WO2018018633A1 - 一种csi-rs传输方法及网络设备 - Google Patents

一种csi-rs传输方法及网络设备 Download PDF

Info

Publication number
WO2018018633A1
WO2018018633A1 PCT/CN2016/092425 CN2016092425W WO2018018633A1 WO 2018018633 A1 WO2018018633 A1 WO 2018018633A1 CN 2016092425 W CN2016092425 W CN 2016092425W WO 2018018633 A1 WO2018018633 A1 WO 2018018633A1
Authority
WO
WIPO (PCT)
Prior art keywords
rru
rrus
csi
network device
predetermined condition
Prior art date
Application number
PCT/CN2016/092425
Other languages
English (en)
French (fr)
Inventor
赵晶
赵微
钱丰勇
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to PCT/CN2016/092425 priority Critical patent/WO2018018633A1/zh
Priority to JP2019504684A priority patent/JP6739765B2/ja
Priority to CN201680086389.3A priority patent/CN109219968B/zh
Priority to EP16910213.4A priority patent/EP3468243B1/en
Publication of WO2018018633A1 publication Critical patent/WO2018018633A1/zh
Priority to US16/259,170 priority patent/US10939323B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • H04L5/005Allocation of pilot signals, i.e. of signals known to the receiver of common pilots, i.e. pilots destined for multiple users or terminals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/02Traffic management, e.g. flow control or congestion control
    • H04W28/06Optimizing the usage of the radio link, e.g. header compression, information sizing, discarding information
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • H04L5/0051Allocation of pilot signals, i.e. of signals known to the receiver of dedicated pilots, i.e. pilots destined for a single user or terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • H04L5/0057Physical resource allocation for CQI
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0058Allocation criteria
    • H04L5/006Quality of the received signal, e.g. BER, SNR, water filling
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/10Scheduling measurement reports ; Arrangements for measurement reports
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0001Systems modifying transmission characteristics according to link quality, e.g. power backoff
    • H04L1/0023Systems modifying transmission characteristics according to link quality, e.g. power backoff characterised by the signalling
    • H04L1/0026Transmission of channel quality indication
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0032Distributed allocation, i.e. involving a plurality of allocating devices, each making partial allocation
    • H04L5/0035Resource allocation in a cooperative multipoint environment
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver

Definitions

  • the present invention relates to the field of communications technologies, and in particular, to a CSI-RS transmission method and a network device.
  • the number of the radio remote unit (RRU) serving the user equipment (User Equipment, UE) is different, and the UE can be divided into an independent user or a joint user, and the independent user refers to only one RRU.
  • the federated user means that there are multiple RRUs serving the UE. For example, as shown in FIG. 1, both RRU1 and RRU2 serve the user equipment a, and the user equipment a can be regarded as a joint user.
  • the state of the channel is generally detected by using a channel state information reference signal (CSI-RS).
  • CSI-RS channel state information reference signal
  • the RRU1 sends a CSI-RS to the user equipment a so that the user equipment a
  • the state of the channel H1 is detected, and the RRU 2 transmits the CSI-RS to the user equipment a so that the user equipment a detects the state of the channel H2.
  • the number of antenna ports (Ports) used by RRU1 and RRU2 to send CSI-RS to user equipment a may not be the same.
  • RRU1 sends a CSI-RS of 4Port to user equipment a
  • RRU2 sends to user equipment a.
  • 8Port CSI-RS when the number of ports used by multiple RRUs to send CSI-RSs is not completely equal, each RRU will occupy different Resource Element (RE) to send the corresponding CSI-RS, then RRU When the number is large, a large amount of pilot resources are occupied, which results in excessive transmission resource overhead when transmitting CSI-RS to the UE.
  • RE Resource Element
  • the embodiment of the invention provides a CSI-RS transmission method and a network device, which are used to solve the technical problem of excessive transmission resources occupied when transmitting CSI-RS.
  • a CSI-RS transmission method which can be applied to a network device.
  • the network device determines that the M RRUs are respectively used to send the CSI-RS to the same user equipment.
  • the number of the at least two antenna ports of the M antenna ports is not equal, and the M RRUs are instructed to send P CSI-RSs on the N resource units; wherein at least one of the N resource units carries P CSIs.
  • P CSI-RSs are CSI-RSs respectively transmitted by P RRUs among M RRUs, M is an integer greater than or equal to 2, and P is an integer less than or equal to M, N is a positive integer.
  • the network device may indicate that the M RRUs are N. Transmitting P CSI-RSs on the RE, and controlling at least one of the N REs to carry content of at least two CSI-RSs of the P CSI-RSs, that is, determining antenna ports corresponding to the M RRUs If the numbers are not completely equal, the content corresponding to multiple CSI-RSs may be mapped on the same RE, and the same RE may simultaneously carry multiple CSI-RS information at the same time, which is equivalent to re-establishing the RE at the same time.
  • the use efficiency of the RE is improved, so that the transmission of P CSI-RSs can be completed with less REs, thereby reducing the occupied pilot transmission resources of the CSI-RS to reduce the transmission overhead of the pilots. .
  • the information of multiple CSI-RSs is transmitted by means of RE multiplexing, it is equivalent to superimposing information of several energy on the same RE, which can also increase the signal to interference and noise ratio of the user equipment (Signal To Interference Plus Noise Ratio (SINR), which in turn improves the accuracy of channel estimation by user equipment.
  • SINR Signal To Interference Plus Noise Ratio
  • the network device instructs the M RRUs to send P CSI-RSs on the N resource units, including: determining, from the M RRUs, that the predetermined condition is met The RRU determines N resource units according to the number of antenna ports used by the RRU for transmitting the CSI-RS to satisfy the predetermined condition, and instructs the M RRUs to send P CSI-RSs on the N resource units.
  • an RRU that satisfies a predetermined condition is selected from the M RRUs, and then the value of N is determined according to the number of antenna ports corresponding to the RRU that satisfies the predetermined condition, which is equivalent to a certain range that can be first reduced, for example, By selecting one RRU as the reference RRU among the five RRUs, the determination range can be reduced from 5 RRUs to 1 RRU, which can improve the certain degree to some extent. effectiveness.
  • the determining, by the network device, the RRU that meets the predetermined condition from the M RRUs includes: determining, in the M RRUs, The first RRU having the smallest number of antenna ports used to transmit the CSI-RS to the user equipment is an RRU that satisfies a predetermined condition.
  • the M RRUs may send P CSI-RSs by using a minimum number of REs, so that the occupation of the REs can be minimized, thereby Maximize the savings in pilot overhead.
  • the network device determines, from the M RRUs, the RRU that meets the predetermined condition, including: the network device from the M RRUs Determining, by the first RRU, the first RRU used for transmitting the CSI-RS to the user equipment, and determining whether the number of antenna ports used by the first RRU to send the CSI-RS is greater than or equal to a predetermined number to obtain a determination result, and then according to The determination result determines an RRU that satisfies a predetermined condition.
  • the number of antenna ports corresponding to the first RRU is too small, although the minimum number of REs can be used to simultaneously transmit P CSI-RSs, the number of REs may be too small to be accurate and effective.
  • the content of all the CSI-RSs that need to be sent is carried, that is, the user equipment cannot accurately perform channel estimation because the number of REs is too small. Therefore, in the embodiment of the present invention, in order to maximize the channel of the user equipment The accuracy and validity of the estimation will first determine whether the minimum number of antenna ports is greater than or equal to the predetermined number, and then determine the RRU that satisfies the predetermined condition according to the judgment result.
  • the network device determines the RRU that meets the predetermined condition, includes: if the determining result indicates that the first RRU is used for The number of antenna ports transmitting the CSI-RS is greater than or equal to the predetermined number, and the first RRU is determined to be an RRU that satisfies a predetermined condition.
  • the minimum number of antenna ports can be directly determined as the number of REs for transmitting P CSI-RSs, since the predetermined number is according to the actual situation of the communication cell. Pre-configured, so this can make the finalized RE The number is not too small, and the accuracy and effectiveness of the channel estimation of the user equipment can be ensured as much as possible while ensuring the reduction of pilot overhead.
  • the network device determines the RRU that meets the predetermined condition, includes: if the determining result indicates that the first RRU is used for If the number of antenna ports transmitting the CSI-RS is less than the predetermined number, the first RRU and the second RRU are simultaneously determined as RRUs satisfying a predetermined condition, or only the second RRU is determined to be an RRU that satisfies a predetermined condition; wherein, the second RRU The RRU that is the least number of antenna ports for transmitting the CSI-RS except for the first RRU among the M RRUs, that is, the second RRU is the second lowest RRU of the number of antenna ports used to transmit the CSI-RS among the M RRUs.
  • the first RRU and the second RRU are simultaneously determined to be the RRUs that meet the predetermined condition, and the CSI-RSs can be separately sent in two CSI-RS configurations, that is, the first RRU with the smallest number of antenna ports is separately passed through one.
  • the CSI-RS configuration sends CSI-RSs, and the remaining RRUs send CSI-RSs through another set of CSI-RS configurations. Under the premise of reducing the RE occupancy, the CSI-RSs can be ensured as much as possible. Accuracy to improve the accuracy of channel estimation by user equipment.
  • the transmission and transmission amount of the CSI-RS can be reduced and the occupancy of the RE can be minimized, and the configuration of the network device can also be performed on the channel corresponding to each RRU.
  • Channel estimation can also ensure the accuracy of channel estimation as much as possible while reducing the RE occupancy.
  • the network device determines, from the M RRUs, the RRU that meets the predetermined condition, including: first, using the M RRUs
  • the RRUs that are equal to the number of antenna ports that send the CSI-RS are divided into a group.
  • the M RRUs are divided into K groups of RRUs, and then one RRU is selected from each group of RRUs in the K group RRUs, and a total of K RRUs are selected. Finally, the selected K RRUs are determined as RRUs satisfying predetermined conditions.
  • the M RRUs are grouped in a manner that the number of antenna ports is equal, and then the RRUs satisfying the predetermined condition are determined according to the grouping result, which is equivalent to the antenna port.
  • a plurality of RRUs that are equal in number are divided into a group and multiple RRUs that indicate the same number of antenna ports are sent by using the same set of CSI-RS configurations to simultaneously transmit corresponding multiple CSI-RSs, which can also be facilitated on the basis of reducing the RE occupancy.
  • the network device performs group management on multiple RRUs.
  • the network device is configured according to the predetermined condition
  • the number of antenna ports used by the RRU to transmit the CSI-RS determines N resource units, including: if the RRU that satisfies the predetermined condition is an RRU, the number of antenna ports used by the one RRU to send the CSI-RS to the user equipment Determining the value of N, or if the RRU that satisfies the predetermined condition is at least two RRUs and the at least two RRUs are part of the R RRUs, the at least two RRUs are respectively used to send the CSI-RS.
  • the sum of the number of antenna ports is determined as the value of N.
  • one or more RRUs may be determined from the M RRUs as RRUs satisfying predetermined conditions, that is, in the embodiment of the present invention, the RRUs satisfying the predetermined conditions may be One, or more than one.
  • the network device may directly determine the number of antenna ports corresponding to the one RRU as the value of N, that is, directly determine the number of antenna ports corresponding to one RRU as N.
  • the value is such that the M RRUs send P CSI-RSs through the REs corresponding to the number of antenna ports corresponding to the one RRU, and the MSIs are sent by the corresponding antenna port number REs respectively. It can reduce the occupancy of RE to a large extent and save pilot resources.
  • the network device can determine the sum of the number of antenna ports corresponding to the at least two RRUs as the value of N, thereby reducing the occupancy of the RE and saving transmission resources.
  • a network device comprising a processor and a memory, the memory being coupled to a processor, the memory for storing instructions, the processor for performing the An instruction to determine that the number of the at least two antenna ports of the M antenna ports used by the M RRUs to send the CSI-RS to the same user equipment is not equal, and instructing the M RRUs to send P on the N resource units CSI-RS; wherein at least one of the N resource units carries content of at least two CSI-RSs of the P CSI-RSs, and the P CSI-RSs are the M
  • M is an integer greater than or equal to 2
  • P is an integer less than or equal to M
  • N is a positive integer.
  • the processor is configured to indicate that the M RRUs send the P CSI-RSs on the N resource units, including: determining, by using the M RRUs, that the reservation is satisfied.
  • the conditional RRU further determines N resource units according to the number of antenna ports used by the RRU that satisfies the predetermined condition to transmit the CSI-RS, and further instructs the M RRUs to transmit P CSI-RSs on the N resource units.
  • the processor is configured to determine, from the M RRUs, the RRU that meets the predetermined condition, including: using the M RRUs
  • the first RRU having the smallest number of antenna ports used to transmit the CSI-RS to the user equipment is determined to be an RRU that satisfies a predetermined condition.
  • the processor is configured to determine, from the M RRUs, the RRU that meets the predetermined condition, including: first from the M RRUs Determining, by the first RRU, the number of antenna ports used for transmitting the CSI-RS to the user equipment is the least, and determining whether the number of antenna ports used by the first RRU to send the CSI-RS is greater than or equal to a predetermined number to obtain a determination result, and then determining An RRU that satisfies a predetermined condition is determined based on the determination result.
  • the network device determines, according to the determination result, the RRU that meets the predetermined condition, including: if the determination result indicates that the first RRU is used When the number of antenna ports transmitting the CSI-RS is greater than or equal to a predetermined number, the first RRU is determined to be an RRU that satisfies a predetermined condition.
  • the network device determines, according to the determination result, the RRU that meets the predetermined condition, including: if the determination result indicates that the first RRU is used If the number of antenna ports transmitting the CSI-RS is less than the predetermined number, then The first RRU and the second RRU are simultaneously determined to be the RRU that satisfies the predetermined condition, or the second RRU is determined to be the RRU that satisfies the predetermined condition; wherein the second RRU is used to send the CSI in addition to the first RRU among the M RRUs.
  • the RS has the fewest number of antenna ports for the RRU.
  • the network device determines, from the M RRUs, the RRU that meets the predetermined condition, including: used to send the CSI-RS
  • the RRUs with the same number of antenna ports are divided into a group to divide the M RRUs into K groups of RRUs, and then one RRU is arbitrarily selected from each group of RRUs in the K group RRUs, and a total of K RRUs are selected, and then K RRUs are selected. It is determined that the RRU satisfying the predetermined condition, K is an integer greater than or equal to 2.
  • the network device is configured according to the predetermined condition Determining the number of antenna ports for transmitting the CSI-RS to determine the N resource units, including: if the RRU that satisfies the predetermined condition is an RRU, determining the value of the number of antenna ports used by one RRU to send the CSI-RS is N, Or, if the RRU that satisfies the predetermined condition includes at least two RRUs, determining that the sum of the number of antenna ports used by the at least two RRUs for transmitting the CSI-RS is N; wherein, at least two RRUs are in the M RRUs. Part of the RRU.
  • a CSI-RS transmission function entity may comprise a functional module for performing the method of the first aspect or any of the possible implementations of the first aspect.
  • a computer storage medium for storing computer software instructions for use by the CSI-RS transmission function entity, including a program designed to perform the above-described aspects for a CSI-RS transmission function entity.
  • the CSI-RS transmission when the CSI-RS is transmitted, by multiplexing the RE, the CSI-RS transmission can be completed with less REs, thereby reducing the occupied pilot transmission resources for transmitting the CSI-RS. To reduce the transmission overhead of the pilot.
  • FIG. 1 is a schematic diagram of two RRUs serving the same user equipment
  • FIG. 2 is a flowchart of a CSI-RS transmission method according to an embodiment of the present invention
  • 3 is a structural diagram of basic time-frequency resources of an LTE system
  • FIG. 4 is a schematic structural diagram of a network device according to an embodiment of the present invention.
  • FIG. 5 is a structural block diagram of a network device according to an embodiment of the present invention.
  • the techniques described herein can be used in a variety of communication systems, such as current 2G (second generation mobile communication technology), 3G (third generation mobile communication technology) communication systems, and next generation communication systems, such as the Global System for Global System (Global System for Mobile Communications) Mobile communications, GSM), Code Division Multiple Access (CDMA) system, Time Division Multiple Access (TDMA) system, Wideband Code Division Multiple Access Wireless (WCDMA), frequency Frequency Division Multiple Addressing (FDMA) system, Orthogonal Frequency-Division Multiple Access (OFDMA) system, single carrier FDMA (SC-FDMA) system, General Packet Radio Service , GPRS) systems, Long Term Evolution (LTE) systems, and other such communication systems.
  • GSM Global System for Global System
  • CDMA Code Division Multiple Access
  • TDMA Time Division Multiple Access
  • WCDMA Wideband Code Division Multiple Access Wireless
  • FDMA frequency Frequency Division Multiple Addressing
  • OFDMA Orthogonal Frequency-Division Multiple Access
  • SC-FDMA single carrier FD
  • a network device such as a base station (e.g., an access point), may specifically refer to a device in an access network that communicates with a wireless terminal over one or more sectors over an air interface.
  • the base station can be used to convert the received air frame to the IP packet as a router between the wireless terminal and the rest of the access network, wherein the remainder of the access network can include an Internet Protocol (IP) network.
  • IP Internet Protocol
  • the base station can also coordinate attribute management of the air interface.
  • the base station may be a base station (BTS, Base Transceiver Station) in GSM or CDMA, or may be a base station (NodeB) in WCDMA, or may be an evolved base station in LTE (NodeB or eNB or e-NodeB, evolutional Node B), the invention is not limited.
  • BTS Base Transceiver Station
  • NodeB base station
  • NodeB evolved base station
  • LTE NodeB or eNB or e-NodeB, evolutional Node B
  • the user equipment may be a wireless terminal or a wired terminal, and the wireless terminal may be a device that provides voice and/or data connectivity to the user, a handheld device with wireless connectivity, or other processing device connected to the wireless modem.
  • the wireless terminal can communicate with one or more core networks via a radio access network (eg, RAN (Radio Access Network)), which can be a mobile terminal, such as a mobile phone (or "cellular" phone) and has a mobile
  • RAN Radio Access Network
  • the computer of the terminal for example, can be a portable, pocket, handheld, computer built-in or in-vehicle mobile device that exchanges language and/or data with the wireless access network.
  • a wireless terminal may also be called a system, a subscriber unit, a subscriber station, a mobile station, a mobile station, a remote station, an access point, or an access point.
  • Remote Terminal Access Terminal, User Terminal, User Agent, User Device, or User Equipment.
  • an embodiment of the present invention provides a CSI-RS transmission method, which can be applied to a network device.
  • the flow of the method is described below.
  • Step 201 The network device determines that the number of the M antenna ports of the M RRUs for transmitting the CSI-RS to the same user equipment is not equal, and M is an integer greater than or equal to 2.
  • the M RRUs since the M RRUs all send CSI-RSs to the same user equipment, that is, the M RRUs serve the same user equipment, the same user equipment can be regarded as a joint user, for example, the same user equipment.
  • the value of M can be 2, 3, 4, etc., and the value of M can be pre-determined by the network device or the user.
  • the configuration of the present invention is not limited.
  • the number of antenna ports used by each RRU to send a CSI-RS to a user equipment is pre-configured by the network device, and can be correspondingly configured according to the number of transmit antennas included in the RRU.
  • the antenna port in the embodiment of the present invention refers to a logical port, and one antenna port can be implemented by one physical antenna or a combination of several physical antennas. For example, one antenna port can be multiplexed by four physical antenna elements.
  • the number of antenna ports used by the RRU to transmit the CSI-RS is less than or equal to the number of transmit antennas it includes.
  • RRU1 includes two transmit antennas, and the network device configures two antenna ports for transmitting CSI-RS
  • RRU2 includes four transmit antennas, and the network device configures four antenna ports for transmitting CSI- RS
  • RRU3 includes 8 transmit antennas
  • network equipment is configured with 8 antenna ports for transmitting CSI-RS
  • RRU4 includes 16 transmit antennas
  • RRU5 includes 32 transmit antennas.
  • Network equipment is configured with 8 RRU4 and RRU5.
  • the antenna port is used to transmit CSI-RS
  • the RRU6 includes 16 transmit antennas
  • the network device configures 16 antenna ports for transmitting CSI-RS.
  • the number of antenna ports configured by the network device for transmitting CSI-RS is generally equal to the number of transmitting antennas included therein.
  • the network device configures the number of antenna ports for transmitting the CSI-RS. It is generally smaller than the number of transmit antennas it includes, or it can be equal to the number of transmit antennas it includes.
  • the total number of M antenna ports is If any two antenna ports in the number of M antenna ports are not equal, it indicates that the number of at least two antenna ports in the number of M antenna ports is not equal, for example, the number of M antenna ports is not equal, or M antenna ports The number of partial antenna ports in the number is not equal.
  • RRU1, RRU2, and RRU3 are taken as examples.
  • the number of antenna ports of the corresponding CSI-RS is partially unequal.
  • the number of antenna ports corresponding to RRU2 and RRU3 is not equal, and the number of antenna ports corresponding to RRU3 and RRU4 is equal, that is, both are 8.
  • RRU is used to transmit CSI-RS” is also described as “the number of antenna ports corresponding to the RRU” in some cases.
  • Step 202 The network device instructs the M RRUs to send P CSI-RSs on N resource elements (Resource Element, RE); wherein at least one resource unit on the N resource units carries at least one of P CSI-RSs
  • the P RRUs may be part of the R RRUs.
  • the value of P is less than M, or the P RRUs are M RRUs.
