WO2022036493A1 - Techniques for cross-link interference measurement across radio access technologies - Google Patents

Techniques for cross-link interference measurement across radio access technologies Download PDF

Info

Publication number
WO2022036493A1
WO2022036493A1 PCT/CN2020/109475 CN2020109475W WO2022036493A1 WO 2022036493 A1 WO2022036493 A1 WO 2022036493A1 CN 2020109475 W CN2020109475 W CN 2020109475W WO 2022036493 A1 WO2022036493 A1 WO 2022036493A1
Authority
WO
WIPO (PCT)
Prior art keywords
base station
resources
signals
indication
cross
Prior art date
Application number
PCT/CN2020/109475
Other languages
French (fr)
Inventor
Huilin Xu
Xipeng Zhu
Yuwei REN
Original Assignee
Qualcomm Incorporated
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Qualcomm Incorporated filed Critical Qualcomm Incorporated
Priority to PCT/CN2020/109475 priority Critical patent/WO2022036493A1/en
Publication of WO2022036493A1 publication Critical patent/WO2022036493A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/08Testing, supervising or monitoring using real traffic
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/10Scheduling measurement reports ; Arrangements for measurement reports

Definitions

  • the following relates to wireless communications, including techniques for cross-link interference (CLI) measurement across radio access technologies (RATs) .
  • CLI cross-link interference
  • RATs radio access technologies
  • Wireless communications systems are widely deployed to provide various types of communication content such as voice, video, packet data, messaging, broadcast, and so on. These systems may be capable of supporting communication with multiple users by sharing the available system resources (e.g., time, frequency, and power) .
  • Examples of such multiple-access systems include fourth generation (4G) systems such as Long Term Evolution (LTE) systems, LTE-Advanced (LTE-A) systems, or LTE-A Pro systems, and fifth generation (5G) systems which may be referred to as New Radio (NR) systems.
  • 4G systems such as Long Term Evolution (LTE) systems, LTE-Advanced (LTE-A) systems, or LTE-A Pro systems
  • 5G systems which may be referred to as New Radio (NR) systems.
  • a wireless multiple-access communications system may include one or more base stations or one or more network access nodes, each simultaneously supporting communication for multiple communication devices, which may be otherwise known as user equipment (UE) .
  • UE user equipment
  • uplink signals transmitted by an aggressor user equipment may interfere with downlink signals received by a victim UE, thereby resulting in cross-link interference (CLI) at the victim UE.
  • CLI cross-link interference
  • Left unmanaged, CLI may result in excessive noise and negatively impact the efficiency and reliability of wireless communications.
  • a first base station associated with a first RAT may receive, from a second base station associated with a second RAT (e.g., fourth generation (4G) or Long Term Evolution (LTE) base station) , an indication of a set of CLI measurement resources for measuring signals transmitted according to the second RAT.
  • 5G fifth generation
  • NR New Radio
  • 4G fourth generation
  • LTE Long Term Evolution
  • the indication of the CLI measurement resources may be valid for a predefined duration, over-written by a subsequent indication of CLI measurement resources, and/or may be revoked via explicit signaling from the second base station.
  • the first base station may transmit at least a portion of the CLI measurement resources to UEs associated with the first RAT (e.g., 5G UEs) .
  • the first base station may then receive a CLI measurement report from the UEs, where the CLI measurement report indicates CLI experienced at the UE which is attributable to signals transmitted according to the second RAT (e.g., CLI attributable to LTE signals) .
  • the second RAT e.g., CLI attributable to LTE signals
  • a method of wireless communication at a first base station may include communicating with a UE using a first RAT, receiving, from a second base station configured to communicate using a second RAT, an indication of a set of resources configured for signals of a CLI measurement procedure, the signals of the CLI measurement procedure to be transmitted by one or more UEs served by the second base station according to the second RAT, transmitting, to the UE, a configuration identifying at least a subset of the set of resources configured for the one or more UEs served by the second base station to use to transmit the signals of the CLI measurement procedure, and receiving, from the UE, a measurement report indicating CLI associated with at least the subset of the set of resources.
  • the apparatus may include a processor, memory coupled with the processor, and instructions stored in the memory.
  • the instructions may be executable by the processor to cause the apparatus to communicate with a UE using a first RAT, receive, from a second base station configured to communicate using a second RAT, an indication of a set of resources configured for signals of a CLI measurement procedure, the signals of the CLI measurement procedure to be transmitted by one or more UEs served by the second base station according to the second RAT, transmit, to the UE, a configuration identifying at least a subset of the set of resources configured for the one or more UEs served by the second base station to use to transmit the signals of the CLI measurement procedure, and receive, from the UE, a measurement report indicating CLI associated with at least the subset of the set of resources.
  • the apparatus may include means for communicating with a UE using a first RAT, receiving, from a second base station configured to communicate using a second RAT, an indication of a set of resources configured for signals of a CLI measurement procedure, the signals of the CLI measurement procedure to be transmitted by one or more UEs served by the second base station according to the second RAT, transmitting, to the UE, a configuration identifying at least a subset of the set of resources configured for the one or more UEs served by the second base station to use to transmit the signals of the CLI measurement procedure, and receiving, from the UE, a measurement report indicating CLI associated with at least the subset of the set of resources.
  • a non-transitory computer-readable medium storing code for wireless communication at a first base station is described.
  • the code may include instructions executable by a processor to communicate with a UE using a first RAT, receive, from a second base station configured to communicate using a second RAT, an indication of a set of resources configured for signals of a CLI measurement procedure, the signals of the CLI measurement procedure to be transmitted by one or more UEs served by the second base station according to the second RAT, transmit, to the UE, a configuration identifying at least a subset of the set of resources configured for the one or more UEs served by the second base station to use to transmit the signals of the CLI measurement procedure, and receive, from the UE, a measurement report indicating CLI associated with at least the subset of the set of resources.
  • Some examples of the method, apparatuses, and non-transitory computer-readable medium described herein may further include operations, features, means, or instructions for transmitting, to the second base station, a feedback message responsive to the indication of the set of resources.
  • Some examples of the method, apparatuses, and non-transitory computer-readable medium described herein may further include operations, features, means, or instructions for determining a first communication configuration for the first base station, and determining the subset of the set of resources based on the indication of the set of resources and the first communication configuration.
  • Some examples of the method, apparatuses, and non-transitory computer-readable medium described herein may further include operations, features, means, or instructions for determining a set of downlink resources of the first communication configuration, a set of flexible resources of the first communication configuration, or both, where the subset of the set of resources shares a set of time resources with at least portions of the set of downlink resources, the set of flexible resources, or both.
  • Some examples of the method, apparatuses, and non-transitory computer-readable medium described herein may further include operations, features, means, or instructions for determining an expiration of a validity period associated with the set of resources, and transmitting, to the UE, a second configuration indicating that the set of resources may be invalid for the CLI measurement procedure, where the second configuration may be transmitted based on the expiration of the validity period.
  • Some examples of the method, apparatuses, and non-transitory computer-readable medium described herein may further include operations, features, means, or instructions for receiving, from the second base station, an indication of the validity period associated with the set of resources, where transmitting the second configuration may be based on receiving the indication of the validity period.
  • Some examples of the method, apparatuses, and non-transitory computer-readable medium described herein may further include operations, features, means, or instructions for receiving, from the second base station, an indication of a second set of resources configured for signals of the CLI measurement procedure, the signals of the CLI procedure to be transmitted by the one or more UEs served by the second base station according to the second RAT, transmitting, to the UE based on receiving the indication of the second set of resources, an indication that the set of resources may be invalid for the CLI measurement procedure, and transmitting, to the UE, a second configuration identifying at least a subset of the second set of resources configured for the one or more UEs served by the second base station to use to transmit the signals of the CLI measurement procedure.
  • Some examples of the method, apparatuses, and non-transitory computer-readable medium described herein may further include operations, features, means, or instructions for receiving, from the second base station, an indication that the set of resources may be invalid for the CLI measurement procedure, and transmitting, to the UE, a second configuration indicating that the set of resources may be invalid for the CLI measurement procedure based on receiving, from the second base station, the indication that the set of resources may be invalid for the CLI measurement procedure.
  • Some examples of the method, apparatuses, and non-transitory computer-readable medium described herein may further include operations, features, means, or instructions for receiving, from the second base station, an indication of one or more parameters associated with the CLI procedure, and transmitting, to the UE, the configuration indicating the one or more parameters associated with the CLI procedure.
  • the one or more parameters associated with the CLI procedure include a time domain pattern for the CLI measurement procedure, a sequence generation pattern of the signals of the CLI measurement procedure, a resource element pattern of the signals of the CLI measurement procedure, a starting resource block of the signals of the CLI measurement procedure, or any combination thereof.
  • Some examples of the method, apparatuses, and non-transitory computer-readable medium described herein may further include operations, features, means, or instructions for transmitting, to the second base station, an indication of a second set of resources configured for signals of a second CLI measurement procedure, the signals of the second CLI measurement procedure to be transmitted by one or more UEs served by the first base station according to the first RAT, and receiving, from the second base station, a feedback message responsive to the indication of the second set of resources.
  • the measurement report further indicates CLI associated with signals transmitted according to the first RAT.
  • Some examples of the method, apparatuses, and non-transitory computer-readable medium described herein may further include operations, features, means, or instructions for receiving, from the UE, a second measurement report indicating CLI associated with signals transmitted according to the first RAT.
  • the first RAT includes a 5G RAT, an NR access technology, or both
  • the second RAT includes a 4G RAT, an LTE RAT, or both.
  • the indication of the set of resources may be received from the second base station via an X2 interface for communications between the first base station and the second base station.
  • a method of wireless communication at a second base station may include communicating with one or more UEs served by the second base station using a second RAT, transmitting, to the one or more UEs served by the second base station, a configuration indicating a set of resources for the one or more UEs served by the second base station to use to transmit signals of a CLI measurement procedure according to the second RAT, transmitting, to a first base station configured to communicate using a first RAT, an indication of the set of resources, and receiving, from the first base station, a feedback message responsive to the transmitted indication.
  • the apparatus may include a processor, memory coupled with the processor, and instructions stored in the memory.
  • the instructions may be executable by the processor to cause the apparatus to communicate with one or more UEs served by the second base station using a second RAT, transmit, to the one or more UEs served by the second base station, a configuration indicating a set of resources for the one or more UEs served by the second base station to use to transmit signals of a CLI measurement procedure according to the second RAT, transmit, to a first base station configured to communicate using a first RAT, an indication of the set of resources, and receive, from the first base station, a feedback message responsive to the transmitted indication.
  • the apparatus may include means for communicating with one or more UEs served by the second base station using a second RAT, transmitting, to the one or more UEs served by the second base station, a configuration indicating a set of resources for the one or more UEs served by the second base station to use to transmit signals of a CLI measurement procedure according to the second RAT, transmitting, to a first base station configured to communicate using a first RAT, an indication of the set of resources, and receiving, from the first base station, a feedback message responsive to the transmitted indication.
  • a non-transitory computer-readable medium storing code for wireless communication at a second base station is described.
  • the code may include instructions executable by a processor to communicate with one or more UEs served by the second base station using a second RAT, transmit, to the one or more UEs served by the second base station, a configuration indicating a set of resources for the one or more UEs served by the second base station to use to transmit signals of a CLI measurement procedure according to the second RAT, transmit, to a first base station configured to communicate using a first RAT, an indication of the set of resources, and receive, from the first base station, a feedback message responsive to the transmitted indication.
  • Some examples of the method, apparatuses, and non-transitory computer-readable medium described herein may further include operations, features, means, or instructions for transmitting, to the first base station, an indication of a validity period associated with the set of resources.
  • Some examples of the method, apparatuses, and non-transitory computer-readable medium described herein may further include operations, features, means, or instructions for transmitting, to the first base station, an indication of a second set of resources configured for signals of the CLI measurement procedure, the signals of the CLI measurement procedure to be transmitted by the one or more UEs served by the second base station according to the second RAT, and receiving, from the first base station, a second feedback message responsive to the indication of the second set of resources.
  • Some examples of the method, apparatuses, and non-transitory computer-readable medium described herein may further include operations, features, means, or instructions for transmitting, to the first base station, an indication that the set of resources may be invalid for the CLI measurement procedure, and receiving, from the first base station, a second feedback message responsive to the indication that the set of resources may be invalid for the CLI measurement procedure.
  • Some examples of the method, apparatuses, and non-transitory computer-readable medium described herein may further include operations, features, means, or instructions for transmitting, to the first base station, an indication of one or more parameters associated with the CLI procedure.
  • Some examples of the method, apparatuses, and non-transitory computer-readable medium described herein may further include operations, features, means, or instructions for whereing the one or more parameters associated with the CLI procedure include a time domain pattern for the CLI measurement procedure, a sequence generation pattern of the signals of the CLI measurement procedure, a resource element pattern of the signals of the CLI measurement procedure, a starting resource block of the signals of the CLI measurement procedure, or any combination thereof.
  • Some examples of the method, apparatuses, and non-transitory computer-readable medium described herein may further include operations, features, means, or instructions for receiving, from the first base station, an indication of a second set of resources configured for signals of a second CLI measurement procedure, the signals of the second CLI measurement procedure to be transmitted by one or more UEs served by the first base station according to the first RAT, and transmitting, to the first base station, a second feedback message responsive to the indication of the second set of resources.
  • Some examples of the method, apparatuses, and non-transitory computer-readable medium described herein may further include operations, features, means, or instructions for transmitting, to a second UE of the one or more UEs served by the second base station and using the second RAT, a second configuration identifying at least a subset of the second set of resources configured for the one or more UEs served by the first base station to use to transmit the signals of the second CLI measurement procedure, and receiving, from the second UE, a measurement report indicating CLI associated with at least the subset of the second set of resources.
  • the first RAT includes a 5G RAT, an NR access technology, or both
  • the second RAT includes a 4G RAT, an LTE RAT, or both.
  • the indication of the set of resources may be transmitted to the first base station via an X2 interface for communications between the first base station and the second base station.
  • FIG. 1 illustrates an example of a wireless communications system that supports techniques for cross-link interference (CLI) measurement across radio access technologies (RATs) in accordance with aspects of the present disclosure.
  • CLI cross-link interference
  • FIG. 2 illustrates an example of a wireless communications system that supports techniques for CLI measurement across RATs in accordance with aspects of the present disclosure.
  • FIG. 3 illustrates an example of a process flow that supports techniques for CLI measurement across RATs in accordance with aspects of the present disclosure.
  • FIGs. 4 and 5 show block diagrams of devices that support techniques for CLI measurement across RATs in accordance with aspects of the present disclosure.
  • FIG. 6 shows a block diagram of a communications manager that supports techniques for CLI measurement across RATs in accordance with aspects of the present disclosure.
  • FIG. 7 shows a diagram of a system including a device that supports techniques for CLI measurement across RATs in accordance with aspects of the present disclosure.
  • FIGs. 8 through 11 show flowcharts illustrating methods that support techniques for CLI measurement RATs in accordance with aspects of the present disclosure.
  • a user equipment may be configured to perform cross-link interference (CLI) measurements attributable to signals received from other UEs.
  • CLI cross-link interference
  • a victim UE may experience CLI from signals transmitted by an aggressor UE in cases where downlink resources of the victim UE overlap with uplink resources of the aggressor UE.
  • uplink transmissions from the aggressor UE may collide with, or otherwise interrupt, downlink transmissions received by the victim UE within the downlink resources, thereby resulting in CLI.
  • a victim UE associated with one radio access technology may experience CLI attributable to signals transmitted by an aggressor UE associated with a second RAT (e.g., LTE UE) .
  • RAT radio access technology
  • LTE UE second RAT
  • conventional CLI measurement techniques do not support measurement of CLI across RATs.
  • a 5G base station may be unable to configure a 5G victim UE with CLI measurement resources configured for measuring CLI attributable to signals transmitted by an LTE aggressor UE. Accordingly, current techniques for CLI measurement may be insufficient to accurately and efficiently determine CLI experienced by a UE.
  • a first base station associated with a first RAT may receive, from a second base station associated with a second RAT (e.g., LTE base station) an indication of a set of CLI measurement resources for measuring signals transmitted according to the second RAT.
  • the indication of the CLI measurement resources may be valid for a predefined duration, over-written by a subsequent indication of CLI measurement resources, and/or may be revoked via explicit signaling from the second base station.
  • the first base station may transmit at least a portion of the CLI measurement resources to UEs associated with the first RAT (e.g., 5G/NR UEs) .
  • the first base station may then receive a CLI measurement report from the UEs, where the CLI measurement report indicates CLI experienced at the UE which is attributable to signals transmitted according to the second RAT (e.g., 4G/LTE RAT) .
  • the second RAT e.g., 4G/LTE RAT
  • aspects of the disclosure are initially described in the context of wireless communications systems. Additional aspects of the disclosure are described in the context of an example process flow. Aspects of the disclosure are further illustrated by and described with reference to apparatus diagrams, system diagrams, and flowcharts that relate to techniques for CLI measurement across radio access technologies.
  • FIG. 1 illustrates an example of a wireless communications system 100 that supports techniques for CLI measurement across RATs in accordance with aspects of the present disclosure.
  • the wireless communications system 100 may include one or more base stations 105, one or more UEs 115, and a core network 130.
  • the wireless communications system 100 may be a Long Term Evolution (LTE) network, an LTE-Advanced (LTE-A) network, an LTE-A Pro network, or a New Radio (NR) network.
  • LTE Long Term Evolution
  • LTE-A LTE-Advanced
  • LTE-A Pro LTE-A Pro
  • NR New Radio
  • the wireless communications system 100 may support enhanced broadband communications, ultra-reliable (e.g., mission critical) communications, low latency communications, communications with low-cost and low-complexity devices, or any combination thereof.
  • ultra-reliable e.g., mission critical
  • the base stations 105 may be dispersed throughout a geographic area to form the wireless communications system 100 and may be devices in different forms or having different capabilities.
  • the base stations 105 and the UEs 115 may wirelessly communicate via one or more communication links 125.
  • Each base station 105 may provide a coverage area 110 over which the UEs 115 and the base station 105 may establish one or more communication links 125.
  • the coverage area 110 may be an example of a geographic area over which a base station 105 and a UE 115 may support the communication of signals according to one or more RATs.
  • the UEs 115 may be dispersed throughout a coverage area 110 of the wireless communications system 100, and each UE 115 may be stationary, or mobile, or both at different times.
  • the UEs 115 may be devices in different forms or having different capabilities. Some example UEs 115 are illustrated in FIG. 1.
  • the UEs 115 described herein may be able to communicate with various types of devices, such as other UEs 115, the base stations 105, or network equipment (e.g., core network nodes, relay devices, integrated access and backhaul (IAB) nodes, or other network equipment) , as shown in FIG. 1.
  • network equipment e.g., core network nodes, relay devices, integrated access and backhaul (IAB) nodes, or other network equipment
  • the base stations 105 may communicate with the core network 130, or with one another, or both.
  • the base stations 105 may interface with the core network 130 through one or more backhaul links 120 (e.g., via an S1, N2, N3, or other interface) .
  • the base stations 105 may communicate with one another over the backhaul links 120 (e.g., via an X2, Xn, or other interface) either directly (e.g., directly between base stations 105) , or indirectly (e.g., via core network 130) , or both.
  • the backhaul links 120 may be or include one or more wireless links.
  • One or more of the base stations 105 described herein may include or may be referred to by a person having ordinary skill in the art as a base transceiver station, a radio base station, an access point, a radio transceiver, a NodeB, an eNodeB (eNB) , a next-generation NodeB or a giga-NodeB (either of which may be referred to as a gNB) , a Home NodeB, a Home eNodeB, or other suitable terminology.
  • a base transceiver station a radio base station
  • an access point a radio transceiver
  • a NodeB an eNodeB (eNB)
  • eNB eNodeB
  • a next-generation NodeB or a giga-NodeB either of which may be referred to as a gNB
  • gNB giga-NodeB
  • a UE 115 may include or may be referred to as a mobile device, a wireless device, a remote device, a handheld device, or a subscriber device, or some other suitable terminology, where the “device” may also be referred to as a unit, a station, a terminal, or a client, among other examples.
  • a UE 115 may also include or may be referred to as a personal electronic device such as a cellular phone, a personal digital assistant (PDA) , a tablet computer, a laptop computer, or a personal computer.
  • PDA personal digital assistant
  • a UE 115 may include or be referred to as a wireless local loop (WLL) station, an Internet of Things (IoT) device, an Internet of Everything (IoE) device, or a machine type communications (MTC) device, among other examples, which may be implemented in various objects such as appliances, or vehicles, meters, among other examples.
  • WLL wireless local loop
  • IoT Internet of Things
  • IoE Internet of Everything
  • MTC machine type communications
  • the UEs 115 described herein may be able to communicate with various types of devices, such as other UEs 115 that may sometimes act as relays as well as the base stations 105 and the network equipment including macro eNBs or gNBs, small cell eNBs or gNBs, or relay base stations, among other examples, as shown in FIG. 1.
  • devices such as other UEs 115 that may sometimes act as relays as well as the base stations 105 and the network equipment including macro eNBs or gNBs, small cell eNBs or gNBs, or relay base stations, among other examples, as shown in FIG. 1.
  • the UEs 115 and the base stations 105 may wirelessly communicate with one another via one or more communication links 125 over one or more carriers.
  • the term “carrier” may refer to a set of radio frequency spectrum resources having a defined physical layer structure for supporting the communication links 125.
  • a carrier used for a communication link 125 may include a portion of a radio frequency spectrum band (e.g., a bandwidth part (BWP) ) that is operated according to one or more physical layer channels for a given RAT (e.g., LTE, LTE-A, LTE-A Pro, NR) .
  • a radio frequency spectrum band e.g., a bandwidth part (BWP)
  • BWP bandwidth part
  • Each physical layer channel may carry acquisition signaling (e.g., synchronization signals, system information) , control signaling that coordinates operation for the carrier, user data, or other signaling.
  • the wireless communications system 100 may support communication with a UE 115 using carrier aggregation or multi-carrier operation.
  • a UE 115 may be configured with multiple downlink component carriers and one or more uplink component carriers according to a carrier aggregation configuration.
  • Carrier aggregation may be used with both frequency division duplexing (FDD) and time division duplexing (TDD) component carriers.
  • FDD frequency division duplexing
  • TDD time division duplexing
  • Signal waveforms transmitted over a carrier may be made up of multiple subcarriers (e.g., using multi-carrier modulation (MCM) techniques such as orthogonal frequency division multiplexing (OFDM) or discrete Fourier transform spread OFDM (DFT- S-OFDM) ) .
  • MCM multi-carrier modulation
  • OFDM orthogonal frequency division multiplexing
  • DFT- S-OFDM discrete Fourier transform spread OFDM
  • a resource element may consist of one symbol period (e.g., a duration of one modulation symbol) and one subcarrier, where the symbol period and subcarrier spacing are inversely related.
  • the number of bits carried by each resource element may depend on the modulation scheme (e.g., the order of the modulation scheme, the coding rate of the modulation scheme, or both) .
  • a wireless communications resource may refer to a combination of a radio frequency spectrum resource, a time resource, and a spatial resource (e.g., spatial layers or beams) , and the use of multiple spatial layers may further increase the data rate or data integrity for communications with a UE 115.
  • Time intervals of a communications resource may be organized according to radio frames each having a specified duration (e.g., 10 milliseconds (ms) ) .
  • Each radio frame may be identified by a system frame number (SFN) (e.g., ranging from 0 to 1023) .
  • SFN system frame number
  • Each frame may include multiple consecutively numbered subframes or slots, and each subframe or slot may have the same duration.
  • a frame may be divided (e.g., in the time domain) into subframes, and each subframe may be further divided into a number of slots.
  • each frame may include a variable number of slots, and the number of slots may depend on subcarrier spacing.
  • Each slot may include a number of symbol periods (e.g., depending on the length of the cyclic prefix prepended to each symbol period) .
  • a slot may further be divided into multiple mini-slots containing one or more symbols. Excluding the cyclic prefix, each symbol period may contain one or more (e.g., N f ) sampling periods. The duration of a symbol period may depend on the subcarrier spacing or frequency band of operation.
  • a subframe, a slot, a mini-slot, or a symbol may be the smallest scheduling unit (e.g., in the time domain) of the wireless communications system 100 and may be referred to as a transmission time interval (TTI) .
  • TTI duration e.g., the number of symbol periods in a TTI
  • the smallest scheduling unit of the wireless communications system 100 may be dynamically selected (e.g., in bursts of shortened TTIs (sTTIs) ) .
  • Physical channels may be multiplexed on a carrier according to various techniques.
  • a physical control channel and a physical data channel may be multiplexed on a downlink carrier, for example, using one or more of time division multiplexing (TDM) techniques, frequency division multiplexing (FDM) techniques, or hybrid TDM-FDM techniques.
  • a control region e.g., a control resource set (CORESET)
  • CORESET control resource set
  • a control region for a physical control channel may be defined by a number of symbol periods and may extend across the system bandwidth or a subset of the system bandwidth of the carrier.
  • One or more control regions (e.g., CORESETs) may be configured for a set of the UEs 115.
  • one or more of the UEs 115 may monitor or search control regions for control information according to one or more search space sets, and each search space set may include one or multiple control channel candidates in one or more aggregation levels arranged in a cascaded manner.
  • An aggregation level for a control channel candidate may refer to a number of control channel resources (e.g., control channel elements (CCEs) ) associated with encoded information for a control information format having a given payload size.
  • Search space sets may include common search space sets configured for sending control information to multiple UEs 115 and UE-specific search space sets for sending control information to a specific UE 115.
  • Each base station 105 may provide communication coverage via one or more cells, for example a macro cell, a small cell, a hot spot, or other types of cells, or any combination thereof.
  • the term “cell” may refer to a logical communication entity used for communication with a base station 105 (e.g., over a carrier) and may be associated with an identifier for distinguishing neighboring cells (e.g., a physical cell identifier (PCID) , a virtual cell identifier (VCID) , or others) .
  • a cell may also refer to a geographic coverage area 110 or a portion of a geographic coverage area 110 (e.g., a sector) over which the logical communication entity operates.
  • Such cells may range from smaller areas (e.g., a structure, a subset of structure) to larger areas depending on various factors such as the capabilities of the base station 105.
  • a cell may be or include a building, a subset of a building, or exterior spaces between or overlapping with geographic coverage areas 110, among other examples.
  • a macro cell generally covers a relatively large geographic area (e.g., several kilometers in radius) and may allow unrestricted access by the UEs 115 with service subscriptions with the network provider supporting the macro cell.
  • a small cell may be associated with a lower-powered base station 105, as compared with a macro cell, and a small cell may operate in the same or different (e.g., licensed, unlicensed) frequency bands as macro cells.
  • Small cells may provide unrestricted access to the UEs 115 with service subscriptions with the network provider or may provide restricted access to the UEs 115 having an association with the small cell (e.g., the UEs 115 in a closed subscriber group (CSG) , the UEs 115 associated with users in a home or office) .
  • a base station 105 may support one or multiple cells and may also support communications over the one or more cells using one or multiple component carriers.
  • a carrier may support multiple cells, and different cells may be configured according to different protocol types (e.g., MTC, narrowband IoT (NB-IoT) , enhanced mobile broadband (eMBB) ) that may provide access for different types of devices.
  • protocol types e.g., MTC, narrowband IoT (NB-IoT) , enhanced mobile broadband (eMBB)
  • NB-IoT narrowband IoT
  • eMBB enhanced mobile broadband
  • a base station 105 may be movable and therefore provide communication coverage for a moving geographic coverage area 110.
  • different geographic coverage areas 110 associated with different technologies may overlap, but the different geographic coverage areas 110 may be supported by the same base station 105.
  • the overlapping geographic coverage areas 110 associated with different technologies may be supported by different base stations 105.
  • the wireless communications system 100 may include, for example, a heterogeneous network in which different types of the base stations 105 provide coverage for various geographic coverage areas 110 using the same or different RATs.
  • the wireless communications system 100 may be configured to support ultra-reliable communications or low-latency communications, or various combinations thereof.
  • the wireless communications system 100 may be configured to support ultra-reliable low-latency communications (URLLC) or mission critical communications.
  • the UEs 115 may be designed to support ultra-reliable, low-latency, or critical functions (e.g., mission critical functions) .
  • Ultra-reliable communications may include private communication or group communication and may be supported by one or more mission critical services such as mission critical push-to-talk (MCPTT) , mission critical video (MCVideo) , or mission critical data (MCData) .
  • MCPTT mission critical push-to-talk
  • MCVideo mission critical video
  • MCData mission critical data
  • Support for mission critical functions may include prioritization of services, and mission critical services may be used for public safety or general commercial applications.
  • the terms ultra-reliable, low-latency, mission critical, and ultra-reliable low-latency may be used interchangeably herein.
  • a UE 115 may also be able to communicate directly with other UEs 115 over a device-to-device (D2D) communication link 135 (e.g., using a peer-to-peer (P2P) or D2D protocol) .
  • D2D device-to-device
  • P2P peer-to-peer
  • One or more UEs 115 utilizing D2D communications may be within the geographic coverage area 110 of a base station 105.
  • Other UEs 115 in such a group may be outside the geographic coverage area 110 of a base station 105 or be otherwise unable to receive transmissions from a base station 105.
  • groups of the UEs 115 communicating via D2D communications may utilize a one-to-many (1: M) system in which each UE 115 transmits to every other UE 115 in the group.
  • a base station 105 facilitates the scheduling of resources for D2D communications. In other cases, D2D communications are carried out between the UEs 115 without the involvement of a base station 105.
  • the core network 130 may provide user authentication, access authorization, tracking, Internet Protocol (IP) connectivity, and other access, routing, or mobility functions.
  • the core network 130 may be an evolved packet core (EPC) or 5G core (5GC) , which may include at least one control plane entity that manages access and mobility (e.g., a mobility management entity (MME) , an access and mobility management function (AMF) ) and at least one user plane entity that routes packets or interconnects to external networks (e.g., a serving gateway (S-GW) , a Packet Data Network (PDN) gateway (P-GW) , or a user plane function (UPF) ) .
  • EPC evolved packet core
  • 5GC 5G core
  • MME mobility management entity
  • AMF access and mobility management function
  • S-GW serving gateway
  • PDN Packet Data Network gateway
  • UPF user plane function
  • the control plane entity may manage non-access stratum (NAS) functions such as mobility, authentication, and bearer management for the UEs 115 served by the base stations 105 associated with the core network 130.
  • NAS non-access stratum
  • User IP packets may be transferred through the user plane entity, which may provide IP address allocation as well as other functions.
  • the user plane entity may be connected to the network operators IP services 150.
  • the network operators IP services 150 may include access to the Internet, Intranet (s) , an IP Multimedia Subsystem (IMS) , or a Packet-Switched Streaming Service.
  • Some of the network devices may include subcomponents such as an access network entity 140, which may be an example of an access node controller (ANC) .
  • Each access network entity 140 may communicate with the UEs 115 through one or more other access network transmission entities 145, which may be referred to as radio heads, smart radio heads, or transmission/reception points (TRPs) .
  • Each access network transmission entity 145 may include one or more antenna panels.
  • various functions of each access network entity 140 or base station 105 may be distributed across various network devices (e.g., radio heads and ANCs) or consolidated into a single network device (e.g., a base station 105) .
  • the wireless communications system 100 may operate using one or more frequency bands, typically in the range of 300 megahertz (MHz) to 300 gigahertz (GHz) .
  • the region from 300 MHz to 3 GHz is known as the ultra-high frequency (UHF) region or decimeter band because the wavelengths range from approximately one decimeter to one meter in length.
  • UHF waves may be blocked or redirected by buildings and environmental features, but the waves may penetrate structures sufficiently for a macro cell to provide service to the UEs 115 located indoors.
  • the transmission of UHF waves may be associated with smaller antennas and shorter ranges (e.g., less than 100 kilometers) compared to transmission using the smaller frequencies and longer waves of the high frequency (HF) or very high frequency (VHF) portion of the spectrum below 300 MHz.
  • HF high frequency
  • VHF very high frequency
  • the wireless communications system 100 may utilize both licensed and unlicensed radio frequency spectrum bands.
  • the wireless communications system 100 may employ License Assisted Access (LAA) , LTE-Unlicensed (LTE-U) RAT, or NR technology in an unlicensed band such as the 5 GHz industrial, scientific, and medical (ISM) band.
  • LAA License Assisted Access
  • LTE-U LTE-Unlicensed
  • NR NR technology
  • an unlicensed band such as the 5 GHz industrial, scientific, and medical (ISM) band.
  • devices such as the base stations 105 and the UEs 115 may employ carrier sensing for collision detection and avoidance.
  • operations in unlicensed bands may be based on a carrier aggregation configuration in conjunction with component carriers operating in a licensed band (e.g., LAA) .
  • Operations in unlicensed spectrum may include downlink transmissions, uplink transmissions, P2P transmissions, or D2D transmissions, among other examples.
  • a base station 105 or a UE 115 may be equipped with multiple antennas, which may be used to employ techniques such as transmit diversity, receive diversity, multiple-input multiple-output (MIMO) communications, or beamforming.
  • the antennas of a base station 105 or a UE 115 may be located within one or more antenna arrays or antenna panels, which may support MIMO operations or transmit or receive beamforming.
  • one or more base station antennas or antenna arrays may be co-located at an antenna assembly, such as an antenna tower.
  • antennas or antenna arrays associated with a base station 105 may be located in diverse geographic locations.
  • a base station 105 may have an antenna array with a number of rows and columns of antenna ports that the base station 105 may use to support beamforming of communications with a UE 115.
  • a UE 115 may have one or more antenna arrays that may support various MIMO or beamforming operations.
  • an antenna panel may support radio frequency beamforming for a signal transmitted via an antenna port.
  • the base stations 105 or the UEs 115 may use MIMO communications to exploit multipath signal propagation and increase the spectral efficiency by transmitting or receiving multiple signals via different spatial layers. Such techniques may be referred to as spatial multiplexing.
  • the multiple signals may, for example, be transmitted by the transmitting device via different antennas or different combinations of antennas. Likewise, the multiple signals may be received by the receiving device via different antennas or different combinations of antennas.
  • Each of the multiple signals may be referred to as a separate spatial stream and may carry bits associated with the same data stream (e.g., the same codeword) or different data streams (e.g., different codewords) .
  • Different spatial layers may be associated with different antenna ports used for channel measurement and reporting.
  • MIMO techniques include single-user MIMO (SU-MIMO) , where multiple spatial layers are transmitted to the same receiving device, and multiple-user MIMO (MU-MIMO) , where multiple spatial layers are transmitted to multiple devices.
  • SU-MIMO single-user MIMO
  • Beamforming which may also be referred to as spatial filtering, directional transmission, or directional reception, is a signal processing technique that may be used at a transmitting device or a receiving device (e.g., a base station 105, a UE 115) to shape or steer an antenna beam (e.g., a transmit beam, a receive beam) along a spatial path between the transmitting device and the receiving device.
  • Beamforming may be achieved by combining the signals communicated via antenna elements of an antenna array such that some signals propagating at particular orientations with respect to an antenna array experience constructive interference while others experience destructive interference.
  • the adjustment of signals communicated via the antenna elements may include a transmitting device or a receiving device applying amplitude offsets, phase offsets, or both to signals carried via the antenna elements associated with the device.
  • the adjustments associated with each of the antenna elements may be defined by a beamforming weight set associated with a particular orientation (e.g., with respect to the antenna array of the transmitting device or receiving device, or with respect to some other orientation) .
  • a base station 105 or a UE 115 may use beam sweeping techniques as part of beam forming operations.
  • a base station 105 may use multiple antennas or antenna arrays (e.g., antenna panels) to conduct beamforming operations for directional communications with a UE 115.
  • Some signals e.g., synchronization signals, reference signals, beam selection signals, or other control signals
  • the base station 105 may transmit a signal according to different beamforming weight sets associated with different directions of transmission.
  • Transmissions in different beam directions may be used to identify (e.g., by a transmitting device, such as a base station 105, or by a receiving device, such as a UE 115) a beam direction for later transmission or reception by the base station 105.
  • a transmitting device such as a base station 105
  • a receiving device such as a UE 115
  • Some signals may be transmitted by a base station 105 in a single beam direction (e.g., a direction associated with the receiving device, such as a UE 115) .
  • the beam direction associated with transmissions along a single beam direction may be determined based on a signal that was transmitted in one or more beam directions.
  • a UE 115 may receive one or more of the signals transmitted by the base station 105 in different directions and may report to the base station 105 an indication of the signal that the UE 115 received with a highest signal quality or an otherwise acceptable signal quality.
  • transmissions by a device may be performed using multiple beam directions, and the device may use a combination of digital precoding or radio frequency beamforming to generate a combined beam for transmission (e.g., from a base station 105 to a UE 115) .
  • the UE 115 may report feedback that indicates precoding weights for one or more beam directions, and the feedback may correspond to a configured number of beams across a system bandwidth or one or more sub-bands.
  • the base station 105 may transmit a reference signal (e.g., a cell-specific reference signal (CRS) , a channel state information reference signal (CSI-RS) ) , which may be precoded or unprecoded.
  • a reference signal e.g., a cell-specific reference signal (CRS) , a channel state information reference signal (CSI-RS)
  • CRS cell-specific reference signal
  • CSI-RS channel state information reference signal
  • the UE 115 may provide feedback for beam selection, which may be a precoding matrix indicator (PMI) or codebook-based feedback (e.g., a multi-panel type codebook, a linear combination type codebook, a port selection type codebook) .
  • PMI precoding matrix indicator
  • codebook-based feedback e.g., a multi-panel type codebook, a linear combination type codebook, a port selection type codebook
