WO2017101119A1 - 干扰抑制方法、装置及系统 - Google Patents
干扰抑制方法、装置及系统 Download PDFInfo
- Publication number
- WO2017101119A1 WO2017101119A1 PCT/CN2015/097956 CN2015097956W WO2017101119A1 WO 2017101119 A1 WO2017101119 A1 WO 2017101119A1 CN 2015097956 W CN2015097956 W CN 2015097956W WO 2017101119 A1 WO2017101119 A1 WO 2017101119A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- cell
- base station
- control channel
- indication information
- channel indication
- Prior art date
Links
- 238000000034 method Methods 0.000 title claims abstract description 193
- 230000005540 biological transmission Effects 0.000 claims abstract description 568
- 238000004891 communication Methods 0.000 claims abstract description 53
- 230000001629 suppression Effects 0.000 claims description 115
- 238000012545 processing Methods 0.000 claims description 98
- 230000002159 abnormal effect Effects 0.000 claims description 31
- 230000009349 indirect transmission Effects 0.000 claims description 8
- 230000011664 signaling Effects 0.000 claims 12
- 230000000694 effects Effects 0.000 description 26
- 230000006870 function Effects 0.000 description 22
- 238000010586 diagram Methods 0.000 description 16
- 101150071746 Pbsn gene Proteins 0.000 description 8
- 230000008569 process Effects 0.000 description 8
- 230000003993 interaction Effects 0.000 description 7
- 230000010267 cellular communication Effects 0.000 description 4
- 230000007547 defect Effects 0.000 description 4
- 230000008878 coupling Effects 0.000 description 3
- 238000010168 coupling process Methods 0.000 description 3
- 238000005859 coupling reaction Methods 0.000 description 3
- 235000019800 disodium phosphate Nutrition 0.000 description 3
- 238000005516 engineering process Methods 0.000 description 3
- 230000007774 longterm Effects 0.000 description 3
- 238000007726 management method Methods 0.000 description 3
- 239000007787 solid Substances 0.000 description 3
- 238000001228 spectrum Methods 0.000 description 3
- 230000002547 anomalous effect Effects 0.000 description 2
- 230000001413 cellular effect Effects 0.000 description 2
- 239000013256 coordination polymer Substances 0.000 description 2
- 125000004122 cyclic group Chemical group 0.000 description 2
- 238000013461 design Methods 0.000 description 2
- 238000002474 experimental method Methods 0.000 description 2
- 230000000977 initiatory effect Effects 0.000 description 2
- 238000010295 mobile communication Methods 0.000 description 2
- 238000013468 resource allocation Methods 0.000 description 2
- CIWBSHSKHKDKBQ-JLAZNSOCSA-N Ascorbic acid Chemical compound OC[C@H](O)[C@H]1OC(=O)C(O)=C1O CIWBSHSKHKDKBQ-JLAZNSOCSA-N 0.000 description 1
- 210000003127 knee Anatomy 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 230000008054 signal transmission Effects 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04J—MULTIPLEX COMMUNICATION
- H04J11/00—Orthogonal multiplex systems, e.g. using WALSH codes
- H04J11/0023—Interference mitigation or co-ordination
- H04J11/005—Interference mitigation or co-ordination of intercell interference
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W16/00—Network planning, e.g. coverage or traffic planning tools; Network deployment, e.g. resource partitioning or cells structures
- H04W16/02—Resource partitioning among network components, e.g. reuse partitioning
- H04W16/10—Dynamic resource partitioning
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W48/00—Access restriction; Network selection; Access point selection
- H04W48/08—Access restriction or access information delivery, e.g. discovery data delivery
- H04W48/12—Access restriction or access information delivery, e.g. discovery data delivery using downlink control channel
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W48/00—Access restriction; Network selection; Access point selection
- H04W48/16—Discovering, processing access restriction or access information
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W72/00—Local resource management
- H04W72/50—Allocation or scheduling criteria for wireless resources
- H04W72/54—Allocation or scheduling criteria for wireless resources based on quality criteria
- H04W72/541—Allocation or scheduling criteria for wireless resources based on quality criteria using the level of interference
Definitions
- the present invention relates to the field of wireless communications, and in particular, to an interference suppression method, apparatus, and system.
- the time-frequency resources are generally statically configured, and the uplink signal or the downlink signal is uniformly transmitted in the entire network at the same time.
- the uplink signal or the downlink signal is uniformly transmitted in the entire network at the same time.
- TDD time division duplexing
- all base stations in the entire network generally use the same uplink-downlink subframe ratio.
- the interference received by the user equipment (English full name: user equipment, English abbreviation: UE) in a certain cell is from the downlink signal sent by other base stations; or, as shown in FIG.
- the interference received by any base station in the network receiving the uplink signal is from the uplink signal sent by the UE of the other cell.
- the base station adopts the same uplink-downlink subframe ratio, D indicates that the time slot transmits a downlink signal, and U indicates that the time slot transmits an uplink signal.
- the frequency division duplexing (English name: FDD) system is also the same.
- dynamic TDD has become a hot topic in the current third-generation partner project (English name: the 3rd generation partnership project, English abbreviation: 3GPP).
- the dynamic TDD allows each base station in the network to flexibly adjust the uplink and downlink time slot ratios.
- one adjacent cell may transmit a downlink signal and the other may transmit an uplink signal.
- the signal transmission directions of the two adjacent base stations in the fourth time slot are different.
- the interference of the base station to the UE and the UE to the base station existing in the existing LTE system the interference of the base station to the base station (interference I in the figure) and the interference of the UE to the UE appear in the figure (as shown in the figure). Interference II).
- some uplink resources can be converted to
- the downlink resources, that is, the downlink signals are transmitted in the uplink frequency band, so that the spectrum utilization rate of the network will be greatly improved.
- the implementation method may adopt a time division method, that is, as shown in FIG.
- the downlink signal is sent by the base station in the uplink frequency band in some time slots, and the uplink signal is still sent by the UE in the uplink frequency band in another part of the time slot; or frequency division is used.
- the method as shown in FIG. 5, divides the uplink frequency band resource into two parts, one part is used for the UE to send an uplink signal, and the other part is used by the base station to send a downlink signal.
- the adjacent cell transmits a downlink signal and the other transmits an uplink signal, so that in addition to the interference of the base station to the UE and the UE to the base station existing in the conventional wireless communication system in the network, There is also interference from the base station to the base station.
- 3GPP has established related projects to study how to further enhance the interference management between uplink and downlink signals.
- the current solution is to reserve an edge physical resource block (English full name: physical resource bearer, English abbreviation: PRB) for transmitting a physical uplink control channel (English full name: physical uplink control channel, English abbreviation: PUCCH), and
- the physical downlink shared channel (English short name: PDSCH) is not allowed to be transmitted on these PRBs through scheduling restrictions.
- these scheduling restrictions can only avoid PDSCH transmission on some PRBs, but in order to ensure backward compatibility, downlink control information such as physical downlink control channel (English name: Physical Downlink Control Channel, English abbreviation: PDCCH) will still be transmitted.
- Edge PRBs, interference between these downlink control information and PUCCH still exists.
- Embodiments of the present invention provide an interference suppression method, apparatus, and system to suppress interference between uplink and downlink signals and improve communication quality.
- an interference suppression method comprising:
- control channel indication information of the first cell where the first cell is any one of cells in the cell managed by the first base station, and the control channel indication signal
- the information includes at least one of the following information:
- Control channel indication information of an anisotropic transmission frequency band interfered by a neighboring cell in the first cell and control channel indication information of an anisotropic transmission subframe interfered by the neighboring cell in the first cell;
- the first base station sends the control channel indication information to a second base station, where the second base station is a base station of the neighboring cell.
- the first base station may send the control channel indication information to the second base station.
- the second base station may determine, according to the control channel indication information, resource information that can be occupied by the uplink channel of the second UE in the cell managed by the second base station, and then send the resource information to the resource information.
- the second UE may send an uplink resource according to the resource information. Because the second base station learns the control channel indication information of the first cell, the resource cooperation may be performed according to the control channel indication information, and the control channel of the first cell is avoided when determining the resource information that can be occupied by the uplink channel of the second UE.
- the control information indicated by the indication information suppresses the interference between the uplink and downlink signals, that is, the interference of the anisotropic transmission, thereby improving the quality of the network communication.
- an interference suppression method comprising:
- the first base station determines control channel indication information of the first cell, where the first cell is any one of cells in the cell managed by the first base station, and the control channel indication information includes at least one of the following information:
- Control channel indication information of an anisotropic transmission frequency band interfered by a neighboring cell in the first cell and control channel indication information of an anisotropic transmission subframe interfered by the neighboring cell in the first cell;
- the first base station sends the control channel indication information to the first user equipment UE, where the first UE is any one of the UEs in the first cell.
- the first base station may send the control channel indication information to the first UE.
- the first UE may perform resource cooperation according to the control channel indication information to receive The PDCCH transmitted by the first base station, thereby suppressing interference between uplink and downlink signals, that is, interference of the outbound transmission, improves the quality of network communication. Further, the defect that the first UE cannot acquire the PDCCH due to interference of the neighboring cell is also solved.
- the method further includes:
- the first base station sends the control channel indication information to the first user equipment UE, where the first UE is any one of the UEs in the first cell.
- the sending, by the first base station, the control channel indication information to the first UE includes:
- the first base station sends a radio resource control RRC message to the first UE in a preset co-directional transmission subframe, where the RRC information includes the control channel indication information;
- the first base station sends system information to the first UE, where the system information includes the control channel indication information;
- the first base station sends a slot ratio to the first UE, where the slot ratio is used to represent the control channel indication information.
- the method further includes:
- the first base station sends a downlink control channel PDCCH to the first UE according to the control channel indication information.
- control channel indication information includes a physical control format indication channel PCFICH;
- the sending, by the first base station, the PDCCH to the first UE according to the control channel indication information includes:
- the PCFICH includes a PCFICH of an anisotropic transmission band interfered by a neighboring cell in the first cell, all the children of the first base station in the anisotropic transmission band Transmitting a PDCCH to the first UE on the first j orthogonal frequency division multiplexing OFDM symbols of the frame, where j is a value included in the PCFICH;
- the first base station sends the first OFDM symbol of the anisotropic transmission subframe to the first a UE transmits a PDCCH;
- the PCFICH includes a PCFICH of an anisotropic transmission band that is interfered by a neighboring cell in the first cell, and a PCFICH of an anisotropic transmission subframe that is interfered by the neighboring cell in the first cell, where the first base station is Transmitting, to the first UE, a PDCCH on the first j OFDM symbols of the abnormal transmission subframe on the different transmission frequency band.
- the method further includes:
- the first base station configures the anisotropic transmission frequency band as a multicast broadcast single frequency network MBSFN And transmitting the downlink data that includes the demodulation reference signal DRS to the first UE, where the first UE is any one of the UEs in the first cell; or
- the first base station configures the anisotropic transmission subframe as an MBSFN, and Sending downlink data including the DRS to the first UE on the different transmission frequency band;
- control channel indication information includes control channel indication information of an anisotropic transmission frequency band that is interfered by a neighboring cell in the first cell, and an anisotropic transmission frequency subframe control channel indication information that is interfered by the neighboring cell in the first cell.
- the first base station configures the anisotropic transmission sub-frame on an anisotropic transmission frequency band that is interfered by a neighboring cell in the first cell as an MBSFN, and performs the anisotropic transmission on the anisotropic transmission frequency band.
- the downlink data including the DRS is transmitted to the first UE on the subframe.
- the determining, by the first base station, the control channel indication information of the first cell includes:
- the first base station determines pre-configured information as control channel indication information of the first cell.
- an interference suppression method comprising:
- the second base station acquires control channel indication information of the first cell, where the first cell is any one of the cells managed by the first base station, and the control channel indication information includes at least one of the following information:
- Control channel indication information of an anisotropic transmission band interfered by a neighboring cell in the first cell and control channel indication information of an anisotropic transmission subframe interfered by the neighboring cell in the first cell, where the neighboring cell includes a second cell, where the second cell is any one of cells in the cell managed by the second base station;
- the second base station Determining, by the second base station, the resource information that can be occupied by the uplink channel of the second user equipment, according to the control channel indication information, where the second UE is any one of the UEs in the second cell;
- the second base station sends the resource information to the second UE.
- control channel indication information includes a physical control format indication channel PCFICH;
- Determining, by the second base station, the resource information that can be occupied by the uplink channel of the second UE according to the control channel indication information including:
- the second base station determines that a last (14-j) OFDM symbol of all subframes in the anisotropic transmission band is The resource information that can be occupied by the uplink channel of the second UE, where j is a value included in the PCFICH;
- the second base station determines that a last (14-j) OFDM symbol of the anisotropic transmission subframe is Resource information that can be occupied by the uplink channel of the second UE;
- the second base station determines Said on the opposite transmission band
- the last (14-j) OFDM symbols of the abnormal transmission subframe are resource information that can be occupied by the uplink channel of the second UE.
- control channel indication information includes a physical control format indication channel PCFICH;
- the second base station determines, according to the control channel indication information, resource information that can be occupied by the uplink channel of the second UE, including:
- the second base station determines that all OFDM symbols of all subframes in the anisotropic transmission band are the second UE Resource information that can be occupied by the uplink channel;
- the second base station determines that all OFDM symbols of the anisotropic transmission subframe are the second UE Resource information that can be occupied by the uplink channel;
- the second base station determines All OFDM symbols of the abnormal transmission subframe on the different transmission frequency band are resource information that can be occupied by an uplink channel of the second UE.
- the second base station determines, according to the control channel indication information, resource information that can be occupied by an uplink channel of the second UE, including:
- the second base station determines that a last (14-j) OFDM symbol of all subframes in the anisotropic transmission band is The resource information that can be occupied by the uplink channel of the second UE, where j is a value included in the PCFICH;
- the second base station determines that a last (14-j) OFDM symbol of the anisotropic transmission subframe is The uplink channel of the second UE can be occupied by funds Source information
- the second base station determines The last (14-j) OFDM symbols of the abnormal transmission subframe on the different transmission frequency band are resource information that can be occupied by the uplink channel of the second UE.
- the method before the determining, by the second base station, the resource information that can be occupied by the uplink channel of the second UE, according to the control channel indication information, the method further includes:
- the second base station receives a reference signal parameter sent by the second UE, where the reference signal parameter includes at least one of the following parameters:
- the second base station determines that the second UE is a central UE of the second cell;
- the second base station determines that the second UE is an edge UE of the second cell.
- the acquiring, by the second base station, the control channel indication information of the first cell includes:
- the second base station receives control channel indication information of the first cell sent by the first base station.
- the acquiring, by the second base station, the control channel indication information of the first cell includes:
- the second base station determines pre-configured information as control channel indication information of the first cell.
- the second base station may determine, according to the control channel indication information, that the uplink channel of the second UE in the cell managed by the second base station is occupied.
- the resource information is sent to the second UE, and the second UE may send the uplink resource according to the resource information. Since the second base station learns the control channel indication information of the first cell, the resource cooperation may be performed according to the control channel indication information, where the second UE is determined.
- the control information indicated by the control channel indication information of the first cell is avoided, thereby suppressing interference between uplink and downlink signals, that is, interference of the abnormal transmission, and improving the quality of the network communication.
- an interference suppression method comprising:
- the first user equipment UE receives the control channel indication information of the first cell sent by the first base station, where the first cell is any one of the cells managed by the first base station, and the first UE is the first Any one of the UEs in the cell, the control channel indication information includes at least one of the following information:
- Control channel indication information of an anisotropic transmission frequency band interfered by a neighboring cell in the first cell and control channel indication information of an anisotropic transmission subframe interfered by the neighboring cell in the first cell;
- the first UE receives the physical downlink control channel PDCCH sent by the first base station according to the control channel indication information.
- the first UE receives the control channel indication information of the first cell that is sent by the first base station, and includes:
- the first UE receives, in a preset co-directional transmission subframe, a radio resource control RRC message sent by the first base station, where the RRC information includes control channel indication information of the first cell;
- the first UE receives system information sent by the first base station, where the system information includes control channel indication information of the first cell;
- the first UE receives a slot ratio sent by the first base station, where the slot ratio is used to represent control channel indication information of the first cell.
- control channel indication information includes a physical control format indication channel PCFICH;
- the receiving, by the first UE, the PDCCH sent by the first base station according to the control channel indication information includes:
- the first UE receiving the PDCCH sent by the first base station on the first j orthogonal frequency division multiplexing OFDM symbols of all subframes on the different transmission frequency band, where j is The value contained in the PCFICH;
- the first UE receives the first OFDM symbol on the forward transmission subframe a PDCCH transmitted by a base station;
- the PCFICH includes a PCFICH of an anisotropic transmission band that is interfered by a neighboring cell in the first cell, and a PCFICH of an anisotropic transmission subframe that is interfered by the neighboring cell in the first cell, where the first UE is The PDCCH transmitted by the first base station is received on the first j OFDM symbols of the abnormal transmission subframe on the different transmission frequency band.
- the first UE may receive the control channel indication information of the first cell sent by the first base station, so that the first UE may perform resource cooperation according to the control channel indication information to receive the PDCCH sent by the first base station, thereby suppressing
- the interference between the uplink and downlink signals that is, the interference of the anisotropic transmission, improves the quality of the network communication. Further, the defect that the first UE cannot acquire the PDCCH due to interference of the neighboring cell is also solved.
- a fifth aspect provides a first base station, where the first base station includes: a processing unit and a sending unit;
- the processing unit is configured to determine control channel indication information of the first cell, where the first cell is any one of cells in the cell managed by the first base station, and the control channel indication information includes at least one of the following information.
- Control channel indication information of an anisotropic transmission frequency band interfered by a neighboring cell in the first cell and control channel indication information of an anisotropic transmission subframe interfered by the neighboring cell in the first cell;
- the sending unit is configured to send the control channel indication information to a second base station, where the second base station is a base station of the neighboring cell.
- the first base station provided by the embodiment of the present invention may be used to perform the method of the foregoing first aspect. Therefore, the technical effects that can be obtained can be referred to the foregoing first aspect. The technical effects of the interference suppression method performed by the first base station are not described herein again.
- a first base station in a sixth aspect, includes: a processing unit and a sending unit;
- the processing unit is configured to determine control channel indication information of the first cell, where the first cell is any one of cells in the cell managed by the first base station, and the control channel indication information includes at least one of the following information.
- Control channel indication information of an anisotropic transmission frequency band interfered by a neighboring cell in the first cell and control channel indication information of an anisotropic transmission subframe interfered by the neighboring cell in the first cell;
- the sending unit is configured to send the control channel indication information to the first user equipment UE, where the first UE is any one of the UEs in the first cell.
- the first base station provided by the embodiment of the present invention may be used to perform the method of the foregoing second aspect. Therefore, the technical effects that can be obtained may refer to the technical effect of the interference suppression method performed by the first base station in the foregoing first aspect. I won't go into details here.
- the sending unit is further configured to: after the processing unit determines the control channel indication information of the first cell, send the control channel indication information to the first user equipment UE, where The first UE is any one of the UEs in the first cell.
- the sending unit is specifically configured to:
- Radio resource control RRC message to the first UE in a preset co-directional transmission subframe, where the RRC information includes the control channel indication information;
- system information includes the control channel indication information
- the sending unit is further configured to: after the processing unit determines the control channel indication information of the first cell, send the downlink control channel PDCCH to the first UE according to the control channel indication information.
- control channel indication information includes a physical control format indication channel PCFICH;
- the sending unit is specifically configured to:
- the first j orthogonal frequency division multiplexing OFDM symbols of all subframes on the anisotropic transmission band
- the first UE sends a PDCCH, where j is a value included in the PCFICH;
- the PCFICH includes a PCFICH of an anisotropic transmission subframe that is interfered by a neighboring cell in the first cell, and sends a PDCCH to the first UE on a first j OFDM symbols of the anisotropic transmission subframe;
- the PCFICH includes a PCFICH of an anisotropic transmission band interfered by a neighboring cell in the first cell and a PCFICH of an anisotropic transmission subframe that is interfered by a neighboring cell in the first cell, in the anisotropic transmission Transmitting a PDCCH to the first UE on the first j OFDM symbols of the abnormal transmission subframe on the frequency band.
- the processing unit is further configured to: after determining the control channel indication information of the first cell, if the control channel indication information includes The control channel indication information of the anisotropic transmission frequency band that is interfered by the neighboring cell in the first cell, and configures the anisotropic transmission frequency band to be a multicast broadcast single frequency network MBSFN;
- the sending unit is further configured to send, to the first UE, downlink data that includes a demodulation reference signal DRS, where the first UE is any one of the UEs in the first cell;
- processing unit is further configured to configure, when the control channel indication information includes the indirect transmission frequency subframe control channel indication information that is interfered by the neighboring cell in the first cell, MBSFN;
- the sending unit is further configured to send to the first UE on the different transmission frequency band Send downlink data including DRS;
- the processing unit is further configured to: if the control channel indication information includes control channel indication information of an anisotropic transmission frequency band that is interfered by a neighboring cell in the first cell, and interference of a neighboring cell in the first cell.
- the anisotropic transmission frequency sub-frame control channel indication information configured to configure the anisotropic transmission sub-frame on the anisotropic transmission frequency band that is interfered by the neighboring cell in the first cell to be an MBSFN;
- the sending unit is further configured to send downlink data including the DRS to the first UE on the opposite transmission subframe on the different transmission frequency band.
- the processing unit is specifically configured to:
- the pre-configured information is determined as control channel indication information of the first cell.
- a second base station includes: a processing unit and a sending unit;
- the processing unit is configured to acquire control channel indication information of the first cell, where the first cell is any one of the cells managed by the first base station, and the control channel indication information includes at least one of the following information. :
- Control channel indication information of an anisotropic transmission band interfered by a neighboring cell in the first cell and control channel indication information of an anisotropic transmission subframe interfered by the neighboring cell in the first cell, where the neighboring cell includes a second cell, where the second cell is any one of cells in the cell managed by the second base station;
- the processing unit is further configured to determine, according to the control channel indication information, resource information that can be occupied by an uplink channel of the second user equipment UE, where the second UE is any one of the UEs in the second cell;
- the sending unit is configured to send the resource information to the second UE.
- control channel indication information includes a physical control format indication channel PCFICH;
- the processing unit is specifically configured to:
- the PCFICH includes a PCFICH of an anisotropic transmission band that is interfered by a neighboring cell in the first cell.
- the OFDM symbols are resource information that can be occupied by the uplink channel of the second UE, where j is a value included in the PCFICH;
- the PCFICH includes a PCFICH of an anisotropic transmission subframe that is interfered by a neighboring cell in the first cell, determining a last (14-j) OFDM symbol of the anisotropic transmission subframe as the second UE Resource information that can be occupied by the uplink channel;
- the PCFICH includes a PCFICH of an anisotropic transmission band interfered by a neighboring cell in the first cell and a PCFICH of an anisotropic transmission subframe that is interfered by a neighboring cell in the first cell.
- the last (14-j) OFDM symbols of the abnormal transmission subframe on the frequency band are resource information that can be occupied by the uplink channel of the second UE.
- control channel indication information includes a physical control format indication channel PCFICH;
- the processing unit is specifically configured to:
- the PCFICH includes a PCFICH of an anisotropic transmission band that is interfered by a neighboring cell in the first cell, determining that all OFDM symbols of all subframes in the outbound transmission band are occupied by an uplink channel of the second UE Resource information
- the PCFICH includes a PCFICH of an anisotropic transmission subframe that is interfered by a neighboring cell in the first cell, determining that all OFDM symbols of the anisotropic transmission subframe are occupied by an uplink channel of the second UE Resource information
- the PCFICH includes a PCFICH of an anisotropic transmission band interfered by a neighboring cell in the first cell and a PCFICH of an anisotropic transmission subframe that is interfered by a neighboring cell in the first cell.
- All OFDM symbols of the abnormal transmission subframe on the frequency band are resource information that can be occupied by the uplink channel of the second UE.
- the processing unit is specifically configured to:
- the PCFICH includes a PCFICH of an anisotropic transmission band that is interfered by a neighboring cell in the first cell, determining a last (14-j) OFDM symbol of all subframes in the anisotropic transmission band as the second UE Resource information that can be occupied by the uplink channel, where j is a value included in the PCFICH;
- the PCFICH includes a PCFICH of an anisotropic transmission subframe that is interfered by a neighboring cell in the first cell, determining a last (14-j) OFDM symbol of the anisotropic transmission subframe as the second UE Resource information that can be occupied by the uplink channel;
- the PCFICH includes a PCFICH of an anisotropic transmission band interfered by a neighboring cell in the first cell and a PCFICH of an anisotropic transmission subframe that is interfered by a neighboring cell in the first cell.
- the last (14-j) OFDM symbols of the abnormal transmission subframe on the frequency band are resource information that can be occupied by the uplink channel of the second UE.
- the second base station further includes a receiving unit
- the receiving unit is configured to receive a reference signal parameter sent by the second UE, where the processing unit receives the resource information that can be occupied by the uplink channel of the second UE, according to the control channel indication information, the reference signal
- the parameter includes at least one of the following parameters:
- the processing unit is further configured to: if the value of the at least one parameter of the reference signal parameter is not less than a preset threshold, determine that the second UE is a central UE of the second cell;
- the processing unit is further configured to determine that the second UE is an edge UE of the second cell, if the value of all the parameters in the reference signal parameter is less than the preset threshold.
- the second base station further includes a receiving unit
- the processing unit is specifically configured to:
- processing unit is specifically configured to:
- the pre-configured information is determined as control channel indication information of the first cell.
- the second base station provided by the embodiment of the present invention can be used to perform the method of the foregoing third aspect. Therefore, the technical effects that can be obtained can be referred to the foregoing third aspect. The technical effects of the interference suppression method performed by the second base station are not described herein again.
- a first user equipment UE includes a receiving unit
- the receiving unit is configured to receive control channel indication information of the first cell that is sent by the first base station, where the first cell is any one of cells in the cell managed by the first base station, and the first UE is At any one of the UEs in the first cell, the control channel indication information includes at least one of the following information:
- Control channel indication information of an anisotropic transmission frequency band interfered by a neighboring cell in the first cell and control channel indication information of an anisotropic transmission subframe interfered by the neighboring cell in the first cell;
- the receiving unit is further configured to receive, according to the control channel indication information, a physical downlink control channel PDCCH that is sent by the first base station.
- the receiving unit is specifically configured to:
- Radio resource control RRC message sent by the first base station, where the RRC information includes control channel indication information of the first cell;
- system information sent by the first base station where the system information includes control channel indication information of the first cell;
- control channel indication information includes a physical control format indication channel PCFICH;
- the receiving unit is specifically configured to:
- the PCFICH includes a PCFICH of an anisotropic transmission band interfered by a neighboring cell in the first cell, receiving on a first j orthogonal frequency division multiplexing OFDM symbols of all subframes in the anisotropic transmission band a PDCCH sent by the first base station, where j is a value included in the PCFICH;
- the PCFICH includes a PCFICH of the anisotropic transmission subframe that is interfered by the neighboring cell in the first cell, and receives the PDCCH sent by the first base station on the first j OFDM symbols of the anisotropic transmission subframe.
- the PCFICH includes a PCFICH of an anisotropic transmission band interfered by a neighboring cell in the first cell and a PCFICH of an anisotropic transmission subframe that is interfered by a neighboring cell in the first cell, in the anisotropic transmission
- the PDCCH transmitted by the first base station is received on the first j OFDM symbols of the abnormal transmission subframe on the frequency band.
- the first UE that is provided by the embodiment of the present invention may be used to perform the method of the foregoing fourth aspect. Therefore, the technical effects that can be obtained by the first UE may refer to the technical effect of the interference suppression method performed by the first UE in the foregoing fourth aspect. I won't go into details here.
- the anisotropic transmission frequency band is a frequency band configured to be a flexible half-duplex for the opposite direction transmission
- the anisotropic transmission subframe is a subframe configured to be anisotropic transmission on the anisotropic transmission band.
- an interference suppression method comprising:
- the first base station acquires control channel indication information of the first cell, where the first cell is any one of the cells managed by the first base station, and the control channel indication information includes at least one of the following information:
- Control channel indication information of an anisotropic transmission band interfered by a neighboring cell in the first cell and control channel indication information of an anisotropic transmission subframe interfered by the neighboring cell in the first cell, where the neighboring cell includes a second cell, where the second cell is any one of cells in the cell managed by the second base station;
- the first base station configures the anisotropic transmission frequency band as a multicast broadcast single frequency network MBSFN And transmitting downlink data including a demodulation reference signal DRS to the first UE, where the first UE is any one of the UEs in the first cell;
- control channel indication information includes the anisotropic transmission frequency subframe control channel indication information that is interfered by the neighboring cell in the first cell, the first base station And sending the downlink data including the DRS to the first UE on the opposite transmission frequency band;
- control channel indication information includes control channel indication information of an anisotropic transmission frequency band that is interfered by a neighboring cell in the first cell, and an anisotropic transmission frequency subframe control channel that is interfered by a neighboring cell in the first cell.
- the first base station configures the anisotropic transmission subframe on an anisotropic transmission frequency band that is interfered by a neighboring cell in the first cell as an MBSFN, and the difference in the anisotropic transmission frequency band
- the downlink data including the DRS is transmitted to the first UE on the transmission subframe.
- the UE communicating in the anisotropic transmission band and/or the anisotropic transmission subframe can be demodulated based on DRS, and no further basis is needed.
- Cell-specific pilot CRS demodulation since DRS power is much smaller than CRS, DRS generates less interference than CRS; that is, interference from CRS and interference to CRS are minimized, therefore, The off-channel interference between CRS and uplink transmission is reduced.
- an interference suppression method comprising:
- the first user equipment Receiving, by the first user equipment, the downlink data that is sent by the first base station and includes the demodulation reference signal DRS, where the opposite transmission frequency band is configured as a multicast broadcast single frequency network MBSFN, where the first The UE is any one of the UEs in the cell managed by the first base station;
- the method comprises:
- the first UE receives the downlink data including the DRS sent by the first base station, where the outbound subframe frequency band is configured as an MBSFN;
- the method comprises:
- the downlink data including the DRS sent by the first base station, where the outbound subframe frequency band of the different transmission frequency band is configured as an MBSFN;
- the first UE demodulates downlink data based on the DRS.