  • the value of P is the same as the value of M, that is, Say, It is possible that the M RRUs simultaneously map the content corresponding to the M RRUs on the N REs to simultaneously transmit the M CSI-RSs to the user equipment, or may also be the M CSIs of the partial RRUs of the M RRUs. Some CSI-RSs in the RS are simultaneously sent to the user equipment.
  • the RRU sends a CRI-RS to the user equipment by mapping the information corresponding to the CRI-RS to the RE according to the indication of the network device.
  • the RE is also referred to as a resource element, which is composed of one subcarrier in the frequency domain and one Orthogonal Frequency Division Multiplexing (OFDM) symbol duration in the time domain.
  • OFDM Orthogonal Frequency Division Multiplexing
  • the transmission resource structure divided into time and frequency for each antenna port is as follows:
  • the largest time unit is a 10 ms radio frame, which is divided into 10 1 ms subframes, each sub-frame.
  • the frame is further divided into two 0.5ms time slots.
  • each time slot is composed of 7 OFDM symbols. If the cell is configured with an extended cyclic prefix, then each time slot is composed of 6 OFDM symbols.
  • composition In the frequency domain, every 12 subcarriers constitute one unit resource. Therefore, one unit resource on the frequency, one continuous slot resource in time is called a resource block (RB), and one RB is composed of multiple REs.
  • the composition that is, one RB includes a plurality of REs.
  • FIG. 3 is a structural diagram of basic time-frequency resources of an LTE system.
  • one RB includes 84 REs
  • FIG. 3 shows four configurations for transmitting CSI-RSs. That is, the CSI-RS configuration is 0-3, and the RRU can send the CSI-RS to the user equipment in any configuration. That is, the RRU can map the information corresponding to the CSI-RS to any one of the CSI-RS configurations 0-3.
  • the CSI-RS is further sent to the user equipment, and the CSI-RS is sent to the user equipment by which CSI-RS configuration is specifically configured for each RRU, which can be configured in advance by the user equipment.
  • each RRU when the number of antenna ports corresponding to the multiple RRUs is not completely equal, each RRU sends a corresponding CSI-RS to the user equipment by using an RE in a CSI-RS configuration, then the number of RRUs. When there are more, it will occupy more REs, and as shown in Figure 3, the number of REs is limited. If a large number of REs are used to transmit CSI-RS, the number of REs used to transmit communication data or other signals is limited. It is relatively reduced, which will lead to excessive overhead of pilot resources and low utilization of RE.
  • the network device may indicate M RRUs transmit P CSI-RSs on N REs, and control at least one of the N REs to carry content of at least two CSI-RSs of P CSI-RSs, that is, to determine M If the number of antenna ports corresponding to the RRU is not completely equal, the content corresponding to multiple CSI-RSs may be mapped on the same RE, and the same RE may simultaneously carry multiple CSI-RS information at the same time, which is equivalent to The REs are multiplexed at the same time to improve the utilization efficiency of the REs, so that P CSI-RS transmissions can be completed with less REs, thereby reducing the pilot overhead of transmitting CSI-RSs.
  • the number of antenna ports used for transmitting CSI-RS is generally equal to the number of occupied REs. For example, two CSI-RS antenna ports need to occupy 2 RE transmissions, and 4 CSI-RS antenna ports need to occupy 4 RE transmissions. Eight CSI-RS antenna ports require 8 RE transmissions.
  • the RRU3 in Table 1 transmits the CSI-RS of the 8Port through the 8 REs labeled 15-22 in the CSI-RS configuration 0 in FIG. 3, and the RRU2 in Table 1 passes the CSI in FIG. - 4 REs labeled 15-18 in RS configuration 2 send 4Port CSI-RS, then RRU3 and RRU2 will occupy 12 REs to send CSI-RS.
  • the number of the antenna ports corresponding to the RRU3 and the RRU2 is not equal, and the network device may indicate that the content of the two CSI-RSs sent by the RRU3 and the RRU2 is at least partially mapped to the same RE for transmission.
  • the same RE is the RE of the CSI-RS configuration 2 in FIG. 3, and the CSI-RS sent by the RRU3 and the RRU2 respectively occupy the same RE, so that the same RE can be implemented.
  • the purpose of reducing the overhead of pilot transmission resources is achieved by increasing the utilization rate of the one RE.
  • the network device may also instruct the RRU3 and the RRU2 to simultaneously send the 4Port CSI-RS through the 4 REs labeled 15-18 in the CSI-RS configuration 2 in FIG. 3, which is equivalent to reconfiguring the original 8Port of the RRU3.
  • CSI-RS configuration 2 is marked as 15-18 of 4
  • Each of the REs carries the contents of two CSI-RSs, and at this time, only a total of 4 REs are used for simultaneously transmitting two CSI-RSs of the RRU3 and the RRU2, which are occupied with respect to the prior art.
  • the occupancy of the RE is significantly reduced, so that the pilot overhead can be reduced to a large extent.
  • the number of antenna ports corresponding to the M RRUs may include multiple scenarios.
  • the network device Before instructing the M RRUs to send P CSI-RSs on the N REs, the network device needs to determine N REs, specifically The number of N REs specifically included, that is, the value of N, and the specific location of the N REs need to be determined. For the specific location of the N REs, for example, which CSI-RS configuration in FIG. 3 is needed, in a specific implementation, this may be pre-configured by the network device.
  • the value of N can be determined according to the number of antenna ports corresponding to the M RRUs. Since there is a certain correspondence between the number of antenna ports and the number of REs, that is, the correspondence is generally equal, so M is passed.
  • the number of antenna ports included in the RRU is determined to be a relatively straightforward and fast determination method, and since the number of antenna ports used by each RRU to transmit CSI-RS is pre-configured by the network device, the network device can be quickly configured.
  • the value of N is determined according to the number of antenna ports corresponding to the RRU.
  • the network device may first determine an RRU that satisfies a predetermined condition from the M RRUs, and then determine the value of N according to the number of CSI-RS antenna ports used by the RRU that satisfies the predetermined condition, that is, The network device may first select a reference RRU from the M RRUs, and then determine the value of N according to the number of antenna ports corresponding to the reference RRU.
  • an RRU that satisfies a predetermined condition is selected from the M RRUs, and then the value of N is determined according to the number of antenna ports corresponding to the RRU that satisfies the predetermined condition, which is equivalent to a certain range that can be first reduced, for example, selected from five RRUs.
  • the determination range can be reduced from 5 RRUs to 1 RRU, which can improve the certain efficiency to some extent.
  • the number of antenna ports corresponding to the RRUs satisfying the predetermined condition is generally less than or much less than the sum of the number of antenna ports corresponding to the M RRUs respectively, because the number of antenna ports is equal to the number of REs, Therefore, the occupancy of the RE can be reduced to a large extent, and the pilot resources are saved.
  • one or more RRUs may be determined from the M RRUs as RRUs satisfying predetermined conditions, that is, in the embodiment of the present invention, the RRUs satisfying the predetermined conditions may be One, or more than one.
  • the network device may directly determine the number of antenna ports corresponding to the one RRU as the value of N, that is, when determining an RRU that satisfies a predetermined condition from the M RRUs. For example, when the RRU 2 in Table 1 is determined to be an RRU that satisfies a predetermined condition, since the number of antenna ports corresponding to the RRU 2 is 4, the M RRUs can all transmit the corresponding CSI-RSs through the same 4 REs.
  • the number of antenna ports corresponding to the one RRU is directly determined as the value of N, so that the M RRUs send P CSI-RSs through the REs corresponding to the number of antenna ports corresponding to the one RRU, respectively, compared to the M RRUs.
  • the method of transmitting the corresponding CSI-RS by the RE corresponding to the number of antenna ports can greatly reduce the occupancy of the RE and save the pilot resources.
  • the network device may determine, as the value of N, the sum of the number of antenna ports corresponding to the at least two RRUs respectively, for example, determining that RRU1 and RRU3 are RRUs satisfying a predetermined condition from RRU1, RRU2, RRU3, and RRU4 in Table 1. Then, the sum of the number of antenna ports corresponding to RRU1 and RRU3 can be determined as the value of N.
  • the value of N can be determined as 10, On this basis, compared with the total number of antenna ports of the four RRUs of RRU1, RRU2, RRU3, and RRU4, the RE occupancy is reduced, thereby saving pilot resources.
  • the first case is a first case:
  • the network device determines, in the R RRUs, the RRUs that use the minimum number of antenna ports used for transmitting the CSI-RSs to the user equipments to the RRUs that meet the predetermined conditions.
  • the M RRUs are used to send to the user equipments.
  • the RRU with the fewest number of antenna ports used by the CSI-RS is called the first An RRU.
  • the first RRU may be directly determined as an RRU that satisfies a predetermined condition, and Table 1 is taken as an example. If the M RRUs are 5 RRUs of RRU1-RRU5, the antenna corresponding to the RRU1 If the number of ports is the smallest, then the RRU1 can be determined as the RRU that satisfies the predetermined condition. For example, if the M RRUs are the four RRUs of the RRU2-RRU5, since the number of antenna ports corresponding to the RRU2 is the smallest, the RRU2 can be determined as An RRU that satisfies a predetermined condition.
  • the M RRUs may send P CSI-RSs with a minimum number of REs, thereby minimizing the occupation of the REs, thereby maximally saving pilots. Overhead.
  • the second case is a first case
  • the RRU After determining the first RRU with the smallest number of corresponding antenna ports from the M RRUs, it may be determined whether the number of antenna ports corresponding to the first RRU is greater than or equal to a predetermined number and obtain a determination result, and then, according to the determination result, from the M The RRU determines the RRU that satisfies the predetermined condition, that is, it may first determine whether the number of antenna ports corresponding to the first RRU is greater than or equal to a predetermined number, and further determines an RRU that satisfies the predetermined condition according to the determination.
  • the number of antenna ports corresponding to the first RRU is too small, although the minimum number of REs can be used to simultaneously transmit P CSI-RSs, the number of REs may be too small to be accurate and effective.
  • the content of all the CSI-RSs that need to be sent is carried, that is, the user equipment cannot accurately perform channel estimation because the number of REs is too small. Therefore, in the embodiment of the present invention, in order to maximize the channel estimation of the user equipment, The accuracy and validity will first determine whether the minimum number of antenna ports is greater than or equal to the predetermined number, and then determine the RRU that satisfies the predetermined condition according to the judgment result.
  • the first RRU as an RRU that meets a predetermined condition, for example, the predetermined number is 4, and the M RRUs are The four RRUs of the RRU2-RRU5 in Table 1, wherein the number of antenna ports is the number of four antenna ports corresponding to the RRU2, and since the number of antenna ports corresponding to the RRU2 is equal to the predetermined number, the RRU2 can be directly determined to be satisfied.
  • the RRU of the predetermined condition for example, the predetermined number is 4, and the M RRUs are The four RRUs of the RRU2-RRU5 in Table 1, wherein the number of antenna ports is the number of four antenna ports corresponding to the RRU2, and since the number of antenna ports corresponding to the RRU2 is equal to the predetermined number, the RRU2 can be directly determined to be satisfied.
  • the RRU of the predetermined condition for example, the predetermined number is 4, and the M RRUs are The four RRUs of the RRU2-RRU5 in Table 1, wherein the number of antenna ports is the number of four
  • the network device may set a predetermined number of values according to a specific situation of the communication cell or a combination of other factors, for example, according to the number of M RRUs and/or the current occupancy of the REs, and the like.
  • the minimum number of antenna ports can be directly determined as the number of REs for transmitting P CSI-RSs, since the predetermined number is according to the actual situation of the communication cell. Pre-configured, so that the number of finally determined REs is not too small, and the accuracy and effectiveness of the channel estimation of the user equipment can be ensured as much as possible while ensuring the reduction of pilot overhead.
  • the first RRU and the second RRU may be simultaneously determined as the RRU that meets the predetermined condition, or only the second The RRU is determined to be an RRU that satisfies a predetermined condition.
  • the second RRU is the RRU with the smallest number of antenna ports except the first RRU among the M RRUs, that is, the second RRU is the second lowest RRU of the number of antenna ports in the M RRUs.
  • the predetermined number is 4, and the M RRUs are the four RRUs of the RRU1-RRU4 in Table 1.
  • the minimum number of antenna ports is the two antenna ports corresponding to the RRU1. Since 2 is less than 4, the RRU1-RRU4 can be obtained.
  • the RRU that is the second lowest number of the antenna ports is selected, that is, the RRU 2, and the RRUs and the RRUs 2 are simultaneously determined to be RRUs that meet the predetermined condition, that is, the RRUs that satisfy the predetermined condition are 2 RRUs, or may be only
  • the RRU 2 is determined to be an RRU that satisfies a predetermined condition.
  • the RRU that satisfies the predetermined condition is 2 RRUs, and at this time, RRU2, RRU3, and RRU4 can simultaneously transmit the CSI-RS of 4Ports, and the RRU1 sends 2Ports.
  • the CSI-RS then the total number of occupied REs is 6, and the total number of REs occupied by the CSI-RSs sent by the RRU1-RRU4 can be reduced to a large extent, and
  • the first RRU and the second RRU are simultaneously determined to be RRUs that meet the predetermined condition, and the CSI-RSs can be separately sent in two CSI-RS configurations, that is, the first RRU with the smallest number of antenna ports is separately sent to the CSI through a set of CSI-RS configurations.
  • RS and let the remaining RRUs send CSI-RS through another set of CSI-RS configurations, while reducing the RE occupancy. It is also possible to ensure the validity and accuracy of the separately transmitted CSI-RS to improve the accuracy of channel estimation by the user equipment.
  • RRU2 When only RRU2 is determined as an RRU that satisfies a predetermined condition, then RRU2, RRU3, and RRU4 simultaneously transmit a CSI-RS of 4Port, and since the number of transmit antennas included in RRU1 is 2, RRU1 may not need to transmit CSI at this time.
  • RS that is, RRU1 can not perform channel state measurement. Since there is a case where RRU1 does not send CSI-RS, the number of CSI-RSs that are finally sent last may be less than M, that is, the value of P may be Less than M, or it can be equal to M.
  • the channel measurement result performed by the RRU2, the RRU3, and the RRU4 by sending the CSI-RS may be approximated as the channel measurement result of the RRU1.
  • the amount of transmission and reception of the CSI-RS can be reduced and the occupancy of the RE can be minimized, and the configuration of the network device can also perform channel estimation on the channel corresponding to each RRU, thereby reducing the RE occupancy. Under the premise, we can try to ensure the accuracy of channel estimation.
  • the network device divides the RRUs with the same number of antenna ports into one group.
  • the M RRUs are divided into K groups of RRUs according to whether the number of antenna ports is equal.
  • the five RRUs included in Table 1 can be divided into antennas. If the number of ports is equal, it is divided into three groups, where RRU1 is the first group, RRU2 is the second group, and RRU3, RRU4, and RRU5 are the third group.
  • an RRU is arbitrarily selected from each of the three groups of RRUs. Since there are K groups, K RRUs can be selected, and finally the selected K RRUs are determined together as RRUs satisfying predetermined conditions. After determining the K RRUs as RRUs satisfying predetermined conditions, each group of RRUs may be configured to transmit corresponding CSI-RSs through a set of CSI-RS configurations.
  • the RRU of the first group occupies 2 REs to send CSI-RSs of 2 ports
  • the RRUs of the second group ie, RRU2
  • a CSI-RS that causes the third group of RRUs ie, RRU3, RRU4, and RRU5
  • the RRU 2 can occupy the 4 REs labeled 15-18 under the CSI-RS configuration 2 shown in FIG. 3.
  • the CSI-RS that needs to be sent by the RRU2 is sent.
  • the RRU3 and the RRU4 can simultaneously occupy the two CSIs that are sent by the RRE3 and the RRU4 in the CSI-RS configuration 0 shown in FIG. -RS.
  • the network device can also facilitate group management of multiple RRUs by the network device.
  • the network device may indicate that the M RRUs are N. Transmitting P CSI-RSs on the RE, and controlling at least one of the N REs to carry content of at least two CSI-RSs of the P CSI-RSs, that is, determining antenna ports corresponding to the M RRUs If the numbers are not completely equal, the content corresponding to multiple CSI-RSs may be mapped on the same RE, and the same RE may simultaneously carry multiple CSI-RS information at the same time, which is equivalent to re-establishing the RE at the same time.
  • the use efficiency of the RE is improved, so that the transmission of P CSI-RSs can be completed with less REs, thereby reducing the occupied pilot transmission resources of the CSI-RS to reduce the transmission overhead of the pilots. .
  • the information of multiple CSI-RSs is transmitted by means of RE multiplexing, it is equivalent to superimposing information of several pieces of energy on the same RE, which can also increase the SINR of the user equipment, thereby improving the user.
  • the accuracy of the channel estimation by the device For example, for 1 RE (for example, referred to as the first RE), when the energy of the first RE is 1 when not multiplexed, and the noise is assumed to be N, then the SINR is 1/N, and when 3 CSI- When the information of the RS is superimposed on the first RE and transmitted simultaneously, the energy of the first RE is 3 and the noise is still N. At this time, the SINR is 3/N, which is equivalent to an increase of 3 times. For user equipment, the results of channel estimation are also more accurate.
  • an embodiment of the present invention provides a network device, where the network device includes a memory 401 and a processor 402.
  • the memory 401 and the processor 402 can be connected to the same bus 400.
  • the processor 402 may be a central processing unit (CPU) or an application specific integrated circuit (ASIC), and may be one or more integrated circuits for controlling program execution, may be a baseband chip, and the like.
  • CPU central processing unit
  • ASIC application specific integrated circuit
  • the number of memories 401 may be one or more, and is illustrated in FIG. 4 by a memory 401.
  • the memory 401 may be a Read Only Memory (ROM), a Random Access Memory (RAM), or a disk storage, etc.
  • the memory 401 may be used to store data or the like.
  • the code corresponding to the CSI-RS transmission method shown in FIG. 2 is solidified into the chip, so that the chip can execute the CSI-RS transmission method shown in FIG. 2 during operation.
  • How to design and program the processor 402 is well known to those skilled in the art, and details are not described herein.
  • an embodiment of the present invention provides a network device, where the network device includes a determining module 501 and a processing module 502.
  • the entity device corresponding to the determining module 501 and the processing module 502 may be the processing in FIG. 402.
  • the network device in the embodiment of the present invention may be used to perform the CSI-RS transmission method shown in FIG. 2, and may be, for example, the foregoing network device. Therefore, for functions and the like implemented by each module in the network device, reference may be made. As described in the previous method section, I will not repeat them here.
  • the disclosed system, apparatus, and method may be implemented in other manners.
  • the device embodiments described above are merely illustrative.
  • the division of the unit or unit is only a logical function division.
  • there may be another division manner for example, multiple units or components may be used. Combinations can be integrated into another system, or some features can be ignored or not executed.
  • Another point, the phase shown or discussed The coupling or direct coupling or communication connection between each other may be an indirect coupling or communication connection through some interface, device or unit, and may be in an electrical, mechanical or other form.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, may be located in one place, or may be distributed to multiple network units. Some or all of the units may be selected according to actual needs to achieve the purpose of the solution of the embodiment.
  • each functional unit in each embodiment of the present invention may be integrated into one processing unit, or each unit may exist physically separately, or two or more units may be integrated into one unit.
  • the above integrated unit can be implemented in the form of hardware or in the form of a software functional unit.
  • the integrated unit if implemented in the form of a software functional unit and sold or used as a standalone product, may be stored in a computer readable storage medium.
  • a computer readable storage medium A number of instructions are included to cause a computer device (which may be a personal computer, server, or network device, etc.) or a processor to perform all or part of the steps of the methods described in various embodiments of the present application.
  • the foregoing storage medium includes various media that can store program codes, such as a USB flash drive, a mobile hard disk, a ROM, a RAM, a magnetic disk, or an optical disk.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Quality & Reliability (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