  • a UE 115 may employ similar techniques for transmitting signals multiple times in different directions (e.g., for identifying a beam direction for subsequent transmission or reception by the UE 115) or for transmitting a signal in a single direction (e.g., for transmitting data to a receiving device) .
  • a receiving device may try multiple receive configurations (e.g., directional listening) when receiving various signals from the base station 105, such as synchronization signals, reference signals, beam selection signals, or other control signals.
  • receive configurations e.g., directional listening
  • a receiving device may try multiple receive directions by receiving via different antenna subarrays, by processing received signals according to different antenna subarrays, by receiving according to different receive beamforming weight sets (e.g., different directional listening weight sets) applied to signals received at multiple antenna elements of an antenna array, or by processing received signals according to different receive beamforming weight sets applied to signals received at multiple antenna elements of an antenna array, any of which may be referred to as “listening” according to different receive configurations or receive directions.
  • receive beamforming weight sets e.g., different directional listening weight sets
  • a receiving device may use a single receive configuration to receive along a single beam direction (e.g., when receiving a data signal) .
  • the single receive configuration may be aligned in a beam direction determined based on listening according to different receive configuration directions (e.g., a beam direction determined to have a highest signal strength, highest signal-to-noise ratio (SNR) , or otherwise acceptable signal quality based on listening according to multiple beam directions) .
  • SNR signal-to-noise ratio
  • the wireless communications system 100 may be a packet-based network that operates according to a layered protocol stack.
  • communications at the bearer or Packet Data Convergence Protocol (PDCP) layer may be IP-based.
  • a Radio Link Control (RLC) layer may perform packet segmentation and reassembly to communicate over logical channels.
  • RLC Radio Link Control
  • a Medium Access Control (MAC) layer may perform priority handling and multiplexing of logical channels into transport channels.
  • the MAC layer may also use error detection techniques, error correction techniques, or both to support retransmissions at the MAC layer to improve link efficiency.
  • the Radio Resource Control (RRC) protocol layer may provide establishment, configuration, and maintenance of an RRC connection between a UE 115 and a base station 105 or a core network 130 supporting radio bearers for user plane data.
  • RRC Radio Resource Control
  • transport channels may be mapped to physical channels.
  • the UEs 115 and the base stations 105 may support retransmissions of data to increase the likelihood that data is received successfully.
  • Hybrid automatic repeat request (HARQ) feedback is one technique for increasing the likelihood that data is received correctly over a communication link 125.
  • HARQ may include a combination of error detection (e.g., using a cyclic redundancy check (CRC) ) , forward error correction (FEC) , and retransmission (e.g., automatic repeat request (ARQ) ) .
  • FEC forward error correction
  • ARQ automatic repeat request
  • HARQ may improve throughput at the MAC layer in poor radio conditions (e.g., low signal-to-noise conditions) .
  • a device may support same-slot HARQ feedback, where the device may provide HARQ feedback in a specific slot for data received in a previous symbol in the slot. In other cases, the device may provide HARQ feedback in a subsequent slot, or according to some other time interval.
  • some wireless communications systems are unable to perform cross-RAT CLI measurements
  • base stations of some wireless communications systems which are configured to communicate using a first RAT may be unable to configure UEs with CLI measurement resources which may be used to measure CLI attributable to signals transmitted according to a second RAT.
  • a 5G base station may be unable to configure 5G UEs with CLI measurement resources which may be used to measure CLI associated with LTE signals.
  • an LTE base station may be unable to configure LTE UEs with CLI measurement resources which may be used to measure CLI associated with 5G signals.
  • the UEs 115 and the base stations 105 of the wireless communications system 100 may support techniques for cross-RAT CLI measurement.
  • a first base station 105-a associated with a first RAT e.g., 5G base station 105-a
  • may receive CLI measurement resources from a second base station 105-b associated with a second RAT e.g., LTE base station 105-b
  • the first base station 105-a may then relay the set of CLI measurement resources to UEs 115 (e.g., 5G UEs 115) supported by the first base station 105-a, thereby enabling the UEs 115 to measure CLI attributable to signals transmitted according to the second RAT (e.g., CLI attributable to LTE signals. ) .
  • the second RAT e.g., CLI attributable to LTE signals.
  • a 5G base station 105-a of the wireless communications system 100 may receive, from an LTE base station 105-b of the wireless communications system 100, an indication of a set of CLI measurement resources for measuring LTE signals.
  • the set of CLI measurement resources may be based on a communication configuration for carrying out LTE communications between the LTE base station and LTE UEs 115 supported by the LTE base station 105-b.
  • the set of CLI measurement resources may be transmitted from the LTE base station 105-b to the 5G base station 105-a via an X2 interface between the first and second base stations 105-a and 105-b.
  • the 5G base station 105-a may transmit at least a portion of the CLI measurement resources to 5G UEs 115 supported by the 5G base station 105-a.
  • the portion of the CLI measurement resources may be based on a communication configuration for carrying out 5G communications between the 5G base station 105-a and the 5G UEs 115.
  • the 5G UEs 115 may be able to perform CLI measurements of LTE signals.
  • the 5G UEs 115 may transmit a CLI measurement report to the 5G base station 105-a, where the CLI measurement report indicates CLI experienced at the 5G UEs 115 which is attributable to LTE signals Subsequently, the 5G base station 105-a may selectively adjust resources used by the 5G UEs 115 in order to reduce and/or eliminate CLI experienced by the 5G UEs 115.
  • the indication of the CLI measurement resources may be valid for only a limited duration of time.
  • the CLI measurement resources may be valid for a predefined time period (e.g., predefined duration) , where the predefined time period is pre-configured, signaled by the LTE base station 105-b, or both.
  • the CLI measurement resources may be over-written by a subsequent indication of CLI measurement resources received from the LTE base station 105-b.
  • the CLI measurement resources /or may be revoked via explicit signaling from the LTE base station 105-b.
  • the 5G base station 105-b may be configured to determine if and when the CLI measurement resources become invalid (e.g., no longer usable or relevant) for CLI measurement, and may indicate the invalidity of the CLI measurement resources to the 5G UEs.
  • techniques described herein may enable unidirectional cross-RAT CLI measurement (e.g., 5G UEs 115 measuring CLI attributable to LTE signals) . additionally or alternatively, techniques described herein may enable bi-directional cross-RAT CLI measurement (e.g., 5G UEs 115 measuring CLI attributable to LTE signals, and LTE UEs 115 measuring CLI attributable to 5G signals) . Furthermore, while examples described herein are generally illustrated in the context of 5G UEs 115 performing CLI measurement of LTE signals, these examples are provided solely for illustrative purposes. In this regard, techniques described herein may enable cross-CLI measurement between any two RATs.
  • Techniques described herein may enable a base station 105-a associated with a first RAT to configure UEs 115 supported by the first base station 105-a to perform CLI measurements of signals transmitted according to a second RAT.
  • techniques described herein may enable cross-RAT CLI measurement between two different RATs.
  • UEs 115 may be able to perform more efficient and comprehensive CLI measurements, thereby enabling a reduction of CLI within the wireless communications system 100.
  • FIG. 2 illustrates an example of a wireless communications system 200 that supports techniques for CLI measurement across RATs in accordance with aspects of the present disclosure.
  • wireless communications system 200 may implement aspects of wireless communications system 100.
  • the wireless communications system 200 may include a first UE 115-a, a second UE 115-b, a first base station 105-a, and a second base station 105-b, which may be examples of UEs 115 and base stations 105, as described with reference to FIG. 1.
  • the first base station 105-a may include an example of a base station associated with a first RAT (e.g., 5G/NR base station 105-a)
  • the second base station 105-b may include an example of a base station 105-b associated with a second RAT (e.g., 4G/LTE base station 105-b.
  • the first UE 115-a may include an example of a victim UE 115-a associated with the first RAT (e.g., 5G UE 115-a)
  • the second UE 115-b may include an example of an aggressor UE 115-b associated with the second RAT (e.g., 4G/LTE UE 115-b) , as described previously herein.
  • the first UE 115-a may be supported by the first base station 105-a
  • the second UE 115-b may be supported by the second base station 105-b.
  • the first UE 115-a may communicate with the first base station 105-a using a communication link 205-a, which may be an example of an NR or 5G link (wired or wireless) between the first UE 115-a and the first base station 105-a.
  • the second UE 115-b may communicate with the second base station 105-b using a communication link 205-b, which may be an example of an LTE or 4G link between the second UE 115-b and the second base station 105-b.
  • the communication link 205-a and the communication link 205-b may include examples of access links (e.g., Uu links) .
  • the communication link 205-a and communication link 205-b may include bi-directional links that enable both uplink and downlink communication.
  • the first UE 115-a may transmit uplink signals, such as uplink control signals or uplink data signals, to the first base station 105-a using the first communication link 205-a and the first base station 105-a may transmit downlink signals, such as downlink control signals or downlink data signals, to the first UE 115-a using the communication link 205-a.
  • the first base station 105-a and the first UE 115-a may communicate with one another over the communication link 205-a using a first RAT (e.g., 5G/NR) .
  • a first RAT e.g., 5G/NR
  • the second UE 115-b may transmit uplink signals, such as uplink control signals or uplink data signals, to the second base station 105-b using the first communication link 205-b and the second base station 105 may transmit downlink signals, such as downlink control signals or downlink data signals, to the second UE 115-b using the communication link 205-b.
  • the second base station 105-b and the second UE 115-b may communicate with one another over the communication link 205-b using a second RAT (e.g., 4G/LTE) .
  • a second RAT e.g., 4G/LTE
  • the first base station 105-a and the second base station 105-b may communicate with one another via a communication link 205-c.
  • the communication link 205-c may include an example of a link between two base stations 105.
  • the communication link 205-c may include an example of an X2 interface configured to communicatively couple the first base station 105-a and the second base station 105-b.
  • the communication link 205-c may be indirect through one or more nodes of the core network (e.g., including via one or more S1 interfaces) .
  • communications over the communication link 205-c may be performed according to the first RAT, the second RAT, or any combination thereof.
  • UEs 115 may be configured to perform CLI measurements attributable to signals received from other UEs 115.
  • CLI measurements may include layer-3 (L3) measurements.
  • the first UE 115-a e.g., victim UE 115-a
  • the second UE 115-b e.g., aggressor UE 115-b
  • uplink transmissions from second UE 115-b over the uplink resources 225 may collide with, or otherwise interrupt or interfere with, downlink transmissions received by the first UE within the downlink resources 230, thereby resulting in CLI.
  • the wireless communications system 200 may support techniques for cross-RAT CLI measurement.
  • the first base station 105-aassociated with the first RAT e.g., 5G base station 105-a
  • may receive CLI measurement resources from the second base station 105-b associated with the second RAT e.g., LTE base station 105-b
  • the first base station 105-a may then relay the set of CLI measurement resources to the first UE 115-a (e.g., 5G UE 115-a) supported by the first base station 105-a, thereby enabling the first UE 115-a to measure CLI attributable to signals 220-b transmitted according to the second RAT (e.g., CLI attributable to LTE signals. ) .
  • the second RAT e.g., CLI attributable to LTE signals.
  • FIG. 2 is shown and described as illustrating unidirectional cross-RAT CLI measurement (e.g., first UE 115-a performing CLI measurement of LTE signals 220-b) , this is solely for illustrative purposes.
  • techniques described herein may be understood to enable unidirectional cross-RAT CLI measurement, bidirectional cross-RAT measurement, or both.
  • any steps/functions shown and described as being carried out by the first base station 105-a may additionally or alternatively be carried out by the second base station 105-b.
  • any steps/functions shown and described as being carried out by the first UE 115-a may additionally or alternatively be carried out by the second UE 115-b.
  • the first base station 105-a may communicate with the first UE 115-a using the first RAT.
  • the first base station 105-a and the first UE 115-a may communicate via a 5G/NR RAT, .
  • the first base station 105-a and the first UE 115-a may communicate with one another over the communication link 205-a based on (e.g., according to) a first communication configuration.
  • the first base station 105-a may determine a first communication configuration, and may transmit an indication of the first communication configuration to the first UE 115-a such that communications between the first base station 105-a and the first UE 115-a may be carried out according to the first communication configuration.
  • the first communication configuration may include a resource format including sets of downlink resources, sets of uplink resources, sets of flexible resources, or any combination thereof.
  • the first base station 105-a may transmit an indication of the first communication configuration to the first UE 115-a.
  • the first communications may indicate a set of resources for communications between the first base station 105-a and the first UE 115-a.
  • the second base station 105-b may communicate with the second UE 115-b using the second RAT.
  • the second base station 105-b and the second UE 115-b may communicate via a 4G/LTE RAT.
  • the second base station 105-b and the second UE 115-b may communicate with one another over the communication link 205-b based on (e.g., according to) a second communication configuration.
  • the second communication configuration may include a resource format including sets of downlink resources, sets of uplink resources, sets of flexible resources, or any combination thereof.
  • the second base station 105-b may determine the second communication configuration, and may transmit an indication of the second communication configuration to the second UE 115-b.
  • the second communication configuration may indicate a set of resources for communications between the second base station 105-b and the second UE 115-b. Additionally or alternatively, the second communicators configuration may include a set of resources for the second UE 115-b to transmit signals 220-b of a CLI measurement procedure according to the second RAT (e.g., LTE) .
  • the second communication configuration may include a set of resources which may be used by the second UE 115-b to transmit signals 220-b (e.g., SRSs) according to the second RAT such that other UEs 115 (e.g., first UE 115-a) may be measure the signals 220-b (e.g., SRSs) according to a CLI measurement procedure.
  • the second base station 105-b may transmit, to the first base station 105-a, an indication of a resource configuration 210-a including a set of resources (e.g., CLI measurement resources) configured for signals 220-b of the CLI measurement procedure.
  • the set of resources of the resource configuration 210-a may include a set of time resources and a set of frequency resources within which the first UE 115-a may perform the CLI measurement procedure.
  • the set of resources of the resource configuration 210-a may include the set of resources of the second communication configuration which the second UE 115-b uses to transmit signals 220-b (e.g., SRSs) of the CLI measurement procedure.
  • the set of resources indicated in the resource configuration 210-a may include a set of resources by which the second UE 115-b may use to transmit LTE signals 220-b which may be measured by the first UE 115-b in a CLI measurement procedure.
  • the indication of the resource configuration 210-a may be transmitted to the first base station 105-a in response to a request received from the first base station 105-a.
  • the first base station 105-a may transmit a request to the second base station 105-b, where the request indicates a request for a set of cross-RAT CLI measurement resources (e.g., resource configuration 210-a including the set of resources) .
  • the indication of the resource configuration 210-a including the set of resources may be transmitted from the second base station 105-b to the first base station 105-a via an X2 interface for communications between the first base station 105-a and the second base station 105-b.
  • communications between the first base station 105-a and the second base station 105-b across the X2 interface may be transmitted according to the first RAT (e.g., 5G, NR) , the second RAT (e.g., 4G, LTE) , or any combination thereof.
  • the first RAT e.g., 5G, NR
  • the second RAT e.g., 4G, LTE
  • the second base station 105-b may additionally transmit, to the first base station 105-a, an indication of one or more parameters associated with the CLI measurement procedure.
  • the one or more parameters may be transmitted to the first base station 105-a via the same or different transmission (e.g., X2 transmission) which includes the indication of the resource configuration 210-a including the set of resources.
  • the one or more parameters associated with the CLI measurement procedure may include, but are not limited to, a time domain pattern for the CLI measurement procedure, a sequence generation pattern of the signals 220-b (e.g., LTE signals 220-b) which are to be measured during the CLI measurement procedure, a resource element pattern of the signals 220-b which are to be measured during the CLI measurement procedure, a starting resource block of the signals 220-b which are to be measured during the CLI measurement procedure, or any combination thereof.
  • the one or more parameters may include any parameters which are necessary or beneficial for the first base station 105-a and/or the first UE 115-a to perform the CLI measurement procedure.
  • the first base station 105-a may transmit a feedback message 215 to the second base station 105-b.
  • the feedback message 215 may be transmitted based on (e.g., in response to) the indication of the resource configuration 210-a including the set of resources (e.g., CLI measurement resources) .
  • the feedback message 215 may include an acknowledgement (ACK) message (which may sometimes be referred to as a positive acknowledgment (ACK) ) or a negative acknowledgement (NACK) message.
  • ACK acknowledgement
  • NACK negative acknowledgement
  • the first base station 105-a may determine which resources of the set of resources 210-a will be used by the first UE 115-a for the CLI measurement procedure. In this regard, the first base station 105-a may determine (e.g., select) the entirety of, or at least a portion of, the set of resources (e.g., CLI measurement resources) indicated in the resource configuration 210-a which will be used for the CLI measurement procedure.
  • the set of resources e.g., CLI measurement resources
  • the first base station 105-a may determine the resources for the CLI measurement procedure based on the of the set of resources indicated in the resource configuration 210-a, the first communication configuration associated with the first base station 105-a, or both. For example, the first base station 105-a may determine (e.g., select) a subset of the set of resources (e.g., a subset of the CLI measurement resources) of the resource configuration 210-a for the CLI measurement procedure based on the indication of the set of resources and the first communication configuration associated with the first base station 105-a. For instance, the first base station 105-a may determine a set of downlink resources of the first communication configuration, a set of flexible resources of the first communication configuration, or both.
  • the first base station 105-a may determine the resources for the CLI measurement procedure based on the of the set of resources indicated in the resource configuration 210-a, the first communication configuration associated with the first base station 105-a, or both.
  • the first base station 105-a may determine (e.g., select) a subset of the set of resources (e.g., subset of the CLI measurement resources) indicated in the resource configuration 210-a to be used for the CLI measurement procedure which shares a set of time resources with at least portions of the set of downlink resources of the first communication configuration, the set of flexible resources of the first communication configuration, or both.
  • the first base station 105-a may select the subset of CLI measurement resources which overlaps with (e.g., potentially interferes with) downlink resources and/or flexible resources of the first communication configuration associated with the first base station 105-a.
  • the first base station 105-a may transmit, to the first UE 115-a via the communication link 205-a, a configuration (e.g., CLI measurement configuration) identifying at least a subset of the set of resources of the resource configuration 210-a (e.g., at least a subset of the CLI measurement resources) which will be used for the CLI measurement procedure.
  • the first base station 105-a may transmit a configuration indicating at least a subset of the set of resources indicated in the resource configuration 210-a which the second UE 115-b may use to transmit signals 220-b (e.g., SRSs, LTE signals) which may be measured for the CLI measurement procedure.
  • the first base station 105-ac may transmit the configuration (e.g., CLI measurement configuration) based on receiving the indication of the resource configuration 210-a including the set of resources, determining the resources for the CLI measurement procedure, or both.
  • the first UE 115-a may receive signals 220-b from the second UE 115-b.
  • the second UE 115-b may transmit the signals 220-b to the second base station 105-b, where the first UE 115-a intercepts, or otherwise receives, the signals 220-b intended for the second base station 105-b.
  • the signals 220-b received by the first UE 115-a may include uplink transmissions (e.g., uplink signals 220-b) transmitted by the second UE 115-b.
  • the signals 220-b may include SRSs transmitted by the second UE 115-b.
  • the second UE 115-b may transmit the signals 220-b according to (e.g., based on) the second communication configuration associated with the second base station 105-b.
  • the second UE 115-b may transmit the signals 220-b within the set of resources of the resource configuration 210-a (e.g., subset of the set of CLI measurement resources) determined by the first base station 105-b and indicated to the first UE 115-a for the CLI measurement procedure.
  • the first UE 115-a may perform CLI measurements on signals 220-b received within the set of resources indicated in the resource configuration 210-a (e.g., set of CLI measurement resources) associated with the CLI measurement procedure. Accordingly, the first UE 115-a may perform the CLI measurements based on (e.g., in accordance with) the configuration (e.g., CLI measurement configuration) received from the first base station 105-a. For example, the first UE 115-a may perform CLI measurements on signals 220-b received within the subset of the set of resources of the resource configuration 210-adetermined by the first base station 105-a and indicated to the first UE 115-a via the configuration for the CLI measurement procedure.
  • the configuration e.g., CLI measurement configuration
  • the first UE 115-a may transmit, to the first base station 105-a, a measurement report indicating CLI measured within the set of resources of the resource configuration 210-a associated with the CLI measurement procedure.
  • the measurement report may indicate CLI attributable to signals 220-b (e.g., SRSs, LTE signals) transmitted by the second UE 115-a which are received in the set (or subset) of the CLI measurement resources indicated in the configuration received from the first base station 105-a.
  • the first UE 115-a may transmit the measurement report (e.g., CLI measurement report) based on receiving the configuration for the CLI measurement procedure, receiving the signals 220-b from the second base station 105-b, or both.
  • the measurement report (e.g., CLI measurement report) transmitted to the first base station 105-a may additionally indicate CLI associated with signals transmitted according to the first RAT (e.g., CLI attributable to 5G signals) .
  • the measurement report may include an indication of CLI attributable to LTE signals (e.g., LTE signals from the second UE 115-b) , and an indication of CLI attributable to 5G signals.
  • the first UE 115-a may transmit a separate, second measurement report, where the second measurement report includes an indication of CLI attributable to signals transmitted according to the first RAT.
  • the first UE 115-a may report CLI measurements associated with the respective RATs via different measurement reports and/or the same measurement report.
  • the first base station 105-a, the second base station 105-b, or both may be configured to selectively adjust the first UE 115-a and the second UE 115-b, respectively, in order to reduce or eliminate CLI experienced by the first UE 115-a.
  • the first base station 105-a may transmit a configuration message to the first UE 115-a, where the configuration message is configured to selectively adjust a set of downlink resources, a set of flexible resources, or both, used for communications at the first UE 115-a.
  • the first base station 105-a may reduce or eliminate the CLI experienced by the first UE 115-a.
  • the first base station 105-a may transmit, to the second base station 105-b, an indication, a request, or both, indicating for the second base station 105-b to selectively adjust a set of uplink resources, a set of flexible resources, or both, used for communications by the second UE 115-b.
  • the second base station 105-b a may transmit a configuration message to the second UE 115-b, where the configuration message is configured to selectively adjust a set of downlink resources, a set of flexible resources, or both, used for communications at the second UE 115-b.
  • the second base station 105-b may reduce or eliminate the CLI experienced by the first UE 115-a.
  • the first base station 105-a may determine that the set of resources indicated in the resource configuration 210-a (e.g., CLI measurement resources) are expired, invalid, or otherwise unusable for the CLI measurement procedure. In some aspects, the first base station 105-a may determine that the resource configuration 210-a (e.g., set of resources indicated in the resource configuration 210-a) are invalid based on an expiration of a validity period (e.g., expiration of a timer) , based on the resource configuration 210-a and/or set of resources of the resource configuration 210-a being replaced or over-written by the second base station 105-b, based on explicit signaling from the second base station 105-b revoking the resource configuration and/or set of resources of the resource configuration 210-a, or any combination thereof.
  • a validity period e.g., expiration of a timer
  • the first base station 105-a may demine that the set of resources of the resource configuration 210-a are invalid based on signaling from the second base station 105-b, autonomously (e.g., without indications from the second base station 105-b) , or both.
  • the first base station 105-a may determine that the set of resources of the resource configuration 210-a (e.g., set of CLI measurement resources) are invalid by determining an expiration of a validity period (e.g., expiration of a timer) associated with the resource configuration 210-a and/or set of resources of the resource configuration 210-a.
  • the first base station 105-a may be pre-configured with the validity period.
  • the second base station 105-b may transmit an indication of the validity period associated with the resource configuration 210-a and/or set of resources of the resource configuration 210-a via the X2 interface.
  • the first base station 105-a may initiate the validity period (e.g., initiate the timer) upon receiving the indication of the resource configuration 210-a indicating the set of resoruces. Upon identifying the expiration of the validity period, the first base station 105-a may transmit, to the first UE 115-a, an indication that the resource configuration 210-a and/or set of resources of the resource configuration 210-a are invalid for the CLI measurement procedure. The first base station 105-a may transmit indication that the first set of resources are invalid based on determining the expiration of the validity period, receiving an indication of the validity period from the second base station 105-b, or both.
  • the validity period e.g., initiate the timer
  • the first base station 105-a may determine that the resource configuration 210-a and/or set of resources of the resource configuration 210-a (e.g., set of CLI measurement resources) are invalid based on explicit signaling from the second base station 105-b revoking the resource configuration 210-a and/or set of resources of the resource configuration 210-a.
  • the second base station 105-b may transmit, to the first base station 105-a, an indication that the resource configuration 210-a and/or set of resources of the resource configuration 210-a (e.g., CLI measurement resources) are invalid for the CLI measurement procedure. Accordingly, the second base station 105-b may explicitly revoke the resource configuration 210-a.
  • the first base station 105-a may determine that the resource configuration 210-a and/or set of resources of the resource configuration 210-a are invalid based on the indication received from the second base station 105-b. Upon determining that the set of resource configuration 210-a and/or set of resources of the resource configuration 210-a are invalid based on the indication from the second base station 105-b, the first base station 105-a may transmit, to the first UE 115-a, an indication that the resource configuration 210-a and/or set of resources of the resource configuration 210-a are invalid for the CLI measurement procedure.
  • the first base station 105-a may transmit the indication that the resource configuration 210-a and/or set of resources of the resource configuration 210-a are invalid based on receiving the indication from the second base station 105-b that the resource configuration 210-a and/or set of resources of the resource configuration 210-a are invalid for the CLI measurement procedure.
  • the first base station 105-a may determine that the resource configuration 210-a and/or set of resources of the resource configuration 210-a (e.g., set of CLI measurement resources) are invalid based on signaling from the second base station 105-b over-writing (e.g., replacing) the resource configuration 210-a and/or set of resources of the resource configuration (e.g., set of CLI measurement resources) with a second resource configuration 210-b (e.g., second set of resources indicated in the second resource configuration 210-b) .
  • the resource configuration 210-a and/or set of resources of the resource configuration 210-a e.g., set of CLI measurement resources
  • the first base station 105-a may receive, from the second base station 105-b, an indication of a second resource configuration 210-b indicating a second set of resources (e.g., second set of CLI measurement resources) for the CLI measurement procedure.
  • the second resource configuration 210-b may indicate a second set of resources by which the second UE 115-b may use to transmit signals 220-b (e.g., SRSs, LTE signals) which may be measured by the first UE 115-a for the CLI measurement procedure.
  • signals 220-b e.g., SRSs, LTE signals
  • the first base station 105-a may determine that the first resource configuration 210-a (e.g., first set of resources 210-a indicated in the first resource configuration 210-a) are invalid, and are replaced by the second set of resources indicated in the second resource configuration 210-b based on the signaling from the second base station 105-bc.
  • the first resource configuration 210-a e.g., first set of resources 210-a indicated in the first resource configuration 210-a
  • the second base station 105-bc may be determined that the first resource configuration 210-a (e.g., first set of resources 210-a indicated in the first resource configuration 210-a) are invalid, and are replaced by the second set of resources indicated in the second resource configuration 210-b based on the signaling from the second base station 105-bc.
  • the first base station 105-a may transmit, to the first UE 115-a, a second configuration (e.g., second CLI measurement configuration) identifying at least a subset of the second set of resources 210-b (e.g., subset of the second set of CLI measurement resources) for the CLI measurement procedure.
  • the first base station 105-b may additionally transmit an indication that the first set of resources indicated in the first resource configuration 210-a are invalid for the CLI measurement procedure.
  • the first base station 105-a may transmit the indication that the first set of resources indicated in the first resource configuration 210-a are invalid based on receiving the indication of the second resource configuration 210-b including the second set of resources from the second base station 105-b.
  • the wireless communications system 200 may additionally or alternatively be understood to enable bi-directional cross-RAT CLI measurement.
  • the first base station 105-a may transmit an indication of resource configurations 210 including sets of resources (e.g., CLI measurement resources) to the second base station 105-b for a CLI measurement procedure that measures signals 220-a transmitted according to the first RAT (e.g., signals 220-b transmitted by the first UE 115-a) .
  • the first base station 105-a may transmit an indication of resource configurations 210 including sets of resources (e.g., CLI measurement resources) to the second base station 105-b for a CLI measurement procedure that measures signals 220-a transmitted according to the first RAT (e.g., signals 220-b transmitted by the first UE 115-a) .
  • the first RAT e.g., signals 220-b transmitted by the first UE 115-a
  • the second base station 105-b may transmit a feedback message to the first base station 105-a, determine resources for the CLI measurement procedure, and transmit a CLI measurement configuration to the second UE 115-b for the CLI measurement procedure to be performed by the second UE 115-a on the signals 220-a transmitted by the first UE 115-a.
  • Techniques described herein may enable the base stations 105-a and 105-b associated with the different RATs to configure the first and second UEs 115-a and 105-b supported by the respective base stations 105-a and 105-b to perform CLI measurements of signals 220 transmitted according to the other RAT.
  • techniques described herein may enable cross-RAT CLI measurement between two different RATs.
  • cross-RAT CLI measurement the first and second UEs 115-a and 115-b may be able to perform more efficient and comprehensive CLI measurements, thereby enabling a reduction of CLI within the wireless communications system 200.
  • FIG. 3 illustrates an example of a process flow 300 that supports techniques for CLI measurement across RATs in accordance with aspects of the present disclosure.
  • process flow 300 may implement, or be implemented by, aspects of wireless communications system 100 or 200.
  • the process flow 300 may illustrate a first base station 105-c associated with a first RAT receiving CLI measurement resources from a second base station 105-d from a second RAT, and relaying the CLI measurement resources to a first UE 115-c for the first UE 115-a to perform cross-RAT CLI measurement using the CLI measurement resources, as described with reference to FIGs. 1–2.
  • process flow 300 may include a first UE 115-c, a second UE 115-d, a first base station 105-c, and a second base station 105-d which may be examples of corresponding devices as described herein.
  • the first UE 115-c and the second UE 115-d illustrated in FIG. 3 may be examples of the first UE 115-a and the second UE 115-b, respectively, illustrated in FIG. 2.
  • the first UE 115-c may include an example of a victim UE 115-c associated with a first RAT (e.g., 5G UE 115-c)
  • the second UE 115-d may include an example of an aggressor UE 115-d associated with a second RAT (e.g., LTE UE 115-d)
  • the first base station 105-c illustrated in FIG. 3 may be an example of the first base station 105-a illustrated in FIG. 2
  • the second base station 105-d illustrated in FIG. 3 may be an example of the second base station 105-d illustrated in FIG. 2.
  • the first base station 105-c may include a base station 105-a associated with the first RAT (e.g., 5G base station 105-c)
  • the second base station 105-d may include a base station 105-d associated with the second RAT (e.g., LTE base station 105-d) .
  • process flow 300 may be performed by hardware (e.g., including circuitry, processing blocks, logic components, and other components) , code (e.g., software or firmware) executed by a processor, or any combination thereof.
  • code e.g., software or firmware
  • Alternative examples of the following may be implemented, where some steps are performed in a different order than described or are not performed at all. In some cases, steps may include additional features not mentioned below, or further steps may be added.
  • FIG. 3 is shown and described as illustrating unidirectional cross-RAT CLI measurement (e.g., 5G UE 115-c performing CLI measurement of LTE signals) , this is solely for illustrative purposes.
  • techniques described herein may be understood to enable unidirectional cross-RAT CLI measurement, bidirectional cross-RAT measurement, or both.
  • any steps/functions shown and described as being carried out by the first base station 105-c may additionally or alternatively be carried out by the second base station 105-d.
  • any steps/functions shown and described as being carried out by the first UE 115-c may additionally or alternatively be carried out by the second UE 115-d.
  • the first base station 105-c may communicate with the first UE 115-c using the first RAT.
  • the first base station 105-c and the first UE 115-c may communicate via a 5G RAT, an NR RAT, or both.
  • the first base station 105-c and the first UE 115-c may communicate with one another based on (e.g., according to) a first communication configuration.
  • the first base station 105-c may determine a first communication configuration, and may transmit an indication of the first communication configuration to the first UE 115-c such that communications between the first base station 105-c and the first UE 115-c may be carried out according to the first communication configuration.
  • the first communication configuration may include a resource format including sets of downlink resources, sets of uplink resources, sets of flexible resources, or any combination thereof.
  • the second base station 105-d may communicate with the second UE 115-d using the second RAT.
  • the second base station 105-c and the second UE 115-d may communicate via a 4G RAT, an LTE RAT, or both.
  • the second base station 105-d and the second UE 115-d may communicate with one another based on (e.g., according to) a second communication configuration.
  • the second communication configuration may include a resource format including sets of downlink resources, sets of uplink resources, sets of flexible resources, or any combination thereof.
  • the second base station 105-d may determine the second communication configuration, and may transmit an indication of the second communication configuration to the second UE 115-d.
  • the second communication configuration may indicate a set of resources for communications between the second base station 105-d and the second UE 115-d.
  • the second communicators configuration may include a set of resources for the second UE 115-d to transmit signals of a CLI measurement procedure according to the second RAT (e.g., LTE) .
  • the second communication configuration may include a set of resources which may be used by the second UE 115-d to transmit SRSs according to the second RAT such that other UEs 115 (e.g., first UE 115-c) may be measure the SRSs according to a CLI measurement procedure.
  • other UEs 115 e.g., first UE 115-c
  • the second base station 105-d may transmit, to the first base station 105-a, an indication of a resource configuration including a set of resources (e.g., CLI measurement resources) configured for signals of the CLI measurement procedure.
  • the set of resources of the resource configuration may include a set of time resources and a set of frequency resources within which the first UE 115-c may perform the CLI measurement procedure.
  • the set of resources may include the set of resources of the second communication configuration which the second UE 115-d uses to transmit SRSs of the CLI measurement procedure.
  • the set of resources (e.g., CLI measurement resources) indicated in the resource configuration may include a set of resources by which the second UE 115-d may use to transmit LTE signals which may be measured by the first UE 115-d in a CLI measurement procedure.
  • the indication of the resource configuration including the set of resources may be transmitted to the first base station 105-c in response to a request received from the first base station 105-c.
  • the first base station 105-c may transmit a request to the second base station 105-d, where the request indicates a request for a set of cross-RAT CLI measurement resources.
  • the indication of the resource configuration including the set of resources may be transmitted from the second base station 105-d to the first base station 105-c via an X2 interface for communications between the first base station 105-c and the second base station 105-d
  • the second base station 105-d may additionally transmit, to the first base station 105-c, an indication of one or more parameters associated with the CLI measurement procedure.
  • the one or more parameters may be transmitted to the first base station 105-c via the same or different transmission (e.g., X2 transmission) which includes the indication of the resource configuration illustrated at 320.
  • the one or more parameters associated with the CLI measurement procedure may include, but are not limited to, a time domain pattern for the CLI measurement procedure, a sequence generation pattern of the signals (e.g., LTE signals) which are to be measured during the CLI measurement procedure, a resource element pattern of the signals (e.g., LTE signals) which are to be measured during the CLI measurement procedure, a starting resource block of the signals (e.g., LTE signals) which are to be measured during the CLI measurement procedure, or any combination thereof.
  • the one or more parameters may include any parameters which are necessary or beneficial for the first base station 105-c and/or the first UE 115-c to perform the CLI measurement procedure.
  • the first base station 105-c may transmit a feedback message to the second base station 105-d.
  • the feedback message may be transmitted based on (e.g., in response to) the indication of the set of resources (e.g., CLI measurement resources) .
  • the feedback message may include an ACK message or a NACK message.
  • the first base station 105-c may determine which resources of the set of resources indicated in the resource configuration received at 320 will be used by the first UE 115-c for the CLI measurement procedure. In this regard, the first base station 105-c may determine (e.g., select) the entirety of, or at least a portion of, the set of resources (e.g., CLI measurement resources) of the resource configuration which will be used for the CLI measurement procedure. In some aspects, the first base station 105-c may determine the resources for the CLI measurement procedure based on the indication of the resource configuration including set of resources received at 320, the first communication configuration associated with the first base station 105-c, or both.
  • the first base station 105-c may transmit, to the first UE 115-c, a configuration (e.g., CLI measurement configuration) identifying at least a subset of the set of resources (e.g., at least a subset of the CLI measurement resources) which will be used for the CLI measurement procedure.
  • the first base station 105-c may transmit a configuration indicating at least a subset of the set of resources which the second UE 115-d may use to transmit signals (e.g., SRSs, LTE signals) which may be measured for the CLI measurement procedure.
  • signals e.g., SRSs, LTE signals
  • the first base station 105-c may transmit the configuration (e.g., CLI measurement configuration) at 340 based on receiving the indication of the resource configuration including the set of resources at 320, determining the resources for the CLI measurement procedure at 330, or both.
  • the configuration e.g., CLI measurement configuration
  • the first UE 115-c may receive signals from the second UE 115-d.
  • the second UE 115-d may transmit the signals at 320 to the second base station 105-d, where the first UE 115-c intercepts, or otherwise receives, the signals intended for the second base station 105-d.
  • the signals received at 340 may include uplink transmissions (e.g., uplink signals) transmitted by the second UE 115-d.
  • the signals received at 340 may include SRSs transmitted by the second UE 115-d.
  • the second UE 115-d may transmit the signals at 425 according to (e.g., based on) the second communication configuration associated with the second base station 105-d.
  • the second UE 115-d may transmit the signals at 340 within the set of resources (e.g., set of CLI measurement resources) determined by the first base station 105-c at 330 and indicated to the first UE 115-c at 335.
  • the set of resources e.g., set of CLI measurement resources
  • the first UE 115-c may perform CLI measurements on signals received within the set of resources (e.g., set of CLI measurement resources) associated with the CLI measurement procedure. Accordingly, the first UE 115-c may perform the CLI measurements at 345 based on (e.g., in accordance with) the configuration (e.g., CLI measurement configuration) received at 335. For example, the first UE 115-c may perform CLI measurements on signals received within the subset of the set of CLI measurement resources determined by the first base station 105-c at 330 and indicated to the first UE 115-c via the configuration at 335.
  • the configuration e.g., CLI measurement configuration
  • the first UE 115-c may transmit, to the first base station 105-c, a measurement report indicating CLI measured within the set of resources associated with the CLI measurement procedure.
