WO2022213985A1 - Iab指示方法、装置、设备及介质 - Google Patents

Iab指示方法、装置、设备及介质 Download PDF

Info

Publication number
WO2022213985A1
WO2022213985A1 PCT/CN2022/085337 CN2022085337W WO2022213985A1 WO 2022213985 A1 WO2022213985 A1 WO 2022213985A1 CN 2022085337 W CN2022085337 W CN 2022085337W WO 2022213985 A1 WO2022213985 A1 WO 2022213985A1
Authority
WO
WIPO (PCT)
Prior art keywords
iab node
target
beam direction
iab
transmit beam
Prior art date
Application number
PCT/CN2022/085337
Other languages
English (en)
French (fr)
Inventor
王欢
刘进华
Original Assignee
维沃移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 维沃移动通信有限公司 filed Critical 维沃移动通信有限公司
Priority to EP22784051.9A priority Critical patent/EP4322660A1/en
Publication of WO2022213985A1 publication Critical patent/WO2022213985A1/zh
Priority to US18/375,465 priority patent/US20240032009A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0686Hybrid systems, i.e. switching and simultaneous transmission
    • H04B7/0695Hybrid systems, i.e. switching and simultaneous transmission using beam selection
    • H04B7/06952Selecting one or more beams from a plurality of beams, e.g. beam training, management or sweeping
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/046Wireless resource allocation based on the type of the allocated resource the resource being in the space domain, e.g. beams
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/54Allocation or scheduling criteria for wireless resources based on quality criteria
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/14Relay systems
    • H04B7/15Active relay systems
    • H04B7/155Ground-based stations
    • H04B7/15528Control of operation parameters of a relay station to exploit the physical medium
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0014Three-dimensional division
    • H04L5/0023Time-frequency-space
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/54Allocation or scheduling criteria for wireless resources based on quality criteria
    • H04W72/541Allocation or scheduling criteria for wireless resources based on quality criteria using the level of interference

