WO2017024565A1 - 数据传输方法、装置及系统 - Google Patents

数据传输方法、装置及系统 Download PDF

Info

Publication number
WO2017024565A1
WO2017024565A1 PCT/CN2015/086796 CN2015086796W WO2017024565A1 WO 2017024565 A1 WO2017024565 A1 WO 2017024565A1 CN 2015086796 W CN2015086796 W CN 2015086796W WO 2017024565 A1 WO2017024565 A1 WO 2017024565A1
Authority
WO
WIPO (PCT)
Prior art keywords
data transmission
dci
short tti
symbol
resource scheduling
Prior art date
Application number
PCT/CN2015/086796
Other languages
English (en)
French (fr)
Inventor
李超君
马莎
邵家枫
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to CN201580081388.5A priority Critical patent/CN107710848A/zh
Priority to PCT/CN2015/086796 priority patent/WO2017024565A1/zh
Publication of WO2017024565A1 publication Critical patent/WO2017024565A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation

Definitions

  • the present invention relates to the field of wireless communication technologies, and in particular, to a data transmission method, apparatus, and system.
  • TTI Transmission Time Interval
  • ms millisecond
  • Symbol symbol
  • the data transmission between the base station and the terminal device is based on scheduling.
  • the TTI is less than 1 subframe length or the TTI is less than 1 ms.
  • an embodiment of the present invention provides a data transmission method, apparatus, and system for providing a scheduling scheme for data transmission with a TTI less than 1 subframe length or a TTI less than 1 ms.
  • an embodiment of the present invention provides a base station, including:
  • a processing module configured to determine a resource scheduling granularity; and determining, according to the resource scheduling granularity, a short transmission time interval TTI data transmission resource used by the terminal device to perform data transmission, where the short TTI data transmission resource is less than one sub-time in the time domain
  • the length of the frame is less than 1ms;
  • a transceiver module configured to send downlink control information DCI to the terminal device, where the DCI is used to indicate the short TTI data transmission resource;
  • the transceiver module is further configured to perform data transmission with the terminal device by using the short TTI data transmission resource.
  • the processing module is specifically configured to:
  • the resource scheduling granularity is determined in one of the following ways:
  • the short TTI data transmission available bandwidth is a bandwidth that can be occupied by the short TTI data transmission resource.
  • the processing module determines the resource scheduling granularity according to a CCE aggregation level of a physical downlink control channel that carries the DCI, then
  • the resource scheduling granularity includes a time domain resource scheduling granularity, and the time domain resource scheduling granularity is that the base station schedules the terminal The minimum time domain resource allocation unit when the device performs short TTI data transmission, including at least one symbol;
  • the processing module determines the resource scheduling granularity according to a CCE aggregation level and a system bandwidth of a physical downlink control channel that carries the DCI,
  • the resource scheduling granularity includes a time domain resource scheduling granularity, and the time domain resource scheduling granularity is the foregoing a minimum time domain resource allocation unit when the station schedules the terminal device to perform short TTI data transmission, including at least one symbol;
  • the processing module determines the resource scheduling granularity according to a CCE aggregation level of the physical downlink control channel carrying the DCI and a short TTI data transmission available bandwidth
  • the resource scheduling granularity includes: a time domain resource scheduling granularity, where the time domain resource scheduling granularity is a minimum time domain resource allocation unit when the base station schedules the terminal device to perform short TTI data transmission, and includes at least one symbol;
  • the processing module is specifically configured to:
  • the same bandwidth refers to: the same system bandwidth, the same short TTI data transmission available bandwidth, or the same specific bandwidth;
  • the short TTI data transmission available bandwidth is a bandwidth that can be occupied by short TTI data transmission resources.
  • the resource scheduling granularity includes: a frequency domain resource scheduling granularity, where the frequency domain resource scheduling granularity is a minimum frequency domain resource allocation unit when the base station schedules the terminal device to perform short TTI data transmission, and includes at least one RB;
  • the processing module is specifically configured to:
  • the short TTI data transmission resource occupies N symbols in the time domain, and the N is a positive integer.
  • the cyclic prefix CP is a long CP, the N is not greater than 6.
  • the CP is a normal CP, The N is not more than 7.
  • the resource scheduling granularity includes: a frequency domain resource scheduling granularity and a time domain resource scheduling granularity; the frequency domain resource scheduling granularity is a minimum frequency domain resource allocation unit when the base station schedules the terminal device to perform short TTI data transmission, including At least one RB; the time domain resource scheduling granularity is a minimum time domain resource allocation unit when the base station schedules the terminal device to perform short TTI data transmission, and includes at least one symbol;
  • the processing module is specifically configured to:
  • the processing module is specifically configured to: determine that the data transmission resource occupies consecutive X symbols starting from a reference symbol in a time domain, where X is a positive integer, and X is an integer multiple of a scheduling granularity of the time domain resource. ;
  • the reference symbol is: a first symbol occupied by the DCI, a last symbol occupied by the DCI, a kth symbol after the first symbol occupied by the DCI, or a last occupied by the DCI
  • the kth symbol after a symbol, k is a positive integer
  • the DCI includes: length indication information for indicating the X, and the length indication information is generated by the processing module according to the time domain resource scheduling granularity.
  • the processing module is specifically configured to: determine that the short TTI data transmission resource occupies a plurality of symbols starting from a reference symbol in a time domain, and the number of occupied symbols is a whole of the time domain resource scheduling granularity.
  • the reference symbol is: a first symbol occupied by the DCI, a last symbol occupied by the DCI, a kth symbol after the first symbol occupied by the DCI, or a last occupied by the DCI
  • the kth symbol after a symbol, k is a positive integer
  • the DCI includes: information for indicating a relative position of the several symbols relative to the reference symbol, where the information of the relative location is generated by the processing module according to the time domain resource scheduling granularity and the relative position of.
  • the processing module is specifically configured to: determine that the short TTI data transmission resource occupies a plurality of symbols starting from a reference symbol in a time domain, where the occupied plurality of symbols are consecutive, and the occupied The number of symbols is the same as the number of symbols included in the time domain resource granularity;
  • the reference symbol is: a first symbol occupied by the DCI, a last symbol occupied by the DCI, a kth symbol after the first symbol occupied by the DCI, or a last occupied by the DCI
  • the kth symbol after a symbol, k is a positive integer
  • the information bit used to indicate the short TTI data transmission resource in the DCI is empty.
  • the start symbol occupied by the short TTI data transmission resource in the time domain is a reference symbol, where the reference symbol is the first symbol occupied by the DCI, the last symbol occupied by the DCI, and the DCI is occupied by the DCI.
  • the kth symbol after the first symbol, or the kth symbol after the last symbol occupied by the DCI, k is a positive integer;
  • the DCI includes: information for indicating a frequency domain start position of the short TTI data transmission resource, where the information of the frequency domain start location is generated by the processing module according to the frequency domain resource scheduling granularity.
  • the short TTI data transmission resource occupies consecutive symbols in the time domain, and the occupied symbols
  • the number is equal to the number of symbols included in the time domain resource scheduling granularity
  • the reference symbol is: a first symbol occupied by the DCI, a last symbol occupied by the DCI, a kth symbol after the first symbol occupied by the DCI, or a last occupied by the DCI
  • the kth symbol after a symbol, k is a positive integer
  • the DCI includes: information for indicating a frequency domain start position of the short TTI data transmission resource, where the information of the frequency domain start location is generated by the processing module according to the frequency domain resource scheduling granularity.
  • the processing module is specifically configured to:
  • the short TTI data transmission resource occupies consecutive X symbols starting with a reference symbol in the time domain, where X is a positive integer;
  • the reference symbol is: the first symbol occupied by the DCI, the The last symbol occupied by the DCI, the kth symbol after the first symbol occupied by the DCI, or the kth symbol after the last symbol occupied by the DCI, k is a positive integer;
  • the DCI includes: start position information indicating a start position of the frequency domain and bandwidth information of the specified bandwidth, and length indication information indicating the X; information of a start position of the frequency domain
  • the bandwidth information is generated by the processing module according to the frequency domain resource scheduling granularity
  • the length indication information is generated by the processing module according to the time domain resource scheduling granularity.
  • the processing module is further configured to: Before the resource scheduling granularity is determined, it is determined that at least one of the following conditions is met:
  • the delay requirement of the service currently used by the terminal device is less than the set delay threshold
  • the system bandwidth is greater than the set bandwidth threshold
  • the resource availability rate on the system bandwidth is greater than the set resource availability threshold.
  • the transceiver module is further configured to:
  • the short TTI data transmission resource available to the terminal device before transmitting the DCI to the terminal device, where the available short TTI data transmission resource includes short TTI data transmission available bandwidth and/or The time domain resource that the data transmission can occupy;
  • the short TTI data transmission available bandwidth is a bandwidth that can be occupied by the short TTI data transmission resource.
  • the transceiver module is specifically configured to:
  • the transceiver module is specifically configured to:
  • mapping starts from the first symbol of the short TTI data transmission resource indicated by the DCI, and continues to map to the next symbol when the first symbol is occupied.
  • the second aspect of the present invention provides a terminal device, including:
  • a processing module configured to determine a resource scheduling granularity
  • the transceiver module is configured to receive downlink control information (DCI) sent by the base station, where the DCI is used to indicate that the terminal device performs short TTI data transmission resources used for data transmission, where the short TTI data transmission resource is less than one sub-time in the time domain.
  • DCI downlink control information
  • the length of the frame is less than 1ms;
  • the data transmission is performed with the base station using the short TTI data transmission resource.
  • the processing module is specifically configured to: determine, by using one of the following manners, the resource scheduling granularity:
  • the short TTI data transmission available bandwidth is a bandwidth that can be occupied by the short TTI data transmission resource.
  • the processing module determines the resource scheduling granularity according to a CCE aggregation level of a physical downlink control channel that carries the DCI,
  • the resource scheduling granularity includes a time domain resource scheduling granularity, and the time domain resource scheduling granularity is that the base station schedules the terminal The minimum time domain resource allocation unit when the device performs short TTI data transmission, including at least one symbol;
  • the processing module determines the resource scheduling granularity according to a CCE aggregation level and a system bandwidth of a physical downlink control channel that carries the DCI,
  • the resource scheduling granularity includes a time domain resource scheduling granularity, and the time domain resource scheduling granularity is that the base station schedules the terminal The minimum time domain resource allocation unit when the device performs short TTI data transmission, including at least one symbol;
  • the processing module determines the resource scheduling granularity according to a CCE aggregation level of the physical downlink control channel carrying the DCI and a short TTI data transmission available bandwidth
  • the resource scheduling granularity includes: a time domain resource scheduling granularity, where the time domain resource scheduling granularity is a minimum time domain resource allocation unit when the base station schedules the terminal device to perform short TTI data transmission, and includes at least one symbol;
  • the short TTI data transmission resource occupies different symbols in the time domain, and occupies the same bandwidth frequency domain resource in the frequency domain;
  • the same bandwidth refers to: the same system bandwidth, the same short TTI data transmission available bandwidth, or the same specific bandwidth;
  • the short TTI data transmission available bandwidth is a bandwidth that can be occupied by the short TTI data transmission resource.
  • the resource scheduling granularity includes: a frequency domain resource scheduling granularity, where the frequency domain resource scheduling granularity is a minimum frequency domain resource allocation unit when the base station schedules the terminal device to perform short TTI data transmission, and includes at least one RB;
  • the short TTI data transmission resource occupies N symbols in the time domain, and the N is a positive integer.
  • the cyclic prefix CP is a long CP, the N is not greater than 6.
  • the CP is a normal CP, the N is not Greater than 7.
  • the resource scheduling granularity includes: a frequency domain resource scheduling granularity and a time domain resource scheduling granularity;
  • the frequency domain resource scheduling granularity is a minimum frequency domain resource allocation unit when the base station schedules the terminal device to perform short TTI data transmission, and includes at least one RB;
  • the time domain resource scheduling granularity is a minimum time domain resource allocation unit when the base station schedules the terminal device to perform short TTI data transmission, and includes at least one symbol.
  • the DCI includes: length indication information indicating a number X of symbols occupied by the short TTI data transmission resource in a time domain;
  • the terminal device Determining, by the terminal device, the short TTI data transmission resource according to the resource scheduling granularity and the DCI, where the terminal device determines the short TTI according to the length indication information and the time domain resource scheduling granularity.
  • the data transmission resource occupies consecutive X symbols starting with a reference symbol in the time domain, and the X is a positive integer;
  • the reference symbol is: a first symbol occupied by the DCI, a last symbol occupied by the DCI, a kth symbol after the first symbol occupied by the DCI, or a last occupied by the DCI
  • the kth symbol after a symbol, k is a positive integer.
  • the DCI includes: information for indicating that the short TTI data transmission resource occupies a relative position of a plurality of symbols starting from a reference symbol with respect to the reference symbol in a time domain;
  • the reference symbol is: a first symbol occupied by the DCI, a last symbol occupied by the DCI, a kth symbol after the first symbol occupied by the DCI, or a last occupied by the DCI
  • the kth symbol after a symbol, k is a positive integer
  • the processing module is specifically configured to: determine, according to the information about the relative location and the scheduling granularity of the time domain resource, that the short TTI data transmission resource occupies the plurality of the reference symbols starting in the time domain symbol.
  • the information bit used to indicate the short TTI data transmission resource in the DCI is empty
  • the processing module is specifically configured to:
  • the short TTI data transmission resource occupies several times starting from a reference symbol in the time domain a symbol, the number of symbols occupied is continuous and the number of the plurality of symbols occupied is the same as the number of symbols included in the time domain resource granularity;
  • the reference symbol is: a first symbol occupied by the DCI, a last symbol occupied by the DCI, a kth symbol after the first symbol occupied by the DCI, or a last occupied by the DCI
  • the kth symbol after a symbol, k is a positive integer.
  • the DCI includes: start location information used to indicate a frequency domain start position of the short TTI data transmission resource;
  • the processing module is specifically configured to:
  • the frequency domain resource scheduling is as granular as that;
  • the reference symbol is: a first symbol occupied by the DCI, a last symbol occupied by the DCI, and the DCI
  • the kth symbol after the first symbol occupied, or the kth symbol after the last symbol occupied by the DCI, k is a positive integer.
  • the DCI includes: starting location information indicating a frequency domain start position of the short TTI data transmission resource ;
  • the processing module is specifically configured to:
  • the reference symbol is: a first symbol occupied by the DCI, a last symbol occupied by the DCI, and the DCI
  • the kth symbol after the first symbol occupied, or the kth symbol after the last symbol occupied by the DCI, k is a positive integer
  • the starting position of the frequency domain is the starting resource, and the occupied resource is as large as the frequency domain resource scheduling granularity.
  • the DCI includes: start position information indicating a frequency domain start position of the short TTI data transmission resource and bandwidth information of the short TTI data transmission resource; and indicating that the short TTI data transmission resource is in The length of the number of symbols X occupied in the time domain indicates information, and the X is a positive integer;
  • the processing module is specifically configured to:
  • the short TTI data transmission resource occupies consecutive X symbols starting with a reference symbol in a time domain, where the reference symbol is: the DCI occupation The first symbol, the last symbol occupied by the DCI, the kth symbol after the first symbol occupied by the DCI, or the kth symbol after the last symbol occupied by the DCI, k Is a positive integer;
  • the transceiver module is further configured to:
  • the base station Before receiving the DCI sent by the base station, receiving, by the base station, the short TTI data transmission resource that is available by the terminal device that is notified by the high layer signaling, where the available short TTI data transmission resource includes short TTI data transmission Time-domain resources that can be occupied by available bandwidth and/or short TTI data;
  • the short TTI data transmission available bandwidth is a bandwidth that can be occupied by the short TTI data transmission resource.
  • an embodiment of the present invention provides a data transmission method, including:
  • the base station determines the granularity of the resource scheduling
  • the short transmission time interval TTI data transmission resource used by the terminal device for data transmission where the short TTI data transmission resource is less than 1 in the time domain
  • the length of the subframes is less than 1ms
  • the base station sends downlink control information DCI to the terminal device, where the DCI is used to indicate the short TTI data transmission resource;
  • the base station performs data transmission with the terminal device by using the short TTI data transmission resource.
  • the base station determines the resource scheduling granularity in one of the following manners:
  • the base station Determining, by the base station, the resource scheduling granularity according to a CCE aggregation level of a physical downlink control channel that carries the DCI;
  • the base station Determining, by the base station, the resource scheduling granularity according to a CCE aggregation level and a system bandwidth of a physical downlink control channel that carries the DCI;
  • the base station Determining, by the base station, the resource scheduling granularity according to a CCE aggregation level of the physical downlink control channel carrying the DCI and a short TTI data transmission available bandwidth;
  • the short TTI data transmission available bandwidth is a bandwidth that can be occupied by the short TTI data transmission resource.
  • the base station determines the resource scheduling granularity according to a CCE aggregation level of a physical downlink control channel that carries the DCI,
  • the resource scheduling granularity includes a time domain resource scheduling granularity, and the time domain resource scheduling granularity is that the base station schedules the terminal The minimum time domain resource allocation unit when the device performs short TTI data transmission, including at least one symbol;
  • the base station determines the resource scheduling granularity according to a CCE aggregation level and a system bandwidth of a physical downlink control channel that carries the DCI,
  • the resource scheduling granularity includes a time domain resource scheduling granularity, and the time domain resource scheduling granularity is configured by the base station scheduling The minimum time domain resource allocation unit when the terminal device performs short TTI data transmission, including at least one symbol;
  • the base station determines the resource scheduling granularity according to a CCE aggregation level of a physical downlink control channel carrying the DCI and a short TTI data transmission available bandwidth
  • the resource scheduling granularity includes: a time domain resource scheduling granularity, where the time domain resource scheduling granularity is a minimum time domain resource allocation unit when the base station schedules the terminal device to perform short TTI data transmission, and includes at least one symbol;
  • Determining, by the base station, the short TTI data transmission resource according to the resource scheduling granularity including:
  • the same bandwidth refers to: the same system bandwidth, the same short TTI data transmission available bandwidth, or the same specific bandwidth;
  • the short TTI data transmission available bandwidth is a bandwidth that can be occupied by the short TTI data transmission resource.
  • the resource scheduling granularity includes: a frequency domain resource scheduling granularity, where the frequency domain resource scheduling granularity is a minimum frequency domain resource allocation unit when the base station schedules the terminal device to perform short TTI data transmission, and includes at least one RB;
  • Determining, by the base station, the short TTI data transmission resource according to the resource scheduling granularity including:
  • the base station Determining, by the base station, the resources occupied by the short TTI data transmission resource in a frequency domain according to the frequency domain resource scheduling granularity, where the short TTI data transmission resource occupies N symbols in a time domain, where the N is a positive integer
  • the cyclic prefix CP is a long CP
  • the N is not greater than 6
  • the CP is a normal CP
  • the N is not greater than 7.
  • the resource scheduling granularity includes: a frequency domain resource scheduling granularity and a time domain resource scheduling granularity; the frequency domain resource scheduling granularity is a minimum frequency domain resource allocation unit when the base station schedules the terminal device to perform short TTI data transmission, including At least one RB; the time domain resource scheduling granularity is a minimum time domain resource allocation unit when the base station schedules the terminal device to perform short TTI data transmission, and includes at least one symbol;
  • Determining, by the base station, the short TTI data transmission resource according to the resource scheduling granularity including:
  • the base station determines, according to the frequency domain resource scheduling granularity, the resources occupied by the short TTI data transmission resource in the frequency domain.
  • Determining, by the base station, the symbol occupied by the short TTI data transmission resource in the time domain according to the time domain resource scheduling granularity includes: determining, by the base station, that the data transmission resource is occupied by a reference symbol in a time domain Consecutive X symbols, the X is a positive integer, and X is an integer multiple of the time domain resource scheduling granularity;
  • the reference symbol is: a first symbol occupied by the DCI, a last symbol occupied by the DCI, a kth symbol after the first symbol occupied by the DCI, or the DCI
  • the kth symbol after the last symbol used, k is a positive integer
  • the DCI includes: length indication information for indicating the X, and the length indication information is generated by the base station according to the time domain resource scheduling granularity.
  • Determining, by the base station, the symbol occupied by the short TTI data transmission resource in the time domain according to the time domain resource scheduling granularity includes: determining, by the base station, that the short TTI data transmission resource is occupied by a reference symbol in a time domain The first number of symbols, the number of symbols occupied is an integer multiple of the time domain resource scheduling granularity;
  • the reference symbol is: a first symbol occupied by the DCI, a last symbol occupied by the DCI, a kth symbol after the first symbol occupied by the DCI, or a last occupied by the DCI
  • the kth symbol after a symbol, k is a positive integer
  • the DCI includes: information indicating a relative position of the several symbols with respect to the reference symbol, where the information of the relative location is generated by the base station according to the time domain resource scheduling granularity and the relative position .
  • Determining, by the base station, the symbol occupied by the short TTI data transmission resource in the time domain according to the time domain resource scheduling granularity includes: determining, by the base station, that the short TTI data transmission resource is occupied by a reference symbol in a time domain a first number of symbols, wherein the number of symbols occupied is continuous, and the number of the plurality of symbols occupied is the same as the number of symbols included in the time domain resource granularity;
  • the reference symbol is: a first symbol occupied by the DCI, a last symbol occupied by the DCI, a kth symbol after the first symbol occupied by the DCI, or a last occupied by the DCI
  • the kth symbol after a symbol, k is a positive integer
  • the information bit used to indicate the short TTI data transmission resource in the DCI is empty.
  • the base station Determining, by the base station, the resources occupied by the short TTI data transmission resource in the frequency domain, according to the frequency domain resource scheduling granularity, the base station determining, by the base station, the short TTI data transmission resource in a frequency domain
  • the occupied resources are as large as the granularity of the frequency domain resource scheduling;
  • the method further includes: determining, by the base station, that a start symbol occupied by the short TTI data transmission resource in a time domain is a reference symbol, where the reference symbol is The first symbol occupied by the DCI, the last symbol occupied by the DCI, the kth symbol after the first symbol occupied by the DCI, or the kth after the last symbol occupied by the DCI Symbol, k is a positive integer;
  • the DCI includes: information for indicating a frequency domain start position of the short TTI data transmission resource, where the information of the frequency domain start location is generated by the base station according to the frequency domain resource scheduling granularity.
  • the method includes: determining, by the base station, that the short TTI data transmission resource occupies consecutive symbols in a time domain, And the number of symbols occupied is equal to the number of symbols included in the time domain resource scheduling granularity;
  • the base station Determining, by the base station, the resources occupied by the short TTI data transmission resource in the frequency domain, according to the frequency domain resource scheduling granularity, the base station determining, by the base station, the resources and the resources occupied by the short TTI data transmission resource in the frequency domain
  • the frequency domain resource scheduling granularity is the same;
  • the method further includes: determining, by the base station, that a start symbol occupied by the data transmission resource in a time domain is a reference symbol;
  • the reference symbol is: a first symbol occupied by the DCI, a last symbol occupied by the DCI, a kth symbol after the first symbol occupied by the DCI, or a last occupied by the DCI
  • the kth symbol after a symbol, k is a positive integer
  • the DCI includes: information for indicating a frequency domain start position of the short TTI data transmission resource, where the information of the frequency domain start location is generated by the base station according to the frequency domain resource scheduling granularity.
  • the method includes: determining, by the base station, that the short TTI data transmission resource is occupied by a reference symbol in a time domain The starting consecutive X symbols, the X being a positive integer;
  • the reference symbol is: a first symbol occupied by the DCI, a last symbol occupied by the DCI, a kth symbol after the first symbol occupied by the DCI, or a last occupied by the DCI
  • the kth symbol after a symbol, k is a positive integer
  • the base station Determining, by the base station, the resources occupied by the short TTI data transmission resource in the frequency domain, according to the frequency domain resource scheduling granularity, the base station determining that the short TTI data transmission resource is occupied in a frequency domain from a frequency domain a resource whose starting position is the starting specified bandwidth;
  • the DCI includes: start position information indicating a start position of the frequency domain and bandwidth information of the specified bandwidth, and length indication information indicating the X; information of a start position of the frequency domain
  • the bandwidth information is generated by the base station according to the frequency domain resource scheduling granularity
  • the length indication information is generated by the base station according to the time domain resource scheduling granularity.
  • the method further includes: determining, by the base station, that at least one of the following conditions is met:
  • the delay requirement of the service currently used by the terminal device is less than the set delay threshold
  • the system bandwidth is greater than the set bandwidth threshold
  • the resource availability rate on the system bandwidth is greater than the set resource availability threshold.
  • the method further includes:
  • the base station notifies the short TTI data transmission resource available to the terminal device by using high layer signaling, where the available short TTI data transmission resource includes short TTI data transmission available bandwidth and/or the data transmission may occupy Time domain resource
  • the short TTI data transmission available bandwidth is a bandwidth that can be occupied by the short TTI data transmission resource.
  • Sending, by the base station, the DCI includes:
  • the base station sends the DCI on the short TTI data transmission resource indicated by the DCI.
  • the base station When transmitting the DCI, the base station starts mapping from the first symbol of the short TTI data transmission resource indicated by the DCI, and continues to map to the next symbol when the first symbol is occupied.
  • an embodiment of the present invention provides a transmission and transmission method, including:
  • the terminal device determines the granularity of the resource scheduling
  • the terminal device receives the downlink control information DCI sent by the base station, where the DCI is used to indicate the short TTI data transmission resource used by the terminal device for data transmission, where the short TTI data transmission resource is less than one subframe in the time domain.
  • the length is less than 1ms;
  • the terminal device Determining, by the terminal device, the short TTI data transmission resource used for performing the data transmission according to the resource scheduling granularity and the DCI;
  • the terminal device performs the data transmission with the base station by using the short TTI data transmission resource.
  • the terminal device determines the resource scheduling granularity in one of the following manners:
  • the terminal device Determining, by the terminal device, the resource scheduling granularity according to a CCE aggregation level of a physical downlink control channel that carries the DCI;
  • the terminal device Determining, by the terminal device, the resource scheduling granularity according to a CCE aggregation level and a system bandwidth of a physical downlink control channel carrying the DCI;
  • the terminal device Determining, by the terminal device, the resource scheduling granularity according to a CCE aggregation level of the physical downlink control channel carrying the DCI and a short TTI data transmission available bandwidth;
  • the short TTI data transmission available bandwidth is a bandwidth that can be occupied by the short TTI data transmission resource.
  • the terminal device determines the resource scheduling granularity according to a CCE aggregation level of a physical downlink control channel that carries the DCI,
  • the resource scheduling granularity includes a time domain resource scheduling granularity, and the time domain resource scheduling granularity is that the base station schedules the terminal The minimum time domain resource allocation unit when the device performs short TTI data transmission, including at least one symbol;
  • the terminal device determines the resource scheduling granularity according to a CCE aggregation level and a system bandwidth of a physical downlink control channel that carries the DCI,
  • the resource scheduling granularity includes a time domain resource scheduling granularity, and the time domain resource scheduling granularity is that the base station schedules the terminal The minimum time domain resource allocation unit when the device performs short TTI data transmission, including at least one symbol;
  • the terminal device determines the resource scheduling granularity according to a CCE aggregation level of a physical downlink control channel carrying the DCI and a short TTI data transmission available bandwidth
  • the resource scheduling granularity includes: a time domain resource scheduling granularity, where the time domain resource scheduling granularity is a minimum time domain resource allocation unit when the base station schedules the terminal device to perform short TTI data transmission, and includes at least one symbol;
  • the short TTI data transmission resource occupies different symbols in the time domain, and occupies the same bandwidth frequency domain resource in the frequency domain;
  • the same bandwidth refers to: the same system bandwidth, the same short TTI data transmission available bandwidth, or the same specific bandwidth;
  • the short TTI data transmission available bandwidth is a bandwidth that can be occupied by the short TTI data transmission resource.
  • the resource scheduling granularity includes: a frequency domain resource scheduling granularity, where the frequency domain resource scheduling granularity is a minimum frequency domain resource allocation unit when the base station schedules the terminal device to perform short TTI data transmission, and includes at least one RB;
  • the short TTI data transmission resource occupies N symbols in the time domain, and the N is a positive integer.
  • the cyclic prefix CP is a long CP, the N is not greater than 6.
  • the CP is a normal CP, the N is not Greater than 7.
  • the resource scheduling granularity includes: a frequency domain resource scheduling granularity and a time domain resource scheduling granularity;
  • the frequency domain resource scheduling granularity is a minimum frequency domain resource allocation unit when the base station schedules the terminal device to perform short TTI data transmission, and includes at least one RB;
  • the time domain resource scheduling granularity is a minimum time domain resource allocation unit when the base station schedules the terminal device to perform short TTI data transmission, and includes at least one symbol.
  • the DCI includes: length indication information indicating a number X of symbols occupied by the short TTI data transmission resource in a time domain;
  • the terminal device Determining, by the terminal device, the short TTI data transmission resource according to the resource scheduling granularity and the DCI, where the terminal device determines the short TTI according to the length indication information and the time domain resource scheduling granularity.
  • the data transmission resource occupies consecutive X symbols starting with a reference symbol in the time domain, and the X is a positive integer;
  • the reference symbol is: a first symbol occupied by the DCI, a last symbol occupied by the DCI, a kth symbol after the first symbol occupied by the DCI, or a last occupied by the DCI
  • the kth symbol after a symbol, k is a positive integer.
  • the DCI includes: information for indicating that the short TTI data transmission resource occupies a relative position of a plurality of symbols starting from a reference symbol with respect to the reference symbol in a time domain;
  • the reference symbol is: a first symbol occupied by the DCI, a last symbol occupied by the DCI, a kth symbol after the first symbol occupied by the DCI, or a last occupied by the DCI
  • the kth symbol after a symbol, k is a positive integer
  • the terminal device Determining, by the terminal device, the short TTI data transmission resource according to the resource scheduling granularity and the DCI, where the terminal device determines the short according to the information about the relative location and the time domain resource scheduling granularity.
  • the TTI data transmission resource occupies the number of symbols starting with the reference symbol in the time domain.
  • the information bit used to indicate the short TTI data transmission resource in the DCI is empty
  • the terminal device Determining, by the terminal device, that the short TTI data transmission resource occupies a plurality of symbols starting with a reference symbol in a time domain, and the occupied plurality of symbols are consecutive and occupy the number of the plurality of symbols and
  • the time domain resource granularity includes the same number of symbols;
  • the reference symbol is: a first symbol occupied by the DCI, a last symbol occupied by the DCI, a kth symbol after the first symbol occupied by the DCI, or a last occupied by the DCI
  • the kth symbol after a symbol, k is a positive integer.
  • the DCI includes: start location information used to indicate a frequency domain start position of the short TTI data transmission resource;
  • the terminal device Determining, by the terminal device, the frequency domain starting location of the short TTI data transmission resource according to the frequency domain resource scheduling granularity and the starting location information, and determining that the short TTI data transmission resource is occupied in a frequency domain
  • the resource is as large as the frequency domain resource scheduling granularity
  • the terminal device Determining, by the terminal device, that the start symbol occupied by the short TTI data transmission resource in the time domain is a reference symbol; the reference symbol is: a first symbol occupied by the DCI, a last symbol occupied by the DCI, The kth symbol after the first symbol occupied by the DCI, or the kth symbol after the last symbol occupied by the DCI, k is a positive integer.
  • the DCI includes: starting location information used to indicate a frequency domain start position of the short TTI data transmission resource ;
  • the terminal device Determining, by the terminal device, that the short TTI data transmission resource occupies consecutive symbols in a time domain, and the number of occupied symbols is equal to the number of symbols included in the time domain resource scheduling granularity;
  • the terminal device Determining, by the terminal device, that the start symbol occupied by the short TTI data transmission resource in the time domain is a reference symbol;
  • the reference symbol is: a first symbol occupied by the DCI, a last symbol occupied by the DCI, The kth symbol after the first symbol occupied by the DCI, or the kth symbol after the last symbol occupied by the DCI, k is a positive integer;
  • the terminal device Determining, by the terminal device, that the short TTI data transmission resource occupies a resource starting from the frequency domain start position in the frequency domain according to the start location information, and the occupied resource and the frequency domain resource scheduling The size is the same.
  • the DCI includes: start position information indicating a frequency domain start position of the short TTI data transmission resource and bandwidth information of the short TTI data transmission resource; and indicating that the short TTI data transmission resource is in The length of the number of symbols X occupied in the time domain indicates information, and the X is a positive integer;
  • the terminal device determines, according to the time domain resource scheduling granularity and the length indication information, that the short TTI data transmission resource occupies consecutive X symbols starting with a reference symbol in a time domain, where the reference symbol is: The first symbol occupied by the DCI, the last symbol occupied by the DCI, the kth symbol after the first symbol occupied by the DCI, or the kth after the last symbol occupied by the DCI Symbols, k is a positive integer;
  • the terminal device Determining, by the terminal device, the bandwidth of the short TTI data transmission resource in the frequency domain starting from the start position of the frequency domain, according to the frequency domain resource scheduling granularity, the starting location information, and the bandwidth information.
  • the resource indicated by the information is
  • the method further includes:
  • the short TTI data transmission resource available by the terminal device notified by the high layer signaling where the available short TTI data transmission resource includes short TTI data transmission available bandwidth and/or short TTI data transmission may be Occupied time domain resources;
  • the short TTI data transmission available bandwidth is a bandwidth that can be occupied by the short TTI data transmission resource.
  • an embodiment of the present invention provides a wireless communication system, including: a base station and a terminal device,
  • the base station is configured to determine a resource scheduling granularity, and determine, according to the resource scheduling granularity, a short transmission time interval TTI data transmission resource used by the terminal device to perform data transmission, where the short TTI data transmission resource is smaller in a time domain.
  • the length of one subframe is less than 1 ms, and the downlink control information DCI is sent to the terminal device, where the DCI is used to indicate the short TTI data transmission resource;
  • the terminal device is configured to determine the resource scheduling granularity, receive the DCI sent by the base station, and determine, according to the determined resource scheduling granularity and the DCI, the short TTI data transmission used for data transmission. Resources.
  • the DCI sent by the base station indicates to the terminal device that the short TTI data transmission resource is less than 1 subframe or less than 1 ms, and implements data transmission with a TTI less than 1 subframe length or less than 1 ms.
  • FIG. 1 is a schematic structural diagram of a wireless communication system according to Embodiment 1 of the present invention.
  • FIG. 5 are schematic diagrams showing a data transmission resource scheme according to Embodiment 1 of the present invention.
  • FIG. 6 is a schematic structural diagram of a base station according to Embodiment 2 of the present invention.
  • FIG. 7 is a schematic structural diagram of a base station according to an alternative implementation manner according to Embodiment 2 of the present invention.
  • FIG. 8 is a schematic structural diagram of a base station according to another optional implementation manner according to Embodiment 2 of the present invention.
  • FIG. 9 is a schematic structural diagram of a terminal device according to Embodiment 3 of the present invention.
  • FIG. 10 is a schematic structural diagram of a terminal device according to an optional implementation manner according to Embodiment 3 of the present invention.
  • FIG. 11 is a schematic structural diagram of a terminal device according to another possible implementation manner according to Embodiment 3 of the present invention.
  • FIG. 12 is a flowchart of a first data transmission method according to Embodiment 4 of the present invention.
  • FIG. 13 is a flowchart of a second data transmission method according to Embodiment 5 of the present invention.
  • an embodiment of the present invention provides a data transmission method, apparatus, and system for providing a scheduling scheme for data transmission with a TTI less than 1 subframe length or a TTI less than 1 ms.
  • the base station determines, according to the resource scheduling granularity, that the terminal device performs data transmission.
  • the short TTI data transmission resource used by the base station the base station sends Downlink Control Information (DCI) to the terminal device, and the DCI is used to indicate the short TTI data transmission resource.
  • the terminal device receives the DCI sent by the base station, and determines the short TTI data transmission resource used for data transmission according to the resource scheduling granularity and the DCI; wherein the short TTI data transmission resource is less than 1 subframe in the time domain or less than 1 ms.
  • DCI Downlink Control Information
  • the DCI sent by the base station indicates to the terminal device that the short TTI data transmission resource is less than 1 subframe or less than 1 ms, and implements scheduling for data transmission with a TTI less than 1 subframe length or less than 1 ms.
  • the LTE system is taken as an example, but this does not mean that the embodiment of the present invention is applicable to only the LTE system.
  • any wireless communication system that performs data transmission by scheduling may adopt the embodiment provided by the embodiment of the present invention.
  • the scheme is to provide a scheduling of data transmission with a TTI less than 1 subframe or less than 1 ms.
  • the downlink data is transmitted by using a Physical Downlink Shared Channel (PDSCH), and the uplink data is transmitted by using a Physical Uplink Shared Channel (PUSCH).
  • PDSCH Physical Downlink Shared Channel
  • PUSCH Physical Uplink Shared Channel
  • the terminal device UE in the LTE system needs to know scheduling information (such as time-frequency resource allocation, modulation and coding mode, etc.) configured by the base station to the UE before receiving the downlink data or transmitting the uplink data.
  • scheduling information such as time-frequency resource allocation, modulation and coding mode, etc.
  • the base station also needs to notify the UE of uplink power transmission related power control commands.
  • These scheduling information and power control command information belong to DCI.
  • the DCI is carried by a Physical Downlink Control CHannel (PDCCH).
  • PDCH Physical Downlink Control CHannel
  • the PDCCH mentioned in the embodiment of the present invention may be a PDCCH defined by a version (Rel)-8, an enhanced physical downlink control channel (ePDCCH) defined by Rel-11, and a PDCCH of a future evolution, as long as it can be used. It is sufficient to send DCI to the terminal device.
  • a PDCCH defined by a version (Rel)-8
  • ePDCCH enhanced physical downlink control channel
  • the physical downlink control channel PDCCH for transmitting scheduling information is aggregated by L CCEs, and L is a positive integer, which is called an aggregation level.
  • L may be 1, 2, 4, 8; for example, for ePDCCH defined in Rel-11, L may be 1, 2, 4, 8, 16, 32.
  • each radio frame is composed of 10 subframes of 1 ms length, and each subframe includes 2 slots.
  • each slot For a normal cyclic prefix (normal CP), each slot consists of 7 symbols. For an extended CP (extended CP), each slot consists of 6 symbols.
  • the uplink symbol is called a Single Carrier-Frequency Division Multiple Access (SC-FDMA) symbol, and the downlink symbol is called an Orthogonal Frequency Division Multiplexing (OFDM) symbol.
  • SC-FDMA Single Carrier-Frequency Division Multiple Access
  • OFDM Orthogonal Frequency Division Multiplexing
  • the resource scheduling granularity is a minimum resource allocation unit when the base station schedules the terminal device to perform data transmission.
  • the resource scheduling granularity may include: a frequency domain resource scheduling granularity and/or a time domain resource scheduling granularity.
  • the time domain resource scheduling granularity is a minimum time domain resource allocation unit when the base station scheduling terminal device performs short TTI data transmission, and includes at least one symbol;
  • the frequency domain resource scheduling granularity is a minimum frequency domain resource allocation unit when the base station scheduling terminal equipment performs short TTI data transmission, and includes at least one resource block (Resource Block, RB).
  • Resource Block Resource Block
  • the frequency domain resource scheduling granularity may be several RBs, for example, 25 RBs, 20 RBs, 10 RBs, and 5 RBs.
  • the time domain resource scheduling granularity may be several symbols, such as: 1 symbol, 2 symbols, 3 symbols, 4 symbols, 1 time slot, and the like.
  • the data transmission resource includes several resource scheduling granularities. Since the data transmission resource is less than 1 subframe in the time domain, the time domain resource scheduling granularity is less than the length of 1 subframe.
  • the data transmission resource occupies 10 RBs in the frequency domain and the resource scheduling granularity in the frequency domain, that is, the frequency domain resource scheduling granularity is 2 RBs, the data transmission resource includes 5 frequency domain resource scheduling granularities. .
  • the system bandwidth is 10 RBs