- the UE communicating in the anisotropic transmission band and/or the anisotropic transmission subframe can be demodulated based on DRS, and no further basis is needed.
- Cell-specific pilot CRS demodulation since DRS power is much smaller than CRS, DRS generates less interference than CRS; that is, interference from CRS and interference to CRS are minimized, therefore, The off-channel interference between CRS and uplink transmission is reduced.
- a first base station includes: a processing unit and a sending unit;
- the processing unit is configured to acquire control channel indication information of the first cell, where the first cell is any one of the cells managed by the first base station, and the control channel indication information includes at least one of the following information. :
- Control channel indication information of an anisotropic transmission band interfered by a neighboring cell in the first cell and control channel indication information of an anisotropic transmission subframe interfered by the neighboring cell in the first cell, where the neighboring cell includes a second cell, where the second cell is any one of cells in the cell managed by the second base station;
- the processing unit is further configured to: if the control channel indication information includes control channel indication information of an anisotropic transmission frequency band that is interfered by a neighboring cell in the first cell, configure the anisotropic transmission frequency band as a multicast broadcast list Frequency network MBSFN;
- the sending unit is configured to send downlink data including a demodulation reference signal DRS to the first UE, where the first UE is any UE in the first cell;
- the processing unit is further configured to: if the control channel indication information includes the indirect transmission frequency subframe control channel indication information in the first cell that is interfered by the neighboring cell, the first base station
- the transmission subframe is configured as MBSFN;
- the sending unit is configured to send downlink data including the DRS to the first UE on the different transmission frequency band;
- the processing unit is further configured to: if the control channel indication information includes control channel indication information of an anisotropic transmission frequency band that is interfered by a neighboring cell in the first cell, and interference of a neighboring cell in the first cell.
- Anisotropic transmission frequency subframe control channel Instructing the first base station configures the anisotropic transmission subframe on an anisotropic transmission frequency band that is interfered by a neighboring cell in the first cell as an MBSFN;
- the sending unit is configured to send downlink data including the DRS to the first UE on the different transmission subframe on the different transmission frequency band.
- the first base station provided by the embodiment of the present invention may be used to perform the method of the foregoing ninth aspect. Therefore, the technical effects that can be obtained by referring to the technical effect of the interference suppression method performed by the first base station in the foregoing ninth aspect, I won't go into details here.
- a first user equipment UE includes: a receiving unit and a processing unit;
- the receiving unit is configured to receive downlink data that is sent by the first base station and includes a demodulation reference signal DRS, where the anisotropic transmission frequency band is configured as a multicast broadcast single frequency network MBSFN,
- the first UE is any one of the UEs in the cell managed by the first base station;
- the processing unit is configured to demodulate downlink data based on the DRS;
- the receiving unit configured to receive the downlink data that is sent by the first base station and includes the DRS, where the outbound subframe frequency band is configured as an MBSFN;
- the processing unit is configured to demodulate downlink data based on the DRS;
- the receiving unit is configured to receive downlink data that includes the DRS sent by the first base station, where the outbound subframe frequency band of the different transmission frequency band is configured as MBSFN;
- the processing unit is configured to demodulate downlink data based on the DRS.
- the first UE provided by the embodiment of the present invention may be used to perform the method of the foregoing tenth aspect. Therefore, the technical effects that can be obtained may refer to the technical effect of the interference suppression method performed by the first UE in the foregoing tenth aspect. I won't go into details here.
- a first base station includes: a processor, a memory, a bus, and a communication interface;
- the memory is configured to store a computer executing instructions
- the processor is connected to the memory through the bus, and when the first base station is running, the processor executes
- the computer stored in the memory executes instructions to cause the first base station to perform the interference suppression method according to any one of the above first aspects or to perform the interference suppression method or the execution according to any of the above second aspects
- the first base station may perform the interference suppression method according to any one of the foregoing first aspects, or perform the interference suppression method according to any one of the foregoing second aspects, or perform the ninth aspect as described above.
- the technical effects of the above-mentioned first aspect, or the second aspect, or the interference suppression method described in the ninth aspect may be referred to herein.
- a second base station in a fourteenth aspect, includes: a processor, a memory, a bus, and a communication interface;
- the memory is configured to store a computer to execute an instruction
- the processor is connected to the memory through the bus, and when the second base station is in operation, the processor executes the computer-executed instruction stored in the memory to
- the second base station is caused to perform the interference suppression method according to any one of the above third aspects.
- the second base station in the embodiment of the present invention may perform the interference suppression method according to any one of the foregoing third aspects. Therefore, the technical effects that can be obtained may refer to the technology of the interference suppression method according to the third aspect. The effect will not be described here.
- a first user equipment UE includes: a processor, a memory, a bus, and a communication interface;
- the memory is configured to store a computer execution instruction
- the processor is connected to the memory through the bus, and when the first UE is running, the processor executes the computer execution instruction stored in the memory to
- the first UE is caused to perform the interference suppression method according to any one of the above-mentioned fourth aspects, or to perform the interference suppression method according to any of the above tenth aspects.
- the first UE provided by the embodiment of the present invention may perform the interference suppression method according to any one of the foregoing fourth aspects, or perform the interference suppression method according to any one of the above tenth aspects, and thus,
- FIG. 1 is a schematic diagram 1 of an interference scenario in the prior art
- FIG. 2 is a schematic diagram 2 of an interference scenario in the prior art
- FIG. 3 is a schematic diagram 3 of an interference scenario in the prior art
- FIG. 4 is a schematic diagram of a dynamic spectrum sharing scenario in a time division manner in the prior art
- FIG. 5 is a schematic diagram of a dynamic spectrum sharing scenario in a frequency division manner in the prior art
- FIG. 6 is a schematic structural diagram of an interference suppression system according to an embodiment of the present invention.
- FIG. 7 is a schematic flowchart 1 of an interference suppression method according to an embodiment of the present disclosure.
- FIG. 8 is a second schematic flowchart of an interference suppression method according to an embodiment of the present disclosure.
- FIG. 9 is a schematic flowchart 3 of an interference suppression method according to an embodiment of the present disclosure.
- FIG. 10 is a schematic diagram of an anisotropic transmission subframe according to an embodiment of the present invention.
- FIG. 11 is a schematic flowchart 4 of an interference suppression method according to an embodiment of the present disclosure.
- FIG. 12 is a schematic flowchart 5 of an interference suppression method according to an embodiment of the present disclosure.
- FIG. 13 is a schematic flowchart 6 of an interference suppression method according to an embodiment of the present disclosure.
- FIG. 14 is a schematic structural diagram 1 of a first base station according to an embodiment of the present disclosure.
- FIG. 15 is a schematic structural diagram 1 of a second base station according to an embodiment of the present disclosure.
- FIG. 16 is a schematic structural diagram 2 of a second base station according to an embodiment of the present disclosure.
- FIG. 17 is a schematic structural diagram 1 of a first UE according to an embodiment of the present disclosure.
- FIG. 18 is a schematic structural diagram 2 of a first UE according to an embodiment of the present disclosure.
- FIG. 19 is a schematic structural diagram 2 of a first base station according to an embodiment of the present disclosure.
- FIG. 20 is a schematic structural diagram 3 of a second base station according to an embodiment of the present disclosure.
- FIG. 21 is a schematic structural diagram 3 of a first UE according to an embodiment of the present invention.
- the downlink multiple access method usually adopts orthogonal frequency division multiplexing multiple access (English full name: orthogonal frequency division) Multiple Access, English abbreviation: OFDMA) mode.
- the downlink resources of the system are divided into orthogonal frequency division multiplexing (English abbreviation: OFDM) symbols in terms of time, and are divided into subcarriers in terms of frequency.
- OFDM orthogonal frequency division multiplexing
- one radio frame contains 10 subframes, one subframe is 1 ms long, and the subframe of each radio frame is numbered 0-9.
- a sub-frame contains two time slots (English: slot).
- each time slot contains 7 OFDM symbols, numbered 0-6; extended CP In the case of each slot, there are 6 OFDM symbols, numbered 0-5.
- a time-frequency resource composed of one OFDM symbol and one sub-carrier is called a resource element (English name: resource element, English abbreviation: RE).
- the size of a physical resource block (physical resource block, PRB for short) is defined as a time slot in time and 180 kHz in the frequency domain.
- PRB physical resource block
- PRB Physical resource block
- the LTE system supports two frame structures: Type1 and Type2, where Type1 is used for FDD and Type2 is used for TDD.
- Type1 is used for FDD
- Type2 is used for TDD.
- each subframe included in a 10 ms radio frame can be used for both downlink transmission and uplink transmission.
- a subframe included in a 10 ms radio frame is either a downlink subframe, an uplink subframe, or a special subframe.
- Which subframe is a downlink subframe, an uplink subframe, or a special subframe is determined by the TDD uplink and downlink configuration.
- LTE currently supports seven different TDD uplink and downlink configurations, as shown in Table 1, where D represents a downlink subframe for downlink transmission, S represents a special subframe, and U represents an uplink subframe.
- the 3GPP project team proposed a related solution.
- the newly proposed scheme can only avoid PDSCH transmission on some PRBs, and downlink control information such as PDCCH will still be transmitted in the edge PRBs. The interference between the downlink control information and the PUCCH still exists.
- the embodiment of the present invention provides a method, an apparatus, and a system for suppressing interference.
- the technical solution in the embodiment of the present invention will be described below with reference to the accompanying drawings in the embodiments of the present invention.
- A/B in the embodiment of the present invention means or means, for example, A/B may represent A or B; "and/or” in this document is merely an association relationship describing the associated object, indicating There may be three relationships, for example, A and/or B, which may indicate that there are three cases where A exists separately, and A and B exist simultaneously, and B exists separately. "Multiple" means two or more than two.
- the terms "component,” “module,” “system,” and the like are intended to refer to a computer-related entity, which may be hardware, firmware, a combination of hardware and software, software, or in operation. software.
- the component can be, but not Limited to: processes, processors, objects, executables, threads in execution, programs, and/or computers running on a processor.
- an application running on a computing device and the computing device can be a component.
- One or more components can reside within a process and/or thread of execution, and a component can be located in a computer and/or distributed between two or more computers.
- these components can execute from various computer readable media having various data structures thereon.
- These components may be passed, for example, by having one or more data packets (eg, data from one component that interacts with the local system, another component of the distributed system, and/or signaled through, such as the Internet)
- the network interacts with other systems to communicate in a local and/or remote process.
- a wireless communication network is a network that provides wireless communication functions.
- the wireless communication network can adopt different communication technologies, such as code division multiple access (English full name: CDMA), wideband code division multiple access (English name: wideband code division multiple access, English abbreviation: WCDMA) Time division multiple access (English full name: time division multiple access, English abbreviation: TDMA), frequency division multiple access (English full name: frequency division multiple access, English abbreviation: FDMA), OFDMA, single carrier frequency division multiple access (English full name: Single carrier FDMA, English abbreviation: SC-FDMA), carrier sense multiple access with collision avoidance (English full name: carrier sense multiple access with collision avoidance).
- CDMA code division multiple access
- WCDMA wideband code division multiple access
- TDMA Time division multiple access
- TDMA Time division multiple access
- FDMA frequency division multiple access
- OFDMA single carrier frequency division multiple access
- SC-FDMA single carrier sense multiple access with collision avoidance
- carrier sense multiple access with collision avoidance English full name
- the network can be divided into 2G (English: generation) network, 3G network or 4G network.
- a typical 2G network includes a global mobile communication system (global system for mobile communications/general packet radio service, English abbreviation: GSM) network or a general packet radio service (English name: general packet radio service, English abbreviation: GPRS) network.
- GSM global system for mobile communications/general packet radio service
- GPRS general packet radio service
- a typical 3G network includes a universal mobile telecommunications system (English name: UMTS) network.
- a typical 4G network includes an LTE network.
- the UMTS network can also be called a universal terrestrial radio access network (English name: UTRAN), and the LTE network has It can also be called an evolved universal terrestrial radio access network (English abbreviation: E-UTRAN).
- E-UTRAN evolved universal terrestrial radio access network
- it can be divided into cellular communication network and wireless local area network (English name: wireless local area networks, English abbreviation: WLAN), wherein the cellular communication network is dominated by scheduling, and WLAN is dominant.
- the aforementioned 2G, 3G and 4G networks are all cellular communication networks. It should be understood by those skilled in the art that as the technology advances, the technical solutions provided by the embodiments of the present invention are equally applicable to other wireless communication networks, such as 4.5G or 5G networks, or other non-cellular communication networks. For the sake of brevity, the embodiment of the present invention sometimes abbreviates the wireless communication network into a network.
- a UE is a terminal device, which may be a mobile terminal device or a non-mobile terminal device.
- the device is mainly used to receive or send business data.
- User equipment can be distributed in the network. User equipments have different names in different networks, such as: terminals, mobile stations, subscriber units, stations, cellular phones, personal digital assistants, wireless modems, wireless communication devices, handheld devices, knees. Upper computer, cordless phone, wireless local loop station, etc.
- the user equipment can communicate with one or more core networks via a radio access network (radio access network, English abbreviation: RAN) (for accessing a wireless communication network), for example, exchanging voice and voice with a radio access network. / or data.
- radio access network radio access network, English abbreviation: RAN
- RAN for accessing a wireless communication network
- a base station device also referred to as a base station, is a device deployed in a wireless access network to provide wireless communication functionality.
- a device that provides a base station function in a 2G network includes a base transceiver station (English name: base transceiver station, English abbreviation: BTS) and a base station controller (English name: base station controller, English abbreviation: BSC), which is provided in a 3G network.
- the base station function includes the Node B (English name: NodeB) and the radio network controller (English name: radio network controller, English abbreviation: RNC).
- the device that provides the base station function in the 4G network includes the evolved Node B (English full name: Evolved NodeB, English abbreviation: eNB), in the WLAN, the device that provides the function of the base station is the access point (English full name: access point, English abbreviation: AP).
- eNB evolved Node B
- AP access point
- the wireless network device may be a base station, and the base station may be used to communicate with one or more user equipments, or may be used to communicate with one or more base stations having partial user equipment functions (such as a macro base station and a micro base station, such as an access point, Communication between the two); the wireless network device can also be a user device, and the user device can be used for communication by one or more user devices (such as device-to-device (English name: D2D) communication) ) can also be used to communicate with one or more base stations.
- the wireless network device can also be a user device, and the user device can be used for communication by one or more user devices (such as device-to-device (English name: D2D) communication) ) can also be used to communicate with one or more base stations.
- D2D device-to-device
- User equipment may also be referred to as user terminals and may include systems, subscriber units, subscriber stations, mobile stations, mobile wireless terminals, mobile devices, nodes, devices, remote stations, remote terminals, terminals, wireless communication devices, wireless communication devices, or Some or all of the features of the user agent.
- the user equipment can be a cellular phone, a cordless phone, a session initiation protocol (English name: session initiation protocol, English abbreviation: SIP), a smart phone, a wireless local loop (English name: wireless local loop, English abbreviation: WLL) station, Personal digital assistant (English full name: personal digital assistant: PDA), laptop computer, handheld communication device, handheld computing device, satellite wireless device, wireless modem card and / or used for communication on wireless systems Other processing equipment.
- SIP session initiation protocol
- WLL wireless local loop
- PDA Personal digital assistant
- a base station may also be referred to as an access point, a node, a Node B, an evolved Node B, or some other network entity, and may include some or all of the functions of the above network entities.
- the base station can communicate with the wireless terminal over the air interface. This communication can be done by one or more sectors.
- the base station can be used as a router between the wireless terminal and the rest of the access network by converting the received air interface frame into an IP packet, wherein the access network includes an internet protocol (English full name: internet protocol, English abbreviation) :IP) Network.
- the base station can also coordinate the management of air interface attributes and can also be a gateway between the wired network and the wireless network.
- the application will present various aspects, embodiments, or features in a system that can include multiple devices, components, modules, and the like. It is to be understood and appreciated that the various systems may include additional devices, components, modules, etc. and/or may not include all of the devices, components, modules, etc. discussed in connection with the figures. In addition, a combination of these schemes can also be used.
- the words “example”, “such as” are used to mean As an example, an illustration or an illustration. Any embodiment or design described as “exemplary” or “such as” in this application should not be construed as preferred or advantageous over other embodiments or designs. Rather, the use of the words “example”, “such as” is intended to present the concept in a specific manner.
- information (information), signal (in English: signal), message (in English: message), and channel (in English: channel) may sometimes be mixed.
- signal in English: signal
- message in English: message
- channel in English: channel
- the network architecture and the service scenario described in the embodiments of the present invention are used to more clearly illustrate the technical solutions of the embodiments of the present invention, and do not constitute a limitation of the technical solutions provided by the embodiments of the present invention.
- the technical solutions provided by the embodiments of the present invention are equally applicable to similar technical problems.
- the embodiment of the present invention is described in the context of a 4G network in a wireless communication network. It should be noted that the solution in the embodiment of the present invention may also be applied to other wireless communication networks, and the corresponding names may also be used in other wireless communication networks. Replace the name of the corresponding function.
- FIG. 6 is a schematic structural diagram of an interference suppression system according to an embodiment of the present invention.
- the interference suppression system includes multiple base stations and multiple UEs in a cell managed by each base station, where multiple base stations may In communication with each other, each of the plurality of base stations can also communicate with each of the plurality of UEs in the cell managed by the base station.
- the interference suppression system includes three base stations (respectively referred to as base station 1, base station 2, and base station 3), and each cell managed by the base station includes two UEs (in the cell managed by the base station 1).
- the UEs are described as UE1 and UE2, UEs in the cells managed by the base station 2 are respectively recorded as UE3 and UE4, and UEs in the cells managed by the base station 3 are respectively recorded as UE5 and UE6).
- the interference suppression system is not limited There are only three base stations, and may include two base stations, four base stations, and the like.
- Each base station is not limited to only two UEs, and may include three UEs, four UEs, and other numbers of UEs.
- FIG. 6 is only an exemplary illustration. In the embodiment of the present invention, the number of base stations in the interference suppression system, and the number of UEs in the cell managed by each base station are not specifically limited.
- an embodiment of the present invention provides an interference suppression method, where a first base station (which may be assumed to be the base station 1 in FIG. 6) and a second base station (which may be assumed to be the base station 2 in FIG. 6) Or the interaction of the base station 3) and the second UE in the cell managed by the second base station and the second base station (may be any one of the UEs in the cell managed by the second base station, for example, when the second base station is the base station 2, the second UE
- the interaction of the UE3) may be taken as an example, as shown in FIG. 7, including steps S701-S707:
- the first base station determines control channel indication information of the first cell.
- the first cell is any one of the cells in the cell managed by the first base station, and the control channel indication information may specifically include at least one of the following information:
- Control channel indication information of the anisotropic transmission band interfered by the neighboring cell in the first cell and control channel indication information of the anisotropic transmission subframe interfered by the neighboring cell in the first cell.
- the first base station sends control channel indication information to the second base station.
- the second base station receives control channel indication information sent by the first base station.
- the second base station determines, according to the control channel indication information, resource information that can be occupied by the uplink channel of the second UE.
- the second base station sends resource information to the second UE.
- the second UE receives resource information sent by the second base station.
- the second UE sends uplink data to the second base station according to the resource information.
- step S701 of the embodiment of the present invention
- the first cell may be interfered by one neighboring cell, and may also be interfered by multiple neighboring cells. Therefore, the number of neighboring cells is not specifically limited in this embodiment of the present invention.
- the cell 1 managed by the base station 1 may be interfered only by the cell 2 managed by the base station 2, and may also be interfered by the cell 2 managed by the base station 2 at the same time.
- the interference of the cell 3 managed by the base station 3 or the interference of the cell managed by the other base station is not specifically limited in this embodiment of the present invention.
- step S701 specifically refers to different transmission directions at the same time, one corresponding downlink transmission, and one corresponding uplink transmission, such as the transmission in FIG. 3, FIG. 4 or FIG.
- co-directional transmission specifically means that the transmission direction is the same at the same time, and both correspond to downlink transmission or both uplink transmission, such as transmission in FIG. 1 or FIG.
- the subframes other than the subframe when the first base station and the second base station do not need to communicate with each other, as shown in Table 1, the subframes other than the subframe 0, the subframe 1, the subframe 2, and the subframe 5 It can be determined that the subframe is transmitted in the opposite direction, as long as the TDD uplink and downlink configuration corresponding to the first base station and the TDD uplink and downlink configuration corresponding to the second base station are different in the transmission direction of the subframe; and when the first base station and the second base station are When the base stations need to communicate with each other, after the first base station and the second base station interact with each other, the subframes with different transmission directions are determined as the orthogonal transmission subframes.
- the control channel indication information in step S701 may specifically include control channel indication information of an anisotropic transmission frequency band that is interfered by the neighboring cell in the first cell, or control of an anisotropic transmission subframe that is interfered by the neighboring cell in the first cell.
- the anisotropic transmission frequency band in the embodiment of the present invention may be a frequency band configured to be a flexible half-duplex for the opposite direction transmission, and the opposite-direction transmission subframe may be configured as an anisotropic transmission on the opposite-transmission transmission frequency band. Subframe.
- the frequency band of the indirect transmission in the embodiment of the present invention may be configured as a frequency band for transmitting the downlink signal in the uplink frequency band, for example, the frequency band shown in FIG. 4 or FIG. 5, which is not specifically limited in this embodiment of the present invention.
- the anisotropic transmission sub-frame can be the anisotropic transmission frequency A subframe on the segment that is configured for an anisotropic transmission.
- control channel indication information in the embodiment of the present invention may specifically include a physical control format indicator channel (English name: PCFICH).
- PCFICH physical control format indicator channel
- control channel indication information may also include other information. The embodiment of the present invention does not specifically limit this.
- the determining, by the first base station, the control channel indication information of the first cell may specifically include:
- the first base station determines the pre-configured information as control channel indication information of the first cell.
- the first base station may determine the pre-configured value as the value included in the PCFICH.
- the value of the pre-configured value may be a pre-configured value based on the empirical value, or may be a pre-configured value based on the preferred value obtained by multiple experiments, which is not specifically limited in the embodiment of the present invention.
- each cell contains a small number of UEs, so the value included in the PCFICH can be set to 1.
- UDN ultra-dense network
- step S702 the embodiment of the present invention:
- the second base station here is specifically the base station of the neighboring cell described in step S701.
- the second base station specifically refers to the base station 2; or, if the neighboring cell in step S701 is the cell 2 managed by the base station 2 and the cell 3 managed by the base station 3 Then, both the base station 2 and the base station 3 can be referred to as a second base station.
- step S704 the embodiment of the present invention:
- the second base station may statically allocate resources occupied by the uplink channel, where the resources occupied by the uplink channel of the second UE may be occupied by the uplink channel statically allocated by the second base station for the second UE in the second base station.
- a part of the resources of the resource may be all resources, which is not specifically limited in the embodiment of the present invention.
- the two base stations can statically allocate resources occupied by the uplink channels of the five PRBs, and the resource information that can be occupied by the uplink channels of the second UE can be three PRBs.
- the uplink channel may specifically include at least one of the following channels: a physical uplink shared channel (English full name: PUSCH) and a PUCCH.
- a physical uplink shared channel English full name: PUSCH
- a PUCCH Physical Uplink shared channel
- the "at least one" may be any one of the listed information, or may be a combination of multiple, which is not specifically limited in the embodiment of the present invention. That is, the uplink channel may specifically include a PUSCH, or a PUCCH, or both a PUSCH and a PUCCH.
- steps S705-S707 of the embodiment of the present invention are identical to steps S705-S707 of the embodiment of the present invention.
- the second base station may send the resource information to the second UE, so that the second UE may send the uplink data to the second base station according to the resource information.
- the first base station may send the control channel indication information to the second base station,
- the control channel indication information includes control channel indication information of an anisotropic transmission band that is interfered by the neighboring cell in the first cell, and/or control channel indication information of the anisotropic transmission subframe that is interfered by the neighboring cell in the first cell.
- the second base station may determine, according to the control channel indication information, resource information that can be occupied by the uplink channel of the second UE in the cell managed by the second base station, and then send the resource information to the resource information.
- the second UE may send an uplink resource according to the resource information. Because the second base station learns the control channel indication information of the first cell, the resource cooperation may be performed according to the control channel indication information, and the control channel of the first cell is avoided when determining the resource information that can be occupied by the uplink channel of the second UE.
- the control information indicated by the indication information suppresses the interference between the uplink and downlink signals, that is, the interference of the anisotropic transmission, thereby improving the quality of the network communication.
- the first base station may also be connected to the first base station.
- the first UE in the managed cell (which may be any UE in the cell managed by the first base station, such as UE1) interacts, as shown in FIG. 8, including steps S708-S711:
- the first base station sends control channel indication information to the first UE.
- the first UE receives control channel indication information sent by the first base station.
- the first base station sends a PDCCH to the first UE according to the control channel indication information.
- the first UE receives the PDCCH sent by the first base station according to the control channel indication information.
- step S708 of the embodiment of the present invention
- the sending, by the first base station, the control channel indication information to the first UE may be implemented by any one of the following manners 1 to 4.
- the first method to the fourth method are as follows:
- Manner 1 The first base station sends the control channel indication information to the first UE in a preset co-directional transmission subframe.
- the first base station sends a radio resource control (radio resource control, English abbreviation: RRC) to the first UE in a preset co-directional transmission subframe, where the RRC information includes the control Channel indication information.
- RRC radio resource control
- Manner 3 The first base station sends system information to the first UE, where the system information includes the control channel indication information;
- the first base station sends a slot ratio to the first UE, where the slot ratio is used to represent the control channel indication information.
- step S709 of the embodiment of the present invention is identical to step S709 of the embodiment of the present invention.
- the receiving, by the first UE, the control channel indication information sent by the first base station may include:
- the first UE receives the control channel indication information of the first cell sent by the first base station in a preset co-directional transmission subframe.
- the first UE receives the RRC information sent by the first base station in a preset co-directional transmission subframe, where the RRC information includes control channel indication information of the first cell.
- the first UE receives system information sent by the first base station, where the system information is The control channel indication information of the first cell is included.
- the first UE receives the slot ratio sent by the first base station, where the slot ratio is used to represent the control channel indication information of the first cell.
- the embodiment of the present invention is only an exemplary implementation manner of the four first base stations transmitting control channel indication information to the first UE, and the first UE receiving the control channel indication information sent by the first base station. In other words, other possible implementations are possible, and the embodiments of the present invention are not listed here.
- the time slot ratio used to represent the control channel indication information specifically means that the slot ratio can implicitly reflect the control channel indication information.
- the first UE may pre-store the correspondence as shown in Table 2, and assume that the slot ratio of the first base station to the first UE is slot ratio 1, and the first UE is transmitting the first base station. After the slot ratio is 1, according to Table 2, it can be known that the control channel indication information is information 1.
- Control channel indication information Time slot ratio Information 1 Time slot ratio 1 Information 2 Time slot ratio 2 Information 3 Time slot ratio 3
- Table 2 is only an example to describe the form and content of the correspondence stored in the first UE in advance, and is not specifically limited in the form and content of the corresponding relationship. In practical applications, the form and content of the correspondence can be set according to actual needs.
- step S710 the embodiment of the present invention:
- control channel indication information specifically includes the PCFICH
- the first base station sends the PDCCH to the first UE according to the control channel indication information, which may include:
- the first base station sends a PDCCH to the first UE on the first j OFDM symbols of all subframes in the anisotropic transmission band, Where j is the PCFICH The value contained.
- the first base station sends a PDCCH to the first UE on the first j OFDM symbols of the anisotropic transmission subframe.
- the PCFICH includes a PCFICH of an anisotropic transmission band interfered by a neighboring cell in a first cell and a PCFICH of an anisotropic transmission subframe that is interfered by a neighboring cell in the first cell, where the first base station transmits the frequency band in the opposite direction
- the PDCCH is transmitted to the first UE on the first j OFDM symbols of the abnormal transmission subframe.
- step S711 of the embodiment of the present invention is a
- the receiving, by the first UE, the PDCCH sent by the first base station according to the control channel indication information may specifically include:
- the first UE receives the PDCCH sent by the first base station on the first j OFDM symbols of all subframes in the different transmission frequency band.
- j is the value contained in the PCFICH.
- the first UE receives the PDCCH sent by the first base station on the first j OFDM symbols of the anisotropic transmission subframe.
- the first UE is in the opposite transmission band
- the PDCCH transmitted by the first base station is received on the first j OFDM symbols of the abnormal transmission subframe.
- steps S708-S711 and steps S702-S707 there is no necessary sequence of execution between steps S708-S711 and steps S702-S707 in the embodiment of the present invention, and steps S708-S711 may be performed first, and then steps S702-S707 may be performed; step S702 may also be performed first. -S707, the steps S708-S711 are performed again; the steps S708-S711 and the steps S702-S707 can be performed at the same time, which is not specifically limited in the embodiment of the present invention.
- the first base station may further send control channel indication information to the first UE in the cell managed by the first base station, so that the first UE may
- the control channel indication information performs resource cooperation to receive the PDCCH sent by the first base station, thereby suppressing interference between uplink and downlink signals, that is, interference of the outbound transmission, and improving the quality of the network communication. Further, the defect that the first UE cannot acquire the PDCCH due to interference of the neighboring cell is also solved.
- the first base station may further be the same as the cell managed by the first base station.
- a UE (which may be any UE in the cell managed by the first base station, such as UE1) interacts, as shown in FIG. 9, including steps S712a-S715a, or steps S712b-S715b, or steps S712c-S715c:
- the first base station configures the meta-transmission frequency band as a multicast broadcast single frequency network (English full name: multimedia broadcast multicast) Service single frequency network, English abbreviation: MBSFN).
- a multicast broadcast single frequency network English full name: multimedia broadcast multicast
- the first base station sends downlink data including a demodulation reference signal (English abbreviation: DRS) to the first UE in the different transmission frequency band.
- DRS demodulation reference signal
- the first UE receives the downlink data that is sent by the first base station and includes the DRS on the different transmission frequency band.
- the first UE demodulates downlink data based on the DRS.
- control channel indication information includes control channel indication information of the anisotropic transmission subframe that is interfered by the neighboring cell in the first cell, the first base station configures the outbound transmission subframe as the MBSFN.
- the first base station sends downlink data including the DRS to the first UE on the different transmission subframe.
- the first UE receives the downlink data that is sent by the first base station and includes the DRS on the different transmission subframe.