Definitions

  • the present application belongs to the field of communication technologies, and specifically relates to an IAB indication method, apparatus, device and medium.
  • an integrated access backhaul (IAB) node includes two functional parts, namely a distributed unit (DU) and a mobile terminal (mobile termination, MT).
  • DU distributed unit
  • MT mobile terminal
  • Embodiments of the present application provide an IAB indication method, apparatus, device, and medium, which can solve the problem of low uplink and downlink transmission efficiency when DU and MT beams are multiplexed.
  • a first aspect provides an IAB indication method, the method comprising: in the case of beam multiplexing between DUs and MTs, the first IAB node performs at least one of the following: reporting the first signaling to the parent IAB node, acquiring the target Instructions.
  • the first signaling includes at least one of the following: a first transmit beam direction and a second transmit beam direction; the first transmit beam direction is the downlink transmit beam direction of the DU of the parent IAB node, and the second transmit beam direction is the first transmit beam direction
  • the uplink transmission beam direction of the MT of the IAB node; the first signaling is valid for at least one of the following: target multiplexing mode, target time, and target frequency domain resources; the target multiplexing mode is the DU of the parent IAB node and the first IAB node.
  • the multiplexing mode corresponding to MT.
  • the target indication information is used to indicate any one of the following: the first condition: when configuring the resources for measuring the RS, the RS measurement is for the target multiplexing mode, and the uplink and downlink beam information of the DU of the parent IAB node.
  • the first condition is used by the first IAB node to control the reception interference of the MT of the first IAB node; the first condition includes at least one of the following: the first interference is less than or equal to a first preset threshold, and the interference variation is less than or equal to a preset offset.
  • the shift threshold value and the quality of the communication channel meet the preset transmission conditions;
  • the first interference is the interference of the uplink and downlink transmission of the DU of the first IAB node to the reception of the MT of the first IAB node, and the amount of interference variation is the upper and lower of the DU of the first IAB node.
  • Interference variation amount of the line transmission to the reception of the MT of the first IAB node, and the communication channel quality is the communication channel quality of the DU of the parent IAB node to the MT of the first IAB node during uplink and downlink transmission of the DU of the first IAB node.
  • an IAB indicating device in a second aspect, includes: a processing module.
  • the processing module is configured to perform at least one of the following in the case of beam multiplexing between the DU and the MT: report the first signaling to the parent IAB node, and obtain target indication information.
  • the first signaling includes at least one of the following: a first transmit beam direction and a second transmit beam direction; the first transmit beam direction is the downlink transmit beam direction of the DU of the parent IAB node, and the second transmit beam direction is the first transmit beam direction
  • the uplink transmission beam direction of the MT of the IAB node; the first signaling is valid for at least one of the following: target multiplexing mode, target time, and target frequency domain resources; the target multiplexing mode is the DU of the parent IAB node and the first IAB node.
  • the multiplexing mode corresponding to MT.
  • the target indication information is used to indicate any one of the following: the first condition: when configuring the resources for measuring the RS, the RS measurement is for the target multiplexing mode, and the uplink and downlink beam information of the DU of the parent IAB node.
  • the first condition is used by the first IAB node to control the reception interference of the MT of the first IAB node; the first condition includes at least one of the following: the first interference is less than or equal to a first preset threshold, and the interference variation is less than or equal to a preset offset.
  • the shift threshold value and the quality of the communication channel meet the preset transmission conditions;
  • the first interference is the interference of the uplink and downlink transmission of the DU of the first IAB node to the reception of the MT of the first IAB node, and the amount of interference variation is the upper and lower of the DU of the first IAB node.
  • Interference variation amount of the line transmission to the reception of the MT of the first IAB node, and the communication channel quality is the communication channel quality of the DU of the parent IAB node to the MT of the first IAB node during uplink and downlink transmission of the DU of the first IAB node.
  • an IAB node comprising a processor, a memory, and a program or instruction stored on the memory and executable on the processor, the program or instruction being executed by the processor When executed, the steps of the method as described in the first aspect are implemented.
  • an IAB node including a processor and a communication interface, wherein the communication interface is used to report the first signaling to the parent IAB node in the case of beam multiplexing between the DU and the MT, and the first
  • the signaling includes at least one of the following: a first transmit beam direction and a second transmit beam direction; the first transmit beam direction is the downlink transmit beam direction of the DU of the parent IAB node, and the second transmit beam direction is the MT of the first IAB node where the first signaling is effective for at least one of the following: target multiplexing mode, target time, and target frequency domain resources; the target multiplexing mode is the multiplexing mode corresponding to DU and MT.
  • the processor is configured to acquire target indication information in the case of beam multiplexing of the DU and the MT.
  • the target indication information is used to indicate any one of the following: the first condition is that when configuring the resources for measuring the RS, the RS measurement is for the target multiplexing mode, and the uplink and downlink beam information of the DU of the parent IAB node.
  • the first condition is used by the first IAB node to control the reception interference of the MT of the first IAB node; the first condition includes at least one of the following: the first interference is less than or equal to a first preset threshold, and the interference variation is less than or equal to a preset offset.
  • the shift threshold value and the quality of the communication channel meet the preset transmission conditions;
  • the first interference is the interference of the uplink and downlink transmission of the DU of the first IAB node to the reception of the MT of the first IAB node, and the amount of interference variation is the upper and lower of the DU of the first IAB node.
  • Interference variation amount of the line transmission to the reception of the MT of the first IAB node, and the communication channel quality is the communication channel quality of the DU of the parent IAB node to the MT of the first IAB node during uplink and downlink transmission of the DU of the first IAB node.
  • a readable storage medium is provided, and a program or an instruction is stored on the readable storage medium, and when the program or instruction is executed by a processor, the steps of the method according to the first aspect are implemented.
  • a chip in a sixth aspect, includes a processor and a communication interface, the communication interface is coupled to the processor, and the processor is configured to run a program or an instruction to implement the method according to the first aspect .
  • a computer program/program product is provided, the computer program/program product is stored in a storage medium, the program/program product is executed by at least one processor to implement the IAB according to the first aspect Indicates the steps of the method.
  • the first IAB node may report the first signaling to the parent IAB node, and/or obtain target indication information. Since there is beam multiplexing between the DU and the MT, the first IAB node can report the first transmit beam direction and/or the second transmit beam direction to the parent IAB node through the first signaling, so as to lock the receive beam of the IAB MT/ Send beams to reserve receive/transmit beam resources for DUs, improve the flexibility and efficiency of beam usage for DUs and MTs, and improve the efficiency of uplink and downlink transmissions.
  • the first IAB node may acquire information such as the first condition, the RS measurement is for the target multiplexing mode or the uplink and downlink beam information of the DU of the parent IAB node, so as to determine the beam information of the uplink and downlink transmission of the DU according to the information.
  • the first IAB node may acquire information such as the first condition, the RS measurement is for the target multiplexing mode or the uplink and downlink beam information of the DU of the parent IAB node, so as to determine the beam information of the uplink and downlink transmission of the DU according to the information.
  • FIG. 1 is a schematic diagram of the architecture of a communication system provided by an embodiment of the present application.
  • FIG. 2 is a schematic diagram of the architecture of an IAB system provided by an embodiment of the present application.
  • FIG. 3 is a schematic structural diagram of a CU-DU of an IAB system according to an embodiment of the present application
  • FIG. 4 is a schematic diagram of an IAB indication method provided by an embodiment of the present application.
  • FIG. 5 is a schematic structural diagram of an IAB indicating device provided by an embodiment of the present application.
  • FIG. 6 is a schematic diagram of a hardware structure of a communication device provided by an embodiment of the present application.
  • FIG. 7 is a schematic diagram of a hardware structure of an IAB node provided by an embodiment of the present application.
  • first, second and the like in the description and claims of the present application are used to distinguish similar objects, and are not used to describe a specific order or sequence. It is to be understood that the terms so used are interchangeable under appropriate circumstances so that the embodiments of the present application can be practiced in sequences other than those illustrated or described herein, and that "first”, “second” distinguishes Usually it is a class, and the number of objects is not limited.
  • the first object may be one or multiple.
  • “and/or” in the description and claims indicates at least one of the connected objects, and the character “/" generally indicates that the associated objects are in an "or” relationship.
  • LTE long term evolution
  • LTE-advanced LTE-advanced
  • LTE-A long term evolution
  • CDMA code Division Multiple Access
  • time division multiple access time division multiple access
  • FDMA frequency division multiple access
  • OFDMA orthogonal frequency division multiple access
  • SC-FDMA single-carrier frequency-division multiple access
  • system and “network” in the embodiments of the present application are often used interchangeably, and the described technology can be used not only for the above-mentioned systems and radio technologies, but also for other systems and radio technologies.
  • NR new radio
  • the following description describes a new radio (NR) system for example purposes, and uses NR terminology in most of the description below, but these techniques can also be applied to applications other than NR system applications, such as 6th Generation (6th Generation) , 6G) communication system.
  • 6th Generation 6th Generation
  • 6G 6th Generation
  • FIG. 1 shows a schematic structural diagram of a wireless communication system to which an embodiment of the present application can be applied.
  • the wireless communication system includes user equipment (user equipment, UE) 11 and network equipment 12 .
  • the UE 11 may also be referred to as a terminal device or a terminal, and the UE 11 may be a mobile phone, a tablet computer, a laptop computer, a notebook computer, or a personal digital assistant (PDA).
  • PDA personal digital assistant
  • handheld computer netbook, ultra-mobile personal computer (UMPC), mobile Internet device (MID), wearable device (wearable device) or vehicle-mounted device (VUE), pedestrian terminal (PUE) ) and other terminal-side devices, and wearable devices include: smart watches, bracelets, headphones, glasses, etc.
  • the network equipment 12 may be a base station or a core network, where the base station may be referred to as a Node B, Evolved Node B, Access Point, Base Transceiver Station (BTS), Radio Base Station, Radio Transceiver, Basic Service Set (basic service set, BSS), extended service set (extended service set, ESS), Node B, Evolved Node B (eNB), Home Node B, Home Evolved Node B, WLAN Access Point, WiFi Node, Transmission and Reception Point (transmitting receiving point, TRP) or some other suitable term in the field, as long as the same technical effect is achieved, the base station is not limited to specific technical vocabulary, it should be noted that in the embodiment of this application, only NR is used The base station in the system is taken as an example, but the specific type of the base station is not limited.
  • FIG. 2 shows a schematic diagram of the architecture of an IAB system.
  • An IAB node includes a DU functional part and an MT functional part. Relying on MT, an access point (ie IAB node) can find an upstream access point (ie parent (parent) IAB node) and establish a wireless connection with the DU of the upstream access point, the wireless connection is called the backhaul chain road (backhaul link). After an IAB node establishes a complete backhaul link, the IAB node turns on its DU function, and the DU provides cell services, that is, the DU can provide access services for the UE.
  • a self-backhaul loop includes a home (donor) IAB node, and the donor IAB node has a directly connected wired transmission network.
  • FIG. 3 shows a schematic structural diagram of a CU-DU of an IAB system.
  • the DUs of all IAB nodes are connected to a central unit (CU) node, which is carried out by this node through F1-application protocol (F1-AP) signaling Configuration of DU.
  • the CU configures the MT through radio resource control (radio resource control, RRC) signaling.
  • RRC radio resource control
  • the introduction of the IAB system is to solve the situation that the wired transmission network is not deployed in place when the access points are densely deployed. That is, in the absence of a wired transmission network, the access point can rely on wireless backhaul.
  • the resource multiplexing method between DU and MT of IAB is time-division multiplexing (TDM); in order to realize frequency-division multiplexing (FDM)/space division multiplexing (space division multiplexing, SDM) resource multiplexing, the simultaneous transmission and reception of DU and MT are as follows:
  • DU-TX and MT-TX DU is configured as DL (downlink), and MT is configured as UL (uplink); or DU is sent in DL, and MT is sent in UL;
  • DU-RX and MT-RX DU is configured as UL and MT is configured as DL; or DU is configured for UL reception and MT is configured for DL reception;
  • DU-TX and MT-RX DU is configured as DL and MT is configured as DL; or DU performs DL transmission and MT performs DL reception;
  • DU-RX and MT-TX DU is configured as UL, and MT is configured as UL; or DU is configured for UL reception, and MT is configured for UL transmission.
  • IAB-DU transmission will cause interference to IAB-MT reception, especially when IAB-DU and IAB-MT share time-frequency resources (that is, FDM /SDM multiplexing).
  • the IAB-MT transmission will cause interference to the IAB-DU reception, especially when the IAB-DU and IAB-MT share time-frequency resources (ie Multiplexing of FDM/SDM).
  • the transmission signal to IAB-DU will also leak to IAB-MT, causing reception interference of IAB-MT, and vice versa, especially when IAB- When DU and IAB-MT share time-frequency resources (that is, the multiplexing mode of FDM/SDM).
  • the beam alignment is roughly divided into two stages.
  • the first stage is to initially train the initial transmission beam from the base station to the UE when the UE accesses the network.
  • the second stage is to train the precise transceiver beam pair from the base station to the UE after the UE establishes a connection.
  • the beam training in the second stage is mainly completed through CSI measurement and feedback.
  • the base station periodically sends a synchronization signal block (SSB), and sends a group of SSBs in a beam scanning manner in each SSB sending period.
  • the UE measures the reference signal carried by the SSB, and reports the index of the SSB with higher received energy, so that the base station can determine its transmit beam.
  • the UE reports the SSB index according to the rules specified in the protocol.
  • Each SSB corresponds to a set of physical random access channel (PRACH) resources.
  • PRACH physical random access channel
  • each CSI reporting configuration indicates the type of CSI reporting (CSI quantity), which includes parameters indicating beams such as CRI and SSB index.
  • the base station configures a sounding reference signal (SRS) resource (resource) for the UE for uplink beam training, and the UE autonomously sends SRS on the corresponding SRS resource to perform beam training.
