resources; and
    means for determining the duplex mode based at least in part on whether the subset of the periodic resources at least partially overlaps the first set of time-frequency resources.
  95. The apparatus of claim 134, further comprising:
    means for determining the duplex mode to be a full duplex mode based at least in part on the subset of the periodic resources at least partially overlapping the first set of time-frequency resources.
  96. The apparatus of claim 134, further comprising:
    means for determining the duplex mode to be a non-full duplex mode based at least in part on the subset of the periodic resources excluding the first set of time-frequency resources.
  97. The apparatus of claim 134, further comprising:
    means for receiving the configuration for scheduling requests via radio resource control (RRC) signaling.
  98. The apparatus of claim 81, further comprising:
    means for receiving, from the second wireless device, a dynamic grant for uplink messages, wherein the dynamic grant indicates a set of uplink resources for uplink messages;
    means for determining to transmit an uplink message using at least a subset of the uplink resources; and
    means for determining the duplex mode based at least in part on whether the subset of the uplink resources at least partially overlaps the first set of time-frequency resources.
  99. The apparatus of claim 138, further comprising:
    means for determining the duplex mode to be a full duplex mode based at least in part on the subset of the uplink resources at least partially overlapping the first set of time-frequency resources.
  100. The apparatus of claim 138, further comprising:
    means for determining the duplex mode to be a non-full duplex mode based at least in part on the subset of the uplink resources excluding the first set of time-frequency resources.
  101. The apparatus of claim 138, wherein the uplink message comprises an uplink shared data channel transmission, an uplink control channel transmission, a random access channel transmission, a sounding reference signal, or any combination thereof.
  102. The apparatus of claim 138, further comprising:
    means for receiving the dynamic grant via downlink control information (DCI) .
  103. The apparatus of claim 81, wherein the first wireless device comprises a user equipment (UE) and the second wireless device comprises a base station.
  104. The apparatus of claim 81, wherein the first wireless device comprises a child integrated access and backhaul (IAB) node and the second wireless device comprises a parent IAB node.
  105. An apparatus for wireless communications at a first wireless device, comprising:
    means for transmitting, to a second wireless device, a reference signal via a first set of time-frequency resources of a channel configured for the second wireless device;
    means for transmitting a signal transfer configuration indicating a second set of time-frequency resources of the channel for signal transmission by the second wireless device;
    means for receiving, from the second wireless device, a report comprising channel state information of the reference signal;
    means for determining a duplex mode for the channel state information of the reference signal based at least in part on the report; and
    means for decoding the report based at least in part on the duplex mode.
  106. The apparatus of claim 145, further comprising:
    means for receiving, from the second wireless device, a signal via a portion of the second set of time-frequency resources; and
    means for determining the duplex mode based at least in part on an overlap between the first set of time-frequency resources and the portion of the second set of time-frequency resources.
  107. The apparatus of claim 146, further comprising:
    means for determining the duplex mode to be a full duplex mode based at least in part on at least a portion of the first set of time-frequency resources overlapping the portion of the second set of time-frequency resources.
  108. The apparatus of claim 146, further comprising:
    means for determining the duplex mode to be a non-full duplex mode based at least in part on the first set of time-frequency resources excluding the portion of second set of time-frequency resources.
  109. The apparatus of claim 145, further comprising:
    means for determining the duplex mode based at least in part on an indication of the duplex mode in the report.
  110. The apparatus of claim 149, wherein the indication comprises a 1 bit indication.
  111. The apparatus of claim 145, further comprising:
    means for determining a channel quality of the channel configured for the second wireless device; and
    means for transmitting, to the second wireless device, a configuration for indicating the duplex mode based at least in part on the channel quality, wherein the configuration comprises one of an implicit indication or an explicit indication.
  112. The apparatus of claim 145, further comprising:
    means for transmitting, to the second wireless device, a semi-persistent grant for uplink shared data, wherein the semi-persistent grant indicates a set of periodic time occasions for uplink shared transmissions; and
    means for receiving, from the second wireless device, an uplink shared data message via at least one occasion of the set of periodic time occasions based at least in part on the semi-persistent grant, wherein the duplex mode is based at least in part on receiving the uplink shared data message.
