WO2018000929A1 - 一种子帧配置方法及相关设备 - Google Patents

一种子帧配置方法及相关设备 Download PDF

Info

Publication number
WO2018000929A1
WO2018000929A1 PCT/CN2017/082388 CN2017082388W WO2018000929A1 WO 2018000929 A1 WO2018000929 A1 WO 2018000929A1 CN 2017082388 W CN2017082388 W CN 2017082388W WO 2018000929 A1 WO2018000929 A1 WO 2018000929A1
Authority
WO
WIPO (PCT)
Prior art keywords
srs
symbol
configuration
terminal device
target subframe
Prior art date
Application number
PCT/CN2017/082388
Other languages
English (en)
French (fr)
Inventor
秦熠
李华
栗忠峰
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP17818926.2A priority Critical patent/EP3462694B1/en
Publication of WO2018000929A1 publication Critical patent/WO2018000929A1/zh
Priority to US16/230,722 priority patent/US10856268B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • H04L5/005Allocation of pilot signals, i.e. of signals known to the receiver of common pilots, i.e. pilots destined for multiple users or terminals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0446Resources in time domain, e.g. slots or frames
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2602Signal structure
    • H04L27/2605Symbol extensions, e.g. Zero Tail, Unique Word [UW]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • H04L5/0051Allocation of pilot signals, i.e. of signals known to the receiver of dedicated pilots, i.e. pilots destined for a single user or terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0091Signaling for the administration of the divided path
    • H04L5/0094Indication of how sub-channels of the path are allocated
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0453Resources in frequency domain, e.g. a carrier in FDMA
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0014Three-dimensional division
    • H04L5/0016Time-frequency-code
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/14Two-way operation using the same type of signal, i.e. duplex