  • SRS sounding reference signal
  • the base station/UE can autonomously select training beams.
  • the base station For the uplink beam indication, the base station indicates the beam direction used by the UE on the UL scheduling resource, and the beam direction is indicated by the sounding reference signal resource indicator (SRS resource indicator, SRI); for the downlink beam indication, the base station indicates the beam direction on the DL scheduling resource, So that the UE can judge its receiving beam.
  • the downlink beam direction is indicated by the associated transmission configuration indication (TCI), where the TCI reflects information such as CRI and SSB index.
  • TCI transmission configuration indication
  • the beam directions of DU and MT are restricted by each other. On the one hand, it is restricted by the hardware resource sharing/multiplexing of DU/MT, and on the other hand, it is restricted by the interference of DU/MT.
  • DU and MT can use hardware resources alone for beamforming, and DU can use a narrower beam;
  • SDM/FDM To transmit and receive at the same time with MT (SDM/FDM), DU and MT need to share hardware resources for beamforming, and DU/MT uses a wider beam.
  • the existing beam training/beam designation assumes that the beams of the DU/MT are not mutually restricted, and the beam training/beam designation of the DU/MT is independent of each other. If the related methods in the prior art are followed, the available beams/hardware resources between IAB DUs/MTs need to be statically allocated in advance, which cannot guarantee the utilization efficiency of hardware resources/beamforming.
  • the DU/MT reception interference is relatively serious.
  • the interference intensity received by the MT is affected by the direction of the receiving beam of the MT/the direction of the uplink and downlink beams of the DU, and the intensity of the received interference of the DU is affected by the direction of the receiving beam of the DU/the direction of the uplink and downlink beams of the MT. Therefore, from the perspective of interference, the available beams of the DU and the MT also have a mutually restrictive relationship.
  • the embodiment of the present application provides an enhancement mechanism of the beam management mechanism/interference management mechanism:
  • a beam determination method is provided to improve the efficiency of beam multiplexing/hardware resource multiplexing between IAB DU/MT.
  • a beam determination method/transmission parameter including parameters such as beam
  • the beam management mechanism is enhanced to achieve the purpose of interference suppression.
  • enhance the interference management mechanism is to enhance the interference management mechanism in order to achieve the purpose of interference suppression, that is, to set demand conditions for IAB MT reception, and control the IAB MT to receive interference to assist the parent IAB downlink scheduling.
  • FIG. 4 shows a flowchart of an IAB indication method provided by an embodiment of the present application.
  • the IAB indication method provided in this embodiment of the present application may include the following step 201 .
  • Step 201 In the case of beam multiplexing between the DU and the MT, the first IAB node performs at least one of the following: reporting the first signaling to the parent IAB node, and acquiring target indication information.
  • the above-mentioned first signaling includes at least one of the following: a first transmit beam direction and a second transmit beam direction; the first transmit beam direction is the downlink transmit beam direction of the DU of the parent IAB node, and the second transmit beam direction
  • the beam direction is the uplink transmit beam direction of the MT of the first IAB node.
  • the first signaling is effective for at least one of the following: target multiplexing case, target time, and target frequency domain resources; the target multiplexing mode is a multiplexing mode corresponding to DU and MT.
  • the above-mentioned target indication information is used to indicate any one of the following: the first condition, when configuring the resources of measurement reference signals (reference signals, RS), the RS measurement is for the target multiplexing mode, and the uplink and downlink beam information of the DU of the parent IAB node .
  • the first condition when configuring the resources of measurement reference signals (reference signals, RS), the RS measurement is for the target multiplexing mode, and the uplink and downlink beam information of the DU of the parent IAB node .
  • the above-mentioned first condition includes at least one of the following: the first interference is less than or equal to a first preset threshold, the variation of the interference is less than or equal to a preset offset threshold, and the quality of the communication channel meets the preset transmission condition; the first interference is the first IAB
  • the first IAB node reports through beams, that is, the first IAB node can report the expected/available parent DU (that is, the DU of the parent IAB node) to the parent IAB node.
  • the downlink transmit beam direction (that is, the first transmit beam direction, represented by the TCI/CRI/SSB index, etc.), so that the parent IAB node can determine the downlink beam of the IAB MT (that is, the MT of the first IAB node), that is, to lock the IAB MT Receive beams to schedule appropriate downlink beams for IAB MT, so as to reserve receive/transmit beam resources for DU, and improve the flexibility of MT downlink beam and DU beam multiplexing.
  • the first IAB node reports through the beam, that is, the first IAB node can report the expected/available IAB MT uplink transmission beam direction to the parent IAB node (that is, the parent IAB node).
  • MT uplink beam/SRI scheduled by DU that is, the second transmit beam direction
  • the parent IAB node can lock the transmit beam of the IAB MT, so as to realize the scheduling of the appropriate uplink beam for the IAB MT, so as to reserve the receive/transmit beam for the DU resources, which improves the flexibility of multiplexing MT uplink beams and DU beams.
  • the first IAB node after obtaining the first condition in advance, can adjust the beam direction of the IAB DU, the uplink and downlink power, etc., so that the uplink and downlink transmission of the DU of the first IAB node satisfies the first condition. conditions, so as to achieve the purpose of controlling the reception interference of the MT of the first IAB node.
  • the first IAB node can judge whether at least one of the corresponding interference magnitude, interference variation, and communication channel quality during uplink and downlink transmission of DUs satisfies the first condition, so that The receiving interference of the MT of the first IAB node is controlled to ensure that the interference received by the IAB MT during reception is sufficiently low, and the flexibility and efficiency of beam use of the DU and MT are improved, thereby improving the efficiency of uplink and downlink transmission.
  • the first IAB node after obtaining in advance that the RS measurement is for the target multiplexing mode when configuring the RS resources, the first IAB node can determine the beam information of the uplink and downlink transmission of the DU and the MT, so as to avoid the DU and the MT.
  • the interference between them improves the flexibility and efficiency of beam usage of DU and MT, thereby improving the efficiency of uplink and downlink transmission.
  • the first IAB node can determine the beam of the IAB MT based on the uplink and downlink beam information of the DU, so as to avoid interference between the DU and the MT, Improve the flexibility and efficiency of beam use of DU and MT, thereby improving the efficiency of uplink and downlink transmission.
  • the above-mentioned target multiplexing mode includes at least one of the following:
  • the above-mentioned first signaling is specifically any one of the following: uplink control information (uplink control information, UCI) and a media access control-control element (media access control-control element, MAC CE) .
  • the MAC CE allocates an independent logical channel ID (logical channel ID, LCID).
  • first transmission beam direction and/or second transmission beam direction is any one of the following:
  • DUs of the parent IAB node preferentially use/preferentially schedule beams
  • step 201 "reporting the first signaling to the parent IAB node" in the foregoing step 201 may be specifically implemented through the following step 201a.
  • Step 201a the first IAB node reports the first signaling to the parent IAB node for the target multiplexing mode, target time and/or target frequency domain resources.
  • the first IAB node may report the beam direction (that is, the first transmit beam direction and/or the second transmit beam direction) for one multiplexing mode, one time and/or one frequency domain resource (also referred to as frequency range). beam direction), so that the parent IAB node can decide to use the beam direction in the one time and/or frequency range.
  • the above-mentioned target time and/or target frequency domain resources are associated with a target multiplexing mode.
  • an independent field in the above-mentioned first signaling carries indication information of a target multiplexing mode, a target time and/or a target frequency domain resource.
  • the content of the CSI quantity may be increased to carry the indication information of the target multiplexing mode, the target time and/or the target frequency domain resource.
  • the reporting for RS measurement is for the target multiplexing mode.
  • the target information associated with the first sending beam direction and/or the second sending beam direction is reported for the target multiplexing mode.
  • the target information includes at least one of the following: precoding matrix indicator (PMI), rank indicator (RI), channel quality indicator (CQI), L1 layer control signaling, reference signal Received power (reference signal receiving power, RSRP), signal to interference plus noise ratio (signal to interference plus noise ratio, SINR), codebook indication i1.
  • the upper target time may be explicitly indicated by the first signaling, for example, in the form of a time period, a time bitmap (bitmap), and the like to indicate a continuous/discrete time range.
  • bitmap time bitmap
  • the SRS resources are indicated for the target multiplexing mode, target time and/or target frequency domain resources.
  • the configuration information of the SRS resources carries the indication information of the target multiplexing mode, the target time and/or the target frequency domain resources.
  • the parent DU may train the beam direction for the target multiplexing pattern on the corresponding SRS resource.
  • the SRS resource is the SRS resource for the target multiplexing mode.
  • the parent DU may train the beam direction for the target multiplexing pattern on the corresponding SRS resource.
  • the DU of the above-mentioned parent IAB node trains the beam direction for the target multiplexing mode on the SRS resource.
  • the first IAB node supports the reporting of beam-related power control-related parameters.
  • the power control parameters for the first transmission beam direction that is, the expected transmission power/the adjustment value of the expected transmission power, such as the capacity per resource unit).
  • the power control parameters for the first transmission beam direction that is, the expected transmission power/the adjustment value of the expected transmission power, such as the capacity per resource unit.
  • the above-mentioned first IAB node supports reporting power control parameters by using at least one downlink power control flow, and each downlink power control flow corresponds to one beam direction respectively.
  • the power control rate and beam correlation can be implemented as an IAB/parent IAB node, and only multiple power control flows are specified in the actual protocol.
  • the parent IAB node informs the first IAB node in advance of the first sending beam direction and/or the second sending beam direction of the DU of the parent IAB node to be scheduled.
  • the first IAB node can acquire the uplink and downlink beam information of the parent DU in advance, so that it can determine the available beams of the IAB DU.
  • the first transmit beam direction (and/or the second transmit beam direction) in this embodiment of the present application may be one or more transmit beam directions.
  • the above-mentioned first sending beam direction and/or second sending beam direction are: beams for target multiplexing mode, target time and/or target frequency domain resources.
  • the above-mentioned parent IAB node notifies the first IAB node of the first transmission beam to the first IAB node through high-level signaling, physical layer signaling, RRC, MAC CE, or downlink control information (DCI). direction and/or second transmit beam direction.
  • high-level signaling physical layer signaling, RRC, MAC CE, or downlink control information (DCI).
  • DCI downlink control information
  • the direction of the target transmission beam indicated in the semi-static (Semi-static)/dynamic (dynamic) grant (grant) is the same as the direction of the target transmission beam to be scheduled/planned to be scheduled in the DU of the parent IAB node.
  • the target transmit beam direction includes at least one of the following: a first transmit beam direction and a second transmit beam direction direction.
  • the above-mentioned target indication information is used to indicate the uplink and downlink beam information of the DU of the parent IAB node.
  • the above target indication information is acquired in advance by the first IAB node according to the time interval between the scheduling signaling and the scheduling resource.
  • the above target indication information is specifically used to indicate the direction of the downlink transmission beam of the parent IAB node on the scheduling resource, or the direction of the uplink transmission beam of the MT of the first IAB node on the scheduling resource.
  • the indication range of the time interval between the scheduling signaling and the scheduling resource is a preset indication range.
  • the first IAB node can expand the time interval between the scheduling signaling (for example, the DL scheduling DCI) and the scheduling resources, so that the parent DU uses the DCI to schedule the transmission resources in advance.
  • the scheduling signaling for example, the DL scheduling DCI
  • the first IAB node reports the scheduling preparation time to the parent IAB node, and the scheduling preparation time is determined by any one of the following: protocol agreement, network device configuration, CU indication.
  • the first IAB node reports the scheduling preparation time to the parent IAB node, so that the parent IAB can determine the scheduling advance amount.
  • the above-mentioned preset transmission conditions include at least one of the following: the quality of the communication channel meets the minimum CQI requirement, the quality of the communication channel meets the minimum coding modulation level demodulation (modulation and coding scheme, MCS) requirement, communication The channel quality meets the minimum rate requirement.
  • MCS modulation and coding scheme
  • the uplink and downlink transmission of the IAB DU needs to ensure that the interference received by the IAB MT is low enough to ensure that the quality of the communication channel from the parent DU to the IAB MT meets the preset transmission conditions (such as the minimum CQI requirement/minimum MCS demodulation requirement/minimum speed requirements, etc.).
  • the above-mentioned first preset threshold, preset offset threshold, and preset transmission condition are all determined by any one of the following: protocol agreement, network device configuration, and parent IAB node indication.
  • the CU/parent IAB indicates the upward adjustment value of the CQI reported by the IAB MT to indicate the minimum CQI requirement.
  • the above-mentioned first condition is for a target multiplexing mode and/or a target time.
  • the above-mentioned first condition is specifically configured according to subframes, time slots and symbols.
  • the uplink and downlink transmission of the DU of the first IAB node is not limited by the first condition.
  • the embodiment of the present application provides an IAB indication method.
  • the first IAB node can report the first signaling to the parent IAB node, and/or obtain target indication information. Since there is beam multiplexing between the DU and the MT, the first IAB node can report the first transmit beam direction and/or the second transmit beam direction to the parent IAB node through the first signaling, so as to lock the receive beam of the IAB MT/ Send beams to reserve receive/transmit beam resources for DUs, improve the flexibility and efficiency of beam usage for DUs and MTs, and improve the efficiency of uplink and downlink transmissions.
  • the first IAB node may acquire information such as the first condition, the RS measurement is for the target multiplexing mode or the uplink and downlink beam information of the DU of the parent IAB node, so as to determine the beam information of the uplink and downlink transmission of the DU according to the information.
  • the first IAB node may acquire information such as the first condition, the RS measurement is for the target multiplexing mode or the uplink and downlink beam information of the DU of the parent IAB node, so as to determine the beam information of the uplink and downlink transmission of the DU according to the information.