  • the frequency domain resource scheduling granularity is 4 RBs. If the base station allocates the entire system bandwidth to the terminal device 102, the last two RBs are also allocated to the terminal device.
  • a data packet with a TTI less than 1 subframe or 1 ms is called a “short TTI data packet”.
  • a data transmission with a TTI less than 1 subframe or 1 ms is called “short TTI data transmission”.
  • the data transmission with a TTI less than 1 ms is called “short TTI data transmission”, for example: TTI is 2 symbol lengths.
  • a data transmission resource having a length of less than 1 subframe or less than 1 ms in the time domain is a short TTI data transmission resource.
  • the transmission resources allocated for one scheduling are less than 1 subframe or 1 ms in the time domain.
  • resource allocation RA information is included in the DCI.
  • the uplink data transmission there are currently two RA modes; corresponding to the downlink data transmission, there are currently three RA modes, and the RA information corresponding to different RA modes has different bit numbers.
  • the TTI is 1 ms
  • the eNB sends only one DCI in the TTI of 1 ms to notify the UE to receive or send a packet data of 1 ms TTI.
  • the base station may need to send multiple DCIs to notify the UE to receive or send multiple short TTI data packets within 1 ms. .
  • the DCI is carried by the PDCCH, after the short TTI data packet is introduced, more DCI needs to be transmitted in a unit time, and the number of bits of the RA information to be transmitted per unit time is correspondingly increased, resulting in an overhead of the RA information. Big.
  • the wireless communication system provided in Embodiment 1 includes: a base station 101 and a terminal device 102, where
  • the base station 101 is configured to determine, according to a resource scheduling granularity, a data transmission resource used by the scheduling terminal device 102 to perform data transmission, and send a DCI to the terminal device, where the DCI is used to indicate the data transmission resource, and use the data transmission resource and the terminal device. 102 for data transmission;
  • the terminal device 102 is configured to receive the DCI sent by the base station 101, determine the data transmission resource used for performing the foregoing data transmission according to the resource scheduling granularity and the DCI, and perform data transmission with the base station 101 by using the data transmission resource;
  • the data transmission resource is less than 1 subframe in the time domain or less than 1 ms. That is, the short TTI data transmission resource can effectively shorten the data transmission delay.
  • the data transmission between the terminal device 102 and the base station 101 is short TTI data transmission; or the data transmission resource has a TTI of 1 ms or 1 subframe.
  • the data transmission resource is called "ordinary data transmission resource”.
  • the data transmission between the terminal device 102 and the base station 101 can be referred to as "ordinary data transmission", and the flexible configuration of the data transmission resource is realized by the granularity of the resource scheduling.
  • the TTI of the short TTI data transmission is less than 1 subframe or less than 1 ms.
  • the data transmission is short TTI data transmission
  • the short TTI data transmission resource indicated by the DCI is less than one subframe in the time domain
  • scheduling of data transmission with a TTI less than one subframe can be implemented.
  • the short TTI data transmission resource indicated by the DCI is less than 1 ms in the time domain
  • scheduling of data transmission with a TTI less than 1 ms can be implemented.
  • the data transmission may be a short TTI data transmission or a normal data transmission.
  • the data transmission resource may be a short TTI data transmission resource or a normal data transmission resource.
  • the wireless communication system provided in the first embodiment can adopt different wireless communication systems.
  • the applicable wireless communication system of the first embodiment includes but is not limited to the following various standards:
  • GSM Global System of Mobile communication
  • CDMA Code Division Multiple Access
  • CDMA Code Division Multiple Access
  • TD-SCDMA Wideband Code Division Multiple Access
  • WCDMA Time Division Duplexing-Long Term Evolution
  • FDD LTE Frequency Division Duplexing-Long Term Evolution
  • LTE-advanced Long Term Evolution-Advanced
  • PHS Personal Handy-phone System
  • WiFi Wireless Fidelity
  • WiMAX Worldwide Interoperability for Microwave Access
  • Bluetooth Bluetooth
  • the terminal device 102 can be a user equipment, including but not limited to: a mobile phone, a tablet computer, Personal Digital Assistant (PDA), Point of Sales (POS), on-board computer, etc.
  • PDA Personal Digital Assistant
  • POS Point of Sales
  • the base station 101 provides a wireless interface to the terminal device 102, which may also be referred to as an air interface, an air interface, and the terminal device 102 accesses the wireless communication system through the base station 101. Further, the base station 101 may further include a control device for managing the base station 101.
  • the base station 101 may be an evolved NodeB (eNodeB), and the terminal device 102 may be a UE; for a TD-SCDMA system or a WCDMA system, the base station 101 may include Node B (NodeB), or including a NodeB and a Radio Network Controller (RNC), the terminal device 102 may be a UE; for the GSM system, the base station 101 may include a Base Transceiver Station (BTS), or The BTS and the Base Station Controller (BSC) are included, and the terminal device 102 is a mobile station (MS).
  • the base station 101 can include: an access point (AP) and/or access.
  • the controller (AC) the terminal device 102 can be a station (Station, STA).
  • the LTE system is taken as an example in the following description, but the embodiment of the present invention is not applicable to the LTE system.
  • any wireless communication system that performs data transmission through scheduling may be provided by using the embodiments of the present invention.
  • the scheme is to provide a scheduling of data transmission with a TTI less than 1 subframe or 1 ms.
  • Embodiments of the present invention are applicable to scenarios of uplink data transmission and downlink data transmission.
  • the process includes the following steps:
  • the base station 101 determines that the data transmission with the terminal device 102 is a short TTI data transmission
  • the base station 101 configures a short TTI data transmission mode, and notifies the terminal device 102 to perform short TTI data transmission.
  • step S203 After receiving the notification of step S202, the terminal device 102 determines to perform short TTI data transmission.
  • the base station 101 determines a resource scheduling granularity.
  • the base station 101 determines a data transmission resource according to a resource scheduling granularity.
  • the base station 101 sends a DCI to the terminal device 102, where the DCI indicates a data transmission resource for performing data transmission with the terminal device 102.
  • the terminal device 102 determines a resource scheduling granularity.
  • the terminal device 102 determines a data transmission resource according to the resource scheduling granularity and the DCI.
  • S209 The terminal device 102 and the base station 101 perform data transmission on the determined data transmission resource.
  • Steps S201 to S203 are optional steps. For example, when only the short TTI data transmission is performed between the base station 101 and the terminal device 102 according to the prior agreement, or when normal data transmission is performed, steps S201 to S203 may be omitted.
  • the process can be used for scheduling of uplink data transmission as well as scheduling of downlink data transmission.
  • scheduling of uplink data transmission as well as scheduling of downlink data transmission.
  • it can be considered that it is applicable to both the uplink and the downlink.
  • the DCI when the data transmission is downlink data transmission, the DCI can be used to indicate the transmission resource of the downlink data transmission; when the data transmission is the uplink data transmission, the DCI can be used to indicate the transmission resource of the uplink data transmission.
  • the base station 101 may determine to perform short TTI data transmission with the terminal device 102 when at least one of the following conditions is met:
  • the delay requirement of the service currently used by the terminal device 102 is less than the set delay threshold
  • the downlink system bandwidth is greater than the set bandwidth threshold
  • the resource availability rate available for short TTI data transmission over the system bandwidth is greater than the set resource availability threshold.
  • the base station 101 configures the length of the TTI of the data transmission according to the latency requirement of the service currently used by the terminal device 102. For example, for the hourly extension service, the base station configures short TTI data transmission; for non-hourly extension services, the base station configures 1 ms TTI data transmission, and the delay threshold can be set to 0.1 ms, 0.2 ms, and the like.
  • the base station 101 configures the length of the TTI of the data transmission according to the system bandwidth. Specifically, the base station 101 configures the TTI length of the downlink data transmission or the uplink data transmission according to the downlink system bandwidth.
  • the bandwidth of the downlink system is small, if the short TTI data transmission is performed, the physical downlink control channel may be caused.
  • the PDCCH has a large overhead and affects data transmission.
  • the base station 101 can configure the downlink data transmission or the uplink data transmission of the short TTI; when the downlink system bandwidth is not greater than the set bandwidth threshold, the downlink data transmission or uplink of the short TTI is not configured. data transmission.
  • the base station 101 configures the TTI length of the uplink data transmission according to the uplink system bandwidth.
  • the bandwidth threshold may be: 6 RBs, 10 RBs, 25 RBs, 26 RBs, 49 RBs, 50 RBs, or 63 RBs.
  • the base station 101 configures the length of the TTI of the data transmission according to the delay requirement of the service currently used by the terminal device 102. For example, for the hour-delay service, the base station configures short TTI data transmission; for non-hour-delay services, the base station configures data transmission of 1 ms TTI, and the delay threshold can be set to 0.1 ms, 0.2 ms, and the like.
  • the base station can configure short TTI data transmission.
  • the available REs on the n downlink symbols are not greater than M, the base station cannot configure short TTI data transmission.
  • the available RE is an RE that can be used for short TTI data transmission.
  • n 1, 2, 3, 4, 5, 6 or 7;
  • L MAX is the maximum aggregation level of the physical downlink control channel (such as PDCCH)
  • M CCE indicates that one CCE is composed of M CCE REs
  • M ex is the minimum number of REs for short TTI data transmission, and M ex can be pre- After the configuration or the base station is configured, the UE is notified by the high layer signaling.
  • 20MHz downlink system bandwidth where 100 RBs can be used for short TTI data transmission, such that 1200 available REs on one downlink symbol (excluding Cell-specific reference signals (CRS)) or 1000 (CRS with 1 antenna port).
  • CRS Cell-specific reference signals
  • M CCE 36
  • M ex 240
  • CRS CRS containing 1 antenna port
  • M 528 or 488. Therefore, the available RE on one downlink symbol is greater than M, and the base station can configure short TTI data transmission.
  • 5MHz downlink system bandwidth where 25 RBs can be used for short TTI data transmission, such that there are 300 available REs on one downlink symbol (Cell-specific reference signals are not included). ) or 250 (CRS with 1 antenna port).
  • M 528 or 488. Therefore, the available RE on one downlink symbol is less than M, and the base station cannot configure short TTI data transmission.
  • the resource availability threshold is M divided by n.
  • the base station 102 can notify the terminal device 102 through high layer signaling or physical layer signaling, and the data transmission between the base station 101 and the terminal device 102 is Short TTI data transmission, ie, base station 101 is configured with a short TTI data transmission mode.
  • High Layer Signaling is relative to physical layer signaling. Signals from the higher layer are transmitted at a slower frequency, including Radio Resource Control (RRC) signaling and media access. Control (Media Access Control, MAC) signaling.
  • RRC Radio Resource Control
  • MAC Media Access Control
  • the base station may notify the terminal device 102 through high layer signaling or physical layer signaling, and the uplink data transmission or the downlink data transmission between the base station 101 and the terminal device 102 is short TTI data transmission.
  • the base station 101 transmits DCI format 0/1/1A/1B/1D/2/2A/2B/2C/2D/4 in the downlink control region, or transmits the present invention. DCI in the examples.
  • the base station 101 transmits DCI format 1/1A/1B/1D/2/2A/2B/2C/2D
  • the base station 101 schedules a downlink data packet with a TTI equal to 1 ms.
  • the base station 101 When the base station 101 transmits the DCI format 0/4, the base station 101 schedules an uplink data packet with a TTI equal to 1 ms. When the base station 101 transmits the DCI in the embodiment of the present invention, the base station 101 schedules a short TTI data packet. In order to reduce the number of PDCCH blind detections of the UE, the number of downlink control information bits of the DCI and the DCI format 1A/DCI format 0 in the embodiment of the present invention may be configured as many.
  • the terminal device 102 Upon receiving the notification of step S202, the terminal device 102 determines that the data transmission with the base station 101 is a short TTI data transmission. Further, after receiving the notification of step S202, the terminal device 102 determines that the uplink data transmission or the downlink data transmission with the base station 101 is a short TTI data transmission.
  • the base station 101 may determine the granularity of the resource scheduling by using one of a plurality of modes including the five modes listed in Table 1.
  • the DCI is used to indicate a data transmission resource for data transmission with the terminal device 102.
  • the resource scheduling granularity may be a time domain resource scheduling granularity or a frequency domain resource scheduling granularity. In the following description, if the time domain resource scheduling granularity and the frequency domain resource scheduling granularity are not distinguished, it can be considered that both the time domain and the frequency domain are applicable.
  • the base station 101 needs to determine the bandwidth that can be occupied by short TTI data transmission. Further, the base station 101 notifies the UE of the bandwidth that can be occupied by the short TTI data transmission through high layer signaling or physical layer signaling.
  • the bandwidth that can be occupied by short TTI data transmission can be simply referred to as “short TTI data transmission available bandwidth”.
  • the resource scheduling granularity is determined by using mode 1, mode four or mode five, optionally, The higher the CCE aggregation level of the physical downlink control channel carrying the DCI, the larger the resource scheduling granularity.
  • the base station 101 may first determine the CCE aggregation level of the physical downlink control channel carrying the DCI. Optionally, the base station 101 may determine the CCE aggregation level according to the channel status of the terminal device 102.
  • the base station 101 can determine the channel condition of the terminal device 102 in various manners.
  • the base station 101 determines the channel condition of the terminal device 102 according to the channel measurement report reported by the terminal device 102.
  • the channel measurement report may be channel state information (CSI), and the higher the signal to interference plus noise ratio (SINR) indicated by the CSI, the better the channel condition.
  • the channel measurement report may also be the downlink signal reception strength, such as: Reference Signal Receiving Power (RSRP), the greater the strength, the better the channel condition.
  • RSRP Reference Signal Receiving Power
  • the base station 101 determines the channel condition of the terminal device 102 by measuring the uplink reference signal sent by the terminal device 102.
  • the uplink reference signal may include, but is not limited to, a Sounding Reference Signal (SRS) and a DeModulation Reference Signal (DMRS).
  • SRS Sounding Reference Signal
  • DMRS DeModulation Reference Signal
  • the base station 101 determines that the channel conditions of the terminal device 102 are not limited to the above two modes, and are not enumerated here.
  • the base station 101 may also determine the CCE aggregation level adopted by the physical downlink control channel according to the number of information bits of the DCI sent to the terminal device 102.
  • the base station determines that the physical downlink control channel cannot adopt the CCE aggregation level with L being 1. This is because one CCE includes 36 REs.
  • the CCE aggregation level is 1, 36 REs can carry a limited number of information bits. Therefore, when the number of information bits included in the DCI is large, the CCE with the aggregation level of 1 cannot be carried.
  • the following describes the granularity of the resource scheduling granularity according to the CCE aggregation level of the physical downlink control channel carrying the DCI in the first mode.
  • the base station 101 may determine an uplink time domain resource scheduling granularity according to at least one of the following rules:
  • the CCE aggregation level When the CCE aggregation level is 1, it indicates that the channel state of the terminal device 102 is good, and the base station 101 determines that the uplink time domain resource scheduling granularity is 1 symbol;
  • the base station 101 determines that the uplink time domain resource scheduling granularity is 1 or 2 symbols;
  • the base station 101 determines that the uplink time domain resource scheduling granularity is 3 symbols or 4 symbols or 1 slot;
  • the base station 101 determines that the uplink time domain resource scheduling granularity is 1 slot.
  • the following describes the granularity of the downlink time domain resource scheduling granularity, the downlink frequency domain resource scheduling granularity, and the uplink frequency domain resource scheduling granularity, and specifically describes the specific scheme when the resource scheduling granularity is determined by the second mode or the third mode.
  • the base station 101 determines the downlink time domain resource scheduling granularity according to the downlink system bandwidth or the downlink short TTI data transmission available bandwidth.
  • time domain resource scheduling granularity is N symb , where or, or
  • the number of RBs included in the downlink bandwidth represents the downlink bandwidth.
  • the number of RBs included in the available bandwidth for the downlink short TTI data transmission that is, the downlink short TTI data transmission available bandwidth.
  • the base station 101 may determine the downlink time domain resource scheduling granularity according to at least one of the following rules:
  • the time domain resource scheduling granularity of the downlink short TTI data packet is one time slot
  • the time domain resource scheduling granularity of the downlink short TTI data packet is 3 or 4 symbols, or is a time slot;
  • the time domain resource scheduling granularity of the downlink short TTI data packet is 2, 3 or 4 symbols, or is a time slot;
  • the time domain resource scheduling granularity of the downlink short TTI data packet is 1 or 2 symbols.
  • the downlink short TTI data transmission available bandwidth can be used to replace the downlink system bandwidth in the above rules, and the number of RBs included, the time domain resource scheduling granularity, the principle and the downlink system bandwidth can be set as needed. The situation is similar and will not be repeated here.
  • the RB number and the time domain resource scheduling granularity are set as above.
  • the value range may be the same as the downlink system bandwidth, or may be adjusted according to actual conditions.
  • the base station 101 determines the downlink frequency domain resource scheduling granularity according to the downlink system bandwidth or the downlink short TTI data transmission available bandwidth.
  • the downlink system bandwidth or the downlink short TTI data transmission available bandwidth is smaller, and the number of frequency domain resource scheduling granularities included in the downlink system bandwidth or the downlink short TTI data transmission available bandwidth is smaller.
  • the base station 101 may determine the downlink frequency domain resource scheduling granularity according to at least one of the following rules:
  • the downlink frequency domain resource scheduling granularity is RB
  • the downlink frequency domain resource scheduling granularity is or RB
  • the downlink frequency domain resource scheduling granularity is or or RB
  • the downlink frequency domain resource scheduling granularity is or RB.
  • the downlink short TTI data transmission available bandwidth can be used to replace the downlink system bandwidth in the above rules, and the number of RBs included, the frequency domain resource scheduling granularity, the principle and the downlink system bandwidth can be set as needed. The situation is similar and will not be repeated here.
  • the RB number and the frequency domain resource scheduling granularity are set as above.
  • the value range may be the same as the downlink system bandwidth, or may be adjusted according to actual conditions.
  • the base station 101 determines the uplink frequency domain resource scheduling granularity according to the uplink system bandwidth or the uplink short TTI data transmission available bandwidth.
  • the base station 101 can determine the uplink frequency domain resource scheduling granularity according to the following rules:
  • the uplink frequency domain resource scheduling granularity is RB
  • the uplink frequency domain resource scheduling granularity is or RB
  • the uplink frequency domain resource scheduling granularity is or or RB
  • the uplink frequency domain resource scheduling granularity is or RB.
  • the uplink short-TTI data transmission available bandwidth can be used to replace the uplink system bandwidth in the above rule, and the number of RBs included, the frequency domain resource scheduling granularity, the principle and the uplink system bandwidth can be set as needed. The situation is similar and will not be repeated here.
  • the RB number and the frequency domain resource scheduling granularity are set as above.
  • the value range may be the same as the downlink system bandwidth, or may be adjusted according to actual conditions.
  • the following describes the granularity of the downlink time domain resource scheduling granularity, the downlink frequency domain resource scheduling granularity, and the uplink frequency domain resource scheduling granularity, and specifically describes the specific scheme when the resource scheduling granularity is determined by using the fourth or fifth method.
  • the base station 101 determines the downlink time domain resource scheduling granularity according to the CCE aggregation level and the downlink system bandwidth of the physical downlink control channel carrying the DCI, or the base station 101 determines the CCE aggregation level and the downlink short TTI data transmission available bandwidth of the physical downlink control channel carrying the DCI. Downstream time domain resource scheduling granularity.
  • the time domain resource scheduling granularity is recorded as a symbol group (SG, Symbol Group).
  • the downlink time domain resource scheduling granularity is N symb ;
  • the base station 101 determines the granularity of the downlink time domain resource scheduling according to the following rules:
  • the rule includes at least one of the following rules: when the system bandwidth is less than or equal to 10 RBs, the base station 101 determines that the downlink time domain resource scheduling granularity is 1 or 2 symbols; when the system bandwidth is greater than 10 In the RB, the base station determines that the minimum time domain resource scheduling granularity of the downlink short TTI data packet is 1 symbol.
  • the rule includes at least one of the following rules:
  • the downlink time domain resource scheduling granularity is 2, 3 or 4 symbols; when the downlink system bandwidth is 11 to 26 RBs, the downlink time domain resource scheduling granularity is 1 or 2 symbols.
  • the base station determines that the minimum time domain resource scheduling granularity of the downlink short TTI data packet is 1 or 2 symbols; when the downlink system bandwidth is 64 to 110 RBs, the downlink time domain resource The scheduling granularity is 1 symbol.
  • the rule includes at least one of the following rules:
  • the downlink time domain resource scheduling granularity is 3 or 4 symbols, or is a slot; when the downlink system bandwidth is 11 to 26 RBs, when downlinking The domain resource scheduling granularity is 2, 3 or 4 symbols, or a time slot.
  • the downlink system bandwidth is 27 to 63 RBs, the downlink time domain resource scheduling granularity is 1, 2, 3 or 4 symbols;
  • the downlink time domain resource scheduling granularity is 1 or 2 symbols.
  • the rule includes at least one of the following rules:
  • the downlink time domain resource scheduling granularity is one time slot; when the downlink system bandwidth is 11 to 26 RBs, the downlink time domain resource scheduling granularity is 3 or 4 symbols, or one Time slot; when the downlink system bandwidth is 27 to 63 RBs, the downlink time domain resource scheduling granularity is 2, 3 or 4 symbols, or is a time slot; when the downlink system bandwidth is 64 to 110 RBs, when downlinking
  • the domain resource scheduling granularity is 1 or 2 symbols.
  • the base station 101 can determine the downlink time domain resource scheduling granularity according to Table 2 below.
  • the base station 101 determines the downlink time domain resource scheduling granularity SG according to the aggregation level and the downlink system bandwidth.
  • the downlink short TTI data transmission available bandwidth can be used to replace the downlink system bandwidth in the above rule, and the RB number included in the bandwidth, the time domain resource scheduling granularity, the principle and the downlink system can be set as needed.
  • the situation of bandwidth is similar, and the description is not repeated here. Said.
  • the RB number and the time domain resource scheduling granularity are set as above.
  • the value range may be the same as the downlink system bandwidth, or may be adjusted according to actual conditions.
  • the base station 101 determines the downlink frequency domain resource scheduling granularity according to the CCE aggregation level and the downlink system bandwidth of the physical downlink control channel carrying the DCI, or the base station 101 determines the CCE aggregation level and the downlink short TTI data transmission available bandwidth of the physical downlink control channel carrying the DCI. Downstream frequency domain resource scheduling granularity.
  • the frequency domain resource scheduling granularity is recorded as a resource block group (RBG).
  • RBG resource block group
  • the base station 101 determines the granularity of the downlink frequency domain resource scheduling according to the following rules:
  • the rule includes at least one of the following rules: when the downlink system bandwidth is less than or equal to 10 RBs, the downlink frequency domain resource scheduling granularity is RB; when the downlink system bandwidth is 11 to 26 RBs, the downlink frequency domain resource scheduling granularity is or RB; when the downlink system bandwidth is 27 to 63 RBs, the downlink frequency domain resource scheduling granularity is or or RB; when the downlink system bandwidth is 64 to 110 RBs, the downlink frequency domain resource scheduling granularity is or RB. among them, Indicates rounding down.
  • the rule includes at least one of the following rules: when the downlink system bandwidth is less than or equal to 10 RBs, the downlink frequency domain resource scheduling granularity is RB; when the downlink system bandwidth is 11 to 26 RBs, the downlink frequency domain resource scheduling granularity is RB; when the downlink system bandwidth is 27 to 63 RBs, the downlink frequency domain resource scheduling granularity is or RB; when the downlink system bandwidth is 64 to 110 RBs, the downlink frequency domain resource scheduling granularity is or RB.
  • the rule includes at least one of the following rules: when the downlink system bandwidth is less than or equal to 10 RBs, the downlink frequency domain resource scheduling granularity is RB; when the downlink system bandwidth is 11 to 26 RBs, the downlink frequency domain resource scheduling granularity is RB; when the downlink system bandwidth is 27 to 63 RBs, the downlink frequency domain resource scheduling granularity is RB; when the downlink system bandwidth is 64 to 110 RBs, the downlink frequency domain resource scheduling granularity is RB.
  • the base station determines the downlink frequency domain resource scheduling granularity according to the CCE aggregation level, as shown in Table 2.
  • the base station 101 determines the downlink frequency domain resource scheduling granularity RBG according to the aggregation level and the downlink system bandwidth.
  • the downlink short TTI data transmission available bandwidth can be used to replace the downlink system bandwidth in the above rules, and the number of RBs included in the bandwidth, the frequency domain resource scheduling granularity, the principle and the downlink system can be set as needed.
  • the situation of bandwidth is similar, and the description will not be repeated here.
  • the RB number and the frequency domain resource scheduling granularity are set as above.
  • the value range may be the same as the downlink system bandwidth, or may be adjusted according to actual conditions.
  • the method for determining the granularity of the uplink frequency domain resource scheduling by the base station 101 is similar to the method for the granularity of the downlink frequency domain resource scheduling, where Replace with According to the uplink situation, the number of RBs included in the bandwidth can be set.
  • Step S204 The above describes the scheme in which the base station 101 determines the granularity of the resource scheduling in step S204.
  • Step S205 is described below, and the base station 101 determines the data transmission resource according to the resource scheduling granularity.
  • the base station When determining the data transmission resources, the base station may have the following situations:
  • the resource scheduling granularity includes: a time domain resource scheduling granularity, and the base station 101 determines the data transmission resource used for data transmission with the terminal device 102 in the time domain according to the time domain resource scheduling granularity (the time domain resource scheduling granularity may be an integer number of symbols). The symbol occupied on it.
  • the data transmission resource occupies different symbols in the time domain, and the data transmission resource occupies the frequency bandwidth resource of the same bandwidth in the frequency domain.
  • the same bandwidth can be: downlink system bandwidth Downlink short TTI data transmission available bandwidth Or downlink specific bandwidth
  • the specific bandwidth can be 3, 4, 5, 10, 14, 15, 20 or 25
  • the same bandwidth can be: downlink system bandwidth Downlink short TTI data transmission available bandwidth Or downlink specific bandwidth
  • the specific bandwidth can be 3, 4, 5, 10, 14, 15, 20 or 25.
  • the base station 101 and the terminal device 102 can agree on the same bandwidth by using high layer signaling according to the provisions in the protocol or between data transmissions, so that the DCI does not need the information bits to indicate the frequency domain resources occupied by the data transmission resources.
  • the data transmission resource occupies a number of symbols starting with a reference symbol in the time domain.
  • the reference symbol is: the first symbol occupied by the DCI, the last symbol occupied by the DCI, the kth symbol after the first symbol occupied by the DCI, or the kth after the last symbol occupied by the DCI.
  • Symbol, k is a positive integer.
  • the data transmission resource occupies several uplink symbols starting with a reference symbol in the time domain.
  • the data transmission resource occupies a number of downlink symbols starting with a reference symbol in the time domain.
  • the base station 101 and the terminal device 102 can specify the location of the reference symbol by using high layer signaling according to the provisions in the protocol, or between data transmissions, so that the DCI does not need to indicate that the data transmission resource is in time.
  • the starting position on the domain can be specified by using high layer signaling according to the provisions in the protocol, or between data transmissions, so that the DCI does not need to indicate that the data transmission resource is in time.
  • the DCI may include only information indicating the relative positions of the above-described several symbols with respect to the reference symbols.
  • the CP is a normal CP
  • the interval between the first symbol and the last symbol occupied by the allocated data transmission resource in the time domain is not more than 6 symbols, and the time domain resource scheduling granularity is 1 symbol as an example.
  • the 7-bit bitmap is used to indicate the position of the above-mentioned several symbols with respect to the reference symbol.
  • the time domain resource scheduling granularity is 2 symbols.
  • the base station 101 allocates the symbols 2, 3, and 5 to the terminal device 102. 6.
  • the time domain resource scheduling granularity is 2 symbols, a single symbol such as 1, 3, and 5 does not appear in the allocated symbols. Therefore, it is only necessary to indicate that each time domain resource scheduling granularity is relative to The relative position of the reference symbol is sufficient. In this case, only the 6-bit bitmap is required. For example, if the symbol assigned to the terminal device 102 is the symbol 1, 2, 3, 4, 6, or 7, the terminal 101 can be used to indicate that the terminal device 102 receives the symbol. After the information of the relative position, the first time domain resource scheduling granularity and the reference symbol distance are one symbol, and the second time domain resource scheduling granularity and the reference symbol distance are 3 symbols, and the third is determined. Domain resources scheduling granularity is 6 symbols and reference symbols. Compared with the RA information in the current DCI, the number of occupied information bits is small. Such a resource allocation method may be referred to as a discontinuous time domain resource allocation (Time Resource Allocation, TRA).
  • TRA discontinuous time domain resource allocation
  • the data transmission resource occupies consecutive X symbols starting from the reference symbol in the time domain, and X is a positive integer.
  • the DCI may include only the length indication information for indicating X.
  • the CP is a normal CP, Assume that the length of the time domain resource is no more than 7 symbols, and the time domain resource scheduling granularity is 1 symbol. In this case, only 3 bits are required to indicate X (as mentioned above, the position of the reference symbol does not need to be indicated);
  • the domain resource scheduling granularity is an example of three symbols. In this case, only one bit is required to indicate X. For example, “0” indicates that the length is 3 symbols, and “1” indicates that the length is 6 symbols.
  • the number of occupied information bits is small.
  • Such a resource allocation mode may be referred to as a continuous TRA.
  • the resource allocation mode may be as shown in FIG. 3, where the shaded part is a symbol occupied by the data transmission resource; the frequency domain is short.
  • the resource allocation manner can be as shown in FIG. 4, where the shaded portion is a symbol occupied by the data transmission resource.
  • the specific bandwidth in FIG. 4 may be indicated by information bits in the DCI.
  • the entire system bandwidth is divided into five parts, and a specific bit bandwidth may be indicated by a 5-bit bitmap, and X is indicated by 3 bits.
  • the DCI may include only 8-bit information. Used to indicate the allocated data transmission resources (as mentioned earlier, the location of the reference symbols need not be indicated).
  • the data transmission resource occupies the same symbol in the time domain starting from the reference symbol as the number of symbols included in the time domain resource granularity.
  • the information bit used to indicate the data transmission resource in the DCI may be empty, that is, the DCI may not be included.
  • the resource scheduling granularity includes: frequency domain resource scheduling granularity, and the base station 101 determines, according to the frequency domain resource scheduling granularity, the resources occupied by the data transmission resource in the frequency domain;
  • the data transmission resource occupies N consecutive symbols in the time domain, and N is a positive integer.
  • N is a positive integer.
  • CP is a long CP
  • N is not greater than 6.
  • CP is a normal CP
  • N is not greater than 7.
  • the base station 101 and the terminal device 102 can stipulate the positions of the N symbols by using the control message according to the provisions in the protocol, or the data transmission, so that the data transmission resource does not need to be indicated in the DCI.
  • the time domain location of the source is gone.
  • the base station 101 may determine that the resource occupied by the data transmission resource in the frequency domain is as large as the frequency domain resource scheduling granularity, for example, occupying consecutive resources, and occupying resources as large as the frequency domain resource scheduling granularity.
  • the starting symbol occupied by the data transmission resource in the time domain is a reference symbol, which is the first symbol occupied by the DCI, the last symbol occupied by the DCI, or the first symbol or the last symbol occupied by the DCI. After the kth symbol, k is a positive integer;
  • the DCI may include only information indicating a frequency domain start position of the data transmission resource, and the information of the frequency domain start location may be generated by the base station 101 according to the frequency domain resource scheduling granularity.
  • the following data transmission is taken as an example. Assuming that the downlink system bandwidth is 20 MHz (including 100 RBs) and the frequency domain scheduling granularity is 20 RB, there are only five possible frequency domain start positions (RB numbers are 0, 20, 40, 60, 80). ), the base station 101 only needs 3 bits to indicate the frequency domain start position. For example, '000' indicates that the frequency domain start position is an RB whose RB number is equal to 0, and '010' indicates that the frequency domain start position is an RB whose RB number is equal to 40. At this time, only 3 bits are required to indicate the allocated data transmission resources, and the number of information bits is smaller than the current RA information.
  • the resource scheduling granularity includes: a frequency domain resource scheduling granularity and a time domain resource scheduling granularity, and the base station 101 determines a symbol occupied by the data transmission resource in the time domain according to the time domain resource scheduling granularity, and determines the data transmission resource according to the frequency domain resource scheduling granularity. Resources used in the frequency domain.
  • the data transmission resource occupies consecutive symbols in the time domain, and the number of occupied symbols is equal to the number of symbols included in the time domain resource scheduling granularity, and the occupied resources in the frequency domain are as large as the frequency domain resource scheduling granularity; And the starting symbol occupied by the data transmission resource in the time domain is a reference symbol.
  • the DCI may include only information indicating a frequency domain start position of the data transmission resource, and the information of the frequency domain start location may be generated by the base station 101 according to the frequency domain resource scheduling granularity.
  • the frequency domain scheduling granularity is 20 RB, and there are only five possibilities in the frequency domain starting position (RB numbers are 0, 20, 40, 60, 80), and the base station 101 only needs 3 bits to indicate the frequency domain starting position.
  • '000' indicates that the frequency domain start position is an RB whose RB number is equal to 0, and '010' indicates that the frequency domain start position is an RB whose RB number is equal to 40.
  • only 3 bits are required to indicate the allocated data transmission resources, and the number of information bits is smaller than the current RA information.
  • the data transmission resource occupies consecutive X symbols starting from the reference symbol in the time domain, X is a positive integer, and the data transmission resource is a resource of a specified bandwidth starting from the frequency domain indicating the location in the frequency domain.
  • the DCI can include the following information:
  • the information about the start position of the frequency domain and the bandwidth information may be generated by the base station 101 according to the frequency domain resource scheduling granularity.
  • the following data transmission is taken as an example. Assuming that the downlink system bandwidth is 20 MHz (including 100 RBs) and the frequency domain scheduling granularity is 20 RBs, there are only five possible frequency domain start positions (RB numbers are 0, 20, 40, 60, 80), the base station 101 only needs 3 bits to indicate the starting position of the frequency domain, and 3 bits indicate the bandwidth of the data transmission resource (for example, the number of RBs is 20, 40, 60, 80 or 100). For example, '000' indicates that the frequency domain start position is an RB whose RB number is equal to 0, and '010' indicates that the frequency domain start position is an RB whose RB number is equal to 40. '000' indicates that the bandwidth is 20 RB, and '011' indicates that the bandwidth is 80 RB.
  • the time domain resource scheduling granularity is 1 symbol. In this case, only 3 bits are required to indicate X (as mentioned above, the position of the reference symbol does not need to be indicated);
  • the domain resource scheduling granularity is an example of three symbols. In this case, only one bit is required to indicate X. For example, “0” indicates that the length is 3 symbols, and “1” indicates that the length is 6 symbols.
  • the data transmission resource occupies N symbols in the time domain, and for different symbols occupied by the data transmission resource in the time domain, the data transmission resource occupies the same bandwidth frequency domain resource in the frequency domain; or
  • the data transmission resource occupies N symbols in the time domain, the start position of the time domain is a reference symbol, and the resource and frequency domain resource scheduling occupied by the data transmission resource in the frequency domain for different symbols occupied by the data transmission resource in the time domain
  • the granularity is as large; and according to the protocol or the control message before the data transmission, the frequency domain starting position of the data transmission resource is the first RB occupied by the DCI.
  • the information bit for indicating the data transmission resource in the DCI is empty, that is, the information bit for indicating the data transmission resource may not be included in the DCI.
  • the base station 101 can adopt the resource allocation manner of the pre-frequency domain and the time domain as shown in FIG. 5.
  • the base station 101 needs The bits indicate the allocated data transmission resources. among them, The number of symbols included for a slot, where For the downlink system bandwidth, N RB is the downlink frequency domain resource scheduling granularity.
  • N RB is the uplink frequency domain resource scheduling granularity.
  • the base station 101 may place the information bit in the RA information and send it to the terminal device 102.
  • step S206 the base station 101 transmits the DCI to the terminal device 102.
  • the base station 101 transmits the DCI on the data transmission resource used by the DCI to perform data transmission with the terminal device 102.
  • the base station 101 sends a DCI, and the DCI is carried in the first PDCCH, and the base station 101 determines that the time-frequency domain resource of the first PDCCH is located in the first area, and the first area is a short TTI with the terminal device 102.
  • the area used for data transmission that is, the time-frequency domain resource area indicated by the RA information in the DCI.
  • the PDCCH carrying the DCI is mapped from the first symbol of the first region, and the available resources that occupy the first symbol continue to be mapped to the available resources of the next symbol.
  • the terminal device 102 can quickly decode the PDCCH.
  • the base station 101 may determine the time-frequency domain resource of the PDCCH according to the set rule, or the base station notifies the terminal device 102 of the time-frequency domain resource of the PDCCH by using the high layer signaling or the physical layer signaling.
  • the base station 101 assembles the DCI, adds the CRC of the DCI, and performs scrambling using the Radio Network Temporary Identity (RNTI) of the terminal device 102, then performs channel coding and rate matching on the DCI to which the CRC is added, and modulates, and finally Map to the time-frequency domain resource to send out.
  • RNTI Radio Network Temporary Identity
  • step S207 the terminal device 102 determines the resource scheduling granularity.
  • the method for determining the granularity of the resource scheduling by the terminal device 102 is the same as the method for determining the granularity of the resource scheduling by the base station 101 in step S204. It should be noted that the terminal device 102 determines the resource scheduling according to the CCE aggregation level of the physical downlink control channel carrying the DCI. At the granularity, the terminal device 102 can obtain the CCE aggregation level of the physical downlink control channel by performing a blind detection process on the physical downlink control channel carrying the DCI.
  • the terminal device 102 may first determine the search space of the physical downlink control channel.
  • the search is empty
  • the PDCCH is a set of candidate physical downlink control channels, and the PDCCH is taken as an example.
  • the search space is a candidate PDCCH (PDCCH candidate) set.
  • the terminal device 102 needs to monitor each candidate PDCCH in the candidate PDCCH set, and therefore, the search space is the PDCCH set monitored by the terminal device 102.
  • Each CCE aggregation level corresponds to one search space.
  • the terminal device 102 For each CCE aggregation level, the terminal device 102 performs blind detection on each candidate PDCCH in the candidate PDCCH set corresponding to the CCE aggregation level, or detects a DCI sent to itself, and determines a candidate PDCCH set to which the PDCCH belongs.
  • the corresponding CCE aggregation level is the CCE aggregation level of the PDCCH carrying the DCI to be determined.
  • step S208 the terminal device 102 determines the data transmission resource according to the resource scheduling granularity and the DCI.
  • the terminal device 102 After receiving the DCI, the terminal device 102 interprets the RA information in the DCI to obtain information for the data transmission resource.
  • the terminal device 102 may determine the data transmission resource according to the RA information and the resource scheduling granularity in a manner opposite to the determination of the data transmission resource by the base station 101 in step S205.
  • the data transmission resource occupies the same bandwidth frequency domain resource in the frequency domain, and the data transmission resource occupies the reference symbol in the time domain.
  • the base station 101 and the terminal device 102 know what the frequency domain resources of the same bandwidth are before the data transmission, and know the location of the reference symbol, the terminal device 102 includes the DCI included in the received DCI for indicating the above. After the information of the relative positions of several symbols with respect to the reference symbols, it can be determined which symbols the data transmission resources occupy in the time domain. In this way, the data transmission resources in the time domain and the data transmission resources in the frequency domain are respectively determined.
  • the base station 101 performs data transmission with the terminal device 102 on the data transmission resource determined in step S205, and the terminal device 102 performs data transmission with the base station 101 on the data transmission resource determined according to the DCI in step S208.
  • the base station 101 does in step S205.
  • the downlink data packet is sent on the fixed data transmission resource, and the terminal device 102 receives the downlink data packet according to the data transmission resource determined by the DCI in step S208; for the uplink data transmission, the data transmission resource determined by the terminal device 102 according to the DCI in step S208
  • the uplink data packet is transmitted, and the base station 101 receives the uplink data packet on the data transmission resource determined in step S205.
  • the base station provided in Embodiment 2 includes: a processing module 601 and a transceiver module 602. among them,
  • the processing module 601 is configured to determine a resource scheduling granularity, and determine, according to the determined resource scheduling granularity, a short TTI data transmission resource used by the scheduling terminal device to perform data transmission, where the short TTI data transmission resource is less than one subframe length in the time domain. Or less than 1ms;
  • the transceiver module 602 is configured to send downlink control information DCI to the terminal device, where the DCI is used to indicate the short TTI data transmission resource, and use the short TTI data transmission resource to perform data transmission with the terminal device.
  • the processing module 601 is specifically configured to determine the resource scheduling granularity in one of the following manners:
  • the available bandwidth of the short TTI data transmission is the bandwidth that the short TTI data transmission resource can occupy.
  • the processing module 601 determines the resource scheduling granularity according to the CCE aggregation level of the physical downlink control channel carrying the DCI,
  • the resource scheduling granularity includes a time domain resource scheduling granularity, and the time domain resource scheduling granularity is a minimum time domain resource allocation unit when the base station scheduling terminal device performs short TTI data transmission, including at least a symbol;
  • processing module 601 determines the resource scheduling granularity according to the CCE aggregation level and the system bandwidth of the physical downlink control channel carrying the DCI,
  • the resource scheduling granularity includes a time domain resource scheduling granularity, and the time domain resource scheduling granularity is a minimum time domain resource allocation unit when the base station scheduling terminal device performs short TTI data transmission, and includes at least one symbol;