Definitions

  • the embodiments of the present invention relate to the field of communications technologies, and in particular, to a subframe configuration method and related devices.
  • MIMO Multiple-Input Multiple-Output
  • OFDM Orthogonal Frequency Division Multiplexing
  • the user's speed of movement is also increased, resulting in faster channel changes, which requires the network to complete channel measurements in a shorter period of time.
  • the current network requirements for channel measurement (the number of channel measurements per unit time) are getting higher and higher. Therefore, it is necessary to increase the capacity of the uplink sounding reference signal (SRS, Sounding Reference Signal) to meet the above channel measurement requirements. .
  • SRS uplink sounding reference signal
  • the user is allowed to transmit the SRS in the last symbol of the uplink subframe and the UpPTS (UpPTS), and the base station performs channel measurement according to the SRS to obtain an uplink channel.
  • the distribution of the SRS in the uplink part of the uplink subframe and the special subframe is as shown in FIG. 1.
  • the left side of FIG. 1 is an uplink subframe, and the SRS is set to the last symbol of the uplink subframe.
  • the special subframe is shown in the right side of FIG. 1.
  • the UpPTS, the Guard Period (GP) and the Downlink Part of The Special Subframe (DwPTS) are included, and the SRS is set in the special sub-frame.
  • the upstream portion of the frame is the Upstream portion of the frame.
  • the SRS is set in the last symbol of the uplink subframe or the SRS is set in the upper part of the special subframe, when the user transmits the SRS, it is not continuously transmitted in the frequency domain, but an SRS is transmitted every other subcarrier.
  • Forming a comb structure According to the comb structure of the SRS, it is known that two users are allowed to transmit their respective SRSs at the same time without interference, which improves the SRS capacity.
  • LTE also allows SRS to have up to 8 cyclic shifts, and SRSs with different cyclic shifts can also be transmitted simultaneously, and the capacity of the SRS can be increased again.
  • a cyclic shift on the comb structure is positioned as one SRS resource, and at most 16, only 16 SRS resources can be simultaneously transmitted.
  • the cyclic shift generally only 4 cyclic shifts are used, that is, Eight SRS resources are simultaneously transmitted, but still cannot meet the needs of channel measurement.
  • the foregoing embodiments of the present invention provide a seed frame configuration method and related device, which are used to solve the problem that the prior art cannot meet the channel measurement requirement and the network capacity is low, so as to improve the network capacity.
  • a first aspect of the embodiments of the present invention provides a seed frame configuration method, which may include:
  • the network side device configures a target subframe, where the target subframe includes at least one sounding reference signal SRS symbol, where the SRS symbol is used to send an SRS signal, and the network side device sends, to the terminal device, first configuration signaling, the first configuration signaling.
  • the resource configuration of the target subframe or the SRS configuration in the target subframe is included.
  • the SRS configuration in the target subframe includes cell-level SRS configuration information or user-level SRS configuration information, where the cell-level SRS configuration information is used to identify an SRS symbol in the target subframe, where the user-level SRS configuration information is used to identify the SRS configuration.
  • An SRS resource allocated to the terminal device in the SRS symbol of the target subframe, where the SRS resource includes a time domain resource or a frequency domain resource or a code domain resource, where the time domain resource includes one or more SRS symbols, and the code domain resource Includes one or more SRS sequences.
  • the first embodiment of the first aspect the second specific implementation manner of the embodiment of the present invention may include:
  • the network side device sends a second configuration signaling to the terminal device, where the second configuration signaling includes a shared channel indication or a first symbol indication, where the shared channel indication is used to indicate a symbol occupied by the shared channel in the target subframe.
  • the first symbol indication is used to indicate a symbol usable for SRS transmission, so that the terminal device determines, according to the first symbol indication, a symbol occupied by the shared channel in the target subframe.
  • the third specific implementation manner of the embodiment of the present invention may include:
  • the network side device sends a downlink control message DCI to the terminal device, where the DCI carries the second configuration signaling.
  • the first specific implementation manner of the first aspect, the second specific implementation manner of the first aspect, and the third specific implementation manner of the first aspect, the fourth embodiment of the present invention Specific implementation manners may include:
  • the network side device determines, according to the symbol occupied by the shared channel in the target subframe, a symbol occupied by the demodulation reference signal DMRS in the target subframe, and performs DMRS transmission or reception based on the symbol occupied by the DMRS.
  • the first embodiment of the first aspect, the second embodiment of the first aspect, and the third embodiment of the first aspect, the fifth embodiment of the present invention Specific implementation manners may include:
  • the network side device configures first configuration signaling for an uplink transmission frequency band and a downlink transmission frequency band of the FDD serving cell, and sends the first configuration to the terminal device. Signaling; or the network side device configures first configuration signaling for the FDD serving cell, and sends first configuration signaling to the terminal device.
  • the sixth specific implementation manner of the embodiment of the present invention may include:
  • the network side device configures second configuration signaling for the uplink transmission frequency band and the downlink transmission frequency band of the FDD serving cell, and sends the second configuration signaling to the terminal device; or The network side device configures second configuration signaling for the FDD serving cell, and sends second configuration signaling to the terminal device.
  • the seventh specific embodiment of the present invention may include:
  • the network side device determines, according to the first configuration signaling for the uplink transmission band or the downlink transmission band of the FDD serving cell, the downlink transmission occupation in the uplink transmission band of the FDD serving cell. Or the network side device determines, according to the first configuration signaling for the FDD serving cell, a symbol occupied by the downlink transmission in the uplink transmission frequency band of the FDD serving cell.
  • the eighth specific implementation manner of the embodiment of the present invention may include:
  • the network side device determines, according to the second configuration signaling for the uplink transmission band or the downlink transmission band of the FDD serving cell, the downlink transmission occupation in the uplink transmission band of the FDD serving cell. Or the network side device determines, according to the second configuration signaling for the FDD serving cell, a symbol occupied by the downlink transmission in the uplink transmission frequency band of the FDD serving cell.
  • the first specific implementation manner of the first aspect, the second specific implementation manner of the first aspect, and the third specific implementation manner of the first aspect, the ninth embodiment of the present invention Specific implementation manners may include:
  • the network side device configures first configuration signaling for the M serving cells in the at least two serving cells, and sends the first configuration signaling to the terminal device, where
  • the serving cell is an FDD serving cell or a time division duplex TDD serving cell, where the M is greater than or equal to 1 and less than or equal to the total number of serving cells configured by the terminal device.
  • the tenth specific implementation manner of the embodiment of the present invention may include:
  • the network side device configures second configuration signaling for the M serving cells of the at least two serving cells, and sends second configuration signaling to the terminal device, where
  • the serving cell is an FDD serving cell or a TDD serving cell, where the M is greater than or equal to 1 and less than or equal to the total number of serving cells configured by the terminal device.
  • the eleventh embodiment of the embodiment of the present invention may include:
  • the network side device determines, according to the first configuration signaling of the M serving cells in the at least two serving cells, the uplink and downlink in each uplink of the serving cell.
  • the symbol occupied by the transmission, the M being greater than or equal to 1 and less than or equal to the total number of serving cells configured by the terminal device.
  • the twelfth embodiment of the embodiment of the present invention may include:
  • the network side device determines, according to the second configuration signaling of the M serving cells in the at least two serving cells, the downlink subframe in each serving cell.
  • the symbol occupied by the transmission, the M being greater than or equal to 1 and less than or equal to the total number of serving cells configured by the terminal device.
  • the network side device configures a target subframe, and at least one of the symbols of the target subframe is an SRS symbol, and the SRS symbol is mainly used to send the SRS signal, and then the network side device sends the signal to the terminal device.
  • the first configuration signaling is configured, so that the terminal device configures a target subframe that includes at least one SRS symbol according to the first configuration signaling. It can be seen that, in the embodiment of the present invention, the network side device can flexibly configure the target object including at least one SRS symbol. Frames are used to meet the channel measurement requirements, and the number of channel measurements per unit time is increased to meet the network equipment requirements of the terminal equipment.
  • a second aspect of the embodiments of the present invention provides a seed frame configuration method, which may include:
  • the terminal device receives the first configuration signaling sent by the network side device, where the first configuration signaling includes a resource configuration of the target subframe or an SRS configuration of the target subframe, where the target subframe includes at least one SRS symbol, and the SRS symbol is used by the SRS symbol.
  • the SRS signal is sent; the terminal device configures the target subframe according to the resource configuration of the target subframe of the first configuration signaling, and performs the target according to the SRS configuration of the target subframe of the first configuration signaling. SRS configuration in the subframe.
  • the SRS configuration in the target subframe includes cell-level SRS configuration information or user-level SRS configuration information, where the cell-level SRS configuration information is used to identify an SRS symbol in the target subframe, where the user-level SRS configuration information is used to identify the SRS configuration.
  • An SRS resource allocated to the terminal device in the SRS symbol of the target subframe where the SRS resource includes a time domain resource or a frequency domain resource or a code domain resource, where the time domain resource includes one or more SRS symbols, and the code domain resource Include one or more SRS sequences; and further, according to the SRS configuration of the target subframe of the first configuration signaling, performing SRS configuration in the target subframe includes: determining, by the terminal device, the cell-level SRS configuration information The SRS symbol in the target subframe; or determining, according to the user-level SRS configuration information, the SRS resource allocated to the terminal device in the SRS symbol of the target subframe.
  • the second specific implementation manner of the embodiment of the present disclosure may include:
  • the terminal device receives the second configuration signaling sent by the network side device, where the second configuration signaling includes a shared channel indication or a first symbol indication, where the shared channel indication is used to indicate a symbol occupied by the shared channel in the target subframe. Determining, by the first symbol, a symbol that is used for SRS transmission, so that the terminal device determines, according to the first symbol indication, a symbol occupied by the shared channel in the target subframe; the terminal device indicates according to the shared channel or The first symbol indicates that the symbol occupied by the shared channel in the target subframe is determined.
  • the third specific implementation manner of the embodiment of the present invention may include:
  • the terminal device receives the downlink control message DCI sent by the network side device, where the DCI carries the second configuration signaling.
  • the fourth specific implementation manner of the embodiment of the present invention may include:
  • the terminal device determines, according to the symbol occupied by the shared channel, a symbol occupied by the demodulation reference signal DMRS in the target subframe, and performs DMRS transmission or reception based on the symbol occupied by the DMRS.
  • the first embodiment of the second aspect, the second embodiment of the second aspect, and the third embodiment of the second aspect, the fifth embodiment of the present invention Specific implementation manners may include:
  • the terminal device When the terminal device is configured with at least one frequency division duplex FDD serving cell, the terminal device receives the first configuration signaling that is sent by the network side device for the uplink transmission frequency band and the downlink transmission frequency band of the FDD serving cell; or the terminal device Receiving, by the network side device, the first configuration signaling for the FDD serving cell; after the terminal device receives the first configuration signaling sent by the network side device, the method further includes: the terminal device according to the uplink serving the FDD serving cell a first configuration signaling of the transmission frequency band and the downlink transmission frequency band, determining a shared channel symbol position or a DMRS symbol position of the FDD serving cell; or determining, by the terminal device, the sharing of the FDD serving cell according to the first configuration signaling for the FDD serving cell Channel symbol position or DMRS symbol position.
  • the sixth specific implementation manner of the embodiment of the present invention may include:
  • the terminal device When the terminal device is configured with at least one FDD serving cell, the terminal device receives the second configuration signaling of the uplink transmission band and the downlink transmission band sent by the network side device for the FDD serving cell; or the terminal device receives the network side The second configuration signaling sent by the device for the FDD serving cell; after the terminal device receives the second configuration signaling sent by the network side device, the method further includes: the terminal device according to the uplink transmission frequency band and the downlink for the FDD serving cell Transmitting a frequency band second configuration signaling, determining a shared channel symbol position or a DMRS symbol position of the FDD serving cell; or determining, by the terminal device, a shared channel symbol position of the FDD serving cell according to the second configuration signaling for the FDD serving cell DMRS symbol position.
  • the seventh specific implementation manner of the embodiment of the present invention may include:
  • the terminal device determines, according to the first configuration signaling for the uplink transmission band and the downlink transmission band of the FDD serving cell, the downlink transmission occupied by the uplink transmission band of the FDD serving cell. And the terminal device determines, according to the first configuration signaling for the FDD serving cell, a symbol occupied by the downlink transmission in the uplink transmission frequency band of the FDD serving cell.
  • the eighth specific implementation manner of the embodiment of the present invention may include:
  • the terminal device determines, according to the second configuration signaling for the uplink transmission band and the downlink transmission band of the FDD serving cell, the downlink transmission occupied by the uplink transmission band of the FDD serving cell. And the terminal device determines, according to the second configuration signaling for the FDD serving cell, a symbol occupied by the downlink transmission in the uplink transmission frequency band of the FDD serving cell.
  • the first embodiment of the second aspect, the second embodiment of the second aspect, and the third embodiment of the second aspect, the ninth embodiment of the present invention Specific implementation manners may include:
  • the terminal device When the terminal device is configured with at least two serving cells, the terminal device receives, by the network side device, first configuration signaling for the M serving cells in the at least two serving cells, where the M is greater than or equal to 1 and And less than or equal to the total number of serving cells configured by the terminal device; after the terminal device receives the first configuration signaling sent by the network side device, the method further includes: the terminal device according to the M services in the at least two serving cells The first configuration signaling of the cell determines the shared channel symbol location or the DMRS symbol location.
  • the tenth embodiment of the embodiments of the present invention may include:
  • the terminal device When the terminal device is configured by the at least two serving cells, the terminal device receives the second configuration signaling sent by the network side device for the M serving cells in the at least two serving cells, where the M is greater than or equal to 1 and less than Or equal to the total number of serving cells configured by the terminal device; after the terminal device receives the second configuration signaling sent by the network side device, The method further includes: the terminal device determining a shared channel symbol position or a DMRS symbol position according to the M serving cell second configuration signaling in the at least two serving cells.
  • the eleventh embodiment of the embodiments of the present invention may include:
  • the terminal device determines, according to the first configuration signaling corresponding to the M serving cells in the at least two serving cells, an uplink subframe in each of the serving cells.
  • the twelfth embodiment of the embodiment of the present invention may include:
  • the terminal device determines, according to the second configuration signaling corresponding to the M serving cells in the at least two serving cells, an uplink subframe in each of the serving cells.
  • the terminal device receives the first configuration signaling, determines the target subframe according to the resource configuration of the target subframe in the first configuration signaling, and then determines the target subframe according to the SRS configuration in the target subframe.
  • SRS symbol the target subframe according to the SRS configuration in the target subframe.
  • a third aspect of the embodiments of the present invention provides a network side device, which may include:
  • a configuration module configured to configure a target subframe, where the target subframe includes at least one sounding reference signal SRS symbol, the SRS symbol is used to send an SRS signal, and the communications module is configured to send, to the terminal device, first configuration signaling, where the first The configuration signaling includes a resource configuration of the target subframe or an SRS configuration in the target subframe.
  • the first specific implementation manner of the embodiments of the present disclosure may include:
  • the SRS configuration in the target subframe includes cell-level SRS configuration information or user-level SRS configuration information, where the cell-level SRS configuration information is used to identify an SRS symbol in the target subframe, where the user-level SRS configuration information is used to identify the SRS configuration.
  • An SRS resource allocated to the terminal device in the SRS symbol of the target subframe, where the SRS resource includes a time domain resource or a frequency domain resource or a code domain resource, where the time domain resource includes one or more SRS symbols, and the code domain resource Includes one or more SRS sequences.
  • the second specific implementation manner of the embodiment of the present disclosure may include:
  • the communication module is further configured to: after sending the first configuration signaling to the terminal device, send the second configuration signaling to the terminal device, where the second configuration signaling includes a shared channel indication or a first symbol indication, the shared channel And indicating a symbol used to indicate that the shared channel is occupied in the target subframe, the first symbol indicating a symbol used to indicate that the SRS transmission is available, so that the terminal device determines, according to the first symbol indication, that the shared channel is in the target sub The symbol occupied in the frame.
  • the third specific implementation manner of the embodiment of the present invention may include:
  • the communication module is specifically configured to send a downlink control message DCI to the terminal device, where the DCI carries the second configuration signaling.
  • a specific implementation manner of the third aspect, the fourth specific implementation manner of the embodiment of the present invention may include:
  • the first determining module is configured to determine, according to the symbol occupied by the shared channel in the target subframe, a symbol occupied by the demodulation reference signal DMRS in the target subframe, and perform DMRS transmission or reception based on the symbol occupied by the DMRS.
  • the first specific implementation manner of the third aspect, the second specific implementation manner of the third aspect, and the third specific implementation manner of the third aspect, the fifth embodiment of the present invention Specific implementation manners may include:
  • the configuration module is specifically configured to: when the terminal device is configured with at least one frequency division duplex FDD serving cell, configure first configuration signaling for an uplink transmission frequency band and a downlink transmission frequency band of the FDD serving cell; or serve the FDD serving cell
  • the first configuration signaling is configured; the communications module is further configured to send the first configuration signaling to the terminal device.
  • the sixth specific implementation manner of the embodiment of the present invention may include:
  • the configuration module is specifically configured to: when the terminal device is configured with at least one FDD serving cell, configure second configuration signaling for an uplink transmission frequency band and a downlink transmission frequency band of the FDD serving cell; or configure a second configuration for the FDD serving cell
  • the signaling module is further configured to send the second configuration signaling to the terminal device.
  • the seventh specific implementation manner of the embodiment of the present invention may include:
  • a second determining module configured to determine, in the uplink transmission frequency band of the FDD serving cell, according to the first configuration signaling for the uplink transmission band or the downlink transmission band of the FDD serving cell, when the terminal device is configured with the at least one FDD serving cell The symbol occupied by the downlink transmission; or, according to the first configuration signaling for the FDD serving cell, determining a symbol occupied by the downlink transmission in the uplink transmission frequency band of the FDD serving cell.
  • the eighth specific implementation manner of the embodiment of the present invention may include:
  • a third determining module configured to determine, in the uplink transmission frequency band of the FDD serving cell, according to the second configuration signaling for the uplink transmission band or the downlink transmission band of the FDD serving cell, when the terminal device is configured with the at least one FDD serving cell The symbol occupied by the downlink transmission; or, according to the second configuration signaling for the FDD serving cell, determining a symbol occupied by the downlink transmission in the uplink transmission frequency band of the FDD serving cell.
  • the first specific implementation manner of the third aspect, the second specific implementation manner of the third aspect, and the third specific implementation manner of the third aspect, the ninth embodiment of the present invention Specific implementation manners may include:
  • the configuration module is specifically configured to: when the terminal device is configured with at least two serving cells, configure first configuration signaling for the M serving cells in the at least two serving cells, where the M is greater than or equal to 1 and less than or
  • the communication module is further configured to send the first configuration signaling to the terminal device, where the serving cell is an FDD serving cell or a time division duplex TDD serving cell.
  • the tenth specific implementation manner of the embodiment of the present invention may include:
  • the configuration module is specifically configured to: when the terminal device is configured with at least two serving cells, configure second configuration signaling for the M serving cells in the at least two serving cells, where the serving cell is an FDD serving cell or a TDD service small And the M is greater than or equal to 1 and less than or equal to the total number of serving cells configured by the terminal device; the communications module is further configured to send the second configuration signaling to the terminal device.
  • the eleventh embodiment of the embodiments of the present invention may include:
  • a fourth determining module when the terminal device is configured with at least two serving cells, determining, according to the first configuration signaling of the M serving cells in the at least two serving cells, the uplink subframe of each serving cell The symbol occupied by the downlink transmission, where M is greater than or equal to 1 and less than or equal to the total number of serving cells configured by the terminal device.
  • the twelfth embodiment of the embodiment of the present invention may include:
  • a fifth determining module when the terminal device is configured with at least two serving cells, determining, according to the second configuration signaling of the M serving cells in the at least two serving cells, the uplink subframe of each serving cell The symbol occupied by the downlink transmission, where M is greater than or equal to 1 and less than or equal to the total number of serving cells configured by the terminal device.
  • a fourth aspect of the embodiments of the present invention provides a terminal device, which may include:
  • a communication module configured to receive first configuration signaling sent by the network side device, where the first configuration signaling includes a resource configuration of the target subframe or an SRS configuration of the target subframe, where the target subframe includes at least one SRS symbol, where The SRS symbol is used to send the SRS signal, and the configuration module is configured to configure the target subframe according to the resource configuration of the target subframe of the first configuration signaling, and the SRS of the target subframe according to the first configuration signaling Configure to perform SRS configuration in the target subframe.
  • the SRS configuration in the target subframe includes cell-level SRS configuration information or user-level SRS configuration information, where the cell-level SRS configuration information is used to identify an SRS symbol in the target subframe, where the user-level SRS configuration information is used to identify the SRS configuration.
  • An SRS resource allocated to the terminal device in the SRS symbol of the target subframe where the SRS resource includes a time domain resource or a frequency domain resource or a code domain resource, where the time domain resource includes one or more SRS symbols, and the code domain resource Include one or more SRS sequences;
  • the configuration module is specifically configured to: determine, according to the cell-level SRS configuration information, an SRS symbol in the target subframe; or determine, according to the user-level SRS configuration information, the target subframe The SRS resource allocated to the terminal device in the SRS symbol.
  • the second specific implementation manner of the embodiment of the present disclosure may include:
  • the communication module is further configured to receive the second configuration signaling sent by the network side device, where the second configuration signaling includes a shared channel indication or a first symbol indication, where the shared channel indication is used to indicate that the shared channel is in the target subframe. a symbol occupied in the first symbol indicating a symbol usable for SRS transmission, so that the terminal device determines, according to the first symbol indication, a symbol occupied by the shared channel in the target subframe; the configuration module further uses And determining, according to the shared channel indication or the first symbol indication, a symbol occupied by the shared channel in the target subframe.
  • the third specific implementation manner of the embodiment of the present invention may include:
  • the communication module is specifically configured to receive a downlink control message (DCI) sent by the network side device, where the DCI carries the second configuration signaling.
  • DCI downlink control message
  • the fourth specific implementation manner of the embodiment of the present invention may include:
  • the configuration module is further configured to determine, according to the symbol occupied by the shared channel, a symbol occupied by the demodulation reference signal DMRS in the target subframe, and perform DMRS transmission or reception based on the symbol occupied by the DMRS.
  • the first embodiment of the second aspect, the second embodiment of the second aspect, and the third embodiment of the second aspect, the fifth embodiment of the present invention Specific implementation manners may include:
  • the communication module is specifically configured to: when the terminal device is configured with at least one frequency division duplex FDD serving cell, receive the first configuration signaling that is sent by the network side device for the uplink transmission frequency band and the downlink transmission frequency band of the FDD serving cell; Or receiving the first configuration signaling sent by the network side device for the FDD serving cell; the configuration module is specifically configured to determine the FDD service according to the first configuration signaling for the uplink transmission frequency band and the downlink transmission frequency band of the FDD serving cell a shared channel symbol position or a DMRS symbol position of the cell; or determining a shared channel symbol position or a DMRS symbol position of the FDD serving cell according to the first configuration signaling for the FDD serving cell.
  • the sixth specific implementation manner of the embodiment of the present invention may include:
  • the communication module is further configured to: when the terminal device is configured with the at least one FDD serving cell, receive the second configuration signaling sent by the network side device for the uplink transmission frequency band and the downlink transmission frequency band of the FDD serving cell; or receive the network The second configuration signaling sent by the side device for the FDD serving cell; the configuration module is further configured to determine, according to the second configuration signaling of the uplink transmission frequency band and the downlink transmission frequency band of the FDD serving cell, the shared channel of the FDD serving cell a symbol location or a DMRS symbol location; or determining a shared channel symbol location or a DMRS symbol location of the FDD serving cell based on the second configuration signaling for the FDD serving cell.
  • the seventh specific implementation manner of the embodiment of the present invention may include:
  • the configuration module is further configured to determine, in the uplink transmission frequency band of the FDD serving cell, according to the first configuration signaling for the uplink transmission band or the downlink transmission band of the FDD serving cell, when the terminal device is configured with the at least one FDD serving cell.
  • the eighth specific implementation manner of the embodiment of the present invention may include:
  • the configuration module is further configured to determine, in the uplink transmission frequency band of the FDD serving cell, according to the second configuration signaling for the uplink transmission band or the downlink transmission band of the FDD serving cell, when the terminal device is configured with the at least one FDD serving cell.
  • the first embodiment of the second aspect, the second embodiment of the second aspect, and the third embodiment of the second aspect, the ninth embodiment of the present invention Specific implementation manners may include:
  • the communication module is further configured to: when the terminal device is configured with at least two serving cells, receive the first configuration signaling sent by the network side device for the M serving cells in the at least two serving cells, where the M is greater than Or equal to 1 and Less than or equal to the total number of serving cells configured by the terminal device;
  • the configuration module is further configured to determine a shared channel symbol position or a DMRS symbol position according to the M serving cell first configuration signaling in the at least two serving cells.
  • the tenth embodiment of the embodiments of the present invention may include:
  • the communication module is further configured to: when the terminal device is configured by the at least two serving cells, receive the second configuration signaling sent by the network side device for the M serving cells in the at least two serving cells, where the M is greater than or a total number of serving cells equal to 1 and less than or equal to the configuration of the terminal device;
  • the configuration module is further configured to determine a shared channel symbol position or a DMRS symbol position according to the M serving cell second configuration signaling in the at least two serving cells.
  • the eleventh embodiment of the embodiments of the present invention may include:
  • the configuration module is further configured to: when the terminal device is configured with at least two serving cells, determine, according to the first configuration signaling corresponding to the M serving cells in the at least two serving cells, each of the serving cells The symbol occupied by the downlink transmission in the uplink subframe, where M is greater than or equal to 1 and less than or equal to the total number of serving cells configured by the terminal device.
  • the twelfth embodiment of the embodiment of the present invention may include:
  • the configuration module is further configured to: when the terminal device is configured with the M serving cells in the at least two serving cells, determine, according to the second configuration signaling corresponding to the serving cell, an uplink sub-subject on the serving cell The symbol occupied by the downlink transmission in the frame, where M is greater than or equal to 1 and less than or equal to the total number of serving cells configured by the terminal device.
  • a fifth aspect of the embodiments of the present invention provides a seed frame configuration system, which may include:
  • the network side device according to the third aspect, and the terminal device according to the fourth aspect.
  • 1 is a schematic diagram of an SRS position in an uplink subframe of the prior art
  • FIG. 2 is a schematic flowchart diagram of a subframe configuration method according to some embodiments of the present disclosure
  • FIG. 3 is a schematic structural diagram of a TDD frame according to some embodiments of the present disclosure.