- the first UE demodulates the downlink data based on the DRS.
- control channel indication information includes control channel indication information of an anisotropic transmission frequency band that is interfered by the neighboring cell in the first cell, and the neighboring cell is in the first cell.
- the control channel indication information of the interfered transmission subframe is configured, and the first base station configures the anisotropic transmission subframe of the outbound transmission frequency band as MBSFN.
- the first base station sends downlink data including the DRS to the first UE on the different direction transmission subframe of the different transmission frequency band.
- the first UE receives the downlink data that is sent by the first base station and includes the DRS, on the different-transmission subframe of the different transmission frequency band.
- S715c The first UE demodulates the downlink data based on the DRS.
- steps S702-S707 and steps S712a-S715a, or steps S712b-S715b, or steps S712c-S715c, and S702-S707 may be executed first, and then executed.
- Steps S712a-S715a, or steps S712b-S715b, or steps S712c-S715c; may also perform steps S712a-S715a, or steps S712b-S715b, or steps S712c-S715c, and then perform S702-S707; -S707 and steps S712a-S715a, or steps S712b-S715b, or steps S712c-S715c, which are not specifically limited in the embodiment of the present invention.
- steps S712a-S715a, or steps S712b-S715b, or steps S712c-S715c are also It can be included in the embodiment shown in FIG. 8 , which is not specifically limited in the embodiment of the present invention.
- the UE communicating in the anisotropic transmission band and/or the anisotropic transmission sub-frame can be demodulated based on DRS, and no further basis is needed.
- the cell-specific reference signal (English full name: cell-specific reference signal, English abbreviation CRS) demodulation; since the DRS power is much smaller than the CRS, the interference generated by the DRS is small compared to the CRS; that is, the interference from the CRS And the interference to the CRS is minimized, thus reducing the anomalous interference between the CRS and the uplink transmission.
- the second base station determines, according to the control channel indication information, resource information that can be occupied by the uplink channel of the second UE.
- the method may include:
- the second base station determines that the last (14-j) OFDM symbols of all subframes in the anisotropic transmission band are the second UE.
- Resource information that can be occupied by the uplink channel, where j is a value included in the PCFICH.
- the second base station determines that the last (14-j) OFDM symbols of the anisotropic transmission subframe are the second UE. Resource information that can be occupied by the uplink channel.
- the second base station determines the meta-transmission band
- the last (14-j) OFDM symbols of the abnormal transmission subframe are resources information that can be occupied by the uplink channel of the second UE.
- the central UE and the edge UE are distinguished in the embodiment of the present invention.
- step S704 Determining the resource information that can be occupied by the uplink channel of the second UE (step S704), which may specifically include:
- the second base station determines that all OFDM symbols of all subframes in the outbound transmission band are resources that can be occupied by the uplink channel of the second UE. information.
- the second base station determines that all the OFDM symbols of the anisotropic transmission subframe are resources that can be occupied by the uplink channel of the second UE. information.
- the second base station determines the meta-transmission band All OFDM symbols of the abnormal transmission subframe are resources information that can be occupied by the uplink channel of the second UE.
- control channel indication information specifically includes a PCFICH
- the second base station determines the resource information that can be occupied by the uplink channel of the second UE according to the control channel indication information (step S704), and specifically includes:
- the second base station determines that the last (14-j) OFDM symbols of all subframes in the anisotropic transmission band are the second UE.
- Resource information that can be occupied by the uplink channel, where j is a value included in the PCFICH.
- the second base station determines that the last (14-j) OFDM symbols of the anisotropic transmission subframe are the second UE. Resource information that can be occupied by the uplink channel.
- the second base station determines the meta-transmission band
- the last (14-j) OFDM symbols of the abnormal transmission subframe are resources information that can be occupied by the uplink channel of the second UE.
- the second base station determines, according to the control channel indication information, an implementation manner of the resource information that can be occupied by the uplink channel of the second UE, and the first UE receives the PDCCH sent by the first base station according to the control channel indication information.
- the specific implementation shows that when there is an outbound transmission, the uplink signal and the downlink signal can be staggered in the time slot, thereby suppressing the interference between the uplink and downlink signals, that is, the interference of the abnormal transmission, and improving the quality of the network communication. .
- the uplink demodulation reference signal (English full name: demodulation reference signal, English abbreviation: DMRS)
- DMRS in Figure 10 can be on Transmission on a line channel such as PUCCH and/or PUSCH.
- the uplink channel in the cell B and the PDCCH in the cell A can be shifted in time slots, thereby suppressing interference between uplink and downlink signals, that is, interference of the outbound transmission, and improving the quality of the network communication.
- the interference of the central UE to the downlink reception of the UE of the neighboring cell may be accepted or may be tolerated. That is to say, the central UE can be considered to contribute little to the interference of the control channel, and therefore, the central UE can perform uplink transmission normally.
- the embodiment of the present invention may determine the central UE and the edge UE by: the second base station receiving the reference signal parameter sent by the second UE, where the reference signal parameter includes at least one of the following parameters:
- Reference signal receiving power (English full name: reference signal receiving power, English abbreviation: RSRP) value
- reference signal receiving quality (English full name: reference signal receiving quality, English abbreviation RSRQ) value
- the second base station determines that the second UE is the central UE of the second cell;
- the second base station determines that the second UE is an edge UE of the second cell.
- the "at least one" may be any one of the listed information, or may be a combination of multiple, which is not specifically limited in the embodiment of the present invention. That is to say, the reference signal parameter may specifically include an RSRP value, or an RSRQ value, or both an RSRP value and an RSRQ value. among them,
- the second base station determines that the second UE is the central UE of the second cell, and otherwise determines that the second UE is the edge UE.
- the second base station determines that the second UE is the central UE of the second cell, and otherwise determines that the second UE is the edge UE.
- the second base station determines that the second UE is the central UE of the second cell; if both the RSRP value and the RSRQ value are Second base when less than the preset threshold The station determines that the second UE is an edge UE of the second cell.
- the preset threshold in the embodiment of the present invention may be an empirical value, and may also be a preferred value obtained after multiple experiments, which is not specifically limited in the embodiment of the present invention.
- the embodiment of the present invention further provides an interference suppression method, where the first UE in the cell managed by the first base station and the first base station may be managed by the first base station.
- the interaction of any one of the UEs in the cell, such as UE1, is taken as an example.
- steps S1101-S1105 are included:
- the first base station determines control channel indication information of the first cell.
- the first cell is any one of the cells in the cell managed by the first base station, and the control channel indication information may specifically include at least one of the following information:
- Control channel indication information of the anisotropic transmission band interfered by the neighboring cell in the first cell and control channel indication information of the anisotropic transmission subframe interfered by the neighboring cell in the first cell.
- the first base station sends control channel indication information to the first UE.
- S1103 The first UE receives control channel indication information sent by the first base station.
- the first base station sends a PDCCH to the first UE according to the control channel indication information.
- S1105 The first UE receives the PDCCH sent by the first base station according to the control channel indication information.
- the method may further include steps S712a-S715a in the embodiment shown in FIG. 9, or step S712b. -S715b, or step S712c-S715c, the embodiments of the present invention are not described in detail herein. For details, refer to the related description in the embodiment shown in FIG.
- the interference suppression method provided by the embodiment of the present invention, there is no interaction between the first base station and the second base station, and the first base station determines the control channel indication information of the first cell. Then, the control channel indication information is directly sent to the first UE in the cell managed by the first base station, so that the first UE can perform resource cooperation according to the control channel indication information to receive the PDCCH sent by the first base station, thereby suppressing the PDCCH.
- the interference between the uplink and downlink signals that is, the interference of the anisotropic transmission, improves the quality of the network communication. Further, the defect that the first UE cannot acquire the PDCCH due to interference of the neighboring cell is also solved.
- the embodiment of the present invention further provides an interference suppression method, where the second UE in the cell managed by the second base station and the second base station may be managed by the second base station.
- the second UE in the cell managed by the second base station and the second base station may be managed by the second base station.
- Any one of the UEs in the cell for example, when the second base station is the base station 2, and the second UE may be the interaction of the UE 3), as shown in FIG. 12, including steps S1201-S1205:
- the second base station acquires control channel indication information of the first cell.
- the first cell is any one of the cells in the cell managed by the first base station, and the control channel indication information may specifically include at least one of the following information:
- Control channel indication information of the anisotropic transmission band interfered by the neighboring cell in the first cell and control channel indication information of the anisotropic transmission subframe interfered by the neighboring cell in the first cell.
- the neighboring cell includes a second cell, and the second cell is any one of the cells managed by the second base station.
- the second base station determines resource information that can be occupied by the uplink channel of the second UE according to the control channel indication information.
- the second base station sends resource information to the second UE.
- the second UE receives resource information sent by the second base station.
- S1205 The second UE sends uplink data to the second base station according to the resource information.
- step S1201 the embodiment of the present invention:
- the second base station can interact with the first base station in the embodiment shown in FIG.
- the method obtains control channel indication information of the first cell, that is,
- the second base station receives control channel indication information of the first cell sent by the first base station.
- the interaction between the first base station and the second base station may not exist, and the second base station acquires the control channel indication information of the first cell.
- the second base station acquires the control channel indication information of the first cell.
- it may include:
- the second base station determines the pre-configured information as control channel indication information of the first cell.
- the second base station may determine the pre-configured value as the value included in the PCFICH.
- the second base station may determine the second base station according to the control channel indication information.
- the second base station learns the control channel indication information of the first cell, the resource cooperation may be performed according to the control channel indication information, and the control channel of the first cell is avoided when determining the resource information that can be occupied by the uplink channel of the second UE.
- the control information indicated by the indication information suppresses the interference between the uplink and downlink signals, that is, the interference of the anisotropic transmission, thereby improving the quality of the network communication.
- the embodiment of the present invention further provides an interference suppression method, where the first UE in the cell managed by the first base station and the first base station may be managed by the first base station.
- the interaction of any one of the UEs in the cell, such as UE1, is taken as an example.
- steps S1301 and 1302a-S1305a are included, or steps S1301 and 1302b-S1305b are included, or steps S1301 and 1302c-S1305c are included:
- the first base station determines control channel indication information of the first cell.
- the first cell is any one of the cells in the cell managed by the first base station, and the control channel indication information may specifically include at least one of the following information:
- Control channel indication information of the anisotropic transmission band interfered by the neighboring cell in the first cell and control channel indication information of the anisotropic transmission subframe interfered by the neighboring cell in the first cell.
- control channel indication information includes control channel indication information of the anisotropic transmission frequency band that is interfered by the neighboring cell in the first cell, the first base station configures the meta-transmission frequency band as the MBSFN.
- the first base station sends downlink data including the DRS to the first UE on the different transmission frequency band.
- the first UE receives the downlink data that is sent by the first base station and includes the DRS on the different transmission frequency band.
- S1305a The first UE demodulates downlink data based on DRS.
- control channel indication information includes control channel indication information of the anisotropic transmission subframe that is interfered by the neighboring cell in the first cell, the first base station configures the anisotropic transmission subframe as the MBSFN.
- the first base station sends downlink data including the DRS to the first UE on the different transmission subframe.
- the first UE receives the downlink data that is sent by the first base station and includes the DRS on the different transmission subframe.
- S1305b The first UE demodulates downlink data based on the DRS.
- control channel indication information includes control channel indication information of an anisotropic transmission band interfered by a neighboring cell in the first cell, and control channel indication information of an anisotropic transmission subframe that is interfered by the neighboring cell in the first cell
- the first base station Configure the anisotropic transmission subframe of the anisotropic transmission band as MBSFN.
- the first base station sends downlink data including the DRS to the first UE on the different direction transmission subframe of the different transmission frequency band.
- the first UE receives the first transmission in the different direction transmission subframe of the different transmission frequency band.
- Downlink data including DRS transmitted by a base station.
- S1305c The first UE demodulates downlink data based on DRS.
- the UE communicating in the anisotropic transmission band and/or the anisotropic transmission sub-frame can be demodulated based on DRS, and no further basis is needed.
- the cell-specific reference signal (English full name: cell-specific reference signal, English abbreviation CRS) demodulation; since the DRS power is much smaller than the CRS, the interference generated by the DRS is small compared to the CRS; that is, the interference from the CRS And the interference to the CRS is minimized, thus reducing the anomalous interference between the CRS and the uplink transmission.
- an embodiment of the present invention provides an interference suppression apparatus, which may be a first base station 140, configured to perform the steps performed by the first base station in the interference suppression method shown in FIG. 7-9 above. Or for performing the steps performed by the first base station in the interference suppression method shown in FIG. 11 above.
- the first base station 140 may include a unit corresponding to the corresponding step.
- the processing unit 1401 and the sending unit 1402 may be included.
- the processing unit 1401 is configured to determine control channel indication information of the first cell, where the first cell is any one of cells in the cell managed by the first base station 140, and the control channel indication information includes at least one of the following information.
- Control channel indication information of the anisotropic transmission frequency band interfered by the neighboring cell in the first cell and control channel indication information of the anisotropic transmission subframe interfered by the neighboring cell in the first cell.
- the sending unit 1402 is configured to send the control channel indication information to the second base station, where The second base station is a base station of the neighboring cell.
- the sending unit is configured to send the control channel indication information to the first UE, where the first UE is Any one of the UEs in the first cell.
- the sending unit 1402 is further configured to After the processing unit 1401 determines the control channel indication information of the first cell, the control channel indication information is sent to the first UE, where the first UE is any one of the UEs in the first cell.
- the sending unit 1402 is specifically configured to:
- system information to the first UE, where the system information includes the control channel indication information.
- the transmitting unit 1402 is further configured to: after the processing unit 1401 determines the control channel indication information of the first cell, send the PDCCH to the first UE according to the control channel indication information.
- control channel indication information includes a PCFICH.
- the sending unit 1402 is specifically configured to:
- the PCFICH includes a PCFICH of an anisotropic transmission band that is interfered by a neighboring cell in the first cell, and sends a PDCCH to the first UE on a first j OFDM symbols of all subframes in the anisotropic transmission band.
- j is the value contained in the PCFICH.
- the PCFICH includes a PCFICH of an anisotropic transmission subframe that is interfered by a neighboring cell in the first cell, and sends a PDCCH to the first UE on a first j OFDM symbols of the anisotropic transmission subframe.
- the PCFICH includes a PCFICH of an anisotropic transmission band interfered by a neighboring cell in the first cell and a PCFICH of an anisotropic transmission subframe that is interfered by a neighboring cell in the first cell, in the anisotropic transmission Transmitting a PDCCH to the first UE on the first j OFDM symbols of the abnormal transmission subframe on the frequency band.
- the processing unit 1401 is further configured to: after determining the control channel indication information of the first cell, if the control channel indication information includes an anisotropic transmission frequency band of the first cell that is interfered by the neighboring cell
- the control channel indication information is configured to configure the outbound transmission frequency band as MBSFN.
- the sending unit 1402 is further configured to send downlink data including a DRS to the first UE, where the first UE is any one of the UEs in the first cell.
- processing unit 1401 is further configured to: if the control channel indication information includes the anisotropic transmission frequency subframe control channel indication information that is interfered by the neighboring cell in the first cell, configure the anisotropic transmission subframe For MBSFN.
- the sending unit 1402 is further configured to send downlink data including the DRS to the first UE on the different transmission frequency band.
- the processing unit 1401 is further configured to: if the control channel indication information includes control channel indication information of an anisotropic transmission frequency band that is interfered by a neighboring cell in the first cell, and neighbor cell interference in the first cell.
- the anisotropic transmission frequency sub-frame control channel indication information is configured to configure the anisotropic transmission sub-frame on the anisotropic transmission frequency band that is interfered by the neighboring cell in the first cell to be an MBSFN.
- the sending unit 1402 is further configured to send downlink data including the DRS to the first UE on the opposite transmission subframe on the different transmission frequency band.
- the anisotropic transmission frequency band may be a frequency band configured to be a flexible half-duplex for performing an anisotropic transmission, where the different-direction transmission subframe may be a A subframe configured for an anisotropic transmission.
- the processing unit 1401 may be specifically configured to:
- the pre-configured information is determined as control channel indication information of the first cell.
- the first base station 140 in the embodiment of the present invention may correspond to the first base station in the interference suppression method shown in FIG. 7 to FIG. 9 or may correspond to the first base station in the interference suppression method shown in FIG. 11 above, and
- the division and/or function of each unit in the first base station 140 in the embodiment of the present invention is to implement the flow of the interference suppression method shown in FIG. 7 to FIG. 9 or the flow of the interference suppression method shown in FIG. Concise, no longer repeat here.
- the first base station 140 in the embodiment of the present invention may be used to perform the foregoing method, and therefore, the technical effects that can be obtained are also referred to the foregoing method embodiments, and details are not described herein again.
- an embodiment of the present invention provides an interference suppression apparatus, which may be a second base station 150, configured to perform the second base station in the interference suppression method shown in FIG. 7 to FIG. 9 and FIG. 12 above.
- the second base station 150 may include a unit corresponding to the corresponding step.
- the processing unit 1501 and the sending unit 1502 may be included.
- the processing unit 1501 is configured to acquire control channel indication information of the first cell, where the first cell is any one of the cells managed by the first base station, and the control channel indication information includes at least one of the following information:
- Control channel indication information of an anisotropic transmission band interfered by a neighboring cell in the first cell and control channel indication information of an anisotropic transmission subframe interfered by the neighboring cell in the first cell, where the neighboring cell includes The second cell is any one of the cells in the cell managed by the second base station 150.
- the processing unit 1501 is further configured to determine, according to the control channel indication information, resource information that can be occupied by an uplink channel of the second user equipment UE, where the second UE is any one of the UEs in the second cell;
- the sending unit 1502 is configured to send the resource information to the second UE.
- control channel indication information includes a PCFICH.
- the processing unit 1501 is specifically configured to:
- the PCFICH of the transmission band determines that the last (14-j) OFDM symbols of all subframes in the different transmission frequency band are resource information that can be occupied by the uplink channel of the second UE, where j is included in the PCFICH Value.
- the PCFICH includes a PCFICH of an anisotropic transmission subframe that is interfered by a neighboring cell in the first cell, determining a last (14-j) OFDM symbol of the anisotropic transmission subframe as the second UE Resource information that can be occupied by the uplink channel.
- the PCFICH includes a PCFICH of an anisotropic transmission band interfered by a neighboring cell in the first cell and a PCFICH of an anisotropic transmission subframe that is interfered by a neighboring cell in the first cell.
- the last (14-j) OFDM symbols of the abnormal transmission subframe on the frequency band are resource information that can be occupied by the uplink channel of the second UE.
- control channel indication information includes a PCFICH.
- the processing unit 1501 is specifically configured to:
- the PCFICH includes a PCFICH of an anisotropic transmission band that is interfered by a neighboring cell in the first cell, determining that all OFDM symbols of all subframes in the outbound transmission band are occupied by an uplink channel of the second UE Resource information.
- the PCFICH includes a PCFICH of an anisotropic transmission subframe that is interfered by a neighboring cell in the first cell, determining that all OFDM symbols of the anisotropic transmission subframe are occupied by an uplink channel of the second UE Resource information.
- the PCFICH includes a PCFICH of an anisotropic transmission band interfered by a neighboring cell in the first cell and a PCFICH of an anisotropic transmission subframe that is interfered by a neighboring cell in the first cell.
- All OFDM symbols of the abnormal transmission subframe on the frequency band are resource information that can be occupied by the uplink channel of the second UE.
- the processing unit 1501 is specifically configured to:
- the PCFICH includes a PCFICH of an anisotropic transmission band that is interfered by a neighboring cell in the first cell, determining a last (14-j) OFDM symbol of all subframes in the anisotropic transmission band as the second UE Resource information that can be occupied by the uplink channel, where j is the value contained in the PCFICH.
- the PCFICH includes a PCFICH of an anisotropic transmission subframe that is interfered by a neighboring cell in the first cell, determining a last (14-j) OFDM symbol of the anisotropic transmission subframe as the second UE Resource information that can be occupied by the uplink channel.
- the PCFICH includes a PCFICH of an anisotropic transmission band interfered by a neighboring cell in the first cell and a PCFICH of an anisotropic transmission subframe that is interfered by a neighboring cell in the first cell.
- the last (14-j) OFDM symbols of the abnormal transmission subframe on the frequency band are resource information that can be occupied by the uplink channel of the second UE.
- the second base station 150 further includes a receiving unit 1503.
- the receiving unit 1503 is configured to receive, according to the control channel indication information, the reference signal parameters sent by the second UE, before the determining, by the processing unit 1501, the resource information that is occupied by the uplink channel of the second UE,
- the reference signal parameters include at least one of the following parameters: an RSRP value, and an RSRQ value.
- the processing unit 1501 is further configured to determine that the second UE is a central UE of the second cell, if the value of the at least one parameter of the reference signal parameter is not less than a preset threshold.
- the processing unit 1501 is further configured to determine that the second UE is an edge UE of the second cell, if the value of all the parameters in the reference signal parameter is less than the preset threshold.
- the anisotropic transmission frequency band is a frequency band configured to be a flexible half-duplex for anisotropic transmission, where the orthogonal transmission subframe is a subframe configured to be anisotropic transmission on the opposite transmission frequency band.
- the second base station 150 further includes a receiving unit 1503.
- the processing unit 1501 is specifically configured to:
- processing unit 1501 is specifically configured to:
- the pre-configured information is determined as control channel indication information of the first cell.
- the second base station 150 in the embodiment of the present invention may correspond to the second base station in the interference suppression method shown in FIG. 7 to FIG. 9 and FIG. 12, and each unit in the second base station 150 in the embodiment of the present invention.
- the division and/or function of the method are to implement the flow of the interference suppression method shown in FIG. 7 to FIG. 9 and FIG. 12, and are not described herein again for brevity.
- the second base station 150 in the embodiment of the present invention may be used to perform the foregoing method, and therefore, the technical effects that can be obtained are also referred to the foregoing method embodiments, and details are not described herein again.
- an embodiment of the present invention provides an interference suppression apparatus, which may be a first UE 170, and is configured to perform the first UE in the interference suppression method shown in FIG. 8, FIG. 9, and FIG. The steps performed.
- the first UE 170 may include a unit corresponding to the corresponding step.
- the receiving unit 1701 may be included.
- the receiving unit 1701 is configured to receive control channel indication information of the first cell that is sent by the first base station, where the first cell is any one of cells in the cell managed by the first base station, and the first UE is For any UE in the first cell, the control channel indication information includes at least one of the following information:
- Control channel indication information of the anisotropic transmission frequency band interfered by the neighboring cell in the first cell and control channel indication information of the anisotropic transmission subframe interfered by the neighboring cell in the first cell.
- the receiving unit 1701 is further configured to receive the PDCCH sent by the first base station according to the control channel indication information.
- the receiving unit 1701 is specifically configured to:
- Radio resource control RRC message sent by the first base station, where the RRC information includes control channel indication information of the first cell.
- control channel indication information includes a PCFICH.
- the receiving unit 1701 is specifically configured to:
- the PCFICH includes a PCFICH of an anisotropic transmission band that is interfered by a neighboring cell in the first cell, receiving, by the first base station, the first j OFDM symbols of all subframes in the anisotropic transmission band PDCCH, where j is a value included in the PCFICH.
- the PCFICH includes a PCFICH of the anisotropic transmission subframe that is interfered by the neighboring cell in the first cell, and receives the PDCCH sent by the first base station on the first j OFDM symbols of the anisotropic transmission subframe.
- the PCFICH includes a PCFICH of an anisotropic transmission band interfered by a neighboring cell in the first cell and a PCFICH of an anisotropic transmission subframe that is interfered by a neighboring cell in the first cell, in the anisotropic transmission
- the PDCCH transmitted by the first base station is received on the first j OFDM symbols of the abnormal transmission subframe on the frequency band.
- the anisotropic transmission frequency band is a frequency band configured to be a flexible half-duplex for anisotropic transmission, where the orthogonal transmission subframe is a subframe configured to be anisotropic transmission on the opposite transmission frequency band.
- the first UE 170 in the embodiment of the present invention may correspond to the first UE in the interference suppression method shown in FIG. 8 , FIG. 9 , and FIG. 11 , and the division of each unit in the first UE 170 in the embodiment of the present invention.
- the functions of the interference suppression method shown in FIG. 8, FIG. 9, and FIG. 11 are implemented for the sake of brevity, and are not described herein again.
- the first UE 170 in the embodiment of the present invention may be used to perform the foregoing method, and therefore, the technical effects that can be obtained are also referred to the foregoing method embodiments, and details are not described herein again.
- the embodiment of the present invention provides an interference suppression apparatus, which may be a first base station 140, and is configured to perform the steps performed by the first base station in the interference suppression method shown in FIG. 13 above.
- the first base station 140 may include corresponding steps
- the unit for example, may include: a processing unit 1401 and a transmitting unit 1402.
- the processing unit 1401 is configured to acquire control channel indication information of the first cell, where the first cell is any one of the cells managed by the first base station 140, and the control channel indication information includes at least the following information.
- Control channel indication information of an anisotropic transmission band interfered by a neighboring cell in the first cell and control channel indication information of an anisotropic transmission subframe interfered by the neighboring cell in the first cell, where the neighboring cell includes a second cell, where the second cell is any one of cells in the cell managed by the second base station.
- the processing unit 1401 is further configured to: if the control channel indication information includes control channel indication information of an anisotropic transmission frequency band that is interfered by the neighboring cell in the first cell, configure the anisotropic transmission frequency band to be an MBSFN.
- the sending unit 1402 is configured to send downlink data including a demodulation reference signal DRS to the first UE, where the first UE is any one of the UEs in the first cell.
- DRS demodulation reference signal
- processing unit 1401 is further configured to: if the control channel indication information includes the anisotropic transmission frequency subframe control channel indication information that is interfered by the neighboring cell in the first cell, configure the anisotropic transmission subframe For MBSFN.
- the sending unit 1402 is configured to send downlink data including the DRS to the first UE on the different transmission frequency band.
- the processing unit 1401 is further configured to: if the control channel indication information includes control channel indication information of an anisotropic transmission frequency band that is interfered by a neighboring cell in the first cell, and neighbor cell interference in the first cell.
- the anisotropic transmission frequency sub-frame control channel indication information is configured to configure the anisotropic transmission sub-frame on the anisotropic transmission frequency band that is interfered by the neighboring cell in the first cell to be an MBSFN.
- the sending unit 1402 is configured to send downlink data including the DRS to the first UE on the opposite transmission subframe on the different transmission frequency band.
- first base station 140 in the embodiment of the present invention may correspond to the first base station in the interference suppression method shown in FIG. 13 above, and the division and/or function of each unit in the first base station 140 in the embodiment of the present invention. Both are to achieve the above shown in Figure 13.
- the flow of the interference suppression method is not described here for brevity.
- the first base station 140 in the embodiment of the present invention may be used to perform the foregoing method, and therefore, the technical effects that can be obtained are also referred to the foregoing method embodiments, and details are not described herein again.
- an embodiment of the present invention provides an interference suppression apparatus, which may be a first UE 180, and is configured to perform the steps performed by the first UE in the interference suppression method shown in FIG. 13 above.
- the first UE 180 may include a unit corresponding to the corresponding step.
- the receiving unit 1801 and the processing unit 1802 may be included.
- the receiving unit 1801 is configured to receive downlink data that includes a DRS sent by the first base station, where the outbound transmission frequency band is configured as an MBSFN.
- the processing unit 1802 is configured to demodulate downlink data based on the DRS.
- the receiving unit 1801 is configured to receive downlink data that includes the DRS sent by the first base station, where the outbound subframe frequency band is configured as an MBSFN.
- the processing unit 1802 is configured to demodulate downlink data based on the DRS.
- the receiving unit 1801 is configured to receive downlink data that includes the DRS sent by the first base station, where the outbound subframe frequency band of the different transmission frequency band is configured. For MBSFN.
- the processing unit 1802 is configured to demodulate downlink data based on the DRS.
- the first UE 180 in the embodiment of the present invention may correspond to the first UE in the interference suppression method shown in FIG. 13 , and the division and/or function of each unit in the first UE 180 in the embodiment of the present invention are In order to implement the above-mentioned interference suppression method flow shown in FIG. 13, for brevity, details are not described herein again.
- the first UE 180 in the embodiment of the present invention may be used to perform the foregoing method, and therefore, the technical effects that can be obtained are also referred to the foregoing method embodiments, and details are not described herein again.
- an embodiment of the present invention provides an interference suppression apparatus, which may be a first base station 190, including: a processor 1901, a memory 1902, and a bus. 1903 and communication interface 1904.
- the memory 1902 is configured to store computer execution instructions
- the processor 1901 is connected to the memory 1902 via the bus 1903, and when the first base station 190 is running, the processor 1901 executes the storage stored in the memory 1902.
- the computer executes instructions to cause the first base station 190 to perform the steps performed by the first base station in the interference suppression method shown in FIG. 7 to FIG. 9 above, or to perform the interference suppression method shown in FIG. 11 above.
- For the specific interference suppression method refer to the related description in the embodiment shown in FIG. 7 to FIG. 9 or the related description in the embodiment shown in FIG. 11 or the related description in the embodiment shown in FIG. I won't go into details here.
- the processor 1901 in the embodiment of the present invention may be a central processing unit (English name: central processing unit, English abbreviation: CPU), and may also be other general-purpose processors and digital signal processors (English full name: digital signal processing) , English abbreviation: DSP), ASIC (English full name: application specific integrated circuit, English abbreviation: ASIC), field programmable gate array (English full name: field-programmable gate array, English abbreviation: FPGA) or other programmable logic Devices, discrete gates or transistor logic devices, discrete hardware components, etc.
- the general purpose processor may be a microprocessor or the processor or any conventional processor or the like.
- the processor may also be a dedicated processor, which may include at least one of a baseband processing chip, a radio frequency processing chip, and the like. Further, the dedicated processor may also include a chip having other dedicated processing functions of the first base station 190.
- the memory 1902 may include a volatile memory (English: volatile memory), such as a random access memory (English name: random-access memory, English abbreviation: RAM); the memory 1902 may also include a non-volatile memory (English: non- Volatile memory), such as read-only memory (English full name: read-only memory, English abbreviation: ROM), flash memory (English: flash memory), hard disk (English full name: hard disk drive, English abbreviation: HDD) or solid state drive (English Full name: solid-state drive, English abbreviation: SSD); in addition, the memory 1902 may also include a combination of the above types of memory.