  113. The apparatus of claim 152, further comprising:
    means for transmitting the semi-persistent grant via radio resource control (RRC) signaling.
  114. The apparatus of claim 145, further comprising:
    means for transmitting, to the second wireless device, a configuration for scheduling requests, wherein the configuration indicates a set of periodic resources for scheduling requests; and
    means for receiving, from the second wireless device, a scheduling request via a subset of the periodic resources based at least in part on the configuration, wherein the duplex mode is based at least in part on receiving the scheduling request.
  115. The apparatus of claim 154, further comprising:
    means for transmitting the configuration for scheduling requests via radio resource control (RRC) signaling.
  116. The apparatus of claim 145, further comprising:
    means for transmitting, to the second wireless device, a dynamic grant for uplink messages, wherein the dynamic grant indicates a set of uplink resources for uplink messages; and
    means for receiving, from the second wireless device, an uplink message via a subset of the uplink resources based at least in part on the dynamic grant, wherein the duplex mode is based at least in part on receiving the uplink message.
  117. The apparatus of claim 156, wherein the uplink message comprises an uplink shared data channel transmission, an uplink control channel transmission, a random access channel transmission, a sounding reference signal, or any combination thereof.
  118. The apparatus of claim 156, further comprising:
    means for transmitting the dynamic grant via downlink control information (DCI) .
  119. The apparatus of claim 145, wherein the first wireless device comprises a base station and the second wireless device comprises a user equipment (UE) .
  120. The apparatus of claim 145, wherein the first wireless device comprises a parent integrated access and backhaul (IAB) node and the second wireless device comprises a child IAB node.
  121. A non-transitory computer-readable medium storing code for wireless communications at a first wireless device, the code comprising instructions executable by a processor to:
    receive, from a second wireless device, a reference signal via a first set of time-frequency resources of a channel configured for the first wireless device;
    receive a signal transfer configuration indicating a second set of time-frequency resources of the channel for signal transmission by the first wireless device;
    determine a duplex mode for channel state information of the reference signal based at least in part on an overlap between the second set of time-frequency resources and the first set of time-frequency resources; and
    transmit, to the second wireless device, a report comprising the channel state information of the reference signal based at least in part on the duplex mode.
  122. The non-transitory computer-readable medium of claim 121, wherein the instructions to determine the duplex mode are executable to:
    determine the duplex mode to be a full duplex mode based at least in part on transmission of a signal via a portion of the second set of time-frequency resources and the portion of the second set of time-frequency resources overlapping with at least a portion of the first set of time-frequency resources.
  123. The non-transitory computer-readable medium of claim 121, wherein the instructions to determine the duplex mode are executable to:
    determine the duplex mode to be a non-full duplex mode based at least in part on transmission of a signal via a portion of the second set of time-frequency resources and the portion of the second set of time-frequency resources excluding the first set of time-frequency resources.
  124. The non-transitory computer-readable medium of claim 121, wherein the instructions to determine the duplex mode are executable to:
    determine the duplex mode to be a non-full duplex mode based at least in part on an absence of transmission of a signal via a portion of the second set of time-frequency resources and the portion of the second set of time-frequency resources overlapping with the first set of time-frequency resources.
  125. The non-transitory computer-readable medium of claim 121, wherein the instructions are further executable to:
    encode the report based at least in part on the determined duplex mode.
  126. The non-transitory computer-readable medium of claim 121, wherein the instructions are further executable to:
    receive, from the second wireless device, a configuration for indicating the duplex mode based at least in part on a channel quality of the channel, wherein the configuration comprises one of an implicit indication or an explicit indication.
  127. The non-transitory computer-readable medium of claim 121, wherein the instructions are further executable to:
    transmit an indication of the duplex mode in the report.
  128. The non-transitory computer-readable medium of claim 127, wherein the indication comprises a 1 bit indication.
  129. The non-transitory computer-readable medium of claim 121, wherein the instructions are further executable to:
    determine the duplex mode to be a full duplex mode based at least in part on at least a portion of the first set of time-frequency resources overlapping the second set of time-frequency resources;