  • FIG. 3b is a schematic structural diagram of an FDD frame according to some embodiments of the present disclosure.
  • FIG. 4 is a schematic diagram of resource configuration of a special uplink subframe according to some embodiments of the present invention.
  • FIG. 4b is a schematic diagram of resource configuration of a special uplink subframe according to another embodiment of the present invention.
  • FIG. 4c is a schematic diagram of an SRS location of a special uplink subframe according to some embodiments of the present invention.
  • FIG. 5 is a schematic diagram of an SRS location of a special downlink/uplink subframe according to some embodiments of the present invention.
  • FIG. 6 is a schematic structural diagram of a network side device according to an embodiment of the present disclosure.
  • FIG. 7 is a schematic structural diagram of a terminal device according to an embodiment of the present disclosure.
  • FIG. 8 is a schematic structural diagram of a subframe configuration system according to an embodiment of the present disclosure.
  • FIG. 9 is another schematic structural diagram of a network side device according to an embodiment of the present disclosure.
  • FIG. 10 is another schematic structural diagram of a terminal device according to an embodiment of the present invention.
  • An embodiment of the present invention provides a seed frame configuration method and related equipment, which are used to flexibly configure multiple SRS symbols in a subframe to improve the number of channel measurements per unit time to meet the network device requirements of the terminal device.
  • the technology described in the embodiments of the present invention can be applied to various communication systems, such as current 2G, 3G, 4G, and 5G communication systems and next generation communication systems, such as Global System for Mobile communications (GSM), code points.
  • Multiple Access (CDMA) system Time Division Multiple Access (TDMA) system, Wideband Code Division Multiple Access Wireless (WCDMA), Frequency Division Multiple Access (FDMA, Frequency Division Multiple Addressing system, Orthogonal Frequency-Division Multiple Access (OFDMA) system, single carrier FDMA (SC-FDMA) system, General Packet Radio Service (GPRS) system , Long Term Evolution (LTE) systems, and other such communication systems.
  • GSM Global System for Mobile communications
  • CDMA Multiple Access
  • TDMA Time Division Multiple Access
  • WCDMA Wideband Code Division Multiple Access Wireless
  • FDMA Frequency Division Multiple Access
  • OFDMA Orthogonal Frequency-Division Multiple Access
  • SC-FDMA single carrier FDMA
  • GPRS General Packet Radio Service
  • the terminal device may be a wireless terminal or a wired terminal, and the wireless terminal may be a device that provides voice or data connectivity to the user, a handheld device with a wireless connection function, or other processing device connected to the wireless modem.
  • the wireless terminal can communicate with one or more core networks via a radio access network (eg, RAN, Radio Access Network), which can be a mobile terminal, such as a mobile phone (or "cellular" phone) and with a mobile terminal
  • RAN Radio Access Network
  • the computers for example, can be portable, pocket-sized, handheld, computer-integrated or in-vehicle mobile devices that exchange language or data with the wireless access network.
  • a wireless terminal may also be called a system, a subscriber unit, a subscriber station, a mobile station, a mobile station, a remote station, an access point, or an access point.
  • Remote Terminal Access Terminal, User Terminal, User Agent, User Device, or User Equipment.
  • a network side device may refer to a device in an access network that is in communication with a terminal over one or more sectors on an air interface.
  • the network side device can be used to convert the received air frame with an Internet Protocol (IP) packet as a router between the terminal device and the rest of the access network, wherein the rest of the access network can include an IP network.
  • IP Internet Protocol
  • the network side device can also coordinate the attribute management of the air interface.
  • the network side device can be GSM or CDMA.
  • the base station may be a base station (NodeB) in WCDMA, or may be an evolved base station (NodeB or eNB or e-NodeB, evolutional Node B) in LTE, which is not limited in this application. .
  • the term "or" in the present invention is merely an association relationship describing an associated object, indicating that there may be three relationships, for example, A or B, and may also mean that A exists separately, and A and B exist at the same time. There are three cases of B.
  • the embodiment of the present invention configures a subframe (which may also be a time unit, a scheduling unit, a transmission time interval, or a time unit, etc.), where the subframe is referred to as a target subframe.
  • a subframe which may also be a time unit, a scheduling unit, a transmission time interval, or a time unit, etc.
  • the subframe is referred to as a target subframe.
  • One symbol, or a partial symbol, or all symbols in the target subframe is configured as an SRS symbol, and the SRS symbol is represented as a symbol for transmitting an SRS signal.
  • FIG. 2 is a schematic flowchart diagram of a subframe configuration method according to some embodiments of the present invention.
  • a subframe configuration method may include:
  • the network side device configures a target subframe, where the target subframe includes at least one SRS symbol, where the SRS symbol is used to send an SRS signal.
  • the target subframe includes several symbols, and at least one symbol is configured as an SRS symbol for transmitting the SRS signal, and the number of SRS symbols in the target subframe is less than or equal to the maximum total number of symbols of the target subframe.
  • the network side device sends the first configuration signaling to the terminal device, where the first configuration signaling includes a resource configuration of the target subframe or an SRS configuration in the target subframe.
  • the resource configuration of the target subframe includes a frame number of a frame to which the target subframe belongs, and a subframe number of the target subframe.
  • the SRS configuration in the target subframe includes cell-level SRS configuration information or user-level SRS configuration information, the cell-level SRS configuration information is used to identify SRS symbols in the target subframe, and the user-level SRS configuration information is used to identify the SRS in the target subframe.
  • the SRS resource allocated to the terminal device in the symbol wherein the SRS resource includes a time domain resource or a frequency domain resource or a code domain resource, the time domain resource includes one or more SRS symbols, and the code domain resource includes one or more SRS sequences.
  • the first configuration signaling includes only the resource configuration of the target subframe.
  • the SRS configuration in the target subframe is used as a default setting, and the terminal device determines the target according to the first configuration signaling. After the frame, the SRS configuration in the target subframe is determined according to the default settings.
  • only the SRS configuration of the target subframe is included in the first configuration signaling, and the resource configuration of the target subframe is set as the default setting, that is, the target subframe set by default is used to transmit the SRS signal.
  • the terminal device After receiving the first configuration signaling, the terminal device performs SRS configuration on the target subframe that is set by default. If the SRS configuration includes only the cell-level SRS configuration information, the SRS symbol used to transmit the SRS signal is determined from the target subframe set by default.
  • the cell-level SRS configuration is used as the default setting item, and the default set SRS symbol is determined from the target subframe set by default, and then according to the SRS configuration in the first configuration signaling, The SRS resource allocated to the terminal device is determined in the SRS symbol in the target subframe.
  • the terminal device first receives the first configuration signaling, according to the target subframe.
  • the resource configuration determines the target subframe, and then performs SRS configuration on the target subframe. If the SRS configuration only includes the cell-level SRS configuration information, only the SRS symbol in the target subframe needs to be determined, and then the terminal device obtains its own from the SRS symbol according to the default setting. SRS resources. If the SRS configuration includes only the user-level SRS configuration information, the SRS symbol is determined from the determined target subframe according to the default setting, and then the SRS resource that satisfies the user-level SRS configuration information is obtained from the SRS symbol. If the SRS configuration includes the cell-level SRS configuration information and the user-level SRS configuration information, the SRS symbol is first determined from the determined target subframe, and then the SRS resource is determined from the SRS symbol.
  • the network side device includes the following configuration modes when configuring the target subframe for the terminal device:
  • the network side device may separately configure the uplink transmission band and the downlink transmission band in the FDD serving cell of the terminal device, specifically, configuring the uplink transmission band and the downlink transmission band respectively.
  • a first configuration signaling but the first configuration signaling corresponding to the uplink transmission frequency band and the first configuration signaling corresponding to the downlink transmission frequency band may include the same content, or may be partially the same or completely different, specifically the target subframe.
  • the SRS configuration in the resource configuration or target subframe is identical, partially identical, or completely different.
  • the second and eighth symbols in the target subframe are configured as SRS symbols in the uplink transmission band
  • the fourth symbol in the target subframe is configured as the SRS symbol in the downlink transmission band.
  • the network side device can determine, according to the first configuration signaling of the uplink transmission frequency band and the downlink transmission frequency band of the FDD serving cell of the terminal device, the downlink transmission occupied by the uplink transmission frequency band of the FDD serving cell of the terminal device. symbol.
  • the uplink transmission frequency band involved in the embodiment of the present invention may also be an uplink frequency band.
  • the network side device may also configure the first configuration signaling only for the FDD serving cell, that is, the network side device configures only the first configuration signaling to the FDD serving cell.
  • the FDD serving cell configured with the first configuration signaling has the same target subframe configured in the uplink transmission frequency band and the downlink transmission frequency band, but different FDD serving cells may be configured with different target sub-frames.
  • the frame is also embodied in the resource configuration of the target subframe or the SRS configuration in the target subframe.
  • the network side device determines, according to the FDD serving cell first configuration signaling to the terminal device, a symbol occupied by the downlink transmission frequency band in the uplink transmission frequency band in the FDD serving cell.
  • the network side device configures the first configuration signaling for the M serving cells in the at least two serving cells, where the serving cell in the second mode is the FDD serving cell. Or TDD service cell.
  • the network side device configures the first configuration signaling for the serving cell, and may be configured for the M serving cells in the at least two serving cells. If the network side device configures the first configuration signaling for the M serving cells, it may be configured for each of the M serving cells, that is, the resource configuration or the target subframe of the target subframe in the first configuration command corresponding to the serving cell.
  • the configurations of the SRSs are completely different or all the same or not identical.
  • the network side device determines the symbol occupied by the downlink transmission in the uplink subframe of each serving cell according to the serving cell in which the first configuration signaling is configured in the terminal device.
  • the terminal device receives the first configuration signaling sent by the network side device.
  • the terminal device configures the target subframe according to the resource configuration of the target subframe of the first configuration signaling according to the first configuration signaling, and performs the target subframe according to the SRS configuration of the target subframe of the first configuration signaling. SRS configuration.
  • the terminal device first determines the target subframe according to the resource configuration of the target subframe in the first configuration signaling, and then further performs SRS configuration of the target subframe.
  • the SRS configuration in the target subframe is used as the default setting, and the terminal device is configured according to the first configuration. After determining the target subframe, the SRS configuration in the target subframe is determined according to the default setting.
  • the terminal device configures the fixed subframe and the SRS configured by default. If the SRS configuration includes only the cell-level SRS configuration information, the SRS symbol used to transmit the SRS signal is determined from the fixed subframe set by default. If the SRS configuration includes only the user-level SRS configuration information, the cell-level SRS configuration is used as the default setting item, and the default SRS symbol is determined from the default fixed subframe, and then according to the SRS configuration in the first configuration signaling. The SRS resources allocated to the terminal device are determined in the SRS symbols in the fixed subframe.
  • the terminal device determines the target subframe according to the resource configuration of the target subframe after receiving the first configuration signaling. Then perform SRS configuration on the target subframe. If the SRS configuration only includes the cell-level SRS configuration information, only the SRS symbol in the target subframe needs to be determined, and then the SRS resource is obtained from the SRS symbol according to the default setting according to the terminal device. If the SRS configuration includes only the user-level SRS configuration information, the SRS symbol is determined from the determined target subframe according to the default setting, and then the SRS resource that satisfies the user-level SRS configuration information is obtained from the SRS symbol. If the SRS configuration includes the cell-level SRS configuration information and the user-level SRS configuration information, the SRS symbol is first determined from the determined target subframe, and then the SRS resource is determined from the SRS symbol.
  • the target subframe and the SRS symbol in the target subframe are freely configured to improve the number of channel measurements in a unit time to meet the network equipment requirement of the terminal device.
  • the terminal device when the terminal device is configured with the at least one frequency division duplex FDD serving cell, the terminal device receives the uplink transmission frequency band and the downlink transmission frequency band first configuration signaling sent by the network side device for the FDD serving cell, so that the terminal The device determines the shared channel symbol position or the DMRS symbol position of the FDD serving cell according to the first configuration signaling for the uplink transmission frequency band and the downlink transmission frequency band of the FDD serving cell, or the terminal device receives the first configuration for the FDD serving cell sent by the network side device Signaling, thereby determining a shared channel symbol position or a DMRS symbol position of the FDD serving cell according to the first configuration signaling for the FDD serving cell.
  • the terminal device when the terminal device is configured with the at least one FDD serving cell, the terminal device determines the downlink transmission in the uplink transmission band of the FDD serving cell according to the first configuration signaling for the uplink transmission band or the downlink transmission band of the FDD serving cell.
  • the occupied symbol; or the terminal device determines the symbol occupied by the downlink transmission in the uplink transmission frequency band of the FDD serving cell according to the first configuration signaling for the FDD serving cell.
  • the terminal device when the terminal device is configured with at least two serving cells, the terminal device receives, by the network side device, the first configuration signaling of the M serving cells in the at least two serving cells, the terminal device according to the at least The first configuration signaling of the M serving cells in the two serving cells determines the shared channel symbol position or the DMRS symbol position.
  • the terminal device when the terminal device is configured with at least two serving cells, the terminal device determines an uplink sub-substation on each serving cell according to the first configuration signaling corresponding to the M serving cells in the at least two serving cells. The symbol occupied by the downlink transmission in the frame.
  • the network side device further sends second configuration signaling to the terminal device, where the second configuration signaling includes a shared channel indication or a first symbol indication, and the shared channel indication is used to indicate that the shared channel is at the target.
  • Subframe The symbol occupied in the first symbol indicates the symbol used to indicate the SRS transmission.
  • the terminal device may determine, according to the shared channel indication or the first symbol indication, a symbol occupied by the shared channel in the target subframe.
  • the first symbol indication involved herein is different from the SRS symbol in the target subframe introduced earlier, and the first symbol indication only identifies the first symbol indication reserved for SRS transmission, instead of the actual SRS symbol.
  • the symbol identified in a symbolic indication that can be used to transmit the SRS signal is greater than or equal to the actual SRS symbol.
  • the configuration manner thereof refers to the configuration manner of the first configuration signaling, and specifically includes:
  • the network side device may separately configure the uplink transmission band and the downlink transmission band in the FDD serving cell of the terminal device, specifically, configuring the uplink transmission band and the downlink transmission band respectively.
  • a second configuration signaling, and each of the uplink transmission band and the downlink transmission band corresponding to the shared channel indication or the first symbol indication in the second configuration signaling will be determined according to the first configuration signaling thereof.
  • the network side device can determine, according to the second configuration signaling of the uplink transmission frequency band and the downlink transmission frequency band of the FDD serving cell of the terminal device, the downlink transmission occupied by the uplink transmission frequency band of the FDD serving cell of the terminal device. symbol.
  • the terminal device may determine the shared channel symbol position or the DMRS symbol position of the FDD serving cell according to the second configuration signaling for the uplink transmission frequency band and the downlink transmission frequency band of the FDD serving cell.
  • the terminal device may further determine, according to the second configuration signaling for the uplink transmission band or the downlink transmission band of the FDD serving cell, a symbol occupied by the downlink transmission in the uplink transmission band of the FDD serving cell.
  • the network side device may also configure the second configuration signaling only for the FDD serving cell, that is, the network side device only configures the second configuration signaling for the FDD serving cell.
  • the network side device determines, according to the second configuration signaling of the FDD serving cell to the terminal device, a symbol occupied by the downlink transmission frequency band in the uplink transmission frequency band in the FDD serving cell.
  • the terminal device determines a shared channel symbol position or a DMRS symbol position of the FDD serving cell according to the second configuration signaling for the FDD serving cell. Further, the terminal device may further determine, according to the second configuration signaling for the FDD serving cell, a symbol occupied by the downlink transmission in the uplink transmission frequency band of the FDD serving cell.
  • the network side device configures second configuration signaling for the M serving cells in the at least two serving cells, where the serving cell in the second mode is the FDD serving cell. Or TDD service cell.
  • the network side device configures the second configuration signaling for the serving cell, which may be configured for the M serving cells in the at least two serving cells, but if the network side device
  • the second configuration signaling is configured for the two or more serving cells, and may be configured for each of the two or more serving cells, that is, the resource configuration of the target subframe in the second configuration command corresponding to the serving cell or the target subframe.
  • the configurations of the SRS are completely different or all the same or not identical.
  • the network side device determines the symbol occupied by the downlink transmission in the uplink subframe of each serving cell according to the serving cell in which the second configuration signaling is configured in the terminal device.
  • the terminal device determines the shared channel symbol position or the DMRS symbol position according to the M serving cell second configuration signalings in the at least two serving cells. Further, the terminal device may further determine, according to the second configuration signaling corresponding to the serving cell, a symbol occupied by the downlink transmission in the uplink subframe on each serving cell.
  • a common TDD frame includes an uplink subframe, a downlink subframe, and a special subframe between the uplink subframe and the downlink subframe.
  • U indicates an uplink subframe
  • D indicates a downlink subframe.
  • S use S to indicate a special subframe.
  • subframe 3a are configured as target subframes, and the target subframe is an uplink subframe in the TDD, and therefore, in the embodiment of the present invention, It is also referred to as a special uplink subframe, which is illustrated by a special uplink subframe corresponding to FIG. 3a.
  • subframe 3 in Figure 3a can be configured as a special uplink subframe.
  • the SRS signal can be sent through the uplink subframe and the special subframe, and the SRS signal can be sent through the special uplink subframe.
  • Multiple special uplink subframes can be configured, and multiple SRSs are configured in the special uplink subframe.
  • the symbol is used to transmit the SRS signal, so the SRS capacity can be increased by increasing the SRS symbol, thereby increasing the throughput.
  • some downlink subframes in the TDD frame may be configured as target subframes, and some symbols in the downlink subframes may be configured as SRS symbols to adapt to scenarios that need to be used for downlink transmission of SRS signals, such as a 5G system or In the next generation of communication systems.
  • a common FDD frame is shown in FIG. 3b.
  • the FDD frame includes a downlink frame in the downlink carrier and an uplink frame corresponding to the uplink carrier.
  • the downlink frame is shown in FIG. 3b
  • the uplink frame is shown in FIG. 3b.
  • the downlink subframes of the downlink frame are configured as target subframes.
  • the downlink frames configured as target subframes are referred to as special downlink subframes, and corresponding to FIG. 3b is performed in a special downlink subframe. set forth.
  • One symbol or part of the symbol or all symbols of the special downlink subframe is used to transmit the SRS signal.
  • some uplink subframes of the uplink frame are configured as target subframes.
  • the uplink subframe configured as the target subframe in the FDD is also referred to as a special uplink subframe.
  • One symbol or part of the symbols or all symbols in the special uplink subframe are used to transmit the SRS signal.
  • the downlink subframes 4 and 8 in the downlink frame in FIG. 3b are configured as special downlink subframes
  • the uplink subframes 2, 3, and 9 in the uplink frame are configured as special downlink subframes.
  • the network side device also sends a shared channel indication or an SRS indication to the terminal device.
  • the shared channel indication or the SRS indication is sent in the third configuration signaling, and may be carried in a Downlink Control Information (DCI).
  • DCI Downlink Control Information
  • the shared channel indication is used to indicate a symbol occupied by the shared channel in the target subframe
  • the SRS indication is used to indicate the number of symbols reserved in the target subframe for the SRS symbol, where the number of symbols may be previously in the first configuration command.
  • the number of SRS symbols allocated in the first configuration signaling is greater than the number of SRS symbols in the first configuration signaling, mainly for the terminal device to configure a Demodulation Reference Signal (DMRS) according to the SRS indication.
  • DMRS Demodulation Reference Signal
  • a TDD frame will be described as an example.
  • the base station configures some uplink subframes in the TDD frame to be a special uplink subframe, and configures part or all of the symbols in the special uplink subframe to be used for SRS resource transmission, where the SRS resource includes a cell-level SRS resource or a user-level SRS resource,
  • the cell level SRS resource configuration or the user level SRS resource configuration needs to be completed.
  • the correspondence between the DMRS position of the special uplink subframe and the available symbol of the physical uplink shared channel (PUSCH) of the cell-level SRS resource/user level is further configured, that is, the DMRS signal and the PUSCH signal are in a special uplink.
  • the symbol occupied by the frame There is also a correspondence between the interleaver design of the resource mapping of the control information in the special uplink subframe and the DMRS position.
  • the partial symbol or all symbols of the special uplink subframe are used for transmitting the SRS, and the number of symbols for transmitting the SRS resource is represented by nsrs_symbol, where the symbols used for transmitting the SRS resource may be special uplink subframes.
  • the first nsrs_symbol symbols, or the last nsrs_symbol symbols of the special uplink subframe, or the nsrs_symbol symbols are dispersedly distributed in the special uplink subframe.
  • the nsrs_symbol symbols are used as the last nsrs_symbol symbols of the special uplink subframe as an example.
  • the DMRS location of the special uplink subframe has a correspondence with the cell-level SRS resource or the user-level PUSCH available symbol.
  • the value of nsrs_symbol is 0 to 4, and if the DMRS location corresponds to the cell-level SRS resource, the corresponding relationship is as shown in Table 1.
  • the DMRS location also needs to be adjusted accordingly, and the adjusted DMRS location may appear in a symbol that is not configured to transmit SRS resources, and is not given here. Adjust the example. If the DMRS location corresponds to the user-level PUSCH available symbol, the correspondence is as shown in Table 2.
  • the DMRS location also needs to be adjusted accordingly, and the adjusted DMRS location may appear in a symbol that is not configured to transmit SRS resources, and is not given here. Adjust the example.
  • the DMRS location of the user in the cell may also be fixed, and does not change with the change of the cell-level SRS resource or the user-level PUSCH available symbol.
  • the symbol number of the DMRS may be fixed to the symbol 2, 8.
  • the interleaver design of the resource mapping of the control information in the special uplink subframe has a corresponding relationship with the DMRS location.
  • the DMRS occupies the symbol 3, 10 it is a Long Term Evolution (LTE).
  • LTE Long Term Evolution
  • the interleaver design of the resource mapping of the control information in the special uplink subframe is as shown in FIG. 4a, wherein the symbols 2 and 8 are configured to transmit the symbols of the DMRS, and the last 3 symbols are configured to be transmitted.
  • the symbol of the SRS resource is configured for the channel quality indication (CQI), and the resource particle with the number marked below the symbols 0, 4, 6 and 10 is configured for transmission.
  • CQI channel quality indication
  • RI Rank Indication
  • Symbols 1, 3, 7, and 9 are configured to transmit response information (ACK), and the remaining resource particles are used to transmit data.
  • the interleaver design of the resource mapping of the control information in the special uplink subframe is as shown in FIG. 4b, wherein the DMRS occupies the symbol 2, 7, in the special uplink subframe.
  • the last 4 symbols are used to transmit SRS resources, the resource particles with numbers below 0, 4, 5 and 9 are used to transmit RI, and the symbols 1, 3, 6 and 8 are used to transmit ACK, and above the special uplink subframe.
  • Resource particles identified with numbers are used to transport CQI, and the remaining resource particles are used to transfer data.
  • the interleaver design of the resource mapping of the control information in the special uplink subframe needs to be adjusted accordingly, and the adjusted control information is located on either side or side of the DMRS position, and may appear in In the symbols that are not occupied by SRS resources, no adjustment examples are given here.
  • the base station also needs to configure the symbols occupied by the PUSCH in the special uplink subframe.
  • the base station configures the target subframe, and first needs to perform cell-level configuration, and configure a special uplink subframe in the TDD, and is configured in the following two manners:
  • the base station uses a transmission offset in a cell-level SRS subframe configuration (srs-subframeConfig) in the existing LTE system to indicate a special uplink subframe, and if the subframe indicated by the transmission offset is an uplink in the TDD. If the sub-frame is configured as a special uplink sub-frame, if the sub-frame indicated by the Transmission offset is a special sub-frame in the TDD, the special sub-frame is used to transmit the SRS according to the existing protocol.
  • a cell-level SRS subframeConfig in a cell-level SRS subframe configuration in the existing LTE system
  • the base station needs to configure the subframe 2 and the subframe 7 in the TDD as a special uplink subframe, and all the special subframes in the TDD are used to transmit the SRS, and the base station cell-level configuration high-level signaling srs-SubframeConfig value is 0001.
  • the corresponding Transmission offset is ⁇ 1, 2 ⁇
  • the cell-level SRS period is 5 ms, that is, the configuration subframes 2 and 7 are special uplink subframes.
  • all special subframes are used to transmit SRS.
  • a new cell-level high-level signaling (SpecialULSubframeFlags) is introduced, and the number of bits is the same as the offset of the transmission offset of the srs-SubframeConfig.
  • Each bit corresponds to an offset in the Transmission offset, and the SRS enhancement function is enabled. In the embodiment of the present invention, it is assumed that 1 is to allow SRS enhancement, 0 is not allowed, and the actual application is not limited to this correspondence. If the subframe indicated by the transmission offset is an uplink subframe in the TDD and the corresponding SpecialULSubframeFlags bit is 1, it is a special uplink subframe. If the subframe indicated by the Transmission offset is a special subframe in the TDD, according to the current subframe.
  • the base station needs to configure the subframes 2 and 7 as special uplink subframes, and all the special subframes are used for transmitting the SRS, and the base station cell-level configuration high-layer signaling srs-SubframeConfig value is 0101.
  • the corresponding The transmission offset is ⁇ 1, 2, 4 ⁇
  • the cell-level SRS period is 5 ms
  • the base station cell level configures the number of symbols used to transmit the SRS in the special uplink subframe.
  • a new high-level signaling Special ULSrsNum may be added to the System Information (SIB), and the base station sends the number m of symbols for transmitting the SRS in each special uplink subframe of the cell level to the user by using the Special ULSrsNum.
  • SIB System Information
  • the base station performs user-level configuration, and configures SRS resources for each user in the symbols for transmitting SRS in each special uplink subframe.
  • the SRS resource configuration may increase the UE-level higher layer signaling srs_symbol indicator symbol offset (Tsrs_symbol, k), indicating the symbol offset of the SRS resource on the kth TTI of the LTE IRS SRS symbol (ISRS).
  • srs_symbol indicator symbol offset Tsrs_symbol indicator symbol offset
  • ISRS LTE IRS SRS symbol
  • the base station configures the user to perform SRS transmission on the uplink subframe and a special uplink subframe in half TDD frame
  • k 1, 2
  • Tsrs_symbol, 1 is u bits
  • Tsrs_symbol 2 is m bits respectively indicating which symbols on the uplink subframe the user transmits the SRS and which symbols on the special uplink subframe the user transmits the SRS.
  • Tsrs_symbol, 1 0011
  • the base station configures the user to perform SRS transmission on two special uplink subframes in a half TDD frame
  • k 1, 2
  • Tsrs_symbol, and k are m bits, respectively indicating the user.
  • Tsrs_symbol, 1 is m bits; when the SRS is transmitted on the uplink subframe, Tsrs_symbol, 1 is u bits. It is used to indicate which symbols of the uplink subframe of the user transmit the SRS.
  • Other existing ISRS indexes are postponed and the definition is unchanged.
  • the base station in order to make full use of uplink resources that are not currently used for SRS transmission, the base station also performs user-level indication of PUSCH occupation symbols and enables user-level PUSCH symbol adjustment.
  • the following four indication methods are included:
  • PUSCH occupation symbol is a symbol 0 to a symbol v
  • v is ⁇ (13-m) to 13 ⁇
  • PuschConfigFlag is added to the format 0 (ie, Format 0) of the Downlink Control Information (DCI) and the DCI Format 4 to enable the function.
  • DCI Downlink Control Information
  • the number of PUSCH occupied symbols is added in the user-level high-level signaling, indicating the SRS symbols occupied by the PUSCH, and a total of nsrs_symbol bits are required.
  • the 1-bit signaling PuschConfigFlag is added to DCI Format 0 and DCI Format 4 to enable this function.
  • the terminal device After the base station performs the resource allocation in the TDD in the foregoing manner, the terminal device performs resource mapping and subframe transmission according to the transmission resource, including: the terminal device first calculates the time domain resource or code domain resource or code domain of the sent SRS according to the configuration of the base station.
  • the resource maps the SRS to the allocated SRS resource, and then sends the SRS symbol-by-symbol; performs PUSCH transmission according to the base station PUSCH available symbols, and adjusts the DMRS position, the TBsize, and the resource mapping of the control information accordingly.
  • the terminal device needs to calculate the length of the SRS resource, where the calculation method is prior art, and is not described here.
  • the terminal device obtains the symbol position of the SRS transmission in each period according to the base station ISRS and Tsrs_symbol, k, wherein the calculation formula of the n SRS is as follows:
  • the user performs PUSCH transmission according to the available symbols of the base station PUSCH, and adjusts the DMRS position, TBsize, and resource mapping of the control information accordingly. Specifically, the user adjusts the PUSCH length according to the PUSCH length configuration of the base station. Adjust TBsize according to PUSCH length, where TBsize is adjusted as shown in Table 4:
  • MCS Modulation and Coding Scheme
  • the TDD of all carriers adopts the same cell-level SRS resource configuration, or the different carrier TDDs adopt different SRS cell-level/user-level configurations.
  • the base station configures some subframes of the FDD downlink frame into a special downlink subframe. Some subframes of the uplink frame are configured as special uplink subframes.