- a volatile memory such as a random access memory (English name: random-access memory, English abbreviation: RAM)
- the memory 1902 may also include a non-volatile memory (English: non- Volatile memory), such as read-only memory (English full name: read-only memory, English abbreviation: ROM), flash memory (English: flash memory), hard disk (English
- the bus 1903 can include a data bus, a power bus, a control bus, and a signal status bus. For the sake of clarity in the present embodiment, various buses are illustrated as a bus 1903 in FIG.
- Communication interface 1904 may specifically be a transceiver on first base station 190.
- the transceiver can be a wireless transceiver.
- the wireless transceiver can be an antenna or the like of the first base station 190.
- the processor 1901 performs data transmission and reception with other devices, such as the first UE, through the communication interface 1904.
- each step in the method flow shown in FIG. 7 , FIG. 9 , FIG. 11 , and FIG. 13 can execute the computer-executed instruction in the form of software stored in the memory 1902 by the processor 1901 in hardware form. achieve. To avoid repetition, we will not repeat them here.
- the first base station 190 provided by the embodiment of the present invention can be used to perform the foregoing method, and therefore, the technical effects that can be obtained can be referred to the foregoing method embodiments, and details are not described herein again.
- an embodiment of the present invention provides an interference suppression apparatus, which may be a second base station 200, including: a processor 2001, a memory 2002, a bus 2003, and a communication interface 2004.
- the memory 2002 is for storing computer execution instructions
- the processor 2001 is connected to the memory 2002 via the bus 2003, and when the second base station 200 is running, the processor 2001 executes the storage of the memory 2002.
- the computer executes instructions to cause the second base station 200 to perform the steps performed by the second base station in the interference suppression methods illustrated in Figures 7-9 and 12 above.
- the specific interference suppression method refer to the related descriptions in the foregoing embodiments shown in FIG. 7 to FIG. 9 and FIG. 12, and details are not described herein again.
- the processor 2001 in the embodiment of the present invention may be a CPU, or may be other general-purpose processors, DSPs, ASICs, FPGAs, or other programmable logic devices, discrete gates or transistor logic devices, discrete hardware components, and the like.
- General purpose processor The microprocessor or the processor can also be any conventional processor or the like.
- the processor 2001 may also be a dedicated processor, which may include at least one of a baseband processing chip, a radio frequency processing chip, and the like. Further, the dedicated processor may also include a chip having other dedicated processing functions of the second base station 200.
- the memory 2002 may include volatile memory, such as RAM; the memory 2002 may also include non-volatile memory, such as ROM, flash memory, hard disk or solid state hard disk; in addition, the memory 2002 may also include a combination of the above types of memory.
- the bus 2003 can include a data bus, a power bus, a control bus, and a signal status bus.
- various buses are illustrated as the bus 2003 in FIG.
- the communication interface 2004 may specifically be a transceiver on the second base station 200.
- the transceiver can be a wireless transceiver.
- the wireless transceiver can be an antenna or the like of the second base station 200.
- the processor 2001 performs data transmission and reception with other devices, such as the second UE, through the communication connection 2004.
- each step in the method flow shown in FIG. 7 to FIG. 9 and FIG. 12 can be implemented by the processor 2001 in hardware form executing the computer-executed instructions in the form of software stored in the memory 2002. To avoid repetition, we will not repeat them here.
- the second base station 200 provided by the embodiment of the present invention can be used to perform the foregoing method, and therefore, the technical effects that can be obtained can be referred to the foregoing method embodiments, and details are not described herein again.
- an embodiment of the present invention provides an interference suppression apparatus, which may be a first UE 210, including: a processor 2101, a memory 2102, a bus 2103, and a communication interface 2104.
- the memory 2102 is configured to store computer execution instructions
- the processor 2101 is connected to the memory 2102 via the bus 2103, and when the first UE 210 is running, the processor 2101 executes the storage of the memory 2102.
- the computer executes instructions to enable the first UE 210 to perform the steps performed by the first UE in the interference suppression method illustrated in FIG. 8, FIG. 9, and FIG. 11, or perform the above FIG. The steps performed by the first UE in the illustrated interference suppression method.
- the processor 2101 in the embodiment of the present invention may be a CPU, or may be other general-purpose processors, DSPs, ASICs, FPGAs, or other programmable logic devices, discrete gates or transistor logic devices, discrete hardware components, and the like.
- the general purpose processor may be a microprocessor or the processor or any conventional processor or the like.
- the processor 2101 can also be a dedicated processor, which can include at least one of a baseband processing chip, a radio frequency processing chip, and the like. Further, the dedicated processor may also include a chip having other dedicated processing functions of the first UE 210.
- the memory 2102 can include volatile memory, such as RAM; the memory 2102 can also include non-volatile memory, such as a ROM, flash memory, hard disk, or solid state drive; in addition, the memory 2102 can also include a combination of the types of memory described above.
- volatile memory such as RAM
- non-volatile memory such as a ROM, flash memory, hard disk, or solid state drive
- the memory 2102 can also include a combination of the types of memory described above.
- the bus 2103 can include a data bus, a power bus, a control bus, and a signal status bus. For the sake of clarity in the present embodiment, various buses are illustrated as a bus 2103 in FIG.
- Communication interface 2104 may specifically be a transceiver on first UE 210.
- the transceiver can be a wireless transceiver.
- the wireless transceiver can be an antenna or the like of the first UE 210.
- the processor 2101 performs data transmission and reception with other devices, such as the first base station, via the communication interface 2104.
- each step in the method flow shown in FIG. 8, FIG. 9, FIG. 11, and FIG. 13 can execute a computer-executed instruction in a software form stored in the memory 2102 by the processor 2101 in a hardware form. achieve. To avoid repetition, we will not repeat them here.
- the first UE 210 provided by the embodiment of the present invention may be used to perform the foregoing method, and the technical effects that can be obtained by reference to the foregoing method embodiments are not described herein.
- the embodiment further provides a readable medium, including a computer executing instruction, when the processor of the first base station executes the computer to execute an instruction, the first base station may perform The steps performed by the first base station in the interference suppression method shown in FIG. 7 to FIG. 9 or the steps performed by the first base station in the interference suppression method shown in FIG. 11 or performed as shown in FIG. 13 are performed.
- the steps performed by the first base station in the interference suppression method For the specific interference suppression method, refer to the related descriptions in the foregoing embodiments shown in FIG. 7 to FIG. 9, FIG. 11 and FIG. 13 , and details are not described herein again.
- the embodiment further provides a readable medium, including a computer executing instruction, when the processor of the second base station executes the computer to execute the instruction, the second base station may perform, as shown in FIG. 7 FIG. 9 and FIG. 12
- a readable medium including a computer executing instruction
- the processor of the second base station executes the computer to execute the instruction
- the second base station may perform, as shown in FIG. 7 FIG. 9 and FIG. 12
- FIG. 7 FIG. 9 and FIG. 12 The steps performed by the second base station in the interference suppression method shown.
- the embodiment further provides a readable medium, including computer execution instructions, when the processor of the first UE executes the computer execution instruction, the first UE may perform, as shown in FIG. 8, FIG. 9, and FIG.
- the steps performed by the first UE in the interference suppression method shown or the steps performed by the first UE in the interference suppression method shown in FIG. For the specific interference suppression method, refer to the related descriptions in the foregoing embodiments shown in FIG. 8, FIG. 9, FIG. 11, and FIG. 13, and details are not described herein again.
- the above described device is only illustrated by the division of the above functional modules. In practical applications, the above functions may be assigned differently according to needs.
- the function module is completed, that is, the internal structure of the device is divided into different functional modules to complete all or part of the functions described above.
- the device and the unit described above refer to the corresponding process in the foregoing method embodiment, and details are not described herein again.
- the disclosed system, apparatus, and method may be implemented in other manners.
- the device embodiments described above are merely illustrative.
- the division of the modules or units is only a logical function division.
- there may be another division manner for example, multiple units or components may be used. Combinations can be integrated into another system, or some features can be ignored or not executed.
- the mutual coupling or direct coupling or communication connection shown or discussed may be indirect coupling or communication through some interface, device or unit. Connections can be in electrical, mechanical or other form.
- the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, may be located in one place, or may be distributed to multiple network units. Some or all of the units may be selected according to actual needs to achieve the purpose of the solution of the embodiment.
- each functional unit in each embodiment of the present invention may be integrated into one processing unit, or each unit may exist physically separately, or two or more units may be integrated into one unit.
- the above integrated unit can be implemented in the form of hardware or in the form of a software functional unit.
- the integrated unit if implemented in the form of a software functional unit and sold or used as a standalone product, may be stored in a computer readable storage medium.
- the technical solution of the present invention which is essential or contributes to the prior art, or all or part of the technical solution, may be embodied in the form of a software product stored in a storage medium.
- a number of instructions are included to cause a computer device (which may be a personal computer, server, or network device, etc.) or a processor to perform all or part of the steps of the methods described in various embodiments of the present invention.
- the foregoing storage medium includes: a U disk, a mobile hard disk, a ROM, a RAM, a magnetic disk, or an optical disk, and the like, which can store a program code.
Landscapes
- Engineering & Computer Science (AREA)
- Computer Networks & Wireless Communication (AREA)
- Signal Processing (AREA)
- Computer Security & Cryptography (AREA)
- Quality & Reliability (AREA)
- Mobile Radio Communication Systems (AREA)
Abstract
本发明的实施例提供干扰抑制方法、装置及系统,以抑制上下行信号间的干扰,提高通信质量。方法包括:第一基站确定第一小区的控制信道指示信息,所述第一小区为所述第一基站管理的小区内的任意一个小区,所述控制信道指示信息包含下述信息中的至少一个信息:所述第一小区内受到邻小区干扰的异向传输频段的控制信道指示信息、和所述第一小区内受到邻小区干扰的异向传输子帧的控制信道指示信息;所述第一基站向第二基站发送所述控制信道指示信息,所述第二基站为所述邻小区的基站。本发明适用于无线通信领域。
Description
本发明涉及无线通信领域,尤其涉及干扰抑制方法、装置及系统。
在现有的长期演进(英文全称:long term evolution,英文简称:LTE)中,时频资源一般为静态配置,在同一时刻全网中统一发射上行信号或者下行信号。比如,对于时分双工(英文全称:time division duplexing,英文简称:TDD)系统,通常全网中所有的基站采用相同的上下行子帧配比。这样,如图1所示,在下行时刻,某一小区中的用户设备(英文全称:user equipment,英文简称:UE)接收信号受到的干扰均来自其他基站发送的下行信号;或者,如图2所示,在上行时刻,网络中任一基站接收上行信号受到的干扰均来自其他小区的UE发送的上行信号。其中,图1和图2中,基站采用相同的上下行子帧配比,D表示该时隙传输下行信号、U表示该时隙传输上行信号。类似的,频分双工(英文全称:frequency division duplexing,英文简称:FDD)系统也是如此。
然而,这种资源静态配置的方式将导致不能灵活的根据业务量调整资源分配。基于此,对于TDD系统,动态TDD成为目前第三代合作伙伴项目(英文全称:the 3rd generation partnership project,英文简称:3GPP)研究的热点。其中,动态TDD允许网络中各个基站可以灵活调整上下行时隙配比,但是在同一时刻,可能出现相邻小区一个传输下行信号,而另一个传输上行信号的情况。如图3所示,两个相邻基站在第4个时隙的信号传输方向不同。此时,网络中除了现有的LTE系统中存在的基站对UE以及UE对基站的干扰外,还出现了基站对基站的干扰(如图中干扰I)、UE对UE的干扰(如图中干扰II)。而对于FDD系统,可以将部分上行资源转换为
下行资源,即在上行频段发送下行信号,这样网络的频谱利用率将得到很大提升。实现的方式可以采用时分的方法,即如图4所示,在部分时隙中在上行频段由基站发送下行信号,另一部分时隙中仍然由UE在上行频段发送上行信号;或者采用频分的方法,如图5所示,将上行频段资源分成两部分,一部分用于UE发送上行信号,另一部分用于基站发送下行信号。与TDD系统类似,在同一时刻,可能出现相邻小区一个传输下行信号,而另一个传输上行信号的情况,从而网络中除了传统的无线通信系统中存在的基站对UE以及UE对基站的干扰外,还出现了基站对基站的干扰。
针对上述新出现的两类干扰,3GPP成立了相关项目,研究如何进一步增强上下行信号间的干扰管理。目前的解决方案是可以预留边缘物理资源块(英文全称:physical resource bearer,英文简称:PRB)用于传输物理上行链路控制信道(英文全称:physical uplink control channel,英文简称:PUCCH),并且通过调度限制不允许物理下行共享信道(英文全称:physical downlink shared channel,英文简称:PDSCH)在这些PRBs上传输。然而,这些调度限制只能避免一些PRBs上的PDSCH传输,但是为了保证后向兼容性,物理下行控制信道(英文全称:Physical Downlink Control Channel,英文简称:PDCCH)等下行控制信息将仍然被传输在边缘PRBs,这些下行控制信息与PUCCH间的干扰仍然存在。
因此,如何提供一种新的干扰抑制方法,以抑制上下行信号间的干扰,成为目前亟待解决的问题。
发明内容
本发明实施例提供干扰抑制方法、装置及系统,以抑制上下行信号间的干扰,提高通信质量。
为达到上述目的,本发明的实施例采用如下技术方案:
第一方面,提供一种干扰抑制方法,所述方法包括:
第一基站确定第一小区的控制信道指示信息,所述第一小区为所述第一基站管理的小区内的任意一个小区,所述控制信道指示信
息包含下述信息中的至少一个信息:
所述第一小区内受到邻小区干扰的异向传输频段的控制信道指示信息、和所述第一小区内受到邻小区干扰的异向传输子帧的控制信道指示信息;
所述第一基站向第二基站发送所述控制信道指示信息,所述第二基站为所述邻小区的基站。
通过上述方法,第一基站在确定第一基站管理的第一小区的控制信道指示信息之后,可以将该控制信道指示信息发送给第二基站。这样,第二基站接收该控制信道指示信息之后,可以根据该控制信道指示信息,确定该第二基站管理的小区内的第二UE的上行信道可占用的资源信息,进而将该资源信息发送给第二UE,第二UE可以根据该资源信息发送上行资源。由于第二基站获知了第一小区的控制信道指示信息,因此可以根据该控制信道指示信息进行资源合作,在确定第二UE的上行信道可占用的资源信息时,避开第一小区的控制信道指示信息指示的控制信息,从而抑制了上下行信号间的干扰,也就是异向传输的干扰,提高了网络通信的质量。
第二方面,提供一种干扰抑制方法,其特征在于,所述方法包括:
第一基站确定第一小区的控制信道指示信息,所述第一小区为所述第一基站管理的小区内的任意一个小区,所述控制信道指示信息包含下述信息中的至少一个信息:
所述第一小区内受到邻小区干扰的异向传输频段的控制信道指示信息、和所述第一小区内受到邻小区干扰的异向传输子帧的控制信道指示信息;
所述第一基站向第一用户设备UE发送所述控制信道指示信息,所述第一UE为所述第一小区内的任意一个UE。
通过上述方法,第一基站在确定第一基站管理的第一小区的控制信道指示信息之后,可以将该控制信道指示信息发送给第一UE。这样,第一UE可以根据该控制信道指示信息进行资源合作来接收
第一基站发送的PDCCH,从而抑制了上下行信号间的干扰,也就是异向传输的干扰,提高了网络通信的质量。进一步的,也解决了第一UE因受到邻小区的干扰而无法获取PDCCH的缺陷。
可选的,在上述第一方面中,在所述第一基站确定第一小区的控制信道指示信息之后,还包括:
所述第一基站向第一用户设备UE发送所述控制信道指示信息,所述第一UE为所述第一小区内的任意一个UE。
可选的,在上述第一方面可选的实现方式中或上述第二方面中,所述第一基站向第一UE发送所述控制信道指示信息,包括:
所述第一基站在预设的同向传输子帧中向第一UE发送所述控制信道指示信息;
或者,所述第一基站在预设的同向传输子帧中向第一UE发送无线资源控制RRC信今,所述RRC信今中包含所述控制信道指示信息;