  • the embodiment of the present application also has the effect of interference suppression, and the specific method is as follows:
  • the first IAB node can report the expected transmission parameters such as CRI, and assist the parent DU to schedule appropriate downlink beams, so that the IAB MT receives less interference.
  • the first IAB node reports the CRI to the parent IAB according to its DU UL transmission beam, to ensure that the MT can use the appropriate beam for reception, so that the UL transmission has less interference to the MT.
  • the first IAB node reports the CRI to the parent IAB according to its DU DL transmission beam, to ensure that the MT can use the appropriate beam for reception, so that the DL transmission has less interference to the MT.
  • the first IAB node schedules appropriate transmission parameters such as TCI/SRI, so as to control reception interference to the IAB MT.
  • the first IAB node schedules an appropriate UL transmission beam to ensure less interference to IAB MT reception.
  • the first IAB node schedules a suitable DL transmission beam to ensure less interference to IAB MT reception.
  • the first IAB node reports the expected transmission parameters such as CRI/SRI, and assists the parent DU to schedule appropriate uplink and downlink beams, so as to control the interference to the IAB DU reception.
  • the first IAB node reports the expected CRI to the parent IAB to ensure that the parent DL transmission has less interference with the IAB DU reception.
  • the first IAB node reports the expected SRI to the parent IAB, or uses the appropriate SRS transmission direction to perform UL beam training to ensure that the MT can use the appropriate beam for transmission, so that the UL transmission of the IAB MT can receive the IAB DU. less interference.
  • the first IAB node schedules appropriate transmission parameters such as SRI, so as to ensure less interference in IAB DU reception.
  • the first IAB node schedules an appropriate UL transmission beam to ensure that parent DL transmission has less interference to IAB DU reception.
  • the first IAB node schedules and is the UL transmission beam to ensure that the Parent UL transmission has less interference to the IAB DU reception.
  • the execution subject may be an IAB node, or an IAB indication device, or a control module in the IAB indication device for executing the IAB indication method.
  • the IAB indicating device provided by the embodiments of the present application is described by taking an IAB node (ie, a first IAB node) executing an IAB indicating method as an example.
  • FIG. 5 shows a possible schematic structural diagram of the IAB indicating device involved in the embodiment of the present application.
  • the IAB indicating device 60 may include: a processing module 61 .
  • the processing module 61 is configured to perform at least one of the following in the case of beam multiplexing between the DU and the MT: reporting the first signaling to the parent IAB node, and acquiring target indication information.
  • the first signaling includes at least one of the following: a first transmit beam direction and a second transmit beam direction; the first transmit beam direction is the downlink transmit beam direction of the DU of the parent IAB node, and the second transmit beam direction is the first transmit beam direction
  • the uplink transmission beam direction of the MT of the IAB node; the first signaling is valid for at least one of the following: target multiplexing mode, target time, and target frequency domain resources; the target multiplexing mode is the DU of the parent IAB node and the first IAB node.
  • the target indication information is used to indicate any one of the following: the first condition: when configuring the resources for measuring the RS, the RS measurement is for the target multiplexing mode, and the uplink and downlink beam information of the DU of the parent IAB node.
  • the first condition is used by the first IAB node to control the reception interference of the MT of the first IAB node; the first condition includes at least one of the following: the first interference is less than or equal to a first preset threshold, and the interference variation is less than or equal to a preset offset.
  • the shift threshold value and the quality of the communication channel meet the preset transmission conditions;
  • the first interference is the interference of the uplink and downlink transmission of the DU of the first IAB node to the reception of the MT of the first IAB node, and the amount of interference variation is the upper and lower of the DU of the first IAB node.
  • Interference variation amount of the line transmission to the reception of the MT of the first IAB node, and the communication channel quality is the communication channel quality of the DU of the parent IAB node to the MT of the first IAB node during uplink and downlink transmission of the DU of the first IAB node.
  • the above-mentioned target multiplexing mode includes at least one of the following:
  • the above-mentioned processing module 61 is specifically configured to report the first signaling to the parent IAB node for the target multiplexing mode, target time and/or target frequency domain resources.
  • an independent field in the above-mentioned first signaling carries indication information of a target multiplexing mode, a target time and/or a target frequency domain resource.
  • the reporting for RS measurement is for the target multiplexing mode.
  • the target information associated with the first transmit beam direction and/or the second transmit beam direction is reported for the target multiplexing mode; the target information includes at least one of the following: PMI, RI, CQI, L1 layer control signaling, RSRP, SINR, codebook indication i1.
  • the SRS resources are indicated for the target multiplexing mode, target time and/or target frequency domain resources.
  • the configuration information of the SRS resource carries the indication information of the target multiplexing mode, the target time and/or the target frequency domain resource.
  • the SRS resource is the SRS resource for the target multiplexing mode.
  • the DU of the above-mentioned parent IAB node trains the beam direction for the target multiplexing mode on the SRS resource.
  • the above-mentioned first signaling is specifically any one of the following: UCI and MAC CE.
  • first transmit beam direction and/or second transmit beam direction is any one of the following:
  • DUs of the parent IAB node preferentially use/preferentially schedule beams
  • the first IAB node supports the reporting of beam-related power control-related parameters.
  • the power control parameters for the first transmit beam direction are reported.
  • the above-mentioned first IAB node supports reporting power control parameters by using at least one downlink power control flow, and each downlink power control flow corresponds to one beam direction respectively.
  • the parent IAB node informs the first IAB node in advance of the first transmit beam direction and/or the second transmit beam direction of the DU of the parent IAB node to be scheduled.
  • the above-mentioned first transmit beam direction and/or second transmit beam direction are: beams for target multiplexing mode, target time and/or target frequency domain resources.
  • the above-mentioned parent IAB node notifies the first IAB node of the first transmit beam direction and/or the second transmit beam direction through high layer signaling, physical layer signaling, RRC, MAC CE or DCI.
  • the direction of the target transmission beam indicated in the semi-static/dynamic grant is the same as the direction of the target transmission beam to be scheduled in the DU of the parent IAB node, and the direction of the target transmission beam includes at least one of the following: A transmit beam direction and a second transmit beam direction.
  • the above-mentioned target indication information is used to indicate the uplink and downlink beam information of the DU of the parent IAB node.
  • the above target indication information is acquired in advance by the first IAB node according to the time interval between the scheduling signaling and the scheduling resource.
  • the above target indication information is specifically used to indicate the direction of the downlink transmission beam of the parent IAB node on the scheduling resource, or the direction of the uplink transmission beam of the MT of the first IAB node on the scheduling resource.
  • the indication range of the time interval between the scheduling signaling and the scheduling resource is a preset indication range.
  • the first IAB node reports the scheduling preparation time to the parent IAB node, and the scheduling preparation time is determined by any one of the following: protocol agreement, network device configuration, CU indication.
  • the above preset transmission conditions include at least one of the following: the communication channel quality meets the minimum CQI requirement, the communication channel quality meets the minimum MCS demodulation requirement, and the communication channel quality meets the minimum rate requirement.
  • the above-mentioned first preset threshold value, preset offset threshold value and preset transmission condition are determined by any one of the following: protocol agreement, network device configuration, and parent IAB node indication.
  • the above-mentioned first condition is for the target multiplexing mode and/or the target time.
  • the above-mentioned first condition is specifically configured according to subframes, time slots and symbols.
  • the uplink and downlink transmission of the DU of the first IAB node is not limited by the first condition.
  • An embodiment of the present application provides an IAB indicating device, because in the case of beam multiplexing between DUs and MTs, the IAB indicating device can report through beams (that is, reporting of the first transmit beam direction and/or the second transmit beam direction), To lock the receiving beam/transmitting beam of the IAB MT, in order to reserve the receiving/transmitting beam resources for the DU, improve the flexibility and efficiency of the beam usage of the DU and the MT, thereby improving the efficiency of uplink and downlink transmission.
  • the IAB instructing device can obtain information such as the first condition, the RS measurement is for the target multiplexing mode or the uplink and downlink beam information of the DU of the parent IAB node, so as to determine the beam information of the uplink and downlink transmission of the DU according to the information,
  • the IAB MT In order to determine the beam information transmitted by the IAB MT to avoid interference between DU and MT, improve the flexibility and efficiency of beam use of DU and MT, thereby improving the efficiency of uplink and downlink transmission.
  • the IAB indicating device in this embodiment of the present application may be a device, a device having an operating system or an IAB node, or a component, an integrated circuit, or a chip in an IAB node.
  • the apparatus or IAB node may be network equipment (eg, access network equipment).
  • the IAB indicating device provided in the embodiment of the present application can implement each process implemented by the foregoing method embodiments, and achieve the same technical effect. To avoid repetition, details are not repeated here.
  • an embodiment of the present application further provides a communication device 500 , which includes a processor 501 and a memory 502 , which are stored on the memory 502 and can be stored on the processor 501
  • the running program or instruction for example, when the communication device 500 is an IAB node, when the program or instruction is executed by the processor 501 implements each process of the above method embodiments, and can achieve the same technical effect.
  • Embodiments of the present application further provide an IAB node, including a processor and a communication interface, where the communication interface is used to report first signaling to the parent IAB node in the case of beam multiplexing between DUs and MTs, where the first signaling contains Including at least one of the following: a first sending beam direction and a second sending beam direction; the first sending beam direction is the downlink sending beam direction of the DU of the parent IAB node, and the second sending beam direction is the MT of the first IAB node.
  • the processor is configured to acquire target indication information in the case of beam multiplexing between the DU and the MT.
  • the target indication information is used to indicate any one of the following: the first condition is that when configuring the resources for measuring the RS, the RS measurement is for the target multiplexing mode, and the uplink and downlink beam information of the DU of the parent IAB node.
  • the first condition is used by the first IAB node to control the reception interference of the MT of the first IAB node; the first condition includes at least one of the following: the first interference is less than or equal to a first preset threshold, and the interference variation is less than or equal to a preset offset.
  • the shift threshold value and the quality of the communication channel meet the preset transmission conditions;
  • the first interference is the interference of the uplink and downlink transmission of the DU of the first IAB node to the reception of the MT of the first IAB node, and the amount of interference variation is the upper and lower of the DU of the first IAB node.
  • Interference variation amount of the line transmission to the reception of the MT of the first IAB node, and the communication channel quality is the communication channel quality of the DU of the parent IAB node to the MT of the first IAB node during uplink and downlink transmission of the DU of the first IAB node.
  • FIG. 6 is a schematic diagram of a hardware structure of an IAB node implementing an embodiment of the present application.
  • the embodiment of the present application further provides an IAB node.
  • the IAB node 900 includes: an antenna 91 , a radio frequency device 92 , and a baseband device 93 .
  • the antenna 91 is connected to the radio frequency device 92 .
  • the radio frequency device 92 receives information through the antenna 91, and sends the received information to the baseband device 93 for processing.
  • the baseband device 93 processes the information to be sent and sends it to the radio frequency device 92
  • the radio frequency device 92 processes the received information and sends it out through the antenna 91 .
  • the above-mentioned frequency band processing apparatus may be located in the baseband apparatus 93 , and the method performed by the IAB node in the above embodiments may be implemented in the baseband apparatus 93 .
  • the baseband apparatus 93 includes a processor 94 and a memory 95 .
  • the baseband device 93 may include, for example, at least one baseband board on which multiple chips are arranged. As shown in FIG. 7 , one of the chips is, for example, the processor 94, which is connected to the memory 95 to call the program in the memory 95 to execute The IAB node operations shown in the above method embodiments.
  • the baseband device 93 may further include a network interface 96 for exchanging information with the radio frequency device 92, the interface being, for example, a common public radio interface (CPRI).
  • CPRI common public radio interface
  • the IAB node in the embodiment of the present invention further includes: instructions or programs stored in the memory 95 and executable on the processor 94, and the processor 94 invokes the instructions or programs in the memory 95 to execute the modules shown in FIG. 6 to execute method, and achieve the same technical effect, in order to avoid repetition, it is not repeated here.
  • the IAB node provided in this embodiment of the present application can implement the processes implemented in the first and second embodiments of the above method, and achieve the same technical effect. To avoid repetition, details are not repeated here.
  • the embodiments of the present application further provide a readable storage medium, where a program or an instruction is stored on the readable storage medium.
  • a program or an instruction is stored on the readable storage medium.
  • the processor is the processor in the IAB node described in the foregoing embodiment.
  • the readable storage medium includes a computer-readable storage medium, such as computer read-only memory (read-only memory, ROM), random access memory (random access memory, RAM), magnetic disk or optical disk, etc.
  • An embodiment of the present application further provides a chip, where the chip includes a processor and a communication interface, the communication interface is coupled to the processor, and the processor is configured to run a program or an instruction to implement the above IAB indication method embodiments.
  • the chip includes a processor and a communication interface
  • the communication interface is coupled to the processor
  • the processor is configured to run a program or an instruction to implement the above IAB indication method embodiments.
  • the chip mentioned in the embodiments of the present application may also be referred to as a system-on-chip, a system-on-chip, a system-on-chip, or a system-on-a-chip, or the like.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Quality & Reliability (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请公开了一种IAB指示方法、装置、设备及介质,本申请实施例的IAB指示方法包括:在DU与MT的波束复用的情况下,第一IAB节点执行向父IAB节点上报第一信令和/或获取目标指示信息。第一信令中包括第一发送波束方向和/或第二发送波束方向;第一信令对以下至少一项生效:目标复用模式、目标时间、目标频域资源。目标指示信息用于指示以下任一项:第一条件、在配置测量RS的资源时RS测量是针对目标复用模式的、父IAB节点的DU的上下行波束信息。第一条件包括以下至少一项:第一干扰小于或等于第一预设阈值、干扰变化量小于或等于预设偏移阈值、通信信道质量满足预设传输条件。