  • the partial or all symbols in the special downlink subframe are configured to be used for uplink transmission of the SRS, and the corresponding relationship between the DMRS location and the cell-level SRS resource in the special downlink subframe is configured.
  • the partial symbol or all symbols in the special uplink subframe are configured for downlink transmission SRS, and configure the correspondence between the DMRS location and the cell-level SRS resource in the special downlink subframe.
  • nsrs_symbol symbols may be the first nsrs_symbol symbols of a special downlink subframe, or a special downlink.
  • the last nsrs_symbol symbols of the subframe are dispersedly distributed in special downlink subframes.
  • the nsrs_symbol symbols are the last nsrs_symbol of the special downlink subframe. The symbols are explained as an example. Certainly, a certain guard interval is required between the downlink symbol and the uplink symbol in the subframe. In the embodiment of the present invention, the guard interval is two Orthogonal Frequency Division Multiplexing (OFDM) symbols.
  • OFDM Orthogonal Frequency Division Multiplexing
  • the DMRS location of the special downlink subframe has a corresponding relationship with the cell-level SRS resource or the user-level PDSCH available symbol.
  • the value of nsrs_symbol is 4, and if the DMRS location corresponds to the cell-level SRS resource, the DMRS location correspondence is as shown in Table 5.
  • the DMRS also needs to be adjusted, and the adjusted DMRS may appear in the symbol that is not occupied by the SRS.
  • the adjustment example is not given here.
  • the symbols occupied by the PDSCH in the special downlink subframe are symbols other than the control channel, the SRS, and the GP.
  • a plurality of symbols in the special uplink subframe are configured to transmit the SRS, which is the same as the configuration of the special uplink subframe in the TDD, and details are not described herein.
  • the DMRS location of the special uplink subframe has a correspondence with the cell-level SRS resource or the user-level PUSCH available symbol.
  • the correspondence between the DMRS location and the cell-level SRS resource is shown in Table 6.
  • the DMRS In the case where the SRS symbol is other values, the DMRS also needs to be adjusted, and the adjusted DMRS may appear in the symbol that is not occupied by the SRS.
  • the adjustment example is not given here. If the DMRS location corresponds to the user-level PUSCH available symbol, the correspondence is as shown in Table 7.
  • the DMRS location of the user in the cell may also be fixed, and does not change with the change of the cell-level SRS resource or the user-level PUSCH available symbol.
  • the symbol number of the DMRS may be fixed to the symbol 2, 7.
  • the DMRS symbol here is different from that in the first embodiment in that it considers the protection time of switching between frames transmitted by the user in the uplink.
  • the specific DMRS location may be other configurations, but it is required to ensure that the sum of the number of symbols of the PUSCH and the number of cell-level SRS symbols is less than or equal to the number of symbols of the subframe.
  • the correspondence between the resource mapping of the control information and the DMRS position in the special uplink subframe is similar to the configuration in the TDD, and no adjustment example is given here.
  • the base station can configure k sets (k is greater than or in addition to determining which downlink subframes are configured as special downlink subframes).
  • k is greater than or in addition to determining which downlink subframes are configured as special downlink subframes.
  • the base station configures a set of SRS configurations for a special uplink subframe, including the number of SRS symbols in each special uplink subframe, and the SRS resources allocated to each user in each SRS symbol number.
  • k>1 for one set of SRS configurations (referred to as i), the base station first configures the number of SRS symbols in the special downlink/uplink subframe, for example, adding new high-level signaling SpecialSrsNum ⁇ i in the SIB.
  • the base station transmits the number S of SRS symbols for each special downlink/or uplink subframe of the cell level to the user by SpecialSrsNum ⁇ i ⁇ .
  • FIG. 5 is a schematic diagram of a location of an SRS symbol in a special downlink/uplink subframe according to an embodiment of the present invention. In Figure 5, the last 4 symbols of the special downlink/uplink subframe subframe are used to transmit the SRS.
  • the base station configures the SRS resource of each user in the special downlink/uplink subframe
  • the configuration for the i-th socket is specifically: adding the UE-level high-level signaling srs_symbol ⁇ i ⁇ indicating Tsrs_symbol, indicating that the SRS is on the ISRSTTI of the existing LTE.
  • Symbol offset it should be noted that the TTI here corresponds to the downlink frame instead of the uplink frame.
  • the base station allocates one or more sets of SRS configurations for the downlink frame and the uplink frame respectively, and specifically adds new high-level signaling SrsConfigDLSpecial, SrsConfigULNormal, and SrsConfigDLSpecial in the SIB, respectively indicating the special downlink subframe, the uplink subframe, and the special uplink subframe.
  • SrsConfigDLSpecial SrsConfigULNormal
  • SrsConfigDLSpecial SrsConfigDLSpecial
  • SrsConfigULNormal SrsConfigDLSpecial
  • the terminal device performs uplink transmission and downlink reception based on the SRS, and includes the time domain resource or the frequency domain resource or the code domain resource of the SRS resource that is sent by the terminal device according to the configuration of the base station, and sends the SRS; the user performs the PDSCH according to the cell-level SRS symbol corresponding to the SrsConfigDLSpecial.
  • the user calculates the time domain resource, the frequency domain resource, and the code domain resource of the sent SRS resource according to the configuration of the base station, and sends the SRS symbol by symbol.
  • the calculation of the code domain resource in the SRS resource of the terminal device is a prior art, and details are not described herein again.
  • the time domain resource and the frequency domain resource of the SRS resource are calculated by the following calculation formula.
  • the nSRS is calculated as follows:
  • T srs_symbol_num is the number of symbols in Tsrs_symbol.
  • the user performs PDSCH reception according to the cell-level SRS symbol corresponding to the SrsConfig DLSpecial, and adjusts the DMRS location, the TBsize, and the resource mapping of the control information accordingly.
  • the specific DMRS is shown in Table 5, and details are not described herein again.
  • the user adjusts the PUSCH length, the DMRS position of the PUSCH, the TBsize, the PUCCH format, and the DMRS position of the PUCCH according to the cell-level SRS symbol corresponding to the SrsConfig ULSpecial.
  • the specific DMRS is shown in Table 6, and details are not described herein again.
  • the embodiment of the present invention can be applied to multiple FDD downlink/uplink frames, and can also be extended to multiple TDD and FDD frames in combination with TDD.
  • Different frames have different/unified SRS cell level/user level configurations, and each frame is independent/ The operation is uniformly performed in accordance with the scheme of the embodiment.
  • FIG. 6 is a schematic structural diagram of a network side device according to an embodiment of the present invention. As shown in FIG. 6, a network side device 600 may include:
  • the configuration module 610 is configured to configure a target subframe, where the target subframe includes at least one sounding reference signal SRS symbol, and the foregoing SRS symbol is used to send an SRS signal;
  • the communication module 620 is configured to send the first configuration signaling to the terminal device, where the first configuration signaling includes a resource configuration of the target subframe or an SRS configuration in the target subframe.
  • the SRS configuration in the target subframe includes cell level SRS configuration information or user level SRS configuration information
  • the cell level SRS configuration information is used to identify SRS symbols in the target subframe, user level.
  • the SRS configuration information is used to identify an SRS resource allocated to the foregoing terminal device in an SRS symbol of a target subframe, where the SRS resource includes a time domain resource or a frequency domain resource or a code domain resource, and the foregoing time domain resource includes one or more SRS resources.
  • the above code domain resource includes one or more SRS sequences.
  • the communication module 620 is further configured to: after sending the first configuration signaling to the terminal device, send the second configuration signaling to the terminal device, where the second configuration signaling includes a shared channel indication or a first symbol indication, where the shared channel indication is used to indicate a symbol occupied by the shared channel in the target subframe, and the first symbol indicates a symbol used to indicate that the SRS transmission is available, so that the terminal device is configured according to the foregoing The first symbol indicates a symbol that determines that the shared channel is occupied in the target subframe.
  • the foregoing communications module 620 is specifically configured to send a downlink control message DCI to the terminal device, where the DCI carries the second configuration signaling.
  • the network side device 600 further includes:
  • the first determining module 630 is configured to determine, according to the symbol occupied by the shared channel in the target subframe, a symbol occupied by the demodulation reference signal DMRS in the target subframe, and perform DMRS transmission or reception based on the symbol occupied by the DMRS.
  • the foregoing configuration module 610 is specifically configured to: when the terminal device is configured with at least one frequency division duplex FDD serving cell, an uplink transmission frequency band and a downlink transmission frequency band of the FDD serving cell.
  • the first configuration signaling is configured; or the first configuration signaling is configured for the FDD serving cell; the communication module 620 is further configured to send the first configuration signaling to the terminal device.
  • the foregoing configuration module 610 is specifically configured to configure an uplink transmission frequency band and a downlink transmission frequency band of the FDD serving cell when the terminal device is configured with at least one FDD serving cell.
  • the second configuration signaling is configured; or the second configuration signaling is configured for the FDD serving cell; the communications module 620 is further configured to send the second configuration signaling to the terminal device.
  • the network side device 600 further includes:
  • the second determining module 640 is configured to determine, according to the first configuration signaling of the uplink transmission band or the downlink transmission band of the FDD serving cell, the uplink transmission band of the FDD serving cell when the terminal device is configured with the at least one FDD serving cell.
  • the network side device 600 further includes:
  • the third determining module 650 is configured to determine, when the terminal device is configured with the at least one FDD serving cell, an uplink transmission band of the FDD serving cell according to the second configuration signaling of the uplink transmission band or the downlink transmission band of the FDD serving cell.
  • the foregoing configuration module 610 is specifically configured to: when the terminal device is configured with at least two serving cells, configure a first configuration for the M serving cells in the at least two serving cells.
  • the communication module 620 is further configured to send the first configuration signaling to the terminal device, where the serving cell is an FDD serving cell or a time division duplex TDD serving cell.
  • the foregoing configuration module 610 is specifically configured to: when the terminal device is configured with at least two serving cells, configure a second configuration for the M serving cells in the at least two serving cells.
  • the signaling, the serving cell is an FDD serving cell or a TDD serving cell
  • the communications module 620 is further configured to send the second configuration signaling to the terminal device.
  • the network side device 600 further includes:
  • the fourth determining module 660 when the terminal device is configured with the at least two serving cells, determining an uplink subframe of each of the serving cells according to the first configuration signaling of the M serving cells in the at least two serving cells The symbol occupied by the downlink transmission.
  • the network side device 600 further includes:
  • a fifth determining module 670 when the terminal device is configured with at least two serving cells, determining an uplink subframe of each of the serving cells according to the second configuration signaling of the M serving cells in the at least two serving cells The symbol occupied by the downlink transmission.
  • FIG. 7 is a schematic structural diagram of a terminal device according to an embodiment of the present invention. As shown in FIG. 7, a terminal device 700 may include:
  • the communication module 710 is configured to receive the first configuration signaling that is sent by the network side device, where the first configuration signaling includes a resource configuration of the target subframe or an SRS configuration of the target subframe, where the target subframe includes at least one SRS symbol.
  • the above SRS symbol is used to send an SRS signal;
  • the configuration module 720 is configured to configure the target subframe according to the resource configuration of the target subframe of the first configuration signaling, and perform the target subframe according to the SRS configuration of the target subframe of the first configuration signaling. SRS configuration in .
  • the SRS configuration in the target subframe includes the cell-level SRS configuration information or the user-level SRS configuration information, where the cell-level SRS configuration information is used to identify the SRS symbol in the target subframe.
  • the user-level SRS configuration information is used to identify the SRS resource allocated to the terminal device in the SRS symbol of the target subframe, where the SRS resource includes a time domain resource or a frequency domain resource or a code domain resource, and the time domain is
  • the resource includes one or more SRS symbols
  • the foregoing code domain resource includes one or more SRS sequences.
  • the foregoing configuration module 720 is specifically configured to determine, according to the cell-level SRS configuration information, the SRS symbol in the target subframe.
  • the user-level SRS configuration information determines an SRS resource allocated to the terminal device in the SRS symbol of the target subframe.
  • the foregoing communications module 710 is further configured to receive the second configuration signaling sent by the network side device, where the second configuration signaling includes a shared channel indication or a first symbol indication, where The shared channel indication is used to indicate a symbol occupied by the shared channel in the target subframe, and the first symbol indicates a symbol used to indicate that the SRS transmission is available, so that the terminal device determines that the shared channel is in the foregoing according to the first symbol indication.
  • the symbol occupied by the target subframe is further configured to determine, according to the shared channel indication or the first symbol indication, a symbol occupied by the shared channel in the target subframe.
  • the foregoing communication module 710 is specifically configured to receive a downlink control message DCI sent by the network side device, where the DCI carries the second configuration signaling.
  • the foregoing configuration module 720 is further configured to determine, according to the symbol occupied by the shared channel, a symbol occupied by the demodulation reference signal DMRS in the target subframe, and is used based on the DMRS.
  • the symbol is transmitted or received by DMRS.
  • the foregoing communication module 710 is specifically configured to: when the terminal device is configured with the at least one frequency division duplex FDD serving cell, receive the information about the FDD serving cell sent by the network side device.
  • the configuration module 720 is specifically configured to: according to the uplink transmission band of the FDD serving cell And determining, by the first configuration signaling of the downlink transmission band, a shared channel symbol position or a DMRS symbol position of the FDD serving cell, or determining a shared channel symbol position or a DMRS of the FDD serving cell according to the FDD serving cell first configuration signaling. Symbol location.
  • the foregoing communication module 710 is further configured to: when the terminal device is configured with at least one FDD serving cell, receive an uplink transmission frequency band that is sent by the network side device and is sent to the FDD serving cell, and The second transmission signaling of the downlink transmission frequency band; or receiving the second configuration signaling for the FDD serving cell sent by the network side device; the configuration module 720 is further configured to: according to the uplink transmission frequency band and the downlink transmission frequency band of the FDD serving cell The second configuration signaling determines a shared channel symbol position or a DMRS symbol position of the FDD serving cell, or determines a shared channel symbol position or a DMRS symbol position of the FDD serving cell according to the second configuration signaling for the FDD serving cell.
  • the foregoing configuration module 720 is further configured to: when the terminal device is configured with at least one FDD serving cell, according to the first configuration of the uplink transmission band or the downlink transmission band of the FDD serving cell. And signaling, determining a symbol occupied by the downlink transmission in the uplink transmission frequency band of the FDD serving cell; or determining, according to the first configuration signaling of the FDD serving cell, a symbol occupied by the downlink transmission in the uplink transmission frequency band of the FDD serving cell.
  • the foregoing configuration module 720 is further configured to: when the terminal device is configured with at least one FDD serving cell, according to an uplink transmission band or a downlink transmission band of the FDD serving cell.
  • the second configuration signaling determines a symbol occupied by the downlink transmission in the uplink transmission frequency band of the FDD serving cell, or determines a symbol occupied by the downlink transmission in the uplink transmission frequency band of the FDD serving cell according to the second configuration signaling of the FDD serving cell.
  • the foregoing communication module 710 is further configured to: when the terminal device is configured with at least two serving cells, receive the M sent by the network side device for the at least two serving cells.
  • the first configuration signaling of the serving cell; the configuration module 720 is further configured to determine a shared channel symbol position or a DMRS symbol position according to the first configuration signaling of the M serving cells in the at least two serving cells.
  • the foregoing communication module 710 is further configured to: when the terminal device is configured by at least two serving cells, receive M of the at least two serving cells that are sent by the network side device.
  • the second configuration signaling of the serving cell; the configuration module 720 is further configured to determine a shared channel symbol position or a DMRS symbol position according to the M serving cell second configuration signaling in the at least two serving cells.
  • the configuration module 720 is further configured to: when the terminal device is configured with at least two serving cells, according to the M serving cells in the at least two serving cells A configuration signaling is used to determine a symbol occupied by a downlink transmission in an uplink subframe on each of the foregoing serving cells.
  • the foregoing configuration module 720 is further configured to: when the terminal device is configured with at least two foregoing serving cells, determine each of the foregoing according to the second configuration signaling corresponding to the serving cell. The symbol occupied by the downlink transmission in the uplink subframe on the serving cell.
  • FIG. 8 is a schematic structural diagram of a subframe configuration system according to an embodiment of the present invention. As shown in FIG. 8, a subframe configuration system 800 may include:
  • Network side device 600 and terminal device 700 are connected to Network side device 600 and terminal device 700.
  • network side device 600 and the terminal device 700 For the description of the network side device 600 and the terminal device 700, refer to the method embodiment and the device embodiment, and details are not described herein again.
  • FIG. 9 is another schematic structural diagram of a network side device according to an embodiment of the present invention, where at least one processor 901 (for example, a CPU, Central Processing Unit), at least one network interface or other communication interface may be included.
  • a memory 902, and at least one communication bus, are used to effect connection communication between the devices.
  • the processor 901 is configured to execute an executable module, such as a computer program, stored in a memory.
  • the memory 902 may include a high speed random access memory (RAM), and may also include a non-volatile memory such as at least one disk memory.
  • the communication connection between the system gateway and at least one other network element is implemented by at least one network interface (which may be wired or wireless), and an Internet, a wide area network, a local network, a metropolitan area network, etc. may be used.
  • the memory 902 stores program instructions, and the program instructions may be executed by the processor 901.
  • the processor 901 specifically performs the following steps: configuring a target subframe, the target subframe. Included at least one sounding reference signal SRS symbol, the SRS symbol is used to send an SRS signal, and the first configuration signaling is sent to the terminal device, where the first configuration signaling includes a resource configuration of the target subframe or an SRS in the target subframe. Configuration.
  • the processor 901 may further perform the following steps: after sending the first configuration signaling to the terminal device, send the second configuration signaling to the terminal device, where the second configuration signaling includes a shared channel indication Or the first symbol indicates that the shared channel indication is used to indicate a symbol occupied by the shared channel in the target subframe, The first symbol indication is used to indicate a symbol usable for SRS transmission, so that the terminal device determines, according to the first symbol indication, the symbol occupied by the shared channel in the target subframe.
  • the processor 901 may further perform the following steps: sending a downlink control message DCI to the terminal device, where the DCI carries the foregoing second configuration signaling.
  • the processor 901 may further perform the following steps: determining, according to a symbol occupied by the shared channel in the target subframe, a symbol occupied by the demodulation reference signal DMRS in the target subframe, and based on the foregoing The symbols occupied by the DMRS are transmitted or received by the DMRS.
  • the processor 901 may further perform the following steps: when the terminal device is configured with at least one frequency division duplex FDD serving cell, configuring a first configuration for the uplink transmission band and the downlink transmission band of the FDD serving cell Signaling; or configuring first configuration signaling for the FDD serving cell; and transmitting first configuration signaling to the terminal device.
  • the processor 901 may further perform the following steps: when the terminal device is configured with at least one FDD serving cell, configuring second configuration signaling for an uplink transmission band and a downlink transmission band of the FDD serving cell; or And configuring second configuration signaling for the FDD serving cell; and sending second configuration signaling to the terminal device.
  • the processor 901 may further perform the following steps: when the terminal device is configured with at least one FDD serving cell, according to the first configuration signaling for the uplink transmission band or the downlink transmission band of the FDD serving cell. And determining a symbol occupied by the downlink transmission in the uplink transmission frequency band of the FDD serving cell; or determining, according to the first configuration signaling of the FDD serving cell, a symbol occupied by the downlink transmission in the uplink transmission frequency band of the FDD serving cell.
  • the processor 901 may further perform the following steps: when the terminal device is configured with at least one FDD serving cell, according to the second configuration signaling for the uplink transmission band or the downlink transmission band of the FDD serving cell. And determining a symbol occupied by the downlink transmission in the uplink transmission frequency band of the FDD serving cell; or determining, according to the second configuration signaling of the FDD serving cell, a symbol occupied by the downlink transmission in the uplink transmission frequency band of the FDD serving cell.
  • the processor 901 may further perform the following steps: when the terminal device is configured with at least two serving cells, configuring first configuration signaling for the M serving cells in the at least two serving cells; The terminal device sends the first configuration signaling, where the serving cell is an FDD serving cell or a time division duplex TDD serving cell.
  • the processor 901 may further perform the following steps: when the terminal device is configured with at least two serving cells, configuring second configuration signaling for the M serving cells in the at least two serving cells, where The serving cell is an FDD serving cell or a TDD serving cell; and the second configuration signaling is sent to the terminal device.
  • the processor 901 may further perform the following steps: when the terminal device is configured with at least two foregoing serving cells, according to the first configuration signaling for the M serving cells in the at least two serving cells, Determining the symbols occupied by the downlink transmission in the uplink subframe of each of the foregoing serving cells.
  • the processor 901 may further perform the following steps: when the terminal device is configured with at least two foregoing serving cells, according to the second configuration signaling for the M serving cells in the at least two serving cells, Determining the symbols occupied by the downlink transmission in the uplink subframe of each of the foregoing serving cells.
  • FIG. 10 is another schematic structural diagram of a terminal device according to an embodiment of the present invention, which may include at least one processor 1001 (eg, a CPU, Central Processing Unit), at least one network interface or other communication interface, and a memory. 1002, and at least one communication bus for implementing connection communication between the devices.
  • the processor 1001 is configured to execute an executable module, such as a computer program, stored in a memory.
  • the memory 1002 may include a high speed random access memory (RAM), and may also include a non-volatile memory such as at least one disk memory.
  • the communication connection between the system gateway and at least one other network element is implemented by at least one network interface (which may be wired or wireless), and an Internet, a wide area network, a local network, a metropolitan area network, etc. may be used.
  • the above-mentioned memory 1002 stores program instructions, which may be executed by the processor 1001.
  • the processor 1001 specifically performs the following steps: receiving the first configuration sent by the network side device. Signaling, the foregoing first configuration signaling includes a resource configuration of a target subframe or an SRS configuration of the target subframe, where the target subframe includes at least one SRS symbol, and the SRS symbol is used to send an SRS signal; And configuring the resource configuration of the target subframe in the signaling, and configuring the target subframe, and performing SRS configuration in the target subframe according to the SRS configuration of the target subframe in the first configuration signaling.
  • the processor 1001 may further perform the following steps: the SRS configuration in the target subframe includes cell-level SRS configuration information or user-level SRS configuration information, where the cell-level SRS configuration information is used to identify the target subframe.
  • the user-level SRS configuration information is used to identify the SRS resource allocated to the terminal device in the SRS symbol of the target subframe, where the SRS resource includes a time domain resource or a frequency domain resource or a code domain resource.
  • the foregoing time domain resource includes one or more SRS symbols, where the code domain resource includes one or more SRS sequences, and the SRS symbol in the target subframe is determined according to the cell level SRS configuration information, or according to the user level SRS configuration.
  • the information is used to determine an SRS resource allocated to the terminal device in the foregoing SRS symbol of the target subframe.
  • the processor 1001 may further perform the following steps: receiving the second configuration signaling sent by the network side device, where the second configuration signaling includes a shared channel indication or a first symbol indication, where the shared channel indication is used And indicating the symbol occupied by the shared channel in the target subframe, where the first symbol indicates a symbol used for indicating SRS transmission, so that the terminal device determines, according to the first symbol indication, that the shared channel is in the target subframe.
  • the occupied symbol determining the symbol occupied by the shared channel in the target subframe according to the shared channel indication or the first symbol indication.
  • the processor 1001 may further perform the following steps: receiving a downlink control message DCI sent by the network side device, where the DCI carries the second configuration signaling.
  • the processor 1001 may further perform the following steps: determining, according to the symbol occupied by the shared channel, a symbol occupied by the demodulation reference signal DMRS in the target subframe, and performing DMRS transmission based on the symbol occupied by the DMRS. Or receive.
  • the processor 1001 may further perform the following steps: when the terminal device is configured with at least one frequency division duplex FDD serving cell, receiving an uplink transmission frequency band sent by the network side device for the FDD serving cell and And determining, by the network side device, the first configuration signaling for the FDD serving cell, and determining, according to the first configuration signaling of the uplink transmission band and the downlink transmission band of the FDD serving cell, Shared channel symbol location or DMRS symbol location of the FDD serving cell; or root The shared channel symbol position or the DMRS symbol position of the FDD serving cell is determined according to the first configuration signaling of the FDD serving cell.
  • the processor 1001 may further perform the following steps: when the terminal device is configured with at least one FDD serving cell, receiving, by the network side device, an uplink transmission frequency band and a downlink transmission frequency band for the FDD serving cell. And configuring the second configuration signaling sent by the network side device for the FDD serving cell; determining the FDD serving cell according to the second configuration signaling of the uplink transmission band and the downlink transmission band of the FDD serving cell Sharing a channel symbol position or a DMRS symbol position; or determining a shared channel symbol position or a DMRS symbol position of the FDD serving cell according to the second configuration signaling for the FDD serving cell.
  • the processor 1001 may further perform the following steps: when the terminal device is configured with at least one FDD serving cell, according to the first configuration signaling for the uplink transmission band or the downlink transmission band of the FDD serving cell, And a symbol occupied by the downlink transmission in the uplink transmission frequency band of the FDD serving cell; or determining, according to the first configuration signaling of the FDD serving cell, a symbol occupied by the downlink transmission in the uplink transmission frequency band of the FDD serving cell.
  • the processor 1001 may further perform the following steps: when the terminal device is configured with at least one FDD serving cell, according to the second configuration signaling for the uplink transmission band or the downlink transmission band of the FDD serving cell, The symbol occupied by the downlink transmission in the uplink transmission band of the FDD serving cell; or the symbol occupied by the downlink transmission in the uplink transmission band of the FDD serving cell according to the second configuration signaling of the FDD serving cell.
  • the processor 1001 may further perform the following steps: when the terminal device is configured with at least two serving cells, receiving, by the network side device, M serving cells in the at least two serving cells a configuration signaling; determining a shared channel symbol position or a DMRS symbol position according to the M serving cell first configuration signaling in the at least two serving cells.
  • the processor 1001 may further perform the following steps: when the terminal device is used by at least two serving cells, receiving, by the network side device, the M serving cells in the at least two serving cells. Configuring signaling; determining a shared channel symbol position or a DMRS symbol position according to the M serving cell second configuration signalings in the at least two serving cells.
  • the processor 1001 may further perform the following steps: when the terminal device is configured with at least two foregoing serving cells, according to the first configuration signaling corresponding to the M serving cells in the at least two serving cells And determining a symbol occupied by the downlink transmission in the uplink subframe on each of the foregoing serving cells.
  • the processor 1001 may further perform the following steps: when the terminal device is configured with at least two foregoing serving cells, determining, according to the second configuration signaling corresponding to the serving cell, each of the serving cells The symbol occupied by the downlink transmission in the uplink subframe.
  • the disclosed system, apparatus, and method may be implemented in other manners.
  • the device embodiments described above are merely illustrative, for example, of the unit Partitioning is only a logical function partitioning. In actual implementation, there may be another way of dividing. For example, multiple units or components may be combined or integrated into another system, or some features may be ignored or not executed.
  • the mutual coupling or direct coupling or communication connection shown or discussed may be an indirect coupling or communication connection through some interface, device or unit, and may be in an electrical, mechanical or other form.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, may be located in one place, or may be distributed to multiple network units. Some or all of the units may be selected according to actual needs to achieve the purpose of the solution of the embodiment.
  • each functional unit in each embodiment of the embodiments of the present invention may be integrated into one processing unit, or each unit may exist physically separately, or two or more units may be integrated into one unit.
  • the above integrated unit can be implemented in the form of hardware or in the form of a software functional unit.
  • the integrated unit if implemented in the form of a software functional unit and sold or used as a standalone product, may be stored in a computer readable storage medium.
  • the medium includes a plurality of instructions for causing a computer device (which may be a personal computer, a server, or a network device, etc.) to perform all or part of the steps of the methods of the various embodiments of the embodiments of the present invention.
  • the foregoing storage medium includes: a U disk, a mobile hard disk, a read-only memory (ROM), a random access memory (RAM), a magnetic disk, or an optical disk, and the like. .