或者,所述第一基站向第一UE发送系统信息,所述系统信息中包含所述控制信道指示信息;
或者,所述第一基站向第一UE发送时隙配比,所述时隙配比用于表征所述控制信道指示信息。
可选的,在上述第一方面可选的实现方式中或上述第二方面中,在所述第一基站确定第一小区的控制信道指示信息之后,还包括:
所述第一基站根据所述控制信道指示信息,向所述第一UE发送下行控制信道PDCCH。
进一步可选的,所述控制信道指示信息包括物理控制格式指示信道PCFICH;
所述第一基站根据所述控制信道指示信息,向所述第一UE发送PDCCH,包括:
若所述PCFICH包括所述第一小区内受到邻小区干扰的异向传输频段的PCFICH,所述第一基站在所述异向传输频段上的所有子
帧的前j个正交频分复用OFDM符号上向所述第一UE发送PDCCH,其中,j为所述PCFICH所包含的值;
或者,若所述PCFICH包括所述第一小区内受到邻小区干扰的异向传输子帧的PCFICH,所述第一基站在所述异向传输子帧的前j个OFDM符号上向所述第一UE发送PDCCH;
或者,若所述PCFICH包括所述第一小区内受到邻小区干扰的异向传输频段的PCFICH和所述第一小区内受到邻小区干扰的异向传输子帧的PCFICH,所述第一基站在所述异向传输频段上所述异常传输子帧的前j个OFDM符号上向所述第一UE发送PDCCH。
可选的,在上述第一方面可选的实现方式中或上述第二方面中,在所述第一基站确定第一小区的控制信道指示信息之后,还包括:
若所述控制信道指示信息包含所述第一小区内受到邻小区干扰的异向传输频段的控制信道指示信息,所述第一基站将所述异向传输频段配置为多播广播单频网MBSFN,并在所述异向传输频段上向第一UE发送包含解调参考信号DRS的下行数据,所述第一UE为所述第一小区内的任意一个UE;或者,
若所述控制信道指示信息包含所述第一小区内受到邻小区干扰的异向传输频子帧控制信道指示信息,所述第一基站将所述异向传输子帧配置为MBSFN,并在所述异向传输频段上向所述第一UE发送包含DRS的下行数据;或者,
若所述控制信道指示信息包含所述第一小区内受到邻小区干扰的异向传输频段的控制信道指示信息和所述第一小区内受到邻小区干扰的异向传输频子帧控制信道指示信息,所述第一基站将所述第一小区内受到邻小区干扰的异向传输频段上的所述异向传输子帧配置为MBSFN,并在所述异向传输频段上的所述异向传输子帧上向所述第一UE发送包含DRS的下行数据。
可选的,在上述第一方面可选的实现方式中或上述第二方面中,所述第一基站确定第一小区的控制信道指示信息,包括:
所述第一基站将预配置的信息确定为所述第一小区的控制信道指示信息。
第三方面,提供一种干扰抑制方法,所述方法包括:
第二基站获取第一小区的控制信道指示信息,所述第一小区为第一基站管理的小区内的任意一个小区,所述控制信道指示信息包含下述信息中的至少一个信息:
所述第一小区内受到邻小区干扰的异向传输频段的控制信道指示信息、和所述第一小区内受到邻小区干扰的异向传输子帧的控制信道指示信息,所述邻小区包括第二小区,所述第二小区为所述第二基站管理的小区内的任意一个小区;
所述第二基站根据所述控制信道指示信息,确定第二用户设备UE的上行信道可占用的资源信息,其中,所述第二UE为所述第二小区内的任意一个UE;
所述第二基站向所述第二UE发送所述资源信息。
可选的,所述控制信道指示信息包括物理控制格式指示信道PCFICH;
所述第二基站根据所述控制信道指示信息,确定第二UE的上行信道可占用的资源信息,包括:
若所述PCFICH包括所述第一小区内受到邻小区干扰的异向传输频段的PCFICH,所述第二基站确定所述异向传输频段上所有子帧的最后(14-j)个OFDM符号为所述第二UE的上行信道可占用的资源信息,其中,j为所述PCFICH所包含的值;
或者,若所述PCFICH包括所述第一小区内受到邻小区干扰的异向传输子帧的PCFICH,所述第二基站确定所述异向传输子帧的最后(14-j)个OFDM符号为所述第二UE的上行信道可占用的资源信息;
或者,若所述PCFICH包括所述第一小区内受到邻小区干扰的异向传输频段的PCFICH和所述第一小区内受到邻小区干扰的异向传输子帧的PCFICH,所述第二基站确定所述异向传输频段上所述
异常传输子帧的最后(14-j)个OFDM符号为所述第二UE的上行信道可占用的资源信息。
可选的,所述控制信道指示信息包括物理控制格式指示信道PCFICH;
若所述第二UE为所述第二小区的中心UE,所述第二基站根据所述控制信道指示信息,确定第二UE的上行信道可占用的资源信息,包括:
若所述PCFICH包括所述第一小区内受到邻小区干扰的异向传输频段的PCFICH,所述第二基站确定所述异向传输频段上所有子帧的所有OFDM符号为所述第二UE的上行信道可占用的资源信息;
或者,若所述PCFICH包括所述第一小区内受到邻小区干扰的异向传输子帧的PCFICH,所述第二基站确定所述异向传输子帧的所有OFDM符号为所述第二UE的上行信道可占用的资源信息;
或者,若所述PCFICH包括所述第一小区内受到邻小区干扰的异向传输频段的PCFICH和所述第一小区内受到邻小区干扰的异向传输子帧的PCFICH,所述第二基站确定所述异向传输频段上所述异常传输子帧的所有OFDM符号为所述第二UE的上行信道可占用的资源信息。
可选的,若所述第二UE为所述第二小区的边缘UE,所述第二基站根据所述控制信道指示信息,确定第二UE的上行信道可占用的资源信息,包括:
若所述PCFICH包括所述第一小区内受到邻小区干扰的异向传输频段的PCFICH,所述第二基站确定所述异向传输频段上所有子帧的最后(14-j)个OFDM符号为所述第二UE的上行信道可占用的资源信息,其中,j为所述PCFICH所包含的值;
或者,若所述PCFICH包括所述第一小区内受到邻小区干扰的异向传输子帧的PCFICH,所述第二基站确定所述异向传输子帧的最后(14-j)个OFDM符号为所述第二UE的上行信道可占用的资
源信息;
或者,若所述PCFICH包括所述第一小区内受到邻小区干扰的异向传输频段的PCFICH和所述第一小区内受到邻小区干扰的异向传输子帧的PCFICH,所述第二基站确定所述异向传输频段上所述异常传输子帧的最后(14-j)个OFDM符号为所述第二UE的上行信道可占用的资源信息。
可选的,在所述第二基站根据所述控制信道指示信息,确定第二UE的上行信道可占用的资源信息之前,还包括:
所述第二基站接收所述第二UE发送的参考信号参数,所述参考信号参数包括下述参数中的至少一个参数:
参考信号接收功率RSRP值、和参考信号接收质量RSRQ值;
若所述参考信号参数中的至少一个参数的值不小于预设门限,则所述第二基站确定所述第二UE为所述第二小区的中心UE;
若所述参考信号参数中所有参数的值均小于所述预设门限,则所述第二基站确定所述第二UE为所述第二小区的边缘UE。
可选的,一种可能的实现方式中,所述第二基站获取第一小区的控制信道指示信息,包括:
所述第二基站接收所述第一基站发送的第一小区的控制信道指示信息。
一种可能的实现方式中,所述第二基站获取第一小区的控制信道指示信息,包括:
所述第二基站将预配置的信息确定为所述第一小区的控制信道指示信息。
通过上述方法,第二基站在获取第一基站管理的第一小区的控制信道指示信息之后,可以根据该控制信道指示信息,确定该第二基站管理的小区内的第二UE的上行信道可占用的资源信息,进而将该资源信息发送给第二UE,第二UE可以根据该资源信息发送上行资源。由于第二基站获知了第一小区的控制信道指示信息,因此可以根据该控制信道指示信息进行资源合作,在确定第二UE的上
行信道可占用的资源信息时,避开第一小区的控制信道指示信息指示的控制信息,从而抑制了上下行信号间的干扰,也就是异向传输的干扰,提高了网络通信的质量。
第四方面,提供一种干扰抑制方法,所述方法包括:
第一用户设备UE接收第一基站发送的第一小区的控制信道指示信息,所述第一小区为所述第一基站管理的小区内的任意一个小区,所述第一UE为所述第一小区内的任意一个UE,所述控制信道指示信息包含下述信息中的至少一个信息:
所述第一小区内受到邻小区干扰的异向传输频段的控制信道指示信息、和所述第一小区内受到邻小区干扰的异向传输子帧的控制信道指示信息;
所述第一UE根据所述控制信道指示信息,接收所述第一基站发送的物理下行控制信道PDCCH。
可选的,所述第一UE接收第一基站发送的第一小区的控制信道指示信息,包括:
所述第一UE在预设的同向传输子帧中接收第一基站发送的第一小区的控制信道指示信息;
或者,所述第一UE在预设的同向传输子帧中接收第一基站发送的无线资源控制RRC信今,所述RRC信今中包含第一小区的控制信道指示信息;
或者,所述第一UE接收第一基站发送的系统信息,所述系统信息中包含第一小区的控制信道指示信息;
或者,所述第一UE接收第一基站发送的时隙配比,所述时隙配比用于表征第一小区的控制信道指示信息。
可选的,所述控制信道指示信息包括物理控制格式指示信道PCFICH;
所述第一UE根据所述控制信道指示信息,接收所述第一基站发送的PDCCH,包括:
若所述PCFICH包括所述第一小区内受到邻小区干扰的异向传
输频段的PCFICH,所述第一UE在所述异向传输频段上的所有子帧的前j个正交频分复用OFDM符号上接收所述第一基站发送的PDCCH,其中,j为所述PCFICH所包含的值;
或者,若所述PCFICH包括所述第一小区内受到邻小区干扰的异向传输子帧的PCFICH,所述第一UE在所述异向传输子帧的前j个OFDM符号上接收所述第一基站发送的PDCCH;
或者,若所述PCFICH包括所述第一小区内受到邻小区干扰的异向传输频段的PCFICH和所述第一小区内受到邻小区干扰的异向传输子帧的PCFICH,所述第一UE在所述异向传输频段上所述异常传输子帧的前j个OFDM符号上接收所述第一基站发送的PDCCH。
通过上述方法,由于第一UE可以接收第一基站发送的第一小区的控制信道指示信息,这样,第一UE可以根据该控制信道指示信息进行资源合作来接收第一基站发送的PDCCH,从而抑制了上下行信号间的干扰,也就是异向传输的干扰,提高了网络通信的质量。进一步的,也解决了第一UE因受到邻小区的干扰而无法获取PDCCH的缺陷。
第五方面,提供一种第一基站,所述第一基站包括:处理单元和发送单元;
所述处理单元,用于确定第一小区的控制信道指示信息,所述第一小区为所述第一基站管理的小区内的任意一个小区,所述控制信道指示信息包含下述信息中的至少一个信息:
所述第一小区内受到邻小区干扰的异向传输频段的控制信道指示信息、和所述第一小区内受到邻小区干扰的异向传输子帧的控制信道指示信息;
所述发送单元,用于向第二基站发送所述控制信道指示信息,所述第二基站为所述邻小区的基站。
由于本发明实施例提供的第一基站可以用于执行上述第一方面的方法,因此,其所能获得的技术效果可以参考上述第一方面中
第一基站执行的干扰抑制方法的技术效果,此处不再赘述。
第六方面,提供一种第一基站,所述第一基站包括:处理单元和发送单元;
所述处理单元,用于确定第一小区的控制信道指示信息,所述第一小区为所述第一基站管理的小区内的任意一个小区,所述控制信道指示信息包含下述信息中的至少一个信息:
所述第一小区内受到邻小区干扰的异向传输频段的控制信道指示信息、和所述第一小区内受到邻小区干扰的异向传输子帧的控制信道指示信息;
所述发送单元,用于向第一用户设备UE发送所述控制信道指示信息,所述第一UE为所述第一小区内的任意一个UE。
由于本发明实施例提供的第一基站可以用于执行上述第二方面的方法,因此,其所能获得的技术效果可以参考上述第一方面中第一基站执行的干扰抑制方法的技术效果,此处不再赘述。
可选的,在上述第五方面中,所述发送单元,还用于在所述处理单元确定第一小区的控制信道指示信息之后,向第一用户设备UE发送所述控制信道指示信息,所述第一UE为所述第一小区内的任意一个UE。
可选的,在上述第五方面可选的实现方式中或上述第六方面中,所述发送单元具体用于:
在预设的同向传输子帧中向第一UE发送所述控制信道指示信息;
或者,在预设的同向传输子帧中向第一UE发送无线资源控制RRC信今,所述RRC信今中包含所述控制信道指示信息;
或者,向第一UE发送系统信息,所述系统信息中包含所述控制信道指示信息;
或者,向第一UE发送时隙配比,所述时隙配比用于表征所述控制信道指示信息。
可选的,在上述第五方面可选的实现方式中或上述第六方面
中,所述发送单元,还用于在所述处理单元确定第一小区的控制信道指示信息之后,根据所述控制信道指示信息,向所述第一UE发送下行控制信道PDCCH。
进一步可选的,所述控制信道指示信息包括物理控制格式指示信道PCFICH;
所述发送单元具体用于:
若所述PCFICH包括所述第一小区内受到邻小区干扰的异向传输频段的PCFICH,在所述异向传输频段上的所有子帧的前j个正交频分复用OFDM符号上向所述第一UE发送PDCCH,其中,j为所述PCFICH所包含的值;
或者,若所述PCFICH包括所述第一小区内受到邻小区干扰的异向传输子帧的PCFICH,在所述异向传输子帧的前j个OFDM符号上向所述第一UE发送PDCCH;
或者,若所述PCFICH包括所述第一小区内受到邻小区干扰的异向传输频段的PCFICH和所述第一小区内受到邻小区干扰的异向传输子帧的PCFICH,在所述异向传输频段上所述异常传输子帧的前j个OFDM符号上向所述第一UE发送PDCCH。
可选的,在上述第五方面可选的实现方式中或上述第六方面中,所述处理单元,还用于在确定第一小区的控制信道指示信息之后,若所述控制信道指示信息包含所述第一小区内受到邻小区干扰的异向传输频段的控制信道指示信息,将所述异向传输频段配置为多播广播单频网MBSFN;
所述发送单元,还用于在所述异向传输频段上向第一UE发送包含解调参考信号DRS的下行数据,所述第一UE为所述第一小区内的任意一个UE;
或者,所述处理单元,还用于若所述控制信道指示信息包含所述第一小区内受到邻小区干扰的异向传输频子帧控制信道指示信息,将所述异向传输子帧配置为MBSFN;
所述发送单元,还用于在所述异向传输频段上向所述第一UE
发送包含DRS的下行数据;
或者,所述处理单元,还用于若所述控制信道指示信息包含所述第一小区内受到邻小区干扰的异向传输频段的控制信道指示信息和所述第一小区内受到邻小区干扰的异向传输频子帧控制信道指示信息,将所述第一小区内受到邻小区干扰的异向传输频段上的所述异向传输子帧配置为MBSFN;
所述发送单元,还用于在所述异向传输频段上的所述异向传输子帧上向所述第一UE发送包含DRS的下行数据。
可选的,在上述第五方面可选的实现方式中或上述第六方面中,所述处理单元具体用于:
将预配置的信息确定为所述第一小区的控制信道指示信息。
第七方面,提供一种第二基站,所述第二基站包括:处理单元和发送单元;
所述处理单元,用于获取第一小区的控制信道指示信息,所述第一小区为第一基站管理的小区内的任意一个小区,所述控制信道指示信息包含下述信息中的至少一个信息:
所述第一小区内受到邻小区干扰的异向传输频段的控制信道指示信息、和所述第一小区内受到邻小区干扰的异向传输子帧的控制信道指示信息,所述邻小区包括第二小区,所述第二小区为所述第二基站管理的小区内的任意一个小区;
所述处理单元,还用于根据所述控制信道指示信息,确定第二用户设备UE的上行信道可占用的资源信息,其中,所述第二UE为所述第二小区内的任意一个UE;
所述发送单元,用于向所述第二UE发送所述资源信息。
可选的,所述控制信道指示信息包括物理控制格式指示信道PCFICH;
所述处理单元具体用于:
若所述PCFICH包括所述第一小区内受到邻小区干扰的异向传输频段的PCFICH,确定所述异向传输频段上所有子帧的最后(14-j)
个OFDM符号为所述第二UE的上行信道可占用的资源信息,其中,j为所述PCFICH所包含的值;
或者,若所述PCFICH包括所述第一小区内受到邻小区干扰的异向传输子帧的PCFICH,确定所述异向传输子帧的最后(14-j)个OFDM符号为所述第二UE的上行信道可占用的资源信息;
或者,若所述PCFICH包括所述第一小区内受到邻小区干扰的异向传输频段的PCFICH和所述第一小区内受到邻小区干扰的异向传输子帧的PCFICH,确定所述异向传输频段上所述异常传输子帧的最后(14-j)个OFDM符号为所述第二UE的上行信道可占用的资源信息。
可选的,所述控制信道指示信息包括物理控制格式指示信道PCFICH;
若所述第二UE为所述第二小区的中心UE,所述处理单元具体用于:
若所述PCFICH包括所述第一小区内受到邻小区干扰的异向传输频段的PCFICH,确定所述异向传输频段上所有子帧的所有OFDM符号为所述第二UE的上行信道可占用的资源信息;
或者,若所述PCFICH包括所述第一小区内受到邻小区干扰的异向传输子帧的PCFICH,确定所述异向传输子帧的所有OFDM符号为所述第二UE的上行信道可占用的资源信息;
或者,若所述PCFICH包括所述第一小区内受到邻小区干扰的异向传输频段的PCFICH和所述第一小区内受到邻小区干扰的异向传输子帧的PCFICH,确定所述异向传输频段上所述异常传输子帧的所有OFDM符号为所述第二UE的上行信道可占用的资源信息。
可选的,若所述第二UE为所述第二小区的边缘UE,所述处理单元具体用于:
若所述PCFICH包括所述第一小区内受到邻小区干扰的异向传输频段的PCFICH,确定所述异向传输频段上所有子帧的最后(14-j)个OFDM符号为所述第二UE的上行信道可占用的资源信息,其中,
j为所述PCFICH所包含的值;
或者,若所述PCFICH包括所述第一小区内受到邻小区干扰的异向传输子帧的PCFICH,确定所述异向传输子帧的最后(14-j)个OFDM符号为所述第二UE的上行信道可占用的资源信息;
或者,若所述PCFICH包括所述第一小区内受到邻小区干扰的异向传输频段的PCFICH和所述第一小区内受到邻小区干扰的异向传输子帧的PCFICH,确定所述异向传输频段上所述异常传输子帧的最后(14-j)个OFDM符号为所述第二UE的上行信道可占用的资源信息。
可选的,所述第二基站还包括接收单元;
所述接收单元,用于在所述处理单元根据所述控制信道指示信息,确定第二UE的上行信道可占用的资源信息之前,接收所述第二UE发送的参考信号参数,所述参考信号参数包括下述参数中的至少一个参数:
参考信号接收功率RSRP值、和参考信号接收质量RSRQ值;
所述处理单元,还用于若所述参考信号参数中的至少一个参数的值不小于预设门限,确定所述第二UE为所述第二小区的中心UE;
所述处理单元,还用于若所述参考信号参数中所有参数的值均小于所述预设门限,确定所述第二UE为所述第二小区的边缘UE。
可选的,一种可能的实现方式中,所述第二基站还包括接收单元;
所述处理单元具体用于:
通过所述接收单元接收所述第一基站发送的第一小区的控制信道指示信息。
另一种可能的实现方式中,所述处理单元具体用于:
将预配置的信息确定为所述第一小区的控制信道指示信息。
由于本发明实施例提供的第二基站可以用于执行上述第三方面的方法,因此,其所能获得的技术效果可以参考上述第三方面中
第二基站执行的干扰抑制方法的技术效果,此处不再赘述。
第八方面,提供一种第一用户设备UE,所述第一UE包括接收单元;
所述接收单元,用于接收第一基站发送的第一小区的控制信道指示信息,所述第一小区为所述第一基站管理的小区内的任意一个小区,所述第一UE为所述第一小区内的任意一个UE,所述控制信道指示信息包含下述信息中的至少一个信息:
所述第一小区内受到邻小区干扰的异向传输频段的控制信道指示信息、和所述第一小区内受到邻小区干扰的异向传输子帧的控制信道指示信息;
所述接收单元,还用于根据所述控制信道指示信息,接收所述第一基站发送的物理下行控制信道PDCCH。
可选的,所述接收单元具体用于:
在预设的同向传输子帧中接收第一基站发送的第一小区的控制信道指示信息;
或者,在预设的同向传输子帧中接收第一基站发送的无线资源控制RRC信今,所述RRC信今中包含第一小区的控制信道指示信息;
或者,接收第一基站发送的系统信息,所述系统信息中包含第一小区的控制信道指示信息;
或者,接收第一基站发送的时隙配比,所述时隙配比用于表征第一小区的控制信道指示信息。
可选的,所述控制信道指示信息包括物理控制格式指示信道PCFICH;
所述接收单元具体用于:
若所述PCFICH包括所述第一小区内受到邻小区干扰的异向传输频段的PCFICH,在所述异向传输频段上的所有子帧的前j个正交频分复用OFDM符号上接收所述第一基站发送的PDCCH,其中,j为所述PCFICH所包含的值;
或者,若所述PCFICH包括所述第一小区内受到邻小区干扰的异向传输子帧的PCFICH,在所述异向传输子帧的前j个OFDM符号上接收所述第一基站发送的PDCCH;
或者,若所述PCFICH包括所述第一小区内受到邻小区干扰的异向传输频段的PCFICH和所述第一小区内受到邻小区干扰的异向传输子帧的PCFICH,在所述异向传输频段上所述异常传输子帧的前j个OFDM符号上接收所述第一基站发送的PDCCH。
由于本发明实施例提供的第一UE可以用于执行上述第四方面的方法,因此,其所能获得的技术效果可以参考上述第四方面中第一UE执行的干扰抑制方法的技术效果,此处不再赘述。
可选的,在上述第一方面至第八方面中的任一方面或者任一方面可选的实现方式中,所述异向传输频段为被配置为灵活半双工进行异向传输的频段,所述异向传输子帧为所述异向传输频段上的被配置为异向传输的子帧。
第九方面,提供一种干扰抑制方法,所述方法包括:
第一基站获取第一小区的控制信道指示信息,所述第一小区为第一基站管理的小区内的任意一个小区,所述控制信道指示信息包含下述信息中的至少一个信息:
所述第一小区内受到邻小区干扰的异向传输频段的控制信道指示信息、和所述第一小区内受到邻小区干扰的异向传输子帧的控制信道指示信息,所述邻小区包括第二小区,所述第二小区为所述第二基站管理的小区内的任意一个小区;
若所述控制信道指示信息包含所述第一小区内受到邻小区干扰的异向传输频段的控制信道指示信息,所述第一基站将所述异向传输频段配置为多播广播单频网MBSFN,并在所述异向传输频段上向第一UE发送包含解调参考信号DRS的下行数据,所述第一UE为所述第一小区内的任意一个UE;
或者,若所述控制信道指示信息包含所述第一小区内受到邻小区干扰的异向传输频子帧控制信道指示信息,所述第一基站将所述
异向传输子帧配置为MBSFN,并在所述异向传输频段上向所述第一UE发送包含DRS的下行数据;
或者,若所述控制信道指示信息包含所述第一小区内受到邻小区干扰的异向传输频段的控制信道指示信息和所述第一小区内受到邻小区干扰的异向传输频子帧控制信道指示信息,所述第一基站将所述第一小区内受到邻小区干扰的异向传输频段上的所述异向传输子帧配置为MBSFN,并在所述异向传输频段上的所述异向传输子帧上向所述第一UE发送包含DRS的下行数据。
通过上述方法,当异向传输频段和/或异向传输子帧被配置为MBSFN,在该异向传输频段和/或异向传输子帧中通信的UE即可基于DRS解调,无需再基于小区专有导频CRS解调;由于DRS功率远远小于CRS,相比于CRS,DRS产生的干扰很小;也就是说,来自CRS的干扰以及对CRS的干扰均被最小化,因此,减小了CRS与上行传输之间的异向干扰。
第十方面,提供一种干扰抑制方法,所述方法包括:
第一用户设备UE在异向传输频段上接收第一基站发送的包含解调参考信号DRS的下行数据,其中,所述异向传输频段被配置为多播广播单频网MBSFN,所述第一UE为所述第一基站管理的小区内的任意一个UE;
所述第一UE基于所述DRS解调下行数据;
或者,所述方法包括:
所述第一UE在异向传输子帧上接收第一基站发送的包含DRS的下行数据,其中,所述异向子帧频段被配置为MBSFN;
所述第一UE基于所述DRS解调下行数据;
或者,所述方法包括:
所述第一UE在异向传输频段的异向传输子帧上接收第一基站发送的包含DRS的下行数据,其中,所述异向传输频段的异向子帧频段被配置为MBSFN;
所述第一UE基于所述DRS解调下行数据。
通过上述方法,当异向传输频段和/或异向传输子帧被配置为MBSFN,在该异向传输频段和/或异向传输子帧中通信的UE即可基于DRS解调,无需再基于小区专有导频CRS解调;由于DRS功率远远小于CRS,相比于CRS,DRS产生的干扰很小;也就是说,来自CRS的干扰以及对CRS的干扰均被最小化,因此,减小了CRS与上行传输之间的异向干扰。
第十一方面,提供一种第一基站,所述第一基站包括:处理单元和发送单元;
所述处理单元,用于获取第一小区的控制信道指示信息,所述第一小区为第一基站管理的小区内的任意一个小区,所述控制信道指示信息包含下述信息中的至少一个信息:
所述第一小区内受到邻小区干扰的异向传输频段的控制信道指示信息、和所述第一小区内受到邻小区干扰的异向传输子帧的控制信道指示信息,所述邻小区包括第二小区,所述第二小区为所述第二基站管理的小区内的任意一个小区;
所述处理单元,还用于若所述控制信道指示信息包含所述第一小区内受到邻小区干扰的异向传输频段的控制信道指示信息,将所述异向传输频段配置为多播广播单频网MBSFN;
所述发送单元,用于在所述异向传输频段上向第一UE发送包含解调参考信号DRS的下行数据,所述第一UE为所述第一小区内的任意一个UE;
或者,所述处理单元,还用于若所述控制信道指示信息包含所述第一小区内受到邻小区干扰的异向传输频子帧控制信道指示信息,所述第一基站将所述异向传输子帧配置为MBSFN;
所述发送单元,用于在所述异向传输频段上向所述第一UE发送包含DRS的下行数据;
或者,所述处理单元,还用于若所述控制信道指示信息包含所述第一小区内受到邻小区干扰的异向传输频段的控制信道指示信息和所述第一小区内受到邻小区干扰的异向传输频子帧控制信道
指示信息,所述第一基站将所述第一小区内受到邻小区干扰的异向传输频段上的所述异向传输子帧配置为MBSFN;
所述发送单元,用于在所述异向传输频段上的所述异向传输子帧上向所述第一UE发送包含DRS的下行数据。
由于本发明实施例提供的第一基站可以用于执行上述第九方面的方法,因此,其所能获得的技术效果可以参考上述第九方面中第一基站执行的干扰抑制方法的技术效果,此处不再赘述。
第十二方面,提供一种第一用户设备UE,所述第一UE包括:接收单元和处理单元;
所述接收单元,用于在异向传输频段上接收第一基站发送的包含解调参考信号DRS的下行数据,其中,所述异向传输频段被配置为多播广播单频网MBSFN,所述第一UE为所述第一基站管理的小区内的任意一个UE;
所述处理单元,用于基于所述DRS解调下行数据;
或者,所述接收单元,用于在异向传输子帧上接收第一基站发送的包含DRS的下行数据,其中,所述异向子帧频段被配置为MBSFN;
所述处理单元,用于基于所述DRS解调下行数据;
或者,所述接收单元,用于在异向传输频段的异向传输子帧上接收第一基站发送的包含DRS的下行数据,其中,所述异向传输频段的异向子帧频段被配置为MBSFN;
所述处理单元,用于基于所述DRS解调下行数据。
由于本发明实施例提供的第一UE可以用于执行上述第十方面的方法,因此,其所能获得的技术效果可以参考上述第十方面中第一UE执行的干扰抑制方法的技术效果,此处不再赘述。
第十三方面,提供一种第一基站,所述第一基站包括:处理器、存储器、总线和通信接口;
所述存储器用于存储计算机执行指令,所述处理器与所述存储器通过所述总线连接,当所述第一基站运行时,所述处理器执行所
述存储器存储的所述计算机执行指令,以使所述第一基站执行如上述第一方面任一项所述的干扰抑制方法或执行如上述第二方面任一项所述的干扰抑制方法或执行如上述第九方面任一项所述的干扰抑制方法。
由于本发明实施例提供的第一基站可以执行如上述第一方面任一项所述的干扰抑制方法或执行如上述第二方面任一项所述的干扰抑制方法或执行如上述第九方面任一项所述的干扰抑制方法,因此,其所能获得的技术效果可以参考上述第一方面、或者第二方面、或者第九方面所述的干扰抑制方法的技术效果,此处不再赘述。
第十四方面,提供一种第二基站,所述第二基站包括:处理器、存储器、总线和通信接口;
所述存储器用于存储计算机执行指令,所述处理器与所述存储器通过所述总线连接,当所述第二基站运行时,所述处理器执行所述存储器存储的所述计算机执行指令,以使所述第二基站执行如上述第三方面任一项所述的干扰抑制方法。
由于本发明实施例中的第二基站可以执行如上述第三方面任一项所述的干扰抑制方法,因此,其所能获得的技术效果可以参考上述第三方面所述的干扰抑制方法的技术效果,此处不再赘述。
第十五方面,提供一种第一用户设备UE,所述第一UE包括:处理器、存储器、总线和通信接口;
所述存储器用于存储计算机执行指令,所述处理器与所述存储器通过所述总线连接,当所述第一UE运行时,所述处理器执行所述存储器存储的所述计算机执行指令,以使所述第一UE执行如上述第四方面任一项所述的干扰抑制方法或者执行如上述第十方面任一项所述的干扰抑制方法。
由于本发明实施例提供的第一UE可以执行如上述第四方面任一项所述的干扰抑制方法或执行如上述第十方面任一项所述的干扰抑制方法,因此,其所能获得的技术效果可以参考上述第四方面、或者第十方面所述的干扰抑制方法的技术效果,此处不再赘述。
其中,本发明的这些方面或其他方面在以下实施例的描述中会
更加简明易懂。
图1为现有技术中的干扰场景示意图一;
图2为现有技术中的干扰场景示意图二;
图3为现有技术中的干扰场景示意图三;
图4为现有技术中的时分方式的动态频谱共享场景示意图;
图5为现有技术中的频分方式的动态频谱共享场景示意图;
图6为本发明实施例提供的干扰抑制系统的结构示意图;
图7为本发明实施例提供的干扰抑制方法的流程示意图一;
图8为本发明实施例提供的干扰抑制方法的流程示意图二;
图9为本发明实施例提供的干扰抑制方法的流程示意图三;
图10为本发明实施例提供的一种异向传输子帧的示意图;
图11为本发明实施例提供的干扰抑制方法的流程示意图四;
图12为本发明实施例提供的干扰抑制方法的流程示意图五;
图13为本发明实施例提供的干扰抑制方法的流程示意图六;
图14为本发明实施例提供的第一基站的结构示意图一;
图15为本发明实施例提供的第二基站的结构示意图一;
图16为本发明实施例提供的第二基站的结构示意图二;
图17为本发明实施例提供的第一UE的结构示意图一;
图18为本发明实施例提供的第一UE的结构示意图二;
图19为本发明实施例提供的第一基站的结构示意图二;
图20为本发明实施例提供的第二基站的结构示意图三;
图21为本发明实施例提供的第一UE的结构示意图三。
为了下述各实施例的描述清楚简洁,首先给出相关技术的简要介绍:
在LTE系统或高级的长期演进(英文全称:LTE advanced,英文简称:LTE-A)系统中,下行多址接入方式通常采用正交频分复用多址接入(英文全称:orthogonal frequency division multiple
access,英文简称:OFDMA)方式。系统的下行资源从时间上看被划分成了正交频分复用(英文全称:orthogonal frequency division multiplexing,英文简称:OFDM)符号,从频率上看被划分成了子载波。根据LTE标准,一个无线帧包含10个子帧,一个子帧长1ms,每个无线帧的子帧按照0-9编号。一个子帧包含有两个时隙(英文:slot),常规循环前缀(英文全称:cyclic prefix,英文简称:CP)情况下每个时隙包含7个OFDM符号,编号是0-6;扩展CP情况下每个时隙包含6个OFDM符号,编号是0-5。一个OFDM符号和一个子载波构成的时频资源称为资源元素(英文全称:resource element,英文简称:RE)。定义一个物理资源块(英文全称:physical resource block,简称:PRB)的大小为时间上的一个时隙,频域上的180kHz。当子载波间隔为15kHz时,一个PRB在频率上包含12个子载波,此时一个PRB共包含84个或72个RE。在频域上对PRB进行编号,即为PRB索引。定义一个PRB对(英文:PRB pair)为在一个子帧上的两个时隙的PRB索引相同的一对PRB。
LTE系统支持两种帧结构:Type1和Type2,其中Type1用于FDD,Type2用于TDD。对于FDD的帧结构Type1,一个10ms无线帧包含的每个子帧既可以用于下行传输,也可以用于上行传输。对于TDD的帧结构Type2,一个10ms的无线帧包含的子帧或者为下行子帧,或者为上行子帧,或者为特殊子帧。具体哪个子帧为下行子帧、上行子帧、或者特殊子帧由TDD上下行配置决定。LTE当前支持7种不同的TDD上下行配置,如表一所示,其中D表示下行子帧,用于下行传输,S表示特殊子帧,U表示上行子帧。
表一
如背景技术中所述,在目前的LTE系统中,由于异向传输的存在,新出现了基站对基站的干扰与UE对UE的干扰这两类干扰。为了进一步增强上下行信号间的干扰管理,3GPP项目组提出了相关的解决方案,然而新提出的方案只能避免一些PRBs上的PDSCH传输,PDCCH等下行控制信息将仍然被传输在边缘PRBs,这些下行控制信息与PUCCH间的干扰仍然存在。
为了解决该问题,本发明实施例提供了干扰抑制方法、装置及系统,下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行描述。
需要说明的是,为了便于清楚描述本发明实施例的技术方案,在本发明的实施例中,采用了“第一”、“第二”等字样对功能和作用基本相同的相同项或相似项进行区分,本领域技术人员可以理解“第一”、“第二”等字样并不对数量和执行次序进行限定。
需要说明的是,本发明实施例中的“/”表示或的意思,例如,A/B可以表示A或B;本文中的“和/或”仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。“多个”是指两个或多于两个。
如本申请所使用的,术语“组件”、“模块”、“系统”等等旨在指代计算机相关实体,该计算机相关实体可以是硬件、固件、硬件和软件的结合、软件或者运行中的软件。例如,组件可以是,但不
限于是:在处理器上运行的处理、处理器、对象、可执行文件、执行中的线程、程序和/或计算机。作为示例,在计算设备上运行的应用和该计算设备都可以是组件。一个或多个组件可以存在于执行中的过程和/或线程中,并且组件可以位于一个计算机中以及/或者分布在两个或更多个计算机之间。此外,这些组件能够从在其上具有各种数据结构的各种计算机可读介质中执行。这些组件可以通过诸如根据具有一个或多个数据分组(例如,来自一个组件的数据,该组件与本地系统、分布式系统中的另一个组件进行交互和/或以信号的方式通过诸如互联网之类的网络与其它系统进行交互)的信号,以本地和/或远程过程的方式进行通信。