  • processing module 601 determines the resource scheduling granularity according to the CCE aggregation level of the physical downlink control channel carrying the DCI and the available bandwidth of the short TTI data transmission,
  • the resource scheduling granularity includes: a time domain resource scheduling granularity, where the minimum time domain resource allocation unit when the base station scheduling terminal device performs short TTI data transmission, including at least one symbol;
  • the processing module 601 is specifically configured to:
  • the same bandwidth refers to: the same system bandwidth, the same short TTI data transmission available bandwidth, or the same specific bandwidth;
  • the available bandwidth of the short TTI data transmission is the bandwidth that the short TTI data transmission resource can occupy.
  • the resource scheduling granularity includes: a frequency domain resource scheduling granularity, where the frequency domain resource scheduling granularity is a minimum frequency domain resource allocation unit when the base station scheduling terminal device performs short TTI data transmission, and includes at least one RB;
  • the processing module 601 is specifically configured to:
  • the short TTI data transmission resource occupies N symbols in the time domain according to the frequency domain resource scheduling granularity.
  • the short TTI data transmission resource occupies N symbols in the time domain, and N is a positive integer.
  • N is a positive integer.
  • the cyclic prefix CP is a long CP, N Not more than 6, when the CP is a normal CP, N is not greater than 7.
  • the resource scheduling granularity includes: a frequency domain resource scheduling granularity and a time domain resource scheduling granularity;
  • the frequency domain resource scheduling granularity is a minimum frequency domain resource allocation unit when the base station scheduling terminal device performs short TTI data transmission, and includes at least one RB;
  • the time domain resource scheduling granularity is a minimum time domain resource allocation unit when the base station scheduling terminal device performs short TTI data transmission, and includes at least one symbol;
  • the processing module 601 is specifically configured to:
  • the resources occupied by the short TTI data transmission resources in the frequency domain are determined according to the frequency domain resource scheduling granularity.
  • the processing module 601 is specifically configured to: determine that the data transmission resource occupies consecutive X symbols starting from a reference symbol in the time domain, where X is a positive integer, and X is an integer multiple of a time domain resource scheduling granularity;
  • the reference symbol is: the first symbol occupied by the DCI, the last symbol occupied by the DCI, the kth symbol after the first symbol occupied by the DCI, or the kth symbol after the last symbol occupied by the DCI, k Is a positive integer;
  • the DCI includes: length indication information for indicating X, and the length indication information is generated by the processing module 601 according to the time domain resource scheduling granularity.
  • the processing module 601 is specifically configured to: determine that the short TTI data transmission resource occupies a plurality of symbols starting with a reference symbol in a time domain, and the number of occupied symbols is an integer multiple of a time domain resource scheduling granularity;
  • the reference symbol is: the first symbol occupied by the DCI, the last symbol occupied by the DCI, the kth symbol after the first symbol occupied by the DCI, or the kth symbol after the last symbol occupied by the DCI, k Is a positive integer;
  • the DCI includes information indicating a relative position of a plurality of symbols with respect to a reference symbol, and the information of the relative position is generated by the processing module 601 according to the time domain resource scheduling granularity and the relative position.
  • the processing module 601 is specifically configured to: determine that the short TTI data transmission resource occupies a number of symbols starting from a reference symbol in a time domain, where the occupied symbols are consecutive and occupy a plurality of symbols The number of symbols is the same as the number of symbols included in the time domain resource granularity;
  • the reference symbol is: the first symbol occupied by the DCI, the last symbol occupied by the DCI, the kth symbol after the first symbol occupied by the DCI, or the kth symbol after the last symbol occupied by the DCI, k Is a positive integer;
  • the information bits used in the DCI to indicate short TTI data transmission resources are empty.
  • processing module 601 is specifically configured to:
  • the reference symbol is the first symbol occupied by the DCI, the last symbol occupied by the DCI, and the kth symbol after the first symbol occupied by the DCI
  • the symbol, or the kth symbol after the last symbol occupied by the DCI, k is a positive integer
  • the DCI includes: information for indicating a frequency domain start position of the short TTI data transmission resource, and the information of the frequency domain start position is generated by the processing module 601 according to the frequency domain resource scheduling granularity.
  • processing module 601 is specifically configured to:
  • the reference symbol is: the first symbol occupied by the DCI, the last symbol occupied by the DCI, the kth symbol after the first symbol occupied by the DCI, or the kth symbol after the last symbol occupied by the DCI, k Is a positive integer;
  • the DCI includes: information for indicating a frequency domain start position of the short TTI data transmission resource, and the information of the frequency domain start position is generated by the processing module 601 according to the frequency domain resource scheduling granularity.
  • processing module 601 is specifically configured to:
  • the short TTI data transmission resource occupies consecutive X symbols starting from the reference symbol in the time domain, and X is a positive integer;
  • the reference symbol is: the first symbol occupied by the DCI, the last symbol occupied by the DCI, occupied by the DCI The kth symbol after the first symbol, or the kth symbol after the last symbol occupied by the DCI, k is a positive integer;
  • the DCI includes: start position information indicating a start position of the frequency domain and bandwidth information of the specified bandwidth, and length indication information for indicating X; information of the frequency domain start position, bandwidth information is processed by the processing module 601 according to the frequency domain
  • the length indication information generated by the resource scheduling granularity is generated by the processing module 601 according to the time domain resource scheduling granularity.
  • processing module 601 is further configured to: before determining the resource scheduling granularity, determine that at least one of the following conditions is met:
  • the delay requirement of the service currently used by the terminal device is less than the set delay threshold
  • the system bandwidth is greater than the set bandwidth threshold
  • the resource availability rate on the system bandwidth is greater than the set resource availability threshold.
  • the transceiver module 602 is further configured to:
  • the short TTI data transmission resource available to the terminal device is notified by the high layer signaling, and the available short TTI data transmission resource includes the short TTI data transmission available bandwidth and/or the time domain resource that the data transmission can occupy;
  • the available bandwidth of the short TTI data transmission is the bandwidth that the short TTI data transmission resource can occupy.
  • the transceiver module 602 is specifically configured to:
  • the DCI is sent on the short TTI data transmission resource indicated by the DCI.
  • the transceiver module 602 is specifically configured to:
  • the mapping starts from the first symbol of the short TTI data transmission resource indicated by the DCI, and continues to map to the next symbol when the first symbol is occupied.
  • base station 101 in the letter system For other optional implementation manners of the base station provided in the second embodiment, reference may be made to the wireless communication provided in the first embodiment. Base station 101 in the letter system.
  • the processing module 601 is configured to perform processing operations performed by the base station 101
  • the transceiver module 602 is configured to perform a transceiving operation performed by the base station 101.
  • the wireless communication system that can be used by the base station provided in the second embodiment can refer to various wireless communication systems described in the first embodiment.
  • the base station provided in the second embodiment provides a wireless interface to the terminal device in the wireless communication system, which may also be called an air interface and an air interface, and the terminal device accesses the wireless communication system through the base station.
  • the base station may be an eNodeB; for a TD-SCDMA system or a WCDMA system, the base station may include: a NodeB, or include a NodeB and an RNC; for a GSM system; the base station may include a BTS Or include BTS and BSC; for WiFi systems, the base station may include: AP and/or AC.
  • the base station determines the data transmission resource, and sends a DCI for indicating the data transmission resource to the terminal device, and then the base station performs data transmission with the terminal device on the determined data transmission resource.
  • the processing of the base station may include step S201, step S202, step S204, step S205, step S206, and step S209.
  • step S201 For the solution of each step, refer to the corresponding steps in the first embodiment, and details are not described herein again.
  • step S201, step S204, and step S205 may be performed by the processing module 601; step S202, step S206, and step S209 may be performed by the transceiver module 602.
  • the transceiver module 602 may be executed under the control of the processing module 601. Each step.
  • the transceiver module 602 may forward the uplink data to the processing module 601 for further processing, such as physical layer protocol processing such as channel decoding and demodulation, and a transport layer, an application layer, and the like. Protocol processing at other layers, etc.
  • the data transmission scheduled by the base station may be uplink transmission or downlink transmission.
  • the processing module 601 may refer to the implementation of the base station 101 in the first embodiment, and details are not described herein again.
  • FIG. 7 illustrates an alternate implementation of a base station in which the processing module 601 can be implemented by the processor 701 of FIG. 7, and the transceiver module 602 can be implemented by the transceiver 702 of FIG. among them
  • the bus architecture may include any number of interconnected buses and bridges, specifically linked by one or more processors represented by processor 701 and various circuits of memory represented by memory 703.
  • the bus architecture can also link various other circuits such as peripherals, voltage regulators, and power management circuits, which are well known in the art and, therefore, will not be further described herein.
  • the bus interface provides an interface.
  • Transceiver 702 can be a plurality of components, including a transmitter and a receiver, providing means for communicating with various other devices on a transmission medium.
  • the user interface 704 may also be an interface capable of externally connecting the required devices, including but not limited to a keypad, a display, a speaker, a microphone, a joystick, and the like.
  • FIG. 8 illustrates another alternative implementation of the base station, wherein the processing module 601 can be implemented by the processor 801 of FIG. 8, and the transceiver module 602 can be implemented by the transceiver 802 of FIG.
  • the terminal device provided in Embodiment 3 includes: a processing module 901 and a transceiver module 902. among them,
  • the processing module 901 is configured to determine a resource scheduling granularity.
  • the transceiver module 902 is configured to receive a DCI sent by the base station, where the DCI is used to indicate a short TTI data transmission resource used by the terminal device for data transmission, where the short TTI data transmission resource is less than 1 subframe in the time domain or less than 1 ms; determining, according to the foregoing resource scheduling granularity and DCI, a short TTI data transmission resource used by the terminal device to perform the foregoing data transmission;
  • the processing module 901 is specifically configured to determine the resource scheduling granularity in one of the following manners:
  • the available bandwidth of the short TTI data transmission is the bandwidth that the short TTI data transmission resource can occupy.
  • the processing module 901 determines the resource scheduling granularity according to the CCE aggregation level of the physical downlink control channel carrying the DCI,
  • the resource scheduling granularity includes a time domain resource scheduling granularity, and the time domain resource scheduling granularity is a minimum time domain resource allocation unit when the base station scheduling terminal device performs short TTI data transmission, and includes at least one symbol;
  • processing module 901 determines the resource scheduling granularity according to the CCE aggregation level and the system bandwidth of the physical downlink control channel carrying the DCI,
  • the resource scheduling granularity includes a time domain resource scheduling granularity, and the time domain resource scheduling granularity is a minimum time domain resource allocation unit when the base station scheduling terminal device performs short TTI data transmission, and includes at least one symbol;
  • processing module 901 determines the resource scheduling granularity according to the CCE aggregation level of the physical downlink control channel carrying the DCI and the available bandwidth of the short TTI data transmission,
  • the resource scheduling granularity includes: a time domain resource scheduling granularity, where the minimum time domain resource allocation unit when the base station scheduling terminal device performs short TTI data transmission, including at least one symbol;
  • a short TTI data transmission resource occupying different symbols in the time domain, and occupying frequency domain resources of the same bandwidth in the frequency domain;
  • the same bandwidth refers to: the same system bandwidth, the same short TTI data transmission available bandwidth, or the same specific bandwidth;
  • the available bandwidth of the short TTI data transmission is the bandwidth that the short TTI data transmission resource can occupy.
  • the resource scheduling granularity includes: a frequency domain resource scheduling granularity, where the frequency domain resource scheduling granularity is a minimum frequency domain resource allocation unit when the base station scheduling terminal device performs short TTI data transmission, and includes at least one RB;
  • the short TTI data transmission resource occupies N symbols in the time domain, and N is a positive integer.
  • N is a positive integer.
  • CP is a long CP
  • N is not greater than 6.
  • CP is a normal CP
  • N is not greater than 7.
  • the resource scheduling granularity includes: a frequency domain resource scheduling granularity and a time domain resource scheduling granularity;
  • the frequency domain resource scheduling granularity is a minimum frequency domain resource allocation unit when the base station scheduling terminal equipment performs short TTI data transmission, and includes at least one RB;
  • the time domain resource scheduling granularity is a minimum time domain resource allocation unit when the base station scheduling terminal device performs short TTI data transmission, and includes at least one symbol.
  • the DCI includes: length indication information used to indicate the number X of symbols occupied by the short TTI data transmission resource in the time domain;
  • the terminal device determines the short TTI data transmission resource according to the resource scheduling granularity and the DCI, including: the terminal device determines, according to the length indication information and the time domain resource scheduling granularity, that the short TTI data transmission resource occupies the reference symbol as a starting point in the time domain.
  • X symbols, X is a positive integer;
  • the reference symbol is: the first symbol occupied by the DCI, the last symbol occupied by the DCI, the kth symbol after the first symbol occupied by the DCI, or the kth symbol after the last symbol occupied by the DCI, k Is a positive integer.
  • the DCI includes: information used to indicate that the short TTI data transmission resource occupies a relative position of the plurality of symbols starting from the reference symbol with respect to the reference symbol in the time domain;
  • the reference symbol is: the first symbol occupied by the DCI, the last symbol occupied by the DCI, the kth symbol after the first symbol occupied by the DCI, or the kth symbol after the last symbol occupied by the DCI, k Is a positive integer;
  • the processing module 901 is specifically configured to: according to the relative location information and the time domain resource scheduling granularity, determine that the short TTI data transmission resource occupies several symbols starting from the reference symbol in the time domain.
  • the information bit used in the DCI to indicate the short TTI data transmission resource is empty
  • the processing module 901 is specifically configured to:
  • the short TTI data transmission resource occupies several symbols starting from the reference symbol in the time domain, and the occupied symbols are consecutive and occupy the number of symbols and the number of symbols included in the time domain resource granularity. the same;
  • the reference symbol is: the first symbol occupied by the DCI, the last symbol occupied by the DCI, the kth symbol after the first symbol occupied by the DCI, or the kth symbol after the last symbol occupied by the DCI, k Is a positive integer.
  • the DCI includes: start location information used to indicate a frequency domain start position of the short TTI data transmission resource;
  • the processing module 901 is specifically configured to:
  • the reference symbol is: the first symbol occupied by the DCI, the last symbol occupied by the DCI, and the kth after the first symbol occupied by the DCI
  • the symbol, or the kth symbol after the last symbol occupied by the DCI, k is a positive integer.
  • the DCI includes: start location information used to indicate a frequency domain start position of the short TTI data transmission resource;
  • the processing module 901 is specifically configured to:
  • the reference symbol is: the first symbol occupied by the DCI, the last symbol occupied by the DCI, and the kth after the first symbol occupied by the DCI
  • the symbol, or the kth symbol after the last symbol occupied by the DCI, k is a positive integer
  • the DCI includes: start location information indicating a frequency domain start position of the short TTI data transmission resource and bandwidth information of the short TTI data transmission resource; and indicating that the short TTI data transmission resource is occupied in the time domain.
  • the length of the symbol number X indicates information, and X is a positive integer;
  • the processing module 901 is specifically configured to:
  • the short TTI data transmission resource occupies consecutive X symbols starting from the reference symbol in the time domain, and the reference symbol is: the first symbol occupied by the DCI, and the last occupied by the DCI a symbol, the kth symbol after the first symbol occupied by the DCI, or the kth symbol after the last symbol occupied by the DCI, k is a positive integer;
  • the transceiver module 902 is further configured to:
  • the available short TTI data transmission resources include short TTI data transmission available bandwidth and/or short TTI data transmission occupies Time domain resource
  • the available bandwidth of the short TTI data transmission is the bandwidth that the short TTI data transmission resource can occupy.
  • processing module 901 is specifically configured to:
  • the DCI is obtained by blind inspection.
  • processing module 901 is specifically configured to:
  • blind detection is performed in the order of symbols.
  • the processing module 901 is configured to perform processing operations performed by the terminal device 102
  • the transceiver module 902 is configured to perform a transceiving operation performed by the terminal device 102.
  • the terminal device may be a UE; for a TD-SCDMA system or a WCDMA system, the terminal device may be a UE; for the GSM system, the terminal device is a mobile station (Mobile Station, MS); for WiFi systems, the terminal device can be a station (Station, STA).
  • the terminal device determines the resource scheduling granularity, determines the data transmission resource according to the resource scheduling granularity and the received DCI, and performs data transmission with the base station on the determined data transmission resource.
  • the processing of the terminal device 102 may include step S202, step S203, step S206, step S207, step S208, and step S209.
  • step S203, step S206, step S207 and step S208 can be performed by the processing module 901;
  • step S202, step S206 and step S209 can be performed by the transceiver module 902.
  • the transceiver module 902 can perform various steps under the control of the processing module 901. After receiving the downlink data sent by the base station, the transceiver module 902 may forward the downlink data to the processing module 901 for further processing, such as physical layer protocol processing such as channel decoding and demodulation, and other layers such as a transport layer and an application layer. Layer protocol processing, etc.
  • the data transmission performed by the terminal device may be uplink transmission or downlink transmission.
  • the processing module 901 determines the granularity of the resource scheduling and determines the data transmission resource. For details, refer to the implementation of the terminal device 102 in the first embodiment, and details are not described herein.
  • FIG. 10 illustrates an alternate implementation of a terminal device, wherein the processing module 901 can be implemented by the processor 1001 of FIG. 10, and the transceiver module 902 can be implemented by the transceiver 1002 of FIG.
  • the bus architecture may include any number of interconnected buses and bridges, specifically linked by one or more processors represented by processor 1001 and various circuits of memory represented by memory 1003.
  • the bus architecture can also link various other circuits such as peripherals, voltage regulators, and power management circuits, which are well known in the art and, therefore, will not be further described herein.
  • the bus interface provides an interface.
  • the transceiver 1002 can be a plurality of components, including a transmitter and A receiver that provides means for communicating with various other devices on a transmission medium.
  • the user interface 1004 may also be an interface capable of externally connecting the required devices, including but not limited to a keypad, a display, a speaker, a microphone, a joystick, and the like.
  • FIG. 11 illustrates another alternative implementation of the terminal device, wherein the processing module 901 can be implemented by the processor 1101 of FIG. 11, and the transceiver module 902 can be implemented by the transceiver 1102 of FIG.
  • the first data transmission method provided in Embodiment 4 includes the following steps:
  • the base station determines a resource scheduling granularity.
  • the base station determines, according to the resource scheduling granularity, a short transmission time interval TTI data transmission resource used by the terminal device for data transmission, where the short TTI data transmission resource is less than 1 subframe in the time domain or less than 1 ms;
  • the base station sends downlink control information DCI to the terminal device, where the DCI is used to indicate a short TTI data transmission resource.
  • the base station uses the short TTI data transmission resource to perform data transmission with the terminal.
  • the base station determines the resource scheduling granularity in one of the following manners:
  • the base station determines the resource scheduling granularity according to the CCE aggregation level of the physical downlink control channel carrying the DCI;
  • the base station determines the resource scheduling granularity according to the system bandwidth
  • the base station determines the resource scheduling granularity according to the available bandwidth of the short TTI data transmission
  • the base station determines the resource scheduling granularity according to the CCE aggregation level of the physical downlink control channel carrying the DCI and the available bandwidth of the short TTI data transmission;
  • the available bandwidth of the short TTI data transmission is the bandwidth that the short TTI data transmission resource can occupy.
  • the base station determines the resource scheduling granularity according to the CCE aggregation level of the physical downlink control channel carrying the DCI
  • the resource scheduling granularity includes a time domain resource scheduling granularity, and the time domain resource scheduling granularity is a minimum time domain resource allocation unit when the base station scheduling terminal device performs short TTI data transmission, and includes at least one symbol;
  • the base station determines the resource scheduling granularity according to the CCE aggregation level and the system bandwidth of the physical downlink control channel carrying the DCI,
  • the resource scheduling granularity includes a time domain resource scheduling granularity, and the time domain resource scheduling granularity is a minimum time domain resource allocation unit when the base station scheduling terminal device performs short TTI data transmission, and includes at least one symbol;
  • the base station determines the resource scheduling granularity according to the CCE aggregation level of the physical downlink control channel carrying the DCI and the available bandwidth of the short TTI data transmission,
  • the resource scheduling granularity includes: a time domain resource scheduling granularity, where the minimum time domain resource allocation unit when the base station scheduling terminal device performs short TTI data transmission, including at least one symbol;
  • the base station determines the short TTI data transmission resource according to the resource scheduling granularity, including:
  • the base station determines, according to the time domain resource scheduling granularity, the symbols occupied by the short TTI data transmission resources in the time domain, and the different symbols in the symbols occupied in the time domain occupy the frequency bandwidth resources of the same bandwidth in the frequency domain;
  • the same bandwidth refers to: the same system bandwidth, the same short TTI data transmission available bandwidth, or the same specific bandwidth;
  • the available bandwidth of the short TTI data transmission is the bandwidth that the short TTI data transmission resource can occupy.
  • the resource scheduling granularity includes: frequency domain resource scheduling granularity, and the frequency domain resource scheduling granularity is a minimum frequency domain resource allocation unit when the base station scheduling terminal equipment performs short TTI data transmission, including One less RB;
  • the base station determines the short TTI data transmission resource according to the resource scheduling granularity, including:
  • the base station determines the resource occupied by the short TTI data transmission resource in the frequency domain according to the frequency domain resource scheduling granularity.
  • the short TTI data transmission resource occupies N symbols in the time domain, and N is a positive integer.
  • N is a positive integer.
  • the resource scheduling granularity includes: a frequency domain resource scheduling granularity and a time domain resource scheduling granularity;
  • the frequency domain resource scheduling granularity is a minimum frequency domain resource allocation unit when the base station scheduling terminal device performs short TTI data transmission, and includes at least one RB;
  • the time domain resource scheduling granularity is a minimum time domain resource allocation unit when the base station scheduling terminal device performs short TTI data transmission, and includes at least one symbol;
  • the base station determines the short TTI data transmission resource according to the resource scheduling granularity, including:
  • the base station determines, according to the frequency domain resource scheduling granularity, the resources occupied by the short TTI data transmission resource in the frequency domain.
  • the base station determines, according to the time domain resource scheduling granularity, the symbol occupied by the short TTI data transmission resource in the time domain, where the base station determines that the data transmission resource occupies consecutive X symbols starting from the reference symbol in the time domain, X is a positive integer, and X is an integer multiple of the time domain resource scheduling granularity;
  • the reference symbol is: the first symbol occupied by the DCI, the last symbol occupied by the DCI, the kth symbol after the first symbol occupied by the DCI, or the kth symbol after the last symbol occupied by the DCI, k Is a positive integer;
  • the DCI includes: length indication information for indicating X, and the length indication information is generated by the base station according to the time domain resource scheduling granularity.
  • the base station determines, according to the time domain resource scheduling granularity, the symbol occupied by the short TTI data transmission resource in the time domain, where the base station determines that the short TTI data transmission resource occupies several symbols starting from the reference symbol in the time domain.
  • the number of symbols occupied is an integer multiple of the granularity of the time domain resource scheduling;
  • the reference symbol is: the first symbol occupied by the DCI, the last symbol occupied by the DCI, the kth symbol after the first symbol occupied by the DCI, or the last symbol occupied by the DCI.
  • the kth symbol, k is a positive integer;
  • the DCI includes: information indicating a relative position of a plurality of symbols with respect to a reference symbol, and the information of the relative position is generated by the base station according to the time domain resource scheduling granularity and the relative position.
  • the base station determines, according to the time domain resource scheduling granularity, the symbol occupied by the short TTI data transmission resource in the time domain, where the base station determines that the short TTI data transmission resource occupies several symbols starting from the reference symbol in the time domain.
  • the occupied symbols are consecutive, and the number of occupied symbols is the same as the number of symbols included in the time domain resource granularity;
  • the reference symbol is: the first symbol occupied by the DCI, the last symbol occupied by the DCI, the kth symbol after the first symbol occupied by the DCI, or the kth symbol after the last symbol occupied by the DCI, k Is a positive integer;
  • the information bits used in the DCI to indicate short TTI data transmission resources are empty.
  • the base station determines, according to the frequency domain resource scheduling granularity, the resource occupied by the short TTI data transmission resource in the frequency domain, where the base station determines that the resource occupied by the short TTI data transmission resource in the frequency domain is as large as the frequency domain resource scheduling granularity.
  • the base station determines the data transmission resource according to the resource scheduling granularity, and further includes: determining, by the base station, that the start symbol occupied by the short TTI data transmission resource in the time domain is a reference symbol, the reference symbol is the first symbol occupied by the DCI, and the last one occupied by the DCI The symbol, the kth symbol after the first symbol occupied by the DCI, or the kth symbol after the last symbol occupied by the DCI, k is a positive integer;
  • the DCI includes: information for indicating a frequency domain start position of the short TTI data transmission resource, and the information of the frequency domain start position is generated by the base station according to the frequency domain resource scheduling granularity.
  • the base station determines, according to the time domain resource scheduling granularity, the symbol occupied by the short TTI data transmission resource in the time domain, where the base station determines that the short TTI data transmission resource occupies consecutive symbols in the time domain, and the number of occupied symbols is
  • the time domain resource scheduling granularity includes the same number of symbols;
  • the base station determines, according to the frequency domain resource scheduling granularity, the resources occupied by the short TTI data transmission resource in the frequency domain, including: determining, by the base station, that the resource occupied by the short TTI data transmission resource in the frequency domain is as large as the frequency domain resource scheduling granularity;
  • the base station determines the short TTI data transmission resource according to the resource scheduling granularity, and further includes: determining, by the base station The starting symbol occupied by the data transmission resource in the time domain is a reference symbol;
  • the reference symbol is: the first symbol occupied by the DCI, the last symbol occupied by the DCI, the kth symbol after the first symbol occupied by the DCI, or the kth symbol after the last symbol occupied by the DCI, k Is a positive integer;
  • the DCI includes: information for indicating a frequency domain start position of the short TTI data transmission resource, and the information of the frequency domain start position is generated by the base station according to the frequency domain resource scheduling granularity.
  • the base station determines, according to the time domain resource scheduling granularity, the symbol occupied by the short TTI data transmission resource in the time domain, where the base station determines that the short TTI data transmission resource occupies consecutive X numbers starting from the reference symbol in the time domain.
  • Symbol, X is a positive integer
  • the reference symbol is: the first symbol occupied by the DCI, the last symbol occupied by the DCI, the kth symbol after the first symbol occupied by the DCI, or the kth symbol after the last symbol occupied by the DCI, k Is a positive integer;
  • the base station determines, according to the frequency domain resource scheduling granularity, the resource occupied by the short TTI data transmission resource in the frequency domain, and the method includes: determining, by the base station, that the short TTI data transmission resource occupies the specified bandwidth resource starting from the frequency domain start position in the frequency domain. ;
  • the DCI includes: start position information indicating a start position of a frequency domain and bandwidth information of a specified bandwidth, and length indication information for indicating X; information of a frequency domain start position, and bandwidth information is a base station scheduling according to a frequency domain resource
  • the length indication information generated by the granularity is generated by the base station according to the time domain resource scheduling granularity.
  • the method further includes: determining, by the base station, that at least one of the following conditions is met:
  • the delay requirement of the service currently used by the terminal device is less than the set delay threshold
  • the system bandwidth is greater than the set bandwidth threshold
  • the resource availability rate on the system bandwidth is greater than the set resource availability threshold.
  • the method before the base station sends the DCI to the terminal device, the method further includes:
  • the base station notifies the short TTI data transmission resources available to the terminal device through high layer signaling, and the available short TTI data transmission resources include the available bandwidth of the short TTI data transmission and/or the time domain that the data transmission can occupy.
  • the available bandwidth of the short TTI data transmission is the bandwidth that the short TTI data transmission resource can occupy.
  • the base station sends the DCI, including:
  • the base station transmits the DCI on the short TTI data transmission resource indicated by the DCI.
  • the base station sends the DCI on the short TTI data transmission resource indicated by the DCI, including:
  • the base station When transmitting the DCI, the base station starts mapping from the first symbol of the short TTI data transmission resource indicated by the DCI, and continues to map to the next symbol when the first symbol is occupied.
  • the second data transmission method provided in Embodiment 5 includes the following steps:
  • the terminal device determines a resource scheduling granularity.
  • the terminal device receives the downlink control information DCI sent by the base station, where the DCI is used to indicate the short TTI data transmission resource used by the terminal device for data transmission, and the short TTI data transmission resource is less than 1 subframe in the time domain or less than 1 ms;
  • the terminal device determines, according to the resource scheduling granularity and the DCI, a short TTI data transmission resource used for data transmission;
  • the terminal device uses the short TTI data transmission resource to perform data transmission with the base station.
  • the terminal device determines the resource scheduling granularity in one of the following manners:
  • the terminal device determines the resource scheduling granularity according to the CCE aggregation level of the physical downlink control channel carrying the DCI;
  • the terminal device determines the resource scheduling granularity according to the system bandwidth
  • the terminal device determines the resource scheduling granularity according to the available bandwidth of the short TTI data transmission
  • the terminal device determines a resource scheduling granularity according to a CCE aggregation level and a system bandwidth of a physical downlink control channel carrying the DCI;
  • the terminal device determines the resource scheduling granularity according to the CCE aggregation level of the physical downlink control channel carrying the DCI and the available bandwidth of the short TTI data transmission;
  • the available bandwidth of the short TTI data transmission is the bandwidth that the short TTI data transmission resource can occupy.
  • the terminal device determines the resource scheduling granularity according to the CCE aggregation level of the physical downlink control channel carrying the DCI
  • the resource scheduling granularity includes a time domain resource scheduling granularity, and the time domain resource scheduling granularity is a minimum time domain resource allocation unit when the base station scheduling terminal device performs short TTI data transmission, and includes at least one symbol;
  • the terminal device determines the resource scheduling granularity according to the CCE aggregation level and the system bandwidth of the physical downlink control channel carrying the DCI,
  • the resource scheduling granularity includes a time domain resource scheduling granularity, and the time domain resource scheduling granularity is a minimum time domain resource allocation unit when the base station scheduling terminal device performs short TTI data transmission, and includes at least one symbol;
  • the terminal device determines the resource scheduling granularity according to the CCE aggregation level of the physical downlink control channel carrying the DCI and the available bandwidth of the short TTI data transmission,
  • the resource scheduling granularity includes: a time domain resource scheduling granularity, where the minimum time domain resource allocation unit when the base station scheduling terminal device performs short TTI data transmission, including at least one symbol;
  • a short TTI data transmission resource occupying different symbols in the time domain, and occupying frequency domain resources of the same bandwidth in the frequency domain;
  • the same bandwidth refers to: the same system bandwidth, the same short TTI data transmission available bandwidth, or the same specific bandwidth;
  • the available bandwidth of the short TTI data transmission is the bandwidth that the short TTI data transmission resource can occupy.
  • the resource scheduling granularity includes: a frequency domain resource scheduling granularity, where the frequency domain resource scheduling granularity is a minimum frequency domain resource allocation unit when the base station scheduling terminal device performs short TTI data transmission, and includes at least one RB;
  • the short TTI data transmission resource occupies N symbols in the time domain, and N is a positive integer.
  • N is a positive integer.
  • CP is a long CP
  • N is not greater than 6.
  • CP is a normal CP
  • N is not greater than 7.
  • the resource scheduling granularity includes: a frequency domain resource scheduling granularity and a time domain resource scheduling granularity;
  • the frequency domain resource scheduling granularity is a minimum frequency domain resource allocation unit when the base station scheduling terminal equipment performs short TTI data transmission, and includes at least one RB;
  • the time domain resource scheduling granularity is a minimum time domain resource allocation unit when the base station scheduling terminal device performs short TTI data transmission, and includes at least one symbol.
  • the DCI includes: length indication information used to indicate the number X of symbols occupied by the short TTI data transmission resource in the time domain;
  • the terminal device determines the short TTI data transmission resource according to the resource scheduling granularity and the DCI, including: the terminal device determines, according to the length indication information and the time domain resource scheduling granularity, that the short TTI data transmission resource occupies the reference symbol as a starting point in the time domain.
  • X symbols, X is a positive integer;
  • the reference symbol is: the first symbol occupied by the DCI, the last symbol occupied by the DCI, the kth symbol after the first symbol occupied by the DCI, or the kth symbol after the last symbol occupied by the DCI, k Is a positive integer.
  • the DCI includes: information used to indicate that the short TTI data transmission resource occupies a relative position of the plurality of symbols starting from the reference symbol with respect to the reference symbol in the time domain;
  • the reference symbol is: the first symbol occupied by the DCI, the last symbol occupied by the DCI, the kth symbol after the first symbol occupied by the DCI, or the kth symbol after the last symbol occupied by the DCI, k Is a positive integer;
  • the terminal device determines the short TTI data transmission resource according to the resource scheduling granularity and the DCI, and the terminal device determines, according to the relative location information and the time domain resource scheduling granularity, that the short TTI data transmission resource is occupied by the reference symbol in the time domain.
  • the information bit used in the DCI to indicate the short TTI data transmission resource is empty
  • the terminal device determines the short TTI data transmission resource according to the resource scheduling granularity and the DCI, including:
  • the terminal device determines that the short TTI data transmission resource occupies several symbols starting from the reference symbol in the time domain, and the occupied symbols are consecutive and occupy the number of symbols and the symbols included in the time domain resource granularity. The same number;
  • the reference symbol is: the first symbol occupied by the DCI, the last symbol occupied by the DCI, the kth symbol after the first symbol occupied by the DCI, or the kth symbol after the last symbol occupied by the DCI, k Is a positive integer.
  • the DCI includes: start location information used to indicate a frequency domain start position of the short TTI data transmission resource;
  • the terminal device determines the short TTI data transmission resource according to the resource scheduling granularity and the DCI, including:
  • the terminal device determines a frequency domain start position of the short TTI data transmission resource according to the frequency domain resource scheduling granularity and the starting location information, and determines that the short TTI data transmission resource occupies the same frequency in the frequency domain as the frequency domain resource scheduling granularity; as well as
  • the terminal device determines that the start symbol occupied by the short TTI data transmission resource in the time domain is a reference symbol; the reference symbol is: the first symbol occupied by the DCI, the last symbol occupied by the DCI, and the first symbol occupied by the DCI.
  • the kth symbol, or the kth symbol after the last symbol occupied by the DCI, k is a positive integer.
  • the DCI includes: start location information used to indicate a frequency domain start position of the short TTI data transmission resource;
  • the terminal device determines the data transmission resource used for the short TTI data transmission according to the resource scheduling granularity and the DCI, including:
  • the terminal device determines that the short TTI data transmission resource occupies consecutive symbols in the time domain, and the number of occupied symbols is equal to the number of symbols included in the time domain resource scheduling granularity;
  • the terminal device determines that the start symbol occupied by the short TTI data transmission resource in the time domain is a reference symbol; the reference symbol is: the first symbol occupied by the DCI, the last symbol occupied by the DCI, and the first symbol occupied by the DCI.
  • the kth symbol, or the number after the last symbol occupied by the DCI k symbols, k is a positive integer;
  • the terminal device determines, according to the starting location information, that the short TTI data transmission resource occupies the resource starting from the frequency domain starting position in the frequency domain, and the occupied resource is as large as the frequency domain resource scheduling granularity.
  • the DCI includes: start location information indicating a frequency domain start position of the short TTI data transmission resource and bandwidth information of the short TTI data transmission resource; and indicating that the short TTI data transmission resource is occupied in the time domain.
  • the length of the symbol number X indicates information, and X is a positive integer;
  • the terminal device determines the short TTI data transmission resource according to the resource scheduling granularity and the DCI, including:
  • the terminal device determines, according to the time domain resource scheduling granularity and length indication information, that the short TTI data transmission resource occupies consecutive X symbols starting from the reference symbol in the time domain, and the reference symbol is: the first symbol occupied by the DCI, and the DCI occupation The last symbol, the kth symbol after the first symbol occupied by the DCI, or the kth symbol after the last symbol occupied by the DCI, k is a positive integer;
  • the terminal device determines, according to the frequency domain resource scheduling granularity, the starting location information, and the bandwidth information, the resource indicated by the bandwidth information of the short TTI data transmission resource occupying the frequency domain starting position in the frequency domain.
  • the method before receiving the DCI sent by the base station, the method further includes:
  • the available bandwidth of the short TTI data transmission is the bandwidth that the short TTI data transmission resource can occupy.
  • the terminal device receives the DCI, including:
  • the terminal device determines the number of information bits of the DCI according to the resource scheduling granularity
  • the terminal device performs blind detection on the physical downlink control channel carrying the DCI according to the number of information bits of the DCI;
  • the terminal device obtains DCI through blind detection.
  • the terminal device performs blind detection, including:
  • the terminal device performs blind detection in the order of symbols on the physical downlink control channel carrying the DCI.
  • the base station determines, according to the granularity of the resource scheduling, the data transmission resource used by the scheduling terminal device for data transmission, and the flexible configuration of the data transmission resource can be realized through the granularity of the resource scheduling.
  • the terminal device data transmission resource is less than 1 subframe in the time domain or less than 1 ms, thus realizing scheduling of data transmission with a TTI less than 1 subframe length or less than 1 ms.
  • the information used to indicate the length and the starting location of the data transmission resource may be determined by the resource scheduling granularity, so that when the resource scheduling granularity is large, the number of bits of the indication information may be reduced. .
  • the data transmission resource adopts some fixed formats, for example, the start symbol is a reference symbol, occupying consecutive symbols, or frequency domain resources occupying the same bandwidth in the frequency domain for different symbols occupied in the time domain, The number of information bits indicating the data transmission resource can be further reduced.
  • the following line system bandwidth is 20MHz (including 100 RBs), the frequency domain scheduling granularity is 20RB, and the time domain resource scheduling granularity is not more than 7 symbols.
  • the frequency domain resource scheduling granularity and the time domain resource scheduling granularity are respectively determined.
  • the data transmission resource allocation manner provided by the embodiment of the present invention can greatly reduce the number of RA information bits and reduce the overhead of RA information.
  • embodiments of the present invention can be provided as a method, system, or computer program product. Accordingly, the present invention may take the form of an entirely hardware embodiment, an entirely software embodiment, or a combination of software and hardware. Moreover, the present invention may employ computer-usable storage media (including but not limited to disks) in one or more of the computer-usable program code embodied therein. The form of a computer program product implemented on a memory, CD-ROM, optical memory, or the like.
  • the computer program instructions can also be stored in a computer readable memory that can direct a computer or other programmable data processing device to operate in a particular manner, such that the instructions stored in the computer readable memory produce an article of manufacture comprising the instruction device.
  • the apparatus implements the functions specified in one or more blocks of a flow or a flow and/or block diagram of the flowchart.
  • These computer program instructions can also be loaded onto a computer or other programmable data processing device such that a series of operational steps are performed on a computer or other programmable device to produce computer-implemented processing for execution on a computer or other programmable device.
  • the instructions provide steps for implementing the functions specified in one or more of the flow or in a block or blocks of a flow diagram.