Description

IAB指示方法、装置、设备及介质
相关申请的交叉引用
本申请主张在2021年04月06日在中国提交的中国专利申请号202110369448.0的优先权,其全部内容通过引用包含于此。
技术领域
本申请属于通信技术领域,具体涉及一种IAB指示方法、装置、设备及介质。
背景技术
在通信系统中,一个自回传(integrated access backhaul,IAB)节点包括两个功能部分,分别为分布单元(distributed unit,DU)和移动终端(mobile termination,MT)。对于DU和MT的资源复用/共享的情况,由于DU和MT的可用波束会受到硬件资源的限制,以及DU与MT之间存在的干扰的限制,因此会降低DU和MT的波束使用效率,从而导致上下行传输效率较低。
发明内容
本申请实施例提供一种IAB指示方法、装置、设备及介质,能够解决DU和MT波束复用时,上下行传输效率较低的问题。
第一方面,提供了一种IAB指示方法,该方法包括:在DU与MT的波束复用的情况下,第一IAB节点执行以下至少一项:向父IAB节点上报第一信令、获取目标指示信息。其中,第一信令中包括以下至少一项:第一发送波束方向和第二发送波束方向;第一发送波束方向为父IAB节点的DU的下行发送波束方向,第二发送波束方向为第一IAB节点的MT的上行发送波束方向;第一信令对以下至少一项生效:目标复用模式、目标时间、目标频域资源;目标复用模式为父IAB节点的DU和第一IAB节点的MT对应的复用模式。目标指示信息用于指示以下任一项:第一条件、在配置测量RS的资源时RS测量是针对目标复用模式的、父IAB节点的DU的上下行波束信息。第一条件用于第一IAB节点控制第一IAB节点的MT的接收干扰;第一条件包括以下至少一项:第一干扰小于或等于第一预设阈值、干扰变化量小于或等于预设偏移阈值、通信信道质量满足预设传输条件;第一干扰为第一IAB节点的DU的上下行传输对第一IAB节点的MT的接收的干扰,干扰变化量为第一IAB节点的DU的上下行传输对第一IAB节点的MT的接收的干扰变化量,通信信道质量为在第一IAB节点的DU的上下行传输时,父IAB节点的DU到第一IAB节点的MT的通信信道质量。
第二方面,提供了一种IAB指示装置,该IAB指示装置包括:处理模块。处理模块,用于在DU与MT的波束复用的情况下,执行以下至少一项:向父IAB节点上报 第一信令、获取目标指示信息。其中,第一信令中包括以下至少一项:第一发送波束方向和第二发送波束方向;第一发送波束方向为父IAB节点的DU的下行发送波束方向,第二发送波束方向为第一IAB节点的MT的上行发送波束方向;第一信令对以下至少一项生效:目标复用模式、目标时间、目标频域资源;目标复用模式为父IAB节点的DU和第一IAB节点的MT对应的复用模式。目标指示信息用于指示以下任一项:第一条件、在配置测量RS的资源时RS测量是针对目标复用模式的、父IAB节点的DU的上下行波束信息。第一条件用于第一IAB节点控制第一IAB节点的MT的接收干扰;第一条件包括以下至少一项:第一干扰小于或等于第一预设阈值、干扰变化量小于或等于预设偏移阈值、通信信道质量满足预设传输条件;第一干扰为第一IAB节点的DU的上下行传输对第一IAB节点的MT的接收的干扰,干扰变化量为第一IAB节点的DU的上下行传输对第一IAB节点的MT的接收的干扰变化量,通信信道质量为在第一IAB节点的DU的上下行传输时,父IAB节点的DU到第一IAB节点的MT的通信信道质量。
第三方面,提供了一种IAB节点,该IAB节点包括处理器、存储器及存储在所述存储器上并可在所述处理器上运行的程序或指令,所述程序或指令被所述处理器执行时实现如第一方面所述的方法的步骤。
第四方面,提供了一种IAB节点,包括处理器及通信接口,其中,所述通信接口用于在DU与MT的波束复用的情况下,向父IAB节点上报第一信令,第一信令中包括以下至少一项:第一发送波束方向和第二发送波束方向;第一发送波束方向为父IAB节点的DU的下行发送波束方向,第二发送波束方向为第一IAB节点的MT的上行发送波束方向;其中,第一信令对以下至少一项生效:目标复用模式、目标时间、目标频域资源;目标复用模式为DU和MT对应的复用模式。和/或,处理器用于在DU与MT的波束复用的情况下,获取目标指示信息。其中,目标指示信息用于指示以下任一项:第一条件、在配置测量RS的资源时RS测量是针对目标复用模式的、父IAB节点的DU的上下行波束信息。第一条件用于第一IAB节点控制第一IAB节点的MT的接收干扰;第一条件包括以下至少一项:第一干扰小于或等于第一预设阈值、干扰变化量小于或等于预设偏移阈值、通信信道质量满足预设传输条件;第一干扰为第一IAB节点的DU的上下行传输对第一IAB节点的MT的接收的干扰,干扰变化量为第一IAB节点的DU的上下行传输对第一IAB节点的MT的接收的干扰变化量,通信信道质量为在第一IAB节点的DU的上下行传输时,父IAB节点的DU到第一IAB节点的MT的通信信道质量。
第五方面,提供了一种可读存储介质,所述可读存储介质上存储程序或指令,所述程序或指令被处理器执行时实现如第一方面所述的方法的步骤。
第六方面,提供了一种芯片,所述芯片包括处理器和通信接口,所述通信接口和所述处理器耦合,所述处理器用于运行程序或指令,实现如第一方面所述的方法。
第七方面,提供了一种计算机程序/程序产品,所述计算机程序/程序产品被存储在存储介质中,所述程序/程序产品被至少一个处理器执行以实现如第一方面所述的IAB指示方法的步骤。
在本申请实施例中,在DU和MT的波束复用的情况下,第一IAB节点可以向父IAB节点上报第一信令,和/或获取目标指示信息。由于在DU和MT存在波束复用时,第一IAB节点可以通过第一信令,以向父IAB节点上报第一发送波束方向和/或第二发送波束方向,以锁定IAB MT的接收波束/发送波束,以便为DU预留收/发波束资源,提高DU和MT的波束使用灵活性和效率,从而提高上下行传输的效率。和/或,第一IAB节点可以获取第一条件、RS测量是针对目标复用模式的或父IAB节点的DU的上下行波束信息等信息,以根据这些信息确定DU的上下行传输的波束信息,以确定IAB MT传输的波束信息,以避免DU与MT之间的干扰,提高DU和MT的波束使用灵活性和效率,从而提高上下行传输的效率。
附图说明
图1是本申请实施例提供的一种通信系统的架构示意图;
图2为本申请实施例提供的一种IAB系统的架构示意图;
图3为本申请实施例提供的一种IAB系统的CU-DU结构示意图;
图4是本申请实施例提供的一种IAB指示方法的示意图;
图5是本申请实施例提供的一种IAB指示装置的结构示意图;
图6是本申请实施例提供的一种通信设备的硬件结构示意图;
图7是本申请实施例提供的一种IAB节点的硬件结构示意图。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚描述,显然,所描述的实施例是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员所获得的所有其他实施例,都属于本申请保护的范围。
本申请的说明书和权利要求书中的术语“第一”、“第二”等是用于区别类似的对象,而不用于描述特定的顺序或先后次序。应该理解这样使用的术语在适当情况下可以互换,以便本申请的实施例能够以除了在这里图示或描述的那些以外的顺序实施,且“第一”、“第二”所区别的对象通常为一类,并不限定对象的个数,例如第一对象可以是一个,也可以是多个。此外,说明书以及权利要求中“和/或”表示所连接对象的至少其中之一,字符“/”一般表示前后关联对象是一种“或”的关系。
值得指出的是,本申请实施例所描述的技术不限于长期演进型(long term evolution,LTE)/LTE的演进(LTE-advanced,LTE-A)系统,还可用于其他无线通信系统,诸如码分多址(code division multiple access,CDMA)、时分多址(time division multiple access,TDMA)、频分多址(frequency division multiple access,FDMA)、正交频分多址(orthogonal  frequency division multiple access,OFDMA)、单载波频分多址(single-carrier frequency-division multiple access,SC-FDMA)和其他系统。本申请实施例中的术语“系统”和“网络”常被可互换地使用,所描述的技术既可用于以上提及的系统和无线电技术,也可用于其他系统和无线电技术。以下描述出于示例目的描述了新空口(new radio,NR)系统,并且在以下大部分描述中使用NR术语,但是这些技术也可应用于NR系统应用以外的应用,如第6代(6th Generation,6G)通信系统。
图1示出本申请实施例可应用的一种无线通信系统的架构示意图。无线通信系统包括用户设备(user equipment,UE)11和网络设备12。其中,UE 11也可以称作终端设备或者终端,UE 11可以是手机、平板电脑(tablet computer)、膝上型电脑(laptop computer)或称为笔记本电脑、个人数字助理(personal digital assistant,PDA)、掌上电脑、上网本、超级移动个人计算机(ultra-mobile personal computer,UMPC)、移动上网装置(mobile Internet device,MID)、可穿戴式设备(wearable device)或车载设备(VUE)、行人终端(PUE)等终端侧设备,可穿戴式设备包括:智能手表、手环、耳机、眼镜等。需要说明的是,在本申请实施例并不限定UE 11的具体类型。网络设备12可以是基站或核心网,其中,基站可被称为节点B、演进节点B、接入点、基收发机站(base transceiver station,BTS)、无线电基站、无线电收发机、基本服务集(basic service set,BSS)、扩展服务集(extended service set,ESS)、B节点、演进型B节点(eNB)、家用B节点、家用演进型B节点、WLAN接入点、WiFi节点、发送接收点(transmitting receiving point,TRP)或所述领域中其他某个合适的术语,只要达到相同的技术效果,所述基站不限于特定技术词汇,需要说明的是,在本申请实施例中仅以NR系统中的基站为例,但是并不限定基站的具体类型。
下面对本申请实施例提供的IAB指示方法、装置、设备及介质中涉及的一些概念和/或术语做一下解释说明。
1、IAB系统
图2示出了一个IAB系统的架构示意图。一个IAB节点包括DU功能部分和MT功能部分。依靠MT,一个接入点(即IAB node)可以找到一个上游接入点(即父(parent)IAB node),并跟上游接入点的DU建立无线连接,该无线连接被称为回传链路(backhaul link)。在一个IAB节点建立完整的回传链路后,该IAB节点打开其DU功能,DU会提供小区服务,即DU可以为UE提供接入服务。一个自回传回路包含一个归属(donor)IAB节点,donor IAB节点有直接相连的有线传输网。
图3示出了一个IAB系统的CU-DU的结构示意图。在一个自回传回路中,所有的IAB节点的DU都连接到一个集中单元(central unit,CU)节点,由这一个节点通过F1层应用协议(F1-application protocol,F1-AP)信令进行对DU的配置。CU通过无线资源控制(radio resource control,RRC)信令进行对MT的配置。donor IAB节点没有MT功能部分。
IAB系统的引入是为了解决接入点密集部署时,有线传输网部署不到位的情况。即在 没有有线传输网络时,接入点可以依赖无线回传。
2、DU和MT的复用(duplexing)方式
通常,IAB的DU和MT间的资源复用方式为时分复用(time-division multiplexing,TDM);为了实现频分复用(frequency-division multiplexing,FDM)/空分复用(space division multiplexing,SDM)的资源复用,DU和MT的同时收发操作方式有以下几种:
DU-TX和MT-TX:DU配置为DL(下行),MT配置为UL(上行);或DU进行DL发送,MT进行UL发送;
DU-RX和MT-RX:DU配置为UL,MT配置为DL;或DU进行UL接收,MT进行DL接收;
DU-TX和MT-RX:DU配置为DL,MT配置为DL;或DU进行DL发送,MT进行DL接收;
DU-RX和MT-TX:DU配置为UL,MT配置为UL;或DU进行UL接收,MT进行UL发送。
3、DU和MT的干扰情况
一种情况,当IAB-DU发送和IAB-MT接收同时进行时,IAB-DU的发送会对IAB-MT的接收造成干扰,尤其当IAB-DU和IAB-MT共用时频资源时(即FDM/SDM的复用方式)。
另一种情况,当IAB-DU接收和IAB-MT发送同时进行是,IAB-MT的发送会对IAB-DU的接收造成干扰,尤其当IAB-DU和IAB-MT共用时频资源时(即FDM/SDM的复用方式)。
又一种情况,当IAB-DU接收和IAB-MT接收同时进行是,向IAB-DU的传输信号也会泄漏到IAB-MT,造成IAB-MT的接收干扰,反之亦然,尤其当IAB-DU和IAB-MT共用时频资源时(即FDM/SDM的复用方式)。
4、NR Uu波束对准
以下行波束对准为例,波束对准大致分为两个阶段。第一个阶段是在UE接入网络的时候,初步训练基站到UE的初始传输波束。第二阶段是在UE建立连接之后,训练基站到UE的精细收发波束对,第二阶段的波束训练主要通过CSI测量和反馈来完成。
对于第一阶段,基站周期性的发送同步信号块(synchronization signal block,SSB),并在每个SSB发送周期以波束扫描的方式发送一组SSB。UE测量SSB携带的参考信号,上报接收能量较高SSB的索引(index),以便基站确定其发送波束。UE根据协议规定的规则上报SSB index,每个SSB对应一组物理随机接入信道(physical random access channel,PRACH)资源,UE在相应的PRACH资源上发送初始接入的前导码(preamble),表示UE上报相应的SSB index。对于第二阶段,基站进行信道状态信息(channel state information,CSI)上报参数配置,并触发CSI上报,UE根据基站配置信息进行CSI测量和上报,基站根据UE上结果调整上下行波束等传输参数。其中,每个CSI上报配置指示了CSI上报的类型(CSI quantity),其中包括CRI、SSB index等指示波束的参数。