  • the measurement report may indicate CLI attributable to signals (e.g., SRSs, LTE signals) transmitted by the second UE 115-d which are received in the set (or subset) of the CLI measurement resources indicated in the configuration received at 335.
  • the first UE 115-c may transmit the measurement report (e.g., CLI measurement report) at 350 based on receiving the configuration at 335, receiving the signals from the second base station 105-d at 340, or both.
  • the measurement report (e.g., CLI measurement report) transmitted to the first base station 105-c may additionally indicate CLI associated with signals transmitted according to the first RAT (e.g., CLI attributable to 5G signals) .
  • the measurement report may include an indication of CLI attributable to LTE signals (e.g., LTE signals from the second UE 115-d) , and an indication of CLI attributable to 5G signals.
  • the first UE 115-c may transmit a separate, second measurement report, where the second measurement report includes an indication of CLI attributable to signals transmitted according to the first RAT.
  • the first UE 115-c may report CLI measurements associated with the respective RATs via different measurement reports and/or the same measurement report.
  • the first base station 105-c, the second base station 105-d, or both may be configured to selectively adjust the first UE 115-c and the second UE 115-d, respectively, in order to reduce or eliminate CLI experienced by the first UE 115-c.
  • the first base station 105-c may transmit a configuration message to the first UE 115-c, where the configuration message is configured to selectively adjust a set of downlink resources, a set of flexible resources, or both, used for communications at the first UE 115-c.
  • the first base station 105-c may reduce or eliminate the CLI experienced by the first UE 115-c.
  • the first base station 105-a may transmit, to the second base station 105-d, an indication, a request, or both, indicating for the second base station 105-d to selectively adjust a set of uplink resources, a set of flexible resources, or both, used for communications by the second UE 115-d.
  • the second base station 105-b may transmit a configuration message to the second UE 115-d, where the configuration message is configured to selectively adjust a set of downlink resources, a set of flexible resources, or both, used for communications at the second UE 115-b.
  • the second base station 105-d may reduce or eliminate the CLI experienced by the first UE 115-c.
  • the first base station 105-c may determine that the set of resources indicated in the resource allocation received at 320are expired, invalid, or otherwise unusable for the CLI measurement procedure. In some aspects, the first base station 105-c may determine that the resource allocation and/or set of resources indicated in the resource allocation are invalid based on an expiration of a validity period (e.g., expiration of a timer) , based on the set of resources being replaced or over-written by the second base station 105-d, based on explicit signaling from the second base station 105-b revoking the set of resources, or any combination thereof.
  • a validity period e.g., expiration of a timer
  • the first base station 105-c may demine that the set of resources are invalid based on signaling from the second base station 105-d, autonomously (e.g., without indications from the second base station 105-d) , or both.
  • the first base station 105-c may determine that the set of resources (e.g., set of CLI measurement resources) are invalid by determining an expiration of a validity period (e.g., expiration of a timer) associated with the set of resources.
  • the first base station 105-c may be pre-configured with the validity period.
  • the second base station 105-d may transmit an indication of the validity period associated with the set of resources via the X2 interface.
  • the first base station 105-c may initiate the validity period (e.g., initiate the timer) upon receiving the indication of the set of resources at 320.
  • the process flow 300 may proceed to 375.
  • the first base station 105-c may transmit an indication that the set of resources are invalid for the CLI measurement procedure.
  • the first base station 105-c may transmit indication that the first set of resources are invalid at 375 based on determining the expiration of the validity period, receiving an indication of the validity period from the second base station 105-d, or both.
  • the first base station 105-c may determine that the set of resources (e.g., set of CLI measurement resources) are invalid based on explicit signaling from the second base station 105-d revoking the set of resources received at 320.
  • the second base station 105-d may transmit, to the first base station 105-c, an indication that the set of resources (e.g., CLI measurement resources) are invalid for the CLI measurement procedure.
  • the second base station 105-d may explicitly revoke the set of resources.
  • the first base station 105-c may determine that the set of resources are invalid based on the indication received from the second base station 105-d.
  • the process flow 300 may proceed to 375.
  • the first base station 105-c may transmit an indication that the set of resources are invalid for the CLI measurement procedure.
  • the first base station 105-c may transmit the indication that the first set of resources are invalid at 375 based on receiving the indication from the second base station 105-d that the set of resources are invalid for the CLI measurement procedure.
  • the first base station 105-c may determine that the set of resources (e.g., set of CLI measurement resources) are invalid based on signaling from the second base station 105-d over-writing (e.g., replacing) the set of resources (e.g., set of CLI measurement resources) with a second set of resources (e.g., a second set of CLI measurement resources) .
  • the first base station 105-c may receive, from the second base station 105-d, an indication of a second set of resources (e.g., second set of CLI measurement resources) for the CLI measurement procedure.
  • the second set of resources may include resources by which the second UE 115-d may use to transmit signals (e.g., SRSs, LTE signals) which may be measured by the first UE 115-c for the CLI measurement procedure.
  • the first base station 105-c may determine that the first set of resources are invalid, and are replaced by the second set of resources based on the signaling from the second base station 105-c.
  • the process flow 300 may proceed to 370.
  • the first base station 105-c may transmit a second configuration (e.g., second CLI measurement configuration) identifying at least a subset of the second set of resources (e.g., subset of the second set of CLI measurement resources) for the CLI measurement procedure.
  • the first base station 105-c may additionally transmit an indication that the set of resources are invalid for the CLI measurement procedure.
  • the first base station 105-c may transmit the indication that the first set of resources are invalid based on receiving the indication of the second set of resources from the second base station 105-d.
  • process flow 300 may additionally or alternatively be understood to enable bi-directional cross-RAT CLI measurement.
  • the first base station 105-c may transmit an indication of a resource allocation indicating a set of resources (e.g., CLI measurement resources) to the second base station 105-d (e.g., at 320) for a CLI measurement procedure measuring signals transmitted according to the first RAT.
  • the second base station 105-d may transmit a feedback message to the first base station 105-c (e.g., at 325) , determine resources for the CLI measurement procedure (e.g., at 330) , and transmit a CLI measurement configuration to the second UE 115-d (e.g., at 335) for the CLI measurement procedure to be performed by the second UE 115-d.
  • Techniques described herein may enable the base stations 105-c and 105-d associated with the different RATs to configure the first and second UEs 115-c and 105-d supported by the respective base stations 105-c and 105-d to perform CLI measurements of signals transmitted according to the other RAT.
  • techniques described herein may enable cross-RAT CLI measurement between two different RATs.
  • the first and second UEs 115-c and 115-d may be able to perform more efficient and comprehensive CLI measurements, thereby enabling a reduction of CLI within a wireless communications system (e.g., a wireless communications system 100 or 200) .
  • FIG. 4 shows a block diagram 400 of a device 405 that supports techniques for CLI measurement across RATs in accordance with aspects of the present disclosure.
  • the device 405 may be an example of aspects of a base station 105 as described herein.
  • the device 405 may include a receiver 410, a communications manager 415, and a transmitter 420.
  • the device 405 may also include a processor. Each of these components may be in communication with one another (e.g., via one or more buses) .
  • the receiver 410 may receive information such as packets, user data, or control information associated with various information channels (e.g., control channels, data channels, and information related to techniques for CLI measurement across RATs, etc. ) . Information may be passed on to other components of the device 405.
  • the receiver 410 may be an example of aspects of the transceiver 720 described with reference to FIG. 7.
  • the receiver 410 may utilize a single antenna or a set of antennas.
  • the communications manager 415 may communicate with a UE using a first RAT, receive, from a second base station configured to communicate using a second RAT, an indication of a set of resources configured for signals of a CLI measurement procedure, the signals of the CLI measurement procedure to be transmitted by one or more UEs served by the second base station according to the second RAT, transmit, to the UE, a configuration identifying at least a subset of the set of resources configured for the one or more UEs served by the second base station to use to transmit the signals of the CLI measurement procedure, and receive, from the UE, a measurement report indicating CLI associated with at least the subset of the set of resources.
  • the communications manager 415 may also communicate with one or more UEs served by the second base station using a second RAT, transmit, to the one or more UEs served by the second base station, a configuration indicating a set of resources for the one or more UEs served by the second base station to use to transmit signals of a CLI measurement procedure according to the second RAT, transmit, to a first base station configured to communicate using a first RAT, an indication of the set of resources, and receive, from the first base station, a feedback message responsive to the transmitted indication.
  • the communications manager 415 may be an example of aspects of the communications manager 710 described herein.
  • the actions performed by the communications manager 415 as described herein may be implemented to realize one or more potential advantages. For example, by providing for cross-RAT CLI measurement, techniques described herein may enable a victim UE 115 to perform more comprehensive, efficient CLI measurements, thereby enabling the network (e.g., base station 105) to reduce and/or eliminate CLI experienced at the victim UE 115, which may lead to more efficient and reliable wireless communications within a wireless communications system (e.g., wireless communications system 100 or 200) .
  • a wireless communications system e.g., wireless communications system 100 or 200
  • a processor of the victim UE 115 may reduce processing resources used for wireless communications.
  • victim UEs 115 may be able to perform more comprehensive CLI measurements, thereby enabling the network to selectively adjust resources in order to reduce CLI experienced at the victim UE 11.
  • reducing CLI experienced by victim UEs 115 a quantity of retransmissions which must be performed to communicate data within a wireless communications system may be reduced, thereby reducing a number of times the processor ramps up processing power and turns on processing units to transmit and receive data.
  • the communications manager 415 may be implemented in hardware, code (e.g., software or firmware) executed by a processor, or any combination thereof. If implemented in code executed by a processor, the functions of the communications manager 415, or its sub-components may be executed by a general-purpose processor, a digital signal processor (DSP) , an application-specific integrated circuit (ASIC) , a field-programmable gate array (FPGA) or other programmable logic device, discrete gate or transistor logic, discrete hardware components, or any combination thereof designed to perform the functions described in the present disclosure.
  • DSP digital signal processor
  • ASIC application-specific integrated circuit
  • FPGA field-programmable gate array
  • the communications manager 415 may be physically located at various positions, including being distributed such that portions of functions are implemented at different physical locations by one or more physical components.
  • the communications manager 415, or its sub-components may be a separate and distinct component in accordance with various aspects of the present disclosure.
  • the communications manager 415, or its sub-components may be combined with one or more other hardware components, including but not limited to an input/output (I/O) component, a transceiver, a network server, another computing device, one or more other components described in the present disclosure, or a combination thereof in accordance with various aspects of the present disclosure.
  • I/O input/output
  • the transmitter 420 may transmit signals generated by other components of the device 405.
  • the transmitter 420 may be collocated with a receiver 410 in a transceiver module.
  • the transmitter 420 may be an example of aspects of the transceiver 720 described with reference to FIG. 7.
  • the transmitter 420 may utilize a single antenna or a set of antennas.
  • FIG. 5 shows a block diagram 500 of a device 505 that supports techniques for CLI measurement across RATs in accordance with aspects of the present disclosure.
  • the device 505 may be an example of aspects of a device 405, or a base station 105 as described herein.
  • the device 505 may include a receiver 510, a communications manager 515, and a transmitter 550.
  • the device 505 may also include a processor. Each of these components may be in communication with one another (e.g., via one or more buses) .
  • the receiver 510 may receive information such as packets, user data, or control information associated with various information channels (e.g., control channels, data channels, and information related to techniques for CLI measurement across RATs, etc. ) . Information may be passed on to other components of the device 505.
  • the receiver 510 may be an example of aspects of the transceiver 720 described with reference to FIG. 7.
  • the receiver 510 may utilize a single antenna or a set of antennas.
  • the communications manager 515 may be an example of aspects of the communications manager 415 as described herein.
  • the communications manager 515 may include a RAT communications manager 520, a resource configuration receiving manager 525, a CLI configuration transmitting manager 530, a measurement report receiving manager 535, a CLI measurement resource transmitting manager 540, and a feedback message receiving manager 545.
  • the communications manager 515 may be an example of aspects of the communications manager 710 described herein.
  • the RAT communications manager 520 may communicate with a UE using a first RAT.
  • the resource configuration receiving manager 525 may receive, from a second base station configured to communicate using a second RAT, an indication of a set of resources configured for signals of a CLI measurement procedure, the signals of the CLI measurement procedure to be transmitted by one or more UEs served by the second base station according to the second RAT.
  • the CLI configuration transmitting manager 530 may transmit, to the UE, a configuration identifying at least a subset of the set of resources configured for the one or more UEs served by the second base station to use to transmit the signals of the CLI measurement procedure.
  • the measurement report receiving manager 535 may receive, from the UE, a measurement report indicating CLI associated with at least the subset of the set of resources.
  • the RAT communications manager 520 may communicate with one or more UEs served by the second base station using a second RAT.
  • the CLI measurement resource transmitting manager 540 may transmit, to the one or more UEs served by the second base station, a configuration indicating a set of resources for the one or more UEs served by the second base station to use to transmit signals of a CLI measurement procedure according to the second RAT and transmit, to a first base station configured to communicate using a first RAT, an indication of the set of resources.
  • the feedback message receiving manager 545 may receive, from the first base station, a feedback message responsive to the transmitted indication.
  • the transmitter 550 may transmit signals generated by other components of the device 505.
  • the transmitter 550 may be collocated with a receiver 510 in a transceiver module.
  • the transmitter 550 may be an example of aspects of the transceiver 720 described with reference to FIG. 7.
  • the transmitter 550 may utilize a single antenna or a set of antennas.
  • FIG. 6 shows a block diagram 600 of a communications manager 605 that supports techniques for CLI measurement across RATs in accordance with aspects of the present disclosure.
  • the communications manager 605 may be an example of aspects of a communications manager 415, a communications manager 515, or a communications manager 710 described herein.
  • the communications manager 605 may include a RAT communications manager 610, a resource configuration receiving manager 615, a CLI configuration transmitting manager 620, a measurement report receiving manager 625, a feedback message transmitting manager 630, a communication configuration manager 635, a CLI resource manager 640, a validity period manager 645, a CLI parameter receiving manager 650, a CLI measurement resource transmitting manager 655, a feedback message receiving manager 660, and a CLI parameter transmitting manager 665. Each of these modules may communicate, directly or indirectly, with one another (e.g., via one or more buses) .
  • the RAT communications manager 610 may communicate with a UE using a first RAT.
  • the RAT communications manager 610 may communicate with one or more UEs served by the second base station using a second RAT.
  • the first RAT includes a 5G RAT, an NR access technology, or both.
  • the second RAT includes a 4G RAT, an LTE RAT, or both.
  • the resource configuration receiving manager 615 may receive, from a second base station configured to communicate using a second RAT, an indication of a set of resources configured for signals of a CLI measurement procedure, the signals of the CLI measurement procedure to be transmitted by one or more UEs served by the second base station according to the second RAT. In some examples, the resource configuration receiving manager 615 may receive, from the second base station, an indication of a second set of resources configured for signals of the CLI measurement procedure, the signals of the CLI procedure to be transmitted by the one or more UEs served by the second base station according to the second RAT. In some examples, the resource configuration receiving manager 615 may receive, from the second base station, an indication that the set of resources are invalid for the CLI measurement procedure.
  • the resource configuration receiving manager 615 may receive, from the first base station, an indication of a second set of resources configured for signals of a second CLI measurement procedure, the signals of the second CLI measurement procedure to be transmitted by one or more UEs served by the first base station according to the first RAT.
  • the indication of the set of resources is received from the second base station via an X2 interface for communications between the first base station and the second base station.
  • the CLI configuration transmitting manager 620 may transmit, to the UE, a configuration identifying at least a subset of the set of resources configured for the one or more UEs served by the second base station to use to transmit the signals of the CLI measurement procedure.
  • the CLI configuration transmitting manager 620 may transmit, to the UE, a second configuration indicating that the set of resources are invalid for the CLI measurement procedure, where the second configuration is transmitted based on the expiration of the validity period.
  • the CLI configuration transmitting manager 620 may transmit, to the UE based on receiving the indication of the second set of resources, an indication that the set of resources are invalid for the CLI measurement procedure.
  • the CLI configuration transmitting manager 620 may transmit, to the UE, a second configuration identifying at least a subset of the second set of resources configured for the one or more UEs served by the second base station to use to transmit the signals of the CLI measurement procedure.
  • the CLI configuration transmitting manager 620 may transmit, to the UE, a second configuration indicating that the set of resources are invalid for the CLI measurement procedure based on receiving, from the second base station, the indication that the set of resources are invalid for the CLI measurement procedure. In some examples, the CLI configuration transmitting manager 620 may transmit, to the UE, the configuration indicating the one or more parameters associated with the CLI procedure.
  • the CLI configuration transmitting manager 620 may transmit, to a second UE of the one or more UEs served by the second base station and using the second RAT, a second configuration identifying at least a subset of the second set of resources configured for the one or more UEs served by the first base station to use to transmit the signals of the second CLI measurement procedure.
  • the measurement report receiving manager 625 may receive, from the UE, a measurement report indicating CLI associated with at least the subset of the set of resources. In some examples, the measurement report receiving manager 625 may receive, from the UE, a second measurement report indicating CLI associated with signals transmitted according to the first RAT. In some examples, the measurement report receiving manager 625 may receive, from the second UE, a measurement report indicating CLI associated with at least the subset of the second set of resources. In some cases, the measurement report further indicates CLI associated with signals transmitted according to the first RAT.
  • the CLI measurement resource transmitting manager 655 may transmit, to the one or more UEs served by the second base station, a configuration indicating a set of resources for the one or more UEs served by the second base station to use to transmit signals of a CLI measurement procedure according to the second RAT.
  • the CLI measurement resource transmitting manager 655 may transmit, to a first base station configured to communicate using a first RAT, an indication of the set of resources.
  • the CLI measurement resource transmitting manager 655 may transmit, to the second base station, an indication of a second set of resources configured for signals of a second CLI measurement procedure, the signals of the second CLI measurement procedure to be transmitted by one or more UEs served by the first base station according to the first RAT.
  • the CLI measurement resource transmitting manager 655 may transmit, to the first base station, an indication of a second set of resources configured for signals of the CLI measurement procedure, the signals of the CLI measurement procedure to be transmitted by the one or more UEs served by the second base station according to the second RAT. In some examples, the CLI measurement resource transmitting manager 655 may transmit, to the first base station, an indication that the set of resources are invalid for the CLI measurement procedure. In some cases, the indication of the set of resources is transmitted to the first base station via an X2 interface for communications between the first base station and the second base station.
  • the feedback message receiving manager 660 may receive, from the first base station, a feedback message responsive to the transmitted indication. In some examples, the feedback message receiving manager 660 may receive, from the second base station, a feedback message responsive to the indication of the second set of resources. In some examples, the feedback message receiving manager 660 may receive, from the first base station, a second feedback message responsive to the indication of the second set of resources.
  • the feedback message transmitting manager 630 may transmit, to the second base station, a feedback message responsive to the indication of the set of resources. In some examples, the feedback message transmitting manager 630 may receive, from the first base station, a second feedback message responsive to the indication that the set of resources are invalid for the CLI measurement procedure. In some examples, the feedback message transmitting manager 630 may transmit, to the first base station, a second feedback message responsive to the indication of the second set of resources.
  • the communication configuration manager 635 may determine a first communication configuration for the first base station. In some examples, the communication configuration manager 635 may determine a set of downlink resources of the first communication configuration, a set of flexible resources of the first communication configuration, or both, where the subset of the set of resources shares a set of time resources with at least portions of the set of downlink resources, the set of flexible resources, or both.
  • the CLI resource manager 640 may determine the subset of the set of resources based on the indication of the set of resources and the first communication configuration.
  • the validity period manager 645 may determine an expiration of a validity period associated with the set of resources. In some examples, the validity period manager 645 may receive, from the second base station, an indication of the validity period associated with the set of resources, where transmitting the second configuration is based on receiving the indication of the validity period. In some examples, the validity period manager 645 may transmit, to the first base station, an indication of a validity period associated with the set of resources.
  • the CLI parameter receiving manager 650 may receive, from the second base station, an indication of one or more parameters associated with the CLI procedure.
  • the one or more parameters associated with the CLI procedure include a time domain pattern for the CLI measurement procedure, a sequence generation pattern of the signals of the CLI measurement procedure, a resource element pattern of the signals of the CLI measurement procedure, a starting resource block of the signals of the CLI measurement procedure, or any combination thereof.
  • the CLI parameter transmitting manager 665 may transmit, to the first base station, an indication of one or more parameters associated with the CLI procedure.
  • the one or more parameters associated with the CLI procedure include a time domain pattern for the CLI measurement procedure, a sequence generation pattern of the signals of the CLI measurement procedure, a resource element pattern of the signals of the CLI measurement procedure, a starting resource block of the signals of the CLI measurement procedure, or any combination thereof.
  • FIG. 7 shows a diagram of a system 700 including a device 705 that supports techniques for CLI measurement across RATs in accordance with aspects of the present disclosure.
  • the device 705 may be an example of or include the components of device 405, device 505, or a base station 105 as described herein.
  • the device 705 may include components for bi-directional voice and data communications including components for transmitting and receiving communications, including a communications manager 710, a network communications manager 715, a transceiver 720, an antenna 725, memory 730, a processor 740, and an inter-station communications manager 745. These components may be in electronic communication via one or more buses (e.g., bus 750) .
  • buses e.g., bus 750
  • the communications manager 710 may communicate with a UE using a first RAT, receive, from a second base station configured to communicate using a second RAT, an indication of a set of resources configured for signals of a CLI measurement procedure, the signals of the CLI measurement procedure to be transmitted by one or more UEs served by the second base station according to the second RAT, transmit, to the UE, a configuration identifying at least a subset of the set of resources configured for the one or more UEs served by the second base station to use to transmit the signals of the CLI measurement procedure, and receive, from the UE, a measurement report indicating CLI associated with at least the subset of the set of resources.
  • the communications manager 710 may also communicate with one or more UEs served by the second base station using a second RAT, transmit, to the one or more UEs served by the second base station, a configuration indicating a set of resources for the one or more UEs served by the second base station to use to transmit signals of a CLI measurement procedure according to the second RAT, transmit, to a first base station configured to communicate using a first RAT, an indication of the set of resources, and receive, from the first base station, a feedback message responsive to the transmitted indication.
  • the network communications manager 715 may manage communications with the core network (e.g., via one or more wired backhaul links) .
  • the network communications manager 715 may manage the transfer of data communications for client devices, such as one or more UEs 115.
  • the transceiver 720 may communicate bi-directionally, via one or more antennas, wired, or wireless links as described above.
  • the transceiver 720 may represent a wireless transceiver and may communicate bi-directionally with another wireless transceiver.
  • the transceiver 720 may also include a modem to modulate the packets and provide the modulated packets to the antennas for transmission, and to demodulate packets received from the antennas.
  • the wireless device may include a single antenna 725. However, in some cases the device may have more than one antenna 725, which may be capable of concurrently transmitting or receiving multiple wireless transmissions.
  • the memory 730 may include random-access memory (RAM) , read-only memory (ROM) , or a combination thereof.
  • the memory 730 may store computer-readable code 735 including instructions that, when executed by a processor (e.g., the processor 740) cause the device to perform various functions described herein.
  • a processor e.g., the processor 740
  • the memory 730 may contain, among other things, a basic I/O system (BIOS) which may control basic hardware or software operation such as the interaction with peripheral components or devices.
  • BIOS basic I/O system
  • the processor 740 may include an intelligent hardware device, (e.g., a general-purpose processor, a DSP, a central processing unit (CPU) , a microcontroller, an ASIC, an FPGA, a programmable logic device, a discrete gate or transistor logic component, a discrete hardware component, or any combination thereof) .
  • the processor 740 may be configured to operate a memory array using a memory controller.
  • a memory controller may be integrated into processor 740.
  • the processor 740 may be configured to execute computer-readable instructions stored in a memory (e.g., the memory 730) to cause the device 705 to perform various functions (e.g., functions or tasks supporting techniques for CLI measurement across RATs) .
  • the inter-station communications manager 745 may manage communications with other base station 105, and may include a controller or scheduler for controlling communications with UEs 115 in cooperation with other base stations 105. For example, the inter-station communications manager 745 may coordinate scheduling for transmissions to UEs 115 for various interference mitigation techniques such as beamforming or joint transmission. In some examples, the inter-station communications manager 745 may provide an X2 interface within an LTE/LTE-A wireless communication network technology to provide communication between base stations 105.
  • the code 735 may include instructions to implement aspects of the present disclosure, including instructions to support wireless communications.
  • the code 735 may be stored in a non-transitory computer-readable medium such as system memory or other type of memory. In some cases, the code 735 may not be directly executable by the processor 740 but may cause a computer (e.g., when compiled and executed) to perform functions described herein.
  • FIG. 8 shows a flowchart illustrating a method 800 that supports techniques for CLI measurement across RATs in accordance with aspects of the present disclosure.
  • the operations of method 800 may be implemented by a base station 105 or its components as described herein.
  • the operations of method 800 may be performed by a communications manager as described with reference to FIGs. 4 through 7.
  • a base station may execute a set of instructions to control the functional elements of the base station to perform the functions described below. Additionally or alternatively, a base station may perform aspects of the functions described below using special-purpose hardware.
  • the base station may communicate with a UE using a first RAT.
  • the operations of 805 may be performed according to the methods described herein. In some examples, aspects of the operations of 805 may be performed by a RAT communications manager as described with reference to FIGs. 4 through 7.
  • the base station may receive, from a second base station configured to communicate using a second RAT, an indication of a set of resources configured for signals of a CLI measurement procedure, the signals of the CLI measurement procedure to be transmitted by one or more UEs served by the second base station according to the second RAT.
  • the operations of 810 may be performed according to the methods described herein. In some examples, aspects of the operations of 810 may be performed by a CLI measurement resource receiving manager as described with reference to FIGs. 4 through 7.
  • the base station may transmit, to the UE, a configuration identifying at least a subset of the set of resources configured for the one or more UEs served by the second base station to use to transmit the signals of the CLI measurement procedure.
  • the operations of 815 may be performed according to the methods described herein. In some examples, aspects of the operations of 815 may be performed by a CLI configuration transmitting manager as described with reference to FIGs. 4 through 7.
  • the base station may receive, from the UE, a measurement report indicating CLI associated with at least the subset of the set of resources.
  • the operations of 820 may be performed according to the methods described herein. In some examples, aspects of the operations of 820 may be performed by a measurement report receiving manager as described with reference to FIGs. 4 through 7.
  • FIG. 9 shows a flowchart illustrating a method 900 that supports techniques for CLI measurement across RATs in accordance with aspects of the present disclosure.
  • the operations of method 900 may be implemented by a base station 105 or its components as described herein.
  • the operations of method 900 may be performed by a communications manager as described with reference to FIGs. 4 through 7.
  • a base station may execute a set of instructions to control the functional elements of the base station to perform the functions described below. Additionally or alternatively, a base station may perform aspects of the functions described below using special-purpose hardware.
  • the base station may communicate with a UE using a first RAT.
  • the operations of 905 may be performed according to the methods described herein. In some examples, aspects of the operations of 905 may be performed by a RAT communications manager as described with reference to FIGs. 4 through 7.
  • the base station may receive, from a second base station configured to communicate using a second RAT, an indication of a set of resources configured for signals of a CLI measurement procedure, the signals of the CLI measurement procedure to be transmitted by one or more UEs served by the second base station according to the second RAT.
  • the operations of 910 may be performed according to the methods described herein. In some examples, aspects of the operations of 910 may be performed by a CLI measurement resource receiving manager as described with reference to FIGs. 4 through 7.
  • the base station may determine a first communication configuration for the first base station.
  • the operations of 915 may be performed according to the methods described herein. In some examples, aspects of the operations of 915 may be performed by a communication configuration manager as described with reference to FIGs. 4 through 7.
  • the base station may determine the subset of the set of resources based on the indication of the set of resources and the first communication configuration.
  • the operations of 920 may be performed according to the methods described herein. In some examples, aspects of the operations of 920 may be performed by a CLI resource manager as described with reference to FIGs. 4 through 7.
  • the base station may transmit, to the UE, a configuration identifying at least the subset of the set of resources configured for the one or more UEs served by the second base station to use to transmit the signals of the CLI measurement procedure.
  • the operations of 925 may be performed according to the methods described herein. In some examples, aspects of the operations of 925 may be performed by a CLI configuration transmitting manager as described with reference to FIGs. 4 through 7.
  • the base station may receive, from the UE, a measurement report indicating CLI associated with at least the subset of the set of resources.
  • the operations of 930 may be performed according to the methods described herein. In some examples, aspects of the operations of 930 may be performed by a measurement report receiving manager as described with reference to FIGs. 4 through 7.
  • FIG. 10 shows a flowchart illustrating a method 1000 that supports techniques for CLI measurement across RATs in accordance with aspects of the present disclosure.
  • the operations of method 1000 may be implemented by a base station 105 or its components as described herein.
  • the operations of method 1000 may be performed by a communications manager as described with reference to FIGs. 4 through 7.
  • a base station may execute a set of instructions to control the functional elements of the base station to perform the functions described below. Additionally or alternatively, a base station may perform aspects of the functions described below using special-purpose hardware.
  • the base station may communicate with a UE using a first RAT.
  • the operations of 1005 may be performed according to the methods described herein. In some examples, aspects of the operations of 1005 may be performed by a RAT communications manager as described with reference to FIGs. 4 through 7.
  • the base station may receive, from a second base station configured to communicate using a second RAT, an indication of a set of resources configured for signals of a CLI measurement procedure, the signals of the CLI measurement procedure to be transmitted by one or more UEs served by the second base station according to the second RAT.
  • the operations of 1010 may be performed according to the methods described herein. In some examples, aspects of the operations of 1010 may be performed by a CLI measurement resource receiving manager as described with reference to FIGs. 4 through 7.
  • the base station may transmit, to the UE, a configuration identifying at least a subset of the set of resources configured for the one or more UEs served by the second base station to use to transmit the signals of the CLI measurement procedure.
  • the operations of 1015 may be performed according to the methods described herein. In some examples, aspects of the operations of 1015 may be performed by a CLI configuration transmitting manager as described with reference to FIGs. 4 through 7.
  • the base station may receive, from the UE, a measurement report indicating CLI associated with at least the subset of the set of resources.
  • the operations of 1020 may be performed according to the methods described herein. In some examples, aspects of the operations of 1020 may be performed by a measurement report receiving manager as described with reference to FIGs. 4 through 7.
  • the base station may determine an expiration of a validity period associated with the set of resources.
  • the operations of 1025 may be performed according to the methods described herein. In some examples, aspects of the operations of 1025 may be performed by a validity period manager as described with reference to FIGs. 4 through 7.
  • the base station may transmit, to the UE, a second configuration indicating that the set of resources are invalid for the CLI measurement procedure, where the second configuration is transmitted based on the expiration of the validity period.
  • the operations of 1030 may be performed according to the methods described herein. In some examples, aspects of the operations of 1030 may be performed by a CLI configuration transmitting manager as described with reference to FIGs. 4 through 7.
  • FIG. 11 shows a flowchart illustrating a method 1100 that supports techniques for CLI measurement across RATs in accordance with aspects of the present disclosure.
  • the operations of method 1100 may be implemented by a base station 105 or its components as described herein.
  • the operations of method 1100 may be performed by a communications manager as described with reference to FIGs. 4 through 7.
  • a base station may execute a set of instructions to control the functional elements of the base station to perform the functions described below. Additionally or alternatively, a base station may perform aspects of the functions described below using special-purpose hardware.
  • the base station may communicate with one or more UEs served by the second base station using a second radio access technology.
  • the operations of 1105 may be performed according to the methods described herein. In some examples, aspects of the operations of 1105 may be performed by a RAT communications manager as described with reference to FIGs. 4 through 7.
  • the base station may transmit, to the one or more UEs served by the second base station, a configuration indicating a set of resources for the one or more UEs served by the second base station to use to transmit signals of a CLI measurement procedure according to the second radio access technology.
  • the operations of 1110 may be performed according to the methods described herein. In some examples, aspects of the operations of 1110 may be performed by a CLI measurement resource transmitting manager as described with reference to FIGs. 4 through 7.
  • the base station may transmit, to a first base station configured to communicate using a first radio access technology, an indication of the set of resources.
  • the operations of 1115 may be performed according to the methods described herein. In some examples, aspects of the operations of 1115 may be performed by a CLI measurement resource transmitting manager as described with reference to FIGs. 4 through 7.
  • the base station may receive, from the first base station, a feedback message responsive to the transmitted indication.
  • the operations of 1120 may be performed according to the methods described herein. In some examples, aspects of the operations of 1120 may be performed by a feedback message receiving manager as described with reference to FIGs. 4 through 7.
  • LTE, LTE-A, LTE-A Pro, or NR may be described for purposes of example, and LTE, LTE-A, LTE-A Pro, or NR terminology may be used in much of the description, the techniques described herein are applicable beyond LTE, LTE-A, LTE-A Pro, or NR networks.
  • the described techniques may be applicable to various other wireless communications systems such as Ultra Mobile Broadband (UMB) , Institute of Electrical and Electronics Engineers (IEEE) 802.11 (Wi-Fi) , IEEE 802.16 (WiMAX) , IEEE 802.20, Flash-OFDM, as well as other systems and radio technologies not explicitly mentioned herein.
  • UMB Ultra Mobile Broadband
  • IEEE Institute of Electrical and Electronics Engineers
  • Wi-Fi Institute of Electrical and Electronics Engineers
  • WiMAX IEEE 802.16
  • IEEE 802.20 Flash-OFDM
  • Information and signals described herein may be represented using any of a variety of different technologies and techniques.
  • data, instructions, commands, information, signals, bits, symbols, and chips that may be referenced throughout the description may be represented by voltages, currents, electromagnetic waves, magnetic fields or particles, optical fields or particles, or any combination thereof.
  • a general-purpose processor may be a microprocessor, but in the alternative, the processor may be any processor, controller, microcontroller, or state machine.
  • a processor may also be implemented as a combination of computing devices (e.g., a combination of a DSP and a microprocessor, multiple microprocessors, one or more microprocessors in conjunction with a DSP core, or any other such configuration) .
  • the functions described herein may be implemented in hardware, software executed by a processor, firmware, or any combination thereof. If implemented in software executed by a processor, the functions may be stored on or transmitted over as one or more instructions or code on a computer-readable medium. Other examples and implementations are within the scope of the disclosure and appended claims. For example, due to the nature of software, functions described herein may be implemented using software executed by a processor, hardware, firmware, hardwiring, or combinations of any of these. Features implementing functions may also be physically located at various positions, including being distributed such that portions of functions are implemented at different physical locations.
  • Computer-readable media includes both non-transitory computer storage media and communication media including any medium that facilitates transfer of a computer program from one place to another.
  • a non-transitory storage medium may be any available medium that may be accessed by a general-purpose or special purpose computer.
  • non-transitory computer-readable media may include RAM, ROM, electrically erasable programmable ROM (EEPROM) , flash memory, compact disk (CD) ROM or other optical disk storage, magnetic disk storage or other magnetic storage devices, or any other non-transitory medium that may be used to carry or store desired program code means in the form of instructions or data structures and that may be accessed by a general-purpose or special-purpose computer, or a general-purpose or special-purpose processor.
  • any connection is properly termed a computer-readable medium.
  • the software is transmitted from a website, server, or other remote source using a coaxial cable, fiber optic cable, twisted pair, digital subscriber line (DSL) , or wireless technologies such as infrared, radio, and microwave
  • the coaxial cable, fiber optic cable, twisted pair, DSL, or wireless technologies such as infrared, radio, and microwave are included in the definition of computer-readable medium.
  • Disk and disc include CD, laser disc, optical disc, digital versatile disc (DVD) , floppy disk and Blu-ray disc where disks usually reproduce data magnetically, while discs reproduce data optically with lasers. Combinations of the above are also included within the scope of computer-readable media.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