Abstract

本发明涉及无线通信技术领域,尤其涉及数据传输方法、装置及系统,用以提供针对传输时间间隔TTI小于1个子帧长度或TTI小于1ms的数据传输的调度方案。在本发明实施例提供的一种基站中,处理模块,用于确定资源调度粒度;根据资源调度粒度,确定终端设备进行数据传输所使用的短TTI数据传输资源,短TTI数据传输资源在时域上小于1个子帧的长度或小于1ms;收发模块,用于向终端设备发送下行控制信息DCI,指示短TTI数据传输资源,并使用短TTI数据传输资源与终端设备进行数据传输。本发明实施例中,基站发送的DCI向终端设备指示了短TTI数据传输资源,实现了对于TTI小于1个子帧长度或小于1ms的数据传输的调度。

Description

数据传输方法、装置及系统 技术领域
本发明涉及无线通信技术领域,尤其涉及一种数据传输方法、装置及系统。
背景技术
无线通信系统中,时延(latency)是影响用户体验的重要因素之一。不断出现的新业务,比如车联网相关的业务,也对时延提出越来越高的要求。为了降低时延,以长期演进(Long Term Evolution,LTE)系统为例,传输时间间隔(Transmission Time Interval,TTI)可从当前的1个子帧的长度1毫秒(ms)缩短为1个符号(Symbol)长度至1ms之间,即TTI小于1ms。
仍以LTE系统为例,基站与终端设备之间的数据传输是基于调度进行的,目前还没有针对TTI小于1个子帧长度或TTI小于1ms的数据传输调度方案。
发明内容
有鉴于此,本发明实施例提供一种数据传输方法、装置及系统,用以提供一种针对TTI小于1个子帧长度或TTI小于1ms的数据传输的调度方案。
第一方面,本发明实施例提供一种基站,包括:
处理模块,用于确定资源调度粒度;以及根据所述资源调度粒度,确定终端设备进行数据传输所使用的短传输时间间隔TTI数据传输资源,所述短TTI数据传输资源在时域上小于1个子帧的长度或小于1ms;
收发模块,用于向所述终端设备发送下行控制信息DCI,所述DCI用于指示所述短TTI数据传输资源;
所述收发模块,还用于使用所述短TTI数据传输资源与所述终端设备进行数据传输。
结合第一方面,在第一种可能的实现方式中,所述处理模块具体用于: 采用下列方式之一确定所述资源调度粒度:
根据承载所述DCI的物理下行控制信道的CCE聚合级别确定所述资源调度粒度;
根据系统带宽确定所述资源调度粒度;
根据短TTI数据传输可用带宽确定所述资源调度粒度;
根据承载所述DCI的物理下行控制信道的CCE聚合级别和系统带宽确定所述资源调度粒度;以及
根据承载所述DCI的物理下行控制信道的CCE聚合级别和短TTI数据传输可用带宽确定所述资源调度粒度;
其中,所述短TTI数据传输可用带宽为所述短TTI数据传输资源可占用的带宽。
结合第一方面的第一种可能的实现方式中,在第二种可能的实现方式中,若所述处理模块根据承载所述DCI的物理下行控制信道的CCE聚合级别确定所述资源调度粒度,则
承载所述DCI的物理下行控制信道的CCE聚合级别越高,所述资源调度粒度越大。
结合第一方面的第一种可能的实现方式,在第三种可能的实现方式中,所述资源调度粒度包括时域资源调度粒度,所述时域资源调度粒度为所述基站调度所述终端设备进行短TTI数据传输时的最小时域资源分配单位,包括至少一个符号;
若所述处理模块根据承载所述DCI的物理下行控制信道的CCE聚合级别和系统带宽确定所述资源调度粒度,则
系统带宽越大,所述时域资源调度粒度越小;
若系统带宽固定,承载所述DCI的物理下行控制信道的CCE聚合级别越高,所述时域资源调度粒度越大。
结合第一方面的第一种可能的实现方式中,在第四种可能的实现方式中,所述资源调度粒度包括时域资源调度粒度,所述时域资源调度粒度为所述基 站调度所述终端设备进行短TTI数据传输时的最小时域资源分配单位,包括至少一个符号;
若所述处理模块根据承载所述DCI的物理下行控制信道的CCE聚合级别和短TTI数据传输可用带宽确定所述资源调度粒度,则
所述短TTI数据传输可用带宽越大,所述时域资源调度粒度越小;
若所述短TTI数据传输可用带宽固定,承载所述DCI的物理下行控制信道的CCE聚合级别越高,所述时域资源调度粒度越大。
结合第一方面,或第一方面的第一种至第四种可能的实现方式中,在第五种可能的实现方式中,
所述资源调度粒度包括:时域资源调度粒度,所述时域资源调度粒度为所述基站调度所述终端设备进行短TTI数据传输时的最小时域资源分配单位,包括至少一个符号;
所述处理模块具体用于:
根据所述时域资源调度粒度,确定所述短TTI数据传输资源在时域上占用的符号,所述在时域上占用的符号中的不同符号在频域上占用相同带宽的频域资源;
所述相同带宽指:相同的系统带宽、相同的短TTI数据传输可用带宽,或相同的特定带宽;
其中,所述短TTI数据传输可用带宽为短TTI数据传输资源可占用的带宽。
结合第一方面,或第一方面的第一种至第四种可能的实现方式中,在第六种可能的实现方式中,
所述资源调度粒度包括:频域资源调度粒度,所述频域资源调度粒度为所述基站调度所述终端设备进行短TTI数据传输时的最小频域资源分配单位,包括至少一个RB;
所述处理模块具体用于:
根据所述频域资源调度粒度,确定所述短TTI数据传输资源在频域上占 用的资源,所述短TTI数据传输资源在时域上占用N个符号,所述N为正整数,当循环前缀CP为长CP时,所述N不大于6,当CP为普通CP时,所述N不大于7。
结合第一方面,或第一方面的第一种至第四种可能的实现方式中,在第七种可能的实现方式中,
所述资源调度粒度包括:频域资源调度粒度和时域资源调度粒度;所述频域资源调度粒度为所述基站调度所述终端设备进行短TTI数据传输时的最小频域资源分配单位,包括至少一个RB;所述时域资源调度粒度为所述基站调度所述终端设备进行短TTI数据传输时的最小时域资源分配单位,包括至少一个符号;
所述处理模块具体用于:
根据所述时域资源调度粒度,确定所述短TTI数据传输资源在时域上占用的符号;以及
根据所述频域资源调度粒度,确定所述短TTI数据传输资源在频域上占用的资源。
结合第一方面的第五种可能的实现方式,在第八种可能的实现方式中,
所述处理模块具体用于:确定所述数据传输资源在时域上占用以参考符号为起始的连续X个符号,所述X为正整数,X为所述时域资源调度粒度的整数倍;
所述参考符号为:所述DCI占用的第一个符号、所述DCI占用的最后一个符号、所述DCI所占用的第一个符号之后的第k个符号,或所述DCI所占用的最后一个符号之后的第k个符号,k为正整数;
所述DCI包括:用于指示所述X的长度指示信息,所述长度指示信息是所述处理模块根据所述时域资源调度粒度生成的。
结合第一方面的第五种可能的实现方式,在第九种可能的实现方式中,
所述处理模块具体用于:确定所述短TTI数据传输资源在时域上占用以参考符号为起始的若干个符号,占用的符号数为所述时域资源调度粒度的整 数倍;
所述参考符号为:所述DCI占用的第一个符号、所述DCI占用的最后一个符号、所述DCI所占用的第一个符号之后的第k个符号,或所述DCI所占用的最后一个符号之后的第k个符号,k为正整数;
所述DCI包括:用于指示所述若干个符号相对于所述参考符号的相对位置的信息,所述相对位置的信息是所述处理模块根据所述时域资源调度粒度和所述相对位置生成的。
结合第一方面的第五种可能的实现方式,在第十种可能的实现方式中,
所述处理模块具体用于:确定所述短TTI数据传输资源在时域上占用以参考符号为起始的若干个符号,其中,占用的所述若干个符号是连续的,且占用的所述若干个符号的个数与所述时域资源粒度所包括的符号个数相同;
所述参考符号为:所述DCI占用的第一个符号、所述DCI占用的最后一个符号、所述DCI所占用的第一个符号之后的第k个符号,或所述DCI所占用的最后一个符号之后的第k个符号,k为正整数;
所述DCI中用于指示所述短TTI数据传输资源的信息比特为空。
结合第一方面的第六种可能的实现方式,在第十一种可能的实现方式中,
确定所述短TTI数据传输资源在频域上占用的资源与所述频域资源调度粒度一样大;以及
确定所述短TTI数据传输资源在时域上占用的起始符号为参考符号,所述参考符号为所述DCI占用的第一个符号、所述DCI占用的最后一个符号、所述DCI所占用的第一个符号之后的第k个符号,或所述DCI所占用的最后一个符号之后的第k个符号,k为正整数;
所述DCI包括:用于指示所述短TTI数据传输资源的频域起始位置的信息,所述频域起始位置的信息是所述处理模块根据所述频域资源调度粒度生成的。
结合第一方面的第七种可能的实现方式,在第十二种可能的实现方式中,
确定所述短TTI数据传输资源在时域上占用连续的符号,且占用的符号 数与所述时域资源调度粒度包括的符号数相等;
确定所述短TTI数据传输资源在频域上占用的资源与所述频域资源调度粒度一样大;以及
确定所述数据传输资源在时域上占用的起始符号为参考符号;
所述参考符号为:所述DCI占用的第一个符号、所述DCI占用的最后一个符号、所述DCI所占用的第一个符号之后的第k个符号,或所述DCI所占用的最后一个符号之后的第k个符号,k为正整数;
所述DCI包括:用于指示所述短TTI数据传输资源的频域起始位置的信息,所述频域起始位置的信息是所述处理模块根据所述频域资源调度粒度生成的。
结合第一方面的第七种可能的实现方式,在第十三种可能的实现方式中,
所述处理模块具体用于:
确定所述短TTI数据传输资源在时域上占用以参考符号为起始的连续X个符号,所述X为正整数;所述参考符号为:所述DCI占用的第一个符号、所述DCI占用的最后一个符号、所述DCI所占用的第一个符号之后的第k个符号,或所述DCI所占用的最后一个符号之后的第k个符号,k为正整数;以及
确定所述短TTI数据传输资源在频域上占用以频域起始位置为起始的指定带宽的资源;
所述DCI包括:用于指示所述频域起始位置的起始位置信息和所述指定带宽的带宽信息,以及用于指示所述X的长度指示信息;所述频域起始位置的信息、所述带宽信息是所述处理模块根据所述频域资源调度粒度生成的,所述长度指示信息是所述处理模块根据所述时域资源调度粒度生成的。
结合第一方面,或第一方面的第一种至第十三种可能的实现方式中的任一种,在第十四种可能的实现方式中,所述处理模块还用于:在确定所述资源调度粒度之前,确定满足下列条件中的至少一个:
所述终端设备当前使用的业务的时延需求小于设置的时延阈值;
系统带宽大于设置的带宽阈值;以及
系统带宽上资源可用率大于设置的资源可用率阈值。
结合第一方面,或第一方面的第一种至第十四种可能的实现方式中的任一种,在第十五种可能的实现方式中,所述收发模块还用于:
在向所述终端设备发送DCI之前,通过高层信令通知所述终端设备可用的所述短TTI数据传输资源,所述可用的所述短TTI数据传输资源包括短TTI数据传输可用带宽和/或所述数据传输可占用的时域资源;
其中,所述短TTI数据传输可用带宽为所述短TTI数据传输资源可占用的带宽。
结合第一方面,或第一方面的第一种至第十五种可能的实现方式中的任一种,在第十六种可能的实现方式中,所述收发模块具体用于:
在所述DCI指示的所述短TTI数据传输资源上发送所述DCI。
结合第一方面的第十六种可能的实现方式,在第十七种可能的实现方式中,所述收发模块具体用于:
在发送所述DCI时,从所述DCI指示的所述短TTI数据传输资源的第一个符号开始映射,当占满第一个符号时再继续映射到下一个符号。
第二方面,本发明实施例提供一种终端设备,包括:
处理模块,用于确定资源调度粒度;
收发模块,用于接收基站发送的下行控制信息DCI,所述DCI用于指示所述终端设备进行数据传输所使用的短TTI数据传输资源,所述短TTI数据传输资源在时域上小于1个子帧的长度或小于1ms;
根据所述资源调度粒度和所述DCI,确定所述终端设备进行所述数据传输所使用的所述短TTI数据传输资源;以及
使用所述短TTI数据传输资源与所述基站进行所述数据传输。
结合第二方面,在第一种可能的实现方式中,所述处理模块具体用于:采用下列方式之一确定所述资源调度粒度:
根据承载所述DCI的物理下行控制信道的CCE聚合级别确定所述资源调 度粒度;
根据系统带宽确定所述资源调度粒度;
根据短TTI数据传输可用带宽确定所述资源调度粒度;
根据承载所述DCI的物理下行控制信道的CCE聚合级别和系统带宽确定所述资源调度粒度;以及
根据承载所述DCI的物理下行控制信道的CCE聚合级别和短TTI数据传输可用带宽确定所述资源调度粒度;
其中,所述短TTI数据传输可用带宽为所述短TTI数据传输资源可占用的带宽。
结合第二方面的第一种可能的实现方式,在第二种可能的实现方式中,若所述处理模块根据承载所述DCI的物理下行控制信道的CCE聚合级别确定所述资源调度粒度,则
承载所述DCI的物理下行控制信道的CCE聚合级别越高,所述资源调度粒度越大。
结合第二方面的第一种可能的实现方式,在第三种可能的实现方式中,所述资源调度粒度包括时域资源调度粒度,所述时域资源调度粒度为所述基站调度所述终端设备进行短TTI数据传输时的最小时域资源分配单位,包括至少一个符号;
若所述处理模块根据承载所述DCI的物理下行控制信道的CCE聚合级别和系统带宽确定所述资源调度粒度,则
系统带宽越大,所述时域资源调度粒度越小;
若系统带宽固定,承载所述DCI的物理下行控制信道的CCE聚合级别越高,所述时域资源调度粒度越大。
结合第二方面的第一种可能的实现方式,在第四种可能的实现方式中,所述资源调度粒度包括时域资源调度粒度,所述时域资源调度粒度为所述基站调度所述终端设备进行短TTI数据传输时的最小时域资源分配单位,包括至少一个符号;
若所述处理模块根据承载所述DCI的物理下行控制信道的CCE聚合级别和短TTI数据传输可用带宽确定所述资源调度粒度,则
所述短TTI数据传输可用带宽越大,所述时域资源调度粒度越小;
若短TTI数据传输可用带宽固定,承载所述DCI的物理下行控制信道的CCE聚合级别越高,所述时域资源调度粒度越大。
结合第二方面,或第二方面的第一种至第四种可能的实现方式中的任一种,在第五种可能的实现方式中,
所述资源调度粒度包括:时域资源调度粒度,所述时域资源调度粒度为所述基站调度所述终端设备进行短TTI数据传输时的最小时域资源分配单位,包括至少一个符号;
所述短TTI数据传输资源在时域上占用的不同符号,在频域上占用相同带宽的频域资源;
所述相同带宽指:相同的系统带宽、相同的短TTI数据传输可用带宽,或相同的特定带宽;
其中,所述短TTI数据传输可用带宽为所述短TTI数据传输资源可占用的带宽。
结合第二方面,或第二方面的第一种至第四种可能的实现方式中的任一种,在第六种可能的实现方式中,
所述资源调度粒度包括:频域资源调度粒度,所述频域资源调度粒度为所述基站调度所述终端设备进行短TTI数据传输时的最小频域资源分配单位,包括至少一个RB;
所述短TTI数据传输资源在时域上占用N个符号,所述N为正整数,当循环前缀CP为长CP时,所述N不大于6,当CP为普通CP时,所述N不大于7。
结合第二方面,或第二方面的第一种至第四种可能的实现方式中的任一种,在第七种可能的实现方式中,
所述资源调度粒度包括:频域资源调度粒度和时域资源调度粒度;
所述频域资源调度粒度为所述基站调度所述终端设备进行短TTI数据传输时的最小频域资源分配单位,包括至少一个RB;
所述时域资源调度粒度为所述基站调度所述终端设备进行短TTI数据传输时的最小时域资源分配单位,包括至少一个符号。
结合第二方面的第五种可能的实现方式,在第八种可能的实现方式中,
所述DCI包括:用于指示所述短TTI数据传输资源在时域上占用的符号个数X的长度指示信息;
所述终端设备根据所述资源调度粒度和所述DCI,确定所述短TTI数据传输资源,包括:所述终端设备根据所述长度指示信息和所述时域资源调度粒度,确定所述短TTI数据传输资源在时域上占用以参考符号为起始的连续X个符号,所述X为正整数;
所述参考符号为:所述DCI占用的第一个符号、所述DCI占用的最后一个符号、所述DCI所占用的第一个符号之后的第k个符号,或所述DCI所占用的最后一个符号之后的第k个符号,k为正整数。
结合第二方面的第五种可能的实现方式,在第九种可能的实现方式中,
所述DCI包括:用于指示所述短TTI数据传输资源在时域上占用以参考符号为起始的若干个符号相对于所述参考符号的相对位置的信息;
所述参考符号为:所述DCI占用的第一个符号、所述DCI占用的最后一个符号、所述DCI所占用的第一个符号之后的第k个符号,或所述DCI所占用的最后一个符号之后的第k个符号,k为正整数;
所述处理模块具体用于:根据所述相对位置的信息和所述时域资源调度粒度,确定所述短TTI数据传输资源在时域上占用以所述参考符号为起始的所述若干个符号。
结合第二方面的第五种可能的实现方式,在第十种可能的实现方式中,
所述DCI中用于指示所述短TTI数据传输资源的信息比特为空;
所述处理模块具体用于:
确定所述短TTI数据传输资源在时域上占用以参考符号为起始的若干个 符号,占用的所述若干个符号是连续的且占用的所述若干个符号的个数与所述时域资源粒度所包括的符号个数相同;
所述参考符号为:所述DCI占用的第一个符号、所述DCI占用的最后一个符号、所述DCI所占用的第一个符号之后的第k个符号,或所述DCI所占用的最后一个符号之后的第k个符号,k为正整数。
结合第二方面的第六种可能的实现方式,在第十一种可能的实现方式中,
所述DCI包括:用于指示所述短TTI数据传输资源的频域起始位置的起始位置信息;
所述处理模块具体用于:
根据所述频域资源调度粒度和所述起始位置信息,确定所述短TTI数据传输资源的频域起始位置,并确定所述短TTI数据传输资源在频域上占用的资源与所述频域资源调度粒度一样大;以及
确定所述短TTI数据传输资源在时域上占用的起始符号为参考符号;所述参考符号为:所述DCI占用的第一个符号、所述DCI占用的最后一个符号、所述DCI所占用的第一个符号之后的第k个符号,或所述DCI所占用的最后一个符号之后的第k个符号,k为正整数。
结合第二方面的第七种可能的实现方式,在第十二种可能的实现方式中,所述DCI包括:用于指示所述短TTI数据传输资源的频域起始位置的起始位置信息;
所述处理模块具体用于:
确定所述短TTI数据传输资源在时域上占用连续的符号,且占用的符号数与所述时域资源调度粒度包括的符号数相等;
确定所述短TTI数据传输资源在时域上占用的起始符号为参考符号;所述参考符号为:所述DCI占用的第一个符号、所述DCI占用的最后一个符号、所述DCI所占用的第一个符号之后的第k个符号,或所述DCI所占用的最后一个符号之后的第k个符号,k为正整数;以及
根据所述起始位置信息,确定所述短TTI数据传输资源在频域上占用以 所述频域起始位置为起始的资源,则占用的资源与所述频域资源调度粒度一样大。
结合第二方面的第七种可能的实现方式,在第十三种可能的实现方式中,
所述DCI包括:用于指示所述短TTI数据传输资源的频域起始位置的起始位置信息和所述短TTI数据传输资源的带宽信息;以及用于指示所述短TTI数据传输资源在时域上占用的符号数X的长度指示信息,所述X为正整数;
所述处理模块具体用于:
根据所述时域资源调度粒度和所述长度指示信息,确定所述短TTI数据传输资源在时域上占用以参考符号为起始的连续X个符号,所述参考符号为:所述DCI占用的第一个符号、所述DCI占用的最后一个符号、所述DCI所占用的第一个符号之后的第k个符号,或所述DCI所占用的最后一个符号之后的第k个符号,k为正整数;以及
根据所述频域资源调度粒度、所述起始位置信息和所述带宽信息,确定所述短TTI数据传输资源在频域上占用所述频域起始位置开始的所述带宽信息所指示的资源。
结合第二方面,或第二方面的第一种至第十三种可能的实现方式中的任一种,在第十四种可能的实现方式中,
所述收发模块还用于:
在接收所述基站发送的DCI之前,接收所述基站通过高层信令通知的所述终端设备可用的所述短TTI数据传输资源,所述可用的所述短TTI数据传输资源包括短TTI数据传输可用带宽和/或短TTI数据传输可占用的时域资源;
其中,所述短TTI数据传输可用带宽为所述短TTI数据传输资源可占用的带宽。
第三方面,本发明实施例提供一种数据传输方法,包括:
基站确定资源调度粒度;
所述基站根据所述资源调度粒度,确定终端设备进行数据传输所使用的短传输时间间隔TTI数据传输资源,所述短TTI数据传输资源在时域上小于1 个子帧的长度或小于1ms;
所述基站向所述终端设备发送下行控制信息DCI,所述DCI用于指示所述短TTI数据传输资源;
所述基站使用所述短TTI数据传输资源与所述终端设备进行数据传输。
结合第三方面,在第一种可能的实现方式中,所述基站采用下列方式之一确定所述资源调度粒度:
所述基站根据承载所述DCI的物理下行控制信道的CCE聚合级别确定所述资源调度粒度;
所述基站根据系统带宽确定所述资源调度粒度;
所述基站根据短TTI数据传输可用带宽确定所述资源调度粒度;
所述基站根据承载所述DCI的物理下行控制信道的CCE聚合级别和系统带宽确定所述资源调度粒度;以及
所述基站根据承载所述DCI的物理下行控制信道的CCE聚合级别和短TTI数据传输可用带宽确定所述资源调度粒度;
其中,所述短TTI数据传输可用带宽为所述短TTI数据传输资源可占用的带宽。
结合第三方面的第一种可能的实现方式中,在第二种可能的实现方式中,若所述基站根据承载所述DCI的物理下行控制信道的CCE聚合级别确定所述资源调度粒度,则
承载所述DCI的物理下行控制信道的CCE聚合级别越高,所述资源调度粒度越大。
结合第三方面的第一种可能的实现方式,在第三种可能的实现方式中,所述资源调度粒度包括时域资源调度粒度,所述时域资源调度粒度为所述基站调度所述终端设备进行短TTI数据传输时的最小时域资源分配单位,包括至少一个符号;
若所述基站根据承载所述DCI的物理下行控制信道的CCE聚合级别和系统带宽确定所述资源调度粒度,则
系统带宽越大,所述时域资源调度粒度越小;
若系统带宽固定,承载所述DCI的物理下行控制信道的CCE聚合级别越高,所述时域资源调度粒度越大。
结合第三方面的第一种可能的实现方式中,在第四种可能的实现方式中,所述资源调度粒度包括时域资源调度粒度,所述时域资源调度粒度为所述基站调度所述终端设备进行短TTI数据传输时的最小时域资源分配单位,包括至少一个符号;
若所述基站根据承载所述DCI的物理下行控制信道的CCE聚合级别和短TTI数据传输可用带宽确定所述资源调度粒度,则
所述短TTI数据传输可用带宽越大,所述时域资源调度粒度越小;
若所述短TTI数据传输可用带宽固定,承载所述DCI的物理下行控制信道的CCE聚合级别越高,所述时域资源调度粒度越大。
结合第三方面,或第三方面的第一种至第四种可能的实现方式中,在第五种可能的实现方式中,
所述资源调度粒度包括:时域资源调度粒度,所述时域资源调度粒度为所述基站调度所述终端设备进行短TTI数据传输时的最小时域资源分配单位,包括至少一个符号;
所述基站根据所述资源调度粒度,确定所述短TTI数据传输资源,包括:
所述基站根据所述时域资源调度粒度,确定所述短TTI数据传输资源在时域上占用的符号,所述在时域上占用的符号中的不同符号在频域上占用相同带宽的频域资源;
所述相同带宽指:相同的系统带宽、相同的短TTI数据传输可用带宽,或相同的特定带宽;
其中,所述短TTI数据传输可用带宽为所述短TTI数据传输资源可占用的带宽。
结合第三方面,或第三方面的第一种至第四种可能的实现方式中,在第六种可能的实现方式中,
所述资源调度粒度包括:频域资源调度粒度,所述频域资源调度粒度为所述基站调度所述终端设备进行短TTI数据传输时的最小频域资源分配单位,包括至少一个RB;
所述基站根据所述资源调度粒度,确定所述短TTI数据传输资源,包括:
所述基站根据所述频域资源调度粒度,确定所述短TTI数据传输资源在频域上占用的资源,所述短TTI数据传输资源在时域上占用N个符号,所述N为正整数,当循环前缀CP为长CP时,所述N不大于6,当CP为普通CP时,所述N不大于7。
结合第三方面,或第三方面的第一种至第四种可能的实现方式中,在第七种可能的实现方式中,
所述资源调度粒度包括:频域资源调度粒度和时域资源调度粒度;所述频域资源调度粒度为所述基站调度所述终端设备进行短TTI数据传输时的最小频域资源分配单位,包括至少一个RB;所述时域资源调度粒度为所述基站调度所述终端设备进行短TTI数据传输时的最小时域资源分配单位,包括至少一个符号;
所述基站根据所述资源调度粒度,确定所述短TTI数据传输资源,包括:
所述基站根据所述时域资源调度粒度,确定所述短TTI数据传输资源在时域上占用的符号;以及
所述基站根据所述频域资源调度粒度,确定所述短TTI数据传输资源在频域上占用的资源。
结合第三方面的第五种可能的实现方式,在第八种可能的实现方式中,
所述基站根据所述时域资源调度粒度,确定所述短TTI数据传输资源在时域上占用的符号,包括:所述基站确定所述数据传输资源在时域上占用以参考符号为起始的连续X个符号,所述X为正整数,X为所述时域资源调度粒度的整数倍;
所述参考符号为:所述DCI占用的第一个符号、所述DCI占用的最后一个符号、所述DCI所占用的第一个符号之后的第k个符号,或所述DCI所占 用的最后一个符号之后的第k个符号,k为正整数;
所述DCI包括:用于指示所述X的长度指示信息,所述长度指示信息是所述基站根据所述时域资源调度粒度生成的。
结合第三方面的第五种可能的实现方式,在第九种可能的实现方式中,
所述基站根据所述时域资源调度粒度,确定所述短TTI数据传输资源在时域上占用的符号,包括:所述基站确定所述短TTI数据传输资源在时域上占用以参考符号为起始的若干个符号,占用的符号数为所述时域资源调度粒度的整数倍;
所述参考符号为:所述DCI占用的第一个符号、所述DCI占用的最后一个符号、所述DCI所占用的第一个符号之后的第k个符号,或所述DCI所占用的最后一个符号之后的第k个符号,k为正整数;
所述DCI包括:用于指示所述若干个符号相对于所述参考符号的相对位置的信息,所述相对位置的信息是所述基站根据所述时域资源调度粒度和所述相对位置生成的。
结合第三方面的第五种可能的实现方式,在第十种可能的实现方式中,
所述基站根据所述时域资源调度粒度,确定所述短TTI数据传输资源在时域上占用的符号,包括:所述基站确定所述短TTI数据传输资源在时域上占用以参考符号为起始的若干个符号,其中,占用的所述若干个符号是连续的,且占用的所述若干个符号的个数与所述时域资源粒度所包括的符号个数相同;
所述参考符号为:所述DCI占用的第一个符号、所述DCI占用的最后一个符号、所述DCI所占用的第一个符号之后的第k个符号,或所述DCI所占用的最后一个符号之后的第k个符号,k为正整数;
所述DCI中用于指示所述短TTI数据传输资源的信息比特为空。
结合第三方面的第六种可能的实现方式,在第十一种可能的实现方式中,
所述基站根据所述频域资源调度粒度,确定所述短TTI数据传输资源在频域上占用的资源,包括:所述基站确定所述短TTI数据传输资源在频域上 占用的资源与所述频域资源调度粒度一样大;
所述基站根据所述资源调度粒度,确定所述数据传输资源,还包括:所述基站确定所述短TTI数据传输资源在时域上占用的起始符号为参考符号,所述参考符号为所述DCI占用的第一个符号、所述DCI占用的最后一个符号、所述DCI所占用的第一个符号之后的第k个符号,或所述DCI所占用的最后一个符号之后的第k个符号,k为正整数;
所述DCI包括:用于指示所述短TTI数据传输资源的频域起始位置的信息,所述频域起始位置的信息是所述基站根据所述频域资源调度粒度生成的。
结合第三方面的第七种可能的实现方式,在第十二种可能的实现方式中,
所述基站根据所述时域资源调度粒度,确定所述短TTI数据传输资源在时域上占用的符号,包括:所述基站确定所述短TTI数据传输资源在时域上占用连续的符号,且占用的符号数与所述时域资源调度粒度包括的符号数相等;
所述基站根据所述频域资源调度粒度,确定所述短TTI数据传输资源在频域上占用的资源,包括:所述基站确定所述短TTI数据传输资源在频域上占用的资源与所述频域资源调度粒度一样大;
所述基站根据所述资源调度粒度,确定所述短TTI数据传输资源,还包括:所述基站确定所述数据传输资源在时域上占用的起始符号为参考符号;
所述参考符号为:所述DCI占用的第一个符号、所述DCI占用的最后一个符号、所述DCI所占用的第一个符号之后的第k个符号,或所述DCI所占用的最后一个符号之后的第k个符号,k为正整数;
所述DCI包括:用于指示所述短TTI数据传输资源的频域起始位置的信息,所述频域起始位置的信息是所述基站根据所述频域资源调度粒度生成的。
结合第三方面的第七种可能的实现方式,在第十三种可能的实现方式中,
所述基站根据所述时域资源调度粒度,确定所述短TTI数据传输资源在时域上占用的符号,包括:所述基站确定所述短TTI数据传输资源在时域上占用以参考符号为起始的连续X个符号,所述X为正整数;
所述参考符号为:所述DCI占用的第一个符号、所述DCI占用的最后一个符号、所述DCI所占用的第一个符号之后的第k个符号,或所述DCI所占用的最后一个符号之后的第k个符号,k为正整数;
所述基站根据所述频域资源调度粒度,确定所述短TTI数据传输资源在频域上占用的资源,包括:所述基站确定所述短TTI数据传输资源在频域上占用以频域起始位置为起始的指定带宽的资源;
所述DCI包括:用于指示所述频域起始位置的起始位置信息和所述指定带宽的带宽信息,以及用于指示所述X的长度指示信息;所述频域起始位置的信息、所述带宽信息是所述基站根据所述频域资源调度粒度生成的,所述长度指示信息是所述基站根据所述时域资源调度粒度生成的。
结合第三方面,或第三方面的第一种至第十三种可能的实现方式中的任一种,在第十四种可能的实现方式中,
在所述基站确定所述资源调度粒度之前,还包括:所述基站确定满足下列条件中的至少一个:
所述终端设备当前使用的业务的时延需求小于设置的时延阈值;
系统带宽大于设置的带宽阈值;以及
系统带宽上资源可用率大于设置的资源可用率阈值。
结合第三方面,或第三方面的第一种至第十四种可能的实现方式中的任一种,在第十五种可能的实现方式中,
在所述基站向所述终端设备发送DCI之前,还包括:
所述基站通过高层信令通知所述终端设备可用的所述短TTI数据传输资源,所述可用的所述短TTI数据传输资源包括短TTI数据传输可用带宽和/或所述数据传输可占用的时域资源;
其中,所述短TTI数据传输可用带宽为所述短TTI数据传输资源可占用的带宽。
结合第三方面,或第三方面的第一种至第十五种可能的实现方式中的任一种,在第十六种可能的实现方式中,
所述基站发送所述DCI,包括:
所述基站在所述DCI指示的所述短TTI数据传输资源上发送所述DCI。
结合第三方面的第十六种可能的实现方式,在第十七种可能的实现方式中,
所述基站在所述DCI指示的所述短TTI数据传输资源上发送所述DCI,包括:
所述基站在发送所述DCI时,从所述DCI指示的所述短TTI数据传输资源的第一个符号开始映射,当占满第一个符号时再继续映射到下一个符号。
第四方面,本发明实施例提供一种传输传输方法,包括:
终端设备确定资源调度粒度;
所述终端设备接收基站发送的下行控制信息DCI,所述DCI用于指示所述终端设备进行数据传输所使用的短TTI数据传输资源,所述短TTI数据传输资源在时域上小于1个子帧的长度或小于1ms;
所述终端设备根据所述资源调度粒度和所述DCI,确定进行所述数据传输所使用的所述短TTI数据传输资源;
所述终端设备使用所述短TTI数据传输资源与所述基站进行所述数据传输。
结合第四方面,在第一种可能的实现方式中,所述终端设备采用下列方式之一确定所述资源调度粒度:
所述终端设备根据承载所述DCI的物理下行控制信道的CCE聚合级别确定所述资源调度粒度;
所述终端设备根据系统带宽确定所述资源调度粒度;
所述终端设备根据短TTI数据传输可用带宽确定所述资源调度粒度;
所述终端设备根据承载所述DCI的物理下行控制信道的CCE聚合级别和系统带宽确定所述资源调度粒度;以及
所述终端设备根据承载所述DCI的物理下行控制信道的CCE聚合级别和短TTI数据传输可用带宽确定所述资源调度粒度;
其中,所述短TTI数据传输可用带宽为所述短TTI数据传输资源可占用的带宽。
结合第四方面的第一种可能的实现方式,在第二种可能的实现方式中,若所述终端设备根据承载所述DCI的物理下行控制信道的CCE聚合级别确定所述资源调度粒度,则
承载所述DCI的物理下行控制信道的CCE聚合级别越高,所述资源调度粒度越大。
结合第四方面的第一种可能的实现方式,在第三种可能的实现方式中,所述资源调度粒度包括时域资源调度粒度,所述时域资源调度粒度为所述基站调度所述终端设备进行短TTI数据传输时的最小时域资源分配单位,包括至少一个符号;
若所述终端设备根据承载所述DCI的物理下行控制信道的CCE聚合级别和系统带宽确定所述资源调度粒度,则
系统带宽越大,所述时域资源调度粒度越小;
若系统带宽固定,承载所述DCI的物理下行控制信道的CCE聚合级别越高,所述时域资源调度粒度越大。
结合第四方面的第一种可能的实现方式,在第四种可能的实现方式中,所述资源调度粒度包括时域资源调度粒度,所述时域资源调度粒度为所述基站调度所述终端设备进行短TTI数据传输时的最小时域资源分配单位,包括至少一个符号;
若所述终端设备根据承载所述DCI的物理下行控制信道的CCE聚合级别和短TTI数据传输可用带宽确定所述资源调度粒度,则