对于上行波束训练,基站为UE配置用于上行波束训练的探测参考信号(sounding  reference signal,SRS)资源(resource),UE在相应的SRS resource上自主发送SRS进行波束训练。另外,对于基站/UE侧的波束训练,基站/UE可以自主的选择训练波束。
5、NR Uu波束指示
对于上行波束指示,基站指示UE在UL调度资源上采用的波束方向,波束方向由探测参考信号资源指示(SRS resource indicator,SRI)表示;对于下行波束指示,基站指示DL调度资源上的波束方向,以便UE能够判断其接收波束。下行波束方向由关联的传输配置指示(transmission configuration indication,TCI)指示,其中TCI反映CRI、SSB index等信息。
下面结合附图,通过一些实施例及其应用场景对本申请实施例提供的IAB指示方法进行详细地说明。
对于IAB DU和MT的复用方式,DU和MT的波束方向互相制约,一方面受DU/MT的硬件资源共享/复用制约,另一方面受DU/MT干扰情况制约。
目前,针对DU/MT的可用波束受硬件资源制约的情况,如果DU和MT以TDM的方式进行收发,DU/MT可以单独使用硬件资源进行波束赋形,DU可以采用更窄的波束;如果DU和MT同时进行收发操作(SDM/FDM),DU和MT需要分享硬件资源进行波束赋形,DU/MT采用较宽的波束。现有的波束训练/波束指示假设DU/MT的波束间没有互相制约的关系,DU/MT的波束训练/波束指示互相独立。如果沿用现有技术相关方法,那么IAB DU/MT间的可用波束/硬件资源需要预先静态分配,这样不能保证硬件资源/波束赋形的使用效率。
另外,对于共址(co-located)的DU和MT,DU/MT接收干扰较为严重。MT接收的干扰强度受MT的接收波束方向/DU上下行波束方向影响,DU的接收干扰强度受DU的接收波束方向/MT上下行波束方向影响。因此,从干扰角度出发,DU和MT的可用波束也存在互相制约关系。
针对上述制约关系,本申请实施例提供一种波束管理机制/干扰管理机制的增强机制:
针对DU/MT的可用波束受硬件资源制约的问题,提供了一种波束确定方式,提高IAB DU/MT间的波束复用/硬件资源复用的效率。具体的,一种方式:配置/指示IAB DU和/或IAB MT的可用波束/硬件资源(例如可用panel)。另一种方式:在IAB DU/MT自主决定可用波束/训练波束的原则下,增强波束管理机制,使得DU/MT间的波束复用更加灵活。
针对共址DU/MT的接收干扰强度受MT/DU波束方向影响的问题,提供了一种波束确定方式/传输参数(包括波束等参数)确定原则,缓解干扰问题。具体的,一种方式:配置/指示IAB DU和/或IAB MT的可用波束,以便达到干扰抑制的目的。另一种方式:在IAB DU/MT自主决定可用波束/训练波束的原则下,增强波束管理机制,以便达到干扰抑制的目的。又一种方式:增强干扰管理机制,以便达到干扰抑制的目的,即为IAB MT接收设定需求条件,控制IAB MT接收干扰,以辅助父IAB下行调度。
下面结合附图,通过具体的实施例及其应用场景对本申请实施例提供的IAB指示方法 进行详细地说明。
本申请实施例提供一种IAB指示方法,图4示出了本申请实施例提供的一种IAB指示方法的流程图。如图4所示,本申请实施例提供的IAB指示方法可以包括下述的步骤201。
步骤201、在DU与MT的波束复用的情况下,第一IAB节点执行以下至少一项:向父IAB节点上报第一信令、获取目标指示信息。
本申请实施例中,上述第一信令中包括以下至少一项:第一发送波束方向和第二发送波束方向;第一发送波束方向为父IAB节点的DU的下行发送波束方向,第二发送波束方向为第一IAB节点的MT的上行发送波束方向。其中,第一信令对以下至少一项生效:目标复用模式(multiplexing case)、目标时间、目标频域资源;目标复用模式为DU和MT对应的复用模式。上述目标指示信息用于指示以下任一项:第一条件、在配置测量参考信号(reference signals,RS)的资源时RS测量是针对目标复用模式的、父IAB节点的DU的上下行波束信息。上述第一条件包括以下至少一项:第一干扰小于或等于第一预设阈值、干扰变化量小于或等于预设偏移阈值、通信信道质量满足预设传输条件;第一干扰为第一IAB节点的DU的上下行传输对MT的接收的干扰,干扰变化量为DU的上下行传输对MT的接收的干扰变化量,通信信道质量为在DU的上下行传输时父IAB节点的DU到MT的通信信道质量。
本申请实施例中,由于DU和MT存在波束复用,第一IAB节点通过波束上报,即第一IAB节点可以向父IAB节点上报期待的/可用的parent DU(即父IAB节点的DU)的下行发送波束方向(即第一发送波束方向,由TCI/CRI/SSB索引等表示),以使得父IAB节点可以确定IAB MT(即第一IAB节点的MT)的下行波束,即锁定IAB MT的接收波束,以实现为IAB MT调度合适的下行波束,以便为DU预留收/发波束资源,提高了MT下行波束与DU波束复用的灵活性。
本申请实施例中,由于DU和MT存在波束复用,第一IAB节点通过波束上报,即第一IAB节点可以向父IAB节点上报期待的/可用的IAB MT上行传输的发送波束方向(即parent DU调度的MT上行波束/SRI,即第二发送波束方向),以使得父IAB节点可以锁定IAB MT的发送波束,以实现为IAB MT调度合适的上行波束,以便为DU预留收/发波束资源,提高了MT上行波束与DU波束复用的灵活性。
本申请实施例中,第一IAB节点在提前获取到第一条件之后,可以通过调整IAB DU的收发波束方向,上下行功率等方式,以使得第一IAB节点的DU的上下行传输满足第一条件,以达到控制第一IAB节点的MT的接收干扰的目的。即在DU和MT存在波束复用的情况下,第一IAB节点可以判断DU的上下行传输时对应的干扰大小、干扰变化量以及通信信道质量中的至少一项,是否满足第一条件,以控制第一IAB节点的MT的接收干扰,以保证IAB MT接收时所受干扰足够低,提高DU和MT的波束使用灵活性和效率,从而提高上下行传输的效率。
本申请实施例中,第一IAB节点在提前获取到在配置RS的资源时该RS测量是针对 目标复用模式的之后,可以确定DU和MT的上下行传输的波束信息,以避免DU与MT之间的干扰,提高DU和MT的波束使用灵活性和效率,从而提高上下行传输的效率。
本申请实施例中,第一IAB节点在提前获取到父IAB节点的DU的上下行波束信息之后,可以基于DU的上下行波束信息确定IAB MT的波束,以避免DU与MT之间的干扰,提高DU和MT的波束使用灵活性和效率,从而提高上下行传输的效率。
可选地,本申请实施例中,上述目标复用模式包括以下至少一项:
DU和MT进行时分复用的收发模式;
DU和MT进行频分复用的模式;
DU和MT进行空分复用的模式;
DU和MT同时发送的模式;
DU和MT同时接收的模式;
DU发送和MT接收同时进行的模式;
DU接收和MT发送同时进行的模式。
可选地,本申请实施例中,上述第一信令具体为以下任一项:上行控制信息(uplink control information,UCI)和媒体接入控制控制单元(media access control-control element,MAC CE)。
可选地,本申请实施例中,在上述第一信令具体为MAC CE的情况下,MAC CE分配独立的逻辑信道标识(logical channel ID,LCID)。
可选地,本申请实施例中,上述第一发送波束方向和/或第二发送波束方向为以下任一项:
父IAB节点的DU使用/调度的波束;
父IAB节点的DU优先使用/优先调度的波束;
父IAB节点的DU不能使用/不能调度的波束;
父IAB节点的DU低优先使用/低优先调度的波束。
可选地,本申请实施例中,上述步骤201中的“向父IAB节点上报第一信令”具体可以通过下述的步骤201a实现。
步骤201a、第一IAB节点针对目标复用模式、目标时间和/或目标频域资源,向父IAB节点上报第一信令。
本申请实施例中,第一IAB节点可以针对一个复用模式、一个时间和/或一个频域资源(也可以称为频率范围)上报波束方向(即第一发送波束方向和/或第二发送波束方向),以使得父IAB节点可以判断在该一个时间和/或频率范围使用该波束方向。
可选地,本申请实施例中,上述目标时间和/或目标频域资源与目标复用模式关联。
可选地,本申请实施例中,上述第一信令中独立的域携带目标复用模式、目标时间和/或目标频域资源的指示信息。
示例性地,可以通过增加CSI数量(quantity)内容,以携带目标复用模式、目标时间 和/或目标频域资源的指示信息。
可选地,本申请实施例中,若用于测量的RS的资源所在时间和/或频率对应目标复用模式,则针对RS测量的上报是针对目标复用模式的。
可选地,本申请实施例中,与第一发送波束方向和/或第二发送波束方向关联的目标信息是针对目标复用模式上报的。其中,目标信息包括以下至少一项:预编码矩阵指示(precoding matrix indicator,PMI)、秩指示(rank indication,RI)、信道质量指示(channel quality indicator,CQI)、L1层控制信令、参考信号接收功率(reference signal receiving power,RSRP)、信号与干扰加噪声比(signal to interference plus noise ratio,SINR)、码本指示i1。
可选地,本申请实施例中,上目标时间可以由所述第一信令显式指示,例如时间段、时间比特图(bitmap)等形式指示连续/离散时间范围。
可选地,本申请实施例中,在配置IAB MT的SRS资源时,针对目标复用模式、目标时间和/或目标频域资源指示SRS资源。
可选地,本申请实施例中,在配置SRS资源时,SRS资源的配置信息中携带目标复用模式、目标时间和/或目标频域资源的指示信息。parent DU可在对应的SRS资源上训练针对目标复用模式的波束方向。
可选地,本申请实施例中,若SRS资源配置在目标复用模式对应的时间,则SRS资源为针对目标复用模式的SRS资源。parent DU可在对应的SRS资源上训练针对目标复用模式的波束方向。
可选地,本申请实施例中,上述父IAB节点的DU在SRS资源上训练针对目标复用模式的波束方向。
可选地,本申请实施例中,上述第一IAB节点支持波束相关的功率控制相关参数的上报。
可选地,本申请实施例中,对于父IAB节点的DU的下行功控,上报针对第一发送波束方向的功控参数(即期待发送功率/期待发送功率的调整值,例如每资源单元容量(transmit energy per resource element,EPRE)/功率谱密度(power spectral density,PSD)/信号强度等)。
可选地,本申请实施例中,上述第一IAB节点支持使用至少一个下行功控流上报功率控制参数,每个下行功控流分别对应一个波束方向。
需要说明的是,功控率和波束相关可以作为一种IAB/父IAB节点实现的方式,在实际协议中仅规定多个功控流。
可选地,本申请实施例中,上述父IAB节点的DU待调度的第一发送波束方向和/或第二发送波束方向由父IAB节点提前向第一IAB节点通知。
可以理解,第一IAB节点可以提前获取parent DU的上下行波束信息,以便其确定IAB DU的可用波束。需要说明的是,本申请实施例中的第一发送波束方向(和/或第二发送波 束方向)可以为一个或多个发送波束方向。
可选地,本申请实施例中,上述第一发送波束方向和/或第二发送波束方向是:针对目标复用模式、目标时间和/或目标频域资源的波束。
可选地,本申请实施例中,上述父IAB节点通过高层信令、物理层信令、RRC、MAC CE或下行控制信息(downlink control information,DCI),向第一IAB节点通知第一发送波束方向和/或第二发送波束方向。
可选地,本申请实施例中,半静态(Semi-static)/动态(dynamic)授权(grant)中指示的目标发送波束方向,与父IAB节点的DU待调度/计划调度的目标发送波束方向保持相同/一致(或者半静态/动态授权中指示的目标发送波束方向可以覆盖待调度的目标发送波束方向),该目标发送波束方向包括以下至少一项:第一发送波束方向和第二发送波束方向。
可选地,本申请实施例中,上述目标指示信息用于指示父IAB节点的DU的上下行波束信息。上述目标指示信息为第一IAB节点根据调度信令与调度资源的时间间隔提前获取的。上述目标指示信息具体用于指示父IAB节点在调度资源上的下行发送波束方向,或第一IAB节点的MT在调度资源上的上行发送波束方向。其中,第一IAB节点调整调度信令与调度资源的时间间隔后,调度信令与调度资源的时间间隔的指示范围为预设指示范围。
可以理解,第一IAB节点可以扩大调度信令(例如DL调度DCI)与调度资源的时间间隔,以便parent DU使用DCI大幅度提前调度传输资源。
可选地,本申请实施例中,在父IAB节点发送目标指示信息之前,第一IAB节点向父IAB节点上报调度准备时间,调度准备时间由以下任一项确定:协议约定、网络设备配置、CU指示。
可以理解,在父IAB节点发送目标指示信息之前,第一IAB节点向父IAB节点上报调度准备时间,以便于parent IAB决定调度提前量。
可选地,本申请实施例中,上述预设传输条件包括以下至少一项:通信信道质量满足最低CQI要求、通信信道质量满足最低编码调制等级解调(modulation and coding scheme,MCS)要求、通信信道质量满足最低速率要求。
可以理解,IAB DU的上下行传输需保证IAB MT接收时所受干扰足够低,以保证parent DU到IAB MT的通信信道质量满足预设传输条件(例如最低CQI要求/最低MCS解调要求/最低速率要求等)。
可选地,本申请实施例中,上述第一预设阈值、预设偏移阈值和预设传输条件均由以下任一项确定:协议约定、网络设备配置、父IAB节点指示。
示例性地,CU/parent IAB指示IAB MT所上报CQI的上调值,以指示最低CQI要求。
可选地,本申请实施例中,上述第一条件是针对目标复用模式和/或目标时间的。
可选地,本申请实施例中,上述第一条件具体是按照子帧、时隙和符号配置的。
可选地,本申请实施例中,在第一IAB节点的DU确定MT不进行数据接收的情况下, 第一IAB节点的DU的上下行传输不受第一条件限制。
本申请实施例提供一种IAB指示方法,在DU和MT的波束复用的情况下,第一IAB节点可以向父IAB节点上报第一信令,和/或获取目标指示信息。由于在DU和MT存在波束复用时,第一IAB节点可以通过第一信令,以向父IAB节点上报第一发送波束方向和/或第二发送波束方向,以锁定IAB MT的接收波束/发送波束,以便为DU预留收/发波束资源,提高DU和MT的波束使用灵活性和效率,从而提高上下行传输的效率。和/或,第一IAB节点可以获取第一条件、RS测量是针对目标复用模式的或父IAB节点的DU的上下行波束信息等信息,以根据这些信息确定DU的上下行传输的波束信息,以确定IAB MT传输的波束信息,以避免DU与MT之间的干扰,提高DU和MT的波束使用灵活性和效率,从而提高上下行传输的效率。