无线通信网络,是一种提供无线通信功能的网络。无线通信网络可以采用不同的通信技术,例如码分多址(英文全称:Code division multiple access,英文缩写:CDMA)、宽带码分多址(英文全称:wideband code division multiple access,英文缩写:WCDMA)、时分多址(英文全称:time division multiple access,英文缩写:TDMA)、频分多址(英文全称:frequency division multiple access,英文缩写:FDMA)、OFDMA、单载波频分多址(英文全称:single carrier FDMA,英文缩写:SC-FDMA)、载波侦听多路访问/冲突避免(英文全称:carrier sense multiple access with collision avoidance)。根据不同网络的容量、速率、时延等因素可以将网络分为2G(英文:generation)网络、3G网络或者4G网络。典型的2G网络包括全球移动通信系统(英文全称:global system for mobile communications/general packet radio service,英文缩写:GSM)网络或者通用分组无线业务(英文全称:general packet radio service,英文缩写:GPRS)网络,典型的3G网络包括通用移动通信系统(英文全称:universal mobile telecommunications system,英文缩写:UMTS)网络,典型的4G网络包括LTE网络。其中,UMTS网络有时也可以称为通用陆地无线接入网(英文全称:universal terrestrial radio access network,英文缩写:UTRAN),LTE网络有
时也可以称为演进型通用陆地无线接入网(英文全称:evolved universal terrestrial radio access network,英文缩写:E-UTRAN)。根据资源分配方式的不同,可以分为蜂窝通信网络和无线局域网络(英文全称:wireless local area networks,英文缩写:WLAN),其中,蜂窝通信网络为调度主导,WLAN为竞争主导。前述的2G、3G和4G网络,均为蜂窝通信网络。本领域技术人员应知,随着技术的发展本发明实施例提供的技术方案同样可以应用于其他的无线通信网络,例如4.5G或者5G网络,或其他非蜂窝通信网络。为了简洁,本发明实施例有时会将无线通信网络英文缩写为网络。
UE是一种终端设备,可以是可移动的终端设备,也可以是不可移动的终端设备。该设备主要用于接收或者发送业务数据。用户设备可分布于网络中,在不同的网络中用户设备有不同的名称,例如:终端,移动台,用户单元,站台,蜂窝电话,个人数字助理,无线调制解调器,无线通信设备,手持设备,膝上型电脑,无绳电话,无线本地环路台等。该用户设备可以经无线接入网(英文全称:radio access network,英文缩写:RAN)(无线通信网络的接入部分)与一个或多个核心网进行通信,例如与无线接入网交换语音和/或数据。
基站设备,也可称为基站,是一种部署在无线接入网用以提供无线通信功能的装置。例如在2G网络中提供基站功能的设备包括基地无线收发站(英文全称:base transceiver station,英文缩写:BTS)和基站控制器(英文全称:base station controller,英文缩写:BSC),3G网络中提供基站功能的设备包括节点B(英文全称:NodeB)和无线网络控制器(英文全称:radio network controller,英文缩写:RNC),在4G网络中提供基站功能的设备包括演进的节点B(英文全称:evolved NodeB,英文缩写:eNB),在WLAN中,提供基站功能的设备为接入点(英文全称:access point,英文缩写:AP)。
此外,本申请结合无线网络设备来描述各个方面,该无线网络
设备可以为基站,基站可以用于与一个或多个用户设备进行通信,也可以用于与一个或多个具有部分用户设备功能的基站进行通信(比如宏基站与微基站,如接入点,之间的通信);该无线网络设备还可以为用户设备,用户设备可以用于一个或多个用户设备进行通信(比如设备到设备(英文全称:device-to-device,英文缩写:D2D)通信),也可以用于与一个或多个基站进行通信。用户设备还可以称为用户终端,并且可以包括系统、用户单元、用户站、移动站、移动无线终端、移动设备、节点、设备、远程站、远程终端、终端、无线通信设备、无线通信装置或用户代理的功能中的一些或者所有功能。用户设备可以是蜂窝电话、无绳电话、会话发起协议(英文全称:session initiation protocol,英文缩写:SIP)电话、智能电话、无线本地环路(英文全称:wireless local loop,英文简称:WLL)站、个人数字助理(英文全称:personal digital assistant,英文缩写:PDA)、膝上型计算机、手持式通信设备、手持式计算设备、卫星无线设备、无线调制解调器卡和/或用于在无线系统上进行通信的其它处理设备。基站还可以称为接入点、节点、节点B、演进节点B或某种其它网络实体,并且可以包括以上网络实体的功能中的一些或所有功能。基站可以通过空中接口与无线终端进行通信。该通信可以通过一个或多个扇区来进行。基站可以通过将所接收的空中接口帧转换成IP分组,来用作无线终端和接入网络的其余部分之间的路由器,其中所述接入网络包括互联网协议(英文全称:internet protocol,英文缩写:IP)网络。基站还可以对空中接口属性的管理进行协调,并且还可以是有线网络和无线网络之间的网关。
本申请将围绕可包括多个设备、组件、模块等的系统来呈现各个方面、实施例或特征。应当理解和明白的是,各个系统可以包括另外的设备、组件、模块等,并且/或者可以并不包括结合附图讨论的所有设备、组件、模块等。此外,还可以使用这些方案的组合。
另外,在本发明实施例中,“示例的”、“比如”等词用于表示
作例子、例证或说明。本申请中被描述为“示例的”、“比如”的任何实施例或设计方案不应被解释为比其它实施例或设计方案更优选或更具优势。确切而言,使用“示例的”、“比如”等词旨在以具体方式呈现概念。
本发明实施例中,信息(英文:information),信号(英文:signal),消息(英文:message),信道(英文:channel)有时可以混用,应当指出的是,在不强调其区别时,其所要表达的含义是一致的。“的(英文:of)”,“相应的(英文:corresponding,relevant)”和“对应的(英文:corresponding)”有时可以混用,应当指出的是,在不强调其区别时,其所要表达的含义是一致的。
本发明实施例描述的网络架构以及业务场景是为了更加清楚的说明本发明实施例的技术方案,并不构成对于本发明实施例提供的技术方案的限定,本领域普通技术人员可知,随着网络架构的演变和新业务场景的出现,本发明实施例提供的技术方案对于类似的技术问题,同样适用。
本发明实施例依托无线通信网络中4G网络的场景进行说明,应当指出的是,本发明实施例中的方案还可以应用于其他无线通信网络中,相应的名称也可以用其他无线通信网络中的对应功能的名称进行替代。
如图6所示,为本发明实施例所适用的干扰抑制系统架构示意图,该干扰抑制系统包括多个基站、以及每个基站管理的小区内的多个UE,其中,多个基站之间可以相互通信,多个基站中的每个基站与该基站管理的小区内的多个UE中的每个UE之间也可以分别进行通信。
需要说明的是,图6中以该干扰抑制系统包括3个基站(分别记为基站1、基站2和基站3)、每个基站管理的小区中包含2个UE(基站1管理的小区中的UE分别记为UE1和UE2、基站2管理的小区中的UE分别记为UE3和UE4、基站3管理的小区中的UE分别记为UE5和UE6)为例进行说明。当然,该干扰抑制系统不限
于仅包含3个基站,可以包含2个基站、4个基站等其它数量的基站;每个基站中也不限于仅包含2个UE,可以包含3个UE、4个UE等其它数量的UE,图6仅是示例性说明,本发明实施例对该干扰抑制系统中基站的数量,每个基站管理的小区内UE的数量不作具体限定。
基于图6所示的干扰抑制系统,本发明实施例提供一种干扰抑制方法,以第一基站(可以假设为图6中的基站1)与第二基站(可以假设为图6中的基站2或基站3)的交互、以及第二基站与第二基站管理的小区内的第二UE(可以是第二基站管理的小区内的任意一个UE,比如第二基站为基站2时,第二UE可以为UE3)的交互为例进行说明,如图7所示,包括步骤S701-S707:
S701、第一基站确定第一小区的控制信道指示信息。
其中,第一小区为第一基站管理的小区内的任意一个小区,控制信道指示信息具体可以包含下述信息中的至少一个信息:
第一小区内受到邻小区干扰的异向传输频段的控制信道指示信息、和第一小区内受到邻小区干扰的异向传输子帧的控制信道指示信息。
S702、第一基站向第二基站发送控制信道指示信息。
S703、第二基站接收第一基站发送的控制信道指示信息。
S704、第二基站根据控制信道指示信息,确定第二UE的上行信道可占用的资源信息。
S705、第二基站向第二UE发送资源信息。
S706、第二UE接收第二基站发送的资源信息。
S707、第二UE根据该资源信息,向第二基站发送上行数据。
具体的,本发明实施例步骤S701中:
第一小区可能受到一个相邻小区的干扰,也可能受到多个相邻小区的干扰,因此,本发明实施例对邻小区的个数不作具体限定。
示例性的,在图6中,基站1管理的小区1可能仅受到基站2管理的小区2的干扰,也可能同时受到基站2管理的小区2的干扰
和基站3管理的小区3的干扰,或者受到其它基站管理的小区的干扰,本发明实施例对此不作具体限定。
其中,步骤S701中的“异向传输”具体是指同一时刻传输方向不同,一个对应下行传输,一个对应上行传输,比如图3、图4或图5中的传输。相应的,“同向传输”具体是指同一时刻传输方向相同,均对应下行传输或均对应上行传输,比如图1或图2中的传输。
需要说明的是,该说明适用于下述各实施例,以下各实施例对此不再一一赘述。另外,对于TDD系统,当第一基站与第二基站之间不需要相互通信时,由表一可以看出,除了子帧0、子帧1、子帧2、子帧5之外的子帧均可以确定为异向传输子帧,只要第一基站对应的TDD上下行配置与第二基站对应的TDD上下行配置在该子帧上的传输方向不同即可;而当第一基站与第二基站之间需要相互通信时,第一基站和第二基站交互各自的子帧配置后,将传输方向不同的子帧确定为异向传输子帧。
其中,步骤S701中的控制信道指示信息具体可以包含第一小区内受到邻小区干扰的异向传输频段的控制信道指示信息,或者包含第一小区内受到邻小区干扰的异向传输子帧的控制信道指示信息,或者同时包含第一小区内受到邻小区干扰的异向传输频段的控制信道指示信息和第一小区内受到邻小区干扰的异向传输子帧的控制信道指示信息。也就是说,步骤S701中的“至少一个”可以是所列举的信息中的其中任意一个,也可以是多个的组合,本发明实施例对此不作具体限定。
可选的,本发明实施例中的异向传输频段可以为被配置为灵活半双工进行异向传输的频段,异向传输子帧可以为该异向传输频段上的被配置为异向传输的子帧。
也就是说,本发明实施例中的异向传输频段可以被配置为上行频段发送下行信号的频段,比如如图4或图5所示的频段,本发明实施例对此不作具体限定。而异向传输子帧则可以为该异向传输频
段上的被配置为异向传输的子帧。
可选的,本发明实施例中的控制信道指示信息具体可以包含物理控制格式指示信道(英文全称:physical control format indicator channel,英文简称:PCFICH),当然,该控制信道指示信息也可以包含其它信息,本发明实施例对此不作具体限定。
可选的,第一基站确定第一小区的控制信道指示信息(步骤S701)具体可以包括:
第一基站将预配置的信息确定为第一小区的控制信道指示信息。
比如,若控制信道指示信息包含PCFICH,则第一基站可以将预配置的值确定为PCFICH所包含的值。
需要说明的是,此处“预配置的值”可以是基于经验值预配置的值,也可以是基于多次实验获得的优选值预配置的值,本发明实施例对此不作具体限定。
优选的,在超密集网络(英文全称:ultra-dense network,英文简称UDN)中,每个小区中包含少数UE,因此PCFICH所包含的值可以被设置为1。该说明适用于下述各实施例,在以下实施例中将不再一一赘述。
具体的,本发明实施例步骤S702中:
此处的第二基站具体为步骤S701中所述的邻小区的基站。比如,若步骤S701中的邻小区为基站2管理的小区2,则该第二基站具体指基站2;或者,若步骤S701中的邻小区为基站2管理的小区2和基站3管理的小区3,则基站2和基站3都可以被称为第二基站。
具体的,本发明实施例步骤S704中:
第二基站可以静态分配上行信道所占用的资源,其中,对于该第二基站内的第二UE来说,第二UE的上行信道可占用的资源可以是第二基站静态分配的上行信道所占用的资源的一部分资源,也可以是全部资源,本发明实施例对此不作具体限定。示例性的,第
二基站可以静态分配5个PRB的上行信道所占用的资源,第二UE的上行信道可占用的资源信息可以为3个PRB。
其中,所述上行信道具体可以包括下述信道中的至少一个:物理上行共享信道(英文全称:physical uplink shared channel,英文简称:PUSCH)和PUCCH。
类似的,此处的“至少一个”可以是所列举的信息中的其中任意一个,也可以是多个的组合,本发明实施例对此不作具体限定。也就是说,上行信道具体可以包括PUSCH,或者PUCCH,或者同时包括PUSCH和PUCCH。
具体的,本发明实施例步骤S705-S707中:
第二基站在确定第二UE的上行信道可占用的资源信息之后,可以将该资源信息发送给第二UE,以使得第二UE可以根据该资源信息,向第二基站发送上行数据。
基于本发明实施例提供的干扰抑制方法,本发明实施例中,第一基站在确定第一基站管理的第一小区的控制信道指示信息之后,可以将该控制信道指示信息发送给第二基站,该控制信道指示信息包括第一小区内受到邻小区干扰的异向传输频段的控制信道指示信息、和/或第一小区内受到邻小区干扰的异向传输子帧的控制信道指示信息。这样,第二基站接收该控制信道指示信息之后,可以根据该控制信道指示信息,确定该第二基站管理的小区内的第二UE的上行信道可占用的资源信息,进而将该资源信息发送给第二UE,第二UE可以根据该资源信息发送上行资源。由于第二基站获知了第一小区的控制信道指示信息,因此可以根据该控制信道指示信息进行资源合作,在确定第二UE的上行信道可占用的资源信息时,避开第一小区的控制信道指示信息指示的控制信息,从而抑制了上下行信号间的干扰,也就是异向传输的干扰,提高了网络通信的质量。
可选的,基于图7所示的实施例,在第一基站确定第一小区的控制信道指示信息(步骤S701)之后,第一基站还可以与第一基站
管理的小区内的第一UE(可以是第一基站管理的小区内的任意一个UE,比如UE1)交互,如图8所示,包括步骤S708-S711:
S708、第一基站向第一UE发送控制信道指示信息。
S709、第一UE接收第一基站发送的控制信道指示信息。
S710、第一基站根据该控制信道指示信息,向第一UE发送PDCCH。
S711、第一UE根据该控制信道指示信息,接收第一基站发送的PDCCH。
具体的,本发明实施例步骤S708中:
第一基站向第一UE发送控制信道指示信息具体可以通过以下方式一至方式四中的任意一种方式实现。其中,方式一至方式四分别如下:
方式一、第一基站在预设的同向传输子帧中向第一UE发送所述控制信道指示信息。
方式二、第一基站在预设的同向传输子帧中向第一UE发送无线资源控制(英文全称:radio resource control,英文简称:RRC)信今,所述RRC信今中包含所述控制信道指示信息。
方式三、第一基站向第一UE发送系统信息,所述系统信息中包含所述控制信道指示信息;
方式四、第一基站向第一UE发送时隙配比,所述时隙配比用于表征所述控制信道指示信息。
相应的,本发明实施例步骤S709中:
第一UE接收第一基站发送的控制信道指示信息,具体可以包括:
第一UE在预设的同向传输子帧中接收第一基站发送的第一小区的控制信道指示信息。
或者,第一UE在预设的同向传输子帧中接收第一基站发送的RRC信今,所述RRC信今中包含第一小区的控制信道指示信息。
或者,第一UE接收第一基站发送的系统信息,所述系统信息
中包含第一小区的控制信道指示信息。
或者,第一UE接收第一基站发送的时隙配比,所述时隙配比用于表征第一小区的控制信道指示信息。
需要说明的是,本发明实施例仅是示例性的给出四种第一基站向第一UE发送控制信道指示信息的实现方式、以及第一UE接收第一基站发送的控制信道指示信息的实现方式,当然,还可能存在其它可能的实现方式,本发明实施例在此不再一一列举。
其中,对于上述方式四,时隙配比用于表征所述控制信道指示信息具体是指,时隙配比可以隐式反映控制信道指示信息。比如,第一UE中可以预先存储如表二所示的对应关系,假设第一基站向第一UE发送的时隙配比为时隙配比1,则第一UE在接收第一基站发送的时隙配比1之后,根据表二,可以获知控制信道指示信息为信息1。
表二
控制信道指示信息 | 时隙配比 |
信息1 | 时隙配比1 |
信息2 | 时隙配比2 |
信息3 | 时隙配比3 |
需要说明的是,表二仅是以示例的形式,对第一UE中预先存储的对应关系的形式及内容进行说明,并不是对该对应关系的形式和内容的具体限定。在实际应用中,可以根据实际需求设定该对应关系的形式和内容。
具体的,本发明实施例步骤S710中:
若所述控制信道指示信息具体包括PCFICH,则第一基站根据该控制信道指示信息,向第一UE发送PDCCH,具体可以包括:
若所述PCFICH包括第一小区内受到邻小区干扰的异向传输频段的PCFICH,第一基站在所述异向传输频段上的所有子帧的前j个OFDM符号上向第一UE发送PDCCH,其中,j为所述PCFICH
所包含的值。
或者,若所述PCFICH包括第一小区内受到邻小区干扰的异向传输子帧的PCFICH,第一基站在所述异向传输子帧的前j个OFDM符号上向第一UE发送PDCCH。
或者,若所述PCFICH包括第一小区内受到邻小区干扰的异向传输频段的PCFICH和第一小区内受到邻小区干扰的异向传输子帧的PCFICH,第一基站在所述异向传输频段上所述异常传输子帧的前j个OFDM符号上向第一UE发送PDCCH。
相应的,本发明实施例步骤S711中:
第一UE根据该控制信道指示信息,接收第一基站发送的PDCCH,具体可以包括:
若所述PCFICH包括第一小区内受到邻小区干扰的异向传输频段的PCFICH,第一UE在所述异向传输频段上的所有子帧的前j个OFDM符号上接收第一基站发送的PDCCH,其中,j为所述PCFICH所包含的值。
或者,若所述PCFICH包括第一小区内受到邻小区干扰的异向传输子帧的PCFICH,第一UE在所述异向传输子帧的前j个OFDM符号上接收第一基站发送的PDCCH。
或者,若所述PCFICH包括第一小区内受到邻小区干扰的异向传输频段的PCFICH和第一小区内受到邻小区干扰的异向传输子帧的PCFICH,第一UE在所述异向传输频段上所述异常传输子帧的前j个OFDM符号上接收所述第一基站发送的PDCCH。
需要说明的是,本发明实施例中的步骤S708-S711与步骤S702-S707之间没有必然的执行先后顺序,可以先执行步骤S708-S711,再执行步骤S702-S707;也可以先执行步骤S702-S707,再执行步骤S708-S711;还可以同时执行步骤S708-S711与步骤S702-S707,本发明实施例对此不作具体限定。
由于本发明实施例中,第一基站还可以向第一基站管理的小区内的第一UE发送控制信道指示信息,这样,第一UE可以根据该
控制信道指示信息进行资源合作来接收第一基站发送的PDCCH,从而抑制了上下行信号间的干扰,也就是异向传输的干扰,提高了网络通信的质量。进一步的,也解决了第一UE因受到邻小区的干扰而无法获取PDCCH的缺陷。
可选的,基于图7或图8所示的实施例,在第一基站确定第一小区的控制信道指示信息(步骤S701)之后,第一基站还可以与第一基站管理的小区内的第一UE(可以是第一基站管理的小区内的任意一个UE,比如UE1)交互,如图9所示,包括步骤S712a-S715a,或者步骤S712b-S715b,或者步骤S712c-S715c:
S712a、若控制信道指示信息包含第一小区内受到邻小区干扰的异向传输频段的控制信道指示信息,第一基站将异向传输频段配置为多播广播单频网(英文全称:multimedia broadcast multicast service single frequency network,英文简称:MBSFN)。
S713a、第一基站在该异向传输频段上向第一UE发送包含解调参考信号(英文全称:dedicated reference signal,英文简称:DRS)的下行数据。
S714a、第一UE在该异向传输频段上接收第一基站发送的包含DRS的下行数据。
S715a、第一UE基于DRS解调下行数据。
S712b、若控制信道指示信息包含第一小区内受到邻小区干扰的异向传输子帧的控制信道指示信息,第一基站将异向传输子帧配置为MBSFN。
S713b、第一基站在该异向传输子帧上向第一UE发送包含DRS的下行数据。
S714b、第一UE在该异向传输子帧上接收第一基站发送的包含DRS的下行数据。
S715b、第一UE基于DRS解调下行数据。
S712c、若控制信道指示信息包含第一小区内受到邻小区干扰的异向传输频段的控制信道指示信息和第一小区内受到邻小区干
扰的异向传输子帧的控制信道指示信息,第一基站将异向传输频段的异向传输子帧配置为MBSFN。
S713c、第一基站在该异向传输频段的异向传输子帧上向第一UE发送包含DRS的下行数据。
S714c、第一UE在该异向传输频段的异向传输子帧上接收第一基站发送的包含DRS的下行数据。
S715c、第一UE基于DRS解调下行数据。
需要说明的是,本发明实施例中,步骤S702-S707与步骤S712a-S715a,或者步骤S712b-S715b,或者步骤S712c-S715c之间没有必然的执行先后顺序,可以先执行S702-S707,再执行步骤S712a-S715a,或者步骤S712b-S715b,或者步骤S712c-S715c;也可以先执行步骤S712a-S715a,或者步骤S712b-S715b,或者步骤S712c-S715c,再执行S702-S707;也可以同时执行步骤S702-S707与步骤S712a-S715a,或者步骤S712b-S715b,或者步骤S712c-S715c,本发明实施例对此不作具体限定。
需要说明的是,图9所示的实施例仅是示例性的以图7所示的实施例为基础进行说明,当然,上述步骤S712a-S715a,或者步骤S712b-S715b,或者步骤S712c-S715c也可以包含在图8所示的实施例中,本发明实施例对此不作具体限定。
这样一来,当异向传输频段和/或异向传输子帧被配置为MBSFN,在该异向传输频段和/或异向传输子帧中通信的UE即可基于DRS解调,无需再基于小区专有导频(英文全称:cell-specific reference signal,英文简称CRS)解调;由于DRS功率远远小于CRS,相比于CRS,DRS产生的干扰很小;也就是说,来自CRS的干扰以及对CRS的干扰均被最小化,因此,减小了CRS与上行传输之间的异向干扰。
可选的,在图7至图9所示的实施例中,若所述控制信道指示信息具体包括PCFICH,第二基站根据控制信道指示信息,确定第二UE的上行信道可占用的资源信息(步骤S704),具体可以包括:
若所述PCFICH包括第一小区内受到邻小区干扰的异向传输频段的PCFICH,第二基站确定所述异向传输频段上所有子帧的最后(14-j)个OFDM符号为第二UE的上行信道可占用的资源信息,其中,j为所述PCFICH所包含的值。
或者,若所述PCFICH包括第一小区内受到邻小区干扰的异向传输子帧的PCFICH,第二基站确定所述异向传输子帧的最后(14-j)个OFDM符号为第二UE的上行信道可占用的资源信息。
或者,若所述PCFICH包括第一小区内受到邻小区干扰的异向传输频段的PCFICH和第一小区内受到邻小区干扰的异向传输子帧的PCFICH,第二基站确定所述异向传输频段上所述异常传输子帧的最后(14-j)个OFDM符号为第二UE的上行信道可占用的资源信息。
或者,可选的,本发明实施例中区分中心UE和边缘UE。
在图7至图9所示的实施例中,若所述控制信道指示信息具体包括PCFICH,当所述第二UE为所述第二小区的中心UE时,第二基站根据控制信道指示信息,确定第二UE的上行信道可占用的资源信息(步骤S704),具体可以包括:
若所述PCFICH包括第一小区内受到邻小区干扰的异向传输频段的PCFICH,第二基站确定所述异向传输频段上所有子帧的所有OFDM符号为第二UE的上行信道可占用的资源信息。
或者,若所述PCFICH包括第一小区内受到邻小区干扰的异向传输子帧的PCFICH,第二基站确定所述异向传输子帧的所有OFDM符号为第二UE的上行信道可占用的资源信息。
或者,若所述PCFICH包括第一小区内受到邻小区干扰的异向传输频段的PCFICH和第一小区内受到邻小区干扰的异向传输子帧的PCFICH,第二基站确定所述异向传输频段上所述异常传输子帧的所有OFDM符号为第二UE的上行信道可占用的资源信息。
可选的,在图7至图9所示的实施例中,若所述控制信道指示信息具体包括PCFICH,当所述第二UE为所述第二小区的边缘UE
时,第二基站根据控制信道指示信息,确定第二UE的上行信道可占用的资源信息(步骤S704),具体可以包括:
若所述PCFICH包括第一小区内受到邻小区干扰的异向传输频段的PCFICH,第二基站确定所述异向传输频段上所有子帧的最后(14-j)个OFDM符号为第二UE的上行信道可占用的资源信息,其中,j为所述PCFICH所包含的值。
或者,若所述PCFICH包括第一小区内受到邻小区干扰的异向传输子帧的PCFICH,第二基站确定所述异向传输子帧的最后(14-j)个OFDM符号为第二UE的上行信道可占用的资源信息。
或者,若所述PCFICH包括第一小区内受到邻小区干扰的异向传输频段的PCFICH和第一小区内受到邻小区干扰的异向传输子帧的PCFICH,第二基站确定所述异向传输频段上所述异常传输子帧的最后(14-j)个OFDM符号为第二UE的上行信道可占用的资源信息。
通过本发明实施例提供的第二基站根据控制信道指示信息,确定第二UE的上行信道可占用的资源信息的实现方式,结合上述第一UE根据控制信道指示信息,接收第一基站发送的PDCCH的具体实现可知,当存在异向传输时,上行信号和下行信号之间在时隙上可以错开,因此抑制了上下行信号间的干扰,也就是异向传输的干扰,提高了网络通信的质量。
示例性的,如图10所示,示意了一个异向传输子帧,假设在该异向传输子帧上,小区A被配置为下行,小区A的邻小区小区B被配置为上行。在UDN中,每个小区中包含少数UE,假定小区A在该异向传输子帧上的PCFICH所包含的值被设置为1,也即j=1,则小区A中的UE的PDCCH只被传输于第1个OFDM符号上;在小区B,可配置使用13个OFDM符号用于小区B中的边缘UE发送上行信道,或者,可配置所有的OFDM符号用于小区B中的中心UE发送上行信道。
其中,图10中的上行解调参考信号(英文全称:demodulation reference signal,英文缩写:DMRS)DMRS可以在上
行信道(比如PUCCH和/或PUSCH)上传输。
这样一来,小区B中的上行信道和小区A中的PDCCH之间在时隙上可以错开,因此抑制了上下行信号间的干扰,也就是异向传输的干扰,提高了网络通信的质量。
需要说明的是,本发明实施例中,可以认为中心UE对相邻小区的UE的下行接收的干扰可以被接受,或者可以容忍。也就是说,可以认为中心UE对控制信道的干扰贡献不大,因此,中心UE可以正常进行上行传输。
可选的,本发明实施例可以通过如下方式确定中心UE和边缘UE,包括:第二基站接收第二UE发送的参考信号参数,所述参考信号参数包括下述参数中的至少一个参数:
参考信号接收功率(英文全称:reference signal receiving power,英文简称:RSRP)值、和参考信号接收质量(英文全称:reference signal receiving quality,英文简称RSRQ)值;
若所述参考信号参数中的至少一个参数的值不小于预设门限,则第二基站确定第二UE为第二小区的中心UE;
若所述参考信号参数中所有参数的值均小于预设门限,则第二基站确定第二UE为第二小区的边缘UE。
如上所示,此处的“至少一个”可以是所列举的信息中的其中任意一个,也可以是多个的组合,本发明实施例对此不作具体限定。也就是说,参考信号参数具体可以包括RSRP值,或者RSRQ值,或者同时包括RSRP值和RSRQ值。其中,
当包含RSRP值时,若RSRP值不小于预设门限,则第二基站确定第二UE为第二小区的中心UE,否则确定第二UE为边缘UE。
当包含RSRQ值时,若RSRQ值不小于预设门限,则第二基站确定第二UE为第二小区的中心UE,否则确定第二UE为边缘UE。
当同时包含RSRP值和RSRQ值时,当RSRP值和RSRQ值中的任意一个值不小于预设门限时,第二基站确定第二UE为第二小区的中心UE;若RSRP值和RSRQ值均小于预设门限时,第二基
站确定第二UE为第二小区的边缘UE。
需要说明的是,本发明实施例中的预设门限可能为一个经验值,也可能为经过多次实验后获得的一个优选值,本发明实施例对此不作具体限定。
需要说明的是,上述仅是示例性的提供一种确定中心UE和边缘UE的方式。当然,还可能通过其它方式确定中心UE和边缘UE,本发明实施例对此不作具体限定。
可选的,基于图6所示的干扰抑制系统,本发明实施例还提供一种干扰抑制方法,以第一基站与第一基站管理的小区内的第一UE(可以是第一基站管理的小区内的任意一个UE,比如UE1)的交互为例进行说明,如图11所示,包括步骤S1101-S1105:
S1101、第一基站确定第一小区的控制信道指示信息。
其中,第一小区为第一基站管理的小区内的任意一个小区,控制信道指示信息具体可以包含下述信息中的至少一个信息:
第一小区内受到邻小区干扰的异向传输频段的控制信道指示信息、和第一小区内受到邻小区干扰的异向传输子帧的控制信道指示信息。
S1102、第一基站向第一UE发送控制信道指示信息。
S1103、第一UE接收第一基站发送的控制信道指示信息。
S1104、第一基站根据该控制信道指示信息,向第一UE发送PDCCH。
S1105、第一UE根据该控制信道指示信息,接收第一基站发送的PDCCH。
具体的,本发明实施例中步骤S1101-S1105的描述可参考上述图7或图8所示的实施例中的相关描述,本发明实施例在此不再赘述。
可选的,本发明实施例中,在第一基站确定第一小区的控制信道指示信息(步骤S1101)之后,还可以包括上述图9所示的实施例中的步骤S712a-S715a,或者步骤S712b-S715b,或者步骤
S712c-S715c,本发明实施例在此不再详细赘述,具体可参考图9所示的实施例中的相关描述。
区别于图7至图9所示的实施例,本发明实施例提供的干扰抑制方法中,并不存在第一基站与第二基站的交互,在第一基站确定第一小区的控制信道指示信息之后,直接将该控制信道指示信息发送给第一基站管理的小区中的第一UE,这样,第一UE可以根据该控制信道指示信息进行资源合作来接收第一基站发送的PDCCH,从而抑制了上下行信号间的干扰,也就是异向传输的干扰,提高了网络通信的质量。进一步的,也解决了第一UE因受到邻小区的干扰而无法获取PDCCH的缺陷。
可选的,基于图6所示的干扰抑制系统,本发明实施例还提供一种干扰抑制方法,以第二基站与第二基站管理的小区内的第二UE(可以是第二基站管理的小区内的任意一个UE,比如第二基站为基站2时,第二UE可以为UE3)的交互为例进行说明,如图12所示,包括步骤S1201-S1205:
S1201、第二基站获取第一小区的控制信道指示信息。
其中,第一小区为第一基站管理的小区内的任意一个小区,控制信道指示信息具体可以包含下述信息中的至少一个信息:
第一小区内受到邻小区干扰的异向传输频段的控制信道指示信息、和第一小区内受到邻小区干扰的异向传输子帧的控制信道指示信息。邻小区包括第二小区,所述第二小区为第二基站管理的小区内的任意一个小区。
S1202、第二基站根据该控制信道指示信息,确定第二UE的上行信道可占用的资源信息。
S1203、第二基站向第二UE发送资源信息。
S1204、第二UE接收第二基站发送的资源信息。
S1205、第二UE根据该资源信息,向第二基站发送上行数据。
具体的,本发明实施例步骤S1201中:
第二基站可以通过如图7所示的实施例中与第一基站交互的
方式获取第一小区的控制信道指示信息,即:
第二基站接收第一基站发送的第一小区的控制信道指示信息。
本发明实施例对该实现方式不再详细赘述,具体可参考图7所示的实施例中的相关描述。
区别于图7所示的实施例,本发明实施例提供的干扰抑制方法中,可以并不存在第一基站与第二基站的交互,此时,第二基站获取第一小区的控制信道指示信息具体可以包括:
第二基站将预配置的信息确定为第一小区的控制信道指示信息。
比如,若控制信道指示信息包含PCFICH,则第二基站可以将预配置的值确定为PCFICH所包含的值。
具体的,本发明实施例步骤S1202-S1205的描述具体可参考图7所示的实施例,本发明实施例在此不再赘述。
基于本发明实施例提供的干扰抑制方法,本发明实施例中,第二基站在确定第一基站管理的第一小区的控制信道指示信息之后,可以根据该控制信道指示信息,确定该第二基站管理的小区内的第二UE的上行信道可占用的资源信息,进而将该资源信息发送给第二UE,第二UE可以根据该资源信息发送上行资源。由于第二基站获知了第一小区的控制信道指示信息,因此可以根据该控制信道指示信息进行资源合作,在确定第二UE的上行信道可占用的资源信息时,避开第一小区的控制信道指示信息指示的控制信息,从而抑制了上下行信号间的干扰,也就是异向传输的干扰,提高了网络通信的质量。
可选的,基于图6所示的干扰抑制系统,本发明实施例还提供一种干扰抑制方法,以第一基站与第一基站管理的小区内的第一UE(可以是第一基站管理的小区内的任意一个UE,比如UE1)的交互为例进行说明,如图13所示,包括步骤S1301和1302a-S1305a,或者包括步骤S1301和1302b-S1305b,或者包括步骤S1301和1302c-S1305c:
S1301、第一基站确定第一小区的控制信道指示信息。
其中,第一小区为第一基站管理的小区内的任意一个小区,控制信道指示信息具体可以包含下述信息中的至少一个信息:
第一小区内受到邻小区干扰的异向传输频段的控制信道指示信息、和第一小区内受到邻小区干扰的异向传输子帧的控制信道指示信息。
S1302a、若控制信道指示信息包含第一小区内受到邻小区干扰的异向传输频段的控制信道指示信息,第一基站将异向传输频段配置为MBSFN。
S1303a、第一基站在该异向传输频段上向第一UE发送包含DRS的下行数据。
S1304a、第一UE在该异向传输频段上接收第一基站发送的包含DRS的下行数据。
S1305a、第一UE基于DRS解调下行数据。
S1302b、若控制信道指示信息包含第一小区内受到邻小区干扰的异向传输子帧的控制信道指示信息,第一基站将异向传输子帧配置为MBSFN。
S1303b、第一基站在该异向传输子帧上向第一UE发送包含DRS的下行数据。
S1304b、第一UE在该异向传输子帧上接收第一基站发送的包含DRS的下行数据。
S1305b、第一UE基于DRS解调下行数据。
S1302c、若控制信道指示信息包含第一小区内受到邻小区干扰的异向传输频段的控制信道指示信息和第一小区内受到邻小区干扰的异向传输子帧的控制信道指示信息,第一基站将异向传输频段的异向传输子帧配置为MBSFN。
S1303c、第一基站在该异向传输频段的异向传输子帧上向第一UE发送包含DRS的下行数据。
S1304c、第一UE在该异向传输频段的异向传输子帧上接收第
一基站发送的包含DRS的下行数据。
S1305c、第一UE基于DRS解调下行数据。