短TTI数据传输可用带宽越大,所述时域资源调度粒度越小;
若短TTI数据传输可用带宽固定,承载所述DCI的物理下行控制信道的CCE聚合级别越高,所述时域资源调度粒度越大。
结合第四方面,或第四方面的第一种至第四种可能的实现方式中的任一种,在第五种可能的实现方式中,
所述资源调度粒度包括:时域资源调度粒度,所述时域资源调度粒度为所述基站调度所述终端设备进行短TTI数据传输时的最小时域资源分配单位,包括至少一个符号;
所述短TTI数据传输资源在时域上占用的不同符号,在频域上占用相同带宽的频域资源;
所述相同带宽指:相同的系统带宽、相同的短TTI数据传输可用带宽,或相同的特定带宽;
其中,所述短TTI数据传输可用带宽为所述短TTI数据传输资源可占用的带宽。
结合第四方面,或第四方面的第一种至第四种可能的实现方式中的任一种,在第六种可能的实现方式中,
所述资源调度粒度包括:频域资源调度粒度,所述频域资源调度粒度为所述基站调度所述终端设备进行短TTI数据传输时的最小频域资源分配单位,包括至少一个RB;
所述短TTI数据传输资源在时域上占用N个符号,所述N为正整数,当循环前缀CP为长CP时,所述N不大于6,当CP为普通CP时,所述N不大于7。
结合第四方面,或第四方面的第一种至第四种可能的实现方式中的任一种,在第七种可能的实现方式中,
所述资源调度粒度包括:频域资源调度粒度和时域资源调度粒度;
所述频域资源调度粒度为所述基站调度所述终端设备进行短TTI数据传输时的最小频域资源分配单位,包括至少一个RB;
所述时域资源调度粒度为所述基站调度所述终端设备进行短TTI数据传输时的最小时域资源分配单位,包括至少一个符号。
结合第四方面的第五种可能的实现方式,在第八种可能的实现方式中,
所述DCI包括:用于指示所述短TTI数据传输资源在时域上占用的符号个数X的长度指示信息;
所述终端设备根据所述资源调度粒度和所述DCI,确定所述短TTI数据传输资源,包括:所述终端设备根据所述长度指示信息和所述时域资源调度粒度,确定所述短TTI数据传输资源在时域上占用以参考符号为起始的连续X个符号,所述X为正整数;
所述参考符号为:所述DCI占用的第一个符号、所述DCI占用的最后一个符号、所述DCI所占用的第一个符号之后的第k个符号,或所述DCI所占用的最后一个符号之后的第k个符号,k为正整数。
结合第四方面的第五种可能的实现方式,在第九种可能的实现方式中,
所述DCI包括:用于指示所述短TTI数据传输资源在时域上占用以参考符号为起始的若干个符号相对于所述参考符号的相对位置的信息;
所述参考符号为:所述DCI占用的第一个符号、所述DCI占用的最后一个符号、所述DCI所占用的第一个符号之后的第k个符号,或所述DCI所占用的最后一个符号之后的第k个符号,k为正整数;
所述终端设备根据所述资源调度粒度和所述DCI,确定所述短TTI数据传输资源,包括:所述终端设备根据所述相对位置的信息和所述时域资源调度粒度,确定所述短TTI数据传输资源在时域上占用以所述参考符号为起始的所述若干个符号。
结合第四方面的第五种可能的实现方式,在第十种可能的实现方式中,
所述DCI中用于指示所述短TTI数据传输资源的信息比特为空;
所述终端设备根据所述资源调度粒度和所述DCI,确定所述短TTI数据传输资源,包括:
所述终端设备确定所述短TTI数据传输资源在时域上占用以参考符号为起始的若干个符号,占用的所述若干个符号是连续的且占用的所述若干个符号的个数与所述时域资源粒度所包括的符号个数相同;
所述参考符号为:所述DCI占用的第一个符号、所述DCI占用的最后一个符号、所述DCI所占用的第一个符号之后的第k个符号,或所述DCI所占用的最后一个符号之后的第k个符号,k为正整数。
结合第四方面的第六种可能的实现方式,在第十一种可能的实现方式中,
所述DCI包括:用于指示所述短TTI数据传输资源的频域起始位置的起始位置信息;
所述终端设备根据所述资源调度粒度和所述DCI,确定所述短TTI数据传输资源,包括:
所述终端设备根据所述频域资源调度粒度和所述起始位置信息,确定所述短TTI数据传输资源的频域起始位置,并确定所述短TTI数据传输资源在频域上占用的资源与所述频域资源调度粒度一样大;以及
所述终端设备确定所述短TTI数据传输资源在时域上占用的起始符号为参考符号;所述参考符号为:所述DCI占用的第一个符号、所述DCI占用的最后一个符号、所述DCI所占用的第一个符号之后的第k个符号,或所述DCI所占用的最后一个符号之后的第k个符号,k为正整数。
结合第四方面的第七种可能的实现方式,在第十二种可能的实现方式中,所述DCI包括:用于指示所述短TTI数据传输资源的频域起始位置的起始位置信息;
所述终端设备根据所述资源调度粒度和所述DCI,确定所述短TTI数据传输所使用的数据传输资源,包括:
所述终端设备确定所述短TTI数据传输资源在时域上占用连续的符号,且占用的符号数与所述时域资源调度粒度包括的符号数相等;
所述终端设备确定所述短TTI数据传输资源在时域上占用的起始符号为参考符号;所述参考符号为:所述DCI占用的第一个符号、所述DCI占用的最后一个符号、所述DCI所占用的第一个符号之后的第k个符号,或所述DCI所占用的最后一个符号之后的第k个符号,k为正整数;以及
所述终端设备根据所述起始位置信息,确定所述短TTI数据传输资源在频域上占用以所述频域起始位置为起始的资源,则占用的资源与所述频域资源调度粒度一样大。
结合第四方面的第七种可能的实现方式,在第十三种可能的实现方式中,
所述DCI包括:用于指示所述短TTI数据传输资源的频域起始位置的起始位置信息和所述短TTI数据传输资源的带宽信息;以及用于指示所述短TTI数据传输资源在时域上占用的符号数X的长度指示信息,所述X为正整数;
所述终端设备根据所述资源调度粒度和所述DCI,确定所述短TTI数据传输资源,包括:
所述终端设备根据所述时域资源调度粒度和所述长度指示信息,确定所述短TTI数据传输资源在时域上占用以参考符号为起始的连续X个符号,所述参考符号为:所述DCI占用的第一个符号、所述DCI占用的最后一个符号、所述DCI所占用的第一个符号之后的第k个符号,或所述DCI所占用的最后一个符号之后的第k个符号,k为正整数;以及
所述终端设备根据所述频域资源调度粒度、所述起始位置信息和所述带宽信息,确定所述短TTI数据传输资源在频域上占用所述频域起始位置开始的所述带宽信息所指示的资源。
结合第四方面,或第四方面的第一种至第十三种可能的实现方式中的任一种,在第十四种可能的实现方式中,
在接收所述基站发送的DCI之前,还包括:
接收所述基站通过高层信令通知的所述终端设备可用的所述短TTI数据传输资源,所述可用的所述短TTI数据传输资源包括短TTI数据传输可用带宽和/或短TTI数据传输可占用的时域资源;
其中,所述短TTI数据传输可用带宽为所述短TTI数据传输资源可占用的带宽。
第五方面,本发明实施例提供一种无线通信系统,包括:基站和终端设备,
所述基站,用于确定资源调度粒度,根据所述资源调度粒度,确定所述终端设备进行数据传输所使用的短传输时间间隔TTI数据传输资源,所述短TTI数据传输资源在时域上小于1个子帧的长度或小于1ms,以及向所述终端设备发送下行控制信息DCI,所述DCI用于指示所述短TTI数据传输资源;
所述终端设备,用于确定所述资源调度粒度,接收所述基站发送的所述DCI,根据确定的所述资源调度粒度和所述DCI,确定进行数据传输所使用的所述短TTI数据传输资源。
本发明实施例中,基站发送的DCI向终端设备指示了小于1个子帧或小于1ms的短TTI数据传输资源,实现了对于TTI小于1个子帧长度或小于1ms的数据传输。
附图说明
图1为本发明实施例一提供的无线通信系统的结构示意图;
图2为本发明实施例一中数据传输的流程图;
图3~图5为本发明实施例一中数据传输资源方案的示意图;
图6为本发明实施例二提供的基站的结构示意图;
图7为本发明实施例二提供的基站在一种可选实现方式下的结构示意图;
图8为本发明实施例二提供的基站在另一种可选实现方式下的结构示意图;
图9为本发明实施例三提供的终端设备的结构示意图;
图10为本发明实施例三提供的终端设备在一种可选实现方式下的结构示意图;
图11为本发明实施例三提供的终端设备在另一种可能的实现方式下的结构示意图;
图12为本发明实施例四提供的第一种数据传输方法的流程图;
图13为本发明实施例五提供的第二种数据传输方法的流程图。
具体实施方式
有鉴于此,本发明实施例提供一种数据传输方法、装置及系统,用以提供一种针对TTI小于1个子帧长度或TTI小于1ms的数据传输的调度方案。
在本发明实施例中,基站根据资源调度粒度,确定终端设备进行数据传 输所使用的短TTI数据传输资源,基站向终端设备发送下行控制信息(Downlink Control Information,DCI),DCI用于指示该短TTI数据传输资源。终端设备接收基站发送的DCI,根据资源调度粒度和DCI,确定进行数据传输所使用的短TTI数据传输资源;其中,短TTI数据传输资源在时域上小于1个子帧的长度或小于1ms。
其中,基站发送的DCI向终端设备指示了小于1个子帧或小于1ms的短TTI数据传输资源,实现了对于TTI小于1个子帧长度或小于1ms的数据传输的调度。
为了便于对本发明实施例的理解,下面首先介绍本发明实施例涉及的基本概念。
为了便于理解,以LTE系统为例进行介绍,但这并不意味着本发明实施例仅适用于LTE系统,实际上,任何通过调度进行数据传输的无线通信系统都可以采用本发明实施例提供的方案,用以提供TTI小于1个子帧或小于1ms的数据传输的调度。
一、数据传输与调度
LTE系统中,采用物理下行共享信道(Physical Downlink Shared Channel,PDSCH)传输下行数据,采用物理上行共享信道(Physical Uplink Shared Channel,PUSCH)传输上行数据。
LTE系统中的终端设备UE在接收下行数据或发送上行数据前,需要知道基站配置给UE的调度信息(scheduling information),如时频资源分配,调制编码方式等。另外,基站也需要通知UE上行传输相关的功控命令(power control commands)信息。这些调度信息和功控命令信息属于DCI。DCI通过物理下行控制信道(Physical Downlink Control CHannel,PDCCH)承载。
本发明实施例提到的PDCCH可以是版本(Rel)-8定义的PDCCH,Rel-11定义的增强物理下行控制信道(enhanced Physical Downlink Control CHannnel,ePDCCH),以及或未来演进的PDCCH,只要能用于向终端设备发送DCI即可。
二、(Control Channel Element,CCE)聚合级别
在LTE系统中,用于发送调度信息的物理下行控制信道PDCCH由L个CCE聚合而成,L为正整数,称为聚合级别(aggregation level)。比如:对于Rel-8定义的PDCCH,L可以是1、2、4、8;再比如:对于Rel-11中定义的ePDCCH,L可以是1、2、4、8、16、32。
三、帧结构
通常,无线通信系统中,时间上是通过无线帧(Radio Frame)来进行标识的。比如:LTE系统中,每个无线帧由10个1ms长度的子帧(subframe)组成,每个子帧包括2个时隙(slot)。
对于普通循环前缀(Normal cyclic prefix,normal CP),每个slot由7个符号组成;对于长CP(Extended cyclic prefix,extended CP),每个slot由6个符号组成。其中,上行符号称为单载波频分多址(Single Carrier-Frequency Division Multiple Access,SC-FDMA)符号,下行符号称为正交频分复用(Orthogonal Frequency Division Multiplexing,OFDM)符号。需要说明的是,若后续技术引入正交频分多址(Orthogonal Frequency Division Multiple Access,OFDMA)的上行多址方式,上行符号也可以称为OFDM符号。本发明实施例中,上行符号和下行符号都简称为符号。
四、资源调度粒度
资源调度粒度是基站调度终端设备进行数据传输时的最小资源分配单位。对于LTE系统,资源调度粒度可包括:频域资源调度粒度和/或时域资源调度粒度。
时域资源调度粒度为基站调度终端设备进行短TTI数据传输时的最小时域资源分配单位,包括至少一个符号;
频域资源调度粒度为基站调度终端设备进行短TTI数据传输时的最小频域资源分配单位,包括至少一个资源块(Resource Block,RB)。
比如:频域资源调度粒度可为若干个RB,比如:25个RB、20个RB、10个RB、5个RB等。
时域资源调度粒度可为若干个符号,比如:1个符号,2个符号、3个符号、4个符号、1个时隙等。
本发明实施例中,数据传输资源包括若干个资源调度粒度。由于数据传输资源在时域上小于1个子帧,因此时域资源调度粒度小于1个子帧的长度。
以频域为例,假设数据传输资源在频域上占用10个RB,频域上的资源调度粒度,即频域资源调度粒度为2个RB,则数据传输资源包括5个频域资源调度粒度。
再比如:仍以频域为例,系统带宽为10个RB,频域资源调度粒度为4个RB,若基站为终端设备102分配整个系统带宽,则最后两个RB也分配给该终端设备。
五、短TTI数据传输
本发明实施例中,TTI小于1个子帧或1ms的数据包称为“短TTI数据包”,比如:子帧长度为1ms时,TTI小于1ms的数据包称为“短TTI数据包”,比如:TTI=0.5ms。
同理,TTI小于1个子帧或1ms的数据传输称为“短TTI数据传输”,比如:子帧长度为1ms时,TTI小于1ms的数据传输称为“短TTI数据传输”,比如:TTI为2个符号长度。
时域上小于1个子帧的长度或小于1ms的数据传输资源为短TTI数据传输资源。
对于短TTI数据传输,一次调度分配的传输资源在时域上小于1个子帧或1ms的长度。
六、资源分配(Resource Allocation,RA)信息
LTE系统中,DCI中包括资源分配RA信息。对应上行数据传输,目前存在2种RA方式;对应下行数据传输,目前存在3种RA方式,不同的RA方式对应的RA信息的比特数不同。
目前LTE系统中,TTI为1ms,eNB在1ms的TTI内仅发送一个DCI来通知UE接收或发送一个1ms TTI的数据包(Packet data)。但在引入短TTI 数据包之后,即引入TTI小于1ms的数据传输后,比如TTI缩减为1个符号长度至0.5ms之间,基站在1ms内可能需要发送多个DCI来通知UE接收或发送多个短TTI数据包。
由于DCI是通过PDCCH承载的,在引入短TTI数据包后,需要在单位时间内传输更多的DCI,单位时间内需要传输的RA信息的比特数也会相应地增加,导致RA信息的开销较大。
下面,结合附图对本发明实施例进行详细说明。首先介绍本发明实施例提供的无线通信系统、然后介绍本发明实施例提供的基站、终端设备,最后介绍本发明实施例提供的传输资源调度方法。
为了描述清楚起见,下表列出了本发明各实施例及对应的附图。
实施例 内容 附图
实施例一 无线通信系统 图1~图5
实施例二 基站 图6~图8
实施例三 终端设备 图9~图11
实施例四 第一种数据传输方法 图12
实施例五 第二种数据传输方法 图13
【实施例一】
如图1所示,实施例一提供的无线通信系统包括:基站101和终端设备102,其中,
基站101,用于根据资源调度粒度,确定调度终端设备102进行数据传输所使用的数据传输资源,并向终端设备发送DCI,DCI用于指示该数据传输资源,以及使用该数据传输资源与终端设备102进行数据传输;
终端设备102,用于接收基站101发送的DCI,根据资源调度粒度和DCI,确定进行上述数据传输所使用的该数据传输资源,以及使用该数据传输资源与基站101进行数据传输;
其中,可选地,该数据传输资源在时域上小于1个子帧的长度或小于1ms, 即为短TTI数据传输资源,可有效缩短数据传输时延,此时终端设备102和基站101之间的数据传输为短TTI数据传输;或者,该数据传输资源为TTI为1ms或1个子帧的数据传输资源,称为“普通数据传输资源”,此时终端设备102和基站101之间的数据传输可称为“普通数据传输”,通过资源调度粒度,实现数据传输资源的灵活配置。
其中,该短TTI数据传输的TTI小于1个子帧或小于1ms。
其中,若数据传输为短TTI数据传输,则由于DCI所指示的短TTI数据传输资源在时域上小于1个子帧的长度,因此能够实现对TTI小于1个子帧的数据传输的调度。或者,由于DCI所指示的短TTI数据传输资源在时域上小于1ms,因此能够实现对TTI小于1ms的数据传输的调度。
后面的各实施例中,除了特殊说明,数据传输可为短TTI数据传输或普通数据传输,对应的,数据传输资源可为短TTI数据传输资源或普通数据传输资源。
实施例一提供的无线通信系统可采用不同的无线通信制式,实施例一适用的无线通信制式包括但不限于下述各种制式:
全球移动通信系统(Global System of Mobile communication,GSM)、码分多址(Code Division Multiple Access,CDMA)IS-95、码分多址(Code Division Multiple Access,CDMA)2000、时分同步码分多址(Time Division-Synchronous Code Division Multiple Access,TD-SCDMA)、宽带码分多址(Wideband Code Division Multiple Access,WCDMA)、时分双工-长期演进(Time Division Duplexing-Long Term Evolution,TDD LTE)、频分双工-长期演进(Frequency Division Duplexing-Long Term Evolution,FDD LTE)、长期演进-增强(Long Term Evolution-Advanced,LTE-advanced)、个人手持电话系统(Personal Handy-phone System,PHS)、802.11系列协议规定的无线保真(Wireless Fidelity,WiFi)、全球微波互联接入(Worldwide Interoperability for Microwave Access,WiMAX)、蓝牙(Blue Tooth)等短距离无线通信系统等。
其中,终端设备102可为用户设备,包括但不限于:手机、平板电脑、 个人数字助理(Personal Digital Assistant,PDA)、销售终端设备(Point of Sales,POS)、车载电脑等。
基站101向终端设备102提供无线接口,也可称作空中接口、空口,终端设备102通过基站101接入无线通信系统。此外,基站101还可包括用于管理基站101的控制设备。
比如:对于TDD LTE、FDD LTE或LTE-A等LTE系统,基站101可为演进节点B(evolved NodeB,eNodeB),终端设备102可为UE;对于TD-SCDMA系统或WCDMA系统,基站101可包括:节点B(NodeB),或包括NodeB和无线网络控制器(Radio Network Controller,RNC),终端设备102可为UE;对于GSM系统,基站101可包括基站收发台(Base Transceiver Station,BTS),或包括BTS和基站控制器(Base Station Controller,BSC),终端设备102为移动台(Mobile Station,MS);对于WiFi系统,基站101可包括:接入点(Access Point,AP)和/或接入控制器(Access Controller,AC),终端设备102可为站点(Station,STA)。
为了便于理解,下面的描述中以LTE系统为例,但并不意味着本发明实施例仅适用于LTE系统,实际上,任何通过调度进行数据传输的无线通信系统都可以采用本发明实施例提供的方案,用以提供TTI小于1个子帧或1ms的数据传输的调度。
包括实施例一在内的本发明各实施例适用于上行数据传输和下行数据传输的场景。
下面,分别介绍基站101和终端设备102数据传输的调度流程。如图2所示,该流程包括如下步骤:
S201:基站101确定与终端设备102之间的数据传输为短TTI数据传输;
S202:基站101配置短TTI数据传输模式,通知终端设备102进行短TTI数据传输;
S203:终端设备102在收到步骤S202的通知后,确定进行短TTI数据传输;
S204:基站101确定资源调度粒度;
S205:基站101根据资源调度粒度确定数据传输资源;
S206:基站101向终端设备102发送DCI,该DCI指示与终端设备102进行数据传输的数据传输资源;
S207:终端设备102确定资源调度粒度;
S208:终端设备102根据资源调度粒度和DCI确定数据传输资源;
S209:终端设备102和基站101在确定的数据传输资源上进行数据传输。
其中,步骤S201~步骤S203为可选步骤,比如:基站101和终端设备102之间按照预先的约定仅进行短TTI数据传输时,或进行普通数据传输时,可省略步骤S201~步骤S203。
该流程既可用于上行数据传输的调度,也可用于下行数据传输的调度。后面的描述中,如果不明确区分,则可认为既适用于上行也可适用于下行。
其中,当数据传输为下行数据传输时,DCI可用于指示下行数据传输的传输资源;当数据传输为上行数据传输时,DCI可用于指示上行数据传输的传输资源。
下面,对各个步骤的实现分别详细说明。
【步骤S201】
可选地,步骤S201中,基站101可在满足下列条件中的至少一个时,确定与终端设备102进行短TTI数据传输:
终端设备102当前使用的业务的时延需求小于设置的时延阈值;
下行系统带宽大于设置的带宽阈值;以及
系统带宽上可用于短TTI数据传输的资源可用率大于设置的资源可用率阈值。
比如:基站101根据终端设备102当前使用的业务的时延需求(latency requirement),配置数据传输的TTI的长度。比如:对于小时延业务,基站配置短TTI数据传输;对于非小时延业务,基站配置1ms TTI的数据传输,该时延阈值可设置为0.1ms、0.2ms等。
再比如:基站101根据系统带宽,配置数据传输的TTI的长度。具体地,基站101根据下行系统带宽,配置下行数据传输或上行数据传输的TTI长度。在下行系统带宽较小时,若进行短TTI数据传输,则会导致物理下行控制信道,比如:PDCCH的开销较大,影响数据传输。比如:基站101可在下行系统带宽大于设置的带宽阈值时,配置短TTI的下行数据传输或上行数据传输;在下行系统带宽不大于设置的带宽阈值时,不配置短TTI的下行数据传输或上行数据传输。可选地,基站101根据上行系统带宽,配置上行数据传输的TTI长度。其中,带宽阈值可为:6个RB、10个RB、25个RB、26个RB、49个RB、50个RB或63个RB。
再比如:基站101根据终端设备102当前使用的业务的时延需求,配置数据传输的TTI的长度。比如:对于小时延业务,基站配置短TTI数据传输;对于非小时延业务,基站配置1ms TTI的数据传输,该时延阈值可设为0.1ms、0.2ms等。
再比如:当n个下行符号上的可用资源单元(Resource Element,RE)大于M时,基站可以配置短TTI数据传输。当n个下行符号上的可用RE不大于M时,基站不能配置短TTI数据传输。这里,可用RE为可以用于短TTI数据传输的RE。
其中,n为1、2、3、4、5、6或者7;
M=LMAX×MCCE,或者,M=LMAX×MCCE+Mex
其中,LMAX为物理下行控制信道(比如PDCCH)的最大聚合级,MCCE表示1个CCE由MCCE个RE组成,Mex为最少的用于短TTI数据传输的RE数,Mex可以预先设置或者基站配置后,通过高层信令通知给UE。
比如:20MHz下行系统带宽,其中100个RB可以用于短TTI数据传输,这样,1个下行符号上的可用RE为1200个(不包含小区特定参考信号(Cell-specific reference signals,CRS))或者1000个(包含1天线端口的CRS)。 假设n=1,LMAX=8,MCCE=36,Mex=240(不包含CRS)或200(包含1天线端口的CRS),那么M=528或488。所以1个下行符号上的可用RE大于M,,基站可以配置短TTI数据传输。
再比如:5MHz下行系统带宽,其中25个RB可以用于短TTI数据传输传输,这样,1个下行符号上的可用RE为300个(不包含小区特定参考信号(CRS,Cell-specific reference signals))或者250个(包含1天线端口的CRS)。假设n=1,LMAX=8,MCCE=36,Mex=240(不包含CRS)或200(包含1天线端口的CRS),那么M=528或488。所以1个下行符号上的可用RE小于M,基站不能配置短TTI数据传输。
这里,资源可用率阈值为M除以n。
【步骤S202】
基站101在步骤S201中确定与终端设备102之间的数据传输为短TTI数据传输后,可通过高层信令或物理层信令通知终端设备102,基站101与终端设备102之间的数据传输为短TTI数据传输,即基站101配置了短TTI数据传输模式。高层信令(High Layer Signaling)是相对物理层信令来说的,来自更高层面(layer)发送频率更慢的信令,包括无线资源控制(Radio Resource Control,RRC)信令和媒体接入控制(Media Access Control,MAC)信令。进一步地,基站可通过高层信令或物理层信令通知终端设备102,基站101与终端设备102之间的上行数据传输或下行数据传输为短TTI数据传输。当基站101通过物理层信令通知终端设备102时,基站101在下行控制区域要么发送DCI format 0/1/1A/1B/1D/2/2A/2B/2C/2D/4,要么发送本发明实施例中的DCI。当基站101发送DCI format 1/1A/1B/1D/2/2A/2B/2C/2D时,基站101调度的是TTI等于1ms的下行数据包。当基站101发送DCI format 0/4时,基站101调度的是TTI等于1ms上行数据包;当基站101发送的是本发明实施例中DCI时,基站101调度的是短TTI数据包。为了降低UE的PDCCH盲检测次数,可以配置本发明实施例中的DCI和DCI format 1A/DCI format 0的下行控制信息比特数一样多。
【步骤S203】
终端设备102在收到步骤S202的通知后,确定与基站101之间的数据传输为短TTI数据传输。进一步地,终端设备102在收到步骤S202的通知后,确定与基站101之间的上行数据传输或下行数据传输为短TTI数据传输。
【步骤S204】
步骤S204中,基站101可采用包括表1所列的五种方式在内的多种方式之一,确定资源调度粒度:
表1、确定资源调度粒度的五种方式
Figure PCTCN2015086796-appb-000001
其中,DCI用于指示与终端设备102进行的数据传输的数据传输资源。
其中,资源调度粒度可为时域资源调度粒度或频域资源调度粒度。后面的描述中,如果不区分时域资源调度粒度和频域资源调度粒度,则可认为既适用于时域也是适用于频域。
其中,系统中存在1ms TTI数据传输和短TTI数据传输。为了区分两者各自可以使用的频域资源,基站101需要确定短TTI数据传输可占用的带宽。进一步,基站101通过高层信令或物理层信令通知UE短TTI数据传输可占用的带宽。短TTI数据传输可占用的带宽,可以简称为“短TTI数据传输可用带宽”。
其中,若采用方式一、方式四或方式五确定资源调度粒度,则可选地, 承载DCI的物理下行控制信道的CCE聚合级别越高,资源调度粒度越大。
采用方式一、方式四或方式五时,基站101可首先确定承载DCI的物理下行控制信道的CCE聚合级别。可选地,基站101可根据终端设备102的信道状态确定该CCE聚合级别。
比如:当终端设备102的信道条件差时,基站101确定物理下行控制信道采用高CCE聚合级,例如L=8,16或32;当终端设备102的信道条件中等时,基站101确定物理下行控制信道采用中等CCE聚合级,例如L=4;当终端设备102的信道条件好时,基站101确定物理下行控制信道采用低CCE聚合级,例如L=1或2。
其中,基站101可通过多种方式确定终端设备102的信道条件。
比如:基站101根据终端设备102上报的信道测量报告确定终端设备102的信道条件。比如:该信道测量报告可以是信道状态信息(CSI,Channel State Information),CSI指示的信号与干扰加噪声比(Signal to Interference plus Noise Ratio,SINR)越高,信道条件越好。或信道测量报告也可以是下行信号接收强度,比如:参考信号接收功率(Reference Signal Receiving Power,RSRP),强度越大,信道条件越好。信道测量报告可上报的测量量有很多,均可用于衡量终端设备102的信道条件,限于篇幅,这里不再一一列举。
再比如:基站101通过对终端设备102发送的上行参考信号进行测量,来确定终端设备102的信道条件。这里上行参考信号可包括但不限于:探测参考信号(Sounding Reference Signal,SRS)以及解调参考信号(DeModulation Reference Signal,DMRS)等。
基站101确定终端设备102信道条件不限于上述两种方式,这里不再一一列举。
此外,基站101还可根据给终端设备102发送的DCI的信息比特数,确定物理下行控制信道采用的CCE聚合级别。当信息比特数较大时,基站确定物理下行控制信道不能采用L为1的CCE聚合级。这是因为,1个CCE包括36个RE,当CCE聚合级别为1时,36个RE可承载的信息比特数有限,因 此,当DCI中包括的信息比特数较多时,无法通过聚合级别为1的CCE承载。
下面,以上行时域资源调度粒度为例,说明方式一中基站101根据承载DCI的物理下行控制信道的CCE聚合级别确定资源调度粒度的方案。
可选地,基站101可根据如下规则中的至少一个确定上行时域资源调度粒度:
CCE聚合级别为1时,说明终端设备102的信道状态好,则基站101确定上行时域资源调度粒度为1个符号;
CCE聚合级别为2时,说明终端设备102的信道状态稍好,则基站101确定上行时域资源调度粒度为1或2个符号;
CCE聚合级别为4时,说明终端设备102的信道状态不好,则基站101确定上行时域资源调度粒度为3个符号或4个符号或1个slot;
CCE聚合级别为8时,说明终端设备102的信道状态非常差,则基站101确定上行时域资源调度粒度为1个slot。
下面,区分下行时域资源调度粒度、下行频域资源调度粒度和上行频域资源调度粒度,具体说明采用方式二或方式三确定资源调度粒度时的具体方案。
一、下行时域资源调度粒度
基站101根据下行系统带宽或下行短TTI数据传输可用带宽,确定下行时域资源调度粒度。
其中,下行系统带宽或下行短TTI数据传输可用带宽越小,时域资源调度粒度越大,即包括的下行符号数越多。
假设,时域资源调度粒度为Nsymb,其中,
Figure PCTCN2015086796-appb-000002
或者,
Figure PCTCN2015086796-appb-000003
或者
Figure PCTCN2015086796-appb-000004
或者,
Figure PCTCN2015086796-appb-000005
其中,
Figure PCTCN2015086796-appb-000006
为下行带宽中包括的RB数,即代表下行带宽;
Figure PCTCN2015086796-appb-000007
为下行短TTI数据传输可用带宽中包括的RB数,即代表下行短TTI数据传输可用带宽。
或者,基站101可根据下述规则中的至少一条规则确定下行时域资源调度粒度:
当下行系统带宽小于等于10个RB时,下行短TTI数据包的时域资源调度粒度为一个时隙;
当下行系统带宽为11~26个RB时,下行短TTI数据包的时域资源调度粒度为3或4个符号,或者为一个时隙;
当下行系统带宽为27~63个RB时,下行短TTI数据包的时域资源调度粒度为2,3或4个符号,或者为一个时隙;
当下行系统带宽为64~110个RB时,下行短TTI数据包的时域资源调度粒度为1或2个符号。
对于下行短TTI数据传输可用带宽的情形,可用下行短TTI数据传输可用带宽替换上述规则中的下行系统带宽,并可根据需要设置包括的RB数,时域资源调度粒度,原理与下行系统带宽的情形类似,这里不再重复描述。可选地,设置包括的RB数和时域资源调度粒度同上,可选地,取值范围可与下行系统带宽的情形相同,或根据实际情况调整。
二、下行频域资源调度粒度
基站101根据下行系统带宽或下行短TTI数据传输可用带宽,确定下行频域资源调度粒度。
其中,下行系统带宽或下行短TTI数据传输可用带宽越小,下行系统带宽或下行短TTI数据传输可用带宽内包含的频域资源调度粒度个数越少。
基站101可按照如下规则中的至少一条规则确定下行频域资源调度粒度:
当下行系统带宽小于等于10个RB时,下行频域资源调度粒度为