另外,本申请实施例还具有干扰抑制的效果,具体方法如下:
可选地,本申请实施例中,第一IAB节点可以上报期待的CRI等传输参数,辅助parent DU调度合适的下行波束,使得IAB MT接收干扰较小。
一种方式:第一IAB节点根据其DU UL传输波束,上报CRI到parent IAB,以确保MT能够使用合适的波束进行接收,使得UL传输对MT的干扰较小。
另一种方式:第一IAB节点根据其DU DL传输波束,上报CRI到parent IAB,以确保MT能够使用合适的波束进行接收,使得所述DL传输对MT的干扰较小。
可选地,本申请实施例中,第一IAB节点调度合适的TCI/SRI等传输参数,以控制对IAB MT接收干扰。
一种方式:第一IAB节点调度合适的UL传输波束,确保对IAB MT接收的干扰较小。
另一种方式:第一IAB节点调度合适的DL传输波束,确保对IAB MT接收的干扰较小。
可选地,本申请实施例中,第一IAB节点上报期待的CRI/SRI等传输参数,辅助parent DU调度合适的上下行波束,以控制对IAB DU接收干扰。
一种方式:第一IAB节点上报期待的CRI到parent IAB,以确保parent DL传输对IAB DU接收的干扰较小。
另一种方式:第一IAB节点上报期待的SRI到parent IAB,或使用合适的SRS发送方向进行UL波束训练,以确保MT能够使用合适的波束进行发送,使得IAB MT的UL传输对IAB DU接收的干扰较小。
可选地,本申请实施例中,第一IAB节点调度合适的SRI等传输参数,以确保较小的IAB DU接收干扰。
一种方式:第一IAB节点调度合适的UL传输波束,确保parent DL传输对IAB DU接收的干扰较小。
另一种方式:第一IAB节点调度和是的UL传输波束,确保Parent UL传输对IAB DU接收的干扰较小。
需要说明的是,本申请实施例提供的IAB指示方法,执行主体可以为IAB节点,或者,IAB指示装置,或者,该IAB指示装置中的用于执行IAB指示方法的控制模块。本申请实施例中以IAB节点(即第一IAB节点)执行IAB指示方法为例,说明本申请实施例提供的IAB指示装置。
图5示出了本申请实施例中涉及的IAB指示装置的一种可能的结构示意图。如图5所示,该IAB指示装置60可以包括:处理模块61。
其中,处理模块61,用于在DU与MT的波束复用的情况下,执行以下至少一项:向父IAB节点上报第一信令、获取目标指示信息。其中,第一信令中包括以下至少一项:第一发送波束方向和第二发送波束方向;第一发送波束方向为父IAB节点的DU的下行发送波束方向,第二发送波束方向为第一IAB节点的MT的上行发送波束方向;第一信令对以下至少一项生效:目标复用模式、目标时间、目标频域资源;目标复用模式为父IAB节点的DU和第一IAB节点的MT对应的复用模式。目标指示信息用于指示以下任一项:第一条件、在配置测量RS的资源时RS测量是针对目标复用模式的、父IAB节点的DU的上下行波束信息。第一条件用于第一IAB节点控制第一IAB节点的MT的接收干扰;第一条件包括以下至少一项:第一干扰小于或等于第一预设阈值、干扰变化量小于或等于预设偏移阈值、通信信道质量满足预设传输条件;第一干扰为第一IAB节点的DU的上下行传输对第一IAB节点的MT的接收的干扰,干扰变化量为第一IAB节点的DU的上下行传输对第一IAB节点的MT的接收的干扰变化量,通信信道质量为在第一IAB节点的DU的上下行传输时,父IAB节点的DU到第一IAB节点的MT的通信信道质量。
在一种可能的实现方式中,上述目标复用模式包括以下至少一项:
DU和MT进行时分复用的收发模式;
DU和MT进行频分复用的模式;
DU和MT进行空分复用的模式;
DU和MT同时发送的模式;
DU和MT同时接收的模式;
DU发送和MT接收同时进行的模式;
DU接收和MT发送同时进行的模式。
在一种可能的实现方式中,上述处理模块61,具体用于针对目标复用模式、目标时间和/或目标频域资源,向父IAB节点上报第一信令。
在一种可能的实现方式中,上述第一信令中独立的域携带目标复用模式、目标时间和/或目标频域资源的指示信息。
在一种可能的实现方式中,若用于测量的RS的资源所在时间和/或频率对应目标复用模式,则针对RS测量的上报是针对目标复用模式的。
在一种可能的实现方式中,与第一发送波束方向和/或第二发送波束方向关联的目标信息是针对目标复用模式上报的;目标信息包括以下至少一项:PMI、RI、CQI、L1层控制 信令、RSRP、SINR、码本指示i1。
在一种可能的实现方式中,在配置IAB MT的SRS资源时,针对目标复用模式、目标时间和/或目标频域资源指示SRS资源。
在一种可能的实现方式中,在配置SRS资源时,SRS资源的配置信息中携带目标复用模式、目标时间和/或目标频域资源的指示信息。
在一种可能的实现方式中,若SRS资源配置在目标复用模式对应的时间,则SRS资源为针对目标复用模式的SRS资源。
在一种可能的实现方式中,上述父IAB节点的DU在SRS资源上训练针对目标复用模式的波束方向。
在一种可能的实现方式中,上述第一信令具体为以下任一项:UCI和MAC CE。
在一种可能的实现方式中,上述第一发送波束方向和/或第二发送波束方向为以下任一项:
父IAB节点的DU使用/调度的波束;
父IAB节点的DU优先使用/优先调度的波束;
父IAB节点的DU不能使用/不能调度的波束;
父IAB节点的DU低优先使用/低优先调度的波束。
在一种可能的实现方式中,上述第一IAB节点支持波束相关的功率控制相关参数的上报。
在一种可能的实现方式中,对于父IAB节点的DU的下行功控,上报针对第一发送波束方向的功控参数。
在一种可能的实现方式中,上述第一IAB节点支持使用至少一个下行功控流上报功率控制参数,每个下行功控流分别对应一个波束方向。
在一种可能的实现方式中,上述父IAB节点的DU待调度的第一发送波束方向和/或第二发送波束方向由父IAB节点提前向第一IAB节点通知。
在一种可能的实现方式中,上述第一发送波束方向和/或第二发送波束方向是:针对目标复用模式、目标时间和/或目标频域资源的波束。
在一种可能的实现方式中,上述父IAB节点通过高层信令、物理层信令、RRC、MAC CE或DCI,向第一IAB节点通知第一发送波束方向和/或第二发送波束方向。
在一种可能的实现方式中,半静态/动态授权中指示的目标发送波束方向,与父IAB节点的DU待调度的目标发送波束方向保持相同,该目标发送波束方向包括以下至少一项:第一发送波束方向和第二发送波束方向。
在一种可能的实现方式中,上述目标指示信息用于指示父IAB节点的DU的上下行波束信息。上述目标指示信息为第一IAB节点根据调度信令与调度资源的时间间隔提前获取的。上述目标指示信息具体用于指示父IAB节点在调度资源上的下行发送波束方向,或第一IAB节点的MT在调度资源上的上行发送波束方向。其中,第一IAB节点调整调度信令 与调度资源的时间间隔后,调度信令与调度资源的时间间隔的指示范围为预设指示范围。
在一种可能的实现方式中,在父IAB节点发送目标指示信息之前,第一IAB节点向父IAB节点上报调度准备时间,该调度准备时间由以下任一项确定:协议约定、网络设备配置、CU指示。
在一种可能的实现方式中,上述预设传输条件包括以下至少一项:通信信道质量满足最低CQI要求、通信信道质量满足最低MCS解调要求、通信信道质量满足最低速率要求。
在一种可能的实现方式中,上述第一预设阈值、预设偏移阈值和预设传输条件均由以下任一项确定:协议约定、网络设备配置、父IAB节点指示。
在一种可能的实现方式中,上述第一条件是针对目标复用模式和/或目标时间的。
在一种可能的实现方式中,上述第一条件具体是按照子帧、时隙和符号配置的。
在一种可能的实现方式中,在第一IAB节点的DU确定MT不进行数据接收的情况下,第一IAB节点的DU的上下行传输不受第一条件限制。
本申请实施例提供一种IAB指示装置,由于在DU和MT存在波束复用的情况下,IAB指示装置可以通过波束上报(即第一发送波束方向和/或第二发送波束方向的上报),以锁定IAB MT的接收波束/发送波束,以便为DU预留收/发波束资源,提高DU和MT的波束使用灵活性和效率,从而提高上下行传输的效率。和/或,IAB指示装置可以获取第一条件、RS测量是针对目标复用模式的或父IAB节点的DU的上下行波束信息等信息,以根据这些信息确定DU的上下行传输的波束信息,以确定IAB MT传输的波束信息,以避免DU与MT之间的干扰,提高DU和MT的波束使用灵活性和效率,从而提高上下行传输的效率。
本申请实施例中的IAB指示装置可以是装置,具有操作系统的装置或IAB节点,也可以是IAB节点中的部件、集成电路、或芯片。该装置或IAB节点可以是网络设备(例如接入网设备)。
本申请实施例提供的IAB指示装置能够实现上述方法实施例实现的各个过程,并达到相同的技术效果,为避免重复,这里不再赘述。
可选地,本申请实施例中,如图6所示,本申请实施例还提供一种通信设备500,包括处理器501,存储器502,存储在存储器502上并可在所述处理器501上运行的程序或指令,例如,该通信设备500为IAB节点时,该程序或指令被处理器501执行时实现上述方法实施例的各个过程,且能达到相同的技术效果。
本申请实施例还提供一种IAB节点,包括处理器和通信接口,通信接口用于在DU与MT的波束复用的情况下,向父IAB节点上报第一信令,该第一信令中包括以下至少一项:第一发送波束方向和第二发送波束方向;该第一发送波束方向为父IAB节点的DU的下行发送波束方向,该第二发送波束方向为第一IAB节点的MT的上行发送波束方向;其中,第一信令对以下至少一项生效:目标复用模式、目标时间、目标频域资源;目标复用模式为DU和MT对应的复用模式。和/或,处理器用于在DU与MT的波束复用的情况下,获 取目标指示信息。其中,目标指示信息用于指示以下任一项:第一条件、在配置测量RS的资源时RS测量是针对目标复用模式的、父IAB节点的DU的上下行波束信息。第一条件用于第一IAB节点控制第一IAB节点的MT的接收干扰;第一条件包括以下至少一项:第一干扰小于或等于第一预设阈值、干扰变化量小于或等于预设偏移阈值、通信信道质量满足预设传输条件;第一干扰为第一IAB节点的DU的上下行传输对第一IAB节点的MT的接收的干扰,干扰变化量为第一IAB节点的DU的上下行传输对第一IAB节点的MT的接收的干扰变化量,通信信道质量为在第一IAB节点的DU的上下行传输时,父IAB节点的DU到第一IAB节点的MT的通信信道质量。该IAB节点实施例是与上述IAB节点侧方法实施例对应的,上述方法实施例的各个实施过程和实现方式均可适用于该IAB节点实施例中,且能达到相同的技术效果。具体地,图6为实现本申请实施例的一种IAB节点的硬件结构示意图。
具体地,本申请实施例还提供了一种IAB节点。如图7所示,该IAB节点900包括:天线91、射频装置92、基带装置93。天线91与射频装置92连接。在上行方向上,射频装置92通过天线91接收信息,将接收的信息发送给基带装置93进行处理。在下行方向上,基带装置93对要发送的信息进行处理,并发送给射频装置92,射频装置92对收到的信息进行处理后经过天线91发送出去。
上述频带处理装置可以位于基带装置93中,以上实施例中IAB节点执行的方法可以在基带装置93中实现,该基带装置93包括处理器94和存储器95。
基带装置93例如可以包括至少一个基带板,该基带板上设置有多个芯片,如图7所示,其中一个芯片例如为处理器94,与存储器95连接,以调用存储器95中的程序,执行以上方法实施例中所示的IAB节点操作。
该基带装置93还可以包括网络接口96,用于与射频装置92交互信息,该接口例如为通用公共无线接口(common public radio interface,CPRI)。
具体地,本发明实施例的IAB节点还包括:存储在存储器95上并可在处理器94上运行的指令或程序,处理器94调用存储器95中的指令或程序执行图6所示各模块执行的方法,并达到相同的技术效果,为避免重复,故不在此赘述。
本申请实施例提供的IAB节点能够实现上述方法实施例一、实施例二实现的各个过程,并达到相同的技术效果,为避免重复,这里不再赘述。
本申请实施例还提供一种可读存储介质,所述可读存储介质上存储有程序或指令,该程序或指令被处理器执行时实现上述IAB指示方法实施例的各个过程,且能达到相同的技术效果,为避免重复,这里不再赘述。
其中,所述处理器为上述实施例中所述的IAB节点中的处理器。所述可读存储介质,包括计算机可读存储介质,如计算机只读存储器(read-only memory,ROM)、随机存取存储器(random access memory,RAM)、磁碟或者光盘等。
本申请实施例另提供了一种芯片,所述芯片包括处理器和通信接口,所述通信接口和 所述处理器耦合,所述处理器用于运行程序或指令,实现上述IAB指示方法实施例的各个过程,且能达到相同的技术效果,为避免重复,这里不再赘述。
应理解,本申请实施例提到的芯片还可以称为系统级芯片,系统芯片,芯片系统或片上系统芯片等。
需要说明的是,在本文中,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者装置不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者装置所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括该要素的过程、方法、物品或者装置中还存在另外的相同要素。此外,需要指出的是,本申请实施方式中的方法和装置的范围不限按示出或讨论的顺序来执行功能,还可包括根据所涉及的功能按基本同时的方式或按相反的顺序来执行功能,例如,可以按不同于所描述的次序来执行所描述的方法,并且还可以添加、省去、或组合各种步骤。另外,参照某些示例所描述的特征可在其他示例中被组合。
通过以上的实施方式的描述,本领域的技术人员可以清楚地了解到上述实施例方法可借助软件加必需的通用硬件平台的方式来实现,当然也可以通过硬件,但很多情况下前者是更佳的实施方式。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分可以以计算机软件产品的形式体现出来,该计算机软件产品存储在一个存储介质(如ROM/RAM、磁碟、光盘)中,包括若干指令用以使得一台终端(可以是手机,计算机,服务器,空调器,或者网络设备等)执行本申请各个实施例所述的方法。
上面结合附图对本申请的实施例进行了描述,但是本申请并不局限于上述的具体实施方式,上述的具体实施方式仅仅是示意性的,而不是限制性的,本领域的普通技术人员在本申请的启示下,在不脱离本申请宗旨和权利要求所保护的范围情况下,还可做出很多形式,均属于本申请的保护之内。