一种CSI-RS传输方法及网络设备,用于解决在发送CSI-RS时导频资源开销过大的技术问题,以减少发送CSI-RS的所占用的导频传输资源,以减少导频的传输开销。该方法包括:网络设备确定M个射频拉远单元RRU分别用于向同一用户设备发送CSI-RS的M个天线端口数中的至少两个天线端口数不相等,以及指示所述M个RRU在N个资源单元上发送P个CSI-RS;其中,所述N个资源单元中的至少一个资源单元承载所述P个CSI-RS中的至少两个CSI-RS的内容,所述P个CSI-RS为所述M个RRU中的P个RRU分别发送的CSI-RS,M为大于等于2的整数,P为小于等于M的整数N为正整数。

Description

一种CSI-RS传输方法及网络设备 技术领域
本发明涉及通信技术领域,尤其涉及一种CSI-RS传输方法及网络设备。
背景技术
在通信小区中,按照服务于用户设备(User Equipment,UE)的射频拉远单元(Radio Remote Unit,RRU)的数量不同,可以将UE区分为独立用户或联合用户,独立用户是指只有一个RRU为该UE服务,联合用户是指有多个RRU为该UE服务,例如图1所示,RRU1和RRU2均服务于用户设备a,则可以将用户设备a看作是联合用户。
目前一般采用发送信道状态信息参考信号(Channel State Information Reference Signal,CSI-RS)的方式对信道的状态进行检测,如图1所示,RRU1通过向用户设备a发送CSI-RS以便用户设备a对信道H1的状态进行检测,RRU2通过向用户设备a发送CSI-RS以便用户设备a对信道H2的状态进行检测。
在实际中,RRU1和RRU2用于向用户设备a发送CSI-RS的天线端口(Port)的数量可能并不相同,例如RRU1向用户设备a发送4Port的CSI-RS,而RRU2向用户设备a发送8Port的CSI-RS,当多个RRU用于发送CSI-RS的Port数不完全相等时,每个RRU会占用不同的资源单元(Resource Element,RE)以发送对应的CSI-RS,那么当RRU数量较多时就会占用大量的导频资源,导致向UE发送CSI-RS时所占用的传输资源开销过大。
发明内容
本发明实施例提供一种CSI-RS传输方法及网络设备,用于解决在发送CSI-RS时所占用的传输资源过多的技术问题。
第一方面,提供一种CSI-RS传输方法,该方法可以应用于网络设备。在该方法中,网络设备确定M个RRU分别用于向同一用户设备发送CSI-RS的 M个天线端口数中的至少两个天线端口数不相等,再指示M个RRU在N个资源单元上发送P个CSI-RS;其中,N个资源单元中的至少一个资源单元承载P个CSI-RS中的至少两个CSI-RS的内容,P个CSI-RS为M个RRU中的P个RRU分别发送的CSI-RS,M为大于等于2的整数,P为小于等于M的整数,N为正整数。
本发明实施例中,在确定M个RRU分别用于向同一用户设备发送CSI-RS的M个天线端口数中存在至少两个天线端口数不相等时,网络设备可以指示M个RRU在N个RE上发送P个CSI-RS,并且控制N个RE中的至少一个RE承载P个CSI-RS中的至少两个CSI-RS的内容,也就是说,在确定M个RRU所对应的天线端口数不完全相等时,可以在同一RE上映射多个CSI-RS所对应的内容,那么该同一RE就可以在同一时刻同时承载多个CSI-RS的信息,相当于是在同一时刻对RE进行复用,提高RE的利用效率,从而可以在占用较少的RE的情况下完成P个CSI-RS的传输,进而减少发送CSI-RS的所占用的导频传输资源,以减少导频的传输开销。
同时,由于是将多个CSI-RS的信息通过RE复用的方式进行发送,相当于是在同一个RE上叠加了几份能量的信息,这样还可以增大用户设备的信干噪比(Signal to Interference Plus Noise Ratio,SINR),进而可以提高用户设备进行信道估计的准确性。
结合第一方面,在第一方面的第一种可能的实现方式中,网络设备指示M个RRU在N个资源单元上发送P个CSI-RS,包括:从M个RRU中确定满足预定条件的RRU,并根据满足预定条件的RRU用于发送CSI-RS的天线端口数确定N个资源单元,再指示M个RRU在N个资源单元上发送P个CSI-RS。
本发明实施例中,先从M个RRU中选择出满足预定条件的RRU,再根据满足预定条件的RRU所对应的天线端口数确定N的取值,相当于是可以先缩小的确定范围,例如从5个RRU中选择出一个RRU作基准RRU,就可以将确定范围从5个RRU缩小为1个RRU,这样可以在一定程度上提高确定的 效率。
结合第一方面的第一种可能的实现方式,在第一方面的第二种可能实现的方式中,网络设备从M个RRU中确定满足预定条件的RRU,包括:确定M个RRU中用于向用户设备发送CSI-RS所使用的天线端口数最少的第一RRU为满足预定条件的RRU。
本发明实施例中,在将第一RRU确定为满足预定条件的RRU之后,M个RRU则可以通过最少的RE数发送P个CSI-RS,从而可以在最大程度上减少对RE的占用,从而最大程度上节约导频开销。
结合第一方面的第一种可能的实现方式,在第一方面的第三种可能实现的方式中,网络设备从M个RRU中确定满足预定条件的RRU,包括:网络设备从M个RRU中确定用于向用户设备发送CSI-RS所使用的天线端口数最少的第一RRU,再判断第一RRU用于发送CSI-RS的天线端口数是否大于等于预定数量以获得确定结果,进而再根据确定结果确定满足预定条件的RRU。
因为在某些场景下,如果第一RRU所对应的天线端口数太少,虽然可以占用最少量的RE用于同时发送P个CSI-RS,但是可能由于RE的数量太少而无法准确、有效地承载所有需要发送的CSI-RS的内容,也就是说,可能由于RE的数量太少而导致用户设备无法准确地进行信道估计,基于此,在本发明实施例中,为了尽量提高用户设备信道估计的准确性和有效性,会先判断最少的天线端口数是否大于等于预定数量,进而再根据判断结果确定满足预定条件的RRU。
结合第一方面的第三种可能的实现方式,在第一方面的第四种可能实现的方式中,网络设备根据确定结果确定满足预定条件的RRU,包括:若确定结果表明第一RRU用于发送CSI-RS的天线端口数大于等于预定数量,则将第一RRU确定为满足预定条件的RRU。
也就是说,在确定最少的天线端口数大于等于预定数量时,可以直接将最少的天线端口数确定为用于发送P个CSI-RS的RE数,由于预定数量是根据通信小区的实际情况而预先配置,所以这样可以使得最终确定的出的RE的 数量不至于过小,在确保减少导频开销的前提下还可以尽量确保用户设备信道估计的准确性和有效性。
结合第一方面的第三种可能的实现方式,在第一方面的第五种可能实现的方式中,网络设备根据确定结果确定满足预定条件的RRU,包括:若确定结果表明第一RRU用于发送CSI-RS的天线端口数小于预定数量,则将第一RRU和第二RRU同时确定为满足预定条件的RRU,或者,仅将第二RRU确定为满足预定条件的RRU;其中,第二RRU为M个RRU中除第一RRU外用于发送CSI-RS的天线端口数最少的RRU,即,第二RRU为M个RRU中用于发送CSI-RS的天线端口数倒数第二少的RRU。
本发明实施例中,通过将第一RRU和第二RRU同时确定为满足预定条件的RRU,可以分别占用两种CSI-RS配置发送CSI-RS,即令天线端口数最少的第一RRU单独通过一套CSI-RS配置发送CSI-RS,而令其余RRU通过另一套CSI-RS配置发送CSI-RS,在减少RE占用量的前提下,还可以尽量确保分别发送的CSI-RS的有效性和准确性,以提高用户设备进行信道估计的准确性。
以及,当仅将第二RRU作为满足预定条件的RRU时,可以减少CSI-RS的发送发送量并且可以尽量减少RE的占用量,并给通过网络设备的配置也可以对各个RRU对应的信道进行信道估计,在减少了RE占用量的前提下还可以尽量确保信道估计的准确性。
结合第一方面的第一种可能的实现方式,在第一方面的第六种可能实现的方式中,网络设备从M个RRU中确定满足预定条件的RRU,包括:先将M个RRU中用于发送CSI-RS的天线端口数相等的RRU划分为一组,例如将M个RRU划分为了K组RRU,再从K组RRU中的每组RRU中任意选择一个RRU,共选择K个RRU,最后将所选择出的K个RRU确定为满足预定条件的RRU。
本发明实施例中,通过将天线端口数是否相等的方式对M个RRU进行分组后再根据分组结果确定满足预定条件的RRU,相当于是可以将天线端口 数相等的多个RRU划分为一组并指示天线端口数相等的多个RRU使用同一套CSI-RS配置发送同时发送对应的多个CSI-RS,在减少RE占用量的基础上,还可以便于网络设备对多个RRU进行分组管理。
结合第一方面的第一种可能的实现方式至第六种可能的实现方式中的任一种可能实现的方式,在第一方面的第七种可能实现的方式中,网络设备根据满足预定条件的RRU用于发送CSI-RS的天线端口数确定N个资源单元,包括:若满足预定条件的RRU是一个RRU,则将该一个RRU用于向用户设备发送CSI-RS所使用的天线端口数确定为N的取值,或者,若满足预定条件的RRU是至少两个RRU且该至少两个RRU是M个RRU中的部分RRU,则将该至少两个RRU分别用于发送CSI-RS的天线端口数之和确定为N的取值。
在具体实施过程中,根据预定条件的不同设置,可能从M个RRU确定出一个或多个RRU作为满足预定条件的RRU,也就是说,在本发明实施例中,满足预定条件的RRU可能是一个,也可能是多个。
当满足预定条件的RRU是一个RRU时,网络设备可以直接将该一个RRU所对应的天线端口数确定为N的取值,即通过直接将该一个RRU所对应的天线端口数确定为N的取值,以便M个RRU均通过该一个RRU所对应的天线端口数的RE发送P个CSI-RS,相较于M个RRU分别通过对应天线端口数的RE发送相应的CSI-RS的方式来说,可以较大程度上减少RE的占用量,节约导频资源。
当满足预定条件的RRU包括至少两个RRU且至少两个RRU为M个RRU中的部分RRU时,即当确定满足预定条件的RRU包括至少两个RRU且满足预定条件的RRU的数量小于M时,网络设备可以将至少两个RRU分别所对应的天线端口数之和确定为N的取值,进而可以减少RE的占用量,节约传输资源。
第二方面,提供一种网络设备,该网络设备包括处理器和存储器,所述存储器与处理器耦合,所述存储器用于存储指令,所述处理器用于执行所述 指令,以确定M个RRU分别用于向同一用户设备发送CSI-RS的M个天线端口数中的至少两个天线端口数不相等,以及指示所述M个RRU在N个资源单元上发送P个CSI-RS;其中,所述N个资源单元中的至少一个资源单元承载所述P个CSI-RS中的至少两个CSI-RS的内容,所述P个CSI-RS为所述M个RRU中的P个RRU分别发送的CSI-RS,M为大于等于2的整数,P为小于等于M的整数,N为正整数。
结合第二方面,在第二方面的第一种可能的实现方式中,处理器用于指示M个RRU在N个资源单元上发送P个CSI-RS,包括:先从M个RRU中确定满足预定条件的RRU,再根据满足预定条件的RRU用于发送CSI-RS的天线端口数确定N个资源单元,进而再指示M个RRU在N个资源单元上发送P个CSI-RS。
结合第二方面的第一种可能的实现方式,在第二方面的第二种可能实现的方式中,处理器用于从M个RRU中确定满足预定条件的RRU,包括:将M个RRU中用于向用户设备发送CSI-RS所使用的天线端口数最少的第一RRU确定为满足预定条件的RRU。
结合结合第二方面的第一种可能的实现方式,在第二方面的第三种可能实现的方式中,处理器用于从M个RRU中确定满足预定条件的RRU,包括:先从M个RRU中确定用于向用户设备发送CSI-RS所使用的天线端口数最少的第一RRU,再确定第一RRU用于发送CSI-RS的天线端口数是否大于等于预定数量以获得确定结果,进而再根据确定结果确定满足预定条件的RRU。
结合结合第二方面的第三种可能的实现方式,在第二方面的第四种可能实现的方式中,网络设备根据确定结果确定满足预定条件的RRU,包括:若确定结果表明第一RRU用于发送CSI-RS的天线端口数大于等于预定数量,则将第一RRU确定为满足预定条件的RRU。
结合结合第二方面的第三种可能的实现方式,在第二方面的第五种可能实现的方式中,网络设备根据确定结果确定满足预定条件的RRU,包括:若确定结果表明第一RRU用于发送CSI-RS的天线端口数小于预定数量,则将 第一RRU和第二RRU同时确定为满足预定条件的RRU,或,则将第二RRU确定为满足预定条件的RRU;其中,第二RRU为M个RRU中除第一RRU外用于发送CSI-RS的天线端口数最少的RRU。
结合第二方面的第一种可能的实现方式,在第二方面的第六种可能实现的方式中,网络设备从M个RRU中确定满足预定条件的RRU,包括:将用于发送CSI-RS的天线端口数相等的RRU划分为一组以将M个RRU划分为K组RRU,再分别从K组RRU中的每组RRU中任意选择一个RRU,共选择K个RRU,再将K个RRU确定为满足预定条件的RRU,K为大于等于2的整数。
结合第二方面的第一种可能的实现方式至第六种可能的实现方式中的任一种可能实现的方式,在第二方面的第七种可能实现的方式中,网络设备根据满足预定条件的RRU用于发送CSI-RS的天线端口数确定N个资源单元,包括:若满足预定条件的RRU是一个RRU,则确定一个RRU用于发送CSI-RS的天线端口数为N的取值,或,若满足预定条件的RRU包括至少两个RRU,则确定至少两个RRU分别用于发送CSI-RS的天线端口数之和为N的取值;其中,至少两个RRU为M个RRU中的部分RRU。
第三方面,提供一种CSI-RS传输功能实体,该CSI-RS传输功能实体可以包括用于执行第一方面或第一方面的任一种可能的实现方式的方法的功能模块。
第四方面,提供一种计算机存储介质,用于储存为上述CSI-RS传输功能实体所用的计算机软件指令,其包含用于执行上述方面为CSI-RS传输功能实体所设计的程序。