Figure PCTCN2015086796-appb-000008
个RB;
当下行系统带宽为11~26个RB时,下行频域资源调度粒度为
Figure PCTCN2015086796-appb-000009
Figure PCTCN2015086796-appb-000010
个RB;
当下行系统带宽为27~63个RB时,下行频域资源调度粒度为
Figure PCTCN2015086796-appb-000011
Figure PCTCN2015086796-appb-000012
Figure PCTCN2015086796-appb-000013
个RB;
当下行系统带宽为64~110个RB时,下行频域资源调度粒度为
Figure PCTCN2015086796-appb-000014
Figure PCTCN2015086796-appb-000015
个RB。
其中,
Figure PCTCN2015086796-appb-000016
表示向下取整。
对于下行短TTI数据传输可用带宽的情形,可用下行短TTI数据传输可用带宽替换上述规则中的下行系统带宽,并可根据需要设置包括的RB数,频域资源调度粒度,原理与下行系统带宽的情形类似,这里不再重复描述。可选地,设置包括的RB数和频域资源调度粒度同上,可选地,取值范围可与下行系统带宽的情形相同,或根据实际情况调整。
三、上行频域资源调度粒度
基站101根据上行系统带宽或上行短TTI数据传输可用带宽,确定上行频域资源调度粒度。
其中,上行系统带宽或上行短TTI数据传输可用带宽越小,上行系统带宽或上行短TTI数据传输可用带宽内包含的频域资源调度粒度个数越少。
基站101可根据下述规则确定上行频域资源调度粒度:
当上行系统带宽小于等于10个RB时,上行频域资源调度粒度为
Figure PCTCN2015086796-appb-000017
个RB;
当上行系统带宽为11~26个RB时,上行频域资源调度粒度为
Figure PCTCN2015086796-appb-000018
Figure PCTCN2015086796-appb-000019
个RB;
当上行系统带宽为27~63个RB时,上行频域资源调度粒度为
Figure PCTCN2015086796-appb-000020
Figure PCTCN2015086796-appb-000021
Figure PCTCN2015086796-appb-000022
个RB;
当上行系统带宽为64~110个RB时,上行频域资源调度粒度为
Figure PCTCN2015086796-appb-000023
Figure PCTCN2015086796-appb-000024
个RB。
对于上行短TTI数据传输可用带宽的情形,可用上行短TTI数据传输可用带宽替换上述规则中的上行系统带宽,并可根据需要设置包括的RB数,频域资源调度粒度,原理与上行系统带宽的情形类似,这里不再重复描述。可选地,设置包括的RB数和频域资源调度粒度同上,可选地,取值范围可与下行系统带宽的情形相同,或根据实际情况调整。
下面,区分下行时域资源调度粒度、下行频域资源调度粒度和上行频域资源调度粒度,具体说明采用方式四或方式五确定资源调度粒度时的具体方案。
一、下行时域资源调度粒度
基站101根据承载DCI的物理下行控制信道的CCE聚合级别和下行系统带宽确定下行时域资源调度粒度,或基站101根据承载DCI的物理下行控制信道的CCE聚合级别和下行短TTI数据传输可用带宽确定下行时域资源调度粒度。
时域资源调度粒度记为符号组(SG,Symbol Group)。
其中,下行系统带宽(或下行短TTI数据传输可用带宽)越大,下行时域资源调度粒度越小;若下行系统带宽(或下行短TTI数据传输可用带宽)固定,承载DCI的物理下行控制信道的CCE聚合级别越高,则下行时域资源 调度粒度越大。
比如:下行时域资源调度粒度为Nsymb
对于下行系统带宽的情形,
Figure PCTCN2015086796-appb-000025
Figure PCTCN2015086796-appb-000026
对于下行短TTI数据传输可用带宽的情形,
Figure PCTCN2015086796-appb-000027
Figure PCTCN2015086796-appb-000028
再比如:基站101按照如下规则确定下行时域资源调度粒度:
CCE聚合级为1时,该规则包括下列规则中的至少一种:当系统带宽小于等于10个RB时,基站101确定下行时域资源调度粒度为1或2个符号;当系统带宽大于10个RB时,基站确定下行短TTI数据包的最小时域资源调度粒度为1个符号。
CCE聚合级为2时,该规则包括下列规则中的至少一种:
当下行系统带宽小于等于10个RB时,下行时域资源调度粒度为2,3或4个符号;当下行系统带宽为11~26个RB时,下行时域资源调度粒度为1或2个符号;当下行系统带宽为27~63个RB时,基站确定下行短TTI数据包的最小时域资源调度粒度为1或2个符号;当下行系统带宽为64~110个RB时,下行时域资源调度粒度为1个符号。
CCE聚合级为4时,该规则包括下列规则中的至少一种:
当下行系统带宽小于等于10个RB时,下行时域资源调度粒度为3或4个符号,或者为一个时隙(slot);当下行系统带宽为11~26个RB时,下行时 域资源调度粒度为2,3或4个符号,或者为一个时隙;当下行系统带宽为27~63个RB时,下行时域资源调度粒度为1,2,3或4个符号;当下行系统带宽为64~110个RB时,下行时域资源调度粒度为1或2个符号。
CCE聚合级为8时,该规则包括下列规则中的至少一种:
当下行系统带宽小于等于10个RB时,下行时域资源调度粒度为一个时隙;当下行系统带宽为11~26个RB时,下行时域资源调度粒度为3或4个符号,或者为一个时隙;当下行系统带宽为27~63个RB时,下行时域资源调度粒度为2,3或4个符号,或者为一个时隙;当下行系统带宽为64~110个RB时,下行时域资源调度粒度为1或2个符号。
根据上述规则,可选地,基站101可按照下面的表2确定下行时域资源调度粒度。
表2、基站101按照聚合级别和下行系统带宽确定下行时域资源调度粒度SG
Figure PCTCN2015086796-appb-000029
对于下行短TTI数据传输可用带宽的情形,可用下行短TTI数据传输可用带宽替换上述规则中的下行系统带宽,并可根据需要设置带宽内包括的RB数,时域资源调度粒度,原理与下行系统带宽的情形类似,这里不再重复描 述。可选地,设置包括的RB数和时域资源调度粒度同上,可选地,取值范围可与下行系统带宽的情形相同,或根据实际情况调整。
二、下行频域资源调度粒度
基站101根据承载DCI的物理下行控制信道的CCE聚合级别和下行系统带宽确定下行频域资源调度粒度,或基站101根据承载DCI的物理下行控制信道的CCE聚合级别和下行短TTI数据传输可用带宽确定下行频域资源调度粒度。
频域资源调度粒度记为资源块组(RBG,Resource Block Group)。
其中,下行系统带宽(或下行短TTI数据传输可用带宽)越大,下行系统带宽(或下行短TTI数据传输可用带宽)内包含的频域资源调度粒度个数越少;若下行系统带宽(或下行短TTI数据传输可用带宽)固定,承载DCI的物理下行控制信道的CCE聚合级别越高,则下行频域资源调度粒度越大。
比如:基站101按照如下规则确定下行频域资源调度粒度:
CCE聚合级别为1或2时,该规则包括下列规则中的至少一种:当下行系统带宽小于等于10个RB时,下行频域资源调度粒度为
Figure PCTCN2015086796-appb-000030
个RB;当下行系统带宽为11~26个RB时,下行频域资源调度粒度为
Figure PCTCN2015086796-appb-000031
Figure PCTCN2015086796-appb-000032
个RB;当下行系统带宽为27~63个RB时,下行频域资源调度粒度为
Figure PCTCN2015086796-appb-000033
Figure PCTCN2015086796-appb-000034
Figure PCTCN2015086796-appb-000035
个RB;当下行系统带宽为64~110个RB时,下行频域资源调度粒度为
Figure PCTCN2015086796-appb-000036
Figure PCTCN2015086796-appb-000037
个RB。其中,
Figure PCTCN2015086796-appb-000038
表示向下取整。
CCE聚合级别为4时,该规则包括下列规则中的至少一种:当下行系统带宽小于等于10个RB时,下行频域资源调度粒度为
Figure PCTCN2015086796-appb-000039
个RB;当下行系统带宽为11~26个RB时,下行频域资源调度粒度为
Figure PCTCN2015086796-appb-000040
个RB;当下行系统带宽为27~63 个RB时,下行频域资源调度粒度为
Figure PCTCN2015086796-appb-000041
Figure PCTCN2015086796-appb-000042
个RB;当下行系统带宽为64~110个RB时,下行频域资源调度粒度为
Figure PCTCN2015086796-appb-000043
Figure PCTCN2015086796-appb-000044
个RB。
CCE聚合级别为8时,该规则包括下列规则中的至少一种:当下行系统带宽小于等于10个RB时,下行频域资源调度粒度为
Figure PCTCN2015086796-appb-000045
个RB;当下行系统带宽为11~26个RB时,下行频域资源调度粒度为
Figure PCTCN2015086796-appb-000046
个RB;当下行系统带宽为27~63个RB时,下行频域资源调度粒度为
Figure PCTCN2015086796-appb-000047
个RB;当下行系统带宽为64~110个RB时,下行频域资源调度粒度为
Figure PCTCN2015086796-appb-000048
个RB。
根据上述资源分配规则,优选地,基站根据所述CCE聚合级确定下行频域资源调度粒度,如表2所示。
表2、基站101按照聚合级别和下行系统带宽确定下行频域资源调度粒度RBG
Figure PCTCN2015086796-appb-000049
对于下行短TTI数据传输可用带宽的情形,可用下行短TTI数据传输可用带宽替换上述规则中的下行系统带宽,并可根据需要设置带宽内包括的RB数,频域资源调度粒度,原理与下行系统带宽的情形类似,这里不再重复描述。可选地,设置包括的RB数和频域资源调度粒度同上,可选地,取值范围可与下行系统带宽的情形相同,或根据实际情况调整。
三、上行频域资源调度粒度
基站101确定上行频域资源调度粒度的方法与二、下行频域资源调度粒度的方式类似,其中,可将
Figure PCTCN2015086796-appb-000050
替换为
Figure PCTCN2015086796-appb-000051
并根据上行的情况,设置带宽内包括的RB数即可。
以上介绍了步骤S204基站101确定资源调度粒度的方案。下面介绍步骤S205,基站101根据资源调度粒度确定数据传输资源。
【步骤S205】
基站在确定数据传输资源时,可有以下几种情形:
情形一
资源调度粒度包括:时域资源调度粒度,基站101根据时域资源调度粒度(该时域资源调度粒度可为整数个符号),确定与终端设备102进行数据传输所使用的数据传输资源在时域上占用的符号。
并且,情形一下,数据传输资源在时域上占用的不同符号,数据传输资源在频域上占用相同带宽的频域资源。
对于下行,该相同带宽可为:下行系统带宽
Figure PCTCN2015086796-appb-000052
下行短TTI数据传输可用带宽
Figure PCTCN2015086796-appb-000053
或下行特定带宽
Figure PCTCN2015086796-appb-000054
比如:该特定带宽
Figure PCTCN2015086796-appb-000055
可为3,4,5,10,14,15,20或者25;对于上行,该相同带宽可为:下行系统带宽
Figure PCTCN2015086796-appb-000056
下行短TTI数据传输可用带宽
Figure PCTCN2015086796-appb-000057
或下行特定带宽
Figure PCTCN2015086796-appb-000058
比如:该特定带宽
Figure PCTCN2015086796-appb-000059
可为3,4,5,10,14,15,20或者25。
其中,基站101和终端设备102可根据协议中的规定,或者在数据传输之间通过高层信令约定该相同带宽,这样DCI就无需信息比特指示数据传输资源占用的频域资源了。
对于情形一,存在包括下列几种可选的实现方案在内的多种方案,下面举例介绍如下:
可选方案一
数据传输资源在时域上占用以参考符号为起始的若干个符号。
其中,参考符号为:DCI占用的第一个符号、DCI占用的最后一个符号、DCI所占用的第一个符号之后的第k个符号,或所述DCI所占用的最后一个符号之后的第k个符号,k为正整数。对于上行数据传输,数据传输资源在时域上占用以参考符号为起始的若干个上行符号。对于下行数据传输,数据传输资源在时域上占用以参考符号为起始的若干个下行符号。
可选方案一以及后面的方案中,基站101和终端设备102可根据协议中的规定,或者在数据传输之间通过高层信令约定参考符号的位置,这样DCI中就无需指示数据传输资源在时域上的起始位置了。
此时,DCI可仅包括用于指示上述若干个符号相对于参考符号的相对位置的信息。当CP为普通CP时,假设分配的数据传输资源在时域上占用的第一个符号和最后一个符号的间隔不大于6个符号,以时域资源调度粒度是1个符号为例,此时,则仅需7bit的bitmap用于指示上述若干个符号相对于参考符号的位置;以时域资源调度粒度是2个符号为例,比如:基站101为终端设备102分配符号2、3、5、6,此时,由于时域资源调度粒度是2个符号,因此,分配的符号中不会出现1、3、5这样单个符号的情形,因此,只需要指示每一个时域资源调度粒度相对于参考符号的相对位置即可,此时,则仅需6bit的bitmap,比如:为终端设备102分配的符号为符号1、2、3、4、6、7,则可用bitmap101001指示,终端设备102收到该相对位置的信息后,确定分配的符号中,第一个时域资源调度粒度与参考符号距离一个符号,第二个时域资源调度粒度与参考符号距离3个符号,第三个时域资源调度粒度与参考符号距离6个符号。与目前DCI中的RA信息相比,占用的信息比特数较少。此种资源分配方式可称为非连续时域资源分配(Time Resource Allocation,TRA)。
可选方案二
数据传输资源在时域上占用以参考符号为起始的连续X个符号,X为正整数。
此时,DCI可仅包括用于指示X的长度指示信息。当CP为普通CP时, 假设时域资源的长度不大于7个符号,以时域资源调度粒度是1个符号为例,则此时仅需3比特指示X(如前所述,参考符号的位置无需指示);以时域资源调度粒度为3个符号为例,则此时仅需1比特指示X,比如:“0”表示长度为3个符号,“1”表示长度为6个符号。与目前DCI中的RA信息相比,占用的信息比特数较少。此种资源分配方式可称为连续TRA,频域上短TTI数据传输资源占用系统带宽时,该资源分配方式可如图3所示,其中阴影部分为数据传输资源占用的符号;频域上短TTI数据传输资源占用特定带宽时,该资源分配方式可如图4所示,其中阴影部分为数据传输资源占用的符号。
或者图4中的特定带宽可通过DCI中的信息比特指示,比如:整个系统带宽分为5份,可用5bit的bitmap指示特定带宽,并通过3bit指示X,此时,DCI中可仅包括8bit信息用于指示分配的数据传输资源(如前所述,参考符号的位置无需指示)。
可选方案三
数据传输资源在时域上占用参考符号起始的连续的与时域资源粒度所包括的符号数相同的符号。
此时,由于参考符号的位置无需指示,且占用了设置的频域资源,也无需信息比特指示频域资源,因此DCI中用于指示数据传输资源的信息比特可为空,即DCI中可不包括用于显式指示数据传输资源的信息比特,但终端设备102仍可根据DCI确定出使用的数据传输资源。
情形二
资源调度粒度包括:频域资源调度粒度,基站101根据频域资源调度粒度,确定数据传输资源在频域上占用的资源;以及
并且,情形二下,数据传输资源在时域上占用N个连续的符号,N为正整数,当循环前缀CP为长CP时,N不大于6,当CP为普通CP时,N不大于7。
其中,基站101和终端设备102可根据协议中的规定,或者在数据传输之间通过控制消息约定N个符号的位置,这样DCI中就无需指示数据传输资 源的时域位置了。
情形二中,基站101可确定数据传输资源在频域上占用的资源与所述频域资源调度粒度一样大,比如:占用连续的资源,且占用的资源与所述频域资源调度粒度一样大;且数据传输资源在时域上占用的起始符号为参考符号,该参考符号为DCI占用的第一个符号、DCI占用的最后一个符号,或DCI所占用的第一个符号或最后一个符号之后的第k个符号,k为正整数;
此时,DCI可仅包括用于指示数据传输资源的频域起始位置的信息,该频域起始位置的信息可以是基站101根据频域资源调度粒度生成的。
以下行数据传输为例,假设下行系统带宽为20MHz(包括100个RB),频域调度粒度为20RB则频域起始位置仅有5种可能(RB号为0,20,40,60,80),基站101仅需3比特指示频域起始位置。比如:‘000’表示频域起始位置为RB号等于0的RB,‘010’表示频域起始位置为RB号等于40的RB。此时,仅需3bit指示分配的数据传输资源,与目前的RA信息相比,信息比特数较少。
情形三
资源调度粒度包括:频域资源调度粒度和时域资源调度粒度,基站101根据时域资源调度粒度,确定数据传输资源在时域上占用的符号,并根据频域资源调度粒度,确定数据传输资源在频域上占用的资源。
对于情形三,存在包括下列几种可选的实现方案在内的多种方案,下面举例介绍如下:
可选方案一
数据传输资源在时域上占用连续的符号,且占用的符号数与所述时域资源调度粒度包括的符号数相等,在频域上占用占用的资源与所述频域资源调度粒度一样大;且数据传输资源在时域上占用的起始符号为参考符号。
此时,DCI可仅包括用于指示数据传输资源的频域起始位置的信息,频域起始位置的信息可以是基站101根据频域资源调度粒度生成的。
以下行数据传输为例,假设下行系统带宽为20MHz(包括100个RB), 频域调度粒度为20RB则频域起始位置仅有5种可能(RB号为0,20,40,60,80),基站101仅需3比特指示频域起始位置。比如:‘000’表示频域起始位置为RB号等于0的RB,‘010’表示频域起始位置为RB号等于40的RB。此时,仅需3bit指示分配的数据传输资源,与目前的RA信息相比,信息比特数较少。
可选方案二
数据传输资源在时域上占用参考符号起始的连续X个符号,X为正整数,且数据传输资源在频域上以频域指示位置为起始的指定带宽的资源。
此时,DCI中可包括如下信息:
数据传输资源的频域起始位置的信息;
上述指定带宽的带宽信息;
用于指示X的长度指示信息。
其中,频域起始位置的信息和带宽信息可由基站101根据频域资源调度粒度生成的。
以下行数据传输为例,假设下行系统带宽为20MHz(包括100个RB),频域调度粒度为20RB,则频域起始位置仅有5种可能(RB号为0,20,40,60,80),基站101仅需3比特指示频域起始位置,3比特指示数据传输资源的带宽(比如:RB数为20、40、60、80或100)。比如:‘000’表示频域起始位置为RB号等于0的RB,‘010’表示频域起始位置为RB号等于40的RB。‘000’表示带宽为20RB,‘011’表示带宽为80RB。
假设时域资源的长度不大于7个符号,以时域资源调度粒度是1个符号为例,则此时仅需3比特指示X(如前所述,参考符号的位置无需指示);以时域资源调度粒度为3个符号为例,则此时仅需1比特指示X,比如:“0”表示长度为3个符号,“1”表示长度为6个符号。
以时域资源调度粒度是1个符号为例,仅需3+3+3=9bit指示分配的数据传输资源,与目前的RA信息相比,信息比特数较少。
情形四
数据传输资源在时域上占用N个符号,且对于数据传输资源在时域上占用的不同符号,数据传输资源在频域上占用相同带宽的频域资源;或者
数据传输资源在时域上占用N个符号,时域起始位置为参考符号,且对于数据传输资源在时域上占用的不同符号,数据传输资源在频域上占用的资源与频域资源调度粒度一样大;并且根据协议或数据传输之前的控制消息的约定,数据传输资源的频域起始位置为DCI占用的第一个RB。
此时,DCI中用于指示数据传输资源的信息比特为空,即DCI中可不包括用于指示数据传输资源的信息比特。
情形五
情形五中,基站101可采用如图5所示的先频域后时域的资源分配方式。
此时,对于下行数据传输,基站101需要
Figure PCTCN2015086796-appb-000060
个比特指示分配的数据传输资源。其中,
Figure PCTCN2015086796-appb-000061
为一个slot包括的符号数,其中,
Figure PCTCN2015086796-appb-000062
为下行系统带宽,NRB为下行频域资源调度粒度。
对于上行数据传输,基站101需要
Figure PCTCN2015086796-appb-000063
个比特指示分配的数据传输资源。其中,
Figure PCTCN2015086796-appb-000064
为上行系统带宽,NRB为上行频域资源调度粒度。
以下行数据传输为例,假设下行系统带宽为20MHz(包括100个RB),频域调度粒度为20RB,则下行系统带宽被分为5份。假设时域资源调度粒度不大于7个符号,时域资源被分为7份,总共有7*5=35份资源。从35份资源中选择一个作为起点,并选择一个值作为长度,根据上述公式,总共需要10bit,用以指示数据传输资源。
若DCI中包括用于指示数据传输资源的信息比特,则基站101可将该信息比特置于RA信息中发给终端设备102。
【步骤S206】
步骤S206中,基站101向终端设备102发送DCI。
其中,基站101在DCI指示的与终端设备102进行数据传输所使用的数据传输资源上发送DCI。比如:对于短TTI数据传输,基站101发送DCI,该DCI承载于第一PDCCH,基站101确定第一PDCCH的时频域资源位于第一区域内,该第一区域为与终端设备102进行短TTI数据传输所使用的区域,即DCI中的RA信息所指示的时频域资源区域。
可选地,承载该DCI的PDCCH从上述第一区域的第一个符号开始映射,当占满第一符号的可用资源才继续映射到下一个符号的可用资源。这样,终端设备102可以快速译码PDCCH。
其中,当DCI指示上行短TTI数据传输,基站101可根据设置的规则确定PDCCH的时频域资源,或者,基站通过高层信令或物理层信令通知终端设备102该PDCCH的时频域资源。
基站101组装DCI,添加DCI的CRC,其中,利用终端设备102的无线网络临时标识(Radio Network Temporary Identity,RNTI)加扰,然后对添加了CRC的DCI进行信道编码和速率匹配,以及调制,最后映射到时频域资源上发送出去。
【步骤S207】
步骤S207中,终端设备102确定资源调度粒度。
其中,终端设备102确定资源调度粒度的方法与步骤S204中基站101确定资源调度粒度的方法相同,需要说明的是,当终端设备102根据承载DCI的物理下行控制信道的CCE聚合级别来确定资源调度粒度时,终端设备102可通过对承载DCI的物理下行控制信道的盲检过程获得该物理下行控制信道的CCE聚合级别。
比如:终端设备102可先确定物理下行控制信道的搜索空间。该搜索空 间为候选物理下行控制信道的集合,以PDCCH为例,该搜索空间为候选PDCCH(PDCCH candidate)集合。终端设备102需要监测候选PDCCH集合中的每一个候选PDCCH,因此,搜素空间即为终端设备102监测的PDCCH集合。每一个CCE聚合级别(aggregation level)对应一个搜索空间。
对于每一个CCE聚合级别,终端设备102对该CCE聚合级别所对应的候选PDCCH集合中的每一个候选PDCCH进行盲检,或检测到发给自身的DCI,则确定该PDCCH所属的候选PDCCH集合所对应的CCE聚合级别,即为要确定的承载DCI的PDCCH的CCE聚合级别。
【步骤S208】
步骤S208中,终端设备102根据资源调度粒度和DCI确定数据传输资源。
其中,终端设备102在收到DCI后,解读DCI中的RA信息,获得用于数据传输资源的信息。终端设备102可按照与步骤S205中,基站101确定数据传输资源的相反的方式,根据RA信息和资源调度粒度确定数据传输资源。
下面以步骤S205中的情形一中的可选方案一为例加以说明,其他数据传输资源的分配方式同理,这里不再赘述。
情形一的可选方案一中,对于数据传输资源在时域上占用的不同符号,数据传输资源在频域上占用相同带宽频域资源,且数据传输资源在时域上占用参考符号起始的若干个符号。
其中,如前所述,基站101和终端设备102在数据传输之前都知道相同带宽的频域资源是什么,并且知道参考符号的位置,则终端设备102在收到DCI中包括的用于指示上述若干个符号相对于参考符号的相对位置的信息后,即可确定数据传输资源在时域上占用的符号有哪些。这样就分别确定了时域的数据传输资源和频域的数据传输资源。
【步骤S209】
基站101在步骤S205中确定的数据传输资源上与终端设备102进行数据传输,而终端设备102在步骤S208中根据DCI确定的数据传输资源上与基站101进行数据传输。具体地,对于下行数据传输,基站101在步骤S205中确 定的数据传输资源上发送下行数据包,终端设备102在步骤S208中根据DCI确定的数据传输资源上接收下行数据包;对于上行数据传输,终端设备102在步骤S208中根据DCI确定的数据传输资源上发送上行数据包,基站101在步骤S205中确定的数据传输资源上接收上行数据包。
【实施例二】
如图6所示,实施例二提供的基站包括:处理模块601和收发模块602。其中,
处理模块601,用于确定资源调度粒度,根据确定的资源调度粒度,确定调度终端设备进行数据传输所使用的短TTI数据传输资源,该短TTI数据传输资源在时域上小于1个子帧的长度或小于1ms;
收发模块602,用于向终端设备发送下行控制信息DCI,该DCI用于指示上述短TTI数据传输资源;以及使用该短TTI数据传输资源与终端设备进行数据传输。
可选地,处理模块601具体用于:采用下列方式之一确定资源调度粒度:
根据承载DCI的物理下行控制信道的CCE聚合级别确定资源调度粒度;
根据系统带宽确定资源调度粒度;
根据短TTI数据传输可用带宽确定资源调度粒度;
根据承载DCI的物理下行控制信道的CCE聚合级别和系统带宽确定资源调度粒度;以及
根据承载DCI的物理下行控制信道的CCE聚合级别和短TTI数据传输可用带宽确定资源调度粒度;
其中,短TTI数据传输可用带宽为短TTI数据传输资源可占用的带宽。
可选地,若处理模块601根据承载DCI的物理下行控制信道的CCE聚合级别确定资源调度粒度,则
承载DCI的物理下行控制信道的CCE聚合级别越高,资源调度粒度越大。
可选地,资源调度粒度包括时域资源调度粒度,时域资源调度粒度为基站调度终端设备进行短TTI数据传输时的最小时域资源分配单位,包括至少 一个符号;
若处理模块601根据承载DCI的物理下行控制信道的CCE聚合级别和系统带宽确定资源调度粒度,则
系统带宽越大,时域资源调度粒度越小;
若系统带宽固定,承载DCI的物理下行控制信道的CCE聚合级别越高,时域资源调度粒度越大。
可选地,资源调度粒度包括时域资源调度粒度,时域资源调度粒度为基站调度终端设备进行短TTI数据传输时的最小时域资源分配单位,包括至少一个符号;
若处理模块601根据承载DCI的物理下行控制信道的CCE聚合级别和短TTI数据传输可用带宽确定资源调度粒度,则
短TTI数据传输可用带宽越大,时域资源调度粒度越小;
若短TTI数据传输可用带宽固定,承载DCI的物理下行控制信道的CCE聚合级别越高,时域资源调度粒度越大。
可选地,资源调度粒度包括:时域资源调度粒度,时域资源调度粒度为基站调度终端设备进行短TTI数据传输时的最小时域资源分配单位,包括至少一个符号;
处理模块601具体用于:
根据时域资源调度粒度,确定短TTI数据传输资源在时域上占用的符号,在时域上占用的符号中的不同符号在频域上占用相同带宽的频域资源;
相同带宽指:相同的系统带宽、相同的短TTI数据传输可用带宽,或相同的特定带宽;
其中,短TTI数据传输可用带宽为短TTI数据传输资源可占用的带宽。
可选地,资源调度粒度包括:频域资源调度粒度,频域资源调度粒度为基站调度终端设备进行短TTI数据传输时的最小频域资源分配单位,包括至少一个RB;
处理模块601具体用于:
根据频域资源调度粒度,确定短TTI数据传输资源在频域上占用的资源,短TTI数据传输资源在时域上占用N个符号,N为正整数,当循环前缀CP为长CP时,N不大于6,当CP为普通CP时,N不大于7。
可选地,资源调度粒度包括:频域资源调度粒度和时域资源调度粒度;频域资源调度粒度为基站调度终端设备进行短TTI数据传输时的最小频域资源分配单位,包括至少一个RB;时域资源调度粒度为基站调度终端设备进行短TTI数据传输时的最小时域资源分配单位,包括至少一个符号;
处理模块601具体用于:
根据时域资源调度粒度,确定短TTI数据传输资源在时域上占用的符号;以及
根据频域资源调度粒度,确定短TTI数据传输资源在频域上占用的资源。
可选地,处理模块601具体用于:确定数据传输资源在时域上占用以参考符号为起始的连续X个符号,X为正整数,X为时域资源调度粒度的整数倍;
参考符号为:DCI占用的第一个符号、DCI占用的最后一个符号、DCI所占用的第一个符号之后的第k个符号,或DCI所占用的最后一个符号之后的第k个符号,k为正整数;
DCI包括:用于指示X的长度指示信息,长度指示信息是处理模块601根据时域资源调度粒度生成的。
可选地,处理模块601具体用于:确定短TTI数据传输资源在时域上占用以参考符号为起始的若干个符号,占用的符号数为时域资源调度粒度的整数倍;
参考符号为:DCI占用的第一个符号、DCI占用的最后一个符号、DCI所占用的第一个符号之后的第k个符号,或DCI所占用的最后一个符号之后的第k个符号,k为正整数;
DCI包括:用于指示若干个符号相对于参考符号的相对位置的信息,相对位置的信息是处理模块601根据时域资源调度粒度和相对位置生成的。
可选地,处理模块601具体用于:确定短TTI数据传输资源在时域上占用以参考符号为起始的若干个符号,其中,占用的若干个符号是连续的,且占用的若干个符号的个数与时域资源粒度所包括的符号个数相同;
参考符号为:DCI占用的第一个符号、DCI占用的最后一个符号、DCI所占用的第一个符号之后的第k个符号,或DCI所占用的最后一个符号之后的第k个符号,k为正整数;
DCI中用于指示短TTI数据传输资源的信息比特为空。
可选地,处理模块601具体用于:
确定短TTI数据传输资源在频域上占用的资源与频域资源调度粒度一样大;以及
确定短TTI数据传输资源在时域上占用的起始符号为参考符号,参考符号为DCI占用的第一个符号、DCI占用的最后一个符号、DCI所占用的第一个符号之后的第k个符号,或DCI所占用的最后一个符号之后的第k个符号,k为正整数;
DCI包括:用于指示短TTI数据传输资源的频域起始位置的信息,频域起始位置的信息是处理模块601根据频域资源调度粒度生成的。
可选地,处理模块601具体用于:
确定短TTI数据传输资源在时域上占用连续的符号,且占用的符号数与时域资源调度粒度包括的符号数相等;
确定短TTI数据传输资源在频域上占用的资源与频域资源调度粒度一样大;以及
确定数据传输资源在时域上占用的起始符号为参考符号;
参考符号为:DCI占用的第一个符号、DCI占用的最后一个符号、DCI所占用的第一个符号之后的第k个符号,或DCI所占用的最后一个符号之后的第k个符号,k为正整数;
DCI包括:用于指示短TTI数据传输资源的频域起始位置的信息,频域起始位置的信息是处理模块601根据频域资源调度粒度生成的。
可选地,处理模块601具体用于:
确定短TTI数据传输资源在时域上占用以参考符号为起始的连续X个符号,X为正整数;参考符号为:DCI占用的第一个符号、DCI占用的最后一个符号、DCI所占用的第一个符号之后的第k个符号,或DCI所占用的最后一个符号之后的第k个符号,k为正整数;以及
确定短TTI数据传输资源在频域上占用以频域起始位置为起始的指定带宽的资源;
DCI包括:用于指示频域起始位置的起始位置信息和指定带宽的带宽信息,以及用于指示X的长度指示信息;频域起始位置的信息、带宽信息是处理模块601根据频域资源调度粒度生成的,长度指示信息是处理模块601根据时域资源调度粒度生成的。
可选地,处理模块601还用于:在确定资源调度粒度之前,确定满足下列条件中的至少一个:
终端设备当前使用的业务的时延需求小于设置的时延阈值;
系统带宽大于设置的带宽阈值;以及
系统带宽上资源可用率大于设置的资源可用率阈值。