    transmit a signal via the second set of time-frequency resources;
    measure interference on the reference signal based at least in part on the transmitted signal; and
    transmit the channel state information of the reference signal based at least in part on the measured interference in the report.
  130. The non-transitory computer-readable medium of claim 121, wherein the instructions are further executable to:
    receive, from the second wireless device, a semi-persistent grant for uplink shared data, wherein the semi-persistent grant indicates a set of periodic time occasions for uplink shared transmissions;
    determine to perform an uplink shared data transmission using at least one of the set of periodic time occasions; and
    determine the duplex mode based at least in part on whether the at least one of the set of periodic time occasions at least partially overlaps the first set of time-frequency resources.
  131. The non-transitory computer-readable medium of claim 130, wherein the instructions are further executable to:
    determine the duplex mode to be a full duplex mode based at least in part on the at least one of the set of periodic time occasions at least partially overlapping the first set of time-frequency resources.
  132. The non-transitory computer-readable medium of claim 130, wherein the instructions are further executable to:
    determine the duplex mode to be a non-full duplex mode based at least in part on the at least one of the set of periodic time occasions excluding the first set of time-frequency resources.
  133. The non-transitory computer-readable medium of claim 130, wherein the instructions are further executable to:
    receive the semi-persistent grant via radio resource control (RRC) signaling.
  134. The non-transitory computer-readable medium of claim 121, wherein the instructions are further executable to:
    receive, from the second wireless device, a configuration for scheduling requests, wherein the configuration indicates a set of periodic resources for scheduling requests;
    determine to transmit a scheduling request using a subset of the periodic resources; and
    determine the duplex mode based at least in part on whether the subset of the periodic resources at least partially overlaps the first set of time-frequency resources.
  135. The non-transitory computer-readable medium of claim 134, wherein the instructions are further executable to:
    determine the duplex mode to be a full duplex mode based at least in part on the subset of the periodic resources at least partially overlapping the first set of time-frequency resources.
  136. The non-transitory computer-readable medium of claim 134, wherein the instructions are further executable to:
    determine the duplex mode to be a non-full duplex mode based at least in part on the subset of the periodic resources excluding the first set of time-frequency resources.
  137. The non-transitory computer-readable medium of claim 134, wherein the instructions are further executable to:
    receive the configuration for scheduling requests via radio resource control (RRC) signaling.
  138. The non-transitory computer-readable medium of claim 121, wherein the instructions are further executable to:
    receive, from the second wireless device, a dynamic grant for uplink messages, wherein the dynamic grant indicates a set of uplink resources for uplink messages;
    determine to transmit an uplink message using at least a subset of the uplink resources; and
    determine the duplex mode based at least in part on whether the subset of the uplink resources at least partially overlaps the first set of time-frequency resources.
  139. The non-transitory computer-readable medium of claim 138, wherein the instructions are further executable to:
    determine the duplex mode to be a full duplex mode based at least in part on the subset of the uplink resources at least partially overlapping the first set of time-frequency resources.
  140. The non-transitory computer-readable medium of claim 138, wherein the instructions are further executable to:
    determine the duplex mode to be a non-full duplex mode based at least in part on the subset of the uplink resources excluding the first set of time-frequency resources.
  141. The non-transitory computer-readable medium of claim 138, wherein the uplink message comprises an uplink shared data channel transmission, an uplink control channel transmission, a random access channel transmission, a sounding reference signal, or any combination thereof.
  142. The non-transitory computer-readable medium of claim 138, wherein the instructions are further executable to:
    receive the dynamic grant via downlink control information (DCI) .
  143. The non-transitory computer-readable medium of claim 121, wherein the first wireless device comprises a user equipment (UE) and the second wireless device comprises a base station.
  144. The non-transitory computer-readable medium of claim 121, wherein the first wireless device comprises a child integrated access and backhaul (IAB) node and the second wireless device comprises a parent IAB node.
  145. A non-transitory computer-readable medium storing code for wireless communications at a first wireless device, the code comprising instructions executable by a processor to:
    transmit, to a second wireless device, a reference signal via a first set of time-frequency resources of a channel configured for the second wireless device;