Abstract

本发明实施例公开了一种子帧配置方法及相关设备,用于解决现有技术无法满足信道测量需求,网络容量低的问题,以提高网络容量。本发明实施例方法包括:网络侧设备配置目标子帧,所述目标子帧包括至少一个探测参考信号SRS符号,所述SRS符号用于发送SRS信号;所述网络侧设备向终端设备发送第一配置信令,所述第一配置信令包括所述目标子帧的资源配置或所述目标子帧中的SRS配置。可以看出,在本发明实施例中网络侧设备可以灵活配置出包括至少一个SRS符号的目标子帧,以满足信道测量需求,提高单位时间内信道测量的次数,满足终端设备对网络容量的需求。

Description

一种子帧配置方法及相关设备
本申请要求于2016年6月29日提交中国专利局、申请号为201610498961.9、发明名称为“一种子帧配置方法及相关设备”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本发明实施例涉及通信技术领域,具体涉及一种子帧配置方法及相关设备。
背景技术
随着长期演进(Long Term Evolution,简称LTE)技术的应用和发展,通信容量的需求变得越来越高,多输入多输出(Multiple-Input Multiple-Output,简称MIMO)多天线技术是LTE的核心技术之一,结合正交频分复用(Orthogonal Frequency Division Multiplexing,简称OFDM)技术,可以有效地提升网络容量。然而,伴随着多天线技术的引入,用户(User Equipment,简称UE)和基站之间的信道数量也会增加,需要更多的无线资源进行信道测量。同时,用户的增多又进一步增加网络的信道数量。此外,由于客运班车、客运列车等速度的提高,用户的运动速度也跟着提高,导致信道变化更快,这就要求网络必须在较短的时间内完成信道的测量。综合以上三点,当前网络对信道测量的要求(单位时间内信道测量的次数)越来越高,因此需要提高上行发送的探测参考信号(SRS,Sounding Reference Signal)的容量,满足上述信道测量要求。
现有LTE系统中允许用户在上行子帧的最后一个符号以及特殊子帧的上行部分(The Uplink Part of The Special Subframe,简称UpPTS)发送SRS,基站根据SRS进行信道测量,获得上行信道。其中,SRS在上行子帧和特殊子帧的上行部分的分布如图1所示,图1中左边所示的是上行子帧,SRS设置在上行子帧最后一个符号。图1中右边所示的是特殊子帧,在特殊子帧中包括UpPTS、保护间隔(Guard Period,简称GP)和下行部分(The Downlink Part of The Special Subframe,简称DwPTS),SRS设置在特殊子帧的上行部分。不管是将SRS设置在上行子帧的最后一个符号,还是将SRS设置在特殊子帧的上部部分,用户在发送SRS时,并非在频域上连续发送,而是每隔一个子载波发送一个SRS,形成梳状结构。根据SRS的梳状结构可知,允许两个用户在同一时间传输各自的SRS,没有干扰,提高了SRS容量。LTE还允许SRS最多有8个循环移位,不同循环移位的SRS也可以同时发送,还可以再一次提升SRS的容量。
其中,将梳状结构上的一个循环移位定位为一个SRS资源,最多也只能支持16个SRS资源同时发送,但是考虑到循环移位的性能问题,一般仅利用4个循环移位,即8个SRS资源同时发送,但是还是无法满足信道测量的需要。
发明内容
针对上述缺陷,本发明实施例提供了一种子帧配置方法及相关设备,用于解决现有技术无法满足信道测量需求,网络容量低的问题,以提高网络容量。
本发明实施例第一方面提供了一种子帧配置方法,可包括:
网络侧设备配置目标子帧,该目标子帧包括至少一个探测参考信号SRS符号,该SRS符号用于发送SRS信号;该网络侧设备向终端设备发送第一配置信令,该第一配置信令包括该目标子帧的资源配置或该目标子帧中的SRS配置。
结合本发明实施例的第一方面的第一种具体实施方式,可包括:
该目标子帧中的SRS配置包括小区级SRS配置信息或用户级SRS配置信息,该小区级SRS配置信息用于标识该目标子帧中的SRS符号,该用户级SRS配置信息用于标识在该目标子帧的SRS符号中分配给该终端设备的SRS资源,其中,该SRS资源包括时域资源或频域资源或码域资源,该时域资源包括一个或多个SRS符号,该码域资源包括一个或多个SRS序列。
结合本发明实施例的第一方面、第一方面的第一种具体实施方式,本发明实施例的第二种具体实施方式,可包括:
该网络侧设备向该终端设备发送第二配置信令,该第二配置信令包括共享信道指示或第一符号指示,该共享信道指示用于指示共享信道在该目标子帧中占用的符号,该第一符号指示用于指示可用于SRS传输的符号,以使得该终端设备根据该第一符号指示确定该共享信道在该目标子帧中占用的符号。
结合本发明实施例的第一方面的第二种具体实施方式,本发明实施例的第三种具体实施方式,可包括:
该网络侧设备向该终端设备发送下行控制消息DCI,该DCI携带有该第二配置信令。
结合本发明实施例的第一方面、第一方面的第一种具体实施方式、第一方面的第二种具体实施方式、第一方面的第三种具体实施方式,本发明实施例的第四种具体实施方式,可包括:
该网络侧设备根据共享信道在该目标子帧中占用的符号,确定解调参考信号DMRS在该目标子帧中占用的符号,并基于该DMRS占用的符号进行DMRS发送或接收。
结合本发明实施例的第一方面、第一方面的第一种具体实施方式、第一方面的第二种具体实施方式、第一方面的第三种具体实施方式,本发明实施例的第五种具体实施方式,可包括:
当该终端设备被配置至少一个频分双工FDD服务小区时,该网络侧设备为该FDD服务小区的上行传输频带和下行传输频带配置第一配置信令,并向该终端设备发送第一配置信令;或者该网络侧设备为该FDD服务小区配置第一配置信令,并向该终端设备发送第一配置信令。
结合本发明实施例的第一方面的第二种具体实施方式、第一方面的第三种具体实施方式,本发明实施例的第六种具体实施方式,可包括:
当该终端设备被配置至少一个FDD服务小区时,该网络侧设备为该FDD服务小区的上行传输频带和下行传输频带配置第二配置信令,并向该终端设备发送第二配置信令;或者该网络侧设备为该FDD服务小区配置第二配置信令,并向该终端设备发送第二配置信令。
结合本发明实施例的第一方面的第五种具体实施方式,本发明实施例的第七种具体实 施方式,可包括:
当该终端设备被配置至少一个FDD服务小区时,该网络侧设备根据为该FDD服务小区的上行传输频带或下行传输频带第一配置信令,确定该FDD服务小区的上行传输频带中下行传输占用的符号;或者,该网络侧设备根据为该FDD服务小区第一配置信令,确定该FDD服务小区的上行传输频带中下行传输占用的符号。
结合本发明实施例的第一方面的第六种具体实施方式,本发明实施例的第八种具体实施方式,可包括:
当该终端设备被配置至少一个FDD服务小区时,该网络侧设备根据为该FDD服务小区的上行传输频带或下行传输频带第二配置信令,确定该FDD服务小区的上行传输频带中下行传输占用的符号;或者,该网络侧设备根据为该FDD服务小区第二配置信令,确定该FDD服务小区的上行传输频带中下行传输占用的符号。
结合本发明实施例的第一方面、第一方面的第一种具体实施方式、第一方面的第二种具体实施方式、第一方面的第三种具体实施方式,本发明实施例的第九种具体实施方式,可包括:
当该终端设备被配置至少2个服务小区时,该网络侧设备为该至少2个服务小区中的M个服务小区配置第一配置信令,并向该终端设备发送第一配置信令,该服务小区为FDD服务小区或者时分双工TDD服务小区,该M为大于或等于1且小于或等于该终端设备配置的服务小区的总数量。
结合本发明实施例的第一方面的第二种具体实施方式,本发明实施例的第十种具体实施方式,可包括:
当该终端设备被配置至少2个服务小区时,该网络侧设备为该至少2个服务小区中的M个服务小区配置第二配置信令,并向该终端设备发送第二配置信令,该服务小区为FDD服务小区或者TDD服务小区,该M为大于或等于1且小于或等于该终端设备配置的服务小区的总数量。
结合本发明实施例的第一方面的第九种具体实施方式,本发明实施例的第十一种具体实施方式,可包括:
当该终端设备被配置至少2个该服务小区时,该网络侧设备根据为该至少2个服务小区中的M个服务小区第一配置信令,确定每一个该服务小区的上行子帧中下行传输占用的符号,该M为大于或等于1且小于或等于该终端设备配置的服务小区的总数量。
结合本发明实施例的第一方面的第十种具体实施方式,本发明实施例的第十二种具体实施方式,可包括:
当该终端设备被配置至少2个该服务小区时,该网络侧设备根据为该至少2个服务小区中的M个服务小区第二配置信令,确定每一个该服务小区的上行子帧中下行传输占用的符号,该M为大于或等于1且小于或等于该终端设备配置的服务小区的总数量。
在第一方面中网络侧设备配置了一种目标子帧,而目标子帧的符号中至少有一个符号为SRS符号,而SRS符号主要用于发送SRS信号,之后网络侧设备通过向终端设备发送第一配置信令,以便终端设备根据第一配置信令配置出至少包括一个SRS符号的目标子帧。可以看出,在本发明实施例中网络侧设备可以灵活配置出包括至少一个SRS符号的目标子 帧,以满足信道测量需求,提高单位时间内信道测量的次数,满足终端设备对网络容量的需求。
本发明实施例第二方面提供了一种子帧配置方法,可包括:
终端设备接收网络侧设备发送的第一配置信令,该第一配置信令包括目标子帧的资源配置或该目标子帧的SRS配置,该目标子帧包括至少一个SRS符号,该SRS符号用于发送SRS信号;该终端设备根据该第一配置信令的该目标子帧的资源配置,配置出该目标子帧,根据该第一配置信令的该目标子帧的SRS配置,进行该目标子帧中的SRS配置。
结合本发明实施例的第二方面的第一种具体实施方式,可包括:
该目标子帧中的SRS配置包括小区级SRS配置信息或用户级SRS配置信息,该小区级SRS配置信息用于标识该目标子帧中的SRS符号,该用户级SRS配置信息用于标识在该目标子帧的SRS符号中分配给该终端设备的SRS资源,其中,该SRS资源包括时域资源或频域资源或码域资源,该时域资源包括一个或多个SRS符号,该码域资源包括一个或多个SRS序列;进而该根据该第一配置信令的该目标子帧的SRS配置,进行该目标子帧中的SRS配置包括:该终端设备根据该小区级SRS配置信息,确定出该目标子帧中的SRS符号;或根据该用户级SRS配置信息,确定出该目标子帧的该SRS符号中分配给该终端设备的SRS资源。
结合本发明实施例的第二方面、第二方面的第一种具体实施方式,本发明实施例的第二种具体实施方式,可包括:
该终端设备接收该网络侧设备发送的第二配置信令,该第二配置信令包括共享信道指示或第一符号指示,该共享信道指示用于指示共享信道在该目标子帧中占用的符号,该第一符号指示用于指示可用于SRS传输的符号,以使得该终端设备根据该第一符号指示确定该共享信道在该目标子帧中占用的符号;该终端设备根据该共享信道指示或第一符号指示,确定共享信道在该目标子帧中占用的符号。
结合本发明实施例的第二方面的第二种具体实施方式,本发明实施例的第三种具体实施方式,可包括:
该终端设备接收该网络侧设备发送的下行控制消息DCI,该DCI携带有该第二配置信令。
结合本发明实施例的第二方面的第二种具体实施方式、第二方面的第三种具体实施方式,本发明实施例的第四种具体实施方式,可包括:
该终端设备根据该共享信道占用的符号,确定解调参考信号DMRS在该目标子帧中占用的符号,并基于该DMRS占用的符号进行DMRS发送或接收。
结合本发明实施例的第二方面、第二方面的第一种具体实施方式、第二方面的第二种具体实施方式、第二方面的第三种具体实施方式,本发明实施例的第五种具体实施方式,可包括:
当该终端设备被配置至少一个频分双工FDD服务小区时,该终端设备接收该网络侧设备发送的针对该FDD服务小区的上行传输频带和下行传输频带第一配置信令;或者该终端设备接收该网络侧设备发送的针对该FDD服务小区第一配置信令;该终端设备接收网络侧设备发送的第一配置信令之后,该方法还包括:该终端设备根据为该FDD服务小区的上行 传输频带和下行传输频带第一配置信令,确定该FDD服务小区的共享信道符号位置或DMRS符号位置;或者该终端设备根据为该FDD服务小区第一配置信令,确定该FDD服务小区的共享信道符号位置或DMRS符号位置。
结合本发明实施例的第二方面的第二种具体实施方式,本发明实施例的第六种具体实施方式,可包括:
当该终端设备被配置至少一个FDD服务小区时,该终端设备接收该网络侧设备发送的针对该FDD服务小区的上行传输频带和下行传输频带第二配置信令;或者该终端设备接收该网络侧设备发送的针对该FDD服务小区第二配置信令;该终端设备接收网络侧设备发送的第二配置信令之后,该方法还包括:该终端设备根据为该FDD服务小区的上行传输频带和下行传输频带第二配置信令,确定该FDD服务小区的共享信道符号位置或DMRS符号位置;或者该终端设备根据为该FDD服务小区第二配置信令,确定该FDD服务小区的共享信道符号位置或DMRS符号位置。
结合本发明实施例的第二方面的第五种具体实施方式,本发明实施例的第七种具体实施方式,可包括:
当该终端设备被配置至少一个FDD服务小区时,该终端设备根据为该FDD服务小区的上行传输频带和下行传输频带第一配置信令,确定该FDD服务小区的上行传输频带中下行传输占用的符号;或者该终端设备根据为该FDD服务小区第一配置信令,确定该FDD服务小区的上行传输频带中下行传输占用的符号。
结合本发明实施例的第二方面的第六种具体实施方式,本发明实施例的第八种具体实施方式,可包括:
当该终端设备被配置至少一个FDD服务小区时,该终端设备根据为该FDD服务小区的上行传输频带和下行传输频带第二配置信令,确定该FDD服务小区的上行传输频带中下行传输占用的符号;或者该终端设备根据为该FDD服务小区第二配置信令,确定该FDD服务小区的上行传输频带中下行传输占用的符号。
结合本发明实施例的第二方面、第二方面的第一种具体实施方式、第二方面的第二种具体实施方式、第二方面的第三种具体实施方式,本发明实施例的第九种具体实施方式,可包括:
当该终端设备被配置至少2个服务小区时,该终端设备接收该网络侧设备发送的针对该至少2个服务小区中的M个服务小区第一配置信令,该M为大于或等于1且小于或等于该终端设备配置的服务小区的总数量;该终端设备接收网络侧设备发送的第一配置信令之后,该方法还包括:该终端设备根据该至少2个服务小区中的M个服务小区第一配置信令,确定共享信道符号位置或DMRS符号位置。
结合本发明实施例的第二方面的第二种具体实施方式,本发明实施例的第十种具体实施方式,可包括:
当该终端设备被至少2个服务小区时,该终端设备接收该网络侧设备发送的针对该至少2个服务小区中的M个服务小区第二配置信令,该M为大于或等于1且小于或等于该终端设备配置的服务小区的总数量;该终端设备接收网络侧设备发送的第二配置信令之后, 该方法还包括:该终端设备根据该至少2个服务小区中的M个服务小区第二配置信令,确定共享信道符号位置或DMRS符号位置。
结合本发明实施例的第二方面的第九种具体实施方式,本发明实施例的第十一种具体实施方式,可包括:
当该终端设备被配置至少2个该服务小区时,该终端设备根据该至少2个服务小区中的M个服务小区对应的第一配置信令,确定每一个该服务小区上的上行子帧中下行传输占用的符号,该M为大于或等于1且小于或等于该终端设备配置的服务小区的总数量。
结合本发明实施例的第二方面的第十种具体实施方式,本发明实施例的第十二种具体实施方式,可包括:
当该终端设备被配置至少2个该服务小区时,该终端设备根据该至少2个服务小区中的M个服务小区对应的第二配置信令,确定每一个该服务小区上的上行子帧中下行传输占用的符号,该M为大于或等于1且小于或等于该终端设备配置的服务小区的总数量。
在第二方面中终端设备接收第一配置信令,根据第一配置信令中的目标子帧的资源配置确定出目标子帧,然后再根据目标子帧中的SRS配置确定目标子帧中的SRS符号。可以看出,在本发明实施例中根据网络侧设备发送的第一配置信令,配置出至少包括一个SRS符号的目标子帧以用于传输SRS信号,满足信道测量需求,以提高单位时间内信道测量的次数,满足终端设备对网络容量的需求。
本发明实施例第三方面提供了一种网络侧设备,可包括:
配置模块,用于配置目标子帧,该目标子帧包括至少一个探测参考信号SRS符号,该SRS符号用于发送SRS信号;通信模块,用于向终端设备发送第一配置信令,该第一配置信令包括该目标子帧的资源配置或该目标子帧中的SRS配置。
结合本发明实施例的第三方面,本发明实施例的第一种具体实施方式,可包括:
该目标子帧中的SRS配置包括小区级SRS配置信息或用户级SRS配置信息,该小区级SRS配置信息用于标识该目标子帧中的SRS符号,该用户级SRS配置信息用于标识在该目标子帧的SRS符号中分配给该终端设备的SRS资源,其中,该SRS资源包括时域资源或频域资源或码域资源,该时域资源包括一个或多个SRS符号,该码域资源包括一个或多个SRS序列。
结合本发明实施例的第三方面、第三方面的第一种具体实施方式,本发明实施例的第二种具体实施方式,可包括:
该通信模块还用于,在向该终端设备发送第一配置信令之后,向该终端设备发送第二配置信令,该第二配置信令包括共享信道指示或第一符号指示,该共享信道指示用于指示共享信道在该目标子帧中占用的符号,该第一符号指示用于指示可用于SRS传输的符号,以使得该终端设备根据该第一符号指示确定该共享信道在该目标子帧中占用的符号。
结合本发明实施例的第三方面的第二种具体实施方式,本发明实施例的第三种具体实施方式,可包括:
该通信模块具体用于,向该终端设备发送下行控制消息DCI,该DCI携带有该第二配置信令。
结合本发明实施例的第三方面、第三方面的第一种具体实施方式、第三方面的第二种 具体实施方式、第三方面的第三种具体实施方式,本发明实施例的第四种具体实施方式,可包括:
第一确定模块,用于根据共享信道在该目标子帧中占用的符号,确定解调参考信号DMRS在该目标子帧中占用的符号,并基于该DMRS占用的符号进行DMRS发送或接收。
结合本发明实施例的第三方面、第三方面的第一种具体实施方式、第三方面的第二种具体实施方式、第三方面的第三种具体实施方式,本发明实施例的第五种具体实施方式,可包括:
该配置模块具体用于,当该终端设备被配置至少一个频分双工FDD服务小区时,为该FDD服务小区的上行传输频带和下行传输频带配置第一配置信令;或者为该FDD服务小区配置第一配置信令;该通信模块还用于向该终端设备发送第一配置信令。
结合本发明实施例的第三方面的第二种具体实施方式,本发明实施例的第六种具体实施方式,可包括:
该配置模块具体用于,当该终端设备被配置至少一个FDD服务小区时,为该FDD服务小区的上行传输频带和下行传输频带配置第二配置信令;或者为该FDD服务小区配置第二配置信令;该通信模块还用于,向该终端设备发送第二配置信令。
结合本发明实施例的第三方面的第五种具体实施方式,本发明实施例的第七种具体实施方式,可包括:
第二确定模块,用于当该终端设备被配置至少一个FDD服务小区时,根据为该FDD服务小区的上行传输频带或下行传输频带第一配置信令,确定该FDD服务小区的上行传输频带中下行传输占用的符号;或者,根据为该FDD服务小区第一配置信令,确定该FDD服务小区的上行传输频带中下行传输占用的符号。
结合本发明实施例的第三方面的第六种具体实施方式,本发明实施例的第八种具体实施方式,可包括:
第三确定模块,用于当该终端设备被配置至少一个FDD服务小区时,根据为该FDD服务小区的上行传输频带或下行传输频带第二配置信令,确定该FDD服务小区的上行传输频带中下行传输占用的符号;或者,根据为该FDD服务小区第二配置信令,确定该FDD服务小区的上行传输频带中下行传输占用的符号。
结合本发明实施例的第三方面、第三方面的第一种具体实施方式、第三方面的第二种具体实施方式、第三方面的第三种具体实施方式,本发明实施例的第九种具体实施方式,可包括:
该配置模块具体用于,当该终端设备被配置至少2个服务小区时,为该至少2个服务小区中的M个服务小区配置第一配置信令,该M为大于或等于1且小于或等于该终端设备配置的服务小区的总数量;该通信模块还用于,向该终端设备发送第一配置信令,该服务小区为FDD服务小区或者时分双工TDD服务小区。
结合本发明实施例的第三方面的第二种具体实施方式,本发明实施例的第十种具体实施方式,可包括:
该配置模块具体用于,当该终端设备被配置至少2个服务小区时,为该至少2个服务小区中的M个服务小区配置第二配置信令,该服务小区为FDD服务小区或者TDD服务小 区,该M为大于或等于1且小于或等于该终端设备配置的服务小区的总数量;该通信模块还用于,向该终端设备发送第二配置信令。
结合本发明实施例的第三方面的第九种具体实施方式,本发明实施例的第十一种具体实施方式,可包括:
第四确定模块,当该终端设备被配置至少2个该服务小区时,根据为该至少2个服务小区中的M个服务小区第一配置信令,确定每一个该服务小区的上行子帧中下行传输占用的符号,该M为大于或等于1且小于或等于该终端设备配置的服务小区的总数量。
结合本发明实施例的第三方面的第十种具体实施方式,本发明实施例的第十二种具体实施方式,可包括:
第五确定模块,当该终端设备被配置至少2个该服务小区时,根据为该至少2个服务小区中的M个服务小区第二配置信令,确定每一个该服务小区的上行子帧中下行传输占用的符号,该M为大于或等于1且小于或等于该终端设备配置的服务小区的总数量。
本发明实施例第四方面提供了一种终端设备,可包括:
通信模块,用于接收网络侧设备发送的第一配置信令,该第一配置信令包括目标子帧的资源配置或该目标子帧的SRS配置,该目标子帧包括至少一个SRS符号,该SRS符号用于发送SRS信号;配置模块,用于根据该第一配置信令的该目标子帧的资源配置,配置出该目标子帧,根据该第一配置信令的该目标子帧的SRS配置,进行该目标子帧中的SRS配置。
结合本发明实施例的第二方面的第一种具体实施方式,可包括:
该目标子帧中的SRS配置包括小区级SRS配置信息或用户级SRS配置信息,该小区级SRS配置信息用于标识该目标子帧中的SRS符号,该用户级SRS配置信息用于标识在该目标子帧的SRS符号中分配给该终端设备的SRS资源,其中,该SRS资源包括时域资源或频域资源或码域资源,该时域资源包括一个或多个SRS符号,该码域资源包括一个或多个SRS序列;该配置模块具体用于,根据该小区级SRS配置信息,确定出该目标子帧中的SRS符号;或根据该用户级SRS配置信息,确定出该目标子帧的该SRS符号中分配给该终端设备的SRS资源。
结合本发明实施例的第二方面、第二方面的第一种具体实施方式,本发明实施例的第二种具体实施方式,可包括:
该通信模块还用于,接收该网络侧设备发送的第二配置信令,该第二配置信令包括共享信道指示或第一符号指示,该共享信道指示用于指示共享信道在该目标子帧中占用的符号,该第一符号指示用于指示可用于SRS传输的符号,以使得该终端设备根据该第一符号指示确定该共享信道在该目标子帧中占用的符号;该配置模块还用于,根据该共享信道指示或第一符号指示,确定共享信道在该目标子帧中占用的符号。
结合本发明实施例的第二方面的第二种具体实施方式,本发明实施例的第三种具体实施方式,可包括:
该通信模块具体用于,接收该网络侧设备发送的下行控制消息DCI,该DCI携带有该第二配置信令。
结合本发明实施例的第二方面的第二种具体实施方式、第二方面的第三种具体实施方式,本发明实施例的第四种具体实施方式,可包括:
该配置模块还用于,根据该共享信道占用的符号,确定解调参考信号DMRS在该目标子帧中占用的符号,并基于该DMRS占用的符号进行DMRS发送或接收。
结合本发明实施例的第二方面、第二方面的第一种具体实施方式、第二方面的第二种具体实施方式、第二方面的第三种具体实施方式,本发明实施例的第五种具体实施方式,可包括:
该通信模块具体用于,当该终端设备被配置至少一个频分双工FDD服务小区时,接收该网络侧设备发送的针对该FDD服务小区的上行传输频带和下行传输频带第一配置信令;或者接收该网络侧设备发送的针对该FDD服务小区第一配置信令;该配置模块具体用于,根据为该FDD服务小区的上行传输频带和下行传输频带第一配置信令,确定该FDD服务小区的共享信道符号位置或DMRS符号位置;或者根据为该FDD服务小区第一配置信令,确定该FDD服务小区的共享信道符号位置或DMRS符号位置。
结合本发明实施例的第二方面的第二种具体实施方式,本发明实施例的第六种具体实施方式,可包括:
该通信模块还用于,当该终端设备被配置至少一个FDD服务小区时,接收该网络侧设备发送的针对该FDD服务小区的上行传输频带和下行传输频带第二配置信令;或者接收该网络侧设备发送的针对该FDD服务小区第二配置信令;该配置模块还用于,根据为该FDD服务小区的上行传输频带和下行传输频带第二配置信令,确定该FDD服务小区的共享信道符号位置或DMRS符号位置;或者根据为该FDD服务小区第二配置信令,确定该FDD服务小区的共享信道符号位置或DMRS符号位置。
结合本发明实施例的第二方面的第五种具体实施方式,本发明实施例的第七种具体实施方式,可包括:
该配置模块还用于,当该终端设备被配置至少一个FDD服务小区时,根据为该FDD服务小区的上行传输频带或下行传输频带第一配置信令,确定该FDD服务小区的上行传输频带中下行传输占用的符号;或者根据为该FDD服务小区第一配置信令,确定该FDD服务小区的上行传输频带中下行传输占用的符号。
结合本发明实施例的第二方面的第六种具体实施方式,本发明实施例的第八种具体实施方式,可包括:
该配置模块还用于,当该终端设备被配置至少一个FDD服务小区时,根据为该FDD服务小区的上行传输频带或下行传输频带第二配置信令,确定该FDD服务小区的上行传输频带中下行传输占用的符号;或者根据为该FDD服务小区第二配置信令,确定该FDD服务小区的上行传输频带中下行传输占用的符号。
结合本发明实施例的第二方面、第二方面的第一种具体实施方式、第二方面的第二种具体实施方式、第二方面的第三种具体实施方式,本发明实施例的第九种具体实施方式,可包括:
该通信模块还用于,当该终端设备被配置至少2个服务小区时,接收该网络侧设备发送的针对该至少2个服务小区中的M个服务小区第一配置信令,该M为大于或等于1且 小于或等于该终端设备配置的服务小区的总数量;
该配置模块还用于,根据该至少2个服务小区中的M个服务小区第一配置信令,确定共享信道符号位置或DMRS符号位置。
结合本发明实施例的第二方面的第二种具体实施方式,本发明实施例的第十种具体实施方式,可包括:
该通信模块还用于,当该终端设备被至少2个服务小区时,接收该网络侧设备发送的针对该至少2个服务小区中的M个服务小区第二配置信令,该M为大于或等于1且小于或等于该终端设备配置的服务小区的总数量;
该配置模块还用于,根据该至少2个服务小区中的M个服务小区第二配置信令,确定共享信道符号位置或DMRS符号位置。
结合本发明实施例的第二方面的第九种具体实施方式,本发明实施例的第十一种具体实施方式,可包括:
该配置模块还用于,当该终端设备被配置至少2个该服务小区时,根据该至少2个服务小区中的M个服务小区对应的第一配置信令,确定每一个该服务小区上的上行子帧中下行传输占用的符号,该M为大于或等于1且小于或等于该终端设备配置的服务小区的总数量。
结合本发明实施例的第二方面的第十种具体实施方式,本发明实施例的第十二种具体实施方式,可包括:
该配置模块还用于,当该终端设备被配置该至少2个服务小区中的M个该服务小区时,根据该服务小区对应的第二配置信令,确定每一个该服务小区上的上行子帧中下行传输占用的符号,该M为大于或等于1且小于或等于该终端设备配置的服务小区的总数量。
本发明实施例第五方面提供了一种子帧配置系统,可包括:
如第三方面所述的网络侧设备,以及如第四方面所述的终端设备。
附图说明
为了更清楚地说明本发明实施例的技术方案,下面将对本发明实施例中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明实施例的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为现有技术上行子帧中SRS位置示意图;
图2为本发明实施例一些实施例提供的子帧配置方法的流程示意图;
图3a为本发明实施例一些实施例提供的TDD帧的结构示意图;
图3b为本发明实施例一些实施例提供的FDD帧的结构示意图;
图4a为本发明实施例一些实施例提供的特殊上行子帧的资源配置示意图;
图4b为本发明实施例另一些实施例提供的特殊上行子帧的资源配置示意图;
图4c为本发明实施例一些实施例提供的特殊上行子帧的SRS位置示意图;
图5为本发明实施例一些实施例提供的特殊下行/上行子帧的SRS位置示意图;
图6为本发明实施例提供的网络侧设备的结构示意图;
图7为本发明实施例提供的终端设备的结构示意图;
图8为本发明实施例提供的子帧配置系统的结构示意图;
图9为本发明实施例提供的网络侧设备的另一结构示意图;
图10为本发明实施例提供的终端设备的另一结构示意图。
具体实施方式
下面将结合本发明实施例的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明实施例一部分实施例,而不是全部的实施例。基于本发明实施例中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本发明实施例保护的范围。
本发明实施例提供了一种子帧配置方法及相关设备,用于在子帧中灵活配置多个SRS符号来提高单位时间内信道测量的次数,以满足终端设备对网络容量的需求。
本发明实施例描述的技术可用于各种通信系统,例如当前2G,3G,4G,以及5G通信系统和下一代通信系统,例如全球移动通信系统(Global System for Mobile communications,简称GSM),码分多址(Code Division Multiple Access,简称CDMA)系统,时分多址(Time Division Multiple Access,简称TDMA)系统,宽带码分多址(Wideband Code Division Multiple Access Wireless,WCDMA),频分多址(FDMA,Frequency Division Multiple Addressing)系统,正交频分多址(Orthogonal Frequency-Division Multiple Access,简称OFDMA)系统,单载波FDMA(SC-FDMA)系统,通用分组无线业务(General Packet Radio Service,简称GPRS)系统,长期演进(Long Term Evolution,简称LTE)系统,以及其他此类通信系统。
本发明实施例中结合终端设备或网络侧设备来描述各种方面。