本发明实施例中,在传输CSI-RS时,通过对RE进行复用,可以在占用较少RE的情况下完成CSI-RS的传输,进而减少发送CSI-RS的所占用的导频传输资源,以减少导频的传输开销。
本发明的这些方面或其他方面在以下实施例的描述中会更加简明易懂。
附图说明
为了更清楚地说明本发明实施例的技术方案,下面将对本发明实施例中所需要使用的附图作简单地介绍,显而易见地,下面所介绍的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为两个RRU服务于同一用户设备的示意图;
图2为本发明实施例提供的CSI-RS传输方法的流程图;
图3为LTE系统基本时频资源结构图;
图4为本发明实施例提供的网络设备的结构示意图;
图5为本发明实施例提供的网络设备的结构框图。
具体实施方式
为使本发明实施例的目的、技术方案和优点更加清楚,下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
本文中描述的技术可用于各种通信系统,例如当前2G(第二代移动通信技术),3G(第三代移动通信技术)通信系统和下一代通信系统,例如全球移动通信系统(Global System for Mobile communications,GSM),码分多址(Code Division Multiple Access,CDMA)系统,时分多址(Time Division Multiple Access,TDMA)系统,宽带码分多址(Wideband Code Division Multiple Access Wireless,WCDMA),频分多址(Frequency Division Multiple Addressing,FDMA)系统,正交频分多址(Orthogonal Frequency-Division Multiple Access,OFDMA)系统,单载波FDMA(SC-FDMA)系统,通用分组无线业务(General Packet Radio Service,GPRS)系统,长期演进(Long Term Evolution,LTE)系统,以及其他此类通信系统。
本文中结合网络设备和/或用户设备来描述各种方面。
网络设备,例如是基站(例如,接入点),具体可以是指接入网中在空中接口上通过一个或多个扇区与无线终端通信的设备。基站可用于将收到的空中帧与IP分组进行相互转换,作为无线终端与接入网的其余部分之间的路由器,其中接入网的其余部分可包括网际协议(IP)网络。基站还可协调对空中接口的属性管理。例如,基站可以是GSM或CDMA中的基站(BTS,Base Transceiver Station),也可以是WCDMA中的基站(NodeB),还可以是LTE中的演进型基站(NodeB或eNB或e-NodeB,evolutional Node B),本发明并不限定。
用户设备,可以是无线终端也可以是有线终端,无线终端可以是指向用户提供语音和/或数据连通性的设备,具有无线连接功能的手持式设备、或连接到无线调制解调器的其他处理设备。无线终端可以经无线接入网(例如,RAN(Radio Access Network))与一个或多个核心网进行通信,无线终端可以是移动终端,如移动电话(或称为“蜂窝”电话)和具有移动终端的计算机,例如,可以是便携式、袖珍式、手持式、计算机内置的或者车载的移动装置,它们与无线接入网交换语言和/或数据。例如,个人通信业务(Personal Communication Service,PCS)电话、无绳电话、会话发起协议(SIP)话机、无线本地环路(Wireless Local Loop,WLL)站、个人数字助理(Personal Digital Assistant,PDA)等设备。无线终端也可以称为系统、订户单元(Subscriber Unit)、订户站(Subscriber Station),移动站(Mobile Station)、移动台(Mobile)、远程站(Remote Station)、接入点(Access Point)、远程终端(Remote Terminal)、接入终端(Access Terminal)、用户终端(User Terminal)、用户代理(User Agent)、用户设备(User Device)、或用户装备(User Equipment)。
本文中术语“和/或”,仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,本文中字符“/”,如无特殊说明,一般表示前后关联对象是一种“或”的关系。
下面结合说明书附图对本发明实施例作进一步详细描述。
请参见图2,本发明实施例提供一种CSI-RS传输方法,该方法可以应用于网络设备。该方法的流程描述如下。
步骤201:网络设备确定M个RRU分别用于向同一用户设备发送CSI-RS的M个天线端口数中的至少两个天线端口数不相等,M为大于等于2的整数。
本发明实施例中,由于M个RRU均向同一用户设备发送CSI-RS,即M个RRU均服务于该同一用户设备,那么可以将该同一用户设备看作是联合用户,例如该同一用户设备同时包括2个,或3个,或4个服务RRU,即M的取值例如可以为2、3、4,等等,在具体实施过程中,M的取值可以由网络设备或用户预先进行配置,本发明实施例不做限制。
一般来说,每个RRU用于向用户设备发送CSI-RS的天线端口数是由网络设备预先配置好的,并且可以根据RRU所包括的发射天线的数量进行对应配置。并且,本发明实施例中的天线端口是指逻辑端口,一个天线端口既可用一个物理天线来实现,亦可用若干物理天线的组合来实现,例如一个天线端口可以由4个物理天线阵元复用到该天线端口,总的来说,RRU用于发送CSI-RS的天线端口数小于等于其所包括的发射天线数。
例如表1所示,RRU1包括2个发射天线,网络设备为其配置2个天线端口用于发送CSI-RS,RRU2包括4个发射天线,网络设备为其配置4个天线端口用于发送CSI-RS,RRU3包括8个发射天线,网络设备为其配置8个天线端口用于发送CSI-RS,RRU4包括16个发射天线以及RRU5包括32个发射天线,网络设备为RRU4和RRU5均配置了8个天线端口用于发送CSI-RS,RRU6包括16个发射天线,网络设备为其配置16个天线端口用于发送CSI-RS。
可见,当RRU包括的发射天线数量不是很多时,例如包括2个、4个或8个发射天线时,网络设备为其配置用于发送CSI-RS的天线端口数一般与其包括的发射天线数相等,当RRU包括较多数量的发射天线时,例如包括16个或32个发射天线时,网络设备为其配置用于发送CSI-RS的天线端口数一 般小于其所包括的发射天线数,或者也可以等于其所包括的发射天线数。
表1
RRU编号 发射天线数 天线端口数
RRU1 2 2
RRU2 4 4
RRU3 8 8
RRU4 16 8
RRU5 32 8
RRU6 16 16
本发明实施例中,由于为M个RRU中每个RRU预先配置好了用于发送CSI-RS的天线端口数,那么与每隔RRU均对应有一个天线端口数,则共有M个天线端口数,当M个天线端口数中存在任意两个天线端口不相等时则表明M个天线端口数中的至少两个天线端口数不相等,例如M个天线端口数各不相等,或者M个天线端口数中的部分天线端口数不相等。
继续参见表1,以RRU1、RRU2和RRU3为例,可见这3个RRU分别用于发送CSI-RS的天线端口数各不相等,又以RRU2、RRU3和RRU4为例,可见这3个RRU分别对应的CSI-RS的天线端口数是部分不相等,例如RRU2与RRU3所对应的天线端口数不相等,而RRU3和RRU4所对应的天线端口数却相等,即均为8。需要说明的是,在本文中,为了便于描述,在某些情形下将“RRU用于发送CSI-RS”亦描述为“RRU所对应的天线端口数”。
步骤202:网络设备指示M个RRU在N个资源单元(Resource Element,RE)上发送P个CSI-RS;其中,N个资源单元上中的至少一个资源单元承载P个CSI-RS中的至少两个CSI-RS的内容,P个CSI-RS中为M个RRU中的P个RRU分别发送的CSI-RS,N为正整数,P为小于等于M的整数。
其中,P个RRU可以为M个RRU中的部分RRU,此时P的取值小于M,或者,P个RRU即为M个RRU,此时P的取值与M的取值相同,也就是说, 可能是由M个RRU在N个RE上同时映射M个RRU所对应的内容以将M个CSI-RS同时发送给用户设备,或者也可能是由M个RRU中的部分RRU将M个CSI-RS中的部分CSI-RS同时发送给用户设备。
在具体实施过程中,RRU根据网络设备的指示,通过将CRI-RS对应的信息映射到RE上的方式向用户设备发送CRI-RS。其中,RE又称作资源元素,它是由频域上的一个子载波和时域上的一个正交频分复用(Orthogonal Frequency Division Multiplexing,OFDM)符号持续时间组成的。
在长期演进(Long Term Evolution,LTE)系统中,对每一天线端口按照时间和频率分成的传输资源结构如下:最大的时间单元是10ms的无线帧,被分成10个1ms的子帧,每个子帧又被分为两个0.5ms的时隙,对常规循环前缀长度,每个时隙由7个OFDM符号组成,若小区上配置的是扩展循环前缀,那么每个时隙由6个OFDM符号组成。在频域上,每12个子载波组成一个单位资源,因此,频率上的一个单位资源,时间上的一个持续时隙资源被称为资源块(Resource Block,RB),而一个RB由多个RE构成,即一个RB包括多个RE。
请参见图3,图3为LTE系统基本时频资源结构图,如图3中所示,一个RB包括84个RE,并且在图3中示出了4种用于发送CSI-RS的配置,即CSI-RS配置0-3,RRU可以通过任意一种配置向用户设备发送CSI-RS,即RRU可以通过将CSI-RS对应的信息映射到CSI-RS配置0-3中任意一种配置下的RE上进而向用户设备发送CSI-RS,而对于每个RRU具体通过哪一种CSI-RS配置向用户设备发送CSI-RS,可以由用户设备预先进行配置。
在现有技术中,当多个RRU分别所对应的天线端口数不完全相等时,每个RRU通过一种CSI-RS配置下的RE向用户设备发送对应的CSI-RS,那么当RRU的数量较多时,则会占用较多的RE,而如图3所示,RE的数量是有限的,如果占用大量的RE用于发送CSI-RS,那么用于传输通信数据或者其它信号的RE的数量就相对减少,这将导致导频资源的开销过大,RE的利用率也较低。
基于以上所述,在本发明实施例中,在确定M个RRU分别用于向同一用户设备发送CSI-RS的M个天线端口数中存在至少两个天线端口数不相等时,网络设备可以指示M个RRU在N个RE上发送P个CSI-RS,并且控制N个RE中的至少一个RE承载P个CSI-RS中的至少两个CSI-RS的内容,也就是说,在确定M个RRU所对应的天线端口数不完全相等时,可以在同一RE上映射多个CSI-RS所对应的内容,那么该同一RE就可以在同一时刻同时承载多个CSI-RS的信息,相当于是在同一时刻对RE进行复用,提高RE的利用效率,从而可以在占用较少的RE的情况下完成P个CSI-RS的传输,进而减少发送CSI-RS的导频开销。
目前,用于传输CSI-RS的天线端口数与占用的RE数一般相等,例如,2个CSI-RS天线端口需要占用2个RE传输,4个CSI-RS天线端口需要占用4个RE传输,8个CSI-RS天线端口需要占用8个RE传输。
假设按照现有技术中的方案,表1中的RRU3通过图3中CSI-RS配置0下标记为15-22的8个RE发送8Port的CSI-RS,表1中的RRU2通过图3中CSI-RS配置2下标记为15-18的4个RE发送4Port的CSI-RS,那么,RRU3和RRU2一共会占用12个RE发送CSI-RS。
而在本发明实施例中,由于RRU3和RRU2分别所对应的天线端口数不相等,网络设备可以指示RRU3和RRU2发送的2个CSI-RS的内容至少部分同时映射到同一个RE上进行发送,例如该同一个RE为图3中CSI-RS配置2下的标记为15的RE,那么相当于是RRU3和RRU2分别发送的CSI-RS都会占用该同一个RE,这样可以实现该同一个RE的复用,通过提高该一个RE的利用率以实现减小导频传输资源的开销的目的。
可选的,网络设备还可以指示RRU3和RRU2同时通过图3中CSI-RS配置2下标记为15-18的4个RE发送4Port的CSI-RS,相当于是说,将RRU3原来的8Port重新配置为4Port且保持RRU2的Port数不变,并且指示RRU3和RRU2通过相同位置的RE(即图3中CSI-RS配置2下标记为15-18的4个RE)同时发送对应的CSI-RS,那么,CSI-RS配置2下标记为15-18的4 个RE中的每个RE均承载了两个CSI-RS的内容,且此时一共只占用了4个RE用于同时发送RRU3和RRU2的2个CSI-RS,相对于现有技术中的占用12个RE的方案来说,明显减少了对RE的占用量,从而可以在较大程度上减少导频开销。
实际来说,M个RRU分别所对应的天线端口数可能包括多种情形,在指示M个RRU在N个RE上发送P个CSI-RS之前,网络设备需要确定出N个RE,具体来说,需要确定N个RE具体包括的数量,即N的取值,以及需要确定N个RE的具体位置。其中,对于N个RE的具体位置,例如需要使用图3中的哪种CSI-RS配置,在具体实施过程中,这可以由网络设备预先配置。
而对于N的取值,可以根据M个RRU所分别对应的天线端口数来进行确定,由于天线端口数与RE数之间有一定的对应关系,即一般是相等的对应关系,所以通过M个RRU分别所包括的天线端口数确定N的取值是比较直接和快捷的确定方式,并且由于每个RRU用于发送CSI-RS的天线端口数是由网络设备预先配置的,所以网络设备可以快速地根据RRU所对应的天线端口数确定出N的取值。
在本发明实施例中,网络设备可以先从M个RRU中确定出满足预定条件的RRU,再根据满足预定条件的RRU用于发送CSI-RS天线端口数确定N的取值,也就是说,网络设备可以先从M个RRU中选择出基准RRU,再根据基准RRU所对应的天线端口数确定N的取值。