    transmit a signal transfer configuration indicating a second set of time-frequency resources of the channel for signal transmission by the second wireless device;
    receive, from the second wireless device, a report comprising channel state information of the reference signal;
    determine a duplex mode for the channel state information of the reference signal based at least in part on the report; and
    decode the report based at least in part on the duplex mode.
  146. The non-transitory computer-readable medium of claim 145, wherein the instructions are further executable to:
    receive, from the second wireless device, a signal via a portion of the second set of time-frequency resources; and
    determine the duplex mode based at least in part on an overlap between the first set of time-frequency resources and the portion of the second set of time-frequency resources.
  147. The non-transitory computer-readable medium of claim 146, wherein the instructions are further executable to:
    determine the duplex mode to be a full duplex mode based at least in part on at least a portion of the first set of time-frequency resources overlapping the portion of the second set of time-frequency resources.
  148. The non-transitory computer-readable medium of claim 146, wherein the instructions are further executable to:
    determine the duplex mode to be a non-full duplex mode based at least in part on the first set of time-frequency resources excluding the portion of second set of time-frequency resources.
  149. The non-transitory computer-readable medium of claim 145, wherein the instructions are further executable to:
    determine the duplex mode based at least in part on an indication of the duplex mode in the report.
  150. The non-transitory computer-readable medium of claim 149, wherein the indication comprises a 1 bit indication.
  151. The non-transitory computer-readable medium of claim 145, wherein the instructions are further executable to:
    determine a channel quality of the channel configured for the second wireless device; and
    transmit, to the second wireless device, a configuration for indicating the duplex mode based at least in part on the channel quality, wherein the configuration comprises one of an implicit indication or an explicit indication.
  152. The non-transitory computer-readable medium of claim 145, wherein the instructions are further executable to:
    transmit, to the second wireless device, a semi-persistent grant for uplink shared data, wherein the semi-persistent grant indicates a set of periodic time occasions for uplink shared transmissions; and
    receive, from the second wireless device, an uplink shared data message via at least one occasion of the set of periodic time occasions based at least in part on the semi-persistent grant, wherein the duplex mode is based at least in part on receiving the uplink shared data message.
  153. The non-transitory computer-readable medium of claim 152, wherein the instructions are further executable to:
    transmit the semi-persistent grant via radio resource control (RRC) signaling.
  154. The non-transitory computer-readable medium of claim 145, wherein the instructions are further executable to:
    transmit, to the second wireless device, a configuration for scheduling requests, wherein the configuration indicates a set of periodic resources for scheduling requests; and
    receive, from the second wireless device, a scheduling request via a subset of the periodic resources based at least in part on the configuration, wherein the duplex mode is based at least in part on receiving the scheduling request.
  155. The non-transitory computer-readable medium of claim 154, wherein the instructions are further executable to:
    transmit the configuration for scheduling requests via radio resource control (RRC) signaling.
  156. The non-transitory computer-readable medium of claim 145, wherein the instructions are further executable to:
    transmit, to the second wireless device, a dynamic grant for uplink messages, wherein the dynamic grant indicates a set of uplink resources for uplink messages; and
    receive, from the second wireless device, an uplink message via a subset of the uplink resources based at least in part on the dynamic grant, wherein the duplex mode is based at least in part on receiving the uplink message.
  157. The non-transitory computer-readable medium of claim 156, wherein the uplink message comprises an uplink shared data channel transmission, an uplink control channel transmission, a random access channel transmission, a sounding reference signal, or any combination thereof.
  158. The non-transitory computer-readable medium of claim 156, wherein the instructions are further executable to:
    transmit the dynamic grant via downlink control information (DCI) .
  159. The non-transitory computer-readable medium of claim 145, wherein the first wireless device comprises a base station and the second wireless device comprises a user equipment (UE) .
  160. The non-transitory computer-readable medium of claim 145, wherein the first wireless device comprises a parent integrated access and backhaul (IAB) node and the second wireless device comprises a child IAB node.
PCT/CN2020/082699 2020-04-01 2020-04-01 Channel state reporting types WO2021196068A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/082699 WO2021196068A1 (en) 2020-04-01 2020-04-01 Channel state reporting types