终端设备,可以是无线终端也可以是有线终端,无线终端可以是指向用户提供语音或数据连通性的设备,具有无线连接功能的手持式设备、或连接到无线调制解调器的其他处理设备。无线终端可以经无线接入网(例如,RAN,Radio Access Network)与一个或多个核心网进行通信,无线终端可以是移动终端,如移动电话(或称为“蜂窝”电话)和具有移动终端的计算机,例如,可以是便携式、袖珍式、手持式、计算机内置的或者车载的移动装置,它们与无线接入网交换语言或数据。例如,个人通信业务(PCS,Personal Communication Service)电话、无绳电话、会话发起协议(SIP)话机、无线本地环路(WLL,Wireless Local Loop)站、个人数字助理(PDA,Personal Digital Assistant)等设备。无线终端也可以称为系统、订户单元(Subscriber Unit)、订户站(Subscriber Station),移动站(Mobile Station)、移动台(Mobile)、远程站(Remote Station)、接入点(Access Point)、远程终端(Remote Terminal)、接入终端(Access Terminal)、用户终端(User Terminal)、用户代理(User Agent)、用户设备(User Device)、或用户装备(User Equipment)。
网络侧设备(例如,接入点)可以是指接入网中在空中接口上通过一个或多个扇区与终端通信连接的设备。网络侧设备可用于将收到的空中帧与网际协议(IP)分组进行相互转换,作为终端设备与接入网的其余部分之间的路由器,其中接入网的其余部分可包括IP网络。网络侧设备还可协调对空中接口的属性管理。例如,网络侧设备可以是GSM或CDMA 中的基站(BTS,Base Transceiver Station),也可以是WCDMA中的基站(NodeB),还可以是LTE中的演进型基站(NodeB或eNB或e-NodeB,evolutional Node B),本申请并不限定。
另外,本发明中术语“或”,仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A或B,另外还可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。
本发明实施例本发明实施例中通过配置一种子帧(还可以是一个时间单元、一个调度单元、一个传输时间间隔或者一个时间单位等),在此将该子帧称之为目标子帧,将目标子帧中的一个符号,或者部分符号,或者全部符号配置为SRS符号,SRS符号表示为用于传输SRS信号的符号。
基于上述介绍,下面将以具体实施例详细介绍本发明实施例技术方案。请参阅图2,图2为本发明实施例一些实施例提供的子帧配置方法的流程示意图。如图2所示,一种子帧配置方法可包括:
201、网络侧设备配置目标子帧,该目标子帧包括至少一个SRS符号,该SRS符号用于发送SRS信号;
可以理解,目标子帧中包括若干符号,将至少一个符号配置为SRS符号,用于发送SRS信号,目标子帧中的SRS符号的数量小于或等于目标子帧的最大总符号数。
202、网络侧设备向终端设备发送第一配置信令,该第一配置信令包括目标子帧的资源配置或目标子帧中的SRS配置。
其中,目标子帧的资源配置包括目标子帧所属帧的帧号、目标子帧的子帧号。目标子帧中的SRS配置包括小区级SRS配置信息或用户级SRS配置信息,小区级SRS配置信息用于标识目标子帧中的SRS符号,用户级SRS配置信息用于标识在目标子帧的SRS符号中分配给终端设备的SRS资源,其中,SRS资源包括时域资源或频域资源或码域资源,时域资源包括一个或多个SRS符号,而码域资源包括一个或多个SRS序列。
需要说明,在一些实施例中,第一配置信令中只包括目标子帧的资源配置,此时,目标子帧中的SRS配置作为默认设置,终端设备根据第一配置信令确定出目标子帧后,根据默认设置确定出目标子帧中的SRS配置。
在另一些实施例中,第一配置信令中只包括目标子帧的SRS配置,而目标子帧的资源配置作为默认设置,也就是说默认设置的目标子帧用于发送SRS信号。终端设备接收到第一配置信令后,对默认设置的目标子帧进行SRS配置。若SRS配置只包括小区级SRS配置信息,从默认设置的目标子帧中确定出用于发送SRS信号的SRS符号。若SRS配置中只包括用户级SRS配置信息,小区级SRS配置作为默认设置项,从默认设置的目标子帧中确定出默认设置的SRS符号,然后根据第一配置信令中的SRS配置,从目标子帧中的SRS符号中确定出分配给终端设备的SRS资源。
在另一些实施例中,若第一配置信令中同时包括了目标子帧的资源配置和目标子帧中的SRS配置,终端设备在接收到第一配置信令后,先根据目标子帧的资源配置确定出目标子帧,然后再对目标子帧进行SRS配置。若SRS配置只包括小区级SRS配置信息,只需要确定出目标子帧中的SRS符号,然后根据终端设备根据默认设置从SRS符号获得自己的 SRS资源。若SRS配置中只包括用户级SRS配置信息,根据默认设置从确定的目标子帧中确定出SRS符号,然后从SRS符号获得满足用户级SRS配置信息的SRS资源。若SRS配置同时包括了小区级SRS配置信息和用户级SRS配置信息,先从确定的目标子帧中确定出SRS符号,然后再从SRS符号中确定出SRS资源。
其中,网络侧设备在为终端设备配置目标子帧时,具体包括以下几种配置方式:
方式一、当终端设备被配置至少一个FDD服务小区时,网络侧设备可以对终端设备的FDD服务小区中的上行传输频带和下行传输频带分开配置,具体是给上行传输频带和下行传输频带各自配置一个第一配置信令,但是上行传输频带对应的第一配置信令和下行传输频带对应的第一配置信令包括的内容可能完全相同,也可以部分相同或者完全不相同,具体是目标子帧的资源配置或目标子帧中的SRS配置完全相同、部分相同或者完全不相同。
举例来说,上行传输频带中配置目标子帧中的第2个和第8个符号作为SRS符号,而下行传输频带中配置目标子帧中的第4个符号作为SRS符号。
而基于上述配置方式,网络侧设备能够根据给终端设备的FDD服务小区的上行传输频带和下行传输频带所第一配置信令,确定出终端设备的FDD服务小区的上行传输频带中下行传输占用的符号。
其中,本发明实施例中涉及的上行传输频带也可以是上行频带。
或者,当终端设备被配置至少一个FDD服务小区时,网络侧设备还可以只针对FDD服务小区来配置第一配置信令,也就是说,网络侧设备只对FDD服务小区配置第一配置信令,而对配置第一配置信令的FDD服务小区而言,其所包括的上行传输频带和下行传输频带中配置出来的目标子帧是相同的,只是不同的FDD服务小区可能配置不同的目标子帧,具体也是体现在目标子帧的资源配置或目标子帧中的SRS配置上。
在该方式中,网络侧设备根据给终端设备的FDD服务小区第一配置信令,确定FDD服务小区中的上行传输频带中的下行传输频带占用的符号。
方式二、当终端设备被配置至少2个服务小区时,网络侧设备为至少2个服务小区中的M个服务小区配置第一配置信令,其中,在方式二中的服务小区为FDD服务小区或者TDD服务小区。
可以理解,当终端设备被配置了至少2个服务小区时,网络侧设备为服务小区配置第一配置信令,可以是为至少2个服务小区中的M个服务小区配置。若网络侧设备为M个服务小区配置了第一配置信令,可以是为M个服务小区各自配置,也就是说服务小区对应的第一配置指令中的目标子帧的资源配置或目标子帧中SRS的配置完全不同或全部相同或不完全相同。
基于方式二,网络侧设备会根据终端设备中配置有第一配置信令的服务小区,确定每一个服务小区的上行子帧中下行传输占用的符号。
203、终端设备接收网络侧设备发送的第一配置信令;
204、终端设备根据第一配置信令,根据第一配置信令的目标子帧的资源配置,配置出目标子帧,根据第一配置信令的目标子帧的SRS配置,进行目标子帧中的SRS配置。
其中,终端设备先根据第一配置信令中的目标子帧的资源配置,确定出目标子帧,然后再进一步进行目标子帧的SRS配置。
对应于第一配置信令中所包括的内容,若第一配置信令中只包括目标子帧的资源配置,此时,目标子帧中的SRS配置作为默认设置,终端设备根据第一配置信令确定出目标子帧后,根据默认设置确定出目标子帧中的SRS配置。
若第一配置信令中只包括目标子帧的SRS配置,而目标子帧的资源配置作为默认设置,也就是说默认设置固定子帧用于发送SRS信号。终端设备接收到第一配置信令后,对默认设置的固定子帧进而SRS配置。若SRS配置只包括小区级SRS配置信息,从默认设置的固定子帧中确定出用于发送SRS信号的SRS符号。若SRS配置中只包括用户级SRS配置信息,小区级SRS配置作为默认设置项,从默认设置的固定子帧中确定出默认设置的SRS符号,然后根据第一配置信令中的SRS配置,从固定子帧中的SRS符号中确定出分配给终端设备的SRS资源。
若第一配置信令中同时包括了目标子帧的资源配置和目标子帧中的SRS配置,终端设备在接收到第一配置信令后,先根据目标子帧的资源配置确定出目标子帧,然后再对目标子帧进行SRS配置。若SRS配置只包括小区级SRS配置信息,只需要确定出目标子帧中的SRS符号,然后根据终端设备根据默认设置从SRS符号获得自己的SRS资源。若SRS配置中只包括用户级SRS配置信息,根据默认设置从确定的目标子帧中确定出SRS符号,然后从SRS符号获得满足用户级SRS配置信息的SRS资源。若SRS配置同时包括了小区级SRS配置信息和用户级SRS配置信息,先从确定的目标子帧中确定出SRS符号,然后再从SRS符号中确定出SRS资源。
可以看出,本发明实施例中通过自由配置目标子帧,以及目标子帧中的SRS符号,以提高提高单位时间内信道测量的次数,以满足终端设备对网络容量的需求。
在一些实施例中,当终端设备被配置至少一个频分双工FDD服务小区时,终端设备接收网络侧设备发送的针对FDD服务小区的上行传输频带和下行传输频带第一配置信令,从而终端设备根据为FDD服务小区的上行传输频带和下行传输频带第一配置信令,确定FDD服务小区的共享信道符号位置或DMRS符号位置;或者终端设备接收网络侧设备发送的针对FDD服务小区第一配置信令,从而根据为FDD服务小区第一配置信令,确定FDD服务小区的共享信道符号位置或DMRS符号位置。
在一些实施例中,当终端设备被配置至少一个FDD服务小区时,终端设备根据为FDD服务小区的上行传输频带或下行传输频带第一配置信令,确定FDD服务小区的上行传输频带中下行传输占用的符号;或者终端设备根据为FDD服务小区第一配置信令,确定FDD服务小区的上行传输频带中下行传输占用的符号。
在一些实施例中,当终端设备被配置至少2个服务小区时,终端设备接收网络侧设备发送的针对该的至少2个服务小区中的M个服务小区第一配置信令,终端设备根据至少2个服务小区中的M个服务小区第一配置信令,确定共享信道符号位置或DMRS符号位置。
在一些实施例中,当终端设备被配置至少2个该服务小区时,终端设备根据至少2个服务小区中的M个服务小区对应的第一配置信令,确定每一个服务小区上的上行子帧中下行传输占用的符号。
还可以理解,在一些实施例中,网络侧设备还会向终端设备发送第二配置信令,第二配置信令包括共享信道指示或第一符号指示,共享信道指示用于指示共享信道在目标子帧 中占用的符号,第一符号指示用于指示可用于SRS传输的符号。进而终端设备可以根据共享信道指示或者第一符号指示确定共享信道在该目标子帧中占用的符号。
需要说明,此处所涉及的第一符号指示与之前介绍的目标子帧中的SRS符号不同,第一符号指示只是标识预留给SRS传输用的符号第一符号指示,而不是实际SRS符号,第一符号指示中标识的可用于传输SRS信号的符号要大于或等于实际SRS符号。
当网络侧设备还给终端设备配置第二配置信令时,其配置方式参照第一配置信令的配置方式,具体包括:
方式一、当终端设备被配置至少一个FDD服务小区时,网络侧设备可以对终端设备的FDD服务小区中的上行传输频带和下行传输频带分开配置,具体是给上行传输频带和下行传输频带各自配置一个第二配置信令,而每一个上行传输频带和下行传输频带对应第二配置信令中的共享信道指示或第一符号指示,将会根据之前为其第一配置信令而定。
而基于上述配置方式,网络侧设备能够根据给终端设备的FDD服务小区的上行传输频带和下行传输频带所第二配置信令,确定出终端设备的FDD服务小区的上行传输频带中下行传输占用的符号。而终端设备则可以根据为FDD服务小区的上行传输频带和下行传输频带第二配置信令,确定FDD服务小区的共享信道符号位置或DMRS符号位置。终端设备还可以根据为FDD服务小区的上行传输频带或下行传输频带第二配置信令,确定FDD服务小区的上行传输频带中下行传输占用的符号。
或者,当终端设备被配置至少一个FDD服务小区时,网络侧设备还可以只针对FDD服务小区来配置第二配置信令,也就是说,网络侧设备只对FDD服务小区配置第二配置信令。
在该方式中,网络侧设备根据给终端设备的FDD服务小区第二配置信令,确定FDD服务小区中的上行传输频带中的下行传输频带占用的符号。终端设备根据为FDD服务小区第二配置信令,确定FDD服务小区的共享信道符号位置或DMRS符号位置。进一步地,终端设备还可以根据为FDD服务小区第二配置信令,确定FDD服务小区的上行传输频带中下行传输占用的符号。
方式二、当终端设备被配置至少2个服务小区时,网络侧设备为至少2个服务小区中的M个服务小区配置第二配置信令,其中,在方式二中的服务小区为FDD服务小区或者TDD服务小区。
可以理解,当终端设备被配置了至少2个服务小区时,网络侧设备为服务小区配置第二配置信令,可以是为至少2个服务小区中的M个服务小区配置,但是若网络侧设备为2个以上服务小区配置了第二配置信令,可以是为该2个以上服务小区各自配置,也就是说服务小区对应的第二配置指令中的目标子帧的资源配置或目标子帧中SRS的配置完全不同或全部相同或不完全相同。
基于方式二,网络侧设备会根据终端设备中配置有第二配置信令的服务小区,确定每一个服务小区的上行子帧中下行传输占用的符号。终端设备根据至少2个服务小区中的M个服务小区第二配置信令,确定共享信道符号位置或DMRS符号位置。进一步地,终端设备还可以根据服务小区对应的第二配置信令,确定每一个服务小区上的上行子帧中下行传输占用的符号。
下面以TDD子帧和FDD子帧为例进行详细介绍。常见的TDD帧如图3a所示,包括上行子帧、下行子帧和上行子帧与下行子帧之间的特殊子帧,图3a中分别用U表示上行子帧,用D表示下行子帧,用S表示特殊子帧。首先,本发明实施例将图3a所示的一些(1个或者多个)上行子帧配置为目标子帧,由于该目标子帧是TDD中的上行子帧,因此,在本发明实施例中也将其称之为特殊上行子帧,对应图3a以特殊上行子帧进行阐述。例如,可以将图3a中的子帧3配置为特殊上行子帧。经过配置后,不但可以通过上行子帧和特殊子帧发送SRS信号,还可以通过特殊上行子帧发送SRS信号,由于可以配置多个特殊上行子帧,而且特殊上行子帧中配置了多个SRS符号用于传输SRS信号,因此,可以通过增加SRS符号,提高SRS容量,从而提升吞吐量。
需要说明,也可以将TDD帧中的一些下行子帧配置为目标子帧,将下行子帧中的一些符号配置为SRS符号,以适应一些需要用于下行发送SRS信号的场景,如5G系统或者下一代通信系统中。
常见的FDD帧如图3b所示,FDD帧包括下行载波中的下行帧和上行载波对应的上行帧,图3b上面所示的是下行帧,图3b下面所示的是上行帧,本发明实施例中将下行帧的一些下行子帧配置为目标子帧,在本发明实施例中将这些被配置为目标子帧的下行帧称之为特殊下行子帧,对应图3b以特殊下行子帧进行阐述。特殊下行子帧的1个符号或者部分符号或者全部符号用于发送SRS信号。同时将上行帧的一些上行子帧配置为目标子帧,在本发明实施例中同样将FDD中被配置为目标子帧的上行子帧称之为特殊上行子帧。特殊上行子帧中的1个符号或者部分符号或者全部符号用于发送SRS信号。例如,将图3b中下行帧中的下行子帧4和8配置为特殊下行子帧,将上行帧中的上行子帧2、3和9配置为特殊下行子帧。
可以理解,由于目标子帧中的SRS符号数量不同,从而将会影响其它资源的分配,在本发明实施例中网络侧设备还向终端设备发送共享信道指示或SRS指示。共享信道指示或SRS指示以第三配置信令发送,具体可以携带在下行控制消息(Downlink Control Information,简称DCI)中。其中,共享信道指示以指示共享信道在目标子帧中占用的符号,而SRS指示用于指示目标子帧中预留给SRS符号的符号数量,此处的符号数量可以为之前在第一配置指令中分配的SRS符号数量,或者大于第一配置信令中SRS符号数量,主要是为了终端设备能够根据该SRS指示去配置解调参考信号(Demodulation Reference Signal,简称DMRS)。
下面以具体实施例来进行说明,先以TDD帧为例进行说明。基站配置TDD帧中的一些上行子帧为特殊上行子帧,并且配置特殊上行子帧中的部分或者全部符号用作SRS资源传输,其中SRS资源包括有小区级SRS资源或用户级SRS资源,因此,需要完成小区级SRS资源配置或用户级SRS资源配置。另外,还进一步配置特殊上行子帧的DMRS位置与小区级SRS资源/用户级物理上行共享信道(Physical Uplink Shared Channel,简称PUSCH)可用符号的对应关系,也就是DMRS信号和PUSCH信号在特殊上行子帧中所占的符号。还有特殊上行子帧中控制信息的资源映射的交织器设计与DMRS位置的对应关系。
特殊上行子帧的部分符号或者全部符号用于传输SRS,用nsrs_symbol表示传输SRS资源的符号的个数,其中,nsrs_symbol个用于传输SRS资源的符号可以是特殊上行子帧的 前nsrs_symbol个符号,或是特殊上行子帧的最后nsrs_symbol个符号,或者nsrs_symbol个符号分散地分布在特殊上行子帧中。本发明实施例将以nsrs_symbol个符号为特殊上行子帧的最后nsrs_symbol个符号为例进行说明。
特殊上行子帧的DMRS位置与小区级SRS资源或用户级PUSCH可用符号存在对应关系。本发明实施例中以nsrs_symbol的值为0至4为例,若DMRS位置与小区级SRS资源对应,则对应关系如表1
表1
小区级SRS资源的符号数 DMRS所在符号序号
0 3,10
1 3,10
2 2,8
3 2,8
4 2,7
可以理解,在其它小区级SRS资源的符号数的情况下,DMRS位置也需要做相应调整,而调整后的DMRS位置可以出现在未被配置用于传输SRS资源的符号中,这里不再给出调整示例。若DMRS位置与用户级PUSCH可用符号对应,则对应关系如表2
表2
PUSCH可用符号 DMRS所在符号序号
0~12号符号可用 3,10
11~12号符号有不可用符号,0~10号符号可用 2,8
其他 2,7
可以理解,在其它小区级SRS资源的符号数的情况下,DMRS位置也需要做相应调整,而调整后的DMRS位置可以出现在未被配置用于传输SRS资源的符号中,这里不再给出调整示例。此外,小区内用户的DMRS位置也可以是固定的,不随小区级SRS资源或用户级PUSCH可用符号的变化而变化,例如,可以将DMRS所在符号序号固定为符号2,8。
另外,特殊上行子帧中的控制信息的资源映射的交织器设计与DMRS位置存在对应关系,在本实施例中,当DMRS占用符号3,10时,其为长期演进(Long Term Evolution,简称LTE)系统的现有技术,在此不再赘述。当DMRS占用符号2,8时,特殊上行子帧中的控制信息的资源映射的交织器设计如图4a所示,其中符号2和符号8配置为传输DMRS的符号,最后3个符号配置为传输SRS资源的符号,图4a上方标识有数字的资源粒子配置用于传输信道质量指示(Channels quality indication,简称CQI),符号0,4,6和10下方中标识有数字的资源粒子配置用于传输轶指示(Rank Indication,简称RI)。符号1,3,7和9配置用于传输应答信息(ACK),其余的资源粒子用于传输数据。
再举例来说,当DMRS占用符号2,7时,特殊上行子帧中的控制信息的资源映射的交织器设计如图4b所示,其中,DMRS占用符号2,7,特殊上行子帧中的最后4个符号用于传输SRS资源,符号0,4,5和9下方标识有数字的资源粒子用于传输RI,符号1,3,6和8用于传输ACK,而特殊上行子帧的上方标识有数字的资源粒子用于传输CQI,其余的资源粒子用于传输数据。
当然,在DMRS占用其它符号的情况下,特殊上行子帧中的控制信息的资源映射的交织器设计也需要做相应的调整,调整后的控制信息位于DMRS位置两侧或一侧,可以出现在未被SRS资源占用的符号中,这里不再给出调整示例。
另外,基站还要配置特殊上行子帧中PUSCH所占符号。
在本发明实施例一些实施例中,基站配置目标子帧,首先需要进行小区级配置,配置TDD中的特殊上行子帧,通过以下两种方式配置:
方式一,基站利用现有LTE系统中小区级SRS子帧配置(srs-SubframeConfig)中的传输偏移量(Transmission offset)指示特殊上行子帧,若Transmission offset所指示的子帧为TDD中的上行子帧,则将该上行子帧配置为特殊上行子帧,若Transmission offset所指示的子帧为TDD中的特殊子帧,根据现有协议,该特殊子帧本就用于传输SRS。例如基站需要将TDD中的子帧2和子帧7配置为特殊上行子帧,且将TDD中所有的特殊子帧都用于传输SRS,则基站小区级配置高层信令srs-SubframeConfig值为0001,根据第三代合作伙伴计划(3rd Generation Partnership Project,简称3GPP)的TS可知,对应的Transmission offset为{1,2},小区级SRS周期为5ms,即配置子帧2、7为特殊上行子帧,且将所有的特殊子帧都用于传输SRS。
方式二,引入新的小区级高层信令(SpecialULSubframeFlags),比特数与srs-SubframeConfig的Transmission offset的偏移量一致,每比特与Transmission offset中的一个偏移量一一对应,使能SRS增强功能,本发明实施例中假定1为允许SRS增强,0为不允许,实际应用时不限定于此对应关系。若Transmission offset所指示的子帧为TDD中的上行子帧,且对应的SpecialULSubframeFlags比特位1,则其为特殊上行子帧,若Transmission offset所指示的子帧为TDD中的特殊子帧,根据现有协议,则其为可以用于传输SRS的特殊子帧。例如基站需要将子帧2、7配置为特殊上行子帧,且所有的特殊子帧都用于传输SRS,而基站小区级配置高层信令srs-SubframeConfig值为0101,根据3GPP TS可知,对应的Transmission offset为{1,2,4},小区级SRS周期为5ms,配置SpecialULSubframeFlags=110,即配置子帧2、7为特殊上行子帧,且所有的特殊子帧都用于传输SRS。
之后,基站小区级地配置特殊上行子帧中的用于传输SRS的符号数。具体方式可以在系统信息(System Information,简称SIB)中添加新的高层信令SpecialULSrsNum,基站用SpecialULSrsNum将小区级的每个特殊上行子帧中的用于传输SRS的符号数m发送给用户。本发明实施例中特殊上行子帧中可用于传输的SRS的符号数上限nsrs_symbol为4,基站配置m=4,且每个特殊上行子帧的用于传输SRS的符号数相同,因此SpecialULSrsNum占用3bits,SpecialULSrsNum=4。在本发明实施例中,将特殊上行子帧的最后4位符号配置为用于传输SRS,即当SpecialULSrsNum=4时,用于传输SRS的符号为特殊上行子帧的倒数第1、2、3、4个符号,如图4c所示。
接着,基站进行用户级配置,在每个特殊上行子帧的用于传输SRS的符号中为每个用户配置SRS资源。SRS资源配置可以增加UE级高层信令srs_symbol指示符号偏移(Tsrs_symbol,k),表示SRS资源在LTE的I个SRS符号(ISRS)的第k个TTI上的符号偏移。对于trigger type 0和trigger type 1,例如UpPTS的符号数为u个,则用户级SRS资 源配置包括:
若ISRS=0,即基站配置终端设备在半个TDD帧内的上行子帧上进行SRS发送,则k=1,Tsrs_symbol,k为u bits,指示用户在上行子帧上的哪些符号发送SRS。例如u=4,Tsrs_symbol,k=0011表示基站配置终端设备在上行子帧的最后两个符号发送SRS。
若ISRS取值为{1~6},即基站配置用户在半个TDD帧内在上行子帧和一个特殊上行子帧上进行SRS发送,则k=1,2,Tsrs_symbol,1为u bits,Tsrs_symbol,2为m bits分别指示用户在上行子帧上的哪些符号发送SRS和用户在特殊上行子帧上的哪些符号发送SRS。例如u=4,m=4,Tsrs_symbol,1=0011,Tsrs_symbol,1=1100表示基站配置用户在上行子帧的最后两个符号以及所指示的特殊上行子帧的倒数第3、4个符号上发送SRS。
若ISRS取值为{7~9},即基站配置该用户在半个TDD帧内两个特殊上行子帧上进行SRS发送,则k=1,2,Tsrs_symbol,k为m bits,分别指示用户在两个特殊上行子帧上的哪些符号发送SRS。例如m=4,Tsrs_symbol,1=0011,Tsrs_symbol,1=1100表示基站配置用户在所指示的第一个特殊上行子帧的最后两个符号以及所指示的第二个特殊上行子帧的倒数第3、4个符号上发送SRS。
若ISRS取10或10以上,即基站配置该用户在半个TDD帧内的一个特殊上行子帧或上行子帧上进行SRS发送,则k=1。当SRS在特殊上行子帧发送时,Tsrs_symbol,1为m bits;当SRS在上行子帧上发送时,Tsrs_symbol,1为u bits。用于指示用户在上行子帧的哪些符号发送SRS。例如,SRS在特殊上行子帧发送时,m=4,Tsrs_symbol,1=0011表示基站配置用户在所指示的特殊上行子帧的最后两个符号上发送SRS;SRS在上行子帧发送时,u=4,Tsrs_symbol,1=0011表示基站配置用户在所指示的上行子帧的最后两个符号上发送SRS。
在一些实施例中,若小区级srs-SubframeConfig中的Transmission offset所指示的子帧中可用的SRS符号数为r,更改srs configuration定义:对于trigger type 0和trigger type 1,将ISRS={0~9}扩充至ISRS={0~2r-1},用于指示所有SRS可用资源中传输SRS的符号位置(bit map)。其他现有的ISRS index向后顺延,定义不变。UE级srs configuration比特数:r+1bit。(为降低信令开销,也可以将ISRS={0~9}扩充至ISRS={0~2r-1}的子集)
例如srs-SubframeConfig中的Transmission offset指示两个特殊上行子帧,每个特殊上行子帧可用的SRS符号数均为4,则r=8。当基站需要指示用户在每个特殊上行子帧的最后两个符号发送SRS时,则发送配置信息ISRS=51(即ISRS=00110011)。
进一步地,为了充分利用当前未用于SRS传输的上行资源,基站还进行用户级地指示PUSCH占用符号以及使能用户级地PUSCH符号调整。共包括以下4种指示方法:
在用户级高层信令中增加PUSCH占用符号数(PUSCH symbol number),指示PUSCH占用符号为符号0至符号v,v的取值为{(13-m)~13},总共需要[log2(nsrs_symbol+1)]bits。此外,在下行控制信息(Downlink Control Information,简称DCI)的格式0(即Format 0)和DCI Format 4中增加1bit用户级高层信令PuschConfigFlag使能该功能。例如nsrs_symbol=4,m=4,则PUSCH占用的符号数(symbol number)与PUSCH长度的关系可以如下表3。
表3
PUSCH symbol number PUSCH长度
0 10
1 11
2 12
3 13
4 14
在本发明实施例中,若基站需配置用户的一个特殊上行子帧的PUSCH长度为12个符号,则基站PUSCH占用的符号数为2。若基站开启该功能,则PuschConfigFlag=1,否则PuschConfigFlag=0。
在用户级高层信令中增加PUSCH占用符号数,指示PUSCH占用的SRS符号,总共需要nsrs_symbol个bits。此外,在DCI Format 0和DCI Format 4中增加1bit信令PuschConfigFlag,使能该功能。例如nsrs_symbol=4,m=4,本发明实施例中PUSCH占用符号数用bitmap的形式指示PUSCH所占用的SRS符号,在实际应用时不限于该形式指示。在本发明实施例中,若基站需配置用户的一个特殊上行子帧的PUSCH占用前两个SRS符号,则基站PUSCH占用符号数为1100。若基站开启该功能,则PuschConfigFlag=1,否则PuschConfigFlag=0。
在DCI Format 0和DCI Format 4中增加PUSCH占用符号数,指示PUSCH占用符号为符号0至符号v,v的取值为{(13-m)~13},若每个DCI指示s个特殊上行子帧,所以总共需要[log2(nsrs_symbol+1)s]bits。此外,增加1bit用户级高层信令PuschConfigFlag,使能该功能。例如nsrs_symbol=4,m=4,s=1,则PUSCH占用符号数与PUSCH长度的关系可以表3。
在本发明实施例中,若基站需配置用户的一个特殊上行子帧的PUSCH长度为12个符号,即可能此时TDD中符号10和11没有SRS传输,可以进行PUSCH传输。则基站PUSCH占用符号数为2。若基站开启该功能,则PuschConfigFlag=1,否则PuschConfigFlag=0。
在DCI Format 0和DCI Format 4中增加PUSCH占用符号数,指示PUSCH占用的SRS符号。若每个DCI指示s个特殊上行子帧,所以总共需要snsrs_symbol个bits。此外,增加1bit用户级高层信令PuschConfigFlag,使能该功能。例如nsrs_symbol=4,m=4,s=1,本发明实施例中PUSCH占用符号数用bitmap的形式指示PUSCH所占用的SRS符号,在实际应用时不限于该形式指示。在本发明实施例中,若基站需配置该用户的一个特殊上行子帧的PUSCH占用前两个SRS符号,即可能TDD中符号10和11没有SRS传输,可以进行PUSCH传输。则基站PUSCH symbol number为1100。若基站开启该功能,则PuschConfigFlag=1,否则PuschConfigFlag=0。