可选地,收发模块602还用于:
在向终端设备发送DCI之前,通过高层信令通知终端设备可用的短TTI数据传输资源,可用的短TTI数据传输资源包括短TTI数据传输可用带宽和/或数据传输可占用的时域资源;
其中,短TTI数据传输可用带宽为短TTI数据传输资源可占用的带宽。
可选地,收发模块602具体用于:
在DCI指示的短TTI数据传输资源上发送DCI。
可选地,收发模块602具体用于:
在发送DCI时,从DCI指示的短TTI数据传输资源的第一个符号开始映射,当占满第一个符号时再继续映射到下一个符号。
实施例二提供的基站的其他可选实现方式可参考实施例一提供的无线通 信系统中的基站101。
具体地,处理模块601用于执行基站101所执行的处理操作,收发模块602可用于执行基站101所执行的收发操作。
其中,实施例二提供的基站可采用的无线通信制式可参考实施例一中描述的各种无线通信制式。
实施例二提供的基站向无线通信系统中的终端设备提供无线接口,也可称作空中接口、空口,终端设备通过基站接入无线通信系统。
比如:对于TDD LTE、FDD LTE或LTE-A等LTE系统,基站可为eNodeB;对于TD-SCDMA系统或WCDMA系统,基站可包括:NodeB,或包括NodeB和RNC;对于GSM系统;基站可包括BTS,或包括BTS和BSC;对于WiFi系统,基站可包括:AP和/或AC。
实施例二提供的基站的调度流程可参考图2所示的流程。其中,基站确定数据传输资源,向终端设备发送用于指示该数据传输资源的DCI,之后,基站在确定的数据传输资源上与终端设备进行数据传输。基站的处理可包括步骤S201、步骤S202、步骤S204、步骤S205、步骤S206和步骤S209。每一步骤的方案可分别参考实施例一中对应的步骤,这里不再赘述。
在上述各步骤中,步骤S201、步骤S204、步骤S205可由处理模块601执行;步骤S202、步骤S206和步骤S209可由收发模块602执行,可选地,收发模块602可在处理模块601的控制下执行各步骤。在步骤S209收发模块602收到终端设备发送的上行数据后,可将上行数据交给处理模块601进行进一步的处理,比如:信道解码、解调制等物理层协议处理,以及传输层、应用层等其他层的协议处理等。
其中,基站调度的数据传输可为上行传输或下行传输。
其中,处理模块601确定资源调度粒度、确定数据传输资源、确定DCI的方案可参考实施例一中基站101的实现,在此不再赘述。
图7示出了基站的一种可选的实现方式,其中,处理模块601可由图7中的处理器701实现,收发模块602可由图7中的收发器702实现。其中, 总线架构可以包括任意数量的互联的总线和桥,具体由处理器701代表的一个或多个处理器和存储器703代表的存储器的各种电路链接在一起。总线架构还可以将诸如外围设备、稳压器和功率管理电路等之类的各种其他电路链接在一起,这些都是本领域所公知的,因此,本文不再对其进行进一步描述。总线接口提供接口。收发器702可以是多个元件,即包括发射器和接收器,提供用于在传输介质上与各种其他装置通信的单元。针对不同的基站,用户接口704还可以是能够外接内接需要设备的接口,连接的设备包括但不限于小键盘、显示器、扬声器、麦克风、操纵杆等。
图8示出了基站的另一种可选的实现方式,其中,处理模块601可由图8中的处理器801实现,收发模块602可由图8中的收发器802实现。
【实施例三】
如图9所示,实施例三提供的终端设备包括:处理模块901和收发模块902。其中,
处理模块901,用于确定资源调度粒度;
收发模块902,用于接收基站发送的DCI,该DCI用于指示该终端设备进行数据传输所使用的短TTI数据传输资源,该短TTI数据传输资源在时域上小于1个子帧的长度或小于1ms;根据上述资源调度粒度和DCI,确定终端设备进行上述数据传输所使用的短TTI数据传输资源;
以及使用该短TTI数据传输资源与基站进行数据传输。
可选地,处理模块901具体用于:采用下列方式之一确定资源调度粒度:
根据承载DCI的物理下行控制信道的CCE聚合级别确定资源调度粒度;
根据系统带宽确定资源调度粒度;
根据短TTI数据传输可用带宽确定资源调度粒度;
根据承载DCI的物理下行控制信道的CCE聚合级别和系统带宽确定资源调度粒度;以及
根据承载DCI的物理下行控制信道的CCE聚合级别和短TTI数据传输可用带宽确定资源调度粒度;
其中,短TTI数据传输可用带宽为短TTI数据传输资源可占用的带宽。
可选地,若处理模块901根据承载DCI的物理下行控制信道的CCE聚合级别确定资源调度粒度,则
承载DCI的物理下行控制信道的CCE聚合级别越高,资源调度粒度越大。
可选地,资源调度粒度包括时域资源调度粒度,时域资源调度粒度为基站调度终端设备进行短TTI数据传输时的最小时域资源分配单位,包括至少一个符号;
若处理模块901根据承载DCI的物理下行控制信道的CCE聚合级别和系统带宽确定资源调度粒度,则
系统带宽越大,时域资源调度粒度越小;
若系统带宽固定,承载DCI的物理下行控制信道的CCE聚合级别越高,时域资源调度粒度越大。
可选地,资源调度粒度包括时域资源调度粒度,时域资源调度粒度为基站调度终端设备进行短TTI数据传输时的最小时域资源分配单位,包括至少一个符号;
若处理模块901根据承载DCI的物理下行控制信道的CCE聚合级别和短TTI数据传输可用带宽确定资源调度粒度,则
短TTI数据传输可用带宽越大,时域资源调度粒度越小;
若短TTI数据传输可用带宽固定,承载DCI的物理下行控制信道的CCE聚合级别越高,时域资源调度粒度越大。
可选地,资源调度粒度包括:时域资源调度粒度,时域资源调度粒度为基站调度终端设备进行短TTI数据传输时的最小时域资源分配单位,包括至少一个符号;
短TTI数据传输资源在时域上占用的不同符号,在频域上占用相同带宽的频域资源;
相同带宽指:相同的系统带宽、相同的短TTI数据传输可用带宽,或相同的特定带宽;
其中,短TTI数据传输可用带宽为短TTI数据传输资源可占用的带宽。
可选地,资源调度粒度包括:频域资源调度粒度,频域资源调度粒度为基站调度终端设备进行短TTI数据传输时的最小频域资源分配单位,包括至少一个RB;
短TTI数据传输资源在时域上占用N个符号,N为正整数,当循环前缀CP为长CP时,N不大于6,当CP为普通CP时,N不大于7。
可选地,资源调度粒度包括:频域资源调度粒度和时域资源调度粒度;
频域资源调度粒度为基站调度终端设备进行短TTI数据传输时的最小频域资源分配单位,包括至少一个RB;
时域资源调度粒度为基站调度终端设备进行短TTI数据传输时的最小时域资源分配单位,包括至少一个符号。
可选地,DCI包括:用于指示短TTI数据传输资源在时域上占用的符号个数X的长度指示信息;
终端设备根据资源调度粒度和DCI,确定短TTI数据传输资源,包括:终端设备根据长度指示信息和时域资源调度粒度,确定短TTI数据传输资源在时域上占用以参考符号为起始的连续X个符号,X为正整数;
参考符号为:DCI占用的第一个符号、DCI占用的最后一个符号、DCI所占用的第一个符号之后的第k个符号,或DCI所占用的最后一个符号之后的第k个符号,k为正整数。
可选地,DCI包括:用于指示短TTI数据传输资源在时域上占用以参考符号为起始的若干个符号相对于参考符号的相对位置的信息;
参考符号为:DCI占用的第一个符号、DCI占用的最后一个符号、DCI所占用的第一个符号之后的第k个符号,或DCI所占用的最后一个符号之后的第k个符号,k为正整数;
处理模块901具体用于:根据相对位置的信息和时域资源调度粒度,确定短TTI数据传输资源在时域上占用以参考符号为起始的若干个符号。
可选地,DCI中用于指示短TTI数据传输资源的信息比特为空;
处理模块901具体用于:
确定短TTI数据传输资源在时域上占用以参考符号为起始的若干个符号,占用的若干个符号是连续的且占用的若干个符号的个数与时域资源粒度所包括的符号个数相同;
参考符号为:DCI占用的第一个符号、DCI占用的最后一个符号、DCI所占用的第一个符号之后的第k个符号,或DCI所占用的最后一个符号之后的第k个符号,k为正整数。
可选地,DCI包括:用于指示短TTI数据传输资源的频域起始位置的起始位置信息;
处理模块901具体用于:
根据频域资源调度粒度和起始位置信息,确定短TTI数据传输资源的频域起始位置,并确定短TTI数据传输资源在频域上占用的资源与频域资源调度粒度一样大;以及
确定短TTI数据传输资源在时域上占用的起始符号为参考符号;参考符号为:DCI占用的第一个符号、DCI占用的最后一个符号、DCI所占用的第一个符号之后的第k个符号,或DCI所占用的最后一个符号之后的第k个符号,k为正整数。
可选地,DCI包括:用于指示短TTI数据传输资源的频域起始位置的起始位置信息;
处理模块901具体用于:
确定短TTI数据传输资源在时域上占用连续的符号,且占用的符号数与时域资源调度粒度包括的符号数相等;
确定短TTI数据传输资源在时域上占用的起始符号为参考符号;参考符号为:DCI占用的第一个符号、DCI占用的最后一个符号、DCI所占用的第一个符号之后的第k个符号,或DCI所占用的最后一个符号之后的第k个符号,k为正整数;以及
根据起始位置信息,确定短TTI数据传输资源在频域上占用以频域起始 位置为起始的资源,则占用的资源与频域资源调度粒度一样大。
可选地,DCI包括:用于指示短TTI数据传输资源的频域起始位置的起始位置信息和短TTI数据传输资源的带宽信息;以及用于指示短TTI数据传输资源在时域上占用的符号数X的长度指示信息,X为正整数;
处理模块901具体用于:
根据时域资源调度粒度和长度指示信息,确定短TTI数据传输资源在时域上占用以参考符号为起始的连续X个符号,参考符号为:DCI占用的第一个符号、DCI占用的最后一个符号、DCI所占用的第一个符号之后的第k个符号,或DCI所占用的最后一个符号之后的第k个符号,k为正整数;以及
根据频域资源调度粒度、起始位置信息和带宽信息,确定短TTI数据传输资源在频域上占用频域起始位置开始的带宽信息所指示的资源。
可选地,收发模块902还用于:
在接收基站发送的DCI之前,接收基站通过高层信令通知的终端设备可用的短TTI数据传输资源,可用的短TTI数据传输资源包括短TTI数据传输可用带宽和/或短TTI数据传输可占用的时域资源;
其中,短TTI数据传输可用带宽为短TTI数据传输资源可占用的带宽。
可选地,处理模块901具体用于:
根据资源调度粒度确定DCI的信息比特数;
根据DCI的信息比特数在物理下行控制信道上盲检;
通过盲检得到DCI。
可选地,处理模块901具体用于:
在物理下行控制信道上,按照符号的顺序进行盲检。
实施例三提供的终端设备的其他可选实现方式可参考实施例一提供的无线通信系统中的终端设备102。
具体地,处理模块901用于执行终端设备102所执行的处理操作,收发模块902可用于执行终端设备102所执行的收发操作。
其中,实施例三提供的终端设备可采用的无线通信制式可参考实施例一 中描述的各种无线通信制式。
比如:对于TDD LTE、FDD LTE或LTE-A等LTE系统,终端设备可为UE;对于TD-SCDMA系统或WCDMA系统,终端设备可为UE;对于GSM系统,终端设备为移动台(Mobile Station,MS);对于WiFi系统,终端设备可为站点(Station,STA)。
实施例三提供的终端设备在基站的调度下进行数据传输的处理流程可参考图2所示的流程。其中,终端设备确定资源调度粒度,根据资源调度粒度和收到的DCI,确定数据传输资源,在确定的数据传输资源上与基站进行数据传输。终端设备102的处理可包括步骤S202、步骤S203、步骤S206、步骤S207、步骤S208和步骤S209。每一步骤的方案可分别参考实施例一中对应的步骤,这里不再赘述。
在上述各步骤中,步骤S203、步骤S206、步骤S207和步骤S208可由处理模块901执行;步骤S202、步骤S206和步骤S209可由收发模块902执行。可选地,收发模块902可在处理模块901的控制下执行各步骤。在步骤S209收发模块902收到基站发送的下行数据后,可将下行数据交给处理模块901进行进一步的处理,比如:信道解码、解调制等物理层协议处理,以及传输层、应用层等其他层的协议处理等。
其中,终端设备进行的数据传输可为上行传输或下行传输。
其中,处理模块901确定资源调度粒度、确定数据传输资源,可参考实施例一中终端设备102的实现,在此不再赘述。
图10示出了终端设备的一种可选的实现方式,其中,处理模块901可由图10中的处理器1001实现,收发模块902可由图10中的收发器1002实现。其中,总线架构可以包括任意数量的互联的总线和桥,具体由处理器1001代表的一个或多个处理器和存储器1003代表的存储器的各种电路链接在一起。总线架构还可以将诸如外围设备、稳压器和功率管理电路等之类的各种其他电路链接在一起,这些都是本领域所公知的,因此,本文不再对其进行进一步描述。总线接口提供接口。收发器1002可以是多个元件,即包括发射器和 接收器,提供用于在传输介质上与各种其他装置通信的单元。针对不同的终端设备,用户接口1004还可以是能够外接内接需要设备的接口,连接的设备包括但不限于小键盘、显示器、扬声器、麦克风、操纵杆等。
图11示出了终端设备的另一种可选的实现方式,其中,处理模块901可由图11中的处理器1101实现,收发模块902可由图11中的收发器1102实现。
【实施例四】
如图12所示,实施例四提供的第一种数据传输方法包括如下步骤:
S1201:基站确定资源调度粒度;
S1202:基站根据资源调度粒度,确定终端设备进行数据传输所使用的短传输时间间隔TTI数据传输资源,短TTI数据传输资源在时域上小于1个子帧的长度或小于1ms;
S1203:基站向终端设备发送下行控制信息DCI,DCI用于指示短TTI数据传输资源;
S1204:基站使用该短TTI数据传输资源与终端进行数据传输。
可选地,基站采用下列方式之一确定资源调度粒度:
基站根据承载DCI的物理下行控制信道的CCE聚合级别确定资源调度粒度;
基站根据系统带宽确定资源调度粒度;
基站根据短TTI数据传输可用带宽确定资源调度粒度;
基站根据承载DCI的物理下行控制信道的CCE聚合级别和系统带宽确定资源调度粒度;以及
基站根据承载DCI的物理下行控制信道的CCE聚合级别和短TTI数据传输可用带宽确定资源调度粒度;
其中,短TTI数据传输可用带宽为短TTI数据传输资源可占用的带宽。
可选地,若基站根据承载DCI的物理下行控制信道的CCE聚合级别确定资源调度粒度,则
承载DCI的物理下行控制信道的CCE聚合级别越高,资源调度粒度越大。
可选地,资源调度粒度包括时域资源调度粒度,时域资源调度粒度为基站调度终端设备进行短TTI数据传输时的最小时域资源分配单位,包括至少一个符号;
若基站根据承载DCI的物理下行控制信道的CCE聚合级别和系统带宽确定资源调度粒度,则
系统带宽越大,时域资源调度粒度越小;
若系统带宽固定,承载DCI的物理下行控制信道的CCE聚合级别越高,时域资源调度粒度越大。
可选地,资源调度粒度包括时域资源调度粒度,时域资源调度粒度为基站调度终端设备进行短TTI数据传输时的最小时域资源分配单位,包括至少一个符号;
若基站根据承载DCI的物理下行控制信道的CCE聚合级别和短TTI数据传输可用带宽确定资源调度粒度,则
短TTI数据传输可用带宽越大,时域资源调度粒度越小;
若短TTI数据传输可用带宽固定,承载DCI的物理下行控制信道的CCE聚合级别越高,时域资源调度粒度越大。
可选地,资源调度粒度包括:时域资源调度粒度,时域资源调度粒度为基站调度终端设备进行短TTI数据传输时的最小时域资源分配单位,包括至少一个符号;
基站根据资源调度粒度,确定短TTI数据传输资源,包括:
基站根据时域资源调度粒度,确定短TTI数据传输资源在时域上占用的符号,在时域上占用的符号中的不同符号在频域上占用相同带宽的频域资源;
相同带宽指:相同的系统带宽、相同的短TTI数据传输可用带宽,或相同的特定带宽;
其中,短TTI数据传输可用带宽为短TTI数据传输资源可占用的带宽。
可选地,资源调度粒度包括:频域资源调度粒度,频域资源调度粒度为基站调度终端设备进行短TTI数据传输时的最小频域资源分配单位,包括至 少一个RB;
基站根据资源调度粒度,确定短TTI数据传输资源,包括:
基站根据频域资源调度粒度,确定短TTI数据传输资源在频域上占用的资源,短TTI数据传输资源在时域上占用N个符号,N为正整数,当循环前缀CP为长CP时,N不大于6,当CP为普通CP时,N不大于7。
可选地,资源调度粒度包括:频域资源调度粒度和时域资源调度粒度;频域资源调度粒度为基站调度终端设备进行短TTI数据传输时的最小频域资源分配单位,包括至少一个RB;时域资源调度粒度为基站调度终端设备进行短TTI数据传输时的最小时域资源分配单位,包括至少一个符号;
基站根据资源调度粒度,确定短TTI数据传输资源,包括:
基站根据时域资源调度粒度,确定短TTI数据传输资源在时域上占用的符号;以及
基站根据频域资源调度粒度,确定短TTI数据传输资源在频域上占用的资源。
可选地,基站根据时域资源调度粒度,确定短TTI数据传输资源在时域上占用的符号,包括:基站确定数据传输资源在时域上占用以参考符号为起始的连续X个符号,X为正整数,X为时域资源调度粒度的整数倍;
参考符号为:DCI占用的第一个符号、DCI占用的最后一个符号、DCI所占用的第一个符号之后的第k个符号,或DCI所占用的最后一个符号之后的第k个符号,k为正整数;
DCI包括:用于指示X的长度指示信息,长度指示信息是基站根据时域资源调度粒度生成的。
可选地,基站根据时域资源调度粒度,确定短TTI数据传输资源在时域上占用的符号,包括:基站确定短TTI数据传输资源在时域上占用以参考符号为起始的若干个符号,占用的符号数为时域资源调度粒度的整数倍;
参考符号为:DCI占用的第一个符号、DCI占用的最后一个符号、DCI所占用的第一个符号之后的第k个符号,或DCI所占用的最后一个符号之后 的第k个符号,k为正整数;
DCI包括:用于指示若干个符号相对于参考符号的相对位置的信息,相对位置的信息是基站根据时域资源调度粒度和相对位置生成的。
可选地,基站根据时域资源调度粒度,确定短TTI数据传输资源在时域上占用的符号,包括:基站确定短TTI数据传输资源在时域上占用以参考符号为起始的若干个符号,其中,占用的若干个符号是连续的,且占用的若干个符号的个数与时域资源粒度所包括的符号个数相同;
参考符号为:DCI占用的第一个符号、DCI占用的最后一个符号、DCI所占用的第一个符号之后的第k个符号,或DCI所占用的最后一个符号之后的第k个符号,k为正整数;
DCI中用于指示短TTI数据传输资源的信息比特为空。
可选地,基站根据频域资源调度粒度,确定短TTI数据传输资源在频域上占用的资源,包括:基站确定短TTI数据传输资源在频域上占用的资源与频域资源调度粒度一样大;
基站根据资源调度粒度,确定数据传输资源,还包括:基站确定短TTI数据传输资源在时域上占用的起始符号为参考符号,参考符号为DCI占用的第一个符号、DCI占用的最后一个符号、DCI所占用的第一个符号之后的第k个符号,或DCI所占用的最后一个符号之后的第k个符号,k为正整数;
DCI包括:用于指示短TTI数据传输资源的频域起始位置的信息,频域起始位置的信息是基站根据频域资源调度粒度生成的。
可选地,基站根据时域资源调度粒度,确定短TTI数据传输资源在时域上占用的符号,包括:基站确定短TTI数据传输资源在时域上占用连续的符号,且占用的符号数与时域资源调度粒度包括的符号数相等;
基站根据频域资源调度粒度,确定短TTI数据传输资源在频域上占用的资源,包括:基站确定短TTI数据传输资源在频域上占用的资源与频域资源调度粒度一样大;
基站根据资源调度粒度,确定短TTI数据传输资源,还包括:基站确定 数据传输资源在时域上占用的起始符号为参考符号;
参考符号为:DCI占用的第一个符号、DCI占用的最后一个符号、DCI所占用的第一个符号之后的第k个符号,或DCI所占用的最后一个符号之后的第k个符号,k为正整数;
DCI包括:用于指示短TTI数据传输资源的频域起始位置的信息,频域起始位置的信息是基站根据频域资源调度粒度生成的。
可选地,基站根据时域资源调度粒度,确定短TTI数据传输资源在时域上占用的符号,包括:基站确定短TTI数据传输资源在时域上占用以参考符号为起始的连续X个符号,X为正整数;
参考符号为:DCI占用的第一个符号、DCI占用的最后一个符号、DCI所占用的第一个符号之后的第k个符号,或DCI所占用的最后一个符号之后的第k个符号,k为正整数;
基站根据频域资源调度粒度,确定短TTI数据传输资源在频域上占用的资源,包括:基站确定短TTI数据传输资源在频域上占用以频域起始位置为起始的指定带宽的资源;
DCI包括:用于指示频域起始位置的起始位置信息和指定带宽的带宽信息,以及用于指示X的长度指示信息;频域起始位置的信息、带宽信息是基站根据频域资源调度粒度生成的,长度指示信息是基站根据时域资源调度粒度生成的。
可选地,在基站确定资源调度粒度之前,还包括:基站确定满足下列条件中的至少一个:
终端设备当前使用的业务的时延需求小于设置的时延阈值;
系统带宽大于设置的带宽阈值;以及
系统带宽上资源可用率大于设置的资源可用率阈值。
可选地,在基站向终端设备发送DCI之前,还包括:
基站通过高层信令通知终端设备可用的短TTI数据传输资源,可用的短TTI数据传输资源包括短TTI数据传输可用带宽和/或数据传输可占用的时域 资源;
其中,短TTI数据传输可用带宽为短TTI数据传输资源可占用的带宽。
可选地,基站发送DCI,包括:
基站在DCI指示的短TTI数据传输资源上发送DCI。
可选地,基站在DCI指示的短TTI数据传输资源上发送DCI,包括:
基站在发送DCI时,从DCI指示的短TTI数据传输资源的第一个符号开始映射,当占满第一个符号时再继续映射到下一个符号。
该方法的其他可选实现方式可参考实施例一提供的无线通信系统中的基站101的处理,在此不再赘述。
【实施例五】
如图13所示,实施例五提供的第二种数据传输方法包括如下步骤:
S1301:终端设备确定资源调度粒度;
S1302:终端设备接收基站发送的下行控制信息DCI,DCI用于指示终端设备进行数据传输所使用的短TTI数据传输资源,短TTI数据传输资源在时域上小于1个子帧的长度或小于1ms;
S1303:终端设备根据资源调度粒度和DCI,确定进行数据传输所使用的短TTI数据传输资源;
S1304:终端设备使用该短TTI数据传输资源与基站进行数据传输。
可选地,终端设备采用下列方式之一确定资源调度粒度:
终端设备根据承载DCI的物理下行控制信道的CCE聚合级别确定资源调度粒度;
终端设备根据系统带宽确定资源调度粒度;
终端设备根据短TTI数据传输可用带宽确定资源调度粒度;
终端设备根据承载DCI的物理下行控制信道的CCE聚合级别和系统带宽确定资源调度粒度;以及
终端设备根据承载DCI的物理下行控制信道的CCE聚合级别和短TTI数据传输可用带宽确定资源调度粒度;
其中,短TTI数据传输可用带宽为短TTI数据传输资源可占用的带宽。
可选地,若终端设备根据承载DCI的物理下行控制信道的CCE聚合级别确定资源调度粒度,则
承载DCI的物理下行控制信道的CCE聚合级别越高,资源调度粒度越大。
可选地,资源调度粒度包括时域资源调度粒度,时域资源调度粒度为基站调度终端设备进行短TTI数据传输时的最小时域资源分配单位,包括至少一个符号;
若终端设备根据承载DCI的物理下行控制信道的CCE聚合级别和系统带宽确定资源调度粒度,则
系统带宽越大,时域资源调度粒度越小;
若系统带宽固定,承载DCI的物理下行控制信道的CCE聚合级别越高,时域资源调度粒度越大。
可选地,资源调度粒度包括时域资源调度粒度,时域资源调度粒度为基站调度终端设备进行短TTI数据传输时的最小时域资源分配单位,包括至少一个符号;
若终端设备根据承载DCI的物理下行控制信道的CCE聚合级别和短TTI数据传输可用带宽确定资源调度粒度,则
短TTI数据传输可用带宽越大,时域资源调度粒度越小;
若短TTI数据传输可用带宽固定,承载DCI的物理下行控制信道的CCE聚合级别越高,时域资源调度粒度越大。
可选地,资源调度粒度包括:时域资源调度粒度,时域资源调度粒度为基站调度终端设备进行短TTI数据传输时的最小时域资源分配单位,包括至少一个符号;
短TTI数据传输资源在时域上占用的不同符号,在频域上占用相同带宽的频域资源;
相同带宽指:相同的系统带宽、相同的短TTI数据传输可用带宽,或相同的特定带宽;
其中,短TTI数据传输可用带宽为短TTI数据传输资源可占用的带宽。
可选地,资源调度粒度包括:频域资源调度粒度,频域资源调度粒度为基站调度终端设备进行短TTI数据传输时的最小频域资源分配单位,包括至少一个RB;
短TTI数据传输资源在时域上占用N个符号,N为正整数,当循环前缀CP为长CP时,N不大于6,当CP为普通CP时,N不大于7。
可选地,资源调度粒度包括:频域资源调度粒度和时域资源调度粒度;
频域资源调度粒度为基站调度终端设备进行短TTI数据传输时的最小频域资源分配单位,包括至少一个RB;
时域资源调度粒度为基站调度终端设备进行短TTI数据传输时的最小时域资源分配单位,包括至少一个符号。
可选地,DCI包括:用于指示短TTI数据传输资源在时域上占用的符号个数X的长度指示信息;
终端设备根据资源调度粒度和DCI,确定短TTI数据传输资源,包括:终端设备根据长度指示信息和时域资源调度粒度,确定短TTI数据传输资源在时域上占用以参考符号为起始的连续X个符号,X为正整数;
参考符号为:DCI占用的第一个符号、DCI占用的最后一个符号、DCI所占用的第一个符号之后的第k个符号,或DCI所占用的最后一个符号之后的第k个符号,k为正整数。
可选地,DCI包括:用于指示短TTI数据传输资源在时域上占用以参考符号为起始的若干个符号相对于参考符号的相对位置的信息;
参考符号为:DCI占用的第一个符号、DCI占用的最后一个符号、DCI所占用的第一个符号之后的第k个符号,或DCI所占用的最后一个符号之后的第k个符号,k为正整数;
终端设备根据资源调度粒度和DCI,确定短TTI数据传输资源,包括:终端设备根据相对位置的信息和时域资源调度粒度,确定短TTI数据传输资源在时域上占用以参考符号为起始的若干个符号。
可选地,DCI中用于指示短TTI数据传输资源的信息比特为空;
终端设备根据资源调度粒度和DCI,确定短TTI数据传输资源,包括:
终端设备确定短TTI数据传输资源在时域上占用以参考符号为起始的若干个符号,占用的若干个符号是连续的且占用的若干个符号的个数与时域资源粒度所包括的符号个数相同;
参考符号为:DCI占用的第一个符号、DCI占用的最后一个符号、DCI所占用的第一个符号之后的第k个符号,或DCI所占用的最后一个符号之后的第k个符号,k为正整数。
可选地,DCI包括:用于指示短TTI数据传输资源的频域起始位置的起始位置信息;
终端设备根据资源调度粒度和DCI,确定短TTI数据传输资源,包括:
终端设备根据频域资源调度粒度和起始位置信息,确定短TTI数据传输资源的频域起始位置,并确定短TTI数据传输资源在频域上占用的资源与频域资源调度粒度一样大;以及
终端设备确定短TTI数据传输资源在时域上占用的起始符号为参考符号;参考符号为:DCI占用的第一个符号、DCI占用的最后一个符号、DCI所占用的第一个符号之后的第k个符号,或DCI所占用的最后一个符号之后的第k个符号,k为正整数。
可选地,DCI包括:用于指示短TTI数据传输资源的频域起始位置的起始位置信息;
终端设备根据资源调度粒度和DCI,确定短TTI数据传输所使用的数据传输资源,包括:
终端设备确定短TTI数据传输资源在时域上占用连续的符号,且占用的符号数与时域资源调度粒度包括的符号数相等;
终端设备确定短TTI数据传输资源在时域上占用的起始符号为参考符号;参考符号为:DCI占用的第一个符号、DCI占用的最后一个符号、DCI所占用的第一个符号之后的第k个符号,或DCI所占用的最后一个符号之后的第 k个符号,k为正整数;以及
终端设备根据起始位置信息,确定短TTI数据传输资源在频域上占用以频域起始位置为起始的资源,则占用的资源与频域资源调度粒度一样大。
可选地,DCI包括:用于指示短TTI数据传输资源的频域起始位置的起始位置信息和短TTI数据传输资源的带宽信息;以及用于指示短TTI数据传输资源在时域上占用的符号数X的长度指示信息,X为正整数;
终端设备根据资源调度粒度和DCI,确定短TTI数据传输资源,包括:
终端设备根据时域资源调度粒度和长度指示信息,确定短TTI数据传输资源在时域上占用以参考符号为起始的连续X个符号,参考符号为:DCI占用的第一个符号、DCI占用的最后一个符号、DCI所占用的第一个符号之后的第k个符号,或DCI所占用的最后一个符号之后的第k个符号,k为正整数;以及
终端设备根据频域资源调度粒度、起始位置信息和带宽信息,确定短TTI数据传输资源在频域上占用频域起始位置开始的带宽信息所指示的资源。
可选地,在接收基站发送的DCI之前,还包括:
接收基站通过高层信令通知的终端设备可用的短TTI数据传输资源,可用的短TTI数据传输资源包括短TTI数据传输可用带宽和/或短TTI数据传输可占用的时域资源;
其中,短TTI数据传输可用带宽为短TTI数据传输资源可占用的带宽。
可选地,终端设备接收DCI,包括:
终端设备根据资源调度粒度确定DCI的信息比特数;
终端设备根据DCI的信息比特数在承载DCI的物理下行控制信道上盲检;
终端设备通过盲检得到DCI。
可选地,终端设备进行盲检,包括:
终端设备在承载DCI的物理下行控制信道上,按照符号的顺序进行盲检。
该方法的其他可选实现方式可参考实施例一提供的无线通信系统中的终 端设备102的处理,在此不再赘述。
本发明实施例中,基站根据资源调度粒度,确定调度终端设备进行数据传输使用的数据传输资源,通过资源调度粒度,可实现数据传输资源的灵活配置。
进一步地,终端设备数据传输资源在时域上小于1个子帧的长度或小于1ms,这样就实现了TTI小于1个子帧长度或小于1ms的数据传输的调度。
进一步地,由于根据资源调度粒度确定数据传输资源,用于指示数据传输资源的长度和起始位置的信息可由资源调度粒度来确定,这样在资源调度粒度较大时,可减少指示信息的比特数。
并且,由于数据传输资源采用一些固定的格式,比如:起始符号为参考符号,占用连续的符号,或者对于时域上占用的不同符号,频域上占用的相同带宽的频域资源,使得用于指示数据传输资源的信息比特数可以进一步减少。
以下行系统带宽为20MHz(包括100个RB),频域调度粒度为20RB,时域资源调度粒度不大于7个符号的情形为例,在分别确定频域资源调度粒度和时域资源调度粒度,并根据确定的资源调度粒度分配数据传输资源的情况下,仅需8bit指示分配的数据传输资源,大大减少了DCI中的RA信息比特数据。
对于短TTI数据传输而言,与目前的TTI等于1个子帧的数据传输相比,单位时间内需要传输的DCI增加,如果仍按照原有的数据传输资源分配方式,单位时间内需要传输的RA信息比特数据会大幅增加。而采用本发明实施例提供的数据传输资源的分配方式,可极大降低RA信息比特数,降低了RA信息的开销。
本领域内的技术人员应明白,本发明的实施例可提供为方法、系统、或计算机程序产品。因此,本发明可采用完全硬件实施例、完全软件实施例、或结合软件和硬件方面的实施例的形式。而且,本发明可采用在一个或多个其中包含有计算机可用程序代码的计算机可用存储介质(包括但不限于磁盘 存储器、CD-ROM、光学存储器等)上实施的计算机程序产品的形式。
本发明是参照根据本发明实施例的方法、设备(系统)、和计算机程序产品的流程图和/或方框图来描述的。应理解可由计算机程序指令实现流程图和/或方框图中的每一流程和/或方框、以及流程图和/或方框图中的流程和/或方框的结合。可提供这些计算机程序指令到通用计算机、专用计算机、嵌入式处理机或其他可编程数据处理设备的处理器以产生一个机器,使得通过计算机或其他可编程数据处理设备的处理器执行的指令产生用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的装置。
这些计算机程序指令也可存储在能引导计算机或其他可编程数据处理设备以特定方式工作的计算机可读存储器中,使得存储在该计算机可读存储器中的指令产生包括指令装置的制造品,该指令装置实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能。
这些计算机程序指令也可装载到计算机或其他可编程数据处理设备上,使得在计算机或其他可编程设备上执行一系列操作步骤以产生计算机实现的处理,从而在计算机或其他可编程设备上执行的指令提供用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的步骤。
尽管已描述了本发明的优选实施例,但本领域内的技术人员一旦得知了基本创造性概念,则可对这些实施例做出另外的变更和修改。所以,所附权利要求意欲解释为包括优选实施例以及落入本发明范围的所有变更和修改。
显然,本领域的技术人员可以对本发明实施例进行各种改动和变型而不脱离本发明实施例的精神和范围。这样,倘若本发明实施例的这些修改和变型属于本发明权利要求及其等同技术的范围之内,则本发明也意图包含这些改动和变型在内。