Methods, systems, and devices for wireless communications are described. A first base station may communicate with a user equipment (UE) using a first radio access technology (RAT). The first base station may receive, from a second base station configured to communicate using a second RAT, an indication of a set of resources configured for signals of a cross-link interference (CLI) measurement procedure, where the signals are to be transmitted by one or more UEs served by the second base station according to the second RAT. The first base station may transmit, to the UE, a configuration identifying at least a subset of the set of resources configured for the one or more UEs to use to transmit the signals of the CLI measurement procedure. In response to the configuration, the first base station may receive, from the UE, a measurement report indicating CLI associated with at least the subset of the set of resources.

Description

TECHNIQUES FOR CROSS-LINK INTERFERENCE MEASUREMENT ACROSS RADIO ACCESS TECHNOLOGIES
FIELD OF TECHNOLOGY
The following relates to wireless communications, including techniques for cross-link interference (CLI) measurement across radio access technologies (RATs) .
BACKGROUND
Wireless communications systems are widely deployed to provide various types of communication content such as voice, video, packet data, messaging, broadcast, and so on. These systems may be capable of supporting communication with multiple users by sharing the available system resources (e.g., time, frequency, and power) . Examples of such multiple-access systems include fourth generation (4G) systems such as Long Term Evolution (LTE) systems, LTE-Advanced (LTE-A) systems, or LTE-A Pro systems, and fifth generation (5G) systems which may be referred to as New Radio (NR) systems. These systems may employ technologies such as code division multiple access (CDMA) , time division multiple access (TDMA) , frequency division multiple access (FDMA) , orthogonal frequency division multiple access (OFDMA) , or discrete Fourier transform spread orthogonal frequency division multiplexing (DFT-S-OFDM) . A wireless multiple-access communications system may include one or more base stations or one or more network access nodes, each simultaneously supporting communication for multiple communication devices, which may be otherwise known as user equipment (UE) .
In some wireless communications systems, uplink signals transmitted by an aggressor user equipment (UE) may interfere with downlink signals received by a victim UE, thereby resulting in cross-link interference (CLI) at the victim UE. Left unmanaged, CLI may result in excessive noise and negatively impact the efficiency and reliability of wireless communications.
SUMMARY
The described techniques relate to improved methods, systems, devices, and apparatuses that support techniques for cross-link interference (CLI) measurement across radio access technologies (RATs) . Generally, the described techniques provide for cross- RAT CLI measurement. In some aspects, a first base station associated with a first RAT (e.g., fifth generation (5G) or New Radio (NR) base station) may receive, from a second base station associated with a second RAT (e.g., fourth generation (4G) or Long Term Evolution (LTE) base station) , an indication of a set of CLI measurement resources for measuring signals transmitted according to the second RAT. In some cases, the indication of the CLI measurement resources may be valid for a predefined duration, over-written by a subsequent indication of CLI measurement resources, and/or may be revoked via explicit signaling from the second base station. Subsequently, the first base station may transmit at least a portion of the CLI measurement resources to UEs associated with the first RAT (e.g., 5G UEs) . The first base station may then receive a CLI measurement report from the UEs, where the CLI measurement report indicates CLI experienced at the UE which is attributable to signals transmitted according to the second RAT (e.g., CLI attributable to LTE signals) . By configuring UEs to perform cross-RAT CLI measurement, techniques described herein may enable more accurate and complete determinations of CLI experienced by UEs.
A method of wireless communication at a first base station is described. The method may include communicating with a UE using a first RAT, receiving, from a second base station configured to communicate using a second RAT, an indication of a set of resources configured for signals of a CLI measurement procedure, the signals of the CLI measurement procedure to be transmitted by one or more UEs served by the second base station according to the second RAT, transmitting, to the UE, a configuration identifying at least a subset of the set of resources configured for the one or more UEs served by the second base station to use to transmit the signals of the CLI measurement procedure, and receiving, from the UE, a measurement report indicating CLI associated with at least the subset of the set of resources.
An apparatus for wireless communication at a first base station is described. The apparatus may include a processor, memory coupled with the processor, and instructions stored in the memory. The instructions may be executable by the processor to cause the apparatus to communicate with a UE using a first RAT, receive, from a second base station configured to communicate using a second RAT, an indication of a set of resources configured for signals of a CLI measurement procedure, the signals of the CLI measurement procedure to be transmitted by one or more UEs served by the second base station according to the second RAT, transmit, to the UE, a configuration identifying at least a subset of the set  of resources configured for the one or more UEs served by the second base station to use to transmit the signals of the CLI measurement procedure, and receive, from the UE, a measurement report indicating CLI associated with at least the subset of the set of resources.
Another apparatus for wireless communication at a first base station is described. The apparatus may include means for communicating with a UE using a first RAT, receiving, from a second base station configured to communicate using a second RAT, an indication of a set of resources configured for signals of a CLI measurement procedure, the signals of the CLI measurement procedure to be transmitted by one or more UEs served by the second base station according to the second RAT, transmitting, to the UE, a configuration identifying at least a subset of the set of resources configured for the one or more UEs served by the second base station to use to transmit the signals of the CLI measurement procedure, and receiving, from the UE, a measurement report indicating CLI associated with at least the subset of the set of resources.
A non-transitory computer-readable medium storing code for wireless communication at a first base station is described. The code may include instructions executable by a processor to communicate with a UE using a first RAT, receive, from a second base station configured to communicate using a second RAT, an indication of a set of resources configured for signals of a CLI measurement procedure, the signals of the CLI measurement procedure to be transmitted by one or more UEs served by the second base station according to the second RAT, transmit, to the UE, a configuration identifying at least a subset of the set of resources configured for the one or more UEs served by the second base station to use to transmit the signals of the CLI measurement procedure, and receive, from the UE, a measurement report indicating CLI associated with at least the subset of the set of resources.
Some examples of the method, apparatuses, and non-transitory computer-readable medium described herein may further include operations, features, means, or instructions for transmitting, to the second base station, a feedback message responsive to the indication of the set of resources.
Some examples of the method, apparatuses, and non-transitory computer-readable medium described herein may further include operations, features, means, or instructions for determining a first communication configuration for the first base station, and determining  the subset of the set of resources based on the indication of the set of resources and the first communication configuration.
Some examples of the method, apparatuses, and non-transitory computer-readable medium described herein may further include operations, features, means, or instructions for determining a set of downlink resources of the first communication configuration, a set of flexible resources of the first communication configuration, or both, where the subset of the set of resources shares a set of time resources with at least portions of the set of downlink resources, the set of flexible resources, or both.
Some examples of the method, apparatuses, and non-transitory computer-readable medium described herein may further include operations, features, means, or instructions for determining an expiration of a validity period associated with the set of resources, and transmitting, to the UE, a second configuration indicating that the set of resources may be invalid for the CLI measurement procedure, where the second configuration may be transmitted based on the expiration of the validity period.
Some examples of the method, apparatuses, and non-transitory computer-readable medium described herein may further include operations, features, means, or instructions for receiving, from the second base station, an indication of the validity period associated with the set of resources, where transmitting the second configuration may be based on receiving the indication of the validity period.
Some examples of the method, apparatuses, and non-transitory computer-readable medium described herein may further include operations, features, means, or instructions for receiving, from the second base station, an indication of a second set of resources configured for signals of the CLI measurement procedure, the signals of the CLI procedure to be transmitted by the one or more UEs served by the second base station according to the second RAT, transmitting, to the UE based on receiving the indication of the second set of resources, an indication that the set of resources may be invalid for the CLI measurement procedure, and transmitting, to the UE, a second configuration identifying at least a subset of the second set of resources configured for the one or more UEs served by the second base station to use to transmit the signals of the CLI measurement procedure.
Some examples of the method, apparatuses, and non-transitory computer-readable medium described herein may further include operations, features, means, or instructions for  receiving, from the second base station, an indication that the set of resources may be invalid for the CLI measurement procedure, and transmitting, to the UE, a second configuration indicating that the set of resources may be invalid for the CLI measurement procedure based on receiving, from the second base station, the indication that the set of resources may be invalid for the CLI measurement procedure.
Some examples of the method, apparatuses, and non-transitory computer-readable medium described herein may further include operations, features, means, or instructions for receiving, from the second base station, an indication of one or more parameters associated with the CLI procedure, and transmitting, to the UE, the configuration indicating the one or more parameters associated with the CLI procedure.
In some examples of the method, apparatuses, and non-transitory computer-readable medium described herein, the one or more parameters associated with the CLI procedure include a time domain pattern for the CLI measurement procedure, a sequence generation pattern of the signals of the CLI measurement procedure, a resource element pattern of the signals of the CLI measurement procedure, a starting resource block of the signals of the CLI measurement procedure, or any combination thereof.
Some examples of the method, apparatuses, and non-transitory computer-readable medium described herein may further include operations, features, means, or instructions for transmitting, to the second base station, an indication of a second set of resources configured for signals of a second CLI measurement procedure, the signals of the second CLI measurement procedure to be transmitted by one or more UEs served by the first base station according to the first RAT, and receiving, from the second base station, a feedback message responsive to the indication of the second set of resources.
In some examples of the method, apparatuses, and non-transitory computer-readable medium described herein, the measurement report further indicates CLI associated with signals transmitted according to the first RAT.
Some examples of the method, apparatuses, and non-transitory computer-readable medium described herein may further include operations, features, means, or instructions for receiving, from the UE, a second measurement report indicating CLI associated with signals transmitted according to the first RAT.
In some examples of the method, apparatuses, and non-transitory computer-readable medium described herein, the first RAT includes a 5G RAT, an NR access technology, or both, and the second RAT includes a 4G RAT, an LTE RAT, or both.
In some examples of the method, apparatuses, and non-transitory computer-readable medium described herein, the indication of the set of resources may be received from the second base station via an X2 interface for communications between the first base station and the second base station.
A method of wireless communication at a second base station is described. The method may include communicating with one or more UEs served by the second base station using a second RAT, transmitting, to the one or more UEs served by the second base station, a configuration indicating a set of resources for the one or more UEs served by the second base station to use to transmit signals of a CLI measurement procedure according to the second RAT, transmitting, to a first base station configured to communicate using a first RAT, an indication of the set of resources, and receiving, from the first base station, a feedback message responsive to the transmitted indication.
An apparatus for wireless communication at a second base station is described. The apparatus may include a processor, memory coupled with the processor, and instructions stored in the memory. The instructions may be executable by the processor to cause the apparatus to communicate with one or more UEs served by the second base station using a second RAT, transmit, to the one or more UEs served by the second base station, a configuration indicating a set of resources for the one or more UEs served by the second base station to use to transmit signals of a CLI measurement procedure according to the second RAT, transmit, to a first base station configured to communicate using a first RAT, an indication of the set of resources, and receive, from the first base station, a feedback message responsive to the transmitted indication.
Another apparatus for wireless communication at a second base station is described. The apparatus may include means for communicating with one or more UEs served by the second base station using a second RAT, transmitting, to the one or more UEs served by the second base station, a configuration indicating a set of resources for the one or more UEs served by the second base station to use to transmit signals of a CLI measurement procedure according to the second RAT, transmitting, to a first base station configured to  communicate using a first RAT, an indication of the set of resources, and receiving, from the first base station, a feedback message responsive to the transmitted indication.
A non-transitory computer-readable medium storing code for wireless communication at a second base station is described. The code may include instructions executable by a processor to communicate with one or more UEs served by the second base station using a second RAT, transmit, to the one or more UEs served by the second base station, a configuration indicating a set of resources for the one or more UEs served by the second base station to use to transmit signals of a CLI measurement procedure according to the second RAT, transmit, to a first base station configured to communicate using a first RAT, an indication of the set of resources, and receive, from the first base station, a feedback message responsive to the transmitted indication.
Some examples of the method, apparatuses, and non-transitory computer-readable medium described herein may further include operations, features, means, or instructions for transmitting, to the first base station, an indication of a validity period associated with the set of resources.
Some examples of the method, apparatuses, and non-transitory computer-readable medium described herein may further include operations, features, means, or instructions for transmitting, to the first base station, an indication of a second set of resources configured for signals of the CLI measurement procedure, the signals of the CLI measurement procedure to be transmitted by the one or more UEs served by the second base station according to the second RAT, and receiving, from the first base station, a second feedback message responsive to the indication of the second set of resources.
Some examples of the method, apparatuses, and non-transitory computer-readable medium described herein may further include operations, features, means, or instructions for transmitting, to the first base station, an indication that the set of resources may be invalid for the CLI measurement procedure, and receiving, from the first base station, a second feedback message responsive to the indication that the set of resources may be invalid for the CLI measurement procedure.
Some examples of the method, apparatuses, and non-transitory computer-readable medium described herein may further include operations, features, means, or instructions for  transmitting, to the first base station, an indication of one or more parameters associated with the CLI procedure.
Some examples of the method, apparatuses, and non-transitory computer-readable medium described herein may further include operations, features, means, or instructions for whereing the one or more parameters associated with the CLI procedure include a time domain pattern for the CLI measurement procedure, a sequence generation pattern of the signals of the CLI measurement procedure, a resource element pattern of the signals of the CLI measurement procedure, a starting resource block of the signals of the CLI measurement procedure, or any combination thereof.
Some examples of the method, apparatuses, and non-transitory computer-readable medium described herein may further include operations, features, means, or instructions for receiving, from the first base station, an indication of a second set of resources configured for signals of a second CLI measurement procedure, the signals of the second CLI measurement procedure to be transmitted by one or more UEs served by the first base station according to the first RAT, and transmitting, to the first base station, a second feedback message responsive to the indication of the second set of resources.
Some examples of the method, apparatuses, and non-transitory computer-readable medium described herein may further include operations, features, means, or instructions for transmitting, to a second UE of the one or more UEs served by the second base station and using the second RAT, a second configuration identifying at least a subset of the second set of resources configured for the one or more UEs served by the first base station to use to transmit the signals of the second CLI measurement procedure, and receiving, from the second UE, a measurement report indicating CLI associated with at least the subset of the second set of resources.
In some examples of the method, apparatuses, and non-transitory computer-readable medium described herein, the first RAT includes a 5G RAT, an NR access technology, or both, and the second RAT includes a 4G RAT, an LTE RAT, or both.
In some examples of the method, apparatuses, and non-transitory computer-readable medium described herein, the indication of the set of resources may be transmitted to the first base station via an X2 interface for communications between the first base station and the second base station.
BRIEF DESCRIPTION OF THE DRAWINGS
FIG. 1 illustrates an example of a wireless communications system that supports techniques for cross-link interference (CLI) measurement across radio access technologies (RATs) in accordance with aspects of the present disclosure.
FIG. 2 illustrates an example of a wireless communications system that supports techniques for CLI measurement across RATs in accordance with aspects of the present disclosure.
FIG. 3 illustrates an example of a process flow that supports techniques for CLI measurement across RATs in accordance with aspects of the present disclosure.
FIGs. 4 and 5 show block diagrams of devices that support techniques for CLI measurement across RATs in accordance with aspects of the present disclosure.
FIG. 6 shows a block diagram of a communications manager that supports techniques for CLI measurement across RATs in accordance with aspects of the present disclosure.
FIG. 7 shows a diagram of a system including a device that supports techniques for CLI measurement across RATs in accordance with aspects of the present disclosure.
FIGs. 8 through 11 show flowcharts illustrating methods that support techniques for CLI measurement RATs in accordance with aspects of the present disclosure.
DETAILED DESCRIPTION
In some wireless communications systems, a user equipment (UE) may be configured to perform cross-link interference (CLI) measurements attributable to signals received from other UEs. For example, a victim UE may experience CLI from signals transmitted by an aggressor UE in cases where downlink resources of the victim UE overlap with uplink resources of the aggressor UE. In such cases, uplink transmissions from the aggressor UE may collide with, or otherwise interrupt, downlink transmissions received by the victim UE within the downlink resources, thereby resulting in CLI. In some cases, a victim UE associated with one radio access technology (RAT) (e.g., 5G UE) may experience CLI attributable to signals transmitted by an aggressor UE associated with a second RAT (e.g., LTE UE) . However, conventional CLI measurement techniques do not support  measurement of CLI across RATs. For example, a 5G base station may be unable to configure a 5G victim UE with CLI measurement resources configured for measuring CLI attributable to signals transmitted by an LTE aggressor UE. Accordingly, current techniques for CLI measurement may be insufficient to accurately and efficiently determine CLI experienced by a UE.
To address issues associated with CLI measurement, techniques for cross-RAT CLI measurement are disclosed. In some aspects, a first base station associated with a first RAT (e.g., 5G/NR base station) may receive, from a second base station associated with a second RAT (e.g., LTE base station) an indication of a set of CLI measurement resources for measuring signals transmitted according to the second RAT. In some cases, the indication of the CLI measurement resources may be valid for a predefined duration, over-written by a subsequent indication of CLI measurement resources, and/or may be revoked via explicit signaling from the second base station. Subsequently, the first base station may transmit at least a portion of the CLI measurement resources to UEs associated with the first RAT (e.g., 5G/NR UEs) . The first base station may then receive a CLI measurement report from the UEs, where the CLI measurement report indicates CLI experienced at the UE which is attributable to signals transmitted according to the second RAT (e.g., 4G/LTE RAT) . By configuring UEs to perform cross-RAT CLI measurement, techniques described herein may enable more accurate and complete determinations of CLI experienced by UEs.
Aspects of the disclosure are initially described in the context of wireless communications systems. Additional aspects of the disclosure are described in the context of an example process flow. Aspects of the disclosure are further illustrated by and described with reference to apparatus diagrams, system diagrams, and flowcharts that relate to techniques for CLI measurement across radio access technologies.
FIG. 1 illustrates an example of a wireless communications system 100 that supports techniques for CLI measurement across RATs in accordance with aspects of the present disclosure. The wireless communications system 100 may include one or more base stations 105, one or more UEs 115, and a core network 130. In some examples, the wireless communications system 100 may be a Long Term Evolution (LTE) network, an LTE-Advanced (LTE-A) network, an LTE-A Pro network, or a New Radio (NR) network. In some examples, the wireless communications system 100 may support enhanced broadband  communications, ultra-reliable (e.g., mission critical) communications, low latency communications, communications with low-cost and low-complexity devices, or any combination thereof.
The base stations 105 may be dispersed throughout a geographic area to form the wireless communications system 100 and may be devices in different forms or having different capabilities. The base stations 105 and the UEs 115 may wirelessly communicate via one or more communication links 125. Each base station 105 may provide a coverage area 110 over which the UEs 115 and the base station 105 may establish one or more communication links 125. The coverage area 110 may be an example of a geographic area over which a base station 105 and a UE 115 may support the communication of signals according to one or more RATs.
The UEs 115 may be dispersed throughout a coverage area 110 of the wireless communications system 100, and each UE 115 may be stationary, or mobile, or both at different times. The UEs 115 may be devices in different forms or having different capabilities. Some example UEs 115 are illustrated in FIG. 1. The UEs 115 described herein may be able to communicate with various types of devices, such as other UEs 115, the base stations 105, or network equipment (e.g., core network nodes, relay devices, integrated access and backhaul (IAB) nodes, or other network equipment) , as shown in FIG. 1.
The base stations 105 may communicate with the core network 130, or with one another, or both. For example, the base stations 105 may interface with the core network 130 through one or more backhaul links 120 (e.g., via an S1, N2, N3, or other interface) . The base stations 105 may communicate with one another over the backhaul links 120 (e.g., via an X2, Xn, or other interface) either directly (e.g., directly between base stations 105) , or indirectly (e.g., via core network 130) , or both. In some examples, the backhaul links 120 may be or include one or more wireless links.
One or more of the base stations 105 described herein may include or may be referred to by a person having ordinary skill in the art as a base transceiver station, a radio base station, an access point, a radio transceiver, a NodeB, an eNodeB (eNB) , a next-generation NodeB or a giga-NodeB (either of which may be referred to as a gNB) , a Home NodeB, a Home eNodeB, or other suitable terminology.
UE 115 may include or may be referred to as a mobile device, a wireless device, a remote device, a handheld device, or a subscriber device, or some other suitable terminology, where the “device” may also be referred to as a unit, a station, a terminal, or a client, among other examples. A UE 115 may also include or may be referred to as a personal electronic device such as a cellular phone, a personal digital assistant (PDA) , a tablet computer, a laptop computer, or a personal computer. In some examples, a UE 115 may include or be referred to as a wireless local loop (WLL) station, an Internet of Things (IoT) device, an Internet of Everything (IoE) device, or a machine type communications (MTC) device, among other examples, which may be implemented in various objects such as appliances, or vehicles, meters, among other examples.
The UEs 115 described herein may be able to communicate with various types of devices, such as other UEs 115 that may sometimes act as relays as well as the base stations 105 and the network equipment including macro eNBs or gNBs, small cell eNBs or gNBs, or relay base stations, among other examples, as shown in FIG. 1.
The UEs 115 and the base stations 105 may wirelessly communicate with one another via one or more communication links 125 over one or more carriers. The term “carrier” may refer to a set of radio frequency spectrum resources having a defined physical layer structure for supporting the communication links 125. For example, a carrier used for a communication link 125 may include a portion of a radio frequency spectrum band (e.g., a bandwidth part (BWP) ) that is operated according to one or more physical layer channels for a given RAT (e.g., LTE, LTE-A, LTE-A Pro, NR) . Each physical layer channel may carry acquisition signaling (e.g., synchronization signals, system information) , control signaling that coordinates operation for the carrier, user data, or other signaling. The wireless communications system 100 may support communication with a UE 115 using carrier aggregation or multi-carrier operation. A UE 115 may be configured with multiple downlink component carriers and one or more uplink component carriers according to a carrier aggregation configuration. Carrier aggregation may be used with both frequency division duplexing (FDD) and time division duplexing (TDD) component carriers.
Signal waveforms transmitted over a carrier may be made up of multiple subcarriers (e.g., using multi-carrier modulation (MCM) techniques such as orthogonal frequency division multiplexing (OFDM) or discrete Fourier transform spread OFDM (DFT- S-OFDM) ) . In a system employing MCM techniques, a resource element may consist of one symbol period (e.g., a duration of one modulation symbol) and one subcarrier, where the symbol period and subcarrier spacing are inversely related. The number of bits carried by each resource element may depend on the modulation scheme (e.g., the order of the modulation scheme, the coding rate of the modulation scheme, or both) . Thus, the more resource elements that a UE 115 receives and the higher the order of the modulation scheme, the higher the data rate may be for the UE 115. A wireless communications resource may refer to a combination of a radio frequency spectrum resource, a time resource, and a spatial resource (e.g., spatial layers or beams) , and the use of multiple spatial layers may further increase the data rate or data integrity for communications with a UE 115.
The time intervals for the base stations 105 or the UEs 115 may be expressed in multiples of a basic time unit which may, for example, refer to a sampling period of T s=1/ (Δf max·N f) seconds, where Δf max may represent the maximum supported subcarrier spacing, and N f may represent the maximum supported discrete Fourier transform (DFT) size. Time intervals of a communications resource may be organized according to radio frames each having a specified duration (e.g., 10 milliseconds (ms) ) . Each radio frame may be identified by a system frame number (SFN) (e.g., ranging from 0 to 1023) .
Each frame may include multiple consecutively numbered subframes or slots, and each subframe or slot may have the same duration. In some examples, a frame may be divided (e.g., in the time domain) into subframes, and each subframe may be further divided into a number of slots. Alternatively, each frame may include a variable number of slots, and the number of slots may depend on subcarrier spacing. Each slot may include a number of symbol periods (e.g., depending on the length of the cyclic prefix prepended to each symbol period) . In some wireless communications systems 100, a slot may further be divided into multiple mini-slots containing one or more symbols. Excluding the cyclic prefix, each symbol period may contain one or more (e.g., N f) sampling periods. The duration of a symbol period may depend on the subcarrier spacing or frequency band of operation.
A subframe, a slot, a mini-slot, or a symbol may be the smallest scheduling unit (e.g., in the time domain) of the wireless communications system 100 and may be referred to as a transmission time interval (TTI) . In some examples, the TTI duration (e.g., the number of symbol periods in a TTI) may be variable. Additionally or alternatively, the smallest  scheduling unit of the wireless communications system 100 may be dynamically selected (e.g., in bursts of shortened TTIs (sTTIs) ) .
Physical channels may be multiplexed on a carrier according to various techniques. A physical control channel and a physical data channel may be multiplexed on a downlink carrier, for example, using one or more of time division multiplexing (TDM) techniques, frequency division multiplexing (FDM) techniques, or hybrid TDM-FDM techniques. A control region (e.g., a control resource set (CORESET) ) for a physical control channel may be defined by a number of symbol periods and may extend across the system bandwidth or a subset of the system bandwidth of the carrier. One or more control regions (e.g., CORESETs) may be configured for a set of the UEs 115. For example, one or more of the UEs 115 may monitor or search control regions for control information according to one or more search space sets, and each search space set may include one or multiple control channel candidates in one or more aggregation levels arranged in a cascaded manner. An aggregation level for a control channel candidate may refer to a number of control channel resources (e.g., control channel elements (CCEs) ) associated with encoded information for a control information format having a given payload size. Search space sets may include common search space sets configured for sending control information to multiple UEs 115 and UE-specific search space sets for sending control information to a specific UE 115.
Each base station 105 may provide communication coverage via one or more cells, for example a macro cell, a small cell, a hot spot, or other types of cells, or any combination thereof. The term “cell” may refer to a logical communication entity used for communication with a base station 105 (e.g., over a carrier) and may be associated with an identifier for distinguishing neighboring cells (e.g., a physical cell identifier (PCID) , a virtual cell identifier (VCID) , or others) . In some examples, a cell may also refer to a geographic coverage area 110 or a portion of a geographic coverage area 110 (e.g., a sector) over which the logical communication entity operates. Such cells may range from smaller areas (e.g., a structure, a subset of structure) to larger areas depending on various factors such as the capabilities of the base station 105. For example, a cell may be or include a building, a subset of a building, or exterior spaces between or overlapping with geographic coverage areas 110, among other examples.
A macro cell generally covers a relatively large geographic area (e.g., several kilometers in radius) and may allow unrestricted access by the UEs 115 with service subscriptions with the network provider supporting the macro cell. A small cell may be associated with a lower-powered base station 105, as compared with a macro cell, and a small cell may operate in the same or different (e.g., licensed, unlicensed) frequency bands as macro cells. Small cells may provide unrestricted access to the UEs 115 with service subscriptions with the network provider or may provide restricted access to the UEs 115 having an association with the small cell (e.g., the UEs 115 in a closed subscriber group (CSG) , the UEs 115 associated with users in a home or office) . A base station 105 may support one or multiple cells and may also support communications over the one or more cells using one or multiple component carriers.
In some examples, a carrier may support multiple cells, and different cells may be configured according to different protocol types (e.g., MTC, narrowband IoT (NB-IoT) , enhanced mobile broadband (eMBB) ) that may provide access for different types of devices.
In some examples, a base station 105 may be movable and therefore provide communication coverage for a moving geographic coverage area 110. In some examples, different geographic coverage areas 110 associated with different technologies may overlap, but the different geographic coverage areas 110 may be supported by the same base station 105. In other examples, the overlapping geographic coverage areas 110 associated with different technologies may be supported by different base stations 105. The wireless communications system 100 may include, for example, a heterogeneous network in which different types of the base stations 105 provide coverage for various geographic coverage areas 110 using the same or different RATs.
The wireless communications system 100 may be configured to support ultra-reliable communications or low-latency communications, or various combinations thereof. For example, the wireless communications system 100 may be configured to support ultra-reliable low-latency communications (URLLC) or mission critical communications. The UEs 115 may be designed to support ultra-reliable, low-latency, or critical functions (e.g., mission critical functions) . Ultra-reliable communications may include private communication or group communication and may be supported by one or more mission critical services such as mission critical push-to-talk (MCPTT) , mission critical video (MCVideo) , or mission critical  data (MCData) . Support for mission critical functions may include prioritization of services, and mission critical services may be used for public safety or general commercial applications. The terms ultra-reliable, low-latency, mission critical, and ultra-reliable low-latency may be used interchangeably herein.