基站通过以上方式进行完TDD中传输资源配置后,终端设备根据传输资源进行资源映射以及子帧发送,包括:终端设备先根据基站的配置计算发送的SRS的时域资源或码域资源或码域资源,将SRS映射到分配的SRS资源上,然后逐符号地发送SRS;根据基站PUSCH可用符号进行PUSCH发送,并相应地调整DMRS位置、TBsize以及控制信息的资源映射。
其中,终端设备需要计算SRS资源的长度,其中,计算方法为现有技术,在此不再赘 述。终端设备根据基站ISRS和Tsrs_symbol,k获得每个周期内的SRS发送的符号位置,其中,nSRS的计算公式如下:
Figure PCTCN2017082388-appb-000001
其中Tsrs_symbol_num,k为Tsrs_symbol,k中的符号数,Tsrs_symbol_num=∑Tsrs_symbol_num,k,若当前符号为系统级SRS周期中第k0个SRS发送的TTI中第Tsymbol_count个符号,则Tcount
Figure PCTCN2017082388-appb-000002
用户根据基站PUSCH可用符号进行PUSCH发送,并相应地调整DMRS位置、TBsize以及控制信息的资源映射,具体的,用户根据基站的PUSCH长度配置调整PUSCH长度。根据PUSCH长度调整TBsize,其中TBsize的调整如表4:
表4
Figure PCTCN2017082388-appb-000003
如果折算后的TBsize仍放置不下,可以采取调制与编码策略(Modulation and Coding Scheme,简称MCS)降阶的方法。此外,用户根据特殊上行子帧的DMRS、PUSCH中控制信息与基站配置信息的对应关系调整特殊上行子帧的DMRS、PUSCH中控制信息。
需要说明,本发明实施例可以是所有载波的TDD采用相同的小区级SRS资源配置,或者不同载波TDD采用不同的SRS小区级/用户级配置。
下面以FDD帧为例进行说明。基站将FDD下行帧的一些子帧配置特殊下行子帧。将上行帧的一些子帧配置为特殊上行子帧。其中,特殊下行子帧中的部分符号或者全部符号配置用于上行传输SRS,并配置特殊下行子帧中的DMRS位置与小区级SRS资源的对应关系。特殊上行子帧中的部分符号或者全部符号配置用于下行传输SRS,并配置特殊下行子帧中的DMRS位置与小区级SRS资源的对应关系。
特殊下行子帧中部分或全部符号用于上行传输SRS,假设一个特殊下行子帧中有nsrs_symbol个符号用于SRS传输,该nsrs_symbol个符号可以是特殊下行子帧的前nsrs_symbol个符号,或特殊下行子帧的最后nsrs_symbol个符号,或者分散地分布在特殊下行子帧中。本发明实施例中以该nsrs_symbol个符号为特殊下行子帧的最后nsrs_symbol 个符号为例进行说明。当然,子帧中下行符号到上行符号之间需要一定的保护间隔,本发明实施例中保护间隔为2个正交频分复用(Orthogonal Frequency Division Multiplexing,简称OFDM)符号。
其次,特殊下行子帧的DMRS位置与小区级SRS资源或用户级PDSCH可用符号存在对应关系。本发明实施例中以nsrs_symbol的值为4为例,若DMRS位置与小区级SRS资源对应,DMRS位置对应关系如表5
表5
小区级SRS符号数 DMRS所在符号序号
0 5,6,12,13
1 5,6,8,9
2 5,6,8,9
3 3,4,6,7
4 3,4,6,7
在SRS符号为其它值的情况下,DMRS也需要做调整,调整后的DMRS可以出现在未被SRS占用的符号中,这里不再给出调整示例。
另外,特殊下行子帧中的PDSCH所占符号为控制信道、SRS、GP以外的符号。
同样,特殊上行子帧中多个符号被配置用于传输SRS,具体与TDD中配置特殊上行子帧相同,在此不再赘述。
特殊上行子帧的DMRS位置与小区级SRS资源或用户级PUSCH可用符号存在对应关系。本发明实施例若以nsrs_symbol的值为4进行说明,那么DMRS位置与小区级SRS资源的对应关系如表6
表6
小区级SRS符号数 DMRS所在符号序号
0 3,9
1 3,9
2 2,7
3 2,7
4 2,6
在SRS符号为其它值的情况下,DMRS也需要做调整,调整后的DMRS可以出现在未被SRS占用的符号中,这里不再给出调整示例。若DMRS位置与用户级PUSCH可用符号对应,则对应关系如表7
表7
Figure PCTCN2017082388-appb-000004
在SRS符号为其它值的情况下,DMRS也需要做调整,调整后的DMRS可以出现在未 被SRS占用的符号中,这里不再给出调整示例。此外,小区内用户的DMRS位置也可以是固定的,不随小区级SRS资源或用户级PUSCH可用符号的变化而变化,例如,可以将DMRS所在符号序号固定为符号2,7。这里的DMRS符号与实施例一中不同,是考虑到用户上行传输的帧之间切换的保护时间。具体的DMRS位置可以是其他配置,但需要保证PUSCH的符号数与小区级SRS符号数之和小于或等于子帧的符号数。
特殊上行子帧中控制信息的资源映射与DMRS位置的对应关系,与TDD中的配置类似,这里不再给出调整示例。
对于FDD配置,由于FDD中具有下行帧和上行帧,因此,在本发明实施例中,因此,基站除了确定配置哪些下行子帧为特殊下行子帧之外,可以配置k套(k为大于或等于1的整数)SRS配置,包括每个特殊下行子帧中的SRS符号数、每个SRS符号中分配的每个用户的SRS资源。
同样,基站针对特殊上行子帧,配置k套SRS配置,包括每个特殊上行子帧中的SRS符号数、每个SRS符号数中分配给每个用户的SRS资源。
当k=1时,为LTE中常见的配置方法,在此不再赘述。当k>1时,对于其中一套SRS配置(将其称之为i),基站先配置特殊下行/上行子帧中的SRS符号数,例如,在SIB中添加新的高层信令SpecialSrsNum{i},基站用SpecialSrsNum{i}将小区级的每个特殊下行/或上行子帧的SRS符号数m发送给用户。本发明实施例中特殊下行/上行子帧中可SRS符号数上限nsrs_symbol为4,基站配置m=4,且每个特殊下行/上行子帧的SRS符号数相同,因此SpecialSrsNum{i}占用3bits,SpecialSrsNum{i}=4。在发明本实施例中,SRS符号位于所在特殊下行/上行子帧的最后,即当SpecialSrsNum{i}=4时,SRS符号为特殊下行/上行子帧的倒数第1、2、3、4个符号。请参阅图5,5为本发明实施例提供的特殊下行/上行子帧中SRS符号的位置示意图。在图5中,特殊下行/上行子帧子帧的后4个符号用于传输SRS。
进一步地,基站配置特殊下行/上行子帧中每个用户的SRS资源,对于第i套配置具体为:增加UE级高层信令srs_symbol{i}指示Tsrs_symbol,表示SRS在现有LTE的ISRSTTI上的符号偏移,需要注意的是这里的TTI对应下行帧而非上行帧。Tsrs_symbol为m bits,用bitmap的形式指示传输SRS的符号。例如Tsrs_symbol,k=0011表示基站配置用户在子帧的最后两个符号发送SRS。
基站分别为下行帧和上行帧分配一套或多套SRS配置,具体在SIB中添加新的高层信令SrsConfigDLSpecial,SrsConfigULNormal,SrsConfigDLSpecial,分别指示特殊下行子帧中、上行子帧中、特殊上行子帧中所用到的SRS配置。每个信令的比特数为
Figure PCTCN2017082388-appb-000005
终端设备基于SRS进行上行传输与下行接收,包括有终端设备根据基站配置计算发送的SRS资源的时域资源或频域资源或码域资源,发送SRS;用户根据SrsConfigDLSpecial对应的小区级SRS符号进行PDSCH接收,并相应地调整DMRS位置、TBsize以及控制信息的资源映射;终端设备根据SrsConfigDLSpecial对应的小区级SRS符号调整PUSCH长度、PUSCH的DMRS位置、TBsize、PUCCH格式和PUCCH的DMRS位置。
用户根据基站配置计算发送的SRS资源的时域资源、频域资源、码域资源,逐符号地发送SRS。终端设备的SRS资源中的码域资源的计算为现有技术,在此不再赘述。但是SRS资源的时域资源和频域资源通过以下计算公式计算,首先,计算nSRS,如下:
Figure PCTCN2017082388-appb-000006
其中Tsrs_symbol_num为Tsrs_symbol中的符号数。
用户根据SrsConfigDLSpecial对应的小区级SRS符号进行PDSCH接收,并相应地调整DMRS位置、TBsize以及控制信息的资源映射,具体的DMRS见表5,这里不再赘述。
用户根据SrsConfigULSpecial对应的小区级SRS符号调整PUSCH长度、PUSCH的DMRS位置、TBsize、PUCCH格式和PUCCH的DMRS位置,具体的DMRS见表6,这里不再赘述。
同样,本发明实施例可以适用于多个FDD下行/上行帧,也可以结合TDD从而扩展至多个TDD以及FDD帧,不同帧有不同/统一的SRS小区级/用户级配置,每个帧独立/统一地按照本实施例的方案进行运作。
请参阅图6,图6为本发明实施例提供的网络侧设备的结构示意图;如图6所示,一种网络侧设备600可包括:
配置模块610,用于配置目标子帧,上述目标子帧包括至少一个探测参考信号SRS符号,上述SRS符号用于发送SRS信号;
通信模块620,用于向终端设备发送第一配置信令,上述第一配置信令包括上述目标子帧的资源配置或上述目标子帧中的SRS配置。
可选地,在一些可实施的方式中,目标子帧中的SRS配置包括小区级SRS配置信息或用户级SRS配置信息,小区级SRS配置信息用于标识目标子帧中的SRS符号,用户级SRS配置信息用于标识在目标子帧的SRS符号中分配给上述终端设备的SRS资源,其中,SRS资源包括时域资源或频域资源或码域资源,上述时域资源包括一个或多个SRS符号,上述码域资源包括一个或多个SRS序列。
可选地,在一些可实施的方式中,通信模块620还用于,在向上述终端设备发送第一配置信令之后,向上述终端设备发送第二配置信令,上述第二配置信令包括共享信道指示或第一符号指示,上述共享信道指示用于指示共享信道在上述目标子帧中占用的符号,上述第一符号指示用于指示可用于SRS传输的符号,以使得上述终端设备根据上述第一符号指示确定上述共享信道在上述目标子帧中占用的符号。
可选地,在一些可实施的方式中,上述通信模块620具体用于,向上述终端设备发送下行控制消息DCI,上述DCI携带有上述第二配置信令。
可选地,在一些可实施的方式中,上述网络侧设备600还包括:
第一确定模块630,用于根据共享信道在上述目标子帧中占用的符号,确定解调参考信号DMRS在上述目标子帧中占用的符号,并基于上述DMRS占用的符号进行DMRS发送或接收。
可选地,在一些可实施的方式中,上述配置模块610具体用于,当上述终端设备被配置至少一个频分双工FDD服务小区时,为上述FDD服务小区的上行传输频带和下行传输频带配置第一配置信令;或者为上述FDD服务小区配置第一配置信令;上述通信模块620还用于向上述终端设备发送第一配置信令。
可选地,在一些可实施的方式中,上述配置模块610具体用于,当上述终端设备被配置至少一个FDD服务小区时,为上述FDD服务小区的上行传输频带和下行传输频带配置 第二配置信令;或者为上述FDD服务小区配置第二配置信令;上述通信模块620还用于,向上述终端设备发送第二配置信令。
可选地,在一些可实施的方式中,上述网络侧设备600还包括:
第二确定模块640,用于当上述终端设备被配置至少一个FDD服务小区时,根据为上述FDD服务小区的上行传输频带或下行传输频带第一配置信令,确定上述FDD服务小区的上行传输频带中下行传输占用的符号;或者,根据为上述FDD服务小区第一配置信令,确定上述FDD服务小区的上行传输频带中下行传输占用的符号。
可选地,在一些可实施的方式中,上述网络侧设备600还包括:
第三确定模块650,用于当上述终端设备被配置至少一个FDD服务小区时,根据为上述FDD服务小区的上行传输频带或下行传输频带第二配置信令,确定上述FDD服务小区的上行传输频带中下行传输占用的符号;或者,根据为上述FDD服务小区第二配置信令,确定上述FDD服务小区的上行传输频带中下行传输占用的符号。
可选地,在一些可实施的方式中,上述配置模块610具体用于,当上述终端设备被配置至少2个服务小区时,为上述至少2个服务小区中的M个服务小区配置第一配置信令;上述通信模块620还用于,向上述终端设备发送第一配置信令,上述服务小区为FDD服务小区或者时分双工TDD服务小区。
可选地,在一些可实施的方式中,上述配置模块610具体用于,当上述终端设备被配置至少2个服务小区时,为上述至少2个服务小区中的M个服务小区配置第二配置信令,上述服务小区为FDD服务小区或者TDD服务小区;上述通信模块620还用于,向上述终端设备发送第二配置信令。
可选地,在一些可实施的方式中,上述网络侧设备600还包括:
第四确定模块660,当上述终端设备被配置至少2个上述服务小区时,根据为上述至少2个服务小区中的M个服务小区第一配置信令,确定每一个上述服务小区的上行子帧中下行传输占用的符号。
可选地,在一些可实施的方式中,上述网络侧设备600还包括:
第五确定模块670,当上述终端设备被配置至少2个上述服务小区时,根据为上述至少2个服务小区中的M个服务小区第二配置信令,确定每一个上述服务小区的上行子帧中下行传输占用的符号。
请参阅图7,图7为本发明实施例提供的终端设备的结构示意图;如图7所示,一种终端设备700可包括:
通信模块710,用于接收网络侧设备发送的第一配置信令,上述第一配置信令包括目标子帧的资源配置或上述目标子帧的SRS配置,上述目标子帧包括至少一个SRS符号,上述SRS符号用于发送SRS信号;
配置模块720,用于根据上述第一配置信令的上述目标子帧的资源配置,配置出上述目标子帧,根据上述第一配置信令的上述目标子帧的SRS配置,进行上述目标子帧中的SRS配置。
可选地,在一些可实施的方式中,上述目标子帧中的SRS配置包括小区级SRS配置信息或用户级SRS配置信息,上述小区级SRS配置信息用于标识上述目标子帧中的SRS符 号,上述用户级SRS配置信息用于标识在上述目标子帧的SRS符号中分配给上述终端设备的SRS资源,其中,上述SRS资源包括时域资源或频域资源或码域资源,上述时域资源包括一个或多个SRS符号,上述码域资源包括一个或多个SRS序列;上述配置模块720具体用于,根据上述小区级SRS配置信息,确定出上述目标子帧中的SRS符号;或根据上述用户级SRS配置信息,确定出上述目标子帧的上述SRS符号中分配给上述终端设备的SRS资源。
可选地,在一些可实施的方式中,上述通信模块710还用于,接收上述网络侧设备发送的第二配置信令,上述第二配置信令包括共享信道指示或第一符号指示,上述共享信道指示用于指示共享信道在上述目标子帧中占用的符号,上述第一符号指示用于指示可用于SRS传输的符号,以使得上述终端设备根据上述第一符号指示确定上述共享信道在上述目标子帧中占用的符号;上述配置模块720还用于,根据上述共享信道指示或第一符号指示,确定共享信道在上述目标子帧中占用的符号。
可选地,在一些可实施的方式中,上述通信模块710具体用于,接收上述网络侧设备发送的下行控制消息DCI,上述DCI携带有上述第二配置信令。
可选地,在一些可实施的方式中,上述配置模块720还用于,根据上述共享信道占用的符号,确定解调参考信号DMRS在上述目标子帧中占用的符号,并基于上述DMRS占用的符号进行DMRS发送或接收。
可选地,在一些可实施的方式中,上述通信模块710具体用于,当上述终端设备被配置至少一个频分双工FDD服务小区时,接收上述网络侧设备发送的针对上述FDD服务小区的上行传输频带和下行传输频带第一配置信令;或者接收上述网络侧设备发送的针对上述FDD服务小区第一配置信令;上述配置模块720具体用于,根据为上述FDD服务小区的上行传输频带和下行传输频带第一配置信令,确定上述FDD服务小区的共享信道符号位置或DMRS符号位置;或者根据为上述FDD服务小区第一配置信令,确定上述FDD服务小区的共享信道符号位置或DMRS符号位置。
可选地,在一些可实施的方式中,上述通信模块710还用于,当上述终端设备被配置至少一个FDD服务小区时,接收上述网络侧设备发送的针对上述FDD服务小区的上行传输频带和下行传输频带第二配置信令;或者接收上述网络侧设备发送的针对上述FDD服务小区第二配置信令;上述配置模块720还用于,根据为上述FDD服务小区的上行传输频带和下行传输频带第二配置信令,确定上述FDD服务小区的共享信道符号位置或DMRS符号位置;或者根据为上述FDD服务小区第二配置信令,确定上述FDD服务小区的共享信道符号位置或DMRS符号位置。
可选地,在一些可实施的方式中,上述配置模块720还用于,当上述终端设备被配置至少一个FDD服务小区时,根据为上述FDD服务小区的上行传输频带或下行传输频带第一配置信令,确定上述FDD服务小区的上行传输频带中下行传输占用的符号;或者根据为上述FDD服务小区第一配置信令,确定上述FDD服务小区的上行传输频带中下行传输占用的符号。
可选地,在一些可实施的方式中,上述配置模块720还用于,当上述终端设备被配置至少一个FDD服务小区时,根据为上述FDD服务小区的上行传输频带或下行传输频带第 二配置信令,确定上述FDD服务小区的上行传输频带中下行传输占用的符号;或者根据为上述FDD服务小区第二配置信令,确定上述FDD服务小区的上行传输频带中下行传输占用的符号。
可选地,在一些可实施的方式中,上述通信模块710还用于,当上述终端设备被配置至少2个服务小区时,接收上述网络侧设备发送的针对上述至少2个服务小区中的M个服务小区第一配置信令;上述配置模块720还用于,根据上述至少2个服务小区中的M个服务小区第一配置信令,确定共享信道符号位置或DMRS符号位置。
可选地,在一些可实施的方式中,上述通信模块710还用于,当上述终端设备被至少2个服务小区时,接收上述网络侧设备发送的针对上述至少2个服务小区中的M个服务小区第二配置信令;上述配置模块720还用于,根据上述至少2个服务小区中的M个服务小区第二配置信令,确定共享信道符号位置或DMRS符号位置。
可选地,在一些可实施的方式中,上述配置模块720还用于,当上述终端设备被配置至少2个上述服务小区时,根据上述至少2个服务小区中的M个服务小区对应的第一配置信令,确定每一个上述服务小区上的上行子帧中下行传输占用的符号。
可选地,在一些可实施的方式中,上述配置模块720还用于,当上述终端设备被配置至少2个上述服务小区时,根据上述服务小区对应的第二配置信令,确定每一个上述服务小区上的上行子帧中下行传输占用的符号。
请参阅图8,图8为本发明实施例提供的子帧配置系统的结构示意图;如图8所示,一种子帧配置系统800可包括:
网络侧设备600和终端设备700。
其中,对于网络侧设备600和终端设备700的介绍可以参阅方法实施例和装置实施例,在此不再赘述。
请参考图9,图9为本发明实施例提供的网络侧设备的另一结构示意图,其中,可包括至少一个处理器901(例如CPU,Central Processing Unit),至少一个网络接口或者其它通信接口,存储器902,和至少一个通信总线,用于实现这些装置之间的连接通信。该处理器901用于执行存储器中存储的可执行模块,例如计算机程序。该存储器902可能包含高速随机存取存储器(RAM,Random Access Memory),也可能还包括非不稳定的存储器(non-volatile memory),例如至少一个磁盘存储器。通过至少一个网络接口(可以是有线或者无线)实现该系统网关与至少一个其它网元之间的通信连接,可以使用互联网,广域网,本地网,城域网等。
如图9所示,在一些实施方式中,上述存储器902中存储了程序指令,程序指令可以被处理器901执行,上述处理器901具体执行以下步骤:用于配置目标子帧,上述目标子帧包括至少一个探测参考信号SRS符号,上述SRS符号用于发送SRS信号;向终端设备发送第一配置信令,上述第一配置信令包括上述目标子帧的资源配置或上述目标子帧中的SRS配置。
在一些实施方式中,上述处理器901还可以执行以下步骤:在向上述终端设备发送第一配置信令之后,向上述终端设备发送第二配置信令,上述第二配置信令包括共享信道指示或第一符号指示,上述共享信道指示用于指示共享信道在上述目标子帧中占用的符号, 上述第一符号指示用于指示可用于SRS传输的符号,以使得上述终端设备根据上述第一符号指示确定上述共享信道在上述目标子帧中占用的符号。
在一些实施方式中,上述处理器901还可以执行以下步骤:向上述终端设备发送下行控制消息DCI,上述DCI携带有上述第二配置信令。
在一些实施方式中,上述处理器901还可以执行以下步骤:用于根据共享信道在上述目标子帧中占用的符号,确定解调参考信号DMRS在上述目标子帧中占用的符号,并基于上述DMRS占用的符号进行DMRS发送或接收。
在一些实施方式中,上述处理器901还可以执行以下步骤:当上述终端设备被配置至少一个频分双工FDD服务小区时,为上述FDD服务小区的上行传输频带和下行传输频带配置第一配置信令;或者为上述FDD服务小区配置第一配置信令;向上述终端设备发送第一配置信令。
在一些实施方式中,上述处理器901还可以执行以下步骤:当上述终端设备被配置至少一个FDD服务小区时,为上述FDD服务小区的上行传输频带和下行传输频带配置第二配置信令;或者为上述FDD服务小区配置第二配置信令;向上述终端设备发送第二配置信令。
在一些实施方式中,上述处理器901还可以执行以下步骤:用于当上述终端设备被配置至少一个FDD服务小区时,根据为上述FDD服务小区的上行传输频带或下行传输频带第一配置信令,确定上述FDD服务小区的上行传输频带中下行传输占用的符号;或者,根据为上述FDD服务小区第一配置信令,确定上述FDD服务小区的上行传输频带中下行传输占用的符号。
在一些实施方式中,上述处理器901还可以执行以下步骤:用于当上述终端设备被配置至少一个FDD服务小区时,根据为上述FDD服务小区的上行传输频带或下行传输频带第二配置信令,确定上述FDD服务小区的上行传输频带中下行传输占用的符号;或者,根据为上述FDD服务小区第二配置信令,确定上述FDD服务小区的上行传输频带中下行传输占用的符号。
在一些实施方式中,上述处理器901还可以执行以下步骤:当上述终端设备被配置至少2个服务小区时,为上述至少2个服务小区中的M个服务小区配置第一配置信令;向上述终端设备发送第一配置信令,上述服务小区为FDD服务小区或者时分双工TDD服务小区。
在一些实施方式中,上述处理器901还可以执行以下步骤:当上述终端设备被配置至少2个服务小区时,为上述至少2个服务小区中的M个服务小区配置第二配置信令,上述服务小区为FDD服务小区或者TDD服务小区;向上述终端设备发送第二配置信令。
在一些实施方式中,上述处理器901还可以执行以下步骤:当上述终端设备被配置至少2个上述服务小区时,根据为上述至少2个服务小区中的M个服务小区第一配置信令,确定每一个上述服务小区的上行子帧中下行传输占用的符号。
在一些实施方式中,上述处理器901还可以执行以下步骤:当上述终端设备被配置至少2个上述服务小区时,根据为上述至少2个服务小区中的M个服务小区第二配置信令,确定每一个上述服务小区的上行子帧中下行传输占用的符号。
请参阅图10,图10为本发明实施例提供的终端设备的另一结构示意图,其中,可包括至少一个处理器1001(例如CPU,Central Processing Unit),至少一个网络接口或者其它通信接口,存储器1002,和至少一个通信总线,用于实现这些装置之间的连接通信。该处理器1001用于执行存储器中存储的可执行模块,例如计算机程序。该存储器1002可能包含高速随机存取存储器(RAM,Random Access Memory),也可能还包括非不稳定的存储器(non-volatile memory),例如至少一个磁盘存储器。通过至少一个网络接口(可以是有线或者无线)实现该系统网关与至少一个其它网元之间的通信连接,可以使用互联网,广域网,本地网,城域网等。
如图10所示,在一些实施方式中,上述存储器1002中存储了程序指令,程序指令可以被处理器1001执行,上述处理器1001具体执行以下步骤:用于接收网络侧设备发送的第一配置信令,上述第一配置信令包括目标子帧的资源配置或上述目标子帧的SRS配置,上述目标子帧包括至少一个SRS符号,上述SRS符号用于发送SRS信号;用于根据上述第一配置信令的上述目标子帧的资源配置,配置出上述目标子帧,根据上述第一配置信令的上述目标子帧的SRS配置,进行上述目标子帧中的SRS配置。
在一些实施方式中,上述处理器1001还可以执行以下步骤:上述目标子帧中的SRS配置包括小区级SRS配置信息或用户级SRS配置信息,上述小区级SRS配置信息用于标识上述目标子帧中的SRS符号,上述用户级SRS配置信息用于标识在上述目标子帧的SRS符号中分配给上述终端设备的SRS资源,其中,上述SRS资源包括时域资源或频域资源或码域资源,上述时域资源包括一个或多个SRS符号,上述码域资源包括一个或多个SRS序列;根据上述小区级SRS配置信息,确定出上述目标子帧中的SRS符号;或根据上述用户级SRS配置信息,确定出上述目标子帧的上述SRS符号中分配给上述终端设备的SRS资源。
在一些实施方式中,上述处理器1001还可以执行以下步骤:接收上述网络侧设备发送的第二配置信令,上述第二配置信令包括共享信道指示或第一符号指示,上述共享信道指示用于指示共享信道在上述目标子帧中占用的符号,上述第一符号指示用于指示可用于SRS传输的符号,以使得上述终端设备根据上述第一符号指示确定上述共享信道在上述目标子帧中占用的符号;根据上述共享信道指示或第一符号指示,确定共享信道在上述目标子帧中占用的符号。
在一些实施方式中,上述处理器1001还可以执行以下步骤:接收上述网络侧设备发送的下行控制消息DCI,上述DCI携带有上述第二配置信令。
在一些实施方式中,上述处理器1001还可以执行以下步骤:根据上述共享信道占用的符号,确定解调参考信号DMRS在上述目标子帧中占用的符号,并基于上述DMRS占用的符号进行DMRS发送或接收。
在一些实施方式中,上述处理器1001还可以执行以下步骤:当上述终端设备被配置至少一个频分双工FDD服务小区时,接收上述网络侧设备发送的针对上述FDD服务小区的上行传输频带和下行传输频带第一配置信令;或者接收上述网络侧设备发送的针对上述FDD服务小区第一配置信令;根据为上述FDD服务小区的上行传输频带和下行传输频带第一配置信令,确定上述FDD服务小区的共享信道符号位置或DMRS符号位置;或者根 据为上述FDD服务小区第一配置信令,确定上述FDD服务小区的共享信道符号位置或DMRS符号位置。
在一些实施方式中,上述处理器1001还可以执行以下步骤:当上述终端设备被配置至少一个FDD服务小区时,接收上述网络侧设备发送的针对上述FDD服务小区的上行传输频带和下行传输频带第二配置信令;或者接收上述网络侧设备发送的针对上述FDD服务小区第二配置信令;根据为上述FDD服务小区的上行传输频带和下行传输频带第二配置信令,确定上述FDD服务小区的共享信道符号位置或DMRS符号位置;或者根据为上述FDD服务小区第二配置信令,确定上述FDD服务小区的共享信道符号位置或DMRS符号位置。
在一些实施方式中,上述处理器1001还可以执行以下步骤:当上述终端设备被配置至少一个FDD服务小区时,根据为上述FDD服务小区的上行传输频带或下行传输频带第一配置信令,确定上述FDD服务小区的上行传输频带中下行传输占用的符号;或者根据为上述FDD服务小区第一配置信令,确定上述FDD服务小区的上行传输频带中下行传输占用的符号。
在一些实施方式中,上述处理器1001还可以执行以下步骤:当上述终端设备被配置至少一个FDD服务小区时,根据为上述FDD服务小区的上行传输频带或下行传输频带第二配置信令,确定上述FDD服务小区的上行传输频带中下行传输占用的符号;或者根据为上述FDD服务小区第二配置信令,确定上述FDD服务小区的上行传输频带中下行传输占用的符号。
在一些实施方式中,上述处理器1001还可以执行以下步骤:当上述终端设备被配置至少2个服务小区时,接收上述网络侧设备发送的针对上述至少2个服务小区中的M个服务小区第一配置信令;根据上述至少2个服务小区中的M个服务小区第一配置信令,确定共享信道符号位置或DMRS符号位置。
在一些实施方式中,上述处理器1001还可以执行以下步骤:当上述终端设备被至少2个服务小区时,接收上述网络侧设备发送的针对上述至少2个服务小区中的M个服务小区第二配置信令;根据上述至少2个服务小区中的M个服务小区第二配置信令,确定共享信道符号位置或DMRS符号位置。
在一些实施方式中,上述处理器1001还可以执行以下步骤:当上述终端设备被配置至少2个上述服务小区时,根据上述至少2个服务小区中的M个服务小区对应的第一配置信令,确定每一个上述服务小区上的上行子帧中下行传输占用的符号。
在一些实施方式中,上述处理器1001还可以执行以下步骤:当上述终端设备被配置至少2个上述服务小区时,根据上述服务小区对应的第二配置信令,确定每一个上述服务小区上的上行子帧中下行传输占用的符号。
在上述实施例中,对各个实施例的描述都各有侧重,某个实施例中没有详述的部分,可以参见其他实施例的相关描述。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统,装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统,装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的 划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本发明实施例各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用软件功能单元的形式实现。
所述集成的单元如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本发明实施例的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的全部或部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本发明实施例各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(ROM,Read-Only Memory)、随机存取存储器(RAM,Random Access Memory)、磁碟或者光盘等各种可以存储程序代码的介质。
以上对本发明实施例所提供的一种子帧配置方法及相关设备进行了详细介绍,对于本领域的一般技术人员,依据本发明实施例的思想,在具体实施方式及应用范围上均会有改变之处,综上所述,本说明书内容不应理解为对本发明实施例的限制。