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/082699 WO2021196068A1 (en) 2020-04-01 2020-04-01 Channel state reporting types

Publications (1)

Publication Number Publication Date
WO2021196068A1 true WO2021196068A1 (en) 2021-10-07

Family

ID=77927185

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/082699 WO2021196068A1 (en) 2020-04-01 2020-04-01 Channel state reporting types

Country Status (1)

Country Link
WO (1) WO2021196068A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023245445A1 (en) * 2022-06-21 2023-12-28 Huawei Technologies Co., Ltd. Apparatuses and methods for protecting a reference signal and adjusting timing advance (ta) values in full-duplex transmission

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104584665A (en) * 2013-05-22 2015-04-29 华为技术有限公司 Radio transmission method, network device, and user equipment
CN106559365A (en) * 2015-09-30 2017-04-05 华为技术有限公司 Self-interference removing method and equipment
US20170302337A1 (en) * 2014-12-30 2017-10-19 Huawei Technologies Co., Ltd. Signal transmission method and device
CN107534547A (en) * 2015-07-30 2018-01-02 华为技术有限公司 Multi-user's full duplex in-band communications in wireless network
CN108702765A (en) * 2016-02-25 2018-10-23 瑞典爱立信有限公司 Duplex communication
CN110311875A (en) * 2018-03-20 2019-10-08 华为技术有限公司 A kind of data transmission method and device

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104584665A (en) * 2013-05-22 2015-04-29 华为技术有限公司 Radio transmission method, network device, and user equipment
US20170302337A1 (en) * 2014-12-30 2017-10-19 Huawei Technologies Co., Ltd. Signal transmission method and device
CN107534547A (en) * 2015-07-30 2018-01-02 华为技术有限公司 Multi-user's full duplex in-band communications in wireless network
CN106559365A (en) * 2015-09-30 2017-04-05 华为技术有限公司 Self-interference removing method and equipment
CN108702765A (en) * 2016-02-25 2018-10-23 瑞典爱立信有限公司 Duplex communication
CN110311875A (en) * 2018-03-20 2019-10-08 华为技术有限公司 A kind of data transmission method and device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023245445A1 (en) * 2022-06-21 2023-12-28 Huawei Technologies Co., Ltd. Apparatuses and methods for protecting a reference signal and adjusting timing advance (ta) values in full-duplex transmission

Similar Documents

Publication Publication Date Title
US11153179B2 (en) Neural-network-based link-level performance prediction
WO2021162857A1 (en) Downlink assignment index for multi-component carrier scheduling
US20230254022A1 (en) Multi-slot channel quality information (cqi) reporting
US11751209B2 (en) Acknowledgement feedback for multi-component carrier scheduling with separate feedback-related control fields
WO2022032567A1 (en) Methods for measuring and reporting doppler shift
US11678394B2 (en) Techniques for multicast beam failure and recovery
EP4079066A1 (en) Concurrent sidelink and uplink transmission
US11533729B2 (en) Transport block size determination for downlink transmissions including multiplexed downlink control information
WO2021138099A1 (en) Resource selection for user equipment (ue)-shared multicast feedback
EP4406138A1 (en) Channel state information reporting for multiple panel user equipment
US11671980B2 (en) Techniques for enhanced coverage semi-persistent scheduling
US20220303957A1 (en) Multi-stage downlink control information for downlink transmissions
WO2022147744A1 (en) Downlink control information based unified transmission configuration indicator acknowledgement
WO2022000358A1 (en) Techniques for self-awareness based interference measurement of sensing signals
WO2021127196A1 (en) Methods and apparatuses for data retransmission using sidelink diversity
WO2021196068A1 (en) Channel state reporting types
WO2023060530A1 (en) Antenna adaptation according to channel state information reference signal resource management
US20230091901A1 (en) Soft-information to help base station with duplex configuration
US20220109553A1 (en) Flow control feedback for full-duplex communications
WO2021258385A1 (en) Dynamic uplink control multiplexing between physical uplink channels
WO2021248076A1 (en) Beam blocking detection scheduling request transmission procedures
US12015938B2 (en) Techniques for autonomous beam failure indicator counting
WO2022036493A1 (en) Techniques for cross-link interference measurement across radio access technologies
WO2023065066A1 (en) Techniques for using default beams for multi-pdsch repetitions
WO2021217552A1 (en) Composite downlink control information for semi-persistent scheduling retransmission

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20929590

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20929590

Country of ref document: EP

Kind code of ref document: A1