这样一来,当异向传输频段和/或异向传输子帧被配置为MBSFN,在该异向传输频段和/或异向传输子帧中通信的UE即可基于DRS解调,无需再基于小区专有导频(英文全称:cell-specific reference signal,英文简称CRS)解调;由于DRS功率远远小于CRS,相比于CRS,DRS产生的干扰很小;也就是说,来自CRS的干扰以及对CRS的干扰均被最小化,因此,减小了CRS与上行传输之间的异向干扰。
如图14所示,本发明实施例提供了一种干扰抑制装置,该装置可以为第一基站140,用于执行以上图7-图9所示的干扰抑制方法中第一基站所执行的步骤或者用于执行以上图11所示的干扰抑制方法中第一基站所执行的步骤。该第一基站140可以包括相应步骤所对应的单元,示例的,可以包括:处理单元1401和发送单元1402。
处理单元1401,用于确定第一小区的控制信道指示信息,所述第一小区为所述第一基站140管理的小区内的任意一个小区,所述控制信道指示信息包含下述信息中的至少一个信息:
所述第一小区内受到邻小区干扰的异向传输频段的控制信道指示信息、和所述第一小区内受到邻小区干扰的异向传输子帧的控制信道指示信息。
当第一基站140用于执行以上图7-图9所示的干扰抑制方法中第一基站所执行的步骤时,发送单元1402,用于向第二基站发送所述控制信道指示信息,所述第二基站为所述邻小区的基站。
当第一基站140用于执行以上图11所示的干扰抑制方法中第一基站所执行的步骤时,发送单元,用于向第一UE发送所述控制信道指示信息,所述第一UE为所述第一小区内的任意一个UE。
可选的,当第一基站140用于执行以上图7-图9所示的干扰抑制方法中第一基站所执行的步骤时,所述发送单元1402,还用于在
所述处理单元1401确定第一小区的控制信道指示信息之后,向第一UE发送所述控制信道指示信息,所述第一UE为所述第一小区内的任意一个UE。
可选的,当第一基站140用于执行以上图7-图9所示的干扰抑制方法中第一基站所执行的步骤或者用于执行以上图11所示的干扰抑制方法中第一基站所执行的步骤时,所述发送单元1402具体用于:
在预设的同向传输子帧中向第一UE发送所述控制信道指示信息。
或者,在预设的同向传输子帧中向第一UE发送RRC信今,所述RRC信今中包含所述控制信道指示信息。
或者,向第一UE发送系统信息,所述系统信息中包含所述控制信道指示信息。
或者,向第一UE发送时隙配比,所述时隙配比用于表征所述控制信道指示信息。
可选的,当第一基站140用于执行以上图7-图9所示的干扰抑制方法中第一基站所执行的步骤或者用于执行以上图11所示的干扰抑制方法中第一基站所执行的步骤时,所述发送单元1402,还用于在所述处理单元1401确定第一小区的控制信道指示信息之后,根据所述控制信道指示信息,向所述第一UE发送PDCCH。
进一步可选的,所述控制信道指示信息包括PCFICH。
所述发送单元1402具体用于:
若所述PCFICH包括所述第一小区内受到邻小区干扰的异向传输频段的PCFICH,在所述异向传输频段上的所有子帧的前j个OFDM符号上向所述第一UE发送PDCCH,其中,j为所述PCFICH所包含的值。
或者,若所述PCFICH包括所述第一小区内受到邻小区干扰的异向传输子帧的PCFICH,在所述异向传输子帧的前j个OFDM符号上向所述第一UE发送PDCCH。
或者,若所述PCFICH包括所述第一小区内受到邻小区干扰的异向传输频段的PCFICH和所述第一小区内受到邻小区干扰的异向传输子帧的PCFICH,在所述异向传输频段上所述异常传输子帧的前j个OFDM符号上向所述第一UE发送PDCCH。
可选的,当第一基站140用于执行以上图7-图9所示的干扰抑制方法中第一基站所执行的步骤或者用于执行以上图11所示的干扰抑制方法中第一基站所执行的步骤时,所述处理单元1401,还用于在确定第一小区的控制信道指示信息之后,若所述控制信道指示信息包含所述第一小区内受到邻小区干扰的异向传输频段的控制信道指示信息,将所述异向传输频段配置为MBSFN。
所述发送单元1402,还用于在所述异向传输频段上向第一UE发送包含DRS的下行数据,所述第一UE为所述第一小区内的任意一个UE。
或者,所述处理单元1401,还用于若所述控制信道指示信息包含所述第一小区内受到邻小区干扰的异向传输频子帧控制信道指示信息,将所述异向传输子帧配置为MBSFN。
所述发送单元1402,还用于在所述异向传输频段上向所述第一UE发送包含DRS的下行数据。
或者,所述处理单元1401,还用于若所述控制信道指示信息包含所述第一小区内受到邻小区干扰的异向传输频段的控制信道指示信息和所述第一小区内受到邻小区干扰的异向传输频子帧控制信道指示信息,将所述第一小区内受到邻小区干扰的异向传输频段上的所述异向传输子帧配置为MBSFN。
所述发送单元1402,还用于在所述异向传输频段上的所述异向传输子帧上向所述第一UE发送包含DRS的下行数据。
可选的,本发明实施例中,所述异向传输频段可以为被配置为灵活半双工进行异向传输的频段,所述异向传输子帧可以为所述异向传输频段上的被配置为异向传输的子帧。
可选的,本发明实施例中,所述处理单元1401具体可以用于:
将预配置的信息确定为所述第一小区的控制信道指示信息。
可以理解,本发明实施例的第一基站140可对应于上述图7-图9所示的干扰抑制方法中第一基站或者可对应于上述图11所示的干扰抑制方法中第一基站,并且本发明实施例的第一基站140中的各个单元的划分和/或功能等均是为了实现上述图7-图9所示的干扰抑制方法流程或者上述图11所示的干扰抑制方法流程,为了简洁,在此不再赘述。
由于本发明实施例中的第一基站140可以用于执行上述方法流程,因此,其所能获得的技术效果也可参考上述方法实施例,本发明实施例在此不再赘述。
如图15所示,本发明实施例提供了一种干扰抑制装置,该装置可以为第二基站150,用于执行以上图7-图9、以及图12所示的干扰抑制方法中第二基站所执行的步骤。该第二基站150可以包括相应步骤所对应的单元,示例的,可以包括:处理单元1501和发送单元1502。
处理单元1501,用于获取第一小区的控制信道指示信息,所述第一小区为第一基站管理的小区内的任意一个小区,所述控制信道指示信息包含下述信息中的至少一个信息:
所述第一小区内受到邻小区干扰的异向传输频段的控制信道指示信息、和所述第一小区内受到邻小区干扰的异向传输子帧的控制信道指示信息,所述邻小区包括第二小区,所述第二小区为所述第二基站150管理的小区内的任意一个小区。
处理单元1501,还用于根据所述控制信道指示信息,确定第二用户设备UE的上行信道可占用的资源信息,其中,所述第二UE为所述第二小区内的任意一个UE;
发送单元1502,用于向所述第二UE发送所述资源信息。
可选的,所述控制信道指示信息包括PCFICH。
所述处理单元1501具体用于:
若所述PCFICH包括所述第一小区内受到邻小区干扰的异向传
输频段的PCFICH,确定所述异向传输频段上所有子帧的最后(14-j)个OFDM符号为所述第二UE的上行信道可占用的资源信息,其中,j为所述PCFICH所包含的值。
或者,若所述PCFICH包括所述第一小区内受到邻小区干扰的异向传输子帧的PCFICH,确定所述异向传输子帧的最后(14-j)个OFDM符号为所述第二UE的上行信道可占用的资源信息。
或者,若所述PCFICH包括所述第一小区内受到邻小区干扰的异向传输频段的PCFICH和所述第一小区内受到邻小区干扰的异向传输子帧的PCFICH,确定所述异向传输频段上所述异常传输子帧的最后(14-j)个OFDM符号为所述第二UE的上行信道可占用的资源信息。
可选的,所述控制信道指示信息包括PCFICH。
若所述第二UE为所述第二小区的中心UE,所述处理单元1501具体用于:
若所述PCFICH包括所述第一小区内受到邻小区干扰的异向传输频段的PCFICH,确定所述异向传输频段上所有子帧的所有OFDM符号为所述第二UE的上行信道可占用的资源信息。
或者,若所述PCFICH包括所述第一小区内受到邻小区干扰的异向传输子帧的PCFICH,确定所述异向传输子帧的所有OFDM符号为所述第二UE的上行信道可占用的资源信息。
或者,若所述PCFICH包括所述第一小区内受到邻小区干扰的异向传输频段的PCFICH和所述第一小区内受到邻小区干扰的异向传输子帧的PCFICH,确定所述异向传输频段上所述异常传输子帧的所有OFDM符号为所述第二UE的上行信道可占用的资源信息。
可选的,若所述第二UE为所述第二小区的边缘UE,所述处理单元1501具体用于:
若所述PCFICH包括所述第一小区内受到邻小区干扰的异向传输频段的PCFICH,确定所述异向传输频段上所有子帧的最后(14-j)个OFDM符号为所述第二UE的上行信道可占用的资源信息,其中,
j为所述PCFICH所包含的值。
或者,若所述PCFICH包括所述第一小区内受到邻小区干扰的异向传输子帧的PCFICH,确定所述异向传输子帧的最后(14-j)个OFDM符号为所述第二UE的上行信道可占用的资源信息。
或者,若所述PCFICH包括所述第一小区内受到邻小区干扰的异向传输频段的PCFICH和所述第一小区内受到邻小区干扰的异向传输子帧的PCFICH,确定所述异向传输频段上所述异常传输子帧的最后(14-j)个OFDM符号为所述第二UE的上行信道可占用的资源信息。
可选的,如图16所示,所述第二基站150还包括接收单元1503。
所述接收单元1503,用于在所述处理单元1501根据所述控制信道指示信息,确定第二UE的上行信道可占用的资源信息之前,接收所述第二UE发送的参考信号参数,所述参考信号参数包括下述参数中的至少一个参数:RSRP值、和RSRQ值。
所述处理单元1501,还用于若所述参考信号参数中的至少一个参数的值不小于预设门限,确定所述第二UE为所述第二小区的中心UE。
所述处理单元1501,还用于若所述参考信号参数中所有参数的值均小于所述预设门限,确定所述第二UE为所述第二小区的边缘UE。
可选的,所述异向传输频段为被配置为灵活半双工进行异向传输的频段,所述异向传输子帧为所述异向传输频段上的被配置为异向传输的子帧。
可选的,如图16所示,所述第二基站150还包括接收单元1503。
所述处理单元1501具体用于:
通过所述接收单元1503接收所述第一基站发送的第一小区的控制信道指示信息。
可选的,所述处理单元1501具体用于:
将预配置的信息确定为所述第一小区的控制信道指示信息。
可以理解,本发明实施例的第二基站150可对应于上述图7-图9、以及图12所示的干扰抑制方法中第二基站,并且本发明实施例的第二基站150中的各个单元的划分和/或功能等均是为了实现上述图7-图9、以及图12所示的干扰抑制方法流程,为了简洁,在此不再赘述。
由于本发明实施例中的第二基站150可以用于执行上述方法流程,因此,其所能获得的技术效果也可参考上述方法实施例,本发明实施例在此不再赘述。
如图17所示,本发明实施例提供了一种干扰抑制装置,该装置可以为第一UE170,用于执行以上图8、图9、以及图11所示的干扰抑制方法中第一UE所执行的步骤。该第一UE170可以包括相应步骤所对应的单元,示例的,可以包括:接收单元1701。
所述接收单元1701,用于接收第一基站发送的第一小区的控制信道指示信息,所述第一小区为所述第一基站管理的小区内的任意一个小区,所述第一UE170为所述第一小区内的任意一个UE,所述控制信道指示信息包含下述信息中的至少一个信息:
所述第一小区内受到邻小区干扰的异向传输频段的控制信道指示信息、和所述第一小区内受到邻小区干扰的异向传输子帧的控制信道指示信息。
所述接收单元1701,还用于根据所述控制信道指示信息,接收所述第一基站发送的PDCCH。
可选的,所述接收单元1701具体用于:
在预设的同向传输子帧中接收第一基站发送的第一小区的控制信道指示信息。
或者,在预设的同向传输子帧中接收第一基站发送的无线资源控制RRC信今,所述RRC信今中包含第一小区的控制信道指示信息。
或者,接收第一基站发送的系统信息,所述系统信息中包含第一小区的控制信道指示信息。
或者,接收第一基站发送的时隙配比,所述时隙配比用于表征第一小区的控制信道指示信息。
可选的,所述控制信道指示信息包括PCFICH。
所述接收单元1701具体用于:
若所述PCFICH包括所述第一小区内受到邻小区干扰的异向传输频段的PCFICH,在所述异向传输频段上的所有子帧的前j个OFDM符号上接收所述第一基站发送的PDCCH,其中,j为所述PCFICH所包含的值。
或者,若所述PCFICH包括所述第一小区内受到邻小区干扰的异向传输子帧的PCFICH,在所述异向传输子帧的前j个OFDM符号上接收所述第一基站发送的PDCCH。
或者,若所述PCFICH包括所述第一小区内受到邻小区干扰的异向传输频段的PCFICH和所述第一小区内受到邻小区干扰的异向传输子帧的PCFICH,在所述异向传输频段上所述异常传输子帧的前j个OFDM符号上接收所述第一基站发送的PDCCH。
可选的,所述异向传输频段为被配置为灵活半双工进行异向传输的频段,所述异向传输子帧为所述异向传输频段上的被配置为异向传输的子帧。
可以理解,本发明实施例的第一UE170可对应于上述图8、图9、以及图11所示的干扰抑制方法中第一UE,并且本发明实施例的第一UE170中的各个单元的划分和/或功能等均是为了实现上述图8、图9、以及图11所示的干扰抑制方法流程,为了简洁,在此不再赘述。
由于本发明实施例中的第一UE170可以用于执行上述方法流程,因此,其所能获得的技术效果也可参考上述方法实施例,本发明实施例在此不再赘述。
如图14所示,本发明实施例提供了一种干扰抑制装置,该装置可以为第一基站140,用于执行以上图13所示的干扰抑制方法中第一基站所执行的步骤。该第一基站140可以包括相应步骤所对应
的单元,示例的,可以包括:处理单元1401和发送单元1402。
所述处理单元1401,用于获取第一小区的控制信道指示信息,所述第一小区为第一基站140管理的小区内的任意一个小区,所述控制信道指示信息包含下述信息中的至少一个信息:
所述第一小区内受到邻小区干扰的异向传输频段的控制信道指示信息、和所述第一小区内受到邻小区干扰的异向传输子帧的控制信道指示信息,所述邻小区包括第二小区,所述第二小区为所述第二基站管理的小区内的任意一个小区。
所述处理单元1401,还用于若所述控制信道指示信息包含所述第一小区内受到邻小区干扰的异向传输频段的控制信道指示信息,将所述异向传输频段配置为MBSFN。
所述发送单元1402,用于在所述异向传输频段上向第一UE发送包含解调参考信号DRS的下行数据,所述第一UE为所述第一小区内的任意一个UE。
或者,所述处理单元1401,还用于若所述控制信道指示信息包含所述第一小区内受到邻小区干扰的异向传输频子帧控制信道指示信息,将所述异向传输子帧配置为MBSFN。
所述发送单元1402,用于在所述异向传输频段上向所述第一UE发送包含DRS的下行数据。
或者,所述处理单元1401,还用于若所述控制信道指示信息包含所述第一小区内受到邻小区干扰的异向传输频段的控制信道指示信息和所述第一小区内受到邻小区干扰的异向传输频子帧控制信道指示信息,将所述第一小区内受到邻小区干扰的异向传输频段上的所述异向传输子帧配置为MBSFN。
所述发送单元1402,用于在所述异向传输频段上的所述异向传输子帧上向所述第一UE发送包含DRS的下行数据。
可以理解,本发明实施例的第一基站140可对应于上述图13所示的干扰抑制方法中第一基站,并且本发明实施例的第一基站140中的各个单元的划分和/或功能等均是为了实现上述图13所示
的干扰抑制方法流程,为了简洁,在此不再赘述。
由于本发明实施例中的第一基站140可以用于执行上述方法流程,因此,其所能获得的技术效果也可参考上述方法实施例,本发明实施例在此不再赘述。
如图18所示,本发明实施例提供了一种干扰抑制装置,该装置可以为第一UE180,用于执行以上图13所示的干扰抑制方法中第一UE所执行的步骤。该第一UE180可以包括相应步骤所对应的单元,示例的,可以包括:接收单元1801和处理单元1802。
所述接收单元1801,用于在异向传输频段上接收第一基站发送的包含DRS的下行数据,其中,所述异向传输频段被配置为MBSFN。
所述处理单元1802,用于基于DRS解调下行数据。
或者,所述接收单元1801,用于在异向传输子帧上接收第一基站发送的包含DRS的下行数据,其中,所述异向子帧频段被配置为MBSFN。
所述处理单元1802,用于基于DRS解调下行数据。
或者,所述接收单元1801,用于在异向传输频段的异向传输子帧上接收第一基站发送的包含DRS的下行数据,其中,所述异向传输频段的异向子帧频段被配置为MBSFN。
所述处理单元1802,用于基于DRS解调下行数据。
可以理解,本发明实施例的第一UE180可对应于上述图13所示的干扰抑制方法中第一UE,并且本发明实施例的第一UE180中的各个单元的划分和/或功能等均是为了实现上述图13所示的干扰抑制方法流程,为了简洁,在此不再赘述。
由于本发明实施例中的第一UE180可以用于执行上述方法流程,因此,其所能获得的技术效果也可参考上述方法实施例,本发明实施例在此不再赘述。
如图19所示,本发明实施例提供了一种干扰抑制装置,该装置可以为第一基站190,包括:处理器1901、存储器1902、总线
1903和通信接口1904。
所述存储器1902用于存储计算机执行指令,所述处理器1901与所述存储器1902通过所述总线1903连接,当所述第一基站190运行时,所述处理器1901执行所述存储器1902存储的所述计算机执行指令,以使所述第一基站190执行以上图7-图9所示的干扰抑制方法中第一基站所执行的步骤,或者用于执行以上图11所示的干扰抑制方法中第一基站所执行的步骤,或者用于执行以上图13所示的干扰抑制方法中第一基站所执行的步骤。具体的干扰抑制方法可参见上述图7-图9所示的实施例中的相关描述或者上述图11所示的实施例中的相关描述或者上述图13所示的实施例中的相关描述,此处不再赘述。
其中,本发明实施例中的处理器1901可以是一个中央处理器(英文全称:central processing unit,英文缩写:CPU),还可以为其他通用处理器、数字信号处理器(英文全称:digital signal processing,英文缩写:DSP)、专用集成电路(英文全称:application specific integrated circuit,英文缩写:ASIC)、现场可编程门阵列(英文全称:field-programmable gate array,英文缩写:FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件等。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。另外,该处理器还可以为专用处理器,该专用处理器可以包括基带处理芯片、射频处理芯片等中的至少一个。进一步地,该专用处理器还可以包括具有第一基站190其他专用处理功能的芯片。
存储器1902可以包括易失性存储器(英文:volatile memory),例如随机存取存储器(英文全称:random-access memory,英文缩写:RAM);存储器1902也可以包括非易失性存储器(英文:non-volatile memory),例如只读存储器(英文全称:read-only memory,英文缩写:ROM),快闪存储器(英文:flash memory),硬盘(英文全称:hard disk drive,英文缩写:HDD)或固态硬盘(英
文全称:solid-state drive,英文缩写:SSD);另外,存储器1902还可以包括上述种类的存储器的组合。
总线1903可以包括数据总线、电源总线、控制总线和信号状态总线等。本实施例中为了清楚说明,在图19中将各种总线都示意为总线1903。
通信接口1904具体可以是第一基站190上的收发器。该收发器可以为无线收发器。例如,无线收发器可以是第一基站190的天线等。处理器1901通过通信接口1904与其他设备,例如第一UE之间进行数据的收发。
在具体实现过程中,上述如图7-图9、图11、以及图13所示的方法流程中的各步骤均可以通过硬件形式的处理器1901执行存储器1902中存储的软件形式的计算机执行指令实现。为避免重复,此处不再赘述。
由于本发明实施例提供的第一基站190可用于执行上述方法流程,因此其所能获得的技术效果可参考上述方法实施例,此处不再赘述。
如图20所示,本发明实施例提供了一种干扰抑制装置,该装置可以为第二基站200,包括:处理器2001、存储器2002、总线2003和通信接口2004。
所述存储器2002用于存储计算机执行指令,所述处理器2001与所述存储器2002通过所述总线2003连接,当所述第二基站200运行时,所述处理器2001执行所述存储器2002存储的所述计算机执行指令,以使所述第二基站200执行以上图7-图9、以及图12所示的干扰抑制方法中第二基站所执行的步骤。具体的干扰抑制方法可参见上述图7-图9、以及图12所示的实施例中的相关描述,此处不再赘述。
其中,本发明实施例中的处理器2001可以为CPU,或者还可以为其他通用处理器、DSP、ASIC、FPGA或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件等。通用处理器可
以是微处理器或者该处理器也可以是任何常规的处理器等。
处理器2001还可以为专用处理器,该专用处理器可以包括基带处理芯片、射频处理芯片等中的至少一个。进一步地,该专用处理器还可以包括具有第二基站200其他专用处理功能的芯片。
存储器2002可以包括易失性存储器,例如RAM;存储器2002也可以包括非易失性存储器,例如ROM,快闪存储器,硬盘或固态硬盘;另外,存储器2002还可以包括上述种类的存储器的组合。
总线2003可以包括数据总线、电源总线、控制总线和信号状态总线等。本实施例中为了清楚说明,在图20中将各种总线都示意为总线2003。
通信接2004具体可以是第二基站200上的收发器。该收发器可以为无线收发器。例如,无线收发器可以是第二基站200的天线等。处理器2001通过通信接2004与其他设备,例如第二UE之间进行数据的收发。
在具体实现过程中,上述如图7-图9、以及图12所示的方法流程中的各步骤均可以通过硬件形式的处理器2001执行存储器2002中存储的软件形式的计算机执行指令实现。为避免重复,此处不再赘述。
由于本发明实施例提供的第二基站200可用于执行上述方法流程,因此其所能获得的技术效果可参考上述方法实施例,此处不再赘述。
如图21所示,本发明实施例提供了一种干扰抑制装置,该装置可以为第一UE210,包括:处理器2101、存储器2102、总线2103和通信接口2104。
所述存储器2102用于存储计算机执行指令,所述处理器2101与所述存储器2102通过所述总线2103连接,当所述第一UE210运行时,所述处理器2101执行所述存储器2102存储的所述计算机执行指令,以使所述第一UE210执行以上图8、图9、以及图11所示的干扰抑制方法中第一UE所执行的步骤,或者执行以上图13
所示的干扰抑制方法中第一UE所执行的步骤。具体的干扰抑制方法可参见上述图8、图9、图11、或者图13所示的实施例中的相关描述,此处不再赘述。
其中,本发明实施例中的处理器2101可以为CPU,或者还可以为其他通用处理器、DSP、ASIC、FPGA或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件等。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。
处理器2101还可以为专用处理器,该专用处理器可以包括基带处理芯片、射频处理芯片等中的至少一个。进一步地,该专用处理器还可以包括具有第一UE210其他专用处理功能的芯片。
存储器2102可以包括易失性存储器,例如RAM;存储器2102也可以包括非易失性存储器,例如ROM,快闪存储器,硬盘或固态硬盘;另外,存储器2102还可以包括上述种类的存储器的组合。
总线2103可以包括数据总线、电源总线、控制总线和信号状态总线等。本实施例中为了清楚说明,在图21中将各种总线都示意为总线2103。
通信接口2104具体可以是第一UE210上的收发器。该收发器可以为无线收发器。例如,无线收发器可以是第一UE210的天线等。处理器2101通过通信接口2104与其他设备,例如第一基站之间进行数据的收发。
在具体实现过程中,上述如图8、图9、图11、以及图13所示的方法流程中的各步骤均可以通过硬件形式的处理器2101执行存储器2102中存储的软件形式的计算机执行指令实现。为避免重复,此处不再赘述。
由于本发明实施例提供的第一UE210可用于执行上述方法流程,因此其所能获得的技术效果可参考上述方法实施例,此处不再赘述。
可选的,本实施例还提供一种可读介质,包括计算机执行指令,当第一基站的处理器执行该计算机执行指令时,该第一基站可以执
行如图7-图9所示的干扰抑制方法中第一基站所执行的步骤,或者执行如图11所示的干扰抑制方法中第一基站所执行的步骤,或者执行如图13所示的干扰抑制方法中第一基站所执行的步骤。具体的干扰抑制方法可参见上述如图7-图9,图11以及图13所示的实施例中的相关描述,此处不再赘述。
可选的,本实施例还提供一种可读介质,包括计算机执行指令,当第二基站的处理器执行该计算机执行指令时,该第二基站可以执行如图7-图9、以及图12所示的干扰抑制方法中第二基站所执行的步骤。具体的干扰抑制方法可参见上述如图7-图9、以及图12所示的实施例中的相关描述,此处不再赘述。
可选的,本实施例还提供一种可读介质,包括计算机执行指令,当第一UE的处理器执行该计算机执行指令时,该第一UE可以执行如图8、图9、以及图11所示的干扰抑制方法中第一UE所执行的步骤或者执行如图13所示的干扰抑制方法中第一UE所执行的步骤。具体的干扰抑制方法可参见上述如图8、图9、图11以及图13所示的实施例中的相关描述,此处不再赘述。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的装置,仅以上述各功能模块的划分进行举例说明,实际应用中,可以根据需要而将上述功能分配由不同的功能模块完成,即将装置的内部结构划分成不同的功能模块,以完成以上描述的全部或者部分功能。上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统,装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述模块或单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信
连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本发明各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用软件功能单元的形式实现。
所述集成的单元如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本发明的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的全部或部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)或处理器(processor)执行本发明各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、ROM、RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,仅为本发明的具体实施方式,但本发明的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本发明的保护范围之内。因此,本发明的保护范围应以所述权利要求的保护范围为准。
Claims (51)
- 一种干扰抑制方法,其特征在于,所述方法包括:第一基站确定第一小区的控制信道指示信息,所述第一小区为所述第一基站管理的小区内的任意一个小区,所述控制信道指示信息包含下述信息中的至少一个信息:所述第一小区内受到邻小区干扰的异向传输频段的控制信道指示信息、和所述第一小区内受到邻小区干扰的异向传输子帧的控制信道指示信息;所述第一基站向第二基站发送所述控制信道指示信息,所述第二基站为所述邻小区的基站。
- 根据权利要求1所述的方法,其特征在于,在所述第一基站确定第一小区的控制信道指示信息之后,还包括:所述第一基站向第一用户设备UE发送所述控制信道指示信息,所述第一UE为所述第一小区内的任意一个UE。
- 根据权利要求2所述的方法,其特征在于,所述第一基站向第一UE发送所述控制信道指示信息,包括:所述第一基站在预设的同向传输子帧中向第一UE发送所述控制信道指示信息;或者,所述第一基站在预设的同向传输子帧中向第一UE发送无线资源控制RRC信令,所述RRC信令中包含所述控制信道指示信息;或者,所述第一基站向第一UE发送系统信息,所述系统信息中包含所述控制信道指示信息;或者,所述第一基站向第一UE发送时隙配比,所述时隙配比用于表征所述控制信道指示信息。
- 根据权利要求2或3所述的方法,其特征在于,在所述第一基站确定第一小区的控制信道指示信息之后,还包括:所述第一基站根据所述控制信道指示信息,向所述第一UE发送下行控制信道PDCCH。
- 根据权利要求4所述的方法,其特征在于,所述控制信道指 示信息包括物理控制格式指示信道PCFICH;所述第一基站根据所述控制信道指示信息,向所述第一UE发送PDCCH,包括:若所述PCFICH包括所述第一小区内受到邻小区干扰的异向传输频段的PCFICH,所述第一基站在所述异向传输频段上的所有子帧的前j个正交频分复用OFDM符号上向所述第一UE发送PDCCH,其中,j为所述PCFICH所包含的值;或者,若所述PCFICH包括所述第一小区内受到邻小区干扰的异向传输子帧的PCFICH,所述第一基站在所述异向传输子帧的前j个OFDM符号上向所述第一UE发送PDCCH;或者,若所述PCFICH包括所述第一小区内受到邻小区干扰的异向传输频段的PCFICH和所述第一小区内受到邻小区干扰的异向传输子帧的PCFICH,所述第一基站在所述异向传输频段上所述异常传输子帧的前j个OFDM符号上向所述第一UE发送PDCCH。
- 根据权利要求1-5任一项所述的方法,其特征在于,在所述第一基站确定第一小区的控制信道指示信息之后,还包括:若所述控制信道指示信息包含所述第一小区内受到邻小区干扰的异向传输频段的控制信道指示信息,所述第一基站将所述异向传输频段配置为多播广播单频网MBSFN,并在所述异向传输频段上向第一UE发送包含解调参考信号DRS的下行数据,所述第一UE为所述第一小区内的任意一个UE;或者,若所述控制信道指示信息包含所述第一小区内受到邻小区干扰的异向传输频子帧控制信道指示信息,所述第一基站将所述异向传输子帧配置为MBSFN,并在所述异向传输频段上向所述第一UE发送包含DRS的下行数据;或者,若所述控制信道指示信息包含所述第一小区内受到邻小区干扰的异向传输频段的控制信道指示信息和所述第一小区内受到邻小区干扰的异向传输频子帧控制信道指示信息,所述第一基站将所述第一小区内受到邻小区干扰的异向传输频段上的所述异向传输子帧配置 为MBSFN,并在所述异向传输频段上的所述异向传输子帧上向所述第一UE发送包含DRS的下行数据。
- 根据权利要求1-6任一项所述的方法,其特征在于,所述异向传输频段为被配置为灵活半双工进行异向传输的频段,所述异向传输子帧为所述异向传输频段上的被配置为异向传输的子帧。
- 根据权利要求1-7任一项所述的方法,其特征在于,所述第一基站确定第一小区的控制信道指示信息,包括:所述第一基站将预配置的信息确定为所述第一小区的控制信道指示信息。
- 一种干扰抑制方法,其特征在于,所述方法包括:第二基站获取第一小区的控制信道指示信息,所述第一小区为第一基站管理的小区内的任意一个小区,所述控制信道指示信息包含下述信息中的至少一个信息:所述第一小区内受到邻小区干扰的异向传输频段的控制信道指示信息、和所述第一小区内受到邻小区干扰的异向传输子帧的控制信道指示信息,所述邻小区包括第二小区,所述第二小区为所述第二基站管理的小区内的任意一个小区;所述第二基站根据所述控制信道指示信息,确定第二用户设备UE的上行信道可占用的资源信息,其中,所述第二UE为所述第二小区内的任意一个UE;所述第二基站向所述第二UE发送所述资源信息。
- 根据权利要求9所述的方法,其特征在于,所述控制信道指示信息包括物理控制格式指示信道PCFICH;所述第二基站根据所述控制信道指示信息,确定第二UE的上行信道可占用的资源信息,包括:若所述PCFICH包括所述第一小区内受到邻小区干扰的异向传输频段的PCFICH,所述第二基站确定所述异向传输频段上所有子帧的最后(14-j)个正交频分复用OFDM符号为所述第二UE的上行信道可占用的资源信息,其中,j为所述PCFICH所包含的值;或者,若所述PCFICH包括所述第一小区内受到邻小区干扰的异向传输子帧的PCFICH,所述第二基站确定所述异向传输子帧的最后(14-j)个OFDM符号为所述第二UE的上行信道可占用的资源信息;或者,若所述PCFICH包括所述第一小区内受到邻小区干扰的异向传输频段的PCFICH和所述第一小区内受到邻小区干扰的异向传输子帧的PCFICH,所述第二基站确定所述异向传输频段上所述异常传输子帧的最后(14-j)个OFDM符号为所述第二UE的上行信道可占用的资源信息。
- 根据权利要求9所述的方法,其特征在于,所述控制信道指示信息包括物理控制格式指示信道PCFICH;若所述第二UE为所述第二小区的中心UE,所述第二基站根据所述控制信道指示信息,确定第二UE的上行信道可占用的资源信息,包括:若所述PCFICH包括所述第一小区内受到邻小区干扰的异向传输频段的PCFICH,所述第二基站确定所述异向传输频段上所有子帧的所有OFDM符号为所述第二UE的上行信道可占用的资源信息;或者,若所述PCFICH包括所述第一小区内受到邻小区干扰的异向传输子帧的PCFICH,所述第二基站确定所述异向传输子帧的所有OFDM符号为所述第二UE的上行信道可占用的资源信息;或者,若所述PCFICH包括所述第一小区内受到邻小区干扰的异向传输频段的PCFICH和所述第一小区内受到邻小区干扰的异向传输子帧的PCFICH,所述第二基站确定所述异向传输频段上所述异常传输子帧的所有OFDM符号为所述第二UE的上行信道可占用的资源信息。
- 根据权利要求10所述的方法,其特征在于,若所述第二UE为所述第二小区的边缘UE,所述第二基站根据所述控制信道指示信息,确定第二UE的上行信道可占用的资源信息,包括:若所述PCFICH包括所述第一小区内受到邻小区干扰的异向传输频段的PCFICH,所述第二基站确定所述异向传输频段上所有子帧 的最后(14-j)个OFDM符号为所述第二UE的上行信道可占用的资源信息,其中,j为所述PCFICH所包含的值;或者,若所述PCFICH包括所述第一小区内受到邻小区干扰的异向传输子帧的PCFICH,所述第二基站确定所述异向传输子帧的最后(14-j)个OFDM符号为所述第二UE的上行信道可占用的资源信息;或者,若所述PCFICH包括所述第一小区内受到邻小区干扰的异向传输频段的PCFICH和所述第一小区内受到邻小区干扰的异向传输子帧的PCFICH,所述第二基站确定所述异向传输频段上所述异常传输子帧的最后(14-j)个OFDM符号为所述第二UE的上行信道可占用的资源信息。
- 根据权利要求11或12所述的方法,其特征在于,在所述第二基站根据所述控制信道指示信息,确定第二UE的上行信道可占用的资源信息之前,还包括:所述第二基站接收所述第二UE发送的参考信号参数,所述参考信号参数包括下述参数中的至少一个参数:参考信号接收功率RSRP值、和参考信号接收质量RSRQ值;若所述参考信号参数中的至少一个参数的值不小于预设门限,则所述第二基站确定所述第二UE为所述第二小区的中心UE;若所述参考信号参数中所有参数的值均小于所述预设门限,则所述第二基站确定所述第二UE为所述第二小区的边缘UE。
- 根据权利要求9-13任一项所述的方法,其特征在于,所述异向传输频段为被配置为灵活半双工进行异向传输的频段,所述异向传输子帧为所述异向传输频段上的被配置为异向传输的子帧。
- 根据权利要求9-14任一项所述的方法,其特征在于,所述第二基站获取第一小区的控制信道指示信息,包括:所述第二基站接收所述第一基站发送的第一小区的控制信道指示信息。
- 根据权利要求9-14任一项所述的方法,其特征在于,所述第二基站获取第一小区的控制信道指示信息,包括:所述第二基站将预配置的信息确定为所述第一小区的控制信道指示信息。
- 一种干扰抑制方法,其特征在于,所述方法包括:第一用户设备UE接收第一基站发送的第一小区的控制信道指示信息,所述第一小区为所述第一基站管理的小区内的任意一个小区,所述第一UE为所述第一小区内的任意一个UE,所述控制信道指示信息包含下述信息中的至少一个信息:所述第一小区内受到邻小区干扰的异向传输频段的控制信道指示信息、和所述第一小区内受到邻小区干扰的异向传输子帧的控制信道指示信息;所述第一UE根据所述控制信道指示信息,接收所述第一基站发送的物理下行控制信道PDCCH。
- 根据权利要求17所述的方法,其特征在于,所述第一UE接收第一基站发送的第一小区的控制信道指示信息,包括:所述第一UE在预设的同向传输子帧中接收第一基站发送的第一小区的控制信道指示信息;或者,所述第一UE在预设的同向传输子帧中接收第一基站发送的无线资源控制RRC信令,所述RRC信令中包含第一小区的控制信道指示信息;或者,所述第一UE接收第一基站发送的系统信息,所述系统信息中包含第一小区的控制信道指示信息;或者,所述第一UE接收第一基站发送的时隙配比,所述时隙配比用于表征第一小区的控制信道指示信息。
- 根据权利要求17或18所述的方法,其特征在于,所述控制信道指示信息包括物理控制格式指示信道PCFICH;所述第一UE根据所述控制信道指示信息,接收所述第一基站发送的PDCCH,包括:若所述PCFICH包括所述第一小区内受到邻小区干扰的异向传输频段的PCFICH,所述第一UE在所述异向传输频段上的所有子帧 的前j个正交频分复用OFDM符号上接收所述第一基站发送的PDCCH,其中,j为所述PCFICH所包含的值;或者,若所述PCFICH包括所述第一小区内受到邻小区干扰的异向传输子帧的PCFICH,所述第一UE在所述异向传输子帧的前j个OFDM符号上接收所述第一基站发送的PDCCH;或者,若所述PCFICH包括所述第一小区内受到邻小区干扰的异向传输频段的PCFICH和所述第一小区内受到邻小区干扰的异向传输子帧的PCFICH,所述第一UE在所述异向传输频段上所述异常传输子帧的前j个OFDM符号上接收所述第一基站发送的PDCCH。
- 根据权利要求17-19任一项所述的方法,其特征在于,所述异向传输频段为被配置为灵活半双工进行异向传输的频段,所述异向传输子帧为所述异向传输频段上的被配置为异向传输的子帧。
- 一种干扰抑制方法,其特征在于,所述方法包括:第一基站确定第一小区的控制信道指示信息,所述第一小区为所述第一基站管理的小区内的任意一个小区,所述控制信道指示信息包含下述信息中的至少一个信息:所述第一小区内受到邻小区干扰的异向传输频段的控制信道指示信息、和所述第一小区内受到邻小区干扰的异向传输子帧的控制信道指示信息;所述第一基站向第一用户设备UE发送所述控制信道指示信息,所述第一UE为所述第一小区内的任意一个UE。
- 根据权利要求21所述的方法,其特征在于,在所述第一基站确定第一小区的控制信道指示信息之后,还包括:所述第一基站根据所述控制信道指示信息,向所述第一UE发送下行控制信道PDCCH。
- 根据权利要求21或22所述的方法,其特征在于,所述第一基站向第一UE发送所述控制信道指示信息,包括:所述第一基站在预设的同向传输子帧中向第一UE发送所述控制信道指示信息;或者,所述第一基站在预设的同向传输子帧中向第一UE发送无线资源控制RRC信令,所述RRC信令中包含所述控制信道指示信息;或者,所述第一基站向第一UE发送系统信息,所述系统信息中包含所述控制信道指示信息;或者,所述第一基站向第一UE发送时隙配比,所述时隙配比用于表征所述控制信道指示信息。
- 根据权利要求21-23任一项所述的方法,其特征在于,在所述第一基站确定第一小区的控制信道指示信息之后,还包括:若所述控制信道指示信息包含所述第一小区内受到邻小区干扰的异向传输频段的控制信道指示信息,所述第一基站将所述异向传输频段配置为多播广播单频网MBSFN,并在所述异向传输频段上向所述第一UE发送包含解调参考信号DRS的下行数据;或者,若所述控制信道指示信息包含所述第一小区内受到邻小区干扰的异向传输频子帧控制信道指示信息,所述第一基站将所述异向传输子帧配置为MBSFN,并在所述异向传输频段上向所述第一UE发送包含DRS的下行数据;或者,若所述控制信道指示信息包含所述第一小区内受到邻小区干扰的异向传输频段的控制信道指示信息和所述第一小区内受到邻小区干扰的异向传输频子帧控制信道指示信息,所述第一基站将所述第一小区内受到邻小区干扰的异向传输频段上的所述异向传输子帧配置为MBSFN,并在所述异向传输频段上的所述异向传输子帧上向所述第一UE发送包含DRS的下行数据。
- 一种第一基站,其特征在于,所述第一基站包括:处理单元和发送单元;所述处理单元,用于确定第一小区的控制信道指示信息,所述第一小区为所述第一基站管理的小区内的任意一个小区,所述控制信道指示信息包含下述信息中的至少一个信息:所述第一小区内受到邻小区干扰的异向传输频段的控制信道指示信息、和所述第一小区内受到邻小区干扰的异向传输子帧的控制信 道指示信息;所述发送单元,用于向第二基站发送所述控制信道指示信息,所述第二基站为所述邻小区的基站。
- 根据权利要求25所述的第一基站,其特征在于,所述发送单元,还用于在所述处理单元确定第一小区的控制信道指示信息之后,向第一用户设备UE发送所述控制信道指示信息,所述第一UE为所述第一小区内的任意一个UE。
- 根据权利要求26所述的第一基站,其特征在于,所述发送单元具体用于:在预设的同向传输子帧中向第一UE发送所述控制信道指示信息;或者,在预设的同向传输子帧中向第一UE发送无线资源控制RRC信令,所述RRC信令中包含所述控制信道指示信息;或者,向第一UE发送系统信息,所述系统信息中包含所述控制信道指示信息;或者,向第一UE发送时隙配比,所述时隙配比用于表征所述控制信道指示信息。
- 根据权利要求26或27所述的第一基站,其特征在于,所述发送单元,还用于在所述处理单元确定第一小区的控制信道指示信息之后,根据所述控制信道指示信息,向所述第一UE发送下行控制信道PDCCH。
- 根据权利要求28所述的第一基站,其特征在于,所述控制信道指示信息包括物理控制格式指示信道PCFICH;所述发送单元具体用于:若所述PCFICH包括所述第一小区内受到邻小区干扰的异向传输频段的PCFICH,在所述异向传输频段上的所有子帧的前j个正交频分复用OFDM符号上向所述第一UE发送PDCCH,其中,j为所述PCFICH所包含的值;或者,若所述PCFICH包括所述第一小区内受到邻小区干扰的异 向传输子帧的PCFICH,在所述异向传输子帧的前j个OFDM符号上向所述第一UE发送PDCCH;或者,若所述PCFICH包括所述第一小区内受到邻小区干扰的异向传输频段的PCFICH和所述第一小区内受到邻小区干扰的异向传输子帧的PCFICH,在所述异向传输频段上所述异常传输子帧的前j个OFDM符号上向所述第一UE发送PDCCH。
- 根据权利要求25-29任一项所述的第一基站,其特征在于,所述处理单元,还用于在确定第一小区的控制信道指示信息之后,若所述控制信道指示信息包含所述第一小区内受到邻小区干扰的异向传输频段的控制信道指示信息,将所述异向传输频段配置为多播广播单频网MBSFN;所述发送单元,还用于在所述异向传输频段上向第一UE发送包含解调参考信号DRS的下行数据,所述第一UE为所述第一小区内的任意一个UE;或者,所述处理单元,还用于若所述控制信道指示信息包含所述第一小区内受到邻小区干扰的异向传输频子帧控制信道指示信息,将所述异向传输子帧配置为MBSFN;所述发送单元,还用于在所述异向传输频段上向所述第一UE发送包含DRS的下行数据;或者,所述处理单元,还用于若所述控制信道指示信息包含所述第一小区内受到邻小区干扰的异向传输频段的控制信道指示信息和所述第一小区内受到邻小区干扰的异向传输频子帧控制信道指示信息,将所述第一小区内受到邻小区干扰的异向传输频段上的所述异向传输子帧配置为MBSFN;所述发送单元,还用于在所述异向传输频段上的所述异向传输子帧上向所述第一UE发送包含DRS的下行数据。
- 根据权利要求25-30任一项所述的第一基站,其特征在于,所述异向传输频段为被配置为灵活半双工进行异向传输的频段,所述异向传输子帧为所述异向传输频段上的被配置为异向传输的子帧。
- 根据权利要求27-31任一项所述的第一基站,其特征在于,所述处理单元具体用于:将预配置的信息确定为所述第一小区的控制信道指示信息。
- 一种第二基站,其特征在于,所述第二基站包括:处理单元和发送单元;所述处理单元,用于获取第一小区的控制信道指示信息,所述第一小区为第一基站管理的小区内的任意一个小区,所述控制信道指示信息包含下述信息中的至少一个信息:所述第一小区内受到邻小区干扰的异向传输频段的控制信道指示信息、和所述第一小区内受到邻小区干扰的异向传输子帧的控制信道指示信息,所述邻小区包括第二小区,所述第二小区为所述第二基站管理的小区内的任意一个小区;所述处理单元,还用于根据所述控制信道指示信息,确定第二用户设备UE的上行信道可占用的资源信息,其中,所述第二UE为所述第二小区内的任意一个UE;所述发送单元,用于向所述第二UE发送所述资源信息。
- 根据权利要求33所述的第二基站,其特征在于,所述控制信道指示信息包括物理控制格式指示信道PCFICH;所述处理单元具体用于:若所述PCFICH包括所述第一小区内受到邻小区干扰的异向传输频段的PCFICH,确定所述异向传输频段上所有子帧的最后(14-j)个正交频分复用OFDM符号为所述第二UE的上行信道可占用的资源信息,其中,j为所述PCFICH所包含的值;或者,若所述PCFICH包括所述第一小区内受到邻小区干扰的异向传输子帧的PCFICH,确定所述异向传输子帧的最后(14-j)个OFDM符号为所述第二UE的上行信道可占用的资源信息;或者,若所述PCFICH包括所述第一小区内受到邻小区干扰的异向传输频段的PCFICH和所述第一小区内受到邻小区干扰的异向传输子帧的PCFICH,确定所述异向传输频段上所述异常传输子帧的最后 (14-j)个OFDM符号为所述第二UE的上行信道可占用的资源信息。
- 根据权利要求33所述的第二基站,其特征在于,所述控制信道指示信息包括物理控制格式指示信道PCFICH;若所述第二UE为所述第二小区的中心UE,所述处理单元具体用于:若所述PCFICH包括所述第一小区内受到邻小区干扰的异向传输频段的PCFICH,确定所述异向传输频段上所有子帧的所有OFDM符号为所述第二UE的上行信道可占用的资源信息;或者,若所述PCFICH包括所述第一小区内受到邻小区干扰的异向传输子帧的PCFICH,确定所述异向传输子帧的所有OFDM符号为所述第二UE的上行信道可占用的资源信息;或者,若所述PCFICH包括所述第一小区内受到邻小区干扰的异向传输频段的PCFICH和所述第一小区内受到邻小区干扰的异向传输子帧的PCFICH,确定所述异向传输频段上所述异常传输子帧的所有OFDM符号为所述第二UE的上行信道可占用的资源信息。
- 根据权利要求34所述的第二基站,其特征在于,若所述第二UE为所述第二小区的边缘UE,所述处理单元具体用于:若所述PCFICH包括所述第一小区内受到邻小区干扰的异向传输频段的PCFICH,确定所述异向传输频段上所有子帧的最后(14-j)个OFDM符号为所述第二UE的上行信道可占用的资源信息,其中,j为所述PCFICH所包含的值;或者,若所述PCFICH包括所述第一小区内受到邻小区干扰的异向传输子帧的PCFICH,确定所述异向传输子帧的最后(14-j)个OFDM符号为所述第二UE的上行信道可占用的资源信息;或者,若所述PCFICH包括所述第一小区内受到邻小区干扰的异向传输频段的PCFICH和所述第一小区内受到邻小区干扰的异向传输子帧的PCFICH,确定所述异向传输频段上所述异常传输子帧的最后(14-j)个OFDM符号为所述第二UE的上行信道可占用的资源信息。
- 根据权利要求35或36所述的第二基站,其特征在于,所述 第二基站还包括接收单元;所述接收单元,用于在所述处理单元根据所述控制信道指示信息,确定第二UE的上行信道可占用的资源信息之前,接收所述第二UE发送的参考信号参数,所述参考信号参数包括下述参数中的至少一个参数:参考信号接收功率RSRP值、和参考信号接收质量RSRQ值;所述处理单元,还用于若所述参考信号参数中的至少一个参数的值不小于预设门限,确定所述第二UE为所述第二小区的中心UE;所述处理单元,还用于若所述参考信号参数中所有参数的值均小于所述预设门限,确定所述第二UE为所述第二小区的边缘UE。
- 根据权利要求33-37任一项所述的第二基站,其特征在于,所述异向传输频段为被配置为灵活半双工进行异向传输的频段,所述异向传输子帧为所述异向传输频段上的被配置为异向传输的子帧。
- 根据权利要求33-38任一项所述的第二基站,其特征在于,所述第二基站还包括接收单元;所述处理单元具体用于:通过所述接收单元接收所述第一基站发送的第一小区的控制信道指示信息。
- 根据权利要求33-38任一项所述的第二基站,其特征在于,所述处理单元具体用于:将预配置的信息确定为所述第一小区的控制信道指示信息。
- 一种第一用户设备UE,其特征在于,所述第一UE包括接收单元;所述接收单元,用于接收第一基站发送的第一小区的控制信道指示信息,所述第一小区为所述第一基站管理的小区内的任意一个小区,所述第一UE为所述第一小区内的任意一个UE,所述控制信道指示信息包含下述信息中的至少一个信息:所述第一小区内受到邻小区干扰的异向传输频段的控制信道指示信息、和所述第一小区内受到邻小区干扰的异向传输子帧的控制信 道指示信息;所述接收单元,还用于根据所述控制信道指示信息,接收所述第一基站发送的物理下行控制信道PDCCH。
- 根据权利要求41所述的第一UE,其特征在于,所述接收单元具体用于:在预设的同向传输子帧中接收第一基站发送的第一小区的控制信道指示信息;或者,在预设的同向传输子帧中接收第一基站发送的无线资源控制RRC信令,所述RRC信令中包含第一小区的控制信道指示信息;或者,接收第一基站发送的系统信息,所述系统信息中包含第一小区的控制信道指示信息;或者,接收第一基站发送的时隙配比,所述时隙配比用于表征第一小区的控制信道指示信息。
- 根据权利要求41或42所述的第一UE,其特征在于,所述控制信道指示信息包括物理控制格式指示信道PCFICH;所述接收单元具体用于:若所述PCFICH包括所述第一小区内受到邻小区干扰的异向传输频段的PCFICH,在所述异向传输频段上的所有子帧的前j个正交频分复用OFDM符号上接收所述第一基站发送的PDCCH,其中,j为所述PCFICH所包含的值;或者,若所述PCFICH包括所述第一小区内受到邻小区干扰的异向传输子帧的PCFICH,在所述异向传输子帧的前j个OFDM符号上接收所述第一基站发送的PDCCH;或者,若所述PCFICH包括所述第一小区内受到邻小区干扰的异向传输频段的PCFICH和所述第一小区内受到邻小区干扰的异向传输子帧的PCFICH,在所述异向传输频段上所述异常传输子帧的前j个OFDM符号上接收所述第一基站发送的PDCCH。
- 根据权利要求41-43任一项所述的第一UE,其特征在于,所述异向传输频段为被配置为灵活半双工进行异向传输的频段,所述 异向传输子帧为所述异向传输频段上的被配置为异向传输的子帧。
- 一种第一基站,其特征在于,所述第一基站包括:处理单元和发送单元;所述处理单元,用于确定第一小区的控制信道指示信息,所述第一小区为所述第一基站管理的小区内的任意一个小区,所述控制信道指示信息包含下述信息中的至少一个信息:所述第一小区内受到邻小区干扰的异向传输频段的控制信道指示信息、和所述第一小区内受到邻小区干扰的异向传输子帧的控制信道指示信息;所述发送单元,用于向第一用户设备UE发送所述控制信道指示信息,所述第一UE为所述第一小区内的任意一个UE。
- 根据权利要求45所述的第一基站,其特征在于,所述发送单元,还用于在所述处理单元确定第一小区的控制信道指示信息之后,根据所述控制信道指示信息,向所述第一UE发送下行控制信道PDCCH。
- 根据权利要求45或46所述的第一基站,其特征在于,所述发送单元具体用于:在预设的同向传输子帧中向第一UE发送所述控制信道指示信息;或者,在预设的同向传输子帧中向第一UE发送无线资源控制RRC信令,所述RRC信令中包含所述控制信道指示信息;或者,向第一UE发送系统信息,所述系统信息中包含所述控制信道指示信息;或者,向第一UE发送时隙配比,所述时隙配比用于表征所述控制信道指示信息。
- 根据权利要求45-47任一项所述的第一基站,其特征在于,所述处理单元,还用于在所述处理单元确定第一小区的控制信道指示信息之后,若所述控制信道指示信息包含所述第一小区内受到邻小区干扰的异向传输频段的控制信道指示信息,将所述异向传输频段 配置为多播广播单频网MBSFN;所述发送单元,还用于在所述异向传输频段上向所述第一UE发送包含解调参考信号DRS的下行数据;或者,所述处理单元,还用于若所述控制信道指示信息包含所述第一小区内受到邻小区干扰的异向传输频子帧控制信道指示信息,将所述异向传输子帧配置为MBSFN;所述发送单元,还用于在所述异向传输频段上向所述第一UE发送包含DRS的下行数据;或者,所述处理单元,还用于若所述控制信道指示信息包含所述第一小区内受到邻小区干扰的异向传输频段的控制信道指示信息和所述第一小区内受到邻小区干扰的异向传输频子帧控制信道指示信息,将所述第一小区内受到邻小区干扰的异向传输频段上的所述异向传输子帧配置为MBSFN;所述发送单元,还用于在所述异向传输频段上的所述异向传输子帧上向所述第一UE发送包含DRS的下行数据。
- 一种第一基站,其特征在于,所述第一基站包括:处理器、存储器、总线和通信接口;所述存储器用于存储计算机执行指令,所述处理器与所述存储器通过所述总线连接,当所述第一基站运行时,所述处理器执行所述存储器存储的所述计算机执行指令,以使所述第一基站执行如权利要求1-8任一项所述的干扰抑制方法或执行如权利要求21-24任一项所述的干扰抑制方法。
- 一种第二基站,其特征在于,所述第二基站包括:处理器、存储器、总线和通信接口;所述存储器用于存储计算机执行指令,所述处理器与所述存储器通过所述总线连接,当所述第二基站运行时,所述处理器执行所述存储器存储的所述计算机执行指令,以使所述第二基站执行如权利要求9-16任一项所述的干扰抑制方法。
- 一种第一用户设备UE,其特征在于,所述第一UE包括: 处理器、存储器、总线和通信接口;所述存储器用于存储计算机执行指令,所述处理器与所述存储器通过所述总线连接,当所述第一UE运行时,所述处理器执行所述存储器存储的所述计算机执行指令,以使所述第一UE执行如权利要求17-20任一项所述的干扰抑制方法。
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/CN2015/097956 WO2017101119A1 (zh) | 2015-12-18 | 2015-12-18 | 干扰抑制方法、装置及系统 |
US15/778,991 US10574377B2 (en) | 2015-12-18 | 2015-12-18 | Interference suppression method, apparatus, and system |
EP15910588.1A EP3370452B1 (en) | 2015-12-18 | 2015-12-18 | System for suppressing interference |
CN201580072793.0A CN107113622B (zh) | 2015-12-18 | 2015-12-18 | 干扰抑制方法、装置及系统 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/CN2015/097956 WO2017101119A1 (zh) | 2015-12-18 | 2015-12-18 | 干扰抑制方法、装置及系统 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2017101119A1 true WO2017101119A1 (zh) | 2017-06-22 |
Family
ID=59055579
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2015/097956 WO2017101119A1 (zh) | 2015-12-18 | 2015-12-18 | 干扰抑制方法、装置及系统 |
Country Status (4)
Country | Link |
---|---|
US (1) | US10574377B2 (zh) |
EP (1) | EP3370452B1 (zh) |
CN (1) | CN107113622B (zh) |
WO (1) | WO2017101119A1 (zh) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112887000B (zh) | 2016-05-31 | 2022-07-15 | 中兴通讯股份有限公司 | 信息反馈方法、装置及系统 |
CN111629437B (zh) * | 2019-02-27 | 2023-05-09 | 中国移动通信有限公司研究院 | 远端基站干扰的处理方法及设备 |
CN112399582B (zh) * | 2019-08-16 | 2024-05-07 | 华为技术有限公司 | 资源分配方法、控制器和反射器 |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2011077288A2 (en) * | 2009-12-23 | 2011-06-30 | Telefonaktiebolaget L M Ericsson (Publ) | Flexible subframes |
CN102449942A (zh) * | 2009-05-28 | 2012-05-09 | 高通股份有限公司 | 无线网络中子帧格式的动态选择 |
CN102469466A (zh) * | 2010-11-11 | 2012-05-23 | 华为技术有限公司 | 一种干扰处理方法与装置 |
CN103518413A (zh) * | 2011-05-13 | 2014-01-15 | 瑞萨移动公司 | 用于在允许为上行链路或下行链路传输分配灵活子帧的tdd系统中干扰降低的方法、设备和计算机程序产品 |
CN104244262A (zh) * | 2010-11-11 | 2014-12-24 | 华为技术有限公司 | 一种干扰处理方法与装置 |
Family Cites Families (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9088394B2 (en) * | 2011-02-06 | 2015-07-21 | Lg Electronics Inc. | Method and apparatus for inter-cell interference coordination in a wireless communication system |
WO2012149673A1 (en) * | 2011-05-03 | 2012-11-08 | Renesas Mobile Corporation | Methods, devices and computer program products for interference reduction in tdd systems allowing allocation of flexible subframes for uplink or downlink transmission |
WO2012162877A1 (en) | 2011-05-30 | 2012-12-06 | Renesas Mobile Corporation | A method, an apparatus and a network element for dynamical tdd configuration |
US9264204B2 (en) * | 2011-08-17 | 2016-02-16 | Lg Electronics Inc. | Method and apparatus for inter-cell interference coordination for transmission point group |
WO2013056445A1 (en) * | 2011-10-20 | 2013-04-25 | Renesas Mobile Corporation | A method, an apparatus and a computer program product for flexible tdd configuration |
US9515761B2 (en) * | 2012-02-29 | 2016-12-06 | Lg Electronics Inc. | Communication method in consideration of carrier types and apparatus for same |
US9461766B2 (en) * | 2012-03-09 | 2016-10-04 | Lg Electronics Inc. | Method and apparatus for setting reference signal |
CN103378963A (zh) | 2012-04-27 | 2013-10-30 | 北京三星通信技术研究有限公司 | 支持tdd系统灵活变换子帧的双工方向的方法和设备 |
WO2014000236A1 (zh) * | 2012-06-28 | 2014-01-03 | 华为技术有限公司 | 一种时分双工系统的干扰协调方法、基站及系统 |
EP2720401A1 (en) | 2012-10-10 | 2014-04-16 | Panasonic Corporation | Dynamic TDD uplink/downlink configuration |
EP2784958B1 (en) | 2013-03-28 | 2017-03-08 | HTC Corporation | Dynamic TDD configuration method and a base station using the same |
EP2800294A1 (en) | 2013-05-03 | 2014-11-05 | HTC Corporation | User equipment and base station using dynamic TDD configuration mechanism |
JP6111144B2 (ja) * | 2013-06-03 | 2017-04-05 | 株式会社Nttドコモ | 無線基地局、無線通信システム及び無線通信方法 |
-
2015
- 2015-12-18 CN CN201580072793.0A patent/CN107113622B/zh active Active
- 2015-12-18 US US15/778,991 patent/US10574377B2/en active Active
- 2015-12-18 EP EP15910588.1A patent/EP3370452B1/en active Active
- 2015-12-18 WO PCT/CN2015/097956 patent/WO2017101119A1/zh active Application Filing
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102449942A (zh) * | 2009-05-28 | 2012-05-09 | 高通股份有限公司 | 无线网络中子帧格式的动态选择 |
WO2011077288A2 (en) * | 2009-12-23 | 2011-06-30 | Telefonaktiebolaget L M Ericsson (Publ) | Flexible subframes |
CN102469466A (zh) * | 2010-11-11 | 2012-05-23 | 华为技术有限公司 | 一种干扰处理方法与装置 |
CN104244262A (zh) * | 2010-11-11 | 2014-12-24 | 华为技术有限公司 | 一种干扰处理方法与装置 |
CN103518413A (zh) * | 2011-05-13 | 2014-01-15 | 瑞萨移动公司 | 用于在允许为上行链路或下行链路传输分配灵活子帧的tdd系统中干扰降低的方法、设备和计算机程序产品 |
Non-Patent Citations (1)
Title |
---|
See also references of EP3370452A4 * |
Also Published As
Publication number | Publication date |
---|---|
EP3370452A4 (en) | 2018-11-14 |
CN107113622A (zh) | 2017-08-29 |
EP3370452A1 (en) | 2018-09-05 |
US10574377B2 (en) | 2020-02-25 |
EP3370452B1 (en) | 2020-05-13 |
US20180351678A1 (en) | 2018-12-06 |
CN107113622B (zh) | 2020-12-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6749491B2 (ja) | 改善された復号タイムラインのための探索空間およびサウンディング基準信号配置の最適化 | |
US11246142B2 (en) | Control channel transmission method, network device, network controller, and terminal device | |
JP7195924B2 (ja) | 低レイテンシ通信のためのアップリンク制御チャネル | |
JP7385044B2 (ja) | Nrにおけるマルチキャストのためのハイブリッド自動再送要求(harq)機構 | |
ES2887733T3 (es) | Procedimiento y aparato para configurar la posición de la señal de referencia de demodulación en un sistema de comunicación celular inalámbrica | |
US9716569B2 (en) | Method and apparatus for hybrid automatic repeat request signaling | |
WO2017193980A1 (zh) | 传输下行控制信息的方法和装置 | |
EP2847911B1 (en) | Method and apparatus for hybrid automatic repeat request signaling | |
WO2018171667A1 (zh) | 一种信道传输方法及网络设备 | |
JP6321851B2 (ja) | 無線通信システムにおいて制御情報受信方法及び装置 | |
WO2017084593A1 (zh) | 上行探测信号的触发方法、装置及系统 | |
EP3923507A1 (en) | Physical downlink control channel structure in low latency systems | |
KR20140007947A (ko) | 이종 네트워크 환경에서의 네트워크 통신 방법 및 단말 | |
TWI672970B (zh) | 處理用於服務細胞的傳送/接收的裝置及方法 | |
JP2019517755A (ja) | ページング検出ウィンドウ | |
JP7164663B2 (ja) | 情報伝送方法、ネットワーク機器及び端末装置 | |
JP2020533844A (ja) | リソース構成方法、決定方法及びその装置、並びに通信システム | |
JP2019523599A (ja) | eMTCデバイスのためのVoLTE最適化 | |
WO2017101119A1 (zh) | 干扰抑制方法、装置及系统 | |
CN103368711A (zh) | 处理混合自动重传请求回传的方法及其通信装置 | |
TWI500303B (zh) | 指示下鏈路控制通道的方法及其通訊裝置 | |
CN111164927B (zh) | 无线通信系统中生成参考信号序列的方法和装置 | |
EP4416991A1 (en) | Scheduling for sidelink communications | |
WO2018018633A1 (zh) | 一种csi-rs传输方法及网络设备 | |
EP3515024B1 (en) | Method of transmitting control channel, network device and terminal device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 15910588 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2015910588 Country of ref document: EP |
|
NENP | Non-entry into the national phase |
Ref country code: DE |