Claims (25)

  1. 一种子帧配置方法,其特征在于,包括:
    网络侧设备配置目标子帧,所述目标子帧包括至少一个探测参考信号SRS符号,所述SRS符号用于发送SRS信号;
    所述网络侧设备向终端设备发送第一配置信令,所述第一配置信令包括所述目标子帧的资源配置或所述目标子帧中的SRS配置。
  2. 根据权利要求1所述的方法,其特征在于,
    所述目标子帧中的SRS配置包括小区级SRS配置信息或用户级SRS配置信息,所述小区级SRS配置信息用于标识所述目标子帧中的SRS符号,所述用户级SRS配置信息用于标识在所述目标子帧的SRS符号中分配给所述终端设备的SRS资源,其中,所述SRS资源包括时域资源或频域资源或码域资源,所述时域资源包括一个或多个SRS符号,所述码域资源包括一个或多个SRS序列。
  3. 根据权利要求1或2所述的方法,其特征在于,所述网络侧设备向终端设备发送第一配置信令之后,所述方法还包括:
    所述网络侧设备向所述终端设备发送第二配置信令,所述第二配置信令包括共享信道指示或第一符号指示,所述共享信道指示用于指示共享信道在所述目标子帧中占用的符号,所述第一符号指示用于指示可用于SRS传输的符号,以使得所述终端设备根据所述第一符号指示确定所述共享信道在所述目标子帧中占用的符号。
  4. 根据权利要求3所述的方法,其特征在于,所述网络侧设备向所述终端设备发送第二配置信令包括:
    所述网络侧设备向所述终端设备发送下行控制消息DCI,所述DCI携带有所述第二配置信令。
  5. 根据权利要求1~4任一项所述的方法,其特征在于,所述方法还包括:
    所述网络侧设备根据共享信道在所述目标子帧中占用的符号,确定解调参考信号DMRS在所述目标子帧中占用的符号,并基于所述DMRS占用的符号进行DMRS发送或接收。
  6. 根据权利要求1~4任一项所述的方法,其特征在于,所述网络侧设备向终端设备发送第一配置信令包括:
    当所述终端设备被配置至少一个频分双工FDD服务小区时,所述网络侧设备
    为所述FDD服务小区的上行传输频带和下行传输频带配置第一配置信令,并向所述终端设备发送第一配置信令;或者所述网络侧设备为所述FDD服务小区配置第一配置信令,并向所述终端设备发送第一配置信令。
  7. 一种子帧配置方法,其特征在于,包括:
    终端设备接收网络侧设备发送的第一配置信令,所述第一配置信令包括目标子帧的资源配置或所述目标子帧的SRS配置,所述目标子帧包括至少一个SRS符号,所述SRS符号用于发送SRS信号;
    所述终端设备根据所述第一配置信令的所述目标子帧的资源配置,配置出所述目标子帧,根据所述第一配置信令的所述目标子帧的SRS配置,进行所述目标子帧中的SRS配置。
  8. 根据权利要求7所述的方法,其特征在于,所述目标子帧中的SRS配置包括小区级SRS配置信息或用户级SRS配置信息,所述小区级SRS配置信息用于标识所述目标子帧中的SRS符号,所述用户级SRS配置信息用于标识在所述目标子帧的SRS符号中分配给所述终端设备的SRS资源,其中,所述SRS资源包括时域资源或频域资源或码域资源,所述时域资源包括一个或多个SRS符号,所述码域资源包括一个或多个SRS序列;
    进而所述根据所述第一配置信令的所述目标子帧的SRS配置,进行所述目标子帧中的SRS配置包括:
    所述终端设备根据所述小区级SRS配置信息,确定出所述目标子帧中的SRS符号;或根据所述用户级SRS配置信息,确定出所述目标子帧的所述SRS符号中分配给所述终端设备的SRS资源。
  9. 根据权利要求7或8所述的方法,其特征在于,所述终端设备接收网络侧设备发送的第一配置信令之后包括:
    所述终端设备接收所述网络侧设备发送的第二配置信令,所述第二配置信令包括共享信道指示或第一符号指示,所述共享信道指示用于指示共享信道在所述目标子帧中占用的符号,所述第一符号指示用于指示可用于SRS传输的符号,以使得所述终端设备根据所述第一符号指示确定所述共享信道在所述目标子帧中占用的符号;
    所述终端设备根据所述共享信道指示或第一符号指示,确定共享信道在所述目标子帧中占用的符号。
  10. 根据权利要求9所述的方法,其特征在于,所述终端设备接收所述网络侧设备发送的第二配置信令包括:
    所述终端设备接收所述网络侧设备发送的下行控制消息DCI,所述DCI携带有所述第二配置信令。
  11. 根据权利要求9或10所述的方法,其特征在于,所述方法还包括:
    所述终端设备根据所述共享信道占用的符号,确定解调参考信号DMRS在所述目标子帧中占用的符号,并基于所述DMRS占用的符号进行DMRS发送或接收。
  12. 根据权利要求7~10任一项所述的方法,其特征在于,所述终端设备接收网络侧设备发送的第一配置信令包括:
    当所述终端设备被配置至少一个频分双工FDD服务小区时,所述终端设备接收所述网络侧设备发送的针对所述FDD服务小区的上行传输频带和下行传输频带第一配置信令;或者所述终端设备接收所述网络侧设备发送的针对所述FDD服务小区第一配置信令;
    所述终端设备接收网络侧设备发送的第一配置信令之后,所述方法还包括:
    所述终端设备根据为所述FDD服务小区的上行传输频带和下行传输频带第一配置信令,确定所述FDD服务小区的共享信道符号位置或DMRS符号位置;或者所述终端设备根据为所述FDD服务小区第一配置信令,确定所述FDD服务小区的共享信道符号位置或DMRS符号位置。
  13. 一种网络侧设备,其特征在于,包括:
    配置模块,用于配置目标子帧,所述目标子帧包括至少一个探测参考信号SRS符号,所述SRS符号用于发送SRS信号;
    通信模块,用于向终端设备发送第一配置信令,所述第一配置信令包括所述目标子帧的资源配置或所述目标子帧中的SRS配置。
  14. 根据权利要求13所述的网络侧设备,其特征在于,所述目标子帧中的SRS配置包括小区级SRS配置信息或用户级SRS配置信息,所述小区级SRS配置信息用于标识所述目标子帧中的SRS符号,所述用户级SRS配置信息用于标识在所述目标子帧的SRS符号中分配给所述终端设备的SRS资源,其中,所述SRS资源包括时域资源或频域资源或码域资源,所述时域资源包括一个或多个SRS符号,所述码域资源包括一个或多个SRS序列。
  15. 根据权利要求13或14所述的网络侧设备,其特征在于,
    所述通信模块还用于,在向所述终端设备发送第一配置信令之后,向所述终端设备发送第二配置信令,所述第二配置信令包括共享信道指示或第一符号指示,所述共享信道指示用于指示共享信道在所述目标子帧中占用的符号,所述第一符号指示用于指示可用于SRS传输的符号,以使得所述终端设备根据所述第一符号指示确定所述共享信道在所述目标子帧中占用的符号。
  16. 根据权利要求15所述的网络侧设备,其特征在于,
    所述通信模块具体用于,向所述终端设备发送下行控制消息DCI,所述DCI携带有所述第二配置信令。
  17. 根据权利要求13~16任一项所述的网络侧设备,其特征在于,所述网络侧设备还包括:
    第一确定模块,用于根据共享信道在所述目标子帧中占用的符号,确定解调参考信号DMRS在所述目标子帧中占用的符号,并基于所述DMRS占用的符号进行DMRS发送或接收。
  18. 根据权利要求13~16任一项所述的网络侧设备,其特征在于,
    所述配置模块具体用于,当所述终端设备被配置至少一个频分双工FDD服务小区时,为所述FDD服务小区的上行传输频带和下行传输频带配置第一配置信令;或者为所述FDD服务小区配置第一配置信令;所述通信模块还用于向所述终端设备发送第一配置信令。
  19. 一种终端设备,其特征在于,包括:
    通信模块,用于接收网络侧设备发送的第一配置信令,所述第一配置信令包括目标子帧的资源配置或所述目标子帧的SRS配置,所述目标子帧包括至少一个SRS符号,所述SRS符号用于发送SRS信号;
    配置模块,用于根据所述第一配置信令的所述目标子帧的资源配置,配置出所述目标子帧,根据所述第一配置信令的所述目标子帧的SRS配置,进行所述目标子帧中的SRS配置。
  20. 根据权利要求19所述的终端设备,其特征在于,所述目标子帧中的SRS配置包括小区级SRS配置信息或用户级SRS配置信息,所述小区级SRS配置信息用于标识所述目标子帧中的SRS符号,所述用户级SRS配置信息用于标识在所述目标子帧的SRS符号中分配给所述终端设备的SRS资源,其中,所述SRS资源包括时域资源或频域资源或码域资源,所述时域资源包括一个或多个SRS符号,所述码域资源包括一个或多个SRS序列;
    所述配置模块具体用于,根据所述小区级SRS配置信息,确定出所述目标子帧中的SRS 符号;或根据所述用户级SRS配置信息,确定出所述目标子帧的所述SRS符号中分配给所述终端设备的SRS资源。
  21. 根据权利要求19或20所述的终端设备,其特征在于,
    所述通信模块还用于,接收所述网络侧设备发送的第二配置信令,所述第二配置信令包括共享信道指示或第一符号指示,所述共享信道指示用于指示共享信道在所述目标子帧中占用的符号,所述第一符号指示用于指示可用于SRS传输的符号,以使得所述终端设备根据所述第一符号指示确定所述共享信道在所述目标子帧中占用的符号;
    所述配置模块还用于,根据所述共享信道指示或第一符号指示,确定共享信道在所述目标子帧中占用的符号。
  22. 根据权利要求21所述的终端设备,其特征在于,
    所述通信模块具体用于,接收所述网络侧设备发送的下行控制消息DCI,所述DCI携带有所述第二配置信令。
  23. 根据权利要求21或22所述的终端设备,其特征在于,
    所述配置模块还用于,根据所述共享信道占用的符号,确定解调参考信号DMRS在所述目标子帧中占用的符号,并基于所述DMRS占用的符号进行DMRS发送或接收。
  24. 根据权利要求19~22任一项所述的终端设备,其特征在于,
    所述通信模块具体用于,当所述终端设备被配置至少一个频分双工FDD服务小区时,接收所述网络侧设备发送的针对所述FDD服务小区的上行传输频带和下行传输频带第一配置信令;或者接收所述网络侧设备发送的针对所述FDD服务小区第一配置信令;
    所述配置模块具体用于,根据为所述FDD服务小区的上行传输频带和下行传输频带第一配置信令,确定所述FDD服务小区的共享信道符号位置或DMRS符号位置;或者根据为所述FDD服务小区第一配置信令,确定所述FDD服务小区的共享信道符号位置或DMRS符号位置。
  25. 一种子帧配置系统,其特征在于,包括:
    如权利要求13~18任一项所述的网络侧设备,以及如权利要求19~24任一项所述的终端设备。
PCT/CN2017/082388 2016-06-29 2017-04-28 一种子帧配置方法及相关设备 WO2018000929A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP17818926.2A EP3462694B1 (en) 2016-06-29 2017-04-28 Sub-frame configuration method and relevant devices
US16/230,722 US10856268B2 (en) 2016-06-29 2018-12-21 Subframe configuration method and related device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610498961.9A CN107547455B (zh) 2016-06-29 2016-06-29 一种子帧配置方法及相关设备
CN201610498961.9 2016-06-29

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/230,722 Continuation US10856268B2 (en) 2016-06-29 2018-12-21 Subframe configuration method and related device

Publications (1)

Publication Number Publication Date
WO2018000929A1 true WO2018000929A1 (zh) 2018-01-04

Family

ID=60785865

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/082388 WO2018000929A1 (zh) 2016-06-29 2017-04-28 一种子帧配置方法及相关设备

Country Status (4)

Country Link
US (1) US10856268B2 (zh)
EP (1) EP3462694B1 (zh)
CN (2) CN107547455B (zh)
WO (1) WO2018000929A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022152176A1 (zh) * 2021-01-13 2022-07-21 维沃移动通信有限公司 传输处理方法及相关设备
CN116347627A (zh) * 2018-01-12 2023-06-27 华为技术有限公司 资源指示方法、终端设备和网络设备

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU2016424004B2 (en) * 2016-09-23 2021-10-14 Guangdong Oppo Mobile Telecommunications Corp., Ltd. Method for transmitting SRS, network device and terminal device
JP7174749B2 (ja) * 2017-07-27 2022-11-17 エルジー エレクトロニクス インコーポレイティド リソース割り当て優先順位による信号送信方法及びそのための端末
US20190349060A1 (en) * 2018-05-11 2019-11-14 Mediatek Inc. Methods of Efficient Bandwidth Part Switching in a Wideband Carrier
WO2020029289A1 (zh) * 2018-08-10 2020-02-13 华为技术有限公司 通信方法、装置及系统
CN111479324B (zh) * 2019-01-24 2023-04-07 中国移动通信有限公司研究院 一种资源配置方法、网络侧设备及终端
CN113383507A (zh) * 2019-04-30 2021-09-10 Oppo广东移动通信有限公司 一种dmrs配置方法、用户设备
US20220224444A1 (en) * 2019-05-10 2022-07-14 Lg Electronics Inc. Method and device for transmitting and receiving sounding reference signal in wireless communication system
CN112469131B (zh) * 2020-12-23 2023-04-18 Oppo(重庆)智能科技有限公司 一种配置srs资源符号数的方法及终端设备
US11659575B2 (en) * 2021-01-29 2023-05-23 Qualcomm Incorporated Phase coherent demodulation reference signal techniques for cross-slot channel estimation

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101795145A (zh) * 2010-02-08 2010-08-04 中兴通讯股份有限公司 测量参考信号的发送方法及系统
WO2010140859A2 (ko) * 2009-06-03 2010-12-09 엘지전자 주식회사 사운딩 기준 신호를 전송하는 방법 및 장치
CN102932797A (zh) * 2011-08-09 2013-02-13 中兴通讯股份有限公司 Srs与pucch的协调传输方法及系统
CN103095442A (zh) * 2011-10-31 2013-05-08 中兴通讯股份有限公司 探测参考信号配置方法及装置
CN103096346A (zh) * 2011-11-03 2013-05-08 华为技术有限公司 测量参考信号srs发送和信道检测的方法、装置及终端

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011134532A1 (en) * 2010-04-30 2011-11-03 Nokia Siemens Networks Oy Multiplexing of sounding reference signal with pucch
CN102098086B (zh) * 2010-12-30 2016-03-02 中兴通讯股份有限公司 数据发送方法及装置
CN102781095B (zh) * 2011-05-09 2015-07-29 华为技术有限公司 数据传输的方法、基站、用户设备及系统
CN102223726A (zh) * 2011-06-10 2011-10-19 中兴通讯股份有限公司 一种srs的发送方法和系统
US20150003351A1 (en) 2012-01-17 2015-01-01 Lg Electronics Inc. Method and apparatus for transmitting uplink data in wireless communication system
CN106456125B (zh) * 2014-05-02 2020-08-18 皇家飞利浦有限公司 用于将医学图像中的特征链接到解剖结构模型的系统以及其操作方法
US10285191B2 (en) * 2014-12-17 2019-05-07 Lg Electronics Inc. Method for transmitting uplink channel and wireless device requiring coverage enhancement
CN105634710B (zh) * 2016-01-20 2019-03-22 宇龙计算机通信科技(深圳)有限公司 Srs发送方法、srs发送装置和终端

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010140859A2 (ko) * 2009-06-03 2010-12-09 엘지전자 주식회사 사운딩 기준 신호를 전송하는 방법 및 장치
CN101795145A (zh) * 2010-02-08 2010-08-04 中兴通讯股份有限公司 测量参考信号的发送方法及系统
CN102932797A (zh) * 2011-08-09 2013-02-13 中兴通讯股份有限公司 Srs与pucch的协调传输方法及系统
CN103095442A (zh) * 2011-10-31 2013-05-08 中兴通讯股份有限公司 探测参考信号配置方法及装置
CN103096346A (zh) * 2011-11-03 2013-05-08 华为技术有限公司 测量参考信号srs发送和信道检测的方法、装置及终端

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3462694A4 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116347627A (zh) * 2018-01-12 2023-06-27 华为技术有限公司 资源指示方法、终端设备和网络设备
US11777680B2 (en) 2018-01-12 2023-10-03 Huawei Technologies Co., Ltd. Resource indication method, terminal device, and network device
CN116347627B (zh) * 2018-01-12 2024-01-16 华为技术有限公司 资源指示方法、终端设备和网络设备
WO2022152176A1 (zh) * 2021-01-13 2022-07-21 维沃移动通信有限公司 传输处理方法及相关设备

Also Published As

Publication number Publication date
CN109511173A (zh) 2019-03-22
CN107547455A (zh) 2018-01-05
EP3462694B1 (en) 2020-10-14
EP3462694A4 (en) 2019-07-03
EP3462694A1 (en) 2019-04-03
CN109511173B (zh) 2021-11-19
US10856268B2 (en) 2020-12-01
CN107547455B (zh) 2023-04-07
US20190124643A1 (en) 2019-04-25

Similar Documents

Publication Publication Date Title
WO2018000929A1 (zh) 一种子帧配置方法及相关设备
US10594460B2 (en) Apparatus and method for transmitting and receiving uplink channel
US20170353985A1 (en) Method of transceiving for device to device communication
US11153774B2 (en) Signal transmission method and device, and system
EP2599356B1 (en) Signaling methods for ue-specific dynamic downlink scheduler in ofdma systems
CN106664702B (zh) 一种数据传输方法、装置及系统
KR102284453B1 (ko) 셀룰러 이동 통신 시스템에서 상향링크 제어 정보 전송 방법 및 장치
TWI735616B (zh) 傳輸導頻信號的方法、終端設備和網絡側設備
JP2019205181A (ja) 無線通信システムにおいてヌメロロジ帯域幅を決定する方法及び装置
CN109392022B (zh) 传输数据的方法、终端设备和网络设备
CN113615117A (zh) 用于多源传输的码分复用(cdm)组
JP5781016B2 (ja) 無線基地局、無線通信システム及び無線通信方法
EP2734000B1 (en) User terminal, wireless base station device, wireless communication system, and wireless communication method
WO2014176967A1 (zh) 一种解调参考信号图样信息的选取方法、系统及装置
KR20120085247A (ko) 상향링크 제어 정보의 전송 방법 및 이를 위한 장치
CN110710252B (zh) 无线通信系统中终端的d2d操作方法和使用所述方法的终端
US8842625B2 (en) Wireless scheduling considering overhead cost estimate
WO2018202126A1 (zh) 用于数据传输的方法、终端和网络设备
JP2023533428A (ja) 複数のダウンリンクリソースに関する拡張csi報告のための方法および装置
EP3573274A1 (en) Communication method and network device
WO2018082672A1 (zh) 一种上行测量参考信号传输方法、装置和系统
WO2015032057A1 (zh) 上报信道状态信息、确定调制编码方式的方法及装置
EP3520305A1 (en) Aperiodic channel state information (csi) and csi-reference signal (rs) resource pooling
WO2017024565A1 (zh) 数据传输方法、装置及系统
WO2018018633A1 (zh) 一种csi-rs传输方法及网络设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17818926

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2017818926

Country of ref document: EP

Effective date: 20181228