Claims (31)

  1. 一种自回传IAB指示方法,包括:
    在分布单元DU与移动终端MT的波束复用的情况下,第一IAB节点执行以下至少一项:向父IAB节点上报第一信令、获取目标指示信息;
    其中,所述第一信令中包括以下至少一项:第一发送波束方向和第二发送波束方向;所述第一发送波束方向为所述父IAB节点的DU的下行发送波束方向,所述第二发送波束方向为所述第一IAB节点的MT的上行发送波束方向;所述第一信令对以下至少一项生效:目标复用模式、目标时间、目标频域资源;所述目标复用模式为所述父IAB节点的DU和所述第一IAB节点的MT对应的复用模式;
    所述目标指示信息用于指示以下任一项:第一条件、在配置测量参考信号RS的资源时所述RS测量是针对目标复用模式的、父IAB节点的DU的上下行波束信息;
    所述第一条件用于所述第一IAB节点控制所述第一IAB节点的MT的接收干扰;所述第一条件包括以下至少一项:第一干扰小于或等于第一预设阈值、干扰变化量小于或等于预设偏移阈值、通信信道质量满足预设传输条件;所述第一干扰为所述第一IAB节点的DU的上下行传输对所述第一IAB节点的MT的接收的干扰,所述干扰变化量为所述第一IAB节点的DU的上下行传输对所述第一IAB节点的MT的接收的干扰变化量,所述通信信道质量为在所述第一IAB节点的DU的上下行传输时,所述父IAB节点的DU到所述第一IAB节点的MT的通信信道质量。
  2. 根据权利要求1所述的方法,其中,所述目标复用模式包括以下至少一项:
    DU和MT进行时分复用的收发模式;
    DU和MT进行频分复用的模式;
    DU和MT进行空分复用的模式;
    DU和MT同时发送的模式;
    DU和MT同时接收的模式;
    DU发送和MT接收同时进行的模式;
    DU接收和MT发送同时进行的模式。
  3. 根据权利要求1或2所述的方法,其中,所述向父IAB节点上报第一信令,包 括:
    针对所述目标复用模式、所述目标时间和/或所述目标频域资源,向所述父IAB节点上报所述第一信令。
  4. 根据权利要求3所述的方法,其中,所述第一信令中独立的域携带所述目标复用模式、所述目标时间和/或所述目标频域资源的指示信息。
  5. 根据权利要求1所述的方法,其中,若用于测量的RS的资源所在时间和/或频率对应所述目标复用模式,则针对所述RS测量的上报是针对所述目标复用模式的。
  6. 根据权利要求1所述的方法,其中,与所述第一发送波束方向和/或所述第二发送波束方向关联的目标信息是针对所述目标复用模式上报的;
    所述目标信息包括以下至少一项:预编码矩阵指示PMI、秩指示RI、信道质量指示CQI、L1层控制信令、参考信号接收功率RSRP、信号与干扰加噪声比SINR、码本指示i1。
  7. 根据权利要求1所述的方法,其中,在配置IAB MT的探测参考信号SRS资源时,针对所述目标复用模式、所述目标时间和/或所述目标频域资源指示所述SRS资源。
  8. 根据权利要求7所述的方法,其中,在配置所述SRS资源时,所述SRS资源的配置信息中携带所述目标复用模式、所述目标时间和/或所述目标频域资源的指示信息。
  9. 根据权利要求7所述的方法,其中,若所述SRS资源配置在所述目标复用模式对应的时间,则所述SRS资源为针对所述目标复用模式的SRS资源。
  10. 根据权利要求8或9所述的方法,其中,所述父IAB节点的DU在所述SRS资源上训练针对所述目标复用模式的波束方向。
  11. 根据权利要求1所述的方法,其中,所述第一信令具体为以下任一项:上行控制信息UCI和媒体接入控制控制单元MAC CE。
  12. 根据权利要求1所述的方法,其中,所述第一发送波束方向和/或所述第二发送波束方向为以下任一项:
    所述父IAB节点的DU使用/调度的波束;
    所述父IAB节点的DU优先使用/优先调度的波束;
    所述父IAB节点的DU不能使用/不能调度的波束;
    所述父IAB节点的DU低优先使用/低优先调度的波束。
  13. 根据权利要求1所述的方法,其中,所述第一IAB节点支持波束相关的功率控制相关参数的上报。
  14. 根据权利要求13所述的方法,其中,对于所述父IAB节点的DU的下行功控,上报针对所述第一发送波束方向的功控参数。
  15. 根据权利要求13或14所述的方法,其中,所述第一IAB节点支持使用至少一个下行功控流上报功率控制参数,每个下行功控流分别对应一个波束方向。
  16. 根据权利要求1所述的方法,其中,所述父IAB节点的DU待调度的所述第一发送波束方向和/或所述第二发送波束方向由所述父IAB节点提前向所述第一IAB节点通知。
  17. 根据权利要求16所述的方法,其中,所述第一发送波束方向和/或所述第二发送波束方向是:针对所述目标复用模式、所述目标时间和/或所述目标频域资源的波束。
  18. 根据权利要求16或17所述的方法,其中,所述父IAB节点通过高层信令、物理层信令、无线资源控制RRC、MAC CE或下行控制信息DCI,向所述第一IAB节点通知所述第一发送波束方向和/或所述第二发送波束方向。
  19. 根据权利要求16或17所述的方法,其中,半静态/动态授权中指示的目标发送波束方向,与所述父IAB节点的DU待调度的目标发送波束方向保持相同,所述目标发送波束方向包括以下至少一项:所述第一发送波束方向和所述第二发送波束方向。
  20. 根据权利要求1所述的方法,其中,所述目标指示信息用于指示所述父IAB节点的DU的上下行波束信息;
    所述目标指示信息为所述第一IAB节点根据调度信令与调度资源的时间间隔提前获取的;所述目标指示信息具体用于指示所述父IAB节点在调度资源上的下行发送波束方向,或所述第一IAB节点的MT在调度资源上的上行发送波束方向;
    其中,所述第一IAB节点调整所述调度信令与所述调度资源的时间间隔后,所述调度信令与调度资源的时间间隔的指示范围为预设指示范围。
  21. 根据权利要求20所述的方法,其中,在所述父IAB节点发送所述目标指示信 息之前,所述第一IAB节点向所述父IAB节点上报调度准备时间,所述调度准备时间由以下任一项确定:协议约定、网络设备配置、集中单元CU指示。
  22. 根据权利要求1所述的方法,其中,所述预设传输条件包括以下至少一项:所述通信信道质量满足最低信道质量指示CQI要求、所述通信信道质量满足最低编码调制等级MCS解调要求、所述通信信道质量满足最低速率要求。
  23. 根据权利要求1或22所述的方法,其中,
    所述第一预设阈值、所述预设偏移阈值和所述预设传输条件均由以下任一项确定:协议约定、网络设备配置、父IAB节点指示。
  24. 根据权利要求1所述的方法,其中,所述第一条件是针对目标复用模式和/或目标时间的。
  25. 根据权利要求24所述的方法,其中,所述第一条件具体是按照子帧、时隙和符号配置的。
  26. 根据权利要求1所述的方法,其中,在所述第一IAB节点的DU确定所述MT不进行数据接收的情况下,所述第一IAB节点的DU的上下行传输不受所述第一条件限制。
  27. 一种自回传IAB指示装置,所述IAB指示装置包括:处理模块;
    所述处理模块,用于在分布单元DU与移动终端MT的波束复用的情况下,执行以下至少一项:向父IAB节点上报第一信令、获取目标指示信息;
    其中,所述第一信令中包括以下至少一项:第一发送波束方向和第二发送波束方向;所述第一发送波束方向为所述父IAB节点的DU的下行发送波束方向,所述第二发送波束方向为第一IAB节点的MT的上行发送波束方向;所述第一信令对以下至少一项生效:目标复用模式、目标时间、目标频域资源;所述目标复用模式为所述父IAB节点的DU和所述第一IAB节点的MT对应的复用模式;
    所述目标指示信息用于指示以下任一项:第一条件、在配置测量参考信号RS的资源时所述RS测量是针对目标复用模式的、父IAB节点的DU的上下行波束信息;
    所述第一条件用于所述第一IAB节点控制所述第一IAB节点的MT的接收干扰;所述第一条件包括以下至少一项:第一干扰小于或等于第一预设阈值、干扰变化量小 于或等于预设偏移阈值、通信信道质量满足预设传输条件;所述第一干扰为所述第一IAB节点的DU的上下行传输对所述第一IAB节点的MT的接收的干扰,所述干扰变化量为所述第一IAB节点的DU的上下行传输对所述第一IAB节点的MT的接收的干扰变化量,所述通信信道质量为在所述第一IAB节点的DU的上下行传输时,所述父IAB节点的DU到所述第一IAB节点的MT的通信信道质量。
  28. 一种自回传IAB节点,包括处理器,存储器及存储在所述存储器上并可在所述处理器上运行的程序或指令,所述程序或指令被所述处理器执行时实现如权利要求1至26中任一项所述的IAB指示方法的步骤。
  29. 一种可读存储介质,所述可读存储介质上存储程序或指令,所述程序或指令被处理器执行时实现如权利要求1至26中任一项所述的自回传IAB指示方法的步骤。
  30. 一种计算机程序产品,所述程序产品被至少一个处理器执行以实现如权利要求1至26中任一项所述的自回传IAB指示方法。
  31. 一种自回传IAB节点,包括所述IAB节点被配置成用于执行如权利要求1至26中任一项所述的IAB指示方法。
PCT/CN2022/085337 2021-04-06 2022-04-06 Iab指示方法、装置、设备及介质 WO2022213985A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP22784051.9A EP4322660A1 (en) 2021-04-06 2022-04-06 Iab indication method and apparatus, device, and medium
US18/375,465 US20240032009A1 (en) 2021-04-06 2023-09-30 Iab indication method, device, and medium

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110369448.0 2021-04-06
CN202110369448.0A CN115190618A (zh) 2021-04-06 2021-04-06 Iab指示方法、装置、设备及介质

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/375,465 Continuation US20240032009A1 (en) 2021-04-06 2023-09-30 Iab indication method, device, and medium

Publications (1)

Publication Number Publication Date
WO2022213985A1 true WO2022213985A1 (zh) 2022-10-13

Family

ID=83511472

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/085337 WO2022213985A1 (zh) 2021-04-06 2022-04-06 Iab指示方法、装置、设备及介质

Country Status (4)

Country Link
US (1) US20240032009A1 (zh)
EP (1) EP4322660A1 (zh)
CN (1) CN115190618A (zh)
WO (1) WO2022213985A1 (zh)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112512126A (zh) * 2020-10-22 2021-03-16 中兴通讯股份有限公司 复用操作方法、装置、节点和存储介质

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112512126A (zh) * 2020-10-22 2021-03-16 中兴通讯股份有限公司 复用操作方法、装置、节点和存储介质

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
HUAWEI, HISILICON: "Enhancements for simultaneous operation of MT and DU", 3GPP DRAFT; R1-2100220, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, no. E-meeting; 20210125 - 20210205, 19 January 2021 (2021-01-19), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , XP051970852 *

Also Published As

Publication number Publication date
US20240032009A1 (en) 2024-01-25
EP4322660A1 (en) 2024-02-14
CN115190618A (zh) 2022-10-14

Similar Documents

Publication Publication Date Title
EP3414962B1 (en) System and method for multi-user full duplex link adaptation
CN109478981B (zh) 信道估计增强
JP6616455B2 (ja) 協調多地点通信のためのアップリンクシグナリング
EP2875619B1 (en) Interference managment of device-to-device communication in a cellular communication system
US20170302337A1 (en) Signal transmission method and device
JP2023052546A (ja) 動的ul/dl構成を備えたlte tddのためのチャネル状態情報の構成、測定、及びレポートのための方法及び装置
JP2021503814A (ja) 無線通信システムにおけるチャンネル状態情報を送受信する方法及びそのための装置
WO2020155362A1 (en) Device, network, and method for sounding reference signal transmission and reception
JP2020516138A (ja) 干渉測定方法及び関連するデバイス
JP6425891B2 (ja) ユーザ端末および無線通信方法
US20130201948A1 (en) Radio base station and communication control method
US10880906B2 (en) Apparatuses, methods and computer programs for implementing fairness and complexity-constrained a non-orthogonal multiple access (NOMA) scheme
JP2016534615A (ja) Csi報告を処理するための方法及び無線ノード
EP3482505B1 (en) Systems and methods for ue-specific beam management for high frequency wireless communication
WO2021142754A1 (en) Method and apparatus for uplink transmission
JP2016529799A (ja) アップリンク制御情報の送信方法及び装置
CN114503763A (zh) 用于多分量载波的路径损耗参考信号信息
CN114641943A (zh) 无线网络中的波束质量测量
US20210175935A1 (en) System and Method for Multi-Antenna Communications
CN115804136A (zh) 交叉链路干扰测量配置
US20230403108A1 (en) Common and Default Beam Indication of Uplink and Downlink Channel Resources and/or Reference Signals
US20230262693A1 (en) Methods and apparatuses for signaling framework for flexible beam management
US20150072720A1 (en) Method and apparatus for efficiently controlling uplink control signal of user equipment in wireless communication system
WO2022105783A1 (zh) Iab节点的冲突处理方法、装置、设备及可读存储介质
WO2022213985A1 (zh) Iab指示方法、装置、设备及介质

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22784051

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2022784051

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2022784051

Country of ref document: EP

Effective date: 20231106