先从M个RRU中选择出满足预定条件的RRU,再根据满足预定条件的RRU所对应的天线端口数确定N的取值,相当于是可以先缩小的确定范围,例如从5个RRU中选择出一个RRU作基准RRU,就可以将确定范围从5个RRU缩小为1个RRU,这样可以在一定程度上提高确定的效率。
同时,由于缩小了确定范围,满足预定条件的RRU所对应的天线端口数一般少于或远少于M个RRU分别所对应的天线端口数之和,由于天线端口数与RE的数量一般相等,所以可以在较大程度上减少RE的占用量,节约导频资源。
在具体实施过程中,根据预定条件的不同设置,可能从M个RRU确定出一个或多个RRU作为满足预定条件的RRU,也就是说,在本发明实施例中,满足预定条件的RRU可能是一个,也可能是多个。
当满足预定条件的RRU是一个RRU时,网络设备可以直接将该一个RRU所对应的天线端口数确定为N的取值,也就是说,当从M个RRU中确定出一个满足预定条件的RRU时,例如将表1中的RRU2确定为满足预定条件的RRU时,由于RRU2所对应的天线端口数为4,那么则可以令M个RRU均通过相同的4个RE发送对应的CSI-RS。
通过直接将该一个RRU所对应的天线端口数确定为N的取值,以便M个RRU均通过该一个RRU所对应的天线端口数的RE发送P个CSI-RS,相较于M个RRU分别通过对应天线端口数的RE发送相应的CSI-RS的方式来说,可以较大程度上减少RE的占用量,节约导频资源。
当满足预定条件的RRU包括至少两个RRU且至少两个RRU为M个RRU中的部分RRU时,即当确定满足预定条件的RRU包括至少两个RRU且满足预定条件的RRU的数量小于M时,网络设备可以将至少两个RRU分别所对应的天线端口数之和确定为N的取值,例如从表1中的RRU1、RRU2、RRU3和RRU4中确定出RRU1和RRU3为满足预定条件的RRU,那么则可以将RRU1和RRU3分别所对应的天线端口数之和确定为N的取值,由于RRU1对应2个天线端口,RRU3对应8个天线端口,那么可以将N的取值确定为10,在此基础上,相对于RRU1、RRU2、RRU3和RRU4这4个RRU总的天线端口数来说,减少了RE的占用量,进而节约导频资源。
为了便于本领域技术人员理解,以下列举几种情形对从M个RRU中确定满足预定条件的RRU的实施过程进行举例说明。
第一种情形:
网络设备将M个RRU中用于向用户设备发送CSI-RS所使用的天线端口数最少的RRU确定为满足预定条件的RRU,为了便于描述,本文中将M个RRU中用于向用户设备发送CSI-RS所使用的天线端口数最少的RRU称为第 一RRU。
也就是说,在第一种情形中,可以直接将第一RRU确定为满足预定条件的RRU,以表1为例,如果M个RRU为RRU1-RRU5这5个RRU,由于RRU1所对应的天线端口数最少,那么则可以将RRU1确定为满足预定条件的RRU,又例如,如果M个RRU为RRU2-RRU5这4个RRU,由于RRU2所对应的天线端口数最少,那么则可以将RRU2确定为满足预定条件的RRU。
在将第一RRU确定为满足预定条件的RRU之后,M个RRU则可以通过最少的RE数发送P个CSI-RS,从而可以在最大程度上减少对RE的占用,从而最大程度上节约导频开销。
第二种情形:
在从M个RRU中确定出所对应的天线端口数最少的第一RRU之后,可以再确定第一RRU所对应的天线端口数是否大于等于预定数量并获得确定结果,进而再根据确定结果从M个RRU中确定满足预定条件的RRU,也就是说,可以先判断第一RRU所对应的天线端口数是否大于等于预定数量,进而再根据判断来确定满足预定条件的RRU。
在某些场景下,如果第一RRU所对应的天线端口数太少,虽然可以占用最少量的RE用于同时发送P个CSI-RS,但是可能由于RE的数量太少而无法准确、有效地承载所有需要发送的CSI-RS的内容,也就是说,可能由于RE的数量太少而导致用户设备无法准确地进行信道估计,基于此,在本发明实施例中,为了尽量提高用户设备信道估计的准确性和有效性,会先判断最少的天线端口数是否大于等于预定数量,进而再根据判断结果确定满足预定条件的RRU。
可选的,若确定结果表明第一RRU用于发送CSI-RS的天线端口数大于等于预定数量,则将第一RRU确定为满足预定条件的RRU,例如,预定数量为4,M个RRU为表1中的RRU2-RRU5这4个RRU,其中天线端口数最少的为RRU2所对应的4个天线端口数,由于RRU2所对应的天线端口数等于预定数量,那么则可以将RRU2直接确定为满足预定条件的RRU。
在具体实施过程中,网络设备可以根据通信小区的具体情况或者综合其他因素来设置预定数量的取值,例如可以根据M个RRU的数量和/或RE的当前占用量,等等。
也就是说,在确定最少的天线端口数大于等于预定数量时,可以直接将最少的天线端口数确定为用于发送P个CSI-RS的RE数,由于预定数量是根据通信小区的实际情况而预先配置,所以这样可以使得最终确定的出的RE的数量不至于过小,在确保减少导频开销的前提下还可以尽量确保用户设备信道估计的准确性和有效性。
可选的,若确定结果表明第一RRU用于发送CSI-RS的天线端口数小于预定数量,则可以将第一RRU和第二RRU同时确定为满足预定条件的RRU,或者,仅将第二RRU确定为满足预定条件的RRU。其中,第二RRU是M个RRU中除第一RRU外天线端口数最少的RRU,即,第二RRU是M个RRU中天线端口数倒数第二少的RRU。
例如,预定数量为4,M个RRU为表1中的RRU1-RRU4这4个RRU,其中天线端口数最少的为RRU1所对应的2个天线端口,由于2小于4,所以可以从RRU1-RRU4选择出天线端口数倒数第二少的RRU,即RRU2,进一步地,可以将RRU1和RRU2同时确定为满足预定条件的RRU,即此时满足预定条件的RRU为2个RRU,或者,可以仅将RRU2确定为满足预定条件的RRU。
当同时将RRU1和RRU2确定为满足预定条件的RRU时,那么满足预定条件的RRU即为2个RRU,此时可以令RRU2、RRU3和RRU4同时均发送4Port的CSI-RS,以及令RRU1发送2Port的CSI-RS,那么总占用的RE数则为6,而相对于RRU1-RRU4分别发送CSI-RS所总占用的22个RE来说,可以较大程度减少RE的占用量,并且,通过将第一RRU和第二RRU同时确定为满足预定条件的RRU,可以分别占用两种CSI-RS配置发送CSI-RS,即令天线端口数最少的第一RRU单独通过一套CSI-RS配置发送CSI-RS,而令其余RRU通过另一套CSI-RS配置发送CSI-RS,在减少RE占用量的前提下, 还可以尽量确保分别发送的CSI-RS的有效性和准确性,以提高用户设备进行信道估计的准确性。
当仅将RRU2确定为满足预定条件的RRU时,那么RRU2、RRU3和RRU4同时均发送4Port的CSI-RS,而由于RRU1所包括的发射天线数为2,所以此时RRU1则可以无需发送CSI-RS,即可以让RRU1不进行信道状态测量,由于存在RRU1不发送CSI-RS的这种情形,所以最后总发送的CSI-RS的个数是可能小于M个的,即所以P的取值可能小于M,或者也可以等于M。
并且根据网络设备的配置,可以将对RRU2、RRU3和RRU4通过发送CSI-RS所进行的信道测量结果近似认为是对RRU1的信道测量结果,在本发明实施例中,当仅将第二RRU作为满足预定条件的RRU时,可以减少CSI-RS的发送发送量并且可以尽量减少RE的占用量,并给通过网络设备的配置也可以对各个RRU对应的信道进行信道估计,在减少了RE占用量的前提下还可以尽量确保信道估计的准确性。
第三种情形:
网络设备将天线端口数相等的RRU划分为一组,例如将M个RRU按照天线端口数是否相等划分为了K组RRU,如表1所示,可以将表1中所包括的5个RRU按照天线端口数是否相等将其划分为3组,其中,RRU1为第一组,RRU2为第二组,RRU3、RRU4和RRU5为第三组。
进一步地,再从3组RRU中的每组RRU中任意选择一个RRU,由于有K组,那么便可以选择出K个RRU,最后将选择出的K个RRU一起确定为满足预定条件的RRU,在将K个RRU确定为满足预定条件的RRU之后,可以令每组RRU通过一套CSI-RS配置发送对应的CSI-RS。
例如,将表1所示的5个RRU划分为上述3组之后,可以令第一组的RRU(即RRU1)占用2个RE发送2Port的CSI-RS,令第二组的RRU(即RRU2)占用4个RE发送4Port的CSI-RS,以及令第三组的RRU(即RRU3、RRU4、RRU5)同时占用相同的8个RE发送8Port的CSI-RS。其中,例如可以令RRU2占用图3中所示的CSI-RS配置2下的标记为15-18这4个RE 发送RRU2需要发送的CSI-RS,例如可以令RRU3和RRU4同时占用图3中所示的CSI-RS配置0下的标记为15-22这8个RE发送RRU3和RRU4所需要发送的2个CSI-RS。
通过将天线端口数是否相等的方式对M个RRU进行分组后再根据分组结果确定满足预定条件的RRU,相当于是可以将天线端口数相等的多个RRU划分为一组并指示天线端口数相等的多个RRU使用同一套CSI-RS配置发送同时发送对应的多个CSI-RS,在减少RE占用量的基础上,还可以便于网络设备对多个RRU进行分组管理。
本发明实施例中,在确定M个RRU分别用于向同一用户设备发送CSI-RS的M个天线端口数中存在至少两个天线端口数不相等时,网络设备可以指示M个RRU在N个RE上发送P个CSI-RS,并且控制N个RE中的至少一个RE承载P个CSI-RS中的至少两个CSI-RS的内容,也就是说,在确定M个RRU所对应的天线端口数不完全相等时,可以在同一RE上映射多个CSI-RS所对应的内容,那么该同一RE就可以在同一时刻同时承载多个CSI-RS的信息,相当于是在同一时刻对RE进行复用,提高RE的利用效率,从而可以在占用较少的RE的情况下完成P个CSI-RS的传输,进而减少发送CSI-RS的所占用的导频传输资源,以减少导频的传输开销。
同时,由于是将多个CSI-RS的信息通过RE复用的方式进行发送,相当于是在同一个RE上叠加了几份能量的信息,这样还可以增大用户设备的SINR,进而可以提高用户设备进行信道估计的准确性。例如针对1个RE(例如称作第一RE)来说,当未复用时第一RE的能量为1,此时假设噪声为N,那么SINR则为1/N,当将3个CSI-RS的信息叠加到第一RE上同时进行发送时,此时第一RE的能量为3而噪声仍然为N,此时SINR则为3/N,相当于是增加了3倍,由于SINR增大,对于用户设备来说,其对信道估计的结果也会更加准确。
请参见图4,本发明实施例提供一种网络设备,该网络设备包括存储器401和处理器402,存储器401和处理器402可以连接到同一总线400上。
其中,处理器402可以是中央处理器(CPU)或特定应用集成电路(Application Specific Integrated Circuit,ASIC),可以是一个或多个用于控制程序执行的集成电路,可以是基带芯片,等等。
存储器401的数量可以是一个或多个,图4中是以一个存储器401进行图示说明。存储器401可以是只读存储器(Read Only Memory,ROM)、随机存取存储器(Random Access Memory,RAM)或磁盘存储器,等等,另外,存储器401还可以用于存储数据等。
通过对处理器402进行设计编程,将前述图2中所示的CSI-RS传输方法所对应的代码固化到芯片内,从而使芯片在运行时能够执行图2所示的CSI-RS传输方法,如何对处理器402进行设计编程为本领域技术人员所公知的技术,这里不再赘述。
请参见图5,本发明实施例提供一种网络设备,该网络设备包括确定模块501和处理模块502,在实际应用中,确定模块501和处理模块502对应的实体设备可以是图4中的处理器402。
本发明实施例中的网络设备可以用于执行上述图2所示的CSI-RS传输方法,例如可以是前述的网络设备,因此,对于该网络设备中的各模块所实现的功能等,可参考如前方法部分的描述,在此不多赘述。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,仅以上述各功能单元的划分进行举例说明,实际应用中,可以根据需要而将上述功能分配由不同的功能单元完成,即将装置的内部结构划分成不同的功能单元,以完成以上描述的全部或者部分功能。上述描述的系统,装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本发明所提供的几个实施例中,应该理解到,所揭露的系统,装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元或单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相 互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本发明各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用软件功能单元的形式实现。
所述集成的单元如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的全部或部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)或处理器(processor)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、ROM、RAM、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,以上实施例仅用以对本发明的技术方案进行了详细介绍,但以上实施例的说明只是用于帮助理解本发明的方法及其核心思想,不应理解为对本发明的限制。本技术领域的技术人员在本发明揭露的技术范围内,可轻易想到的变化或替换,都应涵盖在本发明的保护范围之内。