Claims (67)

  1. 一种基站,其特征在于,包括:
    处理模块,用于确定资源调度粒度;以及根据所述资源调度粒度,确定终端设备进行数据传输所使用的短传输时间间隔TTI数据传输资源,所述短TTI数据传输资源在时域上小于1个子帧的长度或小于1ms;
    收发模块,用于向所述终端设备发送下行控制信息DCI,所述DCI用于指示所述短TTI数据传输资源;
    所述收发模块,还用于使用所述短TTI数据传输资源与所述终端设备进行数据传输。
  2. 如权利要求1所述的基站,其特征在于,所述处理模块具体用于:采用下列方式之一确定所述资源调度粒度:
    根据承载所述DCI的物理下行控制信道的CCE聚合级别确定所述资源调度粒度;
    根据系统带宽确定所述资源调度粒度;
    根据短TTI数据传输可用带宽确定所述资源调度粒度;
    根据承载所述DCI的物理下行控制信道的CCE聚合级别和系统带宽确定所述资源调度粒度;以及
    根据承载所述DCI的物理下行控制信道的CCE聚合级别和短TTI数据传输可用带宽确定所述资源调度粒度;
    其中,所述短TTI数据传输可用带宽为所述短TTI数据传输资源可占用的带宽。
  3. 如权利要求2所述的基站,其特征在于,若所述处理模块根据承载所述DCI的物理下行控制信道的CCE聚合级别确定所述资源调度粒度,则
    承载所述DCI的物理下行控制信道的CCE聚合级别越高,所述资源调度粒度越大。
  4. 如权利要求2所述的基站,其特征在于,所述资源调度粒度包括时域 资源调度粒度,所述时域资源调度粒度为所述基站调度所述终端设备进行短TTI数据传输时的最小时域资源分配单位,包括至少一个符号;
    若所述处理模块根据承载所述DCI的物理下行控制信道的CCE聚合级别和系统带宽确定所述资源调度粒度,则
    系统带宽越大,所述时域资源调度粒度越小;
    若系统带宽固定,承载所述DCI的物理下行控制信道的CCE聚合级别越高,所述时域资源调度粒度越大。
  5. 如权利要求2所述的基站,其特征在于,所述资源调度粒度包括时域资源调度粒度,所述时域资源调度粒度为所述基站调度所述终端设备进行短TTI数据传输时的最小时域资源分配单位,包括至少一个符号;
    若所述处理模块根据承载所述DCI的物理下行控制信道的CCE聚合级别和短TTI数据传输可用带宽确定所述资源调度粒度,则
    所述短TTI数据传输可用带宽越大,所述时域资源调度粒度越小;
    若所述短TTI数据传输可用带宽固定,承载所述DCI的物理下行控制信道的CCE聚合级别越高,所述时域资源调度粒度越大。
  6. 如权利要求1~5任一项所述的基站,其特征在于,
    所述资源调度粒度包括:时域资源调度粒度,所述时域资源调度粒度为所述基站调度所述终端设备进行短TTI数据传输时的最小时域资源分配单位,包括至少一个符号;
    所述处理模块具体用于:
    根据所述时域资源调度粒度,确定所述短TTI数据传输资源在时域上占用的符号,所述在时域上占用的符号中的不同符号在频域上占用相同带宽的频域资源;
    所述相同带宽指:相同的系统带宽、相同的短TTI数据传输可用带宽,或相同的特定带宽;
    其中,所述短TTI数据传输可用带宽为短TTI数据传输资源可占用的带宽。
  7. 如权利要求1~5任一项所述的基站,其特征在于,
    所述资源调度粒度包括:频域资源调度粒度,所述频域资源调度粒度为所述基站调度所述终端设备进行短TTI数据传输时的最小频域资源分配单位,包括至少一个RB;
    所述处理模块具体用于:
    根据所述频域资源调度粒度,确定所述短TTI数据传输资源在频域上占用的资源,所述短TTI数据传输资源在时域上占用N个符号,所述N为正整数,当循环前缀CP为长CP时,所述N不大于6,当CP为普通CP时,所述N不大于7。
  8. 如权利要求1~5任一项所述的基站,其特征在于,所述资源调度粒度包括:频域资源调度粒度和时域资源调度粒度;所述频域资源调度粒度为所述基站调度所述终端设备进行短TTI数据传输时的最小频域资源分配单位,包括至少一个RB;所述时域资源调度粒度为所述基站调度所述终端设备进行短TTI数据传输时的最小时域资源分配单位,包括至少一个符号;
    所述处理模块具体用于:
    根据所述时域资源调度粒度,确定所述短TTI数据传输资源在时域上占用的符号;以及
    根据所述频域资源调度粒度,确定所述短TTI数据传输资源在频域上占用的资源。
  9. 如权利要求6所述的基站,其特征在于,
    所述处理模块具体用于:确定所述数据传输资源在时域上占用以参考符号为起始的连续X个符号,所述X为正整数,X为所述时域资源调度粒度的整数倍;
    所述参考符号为:所述DCI占用的第一个符号、所述DCI占用的最后一个符号、所述DCI所占用的第一个符号之后的第k个符号,或所述DCI所占用的最后一个符号之后的第k个符号,k为正整数;
    所述DCI包括:用于指示所述X的长度指示信息,所述长度指示信息是 所述处理模块根据所述时域资源调度粒度生成的。
  10. 如权利要求6所述的基站,其特征在于,
    所述处理模块具体用于:确定所述短TTI数据传输资源在时域上占用以参考符号为起始的若干个符号,占用的符号数为所述时域资源调度粒度的整数倍;
    所述参考符号为:所述DCI占用的第一个符号、所述DCI占用的最后一个符号、所述DCI所占用的第一个符号之后的第k个符号,或所述DCI所占用的最后一个符号之后的第k个符号,k为正整数;
    所述DCI包括:用于指示所述若干个符号相对于所述参考符号的相对位置的信息,所述相对位置的信息是所述处理模块根据所述时域资源调度粒度和所述相对位置生成的。
  11. 如权利要求6所述的基站,其特征在于,
    所述处理模块具体用于:确定所述短TTI数据传输资源在时域上占用以参考符号为起始的若干个符号,其中,占用的所述若干个符号是连续的,且占用的所述若干个符号的个数与所述时域资源粒度所包括的符号个数相同;
    所述参考符号为:所述DCI占用的第一个符号、所述DCI占用的最后一个符号、所述DCI所占用的第一个符号之后的第k个符号,或所述DCI所占用的最后一个符号之后的第k个符号,k为正整数;
    所述DCI中用于指示所述短TTI数据传输资源的信息比特为空。
  12. 如权利要求7所述的基站,其特征在于,所述处理模块具体用于:
    确定所述短TTI数据传输资源在频域上占用的资源与所述频域资源调度粒度一样大;以及
    确定所述短TTI数据传输资源在时域上占用的起始符号为参考符号,所述参考符号为所述DCI占用的第一个符号、所述DCI占用的最后一个符号、所述DCI所占用的第一个符号之后的第k个符号,或所述DCI所占用的最后一个符号之后的第k个符号,k为正整数;
    所述DCI包括:用于指示所述短TTI数据传输资源的频域起始位置的信 息,所述频域起始位置的信息是所述处理模块根据所述频域资源调度粒度生成的。
  13. 如权利要求8所述的基站,其特征在于,所述处理模块具体用于:
    确定所述短TTI数据传输资源在时域上占用连续的符号,且占用的符号数与所述时域资源调度粒度包括的符号数相等;
    确定所述短TTI数据传输资源在频域上占用的资源与所述频域资源调度粒度一样大;以及
    确定所述数据传输资源在时域上占用的起始符号为参考符号;
    所述参考符号为:所述DCI占用的第一个符号、所述DCI占用的最后一个符号、所述DCI所占用的第一个符号之后的第k个符号,或所述DCI所占用的最后一个符号之后的第k个符号,k为正整数;
    所述DCI包括:用于指示所述短TTI数据传输资源的频域起始位置的信息,所述频域起始位置的信息是所述处理模块根据所述频域资源调度粒度生成的。
  14. 如权利要求8所述的基站,其特征在于,所述处理模块具体用于:
    确定所述短TTI数据传输资源在时域上占用以参考符号为起始的连续X个符号,所述X为正整数;所述参考符号为:所述DCI占用的第一个符号、所述DCI占用的最后一个符号、所述DCI所占用的第一个符号之后的第k个符号,或所述DCI所占用的最后一个符号之后的第k个符号,k为正整数;以及
    确定所述短TTI数据传输资源在频域上占用以频域起始位置为起始的指定带宽的资源;
    所述DCI包括:用于指示所述频域起始位置的起始位置信息和所述指定带宽的带宽信息,以及用于指示所述X的长度指示信息;所述频域起始位置的信息、所述带宽信息是所述处理模块根据所述频域资源调度粒度生成的,所述长度指示信息是所述处理模块根据所述时域资源调度粒度生成的。
  15. 如权利要求1~14任一项所述的基站,其特征在于,所述处理模块还 用于:在确定所述资源调度粒度之前,确定满足下列条件中的至少一个:
    所述终端设备当前使用的业务的时延需求小于设置的时延阈值;
    系统带宽大于设置的带宽阈值;以及
    系统带宽上资源可用率大于设置的资源可用率阈值。
  16. 如权利要求1~15任一项所述的基站,其特征在于,所述收发模块还用于:
    在向所述终端设备发送DCI之前,通过高层信令通知所述终端设备可用的所述短TTI数据传输资源,所述可用的所述短TTI数据传输资源包括短TTI数据传输可用带宽和/或所述数据传输可占用的时域资源;
    其中,所述短TTI数据传输可用带宽为所述短TTI数据传输资源可占用的带宽。
  17. 如权利要求1~16任一项所述的基站,其特征在于,所述收发模块具体用于:
    在所述DCI指示的所述短TTI数据传输资源上发送所述DCI。
  18. 如权利要求17所述的基站,其特征在于,所述收发模块具体用于:
    在发送所述DCI时,从所述DCI指示的所述短TTI数据传输资源的第一个符号开始映射,当占满第一个符号时再继续映射到下一个符号。
  19. 一种终端设备,其特征在于,包括:
    处理模块,用于确定资源调度粒度;
    收发模块,用于接收基站发送的下行控制信息DCI,所述DCI用于指示所述终端设备进行数据传输所使用的短TTI数据传输资源,所述短TTI数据传输资源在时域上小于1个子帧的长度或小于1ms;
    根据所述资源调度粒度和所述DCI,确定所述终端设备进行所述数据传输所使用的所述短TTI数据传输资源;以及
    使用所述短TTI数据传输资源与所述基站进行所述数据传输。
  20. 如权利要求19所述的终端设备,其特征在于,所述处理模块具体用于:采用下列方式之一确定所述资源调度粒度:
    根据承载所述DCI的物理下行控制信道的CCE聚合级别确定所述资源调度粒度;
    根据系统带宽确定所述资源调度粒度;
    根据短TTI数据传输可用带宽确定所述资源调度粒度;
    根据承载所述DCI的物理下行控制信道的CCE聚合级别和系统带宽确定所述资源调度粒度;以及
    根据承载所述DCI的物理下行控制信道的CCE聚合级别和短TTI数据传输可用带宽确定所述资源调度粒度;
    其中,所述短TTI数据传输可用带宽为所述短TTI数据传输资源可占用的带宽。
  21. 如权利要求20所述的终端设备,其特征在于,若所述处理模块根据承载所述DCI的物理下行控制信道的CCE聚合级别确定所述资源调度粒度,则
    承载所述DCI的物理下行控制信道的CCE聚合级别越高,所述资源调度粒度越大。
  22. 如权利要求20所述的终端设备,其特征在于,所述资源调度粒度包括时域资源调度粒度,所述时域资源调度粒度为所述基站调度所述终端设备进行短TTI数据传输时的最小时域资源分配单位,包括至少一个符号;
    若所述处理模块根据承载所述DCI的物理下行控制信道的CCE聚合级别和系统带宽确定所述资源调度粒度,则
    系统带宽越大,所述时域资源调度粒度越小;
    若系统带宽固定,承载所述DCI的物理下行控制信道的CCE聚合级别越高,所述时域资源调度粒度越大。
  23. 如权利要求20所述的终端设备,其特征在于,所述资源调度粒度包括时域资源调度粒度,所述时域资源调度粒度为所述基站调度所述终端设备进行短TTI数据传输时的最小时域资源分配单位,包括至少一个符号;
    若所述处理模块根据承载所述DCI的物理下行控制信道的CCE聚合级别 和短TTI数据传输可用带宽确定所述资源调度粒度,则
    短TTI数据传输可用带宽越大,所述时域资源调度粒度越小;
    若短TTI数据传输可用带宽固定,承载所述DCI的物理下行控制信道的CCE聚合级别越高,所述时域资源调度粒度越大。
  24. 如权利要求19~23任一项所述的终端设备,其特征在于,
    所述资源调度粒度包括:时域资源调度粒度,所述时域资源调度粒度为所述基站调度所述终端设备进行短TTI数据传输时的最小时域资源分配单位,包括至少一个符号;
    所述短TTI数据传输资源在时域上占用的不同符号,在频域上占用相同带宽的频域资源;
    所述相同带宽指:相同的系统带宽、相同的短TTI数据传输可用带宽,或相同的特定带宽;
    其中,所述短TTI数据传输可用带宽为所述短TTI数据传输资源可占用的带宽。
  25. 如权利要求19~23任一项所述的终端设备,其特征在于,
    所述资源调度粒度包括:频域资源调度粒度,所述频域资源调度粒度为所述基站调度所述终端设备进行短TTI数据传输时的最小频域资源分配单位,包括至少一个RB;
    所述短TTI数据传输资源在时域上占用N个符号,所述N为正整数,当循环前缀CP为长CP时,所述N不大于6,当CP为普通CP时,所述N不大于7。
  26. 如权利要求19~23任一项所述的终端设备,其特征在于,所述资源调度粒度包括:频域资源调度粒度和时域资源调度粒度;
    所述频域资源调度粒度为所述基站调度所述终端设备进行短TTI数据传输时的最小频域资源分配单位,包括至少一个RB;
    所述时域资源调度粒度为所述基站调度所述终端设备进行短TTI数据传输时的最小时域资源分配单位,包括至少一个符号。
  27. 如权利要求24所述的终端设备,其特征在于,
    所述DCI包括:用于指示所述短TTI数据传输资源在时域上占用的符号个数X的长度指示信息;
    所述终端设备根据所述资源调度粒度和所述DCI,确定所述短TTI数据传输资源,包括:所述终端设备根据所述长度指示信息和所述时域资源调度粒度,确定所述短TTI数据传输资源在时域上占用以参考符号为起始的连续X个符号,所述X为正整数;
    所述参考符号为:所述DCI占用的第一个符号、所述DCI占用的最后一个符号、所述DCI所占用的第一个符号之后的第k个符号,或所述DCI所占用的最后一个符号之后的第k个符号,k为正整数。
  28. 如权利要求24所述的终端设备,其特征在于,
    所述DCI包括:用于指示所述短TTI数据传输资源在时域上占用以参考符号为起始的若干个符号相对于所述参考符号的相对位置的信息;
    所述参考符号为:所述DCI占用的第一个符号、所述DCI占用的最后一个符号、所述DCI所占用的第一个符号之后的第k个符号,或所述DCI所占用的最后一个符号之后的第k个符号,k为正整数;
    所述处理模块具体用于:根据所述相对位置的信息和所述时域资源调度粒度,确定所述短TTI数据传输资源在时域上占用以所述参考符号为起始的所述若干个符号。
  29. 如权利要求24所述的终端设备,其特征在于,所述DCI中用于指示所述短TTI数据传输资源的信息比特为空;
    所述处理模块具体用于:
    确定所述短TTI数据传输资源在时域上占用以参考符号为起始的若干个符号,占用的所述若干个符号是连续的且占用的所述若干个符号的个数与所述时域资源粒度所包括的符号个数相同;
    所述参考符号为:所述DCI占用的第一个符号、所述DCI占用的最后一个符号、所述DCI所占用的第一个符号之后的第k个符号,或所述DCI所占 用的最后一个符号之后的第k个符号,k为正整数。
  30. 如权利要求25所述的终端设备,其特征在于,
    所述DCI包括:用于指示所述短TTI数据传输资源的频域起始位置的起始位置信息;
    所述处理模块具体用于:
    根据所述频域资源调度粒度和所述起始位置信息,确定所述短TTI数据传输资源的频域起始位置,并确定所述短TTI数据传输资源在频域上占用的资源与所述频域资源调度粒度一样大;以及
    确定所述短TTI数据传输资源在时域上占用的起始符号为参考符号;所述参考符号为:所述DCI占用的第一个符号、所述DCI占用的最后一个符号、所述DCI所占用的第一个符号之后的第k个符号,或所述DCI所占用的最后一个符号之后的第k个符号,k为正整数。
  31. 如权利要求26所述的终端设备,其特征在于,
    所述DCI包括:用于指示所述短TTI数据传输资源的频域起始位置的起始位置信息;
    所述处理模块具体用于:
    确定所述短TTI数据传输资源在时域上占用连续的符号,且占用的符号数与所述时域资源调度粒度包括的符号数相等;
    确定所述短TTI数据传输资源在时域上占用的起始符号为参考符号;所述参考符号为:所述DCI占用的第一个符号、所述DCI占用的最后一个符号、所述DCI所占用的第一个符号之后的第k个符号,或所述DCI所占用的最后一个符号之后的第k个符号,k为正整数;以及
    根据所述起始位置信息,确定所述短TTI数据传输资源在频域上占用以所述频域起始位置为起始的资源,则占用的资源与所述频域资源调度粒度一样大。
  32. 如权利要求26所述的终端设备,其特征在于,
    所述DCI包括:用于指示所述短TTI数据传输资源的频域起始位置的起 始位置信息和所述短TTI数据传输资源的带宽信息;以及用于指示所述短TTI数据传输资源在时域上占用的符号数X的长度指示信息,所述X为正整数;
    所述处理模块具体用于:
    根据所述时域资源调度粒度和所述长度指示信息,确定所述短TTI数据传输资源在时域上占用以参考符号为起始的连续X个符号,所述参考符号为:所述DCI占用的第一个符号、所述DCI占用的最后一个符号、所述DCI所占用的第一个符号之后的第k个符号,或所述DCI所占用的最后一个符号之后的第k个符号,k为正整数;以及
    根据所述频域资源调度粒度、所述起始位置信息和所述带宽信息,确定所述短TTI数据传输资源在频域上占用所述频域起始位置开始的所述带宽信息所指示的资源。
  33. 如权利要求19~32任一项所述的终端设备,其特征在于,所述收发模块还用于:
    在接收所述基站发送的DCI之前,接收所述基站通过高层信令通知的所述终端设备可用的所述短TTI数据传输资源,所述可用的所述短TTI数据传输资源包括短TTI数据传输可用带宽和/或短TTI数据传输可占用的时域资源;
    其中,所述短TTI数据传输可用带宽为所述短TTI数据传输资源可占用的带宽。
  34. 一种数据传输方法,其特征在于,包括:
    基站确定资源调度粒度;
    所述基站根据所述资源调度粒度,确定终端设备进行数据传输所使用的短传输时间间隔TTI数据传输资源,所述短TTI数据传输资源在时域上小于1个子帧的长度或小于1ms;
    所述基站向所述终端设备发送下行控制信息DCI,所述DCI用于指示所述短TTI数据传输资源;
    所述基站使用所述短TTI数据传输资源与所述终端设备进行数据传输。
  35. 如权利要求34所述的方法,其特征在于,所述基站采用下列方式之一确定所述资源调度粒度:
    所述基站根据承载所述DCI的物理下行控制信道的CCE聚合级别确定所述资源调度粒度;
    所述基站根据系统带宽确定所述资源调度粒度;
    所述基站根据短TTI数据传输可用带宽确定所述资源调度粒度;
    所述基站根据承载所述DCI的物理下行控制信道的CCE聚合级别和系统带宽确定所述资源调度粒度;以及
    所述基站根据承载所述DCI的物理下行控制信道的CCE聚合级别和短TTI数据传输可用带宽确定所述资源调度粒度;
    其中,所述短TTI数据传输可用带宽为所述短TTI数据传输资源可占用的带宽。
  36. 如权利要求35所述的方法,其特征在于,若所述基站根据承载所述DCI的物理下行控制信道的CCE聚合级别确定所述资源调度粒度,则
    承载所述DCI的物理下行控制信道的CCE聚合级别越高,所述资源调度粒度越大。
  37. 如权利要求35所述的方法,其特征在于,所述资源调度粒度包括时域资源调度粒度,所述时域资源调度粒度为所述基站调度所述终端设备进行短TTI数据传输时的最小时域资源分配单位,包括至少一个符号;
    若所述基站根据承载所述DCI的物理下行控制信道的CCE聚合级别和系统带宽确定所述资源调度粒度,则
    系统带宽越大,所述时域资源调度粒度越小;
    若系统带宽固定,承载所述DCI的物理下行控制信道的CCE聚合级别越高,所述时域资源调度粒度越大。
  38. 如权利要求35所述的方法,其特征在于,所述资源调度粒度包括时域资源调度粒度,所述时域资源调度粒度为所述基站调度所述终端设备进行短TTI数据传输时的最小时域资源分配单位,包括至少一个符号;
    若所述基站根据承载所述DCI的物理下行控制信道的CCE聚合级别和短TTI数据传输可用带宽确定所述资源调度粒度,则
    所述短TTI数据传输可用带宽越大,所述时域资源调度粒度越小;
    若所述短TTI数据传输可用带宽固定,承载所述DCI的物理下行控制信道的CCE聚合级别越高,所述时域资源调度粒度越大。
  39. 如权利要求34~38任一项所述的方法,其特征在于,
    所述资源调度粒度包括:时域资源调度粒度,所述时域资源调度粒度为所述基站调度所述终端设备进行短TTI数据传输时的最小时域资源分配单位,包括至少一个符号;
    所述基站根据所述资源调度粒度,确定所述短TTI数据传输资源,包括:
    所述基站根据所述时域资源调度粒度,确定所述短TTI数据传输资源在时域上占用的符号,所述在时域上占用的符号中的不同符号在频域上占用相同带宽的频域资源;
    所述相同带宽指:相同的系统带宽、相同的短TTI数据传输可用带宽,或相同的特定带宽;
    其中,所述短TTI数据传输可用带宽为所述短TTI数据传输资源可占用的带宽。
  40. 如权利要求34~38任一项所述的方法,其特征在于,
    所述资源调度粒度包括:频域资源调度粒度,所述频域资源调度粒度为所述基站调度所述终端设备进行短TTI数据传输时的最小频域资源分配单位,包括至少一个RB;
    所述基站根据所述资源调度粒度,确定所述短TTI数据传输资源,包括:
    所述基站根据所述频域资源调度粒度,确定所述短TTI数据传输资源在频域上占用的资源,所述短TTI数据传输资源在时域上占用N个符号,所述N为正整数,当循环前缀CP为长CP时,所述N不大于6,当CP为普通CP时,所述N不大于7。
  41. 如权利要求34~38任一项所述的方法,其特征在于,所述资源调度 粒度包括:频域资源调度粒度和时域资源调度粒度;所述频域资源调度粒度为所述基站调度所述终端设备进行短TTI数据传输时的最小频域资源分配单位,包括至少一个RB;所述时域资源调度粒度为所述基站调度所述终端设备进行短TTI数据传输时的最小时域资源分配单位,包括至少一个符号;
    所述基站根据所述资源调度粒度,确定所述短TTI数据传输资源,包括:
    所述基站根据所述时域资源调度粒度,确定所述短TTI数据传输资源在时域上占用的符号;以及
    所述基站根据所述频域资源调度粒度,确定所述短TTI数据传输资源在频域上占用的资源。
  42. 如权利要求39所述的方法,其特征在于,
    所述基站根据所述时域资源调度粒度,确定所述短TTI数据传输资源在时域上占用的符号,包括:所述基站确定所述数据传输资源在时域上占用以参考符号为起始的连续X个符号,所述X为正整数,X为所述时域资源调度粒度的整数倍;
    所述参考符号为:所述DCI占用的第一个符号、所述DCI占用的最后一个符号、所述DCI所占用的第一个符号之后的第k个符号,或所述DCI所占用的最后一个符号之后的第k个符号,k为正整数;
    所述DCI包括:用于指示所述X的长度指示信息,所述长度指示信息是所述基站根据所述时域资源调度粒度生成的。
  43. 如权利要求39所述的方法,其特征在于,
    所述基站根据所述时域资源调度粒度,确定所述短TTI数据传输资源在时域上占用的符号,包括:所述基站确定所述短TTI数据传输资源在时域上占用以参考符号为起始的若干个符号,占用的符号数为所述时域资源调度粒度的整数倍;
    所述参考符号为:所述DCI占用的第一个符号、所述DCI占用的最后一个符号、所述DCI所占用的第一个符号之后的第k个符号,或所述DCI所占用的最后一个符号之后的第k个符号,k为正整数;
    所述DCI包括:用于指示所述若干个符号相对于所述参考符号的相对位置的信息,所述相对位置的信息是所述基站根据所述时域资源调度粒度和所述相对位置生成的。
  44. 如权利要求39所述的方法,其特征在于,
    所述基站根据所述时域资源调度粒度,确定所述短TTI数据传输资源在时域上占用的符号,包括:所述基站确定所述短TTI数据传输资源在时域上占用以参考符号为起始的若干个符号,其中,占用的所述若干个符号是连续的,且占用的所述若干个符号的个数与所述时域资源粒度所包括的符号个数相同;
    所述参考符号为:所述DCI占用的第一个符号、所述DCI占用的最后一个符号、所述DCI所占用的第一个符号之后的第k个符号,或所述DCI所占用的最后一个符号之后的第k个符号,k为正整数;
    所述DCI中用于指示所述短TTI数据传输资源的信息比特为空。
  45. 如权利要求40所述的方法,其特征在于,
    所述基站根据所述频域资源调度粒度,确定所述短TTI数据传输资源在频域上占用的资源,包括:所述基站确定所述短TTI数据传输资源在频域上占用的资源与所述频域资源调度粒度一样大;
    所述基站根据所述资源调度粒度,确定所述数据传输资源,还包括:所述基站确定所述短TTI数据传输资源在时域上占用的起始符号为参考符号,所述参考符号为所述DCI占用的第一个符号、所述DCI占用的最后一个符号、所述DCI所占用的第一个符号之后的第k个符号,或所述DCI所占用的最后一个符号之后的第k个符号,k为正整数;
    所述DCI包括:用于指示所述短TTI数据传输资源的频域起始位置的信息,所述频域起始位置的信息是所述基站根据所述频域资源调度粒度生成的。
  46. 如权利要求41所述的方法,其特征在于,
    所述基站根据所述时域资源调度粒度,确定所述短TTI数据传输资源在时域上占用的符号,包括:所述基站确定所述短TTI数据传输资源在时域上 占用连续的符号,且占用的符号数与所述时域资源调度粒度包括的符号数相等;
    所述基站根据所述频域资源调度粒度,确定所述短TTI数据传输资源在频域上占用的资源,包括:所述基站确定所述短TTI数据传输资源在频域上占用的资源与所述频域资源调度粒度一样大;
    所述基站根据所述资源调度粒度,确定所述短TTI数据传输资源,还包括:所述基站确定所述数据传输资源在时域上占用的起始符号为参考符号;
    所述参考符号为:所述DCI占用的第一个符号、所述DCI占用的最后一个符号、所述DCI所占用的第一个符号之后的第k个符号,或所述DCI所占用的最后一个符号之后的第k个符号,k为正整数;
    所述DCI包括:用于指示所述短TTI数据传输资源的频域起始位置的信息,所述频域起始位置的信息是所述基站根据所述频域资源调度粒度生成的。
  47. 如权利要求41所述的方法,其特征在于,
    所述基站根据所述时域资源调度粒度,确定所述短TTI数据传输资源在时域上占用的符号,包括:所述基站确定所述短TTI数据传输资源在时域上占用以参考符号为起始的连续X个符号,所述X为正整数;
    所述参考符号为:所述DCI占用的第一个符号、所述DCI占用的最后一个符号、所述DCI所占用的第一个符号之后的第k个符号,或所述DCI所占用的最后一个符号之后的第k个符号,k为正整数;
    所述基站根据所述频域资源调度粒度,确定所述短TTI数据传输资源在频域上占用的资源,包括:所述基站确定所述短TTI数据传输资源在频域上占用以频域起始位置为起始的指定带宽的资源;
    所述DCI包括:用于指示所述频域起始位置的起始位置信息和所述指定带宽的带宽信息,以及用于指示所述X的长度指示信息;所述频域起始位置的信息、所述带宽信息是所述基站根据所述频域资源调度粒度生成的,所述长度指示信息是所述基站根据所述时域资源调度粒度生成的。
  48. 如权利要求34~47任一项所述的方法,其特征在于,在所述基站确 定所述资源调度粒度之前,还包括:所述基站确定满足下列条件中的至少一个:
    所述终端设备当前使用的业务的时延需求小于设置的时延阈值;
    系统带宽大于设置的带宽阈值;以及
    系统带宽上资源可用率大于设置的资源可用率阈值。
  49. 如权利要求34~48任一项所述的方法,其特征在于,在所述基站向所述终端设备发送DCI之前,还包括:
    所述基站通过高层信令通知所述终端设备可用的所述短TTI数据传输资源,所述可用的所述短TTI数据传输资源包括短TTI数据传输可用带宽和/或所述数据传输可占用的时域资源;
    其中,所述短TTI数据传输可用带宽为所述短TTI数据传输资源可占用的带宽。
  50. 如权利要求34~49任一项所述的方法,其特征在于,所述基站发送所述DCI,包括:
    所述基站在所述DCI指示的所述短TTI数据传输资源上发送所述DCI。
  51. 如权利要求50所述的方法,其特征在于,所述基站在所述DCI指示的所述短TTI数据传输资源上发送所述DCI,包括:
    所述基站在发送所述DCI时,从所述DCI指示的所述短TTI数据传输资源的第一个符号开始映射,当占满第一个符号时再继续映射到下一个符号。
  52. 一种数据传输方法,其特征在于,包括:
    终端设备确定资源调度粒度;
    所述终端设备接收基站发送的下行控制信息DCI,所述DCI用于指示所述终端设备进行数据传输所使用的短TTI数据传输资源,所述短TTI数据传输资源在时域上小于1个子帧的长度或小于1ms;
    所述终端设备根据所述资源调度粒度和所述DCI,确定进行所述数据传输所使用的所述短TTI数据传输资源;
    所述终端设备使用所述短TTI数据传输资源与所述基站进行所述数据传 输。
  53. 如权利要求52所述的方法,其特征在于,所述终端设备采用下列方式之一确定所述资源调度粒度:
    所述终端设备根据承载所述DCI的物理下行控制信道的CCE聚合级别确定所述资源调度粒度;
    所述终端设备根据系统带宽确定所述资源调度粒度;
    所述终端设备根据短TTI数据传输可用带宽确定所述资源调度粒度;
    所述终端设备根据承载所述DCI的物理下行控制信道的CCE聚合级别和系统带宽确定所述资源调度粒度;以及
    所述终端设备根据承载所述DCI的物理下行控制信道的CCE聚合级别和短TTI数据传输可用带宽确定所述资源调度粒度;
    其中,所述短TTI数据传输可用带宽为所述短TTI数据传输资源可占用的带宽。
  54. 如权利要求53所述的方法,其特征在于,若所述终端设备根据承载所述DCI的物理下行控制信道的CCE聚合级别确定所述资源调度粒度,则
    承载所述DCI的物理下行控制信道的CCE聚合级别越高,所述资源调度粒度越大。
  55. 如权利要求53所述的方法,其特征在于,所述资源调度粒度包括时域资源调度粒度,所述时域资源调度粒度为所述基站调度所述终端设备进行短TTI数据传输时的最小时域资源分配单位,包括至少一个符号;
    若所述终端设备根据承载所述DCI的物理下行控制信道的CCE聚合级别和系统带宽确定所述资源调度粒度,则
    系统带宽越大,所述时域资源调度粒度越小;
    若系统带宽固定,承载所述DCI的物理下行控制信道的CCE聚合级别越高,所述时域资源调度粒度越大。
  56. 如权利要求53所述的方法,其特征在于,所述资源调度粒度包括时域资源调度粒度,所述时域资源调度粒度为所述基站调度所述终端设备进行 短TTI数据传输时的最小时域资源分配单位,包括至少一个符号;
    若所述终端设备根据承载所述DCI的物理下行控制信道的CCE聚合级别和短TTI数据传输可用带宽确定所述资源调度粒度,则
    短TTI数据传输可用带宽越大,所述时域资源调度粒度越小;
    若短TTI数据传输可用带宽固定,承载所述DCI的物理下行控制信道的CCE聚合级别越高,所述时域资源调度粒度越大。
  57. 如权利要求52~56任一项所述的方法,其特征在于,
    所述资源调度粒度包括:时域资源调度粒度,所述时域资源调度粒度为所述基站调度所述终端设备进行短TTI数据传输时的最小时域资源分配单位,包括至少一个符号;
    所述短TTI数据传输资源在时域上占用的不同符号,在频域上占用相同带宽的频域资源;
    所述相同带宽指:相同的系统带宽、相同的短TTI数据传输可用带宽,或相同的特定带宽;
    其中,所述短TTI数据传输可用带宽为所述短TTI数据传输资源可占用的带宽。
  58. 如权利要求52~56任一项所述的方法,其特征在于,
    所述资源调度粒度包括:频域资源调度粒度,所述频域资源调度粒度为所述基站调度所述终端设备进行短TTI数据传输时的最小频域资源分配单位,包括至少一个RB;
    所述短TTI数据传输资源在时域上占用N个符号,所述N为正整数,当循环前缀CP为长CP时,所述N不大于6,当CP为普通CP时,所述N不大于7。
  59. 如权利要求52~56任一项所述的方法,其特征在于,所述资源调度粒度包括:频域资源调度粒度和时域资源调度粒度;
    所述频域资源调度粒度为所述基站调度所述终端设备进行短TTI数据传输时的最小频域资源分配单位,包括至少一个RB;
    所述时域资源调度粒度为所述基站调度所述终端设备进行短TTI数据传输时的最小时域资源分配单位,包括至少一个符号。
  60. 如权利要求57所述的方法,其特征在于,
    所述DCI包括:用于指示所述短TTI数据传输资源在时域上占用的符号个数X的长度指示信息;
    所述终端设备根据所述资源调度粒度和所述DCI,确定所述短TTI数据传输资源,包括:所述终端设备根据所述长度指示信息和所述时域资源调度粒度,确定所述短TTI数据传输资源在时域上占用以参考符号为起始的连续X个符号,所述X为正整数;
    所述参考符号为:所述DCI占用的第一个符号、所述DCI占用的最后一个符号、所述DCI所占用的第一个符号之后的第k个符号,或所述DCI所占用的最后一个符号之后的第k个符号,k为正整数。
  61. 如权利要求57所述的方法,其特征在于,
    所述DCI包括:用于指示所述短TTI数据传输资源在时域上占用以参考符号为起始的若干个符号相对于所述参考符号的相对位置的信息;
    所述参考符号为:所述DCI占用的第一个符号、所述DCI占用的最后一个符号、所述DCI所占用的第一个符号之后的第k个符号,或所述DCI所占用的最后一个符号之后的第k个符号,k为正整数;
    所述终端设备根据所述资源调度粒度和所述DCI,确定所述短TTI数据传输资源,包括:所述终端设备根据所述相对位置的信息和所述时域资源调度粒度,确定所述短TTI数据传输资源在时域上占用以所述参考符号为起始的所述若干个符号。
  62. 如权利要求57所述的方法,其特征在于,所述DCI中用于指示所述短TTI数据传输资源的信息比特为空;
    所述终端设备根据所述资源调度粒度和所述DCI,确定所述短TTI数据传输资源,包括:
    所述终端设备确定所述短TTI数据传输资源在时域上占用以参考符号为 起始的若干个符号,占用的所述若干个符号是连续的且占用的所述若干个符号的个数与所述时域资源粒度所包括的符号个数相同;
    所述参考符号为:所述DCI占用的第一个符号、所述DCI占用的最后一个符号、所述DCI所占用的第一个符号之后的第k个符号,或所述DCI所占用的最后一个符号之后的第k个符号,k为正整数。
  63. 如权利要求58所述的方法,其特征在于,
    所述DCI包括:用于指示所述短TTI数据传输资源的频域起始位置的起始位置信息;
    所述终端设备根据所述资源调度粒度和所述DCI,确定所述短TTI数据传输资源,包括:
    所述终端设备根据所述频域资源调度粒度和所述起始位置信息,确定所述短TTI数据传输资源的频域起始位置,并确定所述短TTI数据传输资源在频域上占用的资源与所述频域资源调度粒度一样大;以及
    所述终端设备确定所述短TTI数据传输资源在时域上占用的起始符号为参考符号;所述参考符号为:所述DCI占用的第一个符号、所述DCI占用的最后一个符号、所述DCI所占用的第一个符号之后的第k个符号,或所述DCI所占用的最后一个符号之后的第k个符号,k为正整数。
  64. 如权利要求59所述的方法,其特征在于,
    所述DCI包括:用于指示所述短TTI数据传输资源的频域起始位置的起始位置信息;
    所述终端设备根据所述资源调度粒度和所述DCI,确定所述短TTI数据传输所使用的数据传输资源,包括:
    所述终端设备确定所述短TTI数据传输资源在时域上占用连续的符号,且占用的符号数与所述时域资源调度粒度包括的符号数相等;
    所述终端设备确定所述短TTI数据传输资源在时域上占用的起始符号为参考符号;所述参考符号为:所述DCI占用的第一个符号、所述DCI占用的最后一个符号、所述DCI所占用的第一个符号之后的第k个符号,或所述DCI 所占用的最后一个符号之后的第k个符号,k为正整数;以及
    所述终端设备根据所述起始位置信息,确定所述短TTI数据传输资源在频域上占用以所述频域起始位置为起始的资源,则占用的资源与所述频域资源调度粒度一样大。
  65. 如权利要求59所述的方法,其特征在于,
    所述DCI包括:用于指示所述短TTI数据传输资源的频域起始位置的起始位置信息和所述短TTI数据传输资源的带宽信息;以及用于指示所述短TTI数据传输资源在时域上占用的符号数X的长度指示信息,所述X为正整数;
    所述终端设备根据所述资源调度粒度和所述DCI,确定所述短TTI数据传输资源,包括:
    所述终端设备根据所述时域资源调度粒度和所述长度指示信息,确定所述短TTI数据传输资源在时域上占用以参考符号为起始的连续X个符号,所述参考符号为:所述DCI占用的第一个符号、所述DCI占用的最后一个符号、所述DCI所占用的第一个符号之后的第k个符号,或所述DCI所占用的最后一个符号之后的第k个符号,k为正整数;以及
    所述终端设备根据所述频域资源调度粒度、所述起始位置信息和所述带宽信息,确定所述短TTI数据传输资源在频域上占用所述频域起始位置开始的所述带宽信息所指示的资源。
  66. 如权利要求52~65任一项所述的方法,其特征在于,在接收所述基站发送的DCI之前,还包括:
    接收所述基站通过高层信令通知的所述终端设备可用的所述短TTI数据传输资源,所述可用的所述短TTI数据传输资源包括短TTI数据传输可用带宽和/或短TTI数据传输可占用的时域资源;
    其中,所述短TTI数据传输可用带宽为所述短TTI数据传输资源可占用的带宽。
  67. 一种无线通信系统,包括:基站和终端设备,其特征在于,
    所述基站,用于确定资源调度粒度,根据所述资源调度粒度,确定终端设备进行数据传输所使用的短传输时间间隔TTI数据传输资源,所述短TTI数据传输资源在时域上小于1个子帧的长度或小于1ms,以及向所述终端设备发送下行控制信息DCI,所述DCI用于指示所述短TTI数据传输资源,使用所述短TTI数据传输资源与所述终端设备进行数据传输;
    所述终端设备,用于确定资源调度粒度,接收所述基站发送的所述DCI,根据确定的所述资源调度粒度和所述DCI,确定进行数据传输所使用的所述短TTI数据传输资源,使用所述短TTI数据传输资源与所述基站进行数据传输。
PCT/CN2015/086796 2015-08-12 2015-08-12 数据传输方法、装置及系统 WO2017024565A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201580081388.5A CN107710848A (zh) 2015-08-12 2015-08-12 数据传输方法、装置及系统
PCT/CN2015/086796 WO2017024565A1 (zh) 2015-08-12 2015-08-12 数据传输方法、装置及系统

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2015/086796 WO2017024565A1 (zh) 2015-08-12 2015-08-12 数据传输方法、装置及系统

Publications (1)

Publication Number Publication Date
WO2017024565A1 true WO2017024565A1 (zh) 2017-02-16

Family

ID=57982934

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/086796 WO2017024565A1 (zh) 2015-08-12 2015-08-12 数据传输方法、装置及系统

Country Status (2)

Country Link
CN (1) CN107710848A (zh)
WO (1) WO2017024565A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110547011A (zh) * 2017-05-03 2019-12-06 Oppo广东移动通信有限公司 无线通信的方法、终端设备和网络设备
US11343829B2 (en) 2017-08-04 2022-05-24 Guangdong Oppo Mobile Telecommunications Corp., Ltd. Monitoring method and terminal apparatus in internet-of-vehicles system

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20190387505A1 (en) * 2018-06-19 2019-12-19 Mediatek Singapore Pte. Ltd. Method And Apparatus For Configuring Time Domain-Resource Allocation For Different Service Types In Mobile Communications
CN114071682B (zh) * 2021-11-04 2023-05-16 中国联合网络通信集团有限公司 一种分布式网络架构的功率选择方法及装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101415227A (zh) * 2007-10-15 2009-04-22 大唐移动通信设备有限公司 支持高速移动传输的传输时间间隔配置方法、装置及系统
CN101895988A (zh) * 2009-05-22 2010-11-24 中兴通讯股份有限公司 一种控制信道资源的分配方法及装置
CN102447538A (zh) * 2011-11-16 2012-05-09 中兴通讯股份有限公司 下行控制信息传输方法和系统
WO2014124164A1 (en) * 2013-02-07 2014-08-14 Interdigital Patent Holdings, Inc. Physical layer (phy) design for a low latencymillimeter wave (mmw) backhaul system

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101415227A (zh) * 2007-10-15 2009-04-22 大唐移动通信设备有限公司 支持高速移动传输的传输时间间隔配置方法、装置及系统
CN101895988A (zh) * 2009-05-22 2010-11-24 中兴通讯股份有限公司 一种控制信道资源的分配方法及装置
CN102447538A (zh) * 2011-11-16 2012-05-09 中兴通讯股份有限公司 下行控制信息传输方法和系统
WO2014124164A1 (en) * 2013-02-07 2014-08-14 Interdigital Patent Holdings, Inc. Physical layer (phy) design for a low latencymillimeter wave (mmw) backhaul system

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110547011A (zh) * 2017-05-03 2019-12-06 Oppo广东移动通信有限公司 无线通信的方法、终端设备和网络设备
US11343829B2 (en) 2017-08-04 2022-05-24 Guangdong Oppo Mobile Telecommunications Corp., Ltd. Monitoring method and terminal apparatus in internet-of-vehicles system

Also Published As

Publication number Publication date
CN107710848A (zh) 2018-02-16

Similar Documents

Publication Publication Date Title
US11219020B2 (en) Determination of data transmission resources
EP3834569B1 (en) Method and apparatus for generating mac pdu
JP7301196B2 (ja) 端末、無線通信方法及びシステム
CN110663235B (zh) 终端、无线通信方法、基站及系统
KR102212799B1 (ko) 제어 정보 검출 방법, 제어 정보 전송 방법 및 장치
WO2019029366A1 (zh) 一种调整频域资源和发送指示信息的方法、装置及系统
JP6959322B2 (ja) 端末、無線通信方法、基地局及びシステム
JP7418507B2 (ja) 端末、無線通信方法、基地局及びシステム
WO2018000929A1 (zh) 一种子帧配置方法及相关设备
JP7104142B2 (ja) 端末、無線通信方法、基地局及びシステム
WO2019029473A1 (zh) 传输数据的方法、终端设备和网络设备
JP2022095951A (ja) 端末、無線通信方法、基地局及びシステム
JP6928007B2 (ja) 端末、無線通信方法及び基地局
JP7096153B2 (ja) 端末、無線通信方法、基地局及びシステム
WO2019137502A1 (zh) 一种uci传输方法及设备
JP6938625B2 (ja) 端末、無線通信方法、基地局及びシステム
WO2018196618A1 (zh) 一种通信方法及装置
JPWO2019064569A1 (ja) ユーザ端末及び無線通信方法
JPWO2019142272A1 (ja) ユーザ端末及び無線通信方法
JP2018535604A (ja) キャリアアグリゲーションにおけるダウンリンク割当てインデックス(dai)管理のための技法
JPWO2019138555A1 (ja) ユーザ端末及び無線通信方法
JP7115981B2 (ja) 端末、無線通信方法及び基地局
WO2017024565A1 (zh) 数据传输方法、装置及系统
EP4055942A1 (en) Methods for use of priority indication associated with cg/sps transmission
JPWO2019215935A1 (ja) ユーザ端末及び無線通信方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15900763

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15900763

Country of ref document: EP

Kind code of ref document: A1