In some examples, a UE 115 may also be able to communicate directly with other UEs 115 over a device-to-device (D2D) communication link 135 (e.g., using a peer-to-peer (P2P) or D2D protocol) . One or more UEs 115 utilizing D2D communications may be within the geographic coverage area 110 of a base station 105. Other UEs 115 in such a group may be outside the geographic coverage area 110 of a base station 105 or be otherwise unable to receive transmissions from a base station 105. In some examples, groups of the UEs 115 communicating via D2D communications may utilize a one-to-many (1: M) system in which each UE 115 transmits to every other UE 115 in the group. In some examples, a base station 105 facilitates the scheduling of resources for D2D communications. In other cases, D2D communications are carried out between the UEs 115 without the involvement of a base station 105.
The core network 130 may provide user authentication, access authorization, tracking, Internet Protocol (IP) connectivity, and other access, routing, or mobility functions. The core network 130 may be an evolved packet core (EPC) or 5G core (5GC) , which may include at least one control plane entity that manages access and mobility (e.g., a mobility management entity (MME) , an access and mobility management function (AMF) ) and at least one user plane entity that routes packets or interconnects to external networks (e.g., a serving gateway (S-GW) , a Packet Data Network (PDN) gateway (P-GW) , or a user plane function (UPF) ) . The control plane entity may manage non-access stratum (NAS) functions such as mobility, authentication, and bearer management for the UEs 115 served by the base stations 105 associated with the core network 130. User IP packets may be transferred through the user plane entity, which may provide IP address allocation as well as other functions. The user plane entity may be connected to the network operators IP services 150. The network operators IP services 150 may include access to the Internet, Intranet (s) , an IP Multimedia Subsystem (IMS) , or a Packet-Switched Streaming Service.
Some of the network devices, such as a base station 105, may include subcomponents such as an access network entity 140, which may be an example of an access  node controller (ANC) . Each access network entity 140 may communicate with the UEs 115 through one or more other access network transmission entities 145, which may be referred to as radio heads, smart radio heads, or transmission/reception points (TRPs) . Each access network transmission entity 145 may include one or more antenna panels. In some configurations, various functions of each access network entity 140 or base station 105 may be distributed across various network devices (e.g., radio heads and ANCs) or consolidated into a single network device (e.g., a base station 105) .
The wireless communications system 100 may operate using one or more frequency bands, typically in the range of 300 megahertz (MHz) to 300 gigahertz (GHz) . Generally, the region from 300 MHz to 3 GHz is known as the ultra-high frequency (UHF) region or decimeter band because the wavelengths range from approximately one decimeter to one meter in length. The UHF waves may be blocked or redirected by buildings and environmental features, but the waves may penetrate structures sufficiently for a macro cell to provide service to the UEs 115 located indoors. The transmission of UHF waves may be associated with smaller antennas and shorter ranges (e.g., less than 100 kilometers) compared to transmission using the smaller frequencies and longer waves of the high frequency (HF) or very high frequency (VHF) portion of the spectrum below 300 MHz.
The wireless communications system 100 may utilize both licensed and unlicensed radio frequency spectrum bands. For example, the wireless communications system 100 may employ License Assisted Access (LAA) , LTE-Unlicensed (LTE-U) RAT, or NR technology in an unlicensed band such as the 5 GHz industrial, scientific, and medical (ISM) band. When operating in unlicensed radio frequency spectrum bands, devices such as the base stations 105 and the UEs 115 may employ carrier sensing for collision detection and avoidance. In some examples, operations in unlicensed bands may be based on a carrier aggregation configuration in conjunction with component carriers operating in a licensed band (e.g., LAA) . Operations in unlicensed spectrum may include downlink transmissions, uplink transmissions, P2P transmissions, or D2D transmissions, among other examples.
base station 105 or a UE 115 may be equipped with multiple antennas, which may be used to employ techniques such as transmit diversity, receive diversity, multiple-input multiple-output (MIMO) communications, or beamforming. The antennas of a base station 105 or a UE 115 may be located within one or more antenna arrays or antenna panels, which  may support MIMO operations or transmit or receive beamforming. For example, one or more base station antennas or antenna arrays may be co-located at an antenna assembly, such as an antenna tower. In some examples, antennas or antenna arrays associated with a base station 105 may be located in diverse geographic locations. A base station 105 may have an antenna array with a number of rows and columns of antenna ports that the base station 105 may use to support beamforming of communications with a UE 115. Likewise, a UE 115 may have one or more antenna arrays that may support various MIMO or beamforming operations. Additionally or alternatively, an antenna panel may support radio frequency beamforming for a signal transmitted via an antenna port.
The base stations 105 or the UEs 115 may use MIMO communications to exploit multipath signal propagation and increase the spectral efficiency by transmitting or receiving multiple signals via different spatial layers. Such techniques may be referred to as spatial multiplexing. The multiple signals may, for example, be transmitted by the transmitting device via different antennas or different combinations of antennas. Likewise, the multiple signals may be received by the receiving device via different antennas or different combinations of antennas. Each of the multiple signals may be referred to as a separate spatial stream and may carry bits associated with the same data stream (e.g., the same codeword) or different data streams (e.g., different codewords) . Different spatial layers may be associated with different antenna ports used for channel measurement and reporting. MIMO techniques include single-user MIMO (SU-MIMO) , where multiple spatial layers are transmitted to the same receiving device, and multiple-user MIMO (MU-MIMO) , where multiple spatial layers are transmitted to multiple devices.
Beamforming, which may also be referred to as spatial filtering, directional transmission, or directional reception, is a signal processing technique that may be used at a transmitting device or a receiving device (e.g., a base station 105, a UE 115) to shape or steer an antenna beam (e.g., a transmit beam, a receive beam) along a spatial path between the transmitting device and the receiving device. Beamforming may be achieved by combining the signals communicated via antenna elements of an antenna array such that some signals propagating at particular orientations with respect to an antenna array experience constructive interference while others experience destructive interference. The adjustment of signals communicated via the antenna elements may include a transmitting device or a receiving device applying amplitude offsets, phase offsets, or both to signals carried via the antenna  elements associated with the device. The adjustments associated with each of the antenna elements may be defined by a beamforming weight set associated with a particular orientation (e.g., with respect to the antenna array of the transmitting device or receiving device, or with respect to some other orientation) .
base station 105 or a UE 115 may use beam sweeping techniques as part of beam forming operations. For example, a base station 105 may use multiple antennas or antenna arrays (e.g., antenna panels) to conduct beamforming operations for directional communications with a UE 115. Some signals (e.g., synchronization signals, reference signals, beam selection signals, or other control signals) may be transmitted by a base station 105 multiple times in different directions. For example, the base station 105 may transmit a signal according to different beamforming weight sets associated with different directions of transmission. Transmissions in different beam directions may be used to identify (e.g., by a transmitting device, such as a base station 105, or by a receiving device, such as a UE 115) a beam direction for later transmission or reception by the base station 105.
Some signals, such as data signals associated with a particular receiving device, may be transmitted by a base station 105 in a single beam direction (e.g., a direction associated with the receiving device, such as a UE 115) . In some examples, the beam direction associated with transmissions along a single beam direction may be determined based on a signal that was transmitted in one or more beam directions. For example, a UE 115 may receive one or more of the signals transmitted by the base station 105 in different directions and may report to the base station 105 an indication of the signal that the UE 115 received with a highest signal quality or an otherwise acceptable signal quality.
In some examples, transmissions by a device (e.g., by a base station 105 or a UE 115) may be performed using multiple beam directions, and the device may use a combination of digital precoding or radio frequency beamforming to generate a combined beam for transmission (e.g., from a base station 105 to a UE 115) . The UE 115 may report feedback that indicates precoding weights for one or more beam directions, and the feedback may correspond to a configured number of beams across a system bandwidth or one or more sub-bands. The base station 105 may transmit a reference signal (e.g., a cell-specific reference signal (CRS) , a channel state information reference signal (CSI-RS) ) , which may be precoded or unprecoded. The UE 115 may provide feedback for beam selection, which may  be a precoding matrix indicator (PMI) or codebook-based feedback (e.g., a multi-panel type codebook, a linear combination type codebook, a port selection type codebook) . Although these techniques are described with reference to signals transmitted in one or more directions by a base station 105, a UE 115 may employ similar techniques for transmitting signals multiple times in different directions (e.g., for identifying a beam direction for subsequent transmission or reception by the UE 115) or for transmitting a signal in a single direction (e.g., for transmitting data to a receiving device) .
A receiving device (e.g., a UE 115) may try multiple receive configurations (e.g., directional listening) when receiving various signals from the base station 105, such as synchronization signals, reference signals, beam selection signals, or other control signals. For example, a receiving device may try multiple receive directions by receiving via different antenna subarrays, by processing received signals according to different antenna subarrays, by receiving according to different receive beamforming weight sets (e.g., different directional listening weight sets) applied to signals received at multiple antenna elements of an antenna array, or by processing received signals according to different receive beamforming weight sets applied to signals received at multiple antenna elements of an antenna array, any of which may be referred to as “listening” according to different receive configurations or receive directions. In some examples, a receiving device may use a single receive configuration to receive along a single beam direction (e.g., when receiving a data signal) . The single receive configuration may be aligned in a beam direction determined based on listening according to different receive configuration directions (e.g., a beam direction determined to have a highest signal strength, highest signal-to-noise ratio (SNR) , or otherwise acceptable signal quality based on listening according to multiple beam directions) .
The wireless communications system 100 may be a packet-based network that operates according to a layered protocol stack. In the user plane, communications at the bearer or Packet Data Convergence Protocol (PDCP) layer may be IP-based. A Radio Link Control (RLC) layer may perform packet segmentation and reassembly to communicate over logical channels. A Medium Access Control (MAC) layer may perform priority handling and multiplexing of logical channels into transport channels. The MAC layer may also use error detection techniques, error correction techniques, or both to support retransmissions at the MAC layer to improve link efficiency. In the control plane, the Radio Resource Control (RRC) protocol layer may provide establishment, configuration, and maintenance of an RRC  connection between a UE 115 and a base station 105 or a core network 130 supporting radio bearers for user plane data. At the physical layer, transport channels may be mapped to physical channels.
The UEs 115 and the base stations 105 may support retransmissions of data to increase the likelihood that data is received successfully. Hybrid automatic repeat request (HARQ) feedback is one technique for increasing the likelihood that data is received correctly over a communication link 125. HARQ may include a combination of error detection (e.g., using a cyclic redundancy check (CRC) ) , forward error correction (FEC) , and retransmission (e.g., automatic repeat request (ARQ) ) . HARQ may improve throughput at the MAC layer in poor radio conditions (e.g., low signal-to-noise conditions) . In some examples, a device may support same-slot HARQ feedback, where the device may provide HARQ feedback in a specific slot for data received in a previous symbol in the slot. In other cases, the device may provide HARQ feedback in a subsequent slot, or according to some other time interval.
As noted previously herein, some wireless communications systems are unable to perform cross-RAT CLI measurements, In particular, base stations of some wireless communications systems which are configured to communicate using a first RAT may be unable to configure UEs with CLI measurement resources which may be used to measure CLI attributable to signals transmitted according to a second RAT. For example, a 5G base station may be unable to configure 5G UEs with CLI measurement resources which may be used to measure CLI associated with LTE signals. Conversely, an LTE base station may be unable to configure LTE UEs with CLI measurement resources which may be used to measure CLI associated with 5G signals.
Accordingly, the UEs 115 and the base stations 105 of the wireless communications system 100 may support techniques for cross-RAT CLI measurement. In particular, a first base station 105-a associated with a first RAT (e.g., 5G base station 105-a) may receive CLI measurement resources from a second base station 105-b associated with a second RAT (e.g., LTE base station 105-b) . The first base station 105-a may then relay the set of CLI measurement resources to UEs 115 (e.g., 5G UEs 115) supported by the first base station 105-a, thereby enabling the UEs 115 to measure CLI attributable to signals transmitted according to the second RAT (e.g., CLI attributable to LTE signals. ) . By  configuring the UEs 115 to perform cross-RAT CLI measurement, techniques described herein may enable more accurate and efficient determination of CLI experienced by the UEs 115.
For example, in some aspects, a 5G base station 105-a of the wireless communications system 100 may receive, from an LTE base station 105-b of the wireless communications system 100, an indication of a set of CLI measurement resources for measuring LTE signals. The set of CLI measurement resources may be based on a communication configuration for carrying out LTE communications between the LTE base station and LTE UEs 115 supported by the LTE base station 105-b. In some aspects, the set of CLI measurement resources may be transmitted from the LTE base station 105-b to the 5G base station 105-a via an X2 interface between the first and second base stations 105-a and 105-b.
Upon receiving the CLI measurement resources, the 5G base station 105-a may transmit at least a portion of the CLI measurement resources to 5G UEs 115 supported by the 5G base station 105-a. In some aspects, the portion of the CLI measurement resources may be based on a communication configuration for carrying out 5G communications between the 5G base station 105-a and the 5G UEs 115. After relaying the CLI measurement resources to the 5G UEs 115, the 5G UEs 115 may be able to perform CLI measurements of LTE signals. The 5G UEs 115 may transmit a CLI measurement report to the 5G base station 105-a, where the CLI measurement report indicates CLI experienced at the 5G UEs 115 which is attributable to LTE signals Subsequently, the 5G base station 105-a may selectively adjust resources used by the 5G UEs 115 in order to reduce and/or eliminate CLI experienced by the 5G UEs 115.
In some cases, the indication of the CLI measurement resources may be valid for only a limited duration of time. For example, in some cases, the CLI measurement resources may be valid for a predefined time period (e.g., predefined duration) , where the predefined time period is pre-configured, signaled by the LTE base station 105-b, or both. In other examples, the CLI measurement resources may be over-written by a subsequent indication of CLI measurement resources received from the LTE base station 105-b. Additionally or alternatively, the CLI measurement resources /or may be revoked via explicit signaling from the LTE base station 105-b. In this regard, the 5G base station 105-b may be configured to  determine if and when the CLI measurement resources become invalid (e.g., no longer usable or relevant) for CLI measurement, and may indicate the invalidity of the CLI measurement resources to the 5G UEs.
In some aspects, techniques described herein may enable unidirectional cross-RAT CLI measurement (e.g., 5G UEs 115 measuring CLI attributable to LTE signals) . additionally or alternatively, techniques described herein may enable bi-directional cross-RAT CLI measurement (e.g., 5G UEs 115 measuring CLI attributable to LTE signals, and LTE UEs 115 measuring CLI attributable to 5G signals) . Furthermore, while examples described herein are generally illustrated in the context of 5G UEs 115 performing CLI measurement of LTE signals, these examples are provided solely for illustrative purposes. In this regard, techniques described herein may enable cross-CLI measurement between any two RATs.
Techniques described herein may enable a base station 105-a associated with a first RAT to configure UEs 115 supported by the first base station 105-a to perform CLI measurements of signals transmitted according to a second RAT. In this regard, techniques described herein may enable cross-RAT CLI measurement between two different RATs. By enabling cross-RAT CLI measurement, UEs 115 may be able to perform more efficient and comprehensive CLI measurements, thereby enabling a reduction of CLI within the wireless communications system 100.
FIG. 2 illustrates an example of a wireless communications system 200 that supports techniques for CLI measurement across RATs in accordance with aspects of the present disclosure. In some examples, wireless communications system 200 may implement aspects of wireless communications system 100. The wireless communications system 200 may include a first UE 115-a, a second UE 115-b, a first base station 105-a, and a second base station 105-b, which may be examples of UEs 115 and base stations 105, as described with reference to FIG. 1. In particular, the first base station 105-a may include an example of a base station associated with a first RAT (e.g., 5G/NR base station 105-a) , and the second base station 105-b may include an example of a base station 105-b associated with a second RAT (e.g., 4G/LTE base station 105-b. Moreover, the first UE 115-a may include an example of a victim UE 115-a associated with the first RAT (e.g., 5G UE 115-a) , and the second UE 115-b may include an example of an aggressor UE 115-b associated with the second RAT  (e.g., 4G/LTE UE 115-b) , as described previously herein. In this regard, the first UE 115-a may be supported by the first base station 105-a, and the second UE 115-b may be supported by the second base station 105-b.
The first UE 115-a may communicate with the first base station 105-a using a communication link 205-a, which may be an example of an NR or 5G link (wired or wireless) between the first UE 115-a and the first base station 105-a. Similarly, the second UE 115-b may communicate with the second base station 105-b using a communication link 205-b, which may be an example of an LTE or 4G link between the second UE 115-b and the second base station 105-b. In some cases, the communication link 205-a and the communication link 205-b may include examples of access links (e.g., Uu links) . The communication link 205-a and communication link 205-b may include bi-directional links that enable both uplink and downlink communication. For example, the first UE 115-a may transmit uplink signals, such as uplink control signals or uplink data signals, to the first base station 105-a using the first communication link 205-a and the first base station 105-a may transmit downlink signals, such as downlink control signals or downlink data signals, to the first UE 115-a using the communication link 205-a. In particular, the first base station 105-a and the first UE 115-a may communicate with one another over the communication link 205-a using a first RAT (e.g., 5G/NR) . By way of another example, the second UE 115-b may transmit uplink signals, such as uplink control signals or uplink data signals, to the second base station 105-b using the first communication link 205-b and the second base station 105 may transmit downlink signals, such as downlink control signals or downlink data signals, to the second UE 115-b using the communication link 205-b. In particular, the second base station 105-b and the second UE 115-b may communicate with one another over the communication link 205-b using a second RAT (e.g., 4G/LTE) .
In some aspects, the first base station 105-a and the second base station 105-b may communicate with one another via a communication link 205-c. In some cases, the communication link 205-c may include an example of a link between two base stations 105. For example, the communication link 205-c may include an example of an X2 interface configured to communicatively couple the first base station 105-a and the second base station 105-b. In other examples, the communication link 205-c may be indirect through one or more nodes of the core network (e.g., including via one or more S1 interfaces) . In some aspects,  communications over the communication link 205-c may be performed according to the first RAT, the second RAT, or any combination thereof.
In some wireless communications systems (e.g., wireless communications system 200) , UEs 115 may be configured to perform CLI measurements attributable to signals received from other UEs 115. CLI measurements may include layer-3 (L3) measurements. For example, as shown in FIG. 2, the first UE 115-a (e.g., victim UE 115-a) may experience CLI from signals 220-b transmitted by the second UE 115-b (e.g., aggressor UE 115-b) in cases where downlink resources 230 of the first UE 115-a overlap with uplink resources 225 of the second UE 115-b. In such cases, uplink transmissions from second UE 115-b over the uplink resources 225 may collide with, or otherwise interrupt or interfere with, downlink transmissions received by the first UE within the downlink resources 230, thereby resulting in CLI.
Accordingly, in some aspects, the wireless communications system 200 may support techniques for cross-RAT CLI measurement. In particular, the first base station 105-aassociated with the first RAT (e.g., 5G base station 105-a) may receive CLI measurement resources from the second base station 105-b associated with the second RAT (e.g., LTE base station 105-b) . The first base station 105-a may then relay the set of CLI measurement resources to the first UE 115-a (e.g., 5G UE 115-a) supported by the first base station 105-a, thereby enabling the first UE 115-a to measure CLI attributable to signals 220-b transmitted according to the second RAT (e.g., CLI attributable to LTE signals. ) . By configuring the UEs 115 to perform cross-RAT CLI measurement, techniques described herein may enable more accurate and efficient determination of CLI experienced by the UEs 115-a and 115-b.
While FIG. 2 is shown and described as illustrating unidirectional cross-RAT CLI measurement (e.g., first UE 115-a performing CLI measurement of LTE signals 220-b) , this is solely for illustrative purposes. In this regard, techniques described herein may be understood to enable unidirectional cross-RAT CLI measurement, bidirectional cross-RAT measurement, or both. In this regard, any steps/functions shown and described as being carried out by the first base station 105-a may additionally or alternatively be carried out by the second base station 105-b. Similarly, any steps/functions shown and described as being carried out by the first UE 115-a may additionally or alternatively be carried out by the second UE 115-b.
In some aspects, the first base station 105-a may communicate with the first UE 115-a using the first RAT. For example, the first base station 105-a and the first UE 115-amay communicate via a 5G/NR RAT, . In some aspects, the first base station 105-a and the first UE 115-a may communicate with one another over the communication link 205-a based on (e.g., according to) a first communication configuration. For example, the first base station 105-a may determine a first communication configuration, and may transmit an indication of the first communication configuration to the first UE 115-a such that communications between the first base station 105-a and the first UE 115-a may be carried out according to the first communication configuration. The first communication configuration may include a resource format including sets of downlink resources, sets of uplink resources, sets of flexible resources, or any combination thereof. In some aspects, the first base station 105-a may transmit an indication of the first communication configuration to the first UE 115-a. The first communications may indicate a set of resources for communications between the first base station 105-a and the first UE 115-a.
Similarly, the second base station 105-b may communicate with the second UE 115-b using the second RAT. For example, the second base station 105-b and the second UE 115-b may communicate via a 4G/LTE RAT. In some aspects, the second base station 105-b and the second UE 115-b may communicate with one another over the communication link 205-b based on (e.g., according to) a second communication configuration. The second communication configuration may include a resource format including sets of downlink resources, sets of uplink resources, sets of flexible resources, or any combination thereof. In some aspects, the second base station 105-b may determine the second communication configuration, and may transmit an indication of the second communication configuration to the second UE 115-b. The second communication configuration may indicate a set of resources for communications between the second base station 105-b and the second UE 115-b. Additionally or alternatively, the second communicators configuration may include a set of resources for the second UE 115-b to transmit signals 220-b of a CLI measurement procedure according to the second RAT (e.g., LTE) . For example, the second communication configuration may include a set of resources which may be used by the second UE 115-b to transmit signals 220-b (e.g., SRSs) according to the second RAT such that other UEs 115 (e.g., first UE 115-a) may be measure the signals 220-b (e.g., SRSs) according to a CLI measurement procedure.
In some aspects, the second base station 105-b may transmit, to the first base station 105-a, an indication of a resource configuration 210-a including a set of resources (e.g., CLI measurement resources) configured for signals 220-b of the CLI measurement procedure. The set of resources of the resource configuration 210-a may include a set of time resources and a set of frequency resources within which the first UE 115-a may perform the CLI measurement procedure. In this regard, the set of resources of the resource configuration 210-a may include the set of resources of the second communication configuration which the second UE 115-b uses to transmit signals 220-b (e.g., SRSs) of the CLI measurement procedure. Accordingly, the set of resources indicated in the resource configuration 210-a may include a set of resources by which the second UE 115-b may use to transmit LTE signals 220-b which may be measured by the first UE 115-b in a CLI measurement procedure. In some cases, the indication of the resource configuration 210-a may be transmitted to the first base station 105-a in response to a request received from the first base station 105-a. In this regard, the first base station 105-a may transmit a request to the second base station 105-b, where the request indicates a request for a set of cross-RAT CLI measurement resources (e.g., resource configuration 210-a including the set of resources) .
In some aspects, the indication of the resource configuration 210-a including the set of resources may be transmitted from the second base station 105-b to the first base station 105-a via an X2 interface for communications between the first base station 105-a and the second base station 105-b. In some aspects, communications between the first base station 105-a and the second base station 105-b across the X2 interface may be transmitted according to the first RAT (e.g., 5G, NR) , the second RAT (e.g., 4G, LTE) , or any combination thereof.
In some cases, the second base station 105-b may additionally transmit, to the first base station 105-a, an indication of one or more parameters associated with the CLI measurement procedure. The one or more parameters may be transmitted to the first base station 105-a via the same or different transmission (e.g., X2 transmission) which includes the indication of the resource configuration 210-a including the set of resources. The one or more parameters associated with the CLI measurement procedure may include, but are not limited to, a time domain pattern for the CLI measurement procedure, a sequence generation pattern of the signals 220-b (e.g., LTE signals 220-b) which are to be measured during the CLI measurement procedure, a resource element pattern of the signals 220-b which are to be measured during the CLI measurement procedure, a starting resource block of the signals  220-b which are to be measured during the CLI measurement procedure, or any combination thereof. Generally, the one or more parameters may include any parameters which are necessary or beneficial for the first base station 105-a and/or the first UE 115-a to perform the CLI measurement procedure.
In some cases, the first base station 105-a may transmit a feedback message 215 to the second base station 105-b. The feedback message 215 may be transmitted based on (e.g., in response to) the indication of the resource configuration 210-a including the set of resources (e.g., CLI measurement resources) . The feedback message 215 may include an acknowledgement (ACK) message (which may sometimes be referred to as a positive acknowledgment (ACK) ) or a negative acknowledgement (NACK) message.
Upon receiving the resource configuration 210-a including the set of resources, the first base station 105-a may determine which resources of the set of resources 210-a will be used by the first UE 115-a for the CLI measurement procedure. In this regard, the first base station 105-a may determine (e.g., select) the entirety of, or at least a portion of, the set of resources (e.g., CLI measurement resources) indicated in the resource configuration 210-a which will be used for the CLI measurement procedure.
In some aspects, the first base station 105-a may determine the resources for the CLI measurement procedure based on the of the set of resources indicated in the resource configuration 210-a, the first communication configuration associated with the first base station 105-a, or both. For example, the first base station 105-a may determine (e.g., select) a subset of the set of resources (e.g., a subset of the CLI measurement resources) of the resource configuration 210-a for the CLI measurement procedure based on the indication of the set of resources and the first communication configuration associated with the first base station 105-a. For instance, the first base station 105-a may determine a set of downlink resources of the first communication configuration, a set of flexible resources of the first communication configuration, or both. In this example, the first base station 105-a may determine (e.g., select) a subset of the set of resources (e.g., subset of the CLI measurement resources) indicated in the resource configuration 210-a to be used for the CLI measurement procedure which shares a set of time resources with at least portions of the set of downlink resources of the first communication configuration, the set of flexible resources of the first communication configuration, or both. In this regard, the first base station 105-a may select  the subset of CLI measurement resources which overlaps with (e.g., potentially interferes with) downlink resources and/or flexible resources of the first communication configuration associated with the first base station 105-a.
In some aspects, the first base station 105-a may transmit, to the first UE 115-a via the communication link 205-a, a configuration (e.g., CLI measurement configuration) identifying at least a subset of the set of resources of the resource configuration 210-a (e.g., at least a subset of the CLI measurement resources) which will be used for the CLI measurement procedure. In this regard, the first base station 105-a may transmit a configuration indicating at least a subset of the set of resources indicated in the resource configuration 210-a which the second UE 115-b may use to transmit signals 220-b (e.g., SRSs, LTE signals) which may be measured for the CLI measurement procedure. Accordingly, the first base station 105-ac may transmit the configuration (e.g., CLI measurement configuration) based on receiving the indication of the resource configuration 210-a including the set of resources, determining the resources for the CLI measurement procedure, or both.
The first UE 115-a may receive signals 220-b from the second UE 115-b. In some aspects, the second UE 115-b may transmit the signals 220-b to the second base station 105-b, where the first UE 115-a intercepts, or otherwise receives, the signals 220-b intended for the second base station 105-b. In this regard, the signals 220-b received by the first UE 115-a may include uplink transmissions (e.g., uplink signals 220-b) transmitted by the second UE 115-b. In some cases, the signals 220-b may include SRSs transmitted by the second UE 115-b. The second UE 115-b may transmit the signals 220-b according to (e.g., based on) the second communication configuration associated with the second base station 105-b. In this regard, the second UE 115-b may transmit the signals 220-b within the set of resources of the resource configuration 210-a (e.g., subset of the set of CLI measurement resources) determined by the first base station 105-b and indicated to the first UE 115-a for the CLI measurement procedure.
The first UE 115-a may perform CLI measurements on signals 220-b received within the set of resources indicated in the resource configuration 210-a (e.g., set of CLI measurement resources) associated with the CLI measurement procedure. Accordingly, the first UE 115-a may perform the CLI measurements based on (e.g., in accordance with) the  configuration (e.g., CLI measurement configuration) received from the first base station 105-a. For example, the first UE 115-a may perform CLI measurements on signals 220-b received within the subset of the set of resources of the resource configuration 210-adetermined by the first base station 105-a and indicated to the first UE 115-a via the configuration for the CLI measurement procedure.
Upon performing the CLI measurements, the first UE 115-a may transmit, to the first base station 105-a, a measurement report indicating CLI measured within the set of resources of the resource configuration 210-a associated with the CLI measurement procedure. In this regard, the measurement report may indicate CLI attributable to signals 220-b (e.g., SRSs, LTE signals) transmitted by the second UE 115-a which are received in the set (or subset) of the CLI measurement resources indicated in the configuration received from the first base station 105-a. Accordingly, the first UE 115-a may transmit the measurement report (e.g., CLI measurement report) based on receiving the configuration for the CLI measurement procedure, receiving the signals 220-b from the second base station 105-b, or both.
In some cases, the measurement report (e.g., CLI measurement report) transmitted to the first base station 105-a may additionally indicate CLI associated with signals transmitted according to the first RAT (e.g., CLI attributable to 5G signals) . In this regard, in some cases, the measurement report may include an indication of CLI attributable to LTE signals (e.g., LTE signals from the second UE 115-b) , and an indication of CLI attributable to 5G signals. In additional or alternative aspects, the first UE 115-a may transmit a separate, second measurement report, where the second measurement report includes an indication of CLI attributable to signals transmitted according to the first RAT. In this regard, the first UE 115-a may report CLI measurements associated with the respective RATs via different measurement reports and/or the same measurement report.
In some aspects, the first base station 105-a, the second base station 105-b, or both, may be configured to selectively adjust the first UE 115-a and the second UE 115-b, respectively, in order to reduce or eliminate CLI experienced by the first UE 115-a. For example, in response to receiving the measurement report from the first UE 115-a, the first base station 105-a may transmit a configuration message to the first UE 115-a, where the configuration message is configured to selectively adjust a set of downlink resources, a set of  flexible resources, or both, used for communications at the first UE 115-a. By selectively adjusting the resources used by the first UE 115-a, the first base station 105-a may reduce or eliminate the CLI experienced by the first UE 115-a. By way of another example, the first base station 105-a may transmit, to the second base station 105-b, an indication, a request, or both, indicating for the second base station 105-b to selectively adjust a set of uplink resources, a set of flexible resources, or both, used for communications by the second UE 115-b. Subsequently, in response to the indication and/or request from the first base station 105-a, the second base station 105-b a may transmit a configuration message to the second UE 115-b, where the configuration message is configured to selectively adjust a set of downlink resources, a set of flexible resources, or both, used for communications at the second UE 115-b. By selectively adjusting the resources used by the second UE 115-b, the second base station 105-b may reduce or eliminate the CLI experienced by the first UE 115-a.
In some cases, the first base station 105-a may determine that the set of resources indicated in the resource configuration 210-a (e.g., CLI measurement resources) are expired, invalid, or otherwise unusable for the CLI measurement procedure. In some aspects, the first base station 105-a may determine that the resource configuration 210-a (e.g., set of resources indicated in the resource configuration 210-a) are invalid based on an expiration of a validity period (e.g., expiration of a timer) , based on the resource configuration 210-a and/or set of resources of the resource configuration 210-a being replaced or over-written by the second base station 105-b, based on explicit signaling from the second base station 105-b revoking the resource configuration and/or set of resources of the resource configuration 210-a, or any combination thereof. Accordingly, in some cases, the first base station 105-a may demine that the set of resources of the resource configuration 210-a are invalid based on signaling from the second base station 105-b, autonomously (e.g., without indications from the second base station 105-b) , or both.
For example, in some cases, the first base station 105-a may determine that the set of resources of the resource configuration 210-a (e.g., set of CLI measurement resources) are invalid by determining an expiration of a validity period (e.g., expiration of a timer) associated with the resource configuration 210-a and/or set of resources of the resource configuration 210-a. In some cases, the first base station 105-a may be pre-configured with the validity period. Additionally or alternatively, the second base station 105-b may transmit an indication of the validity period associated with the resource configuration 210-a and/or  set of resources of the resource configuration 210-a via the X2 interface. In some cases, the first base station 105-a may initiate the validity period (e.g., initiate the timer) upon receiving the indication of the resource configuration 210-a indicating the set of resoruces. Upon identifying the expiration of the validity period, the first base station 105-a may transmit, to the first UE 115-a, an indication that the resource configuration 210-a and/or set of resources of the resource configuration 210-a are invalid for the CLI measurement procedure. The first base station 105-a may transmit indication that the first set of resources are invalid based on determining the expiration of the validity period, receiving an indication of the validity period from the second base station 105-b, or both.
By way of another example, the first base station 105-a may determine that the resource configuration 210-a and/or set of resources of the resource configuration 210-a (e.g., set of CLI measurement resources) are invalid based on explicit signaling from the second base station 105-b revoking the resource configuration 210-a and/or set of resources of the resource configuration 210-a. For instance, the second base station 105-b may transmit, to the first base station 105-a, an indication that the resource configuration 210-a and/or set of resources of the resource configuration 210-a (e.g., CLI measurement resources) are invalid for the CLI measurement procedure. Accordingly, the second base station 105-b may explicitly revoke the resource configuration 210-a. In this example, the first base station 105-a may determine that the resource configuration 210-a and/or set of resources of the resource configuration 210-a are invalid based on the indication received from the second base station 105-b. Upon determining that the set of resource configuration 210-a and/or set of resources of the resource configuration 210-a are invalid based on the indication from the second base station 105-b, the first base station 105-a may transmit, to the first UE 115-a, an indication that the resource configuration 210-a and/or set of resources of the resource configuration 210-a are invalid for the CLI measurement procedure. The first base station 105-a may transmit the indication that the resource configuration 210-a and/or set of resources of the resource configuration 210-a are invalid based on receiving the indication from the second base station 105-b that the resource configuration 210-a and/or set of resources of the resource configuration 210-a are invalid for the CLI measurement procedure.
By way of another example, the first base station 105-a may determine that the resource configuration 210-a and/or set of resources of the resource configuration 210-a (e.g., set of CLI measurement resources) are invalid based on signaling from the second base  station 105-b over-writing (e.g., replacing) the resource configuration 210-a and/or set of resources of the resource configuration (e.g., set of CLI measurement resources) with a second resource configuration 210-b (e.g., second set of resources indicated in the second resource configuration 210-b) . For instance, the first base station 105-a may receive, from the second base station 105-b, an indication of a second resource configuration 210-b indicating a second set of resources (e.g., second set of CLI measurement resources) for the CLI measurement procedure. In this regard, the second resource configuration 210-b may indicate a second set of resources by which the second UE 115-b may use to transmit signals 220-b (e.g., SRSs, LTE signals) which may be measured by the first UE 115-a for the CLI measurement procedure. In some cases, the first base station 105-a may determine that the first resource configuration 210-a (e.g., first set of resources 210-a indicated in the first resource configuration 210-a) are invalid, and are replaced by the second set of resources indicated in the second resource configuration 210-b based on the signaling from the second base station 105-bc. Upon determining that the first resource configuration 210-a and/or first set of resources of the first resource configuration 210-a are invalid based on the indication of the second resource configuration 210-b from the second base station 105-b, the first base station 105-a may transmit, to the first UE 115-a, a second configuration (e.g., second CLI measurement configuration) identifying at least a subset of the second set of resources 210-b (e.g., subset of the second set of CLI measurement resources) for the CLI measurement procedure. The first base station 105-b may additionally transmit an indication that the first set of resources indicated in the first resource configuration 210-a are invalid for the CLI measurement procedure. The first base station 105-a may transmit the indication that the first set of resources indicated in the first resource configuration 210-a are invalid based on receiving the indication of the second resource configuration 210-b including the second set of resources from the second base station 105-b.
As noted previously herein, the wireless communications system 200 may additionally or alternatively be understood to enable bi-directional cross-RAT CLI measurement. For example, in some cases, the first base station 105-a may transmit an indication of resource configurations 210 including sets of resources (e.g., CLI measurement resources) to the second base station 105-b for a CLI measurement procedure that measures signals 220-a transmitted according to the first RAT (e.g., signals 220-b transmitted by the first UE 115-a) . Furthermore, the second base station 105-b may transmit a feedback message  to the first base station 105-a, determine resources for the CLI measurement procedure, and transmit a CLI measurement configuration to the second UE 115-b for the CLI measurement procedure to be performed by the second UE 115-a on the signals 220-a transmitted by the first UE 115-a.
Techniques described herein may enable the base stations 105-a and 105-b associated with the different RATs to configure the first and second UEs 115-a and 105-b supported by the respective base stations 105-a and 105-b to perform CLI measurements of signals 220 transmitted according to the other RAT. In this regard, techniques described herein may enable cross-RAT CLI measurement between two different RATs. By enabling cross-RAT CLI measurement, the first and second UEs 115-a and 115-b may be able to perform more efficient and comprehensive CLI measurements, thereby enabling a reduction of CLI within the wireless communications system 200.
FIG. 3 illustrates an example of a process flow 300 that supports techniques for CLI measurement across RATs in accordance with aspects of the present disclosure. In some examples, process flow 300 may implement, or be implemented by, aspects of  wireless communications system  100 or 200. For example, the process flow 300 may illustrate a first base station 105-c associated with a first RAT receiving CLI measurement resources from a second base station 105-d from a second RAT, and relaying the CLI measurement resources to a first UE 115-c for the first UE 115-a to perform cross-RAT CLI measurement using the CLI measurement resources, as described with reference to FIGs. 1–2.
In some cases, process flow 300 may include a first UE 115-c, a second UE 115-d, a first base station 105-c, and a second base station 105-d which may be examples of corresponding devices as described herein. The first UE 115-c and the second UE 115-d illustrated in FIG. 3 may be examples of the first UE 115-a and the second UE 115-b, respectively, illustrated in FIG. 2. In this regard, the first UE 115-c may include an example of a victim UE 115-c associated with a first RAT (e.g., 5G UE 115-c) , and the second UE 115-d may include an example of an aggressor UE 115-d associated with a second RAT (e.g., LTE UE 115-d) . Similarly, the first base station 105-c illustrated in FIG. 3 may be an example of the first base station 105-a illustrated in FIG. 2, and the second base station 105-d illustrated in FIG. 3 may be an example of the second base station 105-d illustrated in FIG. 2. In this regard, the first base station 105-c may include a base station 105-a associated with the  first RAT (e.g., 5G base station 105-c) , and the second base station 105-d may include a base station 105-d associated with the second RAT (e.g., LTE base station 105-d) .
In some examples, the operations illustrated in process flow 300 may be performed by hardware (e.g., including circuitry, processing blocks, logic components, and other components) , code (e.g., software or firmware) executed by a processor, or any combination thereof. Alternative examples of the following may be implemented, where some steps are performed in a different order than described or are not performed at all. In some cases, steps may include additional features not mentioned below, or further steps may be added.
While FIG. 3 is shown and described as illustrating unidirectional cross-RAT CLI measurement (e.g., 5G UE 115-c performing CLI measurement of LTE signals) , this is solely for illustrative purposes. In this regard, techniques described herein may be understood to enable unidirectional cross-RAT CLI measurement, bidirectional cross-RAT measurement, or both. In this regard, any steps/functions shown and described as being carried out by the first base station 105-c may additionally or alternatively be carried out by the second base station 105-d. Similarly, any steps/functions shown and described as being carried out by the first UE 115-c may additionally or alternatively be carried out by the second UE 115-d.
At 305, the first base station 105-c may communicate with the first UE 115-c using the first RAT. For example, the first base station 105-c and the first UE 115-c may communicate via a 5G RAT, an NR RAT, or both. In some aspects, the first base station 105-c and the first UE 115-c may communicate with one another based on (e.g., according to) a first communication configuration. For example, the first base station 105-c may determine a first communication configuration, and may transmit an indication of the first communication configuration to the first UE 115-c such that communications between the first base station 105-c and the first UE 115-c may be carried out according to the first communication configuration. The first communication configuration may include a resource format including sets of downlink resources, sets of uplink resources, sets of flexible resources, or any combination thereof.
At 310, the second base station 105-d may communicate with the second UE 115-d using the second RAT. For example, the second base station 105-c and the second UE 115-d may communicate via a 4G RAT, an LTE RAT, or both. In some aspects, the second  base station 105-d and the second UE 115-d may communicate with one another based on (e.g., according to) a second communication configuration. The second communication configuration may include a resource format including sets of downlink resources, sets of uplink resources, sets of flexible resources, or any combination thereof.
At 315, the second base station 105-d may determine the second communication configuration, and may transmit an indication of the second communication configuration to the second UE 115-d. In some aspects, the second communication configuration may indicate a set of resources for communications between the second base station 105-d and the second UE 115-d. Additionally or alternatively, the second communicators configuration may include a set of resources for the second UE 115-d to transmit signals of a CLI measurement procedure according to the second RAT (e.g., LTE) . For example, the second communication configuration may include a set of resources which may be used by the second UE 115-d to transmit SRSs according to the second RAT such that other UEs 115 (e.g., first UE 115-c) may be measure the SRSs according to a CLI measurement procedure.
At 320, the second base station 105-d may transmit, to the first base station 105-a, an indication of a resource configuration including a set of resources (e.g., CLI measurement resources) configured for signals of the CLI measurement procedure. The set of resources of the resource configuration may include a set of time resources and a set of frequency resources within which the first UE 115-c may perform the CLI measurement procedure. In this regard, the set of resources may include the set of resources of the second communication configuration which the second UE 115-d uses to transmit SRSs of the CLI measurement procedure. Accordingly, the set of resources (e.g., CLI measurement resources) indicated in the resource configuration may include a set of resources by which the second UE 115-d may use to transmit LTE signals which may be measured by the first UE 115-d in a CLI measurement procedure.
In some cases, the indication of the resource configuration including the set of resources may be transmitted to the first base station 105-c in response to a request received from the first base station 105-c. In this regard, the first base station 105-c may transmit a request to the second base station 105-d, where the request indicates a request for a set of cross-RAT CLI measurement resources. In some aspects, the indication of the resource configuration including the set of resources may be transmitted from the second base station  105-d to the first base station 105-c via an X2 interface for communications between the first base station 105-c and the second base station 105-d
In some cases, the second base station 105-d may additionally transmit, to the first base station 105-c, an indication of one or more parameters associated with the CLI measurement procedure. The one or more parameters may be transmitted to the first base station 105-c via the same or different transmission (e.g., X2 transmission) which includes the indication of the resource configuration illustrated at 320. The one or more parameters associated with the CLI measurement procedure may include, but are not limited to, a time domain pattern for the CLI measurement procedure, a sequence generation pattern of the signals (e.g., LTE signals) which are to be measured during the CLI measurement procedure, a resource element pattern of the signals (e.g., LTE signals) which are to be measured during the CLI measurement procedure, a starting resource block of the signals (e.g., LTE signals) which are to be measured during the CLI measurement procedure, or any combination thereof. Generally, the one or more parameters may include any parameters which are necessary or beneficial for the first base station 105-c and/or the first UE 115-c to perform the CLI measurement procedure.
At 325, the first base station 105-c may transmit a feedback message to the second base station 105-d. The feedback message may be transmitted based on (e.g., in response to) the indication of the set of resources (e.g., CLI measurement resources) . The feedback message may include an ACK message or a NACK message.
At 330, the first base station 105-c may determine which resources of the set of resources indicated in the resource configuration received at 320 will be used by the first UE 115-c for the CLI measurement procedure. In this regard, the first base station 105-c may determine (e.g., select) the entirety of, or at least a portion of, the set of resources (e.g., CLI measurement resources) of the resource configuration which will be used for the CLI measurement procedure. In some aspects, the first base station 105-c may determine the resources for the CLI measurement procedure based on the indication of the resource configuration including set of resources received at 320, the first communication configuration associated with the first base station 105-c, or both.
At 335, the first base station 105-c may transmit, to the first UE 115-c, a configuration (e.g., CLI measurement configuration) identifying at least a subset of the set of  resources (e.g., at least a subset of the CLI measurement resources) which will be used for the CLI measurement procedure. In this regard, the first base station 105-c may transmit a configuration indicating at least a subset of the set of resources which the second UE 115-d may use to transmit signals (e.g., SRSs, LTE signals) which may be measured for the CLI measurement procedure. Accordingly, the first base station 105-c may transmit the configuration (e.g., CLI measurement configuration) at 340 based on receiving the indication of the resource configuration including the set of resources at 320, determining the resources for the CLI measurement procedure at 330, or both.
At 340, the first UE 115-c may receive signals from the second UE 115-d. In some aspects, the second UE 115-d may transmit the signals at 320 to the second base station 105-d, where the first UE 115-c intercepts, or otherwise receives, the signals intended for the second base station 105-d. In this regard, the signals received at 340 may include uplink transmissions (e.g., uplink signals) transmitted by the second UE 115-d. In some cases, the signals received at 340 may include SRSs transmitted by the second UE 115-d. The second UE 115-d may transmit the signals at 425 according to (e.g., based on) the second communication configuration associated with the second base station 105-d. In this regard, the second UE 115-d may transmit the signals at 340 within the set of resources (e.g., set of CLI measurement resources) determined by the first base station 105-c at 330 and indicated to the first UE 115-c at 335.
At 345, the first UE 115-c may perform CLI measurements on signals received within the set of resources (e.g., set of CLI measurement resources) associated with the CLI measurement procedure. Accordingly, the first UE 115-c may perform the CLI measurements at 345 based on (e.g., in accordance with) the configuration (e.g., CLI measurement configuration) received at 335. For example, the first UE 115-c may perform CLI measurements on signals received within the subset of the set of CLI measurement resources determined by the first base station 105-c at 330 and indicated to the first UE 115-c via the configuration at 335.
At 350, the first UE 115-c may transmit, to the first base station 105-c, a measurement report indicating CLI measured within the set of resources associated with the CLI measurement procedure. In this regard, the measurement report may indicate CLI attributable to signals (e.g., SRSs, LTE signals) transmitted by the second UE 115-d which  are received in the set (or subset) of the CLI measurement resources indicated in the configuration received at 335. Accordingly, the first UE 115-c may transmit the measurement report (e.g., CLI measurement report) at 350 based on receiving the configuration at 335, receiving the signals from the second base station 105-d at 340, or both.
In some cases, the measurement report (e.g., CLI measurement report) transmitted to the first base station 105-c may additionally indicate CLI associated with signals transmitted according to the first RAT (e.g., CLI attributable to 5G signals) . In this regard, in some cases, the measurement report may include an indication of CLI attributable to LTE signals (e.g., LTE signals from the second UE 115-d) , and an indication of CLI attributable to 5G signals. In additional or alternative aspects, the first UE 115-c may transmit a separate, second measurement report, where the second measurement report includes an indication of CLI attributable to signals transmitted according to the first RAT. In this regard, the first UE 115-c may report CLI measurements associated with the respective RATs via different measurement reports and/or the same measurement report.
In some aspects, the first base station 105-c, the second base station 105-d, or both, may be configured to selectively adjust the first UE 115-c and the second UE 115-d, respectively, in order to reduce or eliminate CLI experienced by the first UE 115-c. For example, in response to receiving the measurement report at 350, the first base station 105-c may transmit a configuration message to the first UE 115-c, where the configuration message is configured to selectively adjust a set of downlink resources, a set of flexible resources, or both, used for communications at the first UE 115-c. By selectively adjusting the resources used by the first UE 115-c, the first base station 105-c may reduce or eliminate the CLI experienced by the first UE 115-c. By way of another example, the first base station 105-a may transmit, to the second base station 105-d, an indication, a request, or both, indicating for the second base station 105-d to selectively adjust a set of uplink resources, a set of flexible resources, or both, used for communications by the second UE 115-d. Subsequently, in response to the indication and/or request from the first base station 105-c, the second base station 105-b may transmit a configuration message to the second UE 115-d, where the configuration message is configured to selectively adjust a set of downlink resources, a set of flexible resources, or both, used for communications at the second UE 115-b. By selectively adjusting the resources used by the second UE 115-d, the second base station 105-d may reduce or eliminate the CLI experienced by the first UE 115-c.
At 355, the first base station 105-c may determine that the set of resources indicated in the resource allocation received at 320are expired, invalid, or otherwise unusable for the CLI measurement procedure. In some aspects, the first base station 105-c may determine that the resource allocation and/or set of resources indicated in the resource allocation are invalid based on an expiration of a validity period (e.g., expiration of a timer) , based on the set of resources being replaced or over-written by the second base station 105-d, based on explicit signaling from the second base station 105-b revoking the set of resources, or any combination thereof. Accordingly, in some cases, the first base station 105-c may demine that the set of resources are invalid based on signaling from the second base station 105-d, autonomously (e.g., without indications from the second base station 105-d) , or both.
For example, in some cases, the first base station 105-c may determine that the set of resources (e.g., set of CLI measurement resources) are invalid by determining an expiration of a validity period (e.g., expiration of a timer) associated with the set of resources. In some cases, the first base station 105-c may be pre-configured with the validity period. Additionally or alternatively, the second base station 105-d may transmit an indication of the validity period associated with the set of resources via the X2 interface. In some cases, the first base station 105-c may initiate the validity period (e.g., initiate the timer) upon receiving the indication of the set of resources at 320. Upon identifying the expiration of the validity period, the process flow 300 may proceed to 375. At 375, the first base station 105-c may transmit an indication that the set of resources are invalid for the CLI measurement procedure. The first base station 105-c may transmit indication that the first set of resources are invalid at 375 based on determining the expiration of the validity period, receiving an indication of the validity period from the second base station 105-d, or both.
By way of another example, the first base station 105-c may determine that the set of resources (e.g., set of CLI measurement resources) are invalid based on explicit signaling from the second base station 105-d revoking the set of resources received at 320. For instance, the second base station 105-d may transmit, to the first base station 105-c, an indication that the set of resources (e.g., CLI measurement resources) are invalid for the CLI measurement procedure. Accordingly, the second base station 105-d may explicitly revoke the set of resources. In this example, the first base station 105-c may determine that the set of resources are invalid based on the indication received from the second base station 105-d. Upon determining that the set of resources are invalid based on the indication from the  second base station 105-d, the process flow 300 may proceed to 375. At 375, the first base station 105-c may transmit an indication that the set of resources are invalid for the CLI measurement procedure. The first base station 105-c may transmit the indication that the first set of resources are invalid at 375 based on receiving the indication from the second base station 105-d that the set of resources are invalid for the CLI measurement procedure.
By way of another example, the first base station 105-c may determine that the set of resources (e.g., set of CLI measurement resources) are invalid based on signaling from the second base station 105-d over-writing (e.g., replacing) the set of resources (e.g., set of CLI measurement resources) with a second set of resources (e.g., a second set of CLI measurement resources) . For instance, the first base station 105-c may receive, from the second base station 105-d, an indication of a second set of resources (e.g., second set of CLI measurement resources) for the CLI measurement procedure. In this regard, the second set of resources may include resources by which the second UE 115-d may use to transmit signals (e.g., SRSs, LTE signals) which may be measured by the first UE 115-c for the CLI measurement procedure. In some cases, the first base station 105-c may determine that the first set of resources are invalid, and are replaced by the second set of resources based on the signaling from the second base station 105-c. Upon determining that the set of resources are invalid based on the indication of the second set of resources from the second base station 105-d, the process flow 300 may proceed to 370. At 370, the first base station 105-c may transmit a second configuration (e.g., second CLI measurement configuration) identifying at least a subset of the second set of resources (e.g., subset of the second set of CLI measurement resources) for the CLI measurement procedure. At 375, the first base station 105-c may additionally transmit an indication that the set of resources are invalid for the CLI measurement procedure. The first base station 105-c may transmit the indication that the first set of resources are invalid based on receiving the indication of the second set of resources from the second base station 105-d.
As noted previously herein, process flow 300 may additionally or alternatively be understood to enable bi-directional cross-RAT CLI measurement. For example, in some cases, the first base station 105-c may transmit an indication of a resource allocation indicating a set of resources (e.g., CLI measurement resources) to the second base station 105-d (e.g., at 320) for a CLI measurement procedure measuring signals transmitted according to the first RAT. Furthermore, the second base station 105-d may transmit a  feedback message to the first base station 105-c (e.g., at 325) , determine resources for the CLI measurement procedure (e.g., at 330) , and transmit a CLI measurement configuration to the second UE 115-d (e.g., at 335) for the CLI measurement procedure to be performed by the second UE 115-d.
Techniques described herein may enable the base stations 105-c and 105-d associated with the different RATs to configure the first and second UEs 115-c and 105-d supported by the respective base stations 105-c and 105-d to perform CLI measurements of signals transmitted according to the other RAT. In this regard, techniques described herein may enable cross-RAT CLI measurement between two different RATs. By enabling cross-RAT CLI measurement, the first and second UEs 115-c and 115-d may be able to perform more efficient and comprehensive CLI measurements, thereby enabling a reduction of CLI within a wireless communications system (e.g., a wireless communications system 100 or 200) .
FIG. 4 shows a block diagram 400 of a device 405 that supports techniques for CLI measurement across RATs in accordance with aspects of the present disclosure. The device 405 may be an example of aspects of a base station 105 as described herein. The device 405 may include a receiver 410, a communications manager 415, and a transmitter 420. The device 405 may also include a processor. Each of these components may be in communication with one another (e.g., via one or more buses) .
The receiver 410 may receive information such as packets, user data, or control information associated with various information channels (e.g., control channels, data channels, and information related to techniques for CLI measurement across RATs, etc. ) . Information may be passed on to other components of the device 405. The receiver 410 may be an example of aspects of the transceiver 720 described with reference to FIG. 7. The receiver 410 may utilize a single antenna or a set of antennas.
The communications manager 415 may communicate with a UE using a first RAT, receive, from a second base station configured to communicate using a second RAT, an indication of a set of resources configured for signals of a CLI measurement procedure, the signals of the CLI measurement procedure to be transmitted by one or more UEs served by the second base station according to the second RAT, transmit, to the UE, a configuration identifying at least a subset of the set of resources configured for the one or more UEs served  by the second base station to use to transmit the signals of the CLI measurement procedure, and receive, from the UE, a measurement report indicating CLI associated with at least the subset of the set of resources. The communications manager 415 may also communicate with one or more UEs served by the second base station using a second RAT, transmit, to the one or more UEs served by the second base station, a configuration indicating a set of resources for the one or more UEs served by the second base station to use to transmit signals of a CLI measurement procedure according to the second RAT, transmit, to a first base station configured to communicate using a first RAT, an indication of the set of resources, and receive, from the first base station, a feedback message responsive to the transmitted indication. The communications manager 415 may be an example of aspects of the communications manager 710 described herein.
The actions performed by the communications manager 415 as described herein may be implemented to realize one or more potential advantages. For example, by providing for cross-RAT CLI measurement, techniques described herein may enable a victim UE 115 to perform more comprehensive, efficient CLI measurements, thereby enabling the network (e.g., base station 105) to reduce and/or eliminate CLI experienced at the victim UE 115, which may lead to more efficient and reliable wireless communications within a wireless communications system (e.g., wireless communications system 100 or 200) .
By enabling cross-RAT CLI measurement, a processor of the victim UE 115 (e.g., a processor controlling the receiver 410, the communications manager 415, the transmitter 420, etc. ) may reduce processing resources used for wireless communications. For example, by enabling cross-RAT CLI measurement, victim UEs 115 may be able to perform more comprehensive CLI measurements, thereby enabling the network to selectively adjust resources in order to reduce CLI experienced at the victim UE 11. By reducing CLI experienced by victim UEs 115, a quantity of retransmissions which must be performed to communicate data within a wireless communications system may be reduced, thereby reducing a number of times the processor ramps up processing power and turns on processing units to transmit and receive data.
The communications manager 415, or its sub-components, may be implemented in hardware, code (e.g., software or firmware) executed by a processor, or any combination thereof. If implemented in code executed by a processor, the functions of the communications  manager 415, or its sub-components may be executed by a general-purpose processor, a digital signal processor (DSP) , an application-specific integrated circuit (ASIC) , a field-programmable gate array (FPGA) or other programmable logic device, discrete gate or transistor logic, discrete hardware components, or any combination thereof designed to perform the functions described in the present disclosure.
The communications manager 415, or its sub-components, may be physically located at various positions, including being distributed such that portions of functions are implemented at different physical locations by one or more physical components. In some examples, the communications manager 415, or its sub-components, may be a separate and distinct component in accordance with various aspects of the present disclosure. In some examples, the communications manager 415, or its sub-components, may be combined with one or more other hardware components, including but not limited to an input/output (I/O) component, a transceiver, a network server, another computing device, one or more other components described in the present disclosure, or a combination thereof in accordance with various aspects of the present disclosure.
The transmitter 420 may transmit signals generated by other components of the device 405. In some examples, the transmitter 420 may be collocated with a receiver 410 in a transceiver module. For example, the transmitter 420 may be an example of aspects of the transceiver 720 described with reference to FIG. 7. The transmitter 420 may utilize a single antenna or a set of antennas.
FIG. 5 shows a block diagram 500 of a device 505 that supports techniques for CLI measurement across RATs in accordance with aspects of the present disclosure. The device 505 may be an example of aspects of a device 405, or a base station 105 as described herein. The device 505 may include a receiver 510, a communications manager 515, and a transmitter 550. The device 505 may also include a processor. Each of these components may be in communication with one another (e.g., via one or more buses) .
The receiver 510 may receive information such as packets, user data, or control information associated with various information channels (e.g., control channels, data channels, and information related to techniques for CLI measurement across RATs, etc. ) . Information may be passed on to other components of the device 505. The receiver 510 may  be an example of aspects of the transceiver 720 described with reference to FIG. 7. The receiver 510 may utilize a single antenna or a set of antennas.
The communications manager 515 may be an example of aspects of the communications manager 415 as described herein. The communications manager 515 may include a RAT communications manager 520, a resource configuration receiving manager 525, a CLI configuration transmitting manager 530, a measurement report receiving manager 535, a CLI measurement resource transmitting manager 540, and a feedback message receiving manager 545. The communications manager 515 may be an example of aspects of the communications manager 710 described herein.
The RAT communications manager 520 may communicate with a UE using a first RAT.
The resource configuration receiving manager 525 may receive, from a second base station configured to communicate using a second RAT, an indication of a set of resources configured for signals of a CLI measurement procedure, the signals of the CLI measurement procedure to be transmitted by one or more UEs served by the second base station according to the second RAT.
The CLI configuration transmitting manager 530 may transmit, to the UE, a configuration identifying at least a subset of the set of resources configured for the one or more UEs served by the second base station to use to transmit the signals of the CLI measurement procedure.
The measurement report receiving manager 535 may receive, from the UE, a measurement report indicating CLI associated with at least the subset of the set of resources.
The RAT communications manager 520 may communicate with one or more UEs served by the second base station using a second RAT.
The CLI measurement resource transmitting manager 540 may transmit, to the one or more UEs served by the second base station, a configuration indicating a set of resources for the one or more UEs served by the second base station to use to transmit signals of a CLI measurement procedure according to the second RAT and transmit, to a first base station configured to communicate using a first RAT, an indication of the set of resources.
The feedback message receiving manager 545 may receive, from the first base station, a feedback message responsive to the transmitted indication.
The transmitter 550 may transmit signals generated by other components of the device 505. In some examples, the transmitter 550 may be collocated with a receiver 510 in a transceiver module. For example, the transmitter 550 may be an example of aspects of the transceiver 720 described with reference to FIG. 7. The transmitter 550 may utilize a single antenna or a set of antennas.
FIG. 6 shows a block diagram 600 of a communications manager 605 that supports techniques for CLI measurement across RATs in accordance with aspects of the present disclosure. The communications manager 605 may be an example of aspects of a communications manager 415, a communications manager 515, or a communications manager 710 described herein. The communications manager 605 may include a RAT communications manager 610, a resource configuration receiving manager 615, a CLI configuration transmitting manager 620, a measurement report receiving manager 625, a feedback message transmitting manager 630, a communication configuration manager 635, a CLI resource manager 640, a validity period manager 645, a CLI parameter receiving manager 650, a CLI measurement resource transmitting manager 655, a feedback message receiving manager 660, and a CLI parameter transmitting manager 665. Each of these modules may communicate, directly or indirectly, with one another (e.g., via one or more buses) .
The RAT communications manager 610 may communicate with a UE using a first RAT. In some examples, the RAT communications manager 610 may communicate with one or more UEs served by the second base station using a second RAT. In some cases, the first RAT includes a 5G RAT, an NR access technology, or both. In some cases, the second RAT includes a 4G RAT, an LTE RAT, or both.
The resource configuration receiving manager 615 may receive, from a second base station configured to communicate using a second RAT, an indication of a set of resources configured for signals of a CLI measurement procedure, the signals of the CLI measurement procedure to be transmitted by one or more UEs served by the second base station according to the second RAT. In some examples, the resource configuration receiving manager 615 may receive, from the second base station, an indication of a second set of  resources configured for signals of the CLI measurement procedure, the signals of the CLI procedure to be transmitted by the one or more UEs served by the second base station according to the second RAT. In some examples, the resource configuration receiving manager 615 may receive, from the second base station, an indication that the set of resources are invalid for the CLI measurement procedure. In some examples, the resource configuration receiving manager 615 may receive, from the first base station, an indication of a second set of resources configured for signals of a second CLI measurement procedure, the signals of the second CLI measurement procedure to be transmitted by one or more UEs served by the first base station according to the first RAT. In some cases, the indication of the set of resources is received from the second base station via an X2 interface for communications between the first base station and the second base station.
The CLI configuration transmitting manager 620 may transmit, to the UE, a configuration identifying at least a subset of the set of resources configured for the one or more UEs served by the second base station to use to transmit the signals of the CLI measurement procedure. In some examples, the CLI configuration transmitting manager 620 may transmit, to the UE, a second configuration indicating that the set of resources are invalid for the CLI measurement procedure, where the second configuration is transmitted based on the expiration of the validity period. In some examples, the CLI configuration transmitting manager 620 may transmit, to the UE based on receiving the indication of the second set of resources, an indication that the set of resources are invalid for the CLI measurement procedure. In some examples, the CLI configuration transmitting manager 620 may transmit, to the UE, a second configuration identifying at least a subset of the second set of resources configured for the one or more UEs served by the second base station to use to transmit the signals of the CLI measurement procedure.
In some examples, the CLI configuration transmitting manager 620 may transmit, to the UE, a second configuration indicating that the set of resources are invalid for the CLI measurement procedure based on receiving, from the second base station, the indication that the set of resources are invalid for the CLI measurement procedure. In some examples, the CLI configuration transmitting manager 620 may transmit, to the UE, the configuration indicating the one or more parameters associated with the CLI procedure. In some examples, the CLI configuration transmitting manager 620 may transmit, to a second UE of the one or more UEs served by the second base station and using the second RAT, a second  configuration identifying at least a subset of the second set of resources configured for the one or more UEs served by the first base station to use to transmit the signals of the second CLI measurement procedure.
The measurement report receiving manager 625 may receive, from the UE, a measurement report indicating CLI associated with at least the subset of the set of resources. In some examples, the measurement report receiving manager 625 may receive, from the UE, a second measurement report indicating CLI associated with signals transmitted according to the first RAT. In some examples, the measurement report receiving manager 625 may receive, from the second UE, a measurement report indicating CLI associated with at least the subset of the second set of resources. In some cases, the measurement report further indicates CLI associated with signals transmitted according to the first RAT.
The CLI measurement resource transmitting manager 655 may transmit, to the one or more UEs served by the second base station, a configuration indicating a set of resources for the one or more UEs served by the second base station to use to transmit signals of a CLI measurement procedure according to the second RAT. In some examples, the CLI measurement resource transmitting manager 655 may transmit, to a first base station configured to communicate using a first RAT, an indication of the set of resources. In some examples, the CLI measurement resource transmitting manager 655 may transmit, to the second base station, an indication of a second set of resources configured for signals of a second CLI measurement procedure, the signals of the second CLI measurement procedure to be transmitted by one or more UEs served by the first base station according to the first RAT. In some examples, the CLI measurement resource transmitting manager 655 may transmit, to the first base station, an indication of a second set of resources configured for signals of the CLI measurement procedure, the signals of the CLI measurement procedure to be transmitted by the one or more UEs served by the second base station according to the second RAT. In some examples, the CLI measurement resource transmitting manager 655 may transmit, to the first base station, an indication that the set of resources are invalid for the CLI measurement procedure. In some cases, the indication of the set of resources is transmitted to the first base station via an X2 interface for communications between the first base station and the second base station.
The feedback message receiving manager 660 may receive, from the first base station, a feedback message responsive to the transmitted indication. In some examples, the feedback message receiving manager 660 may receive, from the second base station, a feedback message responsive to the indication of the second set of resources. In some examples, the feedback message receiving manager 660 may receive, from the first base station, a second feedback message responsive to the indication of the second set of resources.
The feedback message transmitting manager 630 may transmit, to the second base station, a feedback message responsive to the indication of the set of resources. In some examples, the feedback message transmitting manager 630 may receive, from the first base station, a second feedback message responsive to the indication that the set of resources are invalid for the CLI measurement procedure. In some examples, the feedback message transmitting manager 630 may transmit, to the first base station, a second feedback message responsive to the indication of the second set of resources.
The communication configuration manager 635 may determine a first communication configuration for the first base station. In some examples, the communication configuration manager 635 may determine a set of downlink resources of the first communication configuration, a set of flexible resources of the first communication configuration, or both, where the subset of the set of resources shares a set of time resources with at least portions of the set of downlink resources, the set of flexible resources, or both.
The CLI resource manager 640 may determine the subset of the set of resources based on the indication of the set of resources and the first communication configuration.
The validity period manager 645 may determine an expiration of a validity period associated with the set of resources. In some examples, the validity period manager 645 may receive, from the second base station, an indication of the validity period associated with the set of resources, where transmitting the second configuration is based on receiving the indication of the validity period. In some examples, the validity period manager 645 may transmit, to the first base station, an indication of a validity period associated with the set of resources.
The CLI parameter receiving manager 650 may receive, from the second base station, an indication of one or more parameters associated with the CLI procedure. In some  cases, the one or more parameters associated with the CLI procedure include a time domain pattern for the CLI measurement procedure, a sequence generation pattern of the signals of the CLI measurement procedure, a resource element pattern of the signals of the CLI measurement procedure, a starting resource block of the signals of the CLI measurement procedure, or any combination thereof.
The CLI parameter transmitting manager 665 may transmit, to the first base station, an indication of one or more parameters associated with the CLI procedure. In some examples, the one or more parameters associated with the CLI procedure include a time domain pattern for the CLI measurement procedure, a sequence generation pattern of the signals of the CLI measurement procedure, a resource element pattern of the signals of the CLI measurement procedure, a starting resource block of the signals of the CLI measurement procedure, or any combination thereof.
FIG. 7 shows a diagram of a system 700 including a device 705 that supports techniques for CLI measurement across RATs in accordance with aspects of the present disclosure. The device 705 may be an example of or include the components of device 405, device 505, or a base station 105 as described herein. The device 705 may include components for bi-directional voice and data communications including components for transmitting and receiving communications, including a communications manager 710, a network communications manager 715, a transceiver 720, an antenna 725, memory 730, a processor 740, and an inter-station communications manager 745. These components may be in electronic communication via one or more buses (e.g., bus 750) .
The communications manager 710 may communicate with a UE using a first RAT, receive, from a second base station configured to communicate using a second RAT, an indication of a set of resources configured for signals of a CLI measurement procedure, the signals of the CLI measurement procedure to be transmitted by one or more UEs served by the second base station according to the second RAT, transmit, to the UE, a configuration identifying at least a subset of the set of resources configured for the one or more UEs served by the second base station to use to transmit the signals of the CLI measurement procedure, and receive, from the UE, a measurement report indicating CLI associated with at least the subset of the set of resources. The communications manager 710 may also communicate with one or more UEs served by the second base station using a second RAT, transmit, to the one  or more UEs served by the second base station, a configuration indicating a set of resources for the one or more UEs served by the second base station to use to transmit signals of a CLI measurement procedure according to the second RAT, transmit, to a first base station configured to communicate using a first RAT, an indication of the set of resources, and receive, from the first base station, a feedback message responsive to the transmitted indication.
The network communications manager 715 may manage communications with the core network (e.g., via one or more wired backhaul links) . For example, the network communications manager 715 may manage the transfer of data communications for client devices, such as one or more UEs 115.
The transceiver 720 may communicate bi-directionally, via one or more antennas, wired, or wireless links as described above. For example, the transceiver 720 may represent a wireless transceiver and may communicate bi-directionally with another wireless transceiver. The transceiver 720 may also include a modem to modulate the packets and provide the modulated packets to the antennas for transmission, and to demodulate packets received from the antennas.
In some cases, the wireless device may include a single antenna 725. However, in some cases the device may have more than one antenna 725, which may be capable of concurrently transmitting or receiving multiple wireless transmissions.
The memory 730 may include random-access memory (RAM) , read-only memory (ROM) , or a combination thereof. The memory 730 may store computer-readable code 735 including instructions that, when executed by a processor (e.g., the processor 740) cause the device to perform various functions described herein. In some cases, the memory 730 may contain, among other things, a basic I/O system (BIOS) which may control basic hardware or software operation such as the interaction with peripheral components or devices.
The processor 740 may include an intelligent hardware device, (e.g., a general-purpose processor, a DSP, a central processing unit (CPU) , a microcontroller, an ASIC, an FPGA, a programmable logic device, a discrete gate or transistor logic component, a discrete hardware component, or any combination thereof) . In some cases, the processor 740 may be configured to operate a memory array using a memory controller. In some cases, a memory controller may be integrated into processor 740. The processor 740 may be configured to  execute computer-readable instructions stored in a memory (e.g., the memory 730) to cause the device 705 to perform various functions (e.g., functions or tasks supporting techniques for CLI measurement across RATs) .
The inter-station communications manager 745 may manage communications with other base station 105, and may include a controller or scheduler for controlling communications with UEs 115 in cooperation with other base stations 105. For example, the inter-station communications manager 745 may coordinate scheduling for transmissions to UEs 115 for various interference mitigation techniques such as beamforming or joint transmission. In some examples, the inter-station communications manager 745 may provide an X2 interface within an LTE/LTE-A wireless communication network technology to provide communication between base stations 105.
The code 735 may include instructions to implement aspects of the present disclosure, including instructions to support wireless communications. The code 735 may be stored in a non-transitory computer-readable medium such as system memory or other type of memory. In some cases, the code 735 may not be directly executable by the processor 740 but may cause a computer (e.g., when compiled and executed) to perform functions described herein.
FIG. 8 shows a flowchart illustrating a method 800 that supports techniques for CLI measurement across RATs in accordance with aspects of the present disclosure. The operations of method 800 may be implemented by a base station 105 or its components as described herein. For example, the operations of method 800 may be performed by a communications manager as described with reference to FIGs. 4 through 7. In some examples, a base station may execute a set of instructions to control the functional elements of the base station to perform the functions described below. Additionally or alternatively, a base station may perform aspects of the functions described below using special-purpose hardware.
At 805, the base station may communicate with a UE using a first RAT. The operations of 805 may be performed according to the methods described herein. In some examples, aspects of the operations of 805 may be performed by a RAT communications manager as described with reference to FIGs. 4 through 7.
At 810, the base station may receive, from a second base station configured to communicate using a second RAT, an indication of a set of resources configured for signals of a CLI measurement procedure, the signals of the CLI measurement procedure to be transmitted by one or more UEs served by the second base station according to the second RAT. The operations of 810 may be performed according to the methods described herein. In some examples, aspects of the operations of 810 may be performed by a CLI measurement resource receiving manager as described with reference to FIGs. 4 through 7.
At 815, the base station may transmit, to the UE, a configuration identifying at least a subset of the set of resources configured for the one or more UEs served by the second base station to use to transmit the signals of the CLI measurement procedure. The operations of 815 may be performed according to the methods described herein. In some examples, aspects of the operations of 815 may be performed by a CLI configuration transmitting manager as described with reference to FIGs. 4 through 7.
At 820, the base station may receive, from the UE, a measurement report indicating CLI associated with at least the subset of the set of resources. The operations of 820 may be performed according to the methods described herein. In some examples, aspects of the operations of 820 may be performed by a measurement report receiving manager as described with reference to FIGs. 4 through 7.
FIG. 9 shows a flowchart illustrating a method 900 that supports techniques for CLI measurement across RATs in accordance with aspects of the present disclosure. The operations of method 900 may be implemented by a base station 105 or its components as described herein. For example, the operations of method 900 may be performed by a communications manager as described with reference to FIGs. 4 through 7. In some examples, a base station may execute a set of instructions to control the functional elements of the base station to perform the functions described below. Additionally or alternatively, a base station may perform aspects of the functions described below using special-purpose hardware.
At 905, the base station may communicate with a UE using a first RAT. The operations of 905 may be performed according to the methods described herein. In some examples, aspects of the operations of 905 may be performed by a RAT communications manager as described with reference to FIGs. 4 through 7.
At 910, the base station may receive, from a second base station configured to communicate using a second RAT, an indication of a set of resources configured for signals of a CLI measurement procedure, the signals of the CLI measurement procedure to be transmitted by one or more UEs served by the second base station according to the second RAT. The operations of 910 may be performed according to the methods described herein. In some examples, aspects of the operations of 910 may be performed by a CLI measurement resource receiving manager as described with reference to FIGs. 4 through 7.
At 915, the base station may determine a first communication configuration for the first base station. The operations of 915 may be performed according to the methods described herein. In some examples, aspects of the operations of 915 may be performed by a communication configuration manager as described with reference to FIGs. 4 through 7.
At 920, the base station may determine the subset of the set of resources based on the indication of the set of resources and the first communication configuration. The operations of 920 may be performed according to the methods described herein. In some examples, aspects of the operations of 920 may be performed by a CLI resource manager as described with reference to FIGs. 4 through 7.
At 925, the base station may transmit, to the UE, a configuration identifying at least the subset of the set of resources configured for the one or more UEs served by the second base station to use to transmit the signals of the CLI measurement procedure. The operations of 925 may be performed according to the methods described herein. In some examples, aspects of the operations of 925 may be performed by a CLI configuration transmitting manager as described with reference to FIGs. 4 through 7.
At 930, the base station may receive, from the UE, a measurement report indicating CLI associated with at least the subset of the set of resources. The operations of 930 may be performed according to the methods described herein. In some examples, aspects of the operations of 930 may be performed by a measurement report receiving manager as described with reference to FIGs. 4 through 7.
FIG. 10 shows a flowchart illustrating a method 1000 that supports techniques for CLI measurement across RATs in accordance with aspects of the present disclosure. The operations of method 1000 may be implemented by a base station 105 or its components as described herein. For example, the operations of method 1000 may be performed by a  communications manager as described with reference to FIGs. 4 through 7. In some examples, a base station may execute a set of instructions to control the functional elements of the base station to perform the functions described below. Additionally or alternatively, a base station may perform aspects of the functions described below using special-purpose hardware.
At 1005, the base station may communicate with a UE using a first RAT. The operations of 1005 may be performed according to the methods described herein. In some examples, aspects of the operations of 1005 may be performed by a RAT communications manager as described with reference to FIGs. 4 through 7.
At 1010, the base station may receive, from a second base station configured to communicate using a second RAT, an indication of a set of resources configured for signals of a CLI measurement procedure, the signals of the CLI measurement procedure to be transmitted by one or more UEs served by the second base station according to the second RAT. The operations of 1010 may be performed according to the methods described herein. In some examples, aspects of the operations of 1010 may be performed by a CLI measurement resource receiving manager as described with reference to FIGs. 4 through 7.
At 1015, the base station may transmit, to the UE, a configuration identifying at least a subset of the set of resources configured for the one or more UEs served by the second base station to use to transmit the signals of the CLI measurement procedure. The operations of 1015 may be performed according to the methods described herein. In some examples, aspects of the operations of 1015 may be performed by a CLI configuration transmitting manager as described with reference to FIGs. 4 through 7.
At 1020, the base station may receive, from the UE, a measurement report indicating CLI associated with at least the subset of the set of resources. The operations of 1020 may be performed according to the methods described herein. In some examples, aspects of the operations of 1020 may be performed by a measurement report receiving manager as described with reference to FIGs. 4 through 7.
At 1025, the base station may determine an expiration of a validity period associated with the set of resources. The operations of 1025 may be performed according to the methods described herein. In some examples, aspects of the operations of 1025 may be performed by a validity period manager as described with reference to FIGs. 4 through 7.
t 1030, the base station may transmit, to the UE, a second configuration indicating that the set of resources are invalid for the CLI measurement procedure, where the second configuration is transmitted based on the expiration of the validity period. The operations of 1030 may be performed according to the methods described herein. In some examples, aspects of the operations of 1030 may be performed by a CLI configuration transmitting manager as described with reference to FIGs. 4 through 7.
FIG. 11 shows a flowchart illustrating a method 1100 that supports techniques for CLI measurement across RATs in accordance with aspects of the present disclosure. The operations of method 1100 may be implemented by a base station 105 or its components as described herein. For example, the operations of method 1100 may be performed by a communications manager as described with reference to FIGs. 4 through 7. In some examples, a base station may execute a set of instructions to control the functional elements of the base station to perform the functions described below. Additionally or alternatively, a base station may perform aspects of the functions described below using special-purpose hardware.
At 1105, the base station may communicate with one or more UEs served by the second base station using a second radio access technology. The operations of 1105 may be performed according to the methods described herein. In some examples, aspects of the operations of 1105 may be performed by a RAT communications manager as described with reference to FIGs. 4 through 7.
At 1110, the base station may transmit, to the one or more UEs served by the second base station, a configuration indicating a set of resources for the one or more UEs served by the second base station to use to transmit signals of a CLI measurement procedure according to the second radio access technology. The operations of 1110 may be performed according to the methods described herein. In some examples, aspects of the operations of 1110 may be performed by a CLI measurement resource transmitting manager as described with reference to FIGs. 4 through 7.
At 1115, the base station may transmit, to a first base station configured to communicate using a first radio access technology, an indication of the set of resources. The operations of 1115 may be performed according to the methods described herein. In some  examples, aspects of the operations of 1115 may be performed by a CLI measurement resource transmitting manager as described with reference to FIGs. 4 through 7.
At 1120, the base station may receive, from the first base station, a feedback message responsive to the transmitted indication. The operations of 1120 may be performed according to the methods described herein. In some examples, aspects of the operations of 1120 may be performed by a feedback message receiving manager as described with reference to FIGs. 4 through 7.
It should be noted that the methods described herein describe possible implementations, and that the operations and the steps may be rearranged or otherwise modified and that other implementations are possible. Further, aspects from two or more of the methods may be combined.
Although aspects of an LTE, LTE-A, LTE-A Pro, or NR system may be described for purposes of example, and LTE, LTE-A, LTE-A Pro, or NR terminology may be used in much of the description, the techniques described herein are applicable beyond LTE, LTE-A, LTE-A Pro, or NR networks. For example, the described techniques may be applicable to various other wireless communications systems such as Ultra Mobile Broadband (UMB) , Institute of Electrical and Electronics Engineers (IEEE) 802.11 (Wi-Fi) , IEEE 802.16 (WiMAX) , IEEE 802.20, Flash-OFDM, as well as other systems and radio technologies not explicitly mentioned herein.
Information and signals described herein may be represented using any of a variety of different technologies and techniques. For example, data, instructions, commands, information, signals, bits, symbols, and chips that may be referenced throughout the description may be represented by voltages, currents, electromagnetic waves, magnetic fields or particles, optical fields or particles, or any combination thereof.
The various illustrative blocks and components described in connection with the disclosure herein may be implemented or performed with a general-purpose processor, a DSP, an ASIC, a CPU, an FPGA or other programmable logic device, discrete gate or transistor logic, discrete hardware components, or any combination thereof designed to perform the functions described herein. A general-purpose processor may be a microprocessor, but in the alternative, the processor may be any processor, controller, microcontroller, or state machine. A processor may also be implemented as a combination of  computing devices (e.g., a combination of a DSP and a microprocessor, multiple microprocessors, one or more microprocessors in conjunction with a DSP core, or any other such configuration) .
The functions described herein may be implemented in hardware, software executed by a processor, firmware, or any combination thereof. If implemented in software executed by a processor, the functions may be stored on or transmitted over as one or more instructions or code on a computer-readable medium. Other examples and implementations are within the scope of the disclosure and appended claims. For example, due to the nature of software, functions described herein may be implemented using software executed by a processor, hardware, firmware, hardwiring, or combinations of any of these. Features implementing functions may also be physically located at various positions, including being distributed such that portions of functions are implemented at different physical locations.
Computer-readable media includes both non-transitory computer storage media and communication media including any medium that facilitates transfer of a computer program from one place to another. A non-transitory storage medium may be any available medium that may be accessed by a general-purpose or special purpose computer. By way of example, and not limitation, non-transitory computer-readable media may include RAM, ROM, electrically erasable programmable ROM (EEPROM) , flash memory, compact disk (CD) ROM or other optical disk storage, magnetic disk storage or other magnetic storage devices, or any other non-transitory medium that may be used to carry or store desired program code means in the form of instructions or data structures and that may be accessed by a general-purpose or special-purpose computer, or a general-purpose or special-purpose processor. Also, any connection is properly termed a computer-readable medium. For example, if the software is transmitted from a website, server, or other remote source using a coaxial cable, fiber optic cable, twisted pair, digital subscriber line (DSL) , or wireless technologies such as infrared, radio, and microwave, then the coaxial cable, fiber optic cable, twisted pair, DSL, or wireless technologies such as infrared, radio, and microwave are included in the definition of computer-readable medium. Disk and disc, as used herein, include CD, laser disc, optical disc, digital versatile disc (DVD) , floppy disk and Blu-ray disc where disks usually reproduce data magnetically, while discs reproduce data optically with lasers. Combinations of the above are also included within the scope of computer-readable media.
As used herein, including in the claims, “or” as used in a list of items (e.g., a list of items prefaced by a phrase such as “at least one of” or “one or more of” ) indicates an inclusive list such that, for example, a list of at least one of A, B, or C means A or B or C or AB or AC or BC or ABC (i.e., A and B and C) . Also, as used herein, the phrase “based on” shall not be construed as a reference to a closed set of conditions. For example, an example step that is described as “based on condition A” may be based on both a condition A and a condition B without departing from the scope of the present disclosure. In other words, as used herein, the phrase “based on” shall be construed in the same manner as the phrase “based at least in part on. ”
In the appended figures, similar components or features may have the same reference label. Further, various components of the same type may be distinguished by following the reference label by a dash and a second label that distinguishes among the similar components. If just the first reference label is used in the specification, the description is applicable to any one of the similar components having the same first reference label irrespective of the second reference label, or other subsequent reference label.
The description set forth herein, in connection with the appended drawings, describes example configurations and does not represent all the examples that may be implemented or that are within the scope of the claims. The term “example” used herein means “serving as an example, instance, or illustration, ” and not “preferred” or “advantageous over other examples. ” The detailed description includes specific details for the purpose of providing an understanding of the described techniques. These techniques, however, may be practiced without these specific details. In some instances, known structures and devices are shown in block diagram form in order to avoid obscuring the concepts of the described examples.
The description herein is provided to enable a person having ordinary skill in the art to make or use the disclosure. Various modifications to the disclosure will be apparent to a person having ordinary skill in the art, and the generic principles defined herein may be applied to other variations without departing from the scope of the disclosure. Thus, the disclosure is not limited to the examples and designs described herein, but is to be accorded the broadest scope consistent with the principles and novel features disclosed herein.

Claims (30)

  1. A method for wireless communication at a first base station, comprising:
    communicating with a user equipment (UE) using a first radio access technology;
    receiving, from a second base station configured to communicate using a second radio access technology, an indication of a set of resources configured for signals of a cross-link interference measurement procedure, the signals of the cross-link interference measurement procedure to be transmitted by one or more UEs served by the second base station according to the second radio access technology;
    transmitting, to the UE, a configuration identifying at least a subset of the set of resources configured for the one or more UEs served by the second base station to use to transmit the signals of the cross-link interference measurement procedure; and
    receiving, from the UE, a measurement report indicating cross-link interference associated with at least the subset of the set of resources.
  2. The method of claim 1, further comprising:
    transmitting, to the second base station, a feedback message responsive to the indication of the set of resources.
  3. The method of claim 1, further comprising:
    determining a first communication configuration for the first base station; and
    determining the subset of the set of resources based at least in part on the indication of the set of resources and the first communication configuration.
  4. The method of claim 3, further comprising:
    determining a set of downlink resources of the first communication configuration, a set of flexible resources of the first communication configuration, or both, wherein the subset of the set of resources shares a set of time resources with at least portions of the set of downlink resources, the set of flexible resources, or both.
  5. The method of claim 1, further comprising:
    determining an expiration of a validity period associated with the set of resources; and
    transmitting, to the UE, a second configuration indicating that the set of resources are invalid for the cross-link interference measurement procedure, wherein the second configuration is transmitted based at least in part on the expiration of the validity period.
  6. The method of claim 5, further comprising:
    receiving, from the second base station, an indication of the validity period associated with the set of resources, wherein transmitting the second configuration is based at least in part on receiving the indication of the validity period.
  7. The method of claim 1, further comprising:
    receiving, from the second base station, an indication of a second set of resources configured for signals of the cross-link interference measurement procedure, the signals of the cross-link interference procedure to be transmitted by the one or more UEs served by the second base station according to the second radio access technology;
    transmitting, to the UE based at least in part on receiving the indication of the second set of resources, an indication that the set of resources are invalid for the cross-link interference measurement procedure; and
    transmitting, to the UE, a second configuration identifying at least a subset of the second set of resources configured for the one or more UEs served by the second base station to use to transmit the signals of the cross-link interference measurement procedure.
  8. The method of claim 1, further comprising:
    receiving, from the second base station, an indication that the set of resources are invalid for the cross-link interference measurement procedure; and
    transmitting, to the UE, a second configuration indicating that the set of resources are invalid for the cross-link interference measurement procedure based at least in part on receiving, from the second base station, the indication that the set of resources are invalid for the cross-link interference measurement procedure.
  9. The method of claim 1, further comprising:
    receiving, from the second base station, an indication of one or more parameters associated with the cross-link interference procedure; and
    transmitting, to the UE, the configuration indicating the one or more parameters associated with the cross-link interference procedure.
  10. The method of claim 9, wherein the one or more parameters associated with the cross-link interference procedure comprise a time domain pattern for the cross-link interference measurement procedure, a sequence generation pattern of the signals of the cross-link interference measurement procedure, a resource element pattern of the signals of the cross-link interference measurement procedure, a starting resource block of the signals of the cross-link interference measurement procedure, or any combination thereof.
  11. The method of claim 1, further comprising:
    transmitting, to the second base station, an indication of a second set of resources configured for signals of a second cross-link interference measurement procedure, the signals of the second cross-link interference measurement procedure to be transmitted by one or more UEs served by the first base station according to the first radio access technology; and
    receiving, from the second base station, a feedback message responsive to the indication of the second set of resources.
  12. The method of claim 1, wherein the measurement report further indicates cross-link interference associated with signals transmitted according to the first radio access technology.
  13. The method of claim 1, further comprising:
    receiving, from the UE, a second measurement report indicating cross-link interference associated with signals transmitted according to the first radio access technology.
  14. The method of claim 1, wherein:
    the first radio access technology comprises a Fifth Generation (5G) radio access technology, a New Radio (NR) access technology, or both; and
    the second radio access technology comprises a Fourth Generation (4G) radio access technology, a Long-Term Evolution (LTE) radio access technology, or both.
  15. The method of claim 1, wherein the indication of the set of resources is received from the second base station via an X2 interface for communications between the first base station and the second base station.
  16. A method for wireless communication at a second base station, comprising:
    communicating with one or more UEs served by the second base station using a second radio access technology;
    transmitting, to the one or more UEs served by the second base station, a configuration indicating a set of resources for the one or more UEs served by the second base station to use to transmit signals of a cross-link interference measurement procedure according to the second radio access technology;
    transmitting, to a first base station configured to communicate using a first radio access technology, an indication of the set of resources; and
    receiving, from the first base station, a feedback message responsive to the transmitted indication.
  17. The method of claim 16, further comprising:
    transmitting, to the first base station, an indication of a validity period associated with the set of resources.
  18. The method of claim 16, further comprising:
    transmitting, to the first base station, an indication of a second set of resources configured for signals of the cross-link interference measurement procedure, the signals of the cross-link interference measurement procedure to be transmitted by the one or more UEs served by the second base station according to the second radio access technology; and
    receiving, from the first base station, a second feedback message responsive to the indication of the second set of resources.
  19. The method of claim 16, further comprising:
    transmitting, to the first base station, an indication that the set of resources are invalid for the cross-link interference measurement procedure; and
    receiving, from the first base station, a second feedback message responsive to the indication that the set of resources are invalid for the cross-link interference measurement procedure.
  20. The method of claim 16, further comprising:
    transmitting, to the first base station, an indication of one or more parameters associated with the cross-link interference procedure.
  21. The method of claim 20, further comprising:
    wherein the one or more parameters associated with the cross-link interference procedure comprise a time domain pattern for the cross-link interference measurement procedure, a sequence generation pattern of the signals of the cross-link interference measurement procedure, a resource element pattern of the signals of the cross-link interference measurement procedure, a starting resource block of the signals of the cross-link interference measurement procedure, or any combination thereof.
  22. The method of claim 16, further comprising:
    receiving, from the first base station, an indication of a second set of resources configured for signals of a second cross-link interference measurement procedure, the signals of the second cross-link interference measurement procedure to be transmitted by one or more UEs served by the first base station according to the first radio access technology; and
    transmitting, to the first base station, a second feedback message responsive to the indication of the second set of resources.
  23. The method of claim 22, further comprising:
    transmitting, to a second UE of the one or more UEs served by the second base station and using the second radio access technology, a second configuration identifying at least a subset of the second set of resources configured for the one or more UEs served by the first base station to use to transmit the signals of the second cross-link interference measurement procedure; and
    receiving, from the second UE, a measurement report indicating cross-link interference associated with at least the subset of the second set of resources.
  24. The method of claim 16, wherein:
    the first radio access technology comprises a Fifth Generation (5G) radio access technology, a New Radio (NR) access technology, or both; and
    the second radio access technology comprises a Fourth Generation (4G) radio access technology, a Long-Term Evolution (LTE) radio access technology, or both.
  25. The method of claim 16, wherein the indication of the set of resources is transmitted to the first base station via an X2 interface for communications between the first base station and the second base station.
  26. An apparatus for wireless communication at a first base station, comprising:
    a processor,
    memory coupled with the processor; and
    instructions stored in the memory and executable by the processor to cause the apparatus to:
    communicate with a user equipment (UE) using a first radio access technology;
    receive, from a second base station configured to communicate using a second radio access technology, an indication of a set of resources configured for signals of a cross-link interference measurement procedure, the signals of the cross-link interference measurement procedure to be transmitted by one or more UEs served by the second base station according to the second radio access technology;
    transmit, to the UE, a configuration identifying at least a subset of the set of resources configured for the one or more UEs served by the second base station to use to transmit the signals of the cross-link interference measurement procedure; and
    receive, from the UE, a measurement report indicating cross-link interference associated with at least the subset of the set of resources.
  27. The apparatus of claim 26, wherein the instructions are further executable by the processor to cause the apparatus to:
    transmit, to the second base station, a feedback message responsive to the indication of the set of resources.
  28. The apparatus of claim 26, wherein the instructions are further executable by the processor to cause the apparatus to:
    determine a first communication configuration for the first base station; and
    determine the subset of the set of resources based at least in part on the indication of the set of resources and the first communication configuration.
  29. The apparatus of claim 28, wherein the instructions are further executable by the processor to cause the apparatus to:
    determine a set of downlink resources of the first communication configuration, a set of flexible resources of the first communication configuration, or both, wherein the subset of the set of resources shares a set of time resources with at least portions of the set of downlink resources, the set of flexible resources, or both.
  30. An apparatus for wireless communication at a second base station, comprising:
    a processor,
    memory coupled with the processor; and
    instructions stored in the memory and executable by the processor to cause the apparatus to:
    communicate with one or more UEs served by the second base station using a second radio access technology;
    transmit, to the one or more UEs served by the second base station, a configuration indicating a set of resources for the one or more UEs served by the second base station to use to transmit signals of a cross-link interference measurement procedure according to the second radio access technology;
    transmit, to a first base station configured to communicate using a first radio access technology, an indication of the set of resources; and
    receive, from the first base station, a feedback message responsive to the transmitted indication.
PCT/CN2020/109475 2020-08-17 2020-08-17 Techniques for cross-link interference measurement across radio access technologies WO2022036493A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/109475 WO2022036493A1 (en) 2020-08-17 2020-08-17 Techniques for cross-link interference measurement across radio access technologies

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/109475 WO2022036493A1 (en) 2020-08-17 2020-08-17 Techniques for cross-link interference measurement across radio access technologies

Publications (1)

Publication Number Publication Date
WO2022036493A1 true WO2022036493A1 (en) 2022-02-24

Family

ID=80322418

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/109475 WO2022036493A1 (en) 2020-08-17 2020-08-17 Techniques for cross-link interference measurement across radio access technologies

Country Status (1)

Country Link
WO (1) WO2022036493A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20180323887A1 (en) * 2017-05-05 2018-11-08 Qualcomm Incorporated Interference management based on reference signals in wireless communications
CN109391973A (en) * 2017-08-14 2019-02-26 中国移动通信有限公司研究院 A kind of cross link interference detecting method, equipment and computer readable storage medium
CN110752900A (en) * 2018-07-23 2020-02-04 中国移动通信有限公司研究院 Reference signal interception method and device, communication equipment and storage medium
CN110972156A (en) * 2018-09-28 2020-04-07 华为技术有限公司 Interference measurement method and device
CN111278119A (en) * 2019-01-04 2020-06-12 维沃移动通信有限公司 Interference processing method, base station and terminal

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20180323887A1 (en) * 2017-05-05 2018-11-08 Qualcomm Incorporated Interference management based on reference signals in wireless communications
CN109391973A (en) * 2017-08-14 2019-02-26 中国移动通信有限公司研究院 A kind of cross link interference detecting method, equipment and computer readable storage medium
CN110752900A (en) * 2018-07-23 2020-02-04 中国移动通信有限公司研究院 Reference signal interception method and device, communication equipment and storage medium
CN110972156A (en) * 2018-09-28 2020-04-07 华为技术有限公司 Interference measurement method and device
CN111278119A (en) * 2019-01-04 2020-06-12 维沃移动通信有限公司 Interference processing method, base station and terminal

Similar Documents

Publication Publication Date Title
WO2022032567A1 (en) Methods for measuring and reporting doppler shift
US11678394B2 (en) Techniques for multicast beam failure and recovery
EP4079066A1 (en) Concurrent sidelink and uplink transmission
EP4278673A1 (en) Techniques for non-serving cell layer one reporting in wireless communications systems
WO2023048864A1 (en) Channel state information reporting for multiple panel user equipment
WO2022147744A1 (en) Downlink control information based unified transmission configuration indicator acknowledgement
US11671980B2 (en) Techniques for enhanced coverage semi-persistent scheduling
US20220109553A1 (en) Flow control feedback for full-duplex communications
WO2022000376A1 (en) Interference measurement of sensing signals
WO2022000358A1 (en) Techniques for self-awareness based interference measurement of sensing signals
WO2021196068A1 (en) Channel state reporting types
WO2021253258A1 (en) Phase-tracking reference signal alignment for physical shared channel
WO2021258378A1 (en) Uplink control information multiplexing rule for simultaneous uplink control channel and uplink shared channel transmission
WO2021226789A1 (en) Channel state information reporting for partial bands
WO2021151230A1 (en) Sounding reference signal configuration
WO2021231534A1 (en) Link adaptation upon beam blocking determination
WO2021183450A1 (en) Sidelink communication during a downlink slot
WO2022036493A1 (en) Techniques for cross-link interference measurement across radio access technologies
WO2023102719A1 (en) Techniques for detecting blockage conditions
US12015938B2 (en) Techniques for autonomous beam failure indicator counting
US20230156619A1 (en) Uplink metrics based on cross-link interference
WO2023092367A1 (en) Active participation of reflective surface in beam selection
US20240080080A1 (en) Counting active reference signals for a joint channel state information report
WO2023130305A1 (en) Techniques for event-triggered beam group reporting
WO2022109849A1 (en) Layer-specific feedback periodicity

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20949706

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20949706

Country of ref document: EP

Kind code of ref document: A1