Claims (16)

  1. 一种信道状态指示参考信号CSI-RS传输方法,其特征在于,包括:
    网络设备确定M个射频拉远单元RRU分别用于向同一用户设备发送CSI-RS的M个天线端口数中的至少两个天线端口数不相等,M为大于等于2的整数;
    所述网络设备指示所述M个RRU在N个资源单元上发送P个CSI-RS;其中,所述N个资源单元中的至少一个资源单元承载所述P个CSI-RS中的至少两个CSI-RS的内容,所述P个CSI-RS为所述M个RRU中的P个RRU分别发送的CSI-RS,N为正整数,P为小于等于M的整数。
  2. 如权利要求1所述的方法,其特征在于,所述网络设备指示所述M个RRU在N个资源单元上发送P个CSI-RS,包括:
    所述网络设备从所述M个RRU中确定满足预定条件的RRU;
    所述网络设备根据所述满足预定条件的RRU用于发送CSI-RS的天线端口数确定所述N个资源单元;
    所述网络设备指示所述M个RRU在所述N个资源单元上发送所述P个CSI-RS。
  3. 如权利要求2所述的方法,其特征在于,所述网络设备从所述M个RRU中确定满足预定条件的RRU,包括:
    所述网络设备确定所述M个RRU中用于向所述用户设备发送CSI-RS所使用的天线端口数最少的第一RRU为所述满足预定条件的RRU。
  4. 如权利要求2所述的方法,其特征在于,所述网络设备从所述M个RRU中确定满足预定条件的RRU,包括:
    所述网络设备从所述M个RRU中确定用于向所述用户设备发送CSI-RS所使用的天线端口数最少的第一RRU;
    所述网络设备确定所述第一RRU用于发送CSI-RS的天线端口数是否大于等于预定数量,获得确定结果;
    所述网络设备根据所述确定结果确定所述满足预定条件的RRU。
  5. 如权利要求4所述的方法,其特征在于,所述网络设备根据所述确定结果确定所述满足预定条件的RRU,包括:
    若所述确定结果表明所述第一RRU用于发送CSI-RS的天线端口数大于等于所述预定数量,所述网络设备确定所述第一RRU为所述满足预定条件的RRU。
  6. 如权利要求4所述的方法,其特征在于,所述网络设备根据所述确定结果确定所述满足预定条件的RRU,包括:
    若所述确定结果表明所述第一RRU用于发送CSI-RS的天线端口数小于所述预定数量,所述网络设备确定所述第一RRU和第二RRU为所述满足预定条件的RRU,或,所述网络设备确定所述第二RRU为所述满足预定条件的RRU;
    其中,所述第二RRU为所述M个RRU中除所述第一RRU外用于发送CSI-RS的天线端口数最少的RRU。
  7. 如权利要求2所述的方法,其特征在于,所述网络设备从所述M个RRU中确定满足预定条件的RRU,包括:
    所述网络设备将用于发送CSI-RS的天线端口数相等的RRU划分为一组,以将所述M个RRU划分为K组RRU,K为大于等于2的整数;
    所述网络设备分别从所述K组RRU中的每组RRU中任意选择一个RRU,共选择K个RRU;
    所述网络设备确定所述K个RRU为所述满足预定条件的RRU。
  8. 如权利要求2-7中任一权利要求所述的方法,其特征在于,所述网络设备根据所述满足预定条件的RRU用于发送CSI-RS的天线端口数确定所述N个资源单元,包括:
    若所述满足预定条件的RRU是一个RRU,所述网络设备确定所述一个RRU用于发送CSI-RS的天线端口数为N的取值;或
    若所述满足预定条件的RRU包括至少两个RRU,所述网络设备确定所述 至少两个RRU分别用于发送CSI-RS的天线端口数之和为N的取值;其中,所述至少两个RRU为所述M个RRU中的部分RRU。
  9. 一种网络设备,其特征在于,包括:
    存储器,用于存储指令;
    处理器,用于执行所述指令,以确定M个射频拉远单元RRU分别用于向同一用户设备发送信道状态指示参考信号CSI-RS的M个天线端口数中的至少两个天线端口数不相等,以及指示所述M个RRU在N个资源单元上发送P个CSI-RS;其中,所述N个资源单元中的至少一个资源单元承载所述P个CSI-RS中的至少两个CSI-RS的内容,所述P个CSI-RS为所述M个RRU中的P个RRU分别发送的CSI-RS,M为大于等于2的整数,P为小于等于M的整数,N为正整数。
  10. 如权利要求9所述的网络设备,其特征在于,所述处理器用于指示所述M个RRU在N个资源单元上发送P个CSI-RS,包括:
    从所述M个RRU中确定满足预定条件的RRU;
    根据所述满足预定条件的RRU用于发送CSI-RS的天线端口数确定所述N个资源单元;
    指示所述M个RRU在所述N个资源单元上发送所述P个CSI-RS。
  11. 如权利要求10所述的网络设备,其特征在于,所述处理器用于从所述M个RRU中确定满足预定条件的RRU,包括:
    确定所述M个RRU中用于向所述用户设备发送CSI-RS所使用的天线端口数最少的第一RRU为所述满足预定条件的RRU。
  12. 如权利要求10所述的网络设备,其特征在于,所述处理器用于从所述M个RRU中确定满足预定条件的RRU,包括:
    从所述M个RRU中确定用于向所述用户设备发送CSI-RS所使用的天线端口数最少的第一RRU;
    确定所述第一RRU用于发送CSI-RS的天线端口数是否大于等于预定数量,获得确定结果;
    根据所述确定结果确定所述满足预定条件的RRU。
  13. 如权利12所述的网络设备,其特征在于,所述处理器用于根据所述确定结果确定所述满足预定条件的RRU,包括:
    若所述确定结果表明所述第一RRU用于发送CSI-RS的天线端口数大于等于所述预定数量,确定所述第一RRU为所述满足预定条件的RRU。
  14. 如权利12所述的网络设备,其特征在于,所述处理器用于根据所述确定结果确定所述满足预定条件的RRU,包括:
    若所述确定结果表明所述第一RRU用于发送CSI-RS的天线端口数小于所述预定数量,确定所述第一RRU和第二RRU为所述满足预定条件的RRU,或,确定所述第二RRU为所述满足预定条件的RRU;
    其中,所述第二RRU为所述M个RRU中除所述第一RRU外用于发送CSI-RS的天线端口数最少的RRU。
  15. 如权利要求10所述的网络设备,其特征在于,所述处理器用于从所述M个RRU中确定满足预定条件的RRU,包括:
    将用于发送CSI-RS的天线端口数相等的RRU划分为一组,以将所述M个RRU划分为K组RRU,K为大于等于2的整数;
    分别从所述K组RRU中的每组RRU中任意选择一个RRU,共选择K个RRU;
    确定所述K个RRU为所述满足预定条件的RRU。
  16. 如权利要求10-15中任一权利要求所述的网络设备,其特征在于,所述处理器用于根据所述满足预定条件的RRU用于发送CSI-RS的天线端口数确定所述N个资源单元,包括:
    若所述满足预定条件的RRU是一个RRU,确定所述一个RRU用于发送CSI-RS的天线端口数为N的取值;或
    若所述满足预定条件的RRU包括至少两个RRU,确定所述至少两个RRU分别用于发送CSI-RS的天线端口数之和为N的取值;其中,所述至少两个RRU为所述M个RRU中的部分RRU。
PCT/CN2016/092425 2016-07-29 2016-07-29 一种csi-rs传输方法及网络设备 WO2018018633A1 (zh)

Priority Applications (5)

Application Number Priority Date Filing Date Title
PCT/CN2016/092425 WO2018018633A1 (zh) 2016-07-29 2016-07-29 一种csi-rs传输方法及网络设备
JP2019504684A JP6739765B2 (ja) 2016-07-29 2016-07-29 Csi−rs伝送方法およびネットワークデバイス
CN201680086389.3A CN109219968B (zh) 2016-07-29 2016-07-29 一种csi-rs传输方法及网络设备
EP16910213.4A EP3468243B1 (en) 2016-07-29 2016-07-29 Csi-rs transmission method and network device
US16/259,170 US10939323B2 (en) 2016-07-29 2019-01-28 CSI-RS transmission method and network device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2016/092425 WO2018018633A1 (zh) 2016-07-29 2016-07-29 一种csi-rs传输方法及网络设备

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/259,170 Continuation US10939323B2 (en) 2016-07-29 2019-01-28 CSI-RS transmission method and network device

Publications (1)

Publication Number Publication Date
WO2018018633A1 true WO2018018633A1 (zh) 2018-02-01

Family

ID=61015906

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/092425 WO2018018633A1 (zh) 2016-07-29 2016-07-29 一种csi-rs传输方法及网络设备

Country Status (5)

Country Link
US (1) US10939323B2 (zh)
EP (1) EP3468243B1 (zh)
JP (1) JP6739765B2 (zh)
CN (1) CN109219968B (zh)
WO (1) WO2018018633A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20230035330A1 (en) * 2017-05-22 2023-02-02 Teko Telecom S.R.L. Wireless communication system and related method for processing uplink fronthaul data

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4020823A1 (en) * 2020-12-22 2022-06-29 INTEL Corporation A distributed radiohead system
EP4020853A1 (en) * 2020-12-24 2022-06-29 INTEL Corporation A distributed radiohead system

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012144866A2 (en) * 2011-04-20 2012-10-26 Pantech Co., Ltd. Method and apparatus for transmitting and receiving channel state information in wireless communication system
CN103037395A (zh) * 2011-09-29 2013-04-10 华为技术有限公司 多个接入点时配置csi-rs的方法、基站及接入点
CN103650379A (zh) * 2012-01-27 2014-03-19 美国日本电气实验室公司 协作多点传输和接收
CN105262574A (zh) * 2015-09-17 2016-01-20 北京北方烽火科技有限公司 一种csi-rs端口映射方法和装置

Family Cites Families (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101237666B1 (ko) * 2009-07-28 2013-02-26 엘지전자 주식회사 다중 입출력 통신 시스템에서 셀간 간섭을 제거하기 위한 기준신호 전송 방법 및 장치
EP2469738B1 (en) * 2009-09-27 2021-02-24 LG Electronics Inc. Method and apparatus for transmitting reference signal in wireless communication system
WO2011096646A2 (en) * 2010-02-07 2011-08-11 Lg Electronics Inc. Method and apparatus for transmitting downlink reference signal in wireless communication system supporting multiple antennas
CN102377464A (zh) * 2010-08-06 2012-03-14 普天信息技术研究院有限公司 下行信道状态测量参考信号的发送方法及装置
JP5331787B2 (ja) 2010-12-22 2013-10-30 株式会社エヌ・ティ・ティ・ドコモ 基地局装置、移動端末装置、及び通信制御方法
US9252930B2 (en) * 2011-01-07 2016-02-02 Futurewei Technologies, Inc. Reference signal transmission and reception method and equipment
JP6162045B2 (ja) * 2011-01-07 2017-07-12 インターデイジタル パテント ホールディングス インコーポレイテッド 複数の送信ポイントのチャネル状態情報(csi)の通信
US9054842B2 (en) * 2011-02-14 2015-06-09 Qualcomm Incorporated CRS (common reference signal) and CSI-RS (channel state information reference signal) transmission for remote radio heads (RRHs)
US20120208541A1 (en) * 2011-02-14 2012-08-16 Qualcomm Incorporated Mobility procedures in wireless networks with distributed remote radio heads
CA2834270C (en) * 2011-05-02 2016-11-15 Blackberry Limited Methods and systems of wireless communication with remote radio heads
CN103503332B (zh) * 2011-05-04 2016-05-18 Lg电子株式会社 在无线通信系统中发射/接收信道状态信息的方法和装置
US9735844B2 (en) * 2011-05-09 2017-08-15 Texas Instruments Incorporated Channel feedback for coordinated multi-point transmissions
JP5891623B2 (ja) * 2011-07-07 2016-03-23 ソニー株式会社 通信制御装置、通信制御方法およびプログラム
USRE49728E1 (en) * 2011-07-25 2023-11-14 Lg Electronics Inc. Method and apparatus for monitoring a wireless link in a wireless communication system
US9325475B2 (en) * 2011-08-05 2016-04-26 Panasonic Intellectual Property Corporation Of America Terminal, base station, transmission method and reception method in a heterogeneous network regarding comp control of channel information
KR20130017936A (ko) * 2011-08-12 2013-02-20 주식회사 팬택 전송단, 전송단의 채널 상태 정보 기준 신호 구성 시그널링 방법, 단말, 및 단말의 채널 상태 정보 보고 방법
US9246558B2 (en) * 2011-09-26 2016-01-26 Samsung Electronics Co., Ltd. CoMP measurement system and method
US20140241301A1 (en) * 2011-09-28 2014-08-28 Sharp Kabushiki Kaisha Mobile station apparatus, communication system, communication method, and integrated circuit
US10250364B2 (en) * 2011-12-09 2019-04-02 Nokia Corporation Channel measurements supporting coordinated multi-point operation
CN104969637B (zh) 2011-12-20 2018-08-10 马维尔国际贸易有限公司 用于通信的方法和装置
JP2013211749A (ja) * 2012-03-30 2013-10-10 Ntt Docomo Inc 無線通信方法、無線基地局、ユーザ端末及び無線通信システム
US20130286964A1 (en) * 2012-04-27 2013-10-31 Htc Corporation Method of Configuring CSI-RS for Coordinated Multiple Point Interference Measurement and Related Communication Device
WO2014005624A1 (en) * 2012-07-03 2014-01-09 Telefonaktiebolaget L M Ericsson (Publ) Csi-rs transmission
EP4047992A1 (en) * 2014-05-09 2022-08-24 Telefonaktiebolaget LM Ericsson (publ) Technique of performing measurements based on a csi-rs configuration
US9935807B2 (en) * 2014-09-26 2018-04-03 Telefonaktiebolaget L M Ericsson (Publ) Discovery signal design
CN106664192B (zh) * 2015-01-30 2020-12-01 韩国电子通信研究院 用于配置csi-rs天线端口的端口编号的方法和设备
US9749103B2 (en) * 2015-07-31 2017-08-29 Futurewei Technologies, Inc. System and method for transmitting beamformed reference/control signals

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012144866A2 (en) * 2011-04-20 2012-10-26 Pantech Co., Ltd. Method and apparatus for transmitting and receiving channel state information in wireless communication system
CN103037395A (zh) * 2011-09-29 2013-04-10 华为技术有限公司 多个接入点时配置csi-rs的方法、基站及接入点
CN103650379A (zh) * 2012-01-27 2014-03-19 美国日本电气实验室公司 协作多点传输和接收
CN105262574A (zh) * 2015-09-17 2016-01-20 北京北方烽火科技有限公司 一种csi-rs端口映射方法和装置

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
PANTECH: "Discussion on CSI-RS Configuration for Rel-11", 3GPP TSG RAN WG1 MEETING #66-BIS R1-113106, 14 October 2011 (2011-10-14), XP050538248 *
RESEARCH IN MOTION ET AL.: "Downlink CSI Feedback for Low- Power Nodes", 3GPP TSG RAN WG1 MEETING #65 R1-111662, 13 May 2011 (2011-05-13), XP050491289 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20230035330A1 (en) * 2017-05-22 2023-02-02 Teko Telecom S.R.L. Wireless communication system and related method for processing uplink fronthaul data
US11962369B2 (en) * 2017-05-22 2024-04-16 Teko Telecom S.R.L. Wireless communication system and related method for processing uplink fronthaul data

Also Published As

Publication number Publication date
US20190159066A1 (en) 2019-05-23
JP6739765B2 (ja) 2020-08-12
EP3468243B1 (en) 2021-06-30
EP3468243A4 (en) 2019-05-01
CN109219968A (zh) 2019-01-15
JP2019527970A (ja) 2019-10-03
US10939323B2 (en) 2021-03-02
EP3468243A1 (en) 2019-04-10
CN109219968B (zh) 2020-09-29

Similar Documents

Publication Publication Date Title
CN108347778B (zh) 通信方法及装置
TWI735616B (zh) 傳輸導頻信號的方法、終端設備和網絡側設備
CN109392022B (zh) 传输数据的方法、终端设备和网络设备
WO2018000929A1 (zh) 一种子帧配置方法及相关设备
WO2015035876A1 (zh) 信号资源的指示方法和设备
CN109831827B (zh) 数据传输方法、终端和基站
CN109152029B (zh) 一种通信方法、网络设备及用户设备
JP7175976B2 (ja) ダウンリンク制御情報の伝送方法、ブラインド検出回数を取得するための方法及び装置
WO2019062585A1 (zh) 一种资源调度方法、网络设备以及通信设备
EP3606236B1 (en) Method and apparatus for determining transport block size
EP3544347B1 (en) Method for transmitting information, network device and terminal device
WO2014113961A1 (zh) 用于传输参考信号的方法、基站和用户设备
JP7191998B2 (ja) アンテナポート指示方法および装置
WO2018113618A1 (zh) 参考信号的发送和接收方法,接入网设备和终端设备
EP3866530B1 (en) Uplink signal transmission method and device
WO2019029470A1 (zh) 用于数据传输的方法、网络设备和终端设备
WO2019052388A1 (zh) 数据传输的方法和设备
WO2019095931A1 (zh) 信息指示、资源确定方法及装置、计算机存储介质
KR20200039753A (ko) 데이터 전송 방법, 장치 및 통신 시스템
TWI757382B (zh) 傳輸信息的方法、網路設備和終端設備
US10939323B2 (en) CSI-RS transmission method and network device
WO2018132944A1 (zh) 信号传输方法和设备
WO2017101119A1 (zh) 干扰抑制方法、装置及系统
WO2018137551A1 (zh) 一种循环前缀cp确定方法及无线网络设备
EP4221110A1 (en) Symbol application method and communication apparatus

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16910213

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016910213

Country of ref document: EP

Effective date: 20190107

ENP Entry into the national phase

Ref document number: 2019504684

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE