WO2023035945A1 - 多时隙传输方法、装置、终端及网络侧设备 - Google Patents

多时隙传输方法、装置、终端及网络侧设备 Download PDF

Info

Publication number
WO2023035945A1
WO2023035945A1 PCT/CN2022/114472 CN2022114472W WO2023035945A1 WO 2023035945 A1 WO2023035945 A1 WO 2023035945A1 CN 2022114472 W CN2022114472 W CN 2022114472W WO 2023035945 A1 WO2023035945 A1 WO 2023035945A1
Authority
WO
WIPO (PCT)
Prior art keywords
channel
transmission
terminal
slot
time period
Prior art date
Application number
PCT/CN2022/114472
Other languages
English (en)
French (fr)
Inventor
司倩倩
高雪娟
Original Assignee
大唐移动通信设备有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 大唐移动通信设备有限公司 filed Critical 大唐移动通信设备有限公司
Publication of WO2023035945A1 publication Critical patent/WO2023035945A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1812Hybrid protocols; Hybrid automatic repeat request [HARQ]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1829Arrangements specially adapted for the receiver end
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1867Arrangements specially adapted for the transmitter end

Definitions

  • the present disclosure relates to the technical field of communication, and in particular, refers to a multi-slot transmission method, device, terminal and network side equipment.
  • the satellite communication system supports periodic switching of service beams for transmission.
  • Each service beam can serve multiple wave positions in a time-sharing manner.
  • the switching period and the time range for serving each wave position within the period are semi-statically notified by the base station to end users.
  • the beam scanning period is 20ms, the first 10ms in each period serves the wave position of User Equipment 1 (User Equipment1, UE1), and the last 10ms serves the wave position where UE2 is located.
  • the satellite communication system supports repeated transmission of Physical Downlink Shared Channel (PDSCH)/Physical Uplink Shared Channel (PUSCH)/Physical Uplink Control Channel (PUCCH), and also supports PDSCH Multi-slot scheduling of /PUSCH. Repeated transmission is to use the same resource to transmit the same information in a continuous range of M time slots, and multi-slot scheduling is to use the same resource to transmit different information in a continuous range of N time slots, where the specific values of M and N It is configured by the base station to the terminal user through high-layer signaling.
  • PDSCH Physical Downlink Shared Channel
  • PUSCH Physical Uplink Shared Channel
  • PUCCH Physical Uplink Control Channel
  • satellite beams need to point to users to provide network communication servers.
  • service beams that transmit data if the satellite coverage area is large, each service beam can serve multiple time-sharing services due to the limited coverage of each beam. wave bit, realizing the communication mode of time division multiplexing.
  • the multi-slot scheduling or repeated transmission in the satellite communication system does not consider the switching process of the service beam. If the service beam does not always cover the wave position where the current user is located, some time slots in multiple repeated transmissions may be located in the service beam. In the time range pointing to other wave positions, if the terminal user still sends repeated transmission data in these time slots, the base station cannot receive it, and the uplink transmission performance of other users may be affected.
  • the purpose of the present disclosure is to provide a multi-slot transmission method, device, terminal and network-side equipment to solve the problem in the related art that data in some time slots cannot be correctly transmitted in the scenario of multi-slot scheduling or repeated transmission.
  • this paper provides a multi-slot transmission method, which includes:
  • the terminal receives the transmission configuration or indication information sent by the network side device; the transmission configuration or indication information is used to configure or indicate the repeated transmission of the first channel and/or the multi-slot transmission of the second channel;
  • the repeated transmission of the first channel and/or the multi-slot transmission of the second channel are within the service period of the terminal; or, the terminal does not expect the repeated transmission of the first channel and/or The multi-slot transmission of the second channel cannot be completed within the service period of the terminal.
  • the method also includes:
  • the terminal performs the transmission of the first channel and/or the second channel within the service period of the terminal according to the transmission configuration or indication information.
  • the method also includes:
  • the terminal determines that the repeated transmission of the first channel and/or the multi-slot transmission of the second channel cannot be completed within the service period of the terminal, the terminal does not perform the first channel and/or the second channel transmission. channel transmission.
  • the first channel includes at least one of the following: Physical Downlink Control Channel PDCCH, PDSCH, PUSCH, Physical Uplink Control Channel PUCCH, Physical Random Access Channel PRACH;
  • the second channel includes a physical downlink shared channel PDSCH and/or a physical uplink shared channel PUSCH.
  • An embodiment of the present disclosure also provides a multi-slot transmission method, which includes:
  • the network side device sends transmission configuration or indication information to the terminal; the transmission configuration information is used to configure or indicate repeated transmission of the first channel and/or multi-slot transmission of the second channel;
  • the repeated transmission of the first channel and/or the multi-slot transmission of the second channel are within the service period of the terminal.
  • the method also includes:
  • the network side device performs the transmission of the first channel and/or the second channel within the service period of the terminal according to the transmission configuration or indication information.
  • the first channel includes at least one of the following: Physical Downlink Control Channel PDCCH, PDSCH, PUSCH, Physical Uplink Control Channel PUCCH, Physical Random Access Channel PRACH;
  • the second channel includes a physical downlink shared channel PDSCH and/or a physical uplink shared channel PUSCH.
  • An embodiment of the present disclosure also provides a multi-slot transmission method, which includes:
  • the terminal transmits the first channel and/or the second channel in some time slots that do not exceed the service time period;
  • the terminal discards the transmission corresponding to the time slot beyond the service time period; or, the terminal delays the transmission corresponding to the time slot beyond the service time period to a next service time period of the terminal.
  • the method further includes:
  • the terminal determines the reference time slot of the hybrid automatic repeat request response HARQ-ACK feedback time; wherein,
  • the reference time slot is: the last time slot of the service time period
  • the reference time slot is: completed within the next service time period The last time slot transmitted by the first channel and/or the second channel.
  • the first channel includes at least one of the following: Physical Downlink Control Channel PDCCH, PDSCH, PUSCH, Physical Uplink Control Channel PUCCH, Physical Random Access Channel PRACH;
  • the second channel includes a physical downlink shared channel PDSCH and/or a physical uplink shared channel PUSCH.
  • An embodiment of the present disclosure also provides a multi-slot transmission method, which includes:
  • the network side device transmits the first channel and/or the second channel in some time slots that do not exceed the service time period;
  • the network side device discards the transmission corresponding to the time slot exceeding the service time period; or, the network side device delays the transmission corresponding to the time slot exceeding the service time period to the next service time period of the terminal in progress.
  • the method further includes:
  • the network side device determines the reference time slot of the HARQ-ACK feedback time; wherein,
  • the reference time slot is: the last time slot of the service time period
  • the reference time slot is: the next service time period The last time slot in which the transmission of the first channel and/or the second channel is completed within the time period.
  • the first channel includes at least one of the following: Physical Downlink Control Channel PDCCH, PDSCH, PUSCH, Physical Uplink Control Channel PUCCH, Physical Random Access Channel PRACH;
  • the second channel includes a physical downlink shared channel PDSCH and/or a physical uplink shared channel PUSCH.
  • An embodiment of the present disclosure also provides a multi-slot transmission device applied to a terminal, including:
  • the receiving unit is configured to receive transmission configuration or indication information sent by the network side device; the transmission configuration or indication information is used to configure or indicate repeated transmission of the first channel and/or multi-slot transmission of the second channel;
  • the repeated transmission of the first channel and/or the multi-slot transmission of the second channel are within the service period of the terminal; or, the terminal does not expect the repeated transmission of the first channel and/or The multi-slot transmission of the second channel cannot be completed within the service period of the terminal.
  • the device also includes:
  • the first channel transmission unit is configured to perform transmission of the first channel and/or the second channel within the service period of the terminal according to the transmission configuration or indication information.
  • the device also includes:
  • a channel processing unit configured to not execute the first channel and/or the second channel if it is determined that the repeated transmission of the first channel and/or the multi-slot transmission of the second channel cannot be completed within the service period of the terminal. channel transmission.
  • the first channel includes at least one of the following: Physical Downlink Control Channel PDCCH, PDSCH, PUSCH, Physical Uplink Control Channel PUCCH, Physical Random Access Channel PRACH;
  • the second channel includes a physical downlink shared channel PDSCH and/or a physical uplink shared channel PUSCH.
  • An embodiment of the present disclosure also provides a terminal, including a memory, a transceiver, and a processor:
  • the memory is used to store computer programs; the transceiver is used to send and receive data under the control of the processor; the processor is used to read the computer programs in the memory and perform the following operations:
  • the transmission configuration or indication information is used to configure or indicate repeated transmission of the first channel and/or multi-slot transmission of the second channel;
  • the repeated transmission of the first channel and/or the multi-slot transmission of the second channel are within the service period of the terminal; or, the terminal does not expect the repeated transmission of the first channel and/or The multi-slot transmission of the second channel cannot be completed within the service period of the terminal.
  • processor is also used to read the computer program in the memory and perform the following operations:
  • the transmission of the first channel and/or the second channel is performed within the service period of the terminal.
  • processor is also used to read the computer program in the memory and perform the following operations:
  • the transmission of the first channel and/or the second channel is not performed.
  • the first channel includes at least one of the following: Physical Downlink Control Channel PDCCH, PDSCH, PUSCH, Physical Uplink Control Channel PUCCH, Physical Random Access Channel PRACH;
  • the second channel includes a physical downlink shared channel PDSCH and/or a physical uplink shared channel PUSCH.
  • An embodiment of the present disclosure also provides a multi-slot transmission device, which is applied to network-side equipment, including:
  • a sending unit configured to send transmission configuration or indication information to the terminal; the transmission configuration information is used to configure or indicate repeated transmission of the first channel and/or multi-slot transmission of the second channel;
  • the repeated transmission of the first channel and/or the multi-slot transmission of the second channel are within the service period of the terminal.
  • the device also includes:
  • the second channel transmission unit is configured to perform transmission of the first channel and/or the second channel within the service period of the terminal according to the transmission configuration or indication information.
  • the first channel includes at least one of the following: Physical Downlink Control Channel PDCCH, PDSCH, PUSCH, Physical Uplink Control Channel PUCCH, Physical Random Access Channel PRACH;
  • the second channel includes a physical downlink shared channel PDSCH and/or a physical uplink shared channel PUSCH.
  • An embodiment of the present disclosure also provides a network side device, including a memory, a transceiver, and a processor:
  • the memory is used to store computer programs; the transceiver is used to send and receive data under the control of the processor; the processor is used to read the computer programs in the memory and perform the following operations:
  • the transmission configuration information is used to configure or indicate repeated transmission of the first channel and/or multi-slot transmission of the second channel;
  • the repeated transmission of the first channel and/or the multi-slot transmission of the second channel are within the service period of the terminal.
  • processor is also used to read the computer program in the memory and perform the following operations:
  • the transmission of the first channel and/or the second channel is performed within the service period of the terminal.
  • the first channel includes at least one of the following: Physical Downlink Control Channel PDCCH, PDSCH, PUSCH, Physical Uplink Control Channel PUCCH, Physical Random Access Channel PRACH;
  • the second channel includes a physical downlink shared channel PDSCH and/or a physical uplink shared channel PUSCH.
  • An embodiment of the present disclosure also provides a multi-slot transmission device applied to a terminal, including:
  • the first transmission unit is configured to perform the first channel and/or the second channel within the service time period when the repeated transmission of the first channel and/or the multi-slot transmission of the second channel exceed the service time period of the terminal.
  • the first processing unit is configured to discard the transmission corresponding to the time slot beyond the service time period; or delay the transmission corresponding to the time slot beyond the service time period to a next service time period of the terminal.
  • the device further includes:
  • the first determination unit is used to determine the reference time slot of the hybrid automatic repeat request response HARQ-ACK feedback time;
  • the reference time slot is: the last time slot of the service time period
  • the reference time slot is: completed within the next service time period The last time slot transmitted by the first channel and/or the second channel.
  • the first channel includes at least one of the following: physical downlink control channel PDCCH, PDSCH, PUSCH, physical uplink control channel PUCCH, physical random access channel PRACH;
  • the second channel includes a physical downlink shared channel PDSCH and/or a physical uplink shared channel PUSCH.
  • An embodiment of the present disclosure also provides a terminal, including a memory, a transceiver, and a processor:
  • the memory is used to store computer programs; the transceiver is used to send and receive data under the control of the processor; the processor is used to read the computer programs in the memory and perform the following operations:
  • the transmission of the first channel and/or the second channel does not exceed a part of the time slot of the service time period
  • processor is also used to read the computer program in the memory and perform the following operations:
  • the reference time slot is: the last time slot of the service time period
  • the reference time slot is: the first service time period is completed within the next service time period The last time slot of a channel and/or second channel transmission.
  • the first channel includes at least one of the following: physical downlink control channel PDCCH, PDSCH, PUSCH, physical uplink control channel PUCCH, physical random access channel PRACH;
  • the second channel includes a physical downlink shared channel PDSCH and/or a physical uplink shared channel PUSCH.
  • An embodiment of the present disclosure also provides a multi-slot transmission device, which is applied to network-side equipment, including:
  • the second transmission unit is configured to perform the first channel and/or the second channel within the service period when the repeated transmission of the first channel and/or the multi-slot transmission of the second channel exceed the service period of the terminal.
  • the second processing unit is configured to discard the transmission corresponding to the time slot beyond the service time period; or delay the transmission corresponding to the time slot beyond the service time period to a next service time period of the terminal.
  • the device further includes:
  • the second determination unit is used to determine the reference time slot of the HARQ-ACK feedback time;
  • the reference time slot is: the last time slot of the service time period
  • the reference time slot is: the next service time period The last time slot in which the transmission of the first channel and/or the second channel is completed within the time period.
  • the first channel includes at least one of the following: physical downlink control channel PDCCH, PDSCH, PUSCH, physical uplink control channel PUCCH, physical random access channel PRACH;
  • the second channel includes a physical downlink shared channel PDSCH and/or a physical uplink shared channel PUSCH.
  • An embodiment of the present disclosure also provides a network side device, including a memory, a transceiver, and a processor:
  • the memory is used to store computer programs; the transceiver is used to send and receive data under the control of the processor; the processor is used to read the computer programs in the memory and perform the following operations:
  • the transmission of the first channel and/or the second channel does not exceed a part of the time slot of the service time period
  • processor is also used to read the computer program in the memory and perform the following operations:
  • the reference time slot is: the last time slot of the service time period
  • the reference time slot is: The last time slot of the transmission of the first channel and/or the second channel.
  • the first channel includes at least one of the following: Physical Downlink Control Channel PDCCH, PDSCH, PUSCH, Physical Uplink Control Channel PUCCH, Physical Random Access Channel PRACH;
  • An embodiment of the present disclosure further provides a processor-readable storage medium, wherein the processor-readable storage medium stores a computer program, and the computer program is configured to cause the processor to execute the above method.
  • the time slots used for multi-slot scheduling or repeated transmission are not allowed to exceed one service time period of the terminal, or the time slots used for multi-slot scheduling or repeated transmission are not allowed
  • the untransmitted part is discarded or the untransmitted time slot is delayed to the next service time period of the terminal; thus, when the beam periodically switches between different wave positions in satellite communication, the base station Multi-slot scheduled transmission or repeated transmission can be correctly performed between the terminal and the terminal.
  • FIG. 1 shows a schematic diagram of a service time period of a terminal in a beam scanning cycle in the related art
  • FIG. 2 shows a block diagram of a wireless communication system to which an embodiment of the present disclosure is applicable
  • FIG. 3 shows one of the schematic flowcharts of the multi-slot transmission method provided by the embodiment of the present disclosure
  • FIG. 4 shows the second schematic flow diagram of the multi-slot transmission method provided by the embodiment of the present disclosure
  • FIG. 5 shows a schematic diagram of the principle of Example 1 provided by an embodiment of the present disclosure
  • FIG. 6 shows the third schematic flow diagram of the multi-slot transmission method provided by the embodiment of the present disclosure
  • FIG. 7 shows the fourth schematic flow diagram of the multi-slot transmission method provided by the embodiment of the present disclosure.
  • FIG. 8 shows a schematic diagram of the principle of Example 2 provided by an embodiment of the present disclosure
  • FIG. 9 shows a schematic diagram of the principle of Example 3 provided by an embodiment of the present disclosure.
  • FIG. 10 shows one of the schematic structural diagrams of a multi-slot transmission device provided by an embodiment of the present disclosure
  • FIG. 11 shows one of the schematic structural diagrams of a terminal provided by an embodiment of the present disclosure
  • FIG. 12 shows the second structural schematic diagram of a multi-slot transmission device provided by an embodiment of the present disclosure
  • FIG. 13 shows one of the schematic structural diagrams of network-side devices provided by an embodiment of the present disclosure
  • FIG. 14 shows the third schematic structural diagram of the multi-slot transmission device provided by the embodiment of the present disclosure.
  • FIG. 15 shows the second structural schematic diagram of a terminal provided by an embodiment of the present disclosure
  • FIG. 16 shows the fourth schematic structural diagram of a multi-slot transmission device provided by an embodiment of the present disclosure
  • FIG. 17 shows a second schematic structural diagram of a network side device provided by an embodiment of the present disclosure.
  • Fig. 2 shows a block diagram of a wireless communication system to which embodiments of the present disclosure are applicable.
  • the wireless communication system includes a terminal 11 and a network side device 12 .
  • the terminal 11 may also be called a terminal device or a user terminal (User Equipment, UE).
  • UE User Equipment
  • the network side device 12 may be a base station or a core network. It should be noted that in the embodiments of the present disclosure, only the base station in the NR system is taken as an example, but the specific type of the base station is not limited.
  • the applicable system may be a global system of mobile communication (GSM) system, a code division multiple access (CDMA) system, a wideband code division multiple access (WCDMA) general packet Wireless business (general packet radio service, GPRS) system, long term evolution (long term evolution, LTE) system, LTE frequency division duplex (frequency division duplex, FDD) system, LTE time division duplex (time division duplex, TDD) system, Long term evolution advanced (LTE-A) system, universal mobile telecommunications system (UMTS), worldwide interoperability for microwave access (WiMAX) system, 5G new air interface (New Radio, NR) system, etc.
  • GSM global system of mobile communication
  • CDMA code division multiple access
  • WCDMA wideband code division multiple access
  • GPRS general packet Wireless business
  • long term evolution long term evolution
  • LTE long term evolution
  • LTE frequency division duplex frequency division duplex
  • time division duplex time division duplex
  • TDD Time division duplex
  • LTE-A Long term evolution advanced
  • the terminal involved in the embodiments of the present disclosure may be a device that provides voice and/or data connectivity to a user, a handheld device with a wireless connection function, or other processing devices connected to a wireless modem.
  • the name of the terminal equipment may be different.
  • the terminal equipment may be called User Equipment (User Equipment, UE).
  • the wireless terminal device can communicate with one or more core networks (Core Network, CN) via the radio access network (Radio Access Network, RAN), and the wireless terminal device can be a mobile terminal device, such as a mobile phone (or called a "cellular "telephones) and computers with mobile terminal equipment, such as portable, pocket, hand-held, computer built-in or vehicle-mounted mobile devices, which exchange language and/or data with the radio access network.
  • CN Core Network
  • RAN Radio Access Network
  • RAN Radio Access Network
  • the wireless terminal device can be a mobile terminal device, such as a mobile phone (or called a "cellular "telephones) and computers with mobile terminal equipment, such as portable, pocket, hand-held, computer built-in or vehicle-mounted mobile devices, which exchange language and/or data with the radio access network.
  • PCS Personal Communication Service
  • SIP Session Initiated Protocol
  • WLL Wireless Local Loop
  • PDA Personal Digital Assistant
  • Wireless terminal equipment can also be called system, subscriber unit, subscriber station, mobile station, mobile station, remote station, access point , remote terminal (remote terminal), access terminal (access terminal), user terminal (user terminal), user agent (user agent), and user device (user device), which are not limited in the embodiments of the present disclosure.
  • the network side device involved in the embodiments of the present disclosure may be a base station, and the base station may include multiple cells that provide services for terminals.
  • the base station can also be called an access point, or it can be a device in the access network that communicates with the wireless terminal device through one or more sectors on the air interface, or other names.
  • the network device can be used to interchange received over-the-air frames with Internet Protocol (IP) packets and act as a router between the wireless terminal device and the rest of the access network, which can include the Internet Protocol (IP) communication network.
  • IP Internet Protocol
  • Network devices may also coordinate attribute management for the air interface.
  • the network equipment involved in the embodiments of the present disclosure may be a network equipment (Base Transceiver Station, BTS) in Global System for Mobile communications (GSM) or Code Division Multiple Access (Code Division Multiple Access, CDMA) ), it can also be a network device (NodeB) in Wide-band Code Division Multiple Access (WCDMA), or it can be an evolved network device in a long-term evolution (long term evolution, LTE) system (evolutional Node B, eNB or e-NodeB), 5G base station (NR Node B, gNB) in the 5G network architecture (next generation system), it can also be a Home evolved Node B (HeNB), relay node (relay node), home base station (femto), pico base station (pico), etc., are not limited in this embodiment of the present disclosure.
  • a network device may include a centralized unit (centralized unit, CU) node and a distributed unit (distributed unit, DU) node, and the centralized unit (centralized unit
  • One or more antennas can be used between the network-side device and the terminal for Multi Input Multi Output (MIMO) transmission, and MIMO transmission can be Single User MIMO (Single User MIMO, SU-MIMO) or Multi-User MIMO (Multiple User MIMO, MU-MIMO).
  • MIMO transmission can be Single User MIMO (Single User MIMO, SU-MIMO) or Multi-User MIMO (Multiple User MIMO, MU-MIMO).
  • MIMO transmission can be two-dimensional multiple-input multiple-output (2 Dimension MIMO, 2D-MIMO), three-dimensional multiple-input multiple-output (3 Dimension MIMO, 3D-MIMO), full-dimensional multiple input multiple output (Full Dimension MIMO, FD-MIMO) or large-scale multiple-input multiple-output (massive-MIMO), it can also be diversity transmission or precoding transmission or beamforming transmission, etc.
  • the embodiment of the present disclosure also provides a multi-slot transmission method, the method includes:
  • Step 301 the terminal receives the transmission configuration or indication information sent by the network side device; the transmission configuration or indication information is used to configure or indicate the repeated transmission of the first channel and/or the multi-slot transmission of the second channel;
  • the repeated transmission of the first channel and/or the multi-slot transmission of the second channel are within the service period of the terminal; or, the terminal does not expect the repeated transmission of the first channel and/or The multi-slot transmission of the second channel cannot be completed within the service period of the terminal.
  • the "service time period of the terminal" mentioned in the embodiments of the present disclosure can be understood as: the service time period of the wave position where the terminal is located, or the time period serving the wave position where the terminal is located, which is not specifically limited here .
  • the network side device ensures that multi-slot scheduling or repeated transmission is within the service time period of one wave position; or, the terminal does not expect to appear in a service time period according to multi-slot scheduling instructions or configuration The number of repeated transmission times cannot complete the transmission.
  • the method further includes:
  • the terminal performs the transmission of the first channel and/or the second channel within the service period of the terminal according to the transmission configuration or indication information.
  • the method further include:
  • the terminal determines that the repeated transmission of the first channel and/or the multi-slot transmission of the second channel cannot be completed within the service period of the terminal, the terminal does not perform the first channel and/or the second channel transmission. channel transmission.
  • the first channel includes at least one of the following: Physical Downlink Control Channel (Physical Downlink Control Channel, PDCCH), Physical Downlink Shared Channel (Physical Downlink Shared Channel, PDSCH), Physical Uplink Shared Channel (Physical Uplink Shared Channel , PUSCH), physical uplink control channel (Physical Uplink Control Channel, PUCCH), physical random access channel (Physical Random Access Channel, PRACH);
  • the second channel includes a physical downlink shared channel PDSCH and/or a physical uplink shared channel PUSCH.
  • the network-side device or terminal does not allow multi-slot scheduling or the time slot used for repeated transmission exceeds a service time period of the terminal; thus, it can support when the beam periodically switches between different wave positions in satellite communication, the base station Multi-slot scheduled transmission or repeated transmission can be correctly performed between the terminal and the terminal.
  • the embodiment of the present disclosure also provides a multi-slot transmission method, the method includes:
  • Step 401 the network side device sends transmission configuration or indication information to the terminal; the transmission configuration information is used to configure or indicate repeated transmission of the first channel and/or multi-slot transmission of the second channel;
  • the repeated transmission of the first channel and/or the multi-slot transmission of the second channel are within the service period of the terminal.
  • the "service time period of the terminal" mentioned in the embodiments of the present disclosure can be understood as: the service time period of the wave position where the terminal is located, or the time period serving the wave position where the terminal is located, which is not specifically limited here .
  • the network side device ensures that multi-slot scheduling or repeated transmission is within the service time period of one wave position; or, the terminal does not expect to appear in a service time period according to multi-slot scheduling instructions or configuration The number of repeated transmission times cannot complete the transmission.
  • the method further includes:
  • the network side device performs the transmission of the first channel and/or the second channel within the service period of the terminal according to the transmission configuration or indication information.
  • the first channel includes at least one of the following: Physical Downlink Control Channel PDCCH, PDSCH, PUSCH, Physical Uplink Control Channel PUCCH, Physical Random Access Channel PRACH;
  • the second channel includes a physical downlink shared channel PDSCH and/or a physical uplink shared channel PUSCH.
  • the network-side device or terminal does not allow multi-slot scheduling or the time slot used for repeated transmission exceeds a service time period of the terminal; thus, it can support when the beam periodically switches between different wave positions in satellite communication, the base station Multi-slot scheduled transmission or repeated transmission can be correctly performed between the terminal and the terminal.
  • the subcarrier interval for transmission is 120 kHz, and 1 ms contains 8 time slots.
  • the beam polling period is 20ms.
  • the 1st ms of every 20ms is assigned to the wave position where UE1 is located, and the last 19ms is allocated to the wave positions where other UEs are located.
  • the network side device must ensure that the configured or scheduled 8 time slots always start transmission from time slot 0, and the terminal does not expect Multi-slot scheduled transmission or repeated transmission starting from non-slot 0; if the terminal believes that multi-slot scheduled transmission or repeated transmission starting from non-slot 0 occurs, the terminal considers it an error and may not perform the transmission.
  • the embodiment of the present disclosure also provides a multi-slot transmission method, the method includes:
  • Step 601 during the service time period, the terminal transmits the first channel and/or the second channel in some time slots that do not exceed the service time period;
  • Step 602 the terminal discards the transmission corresponding to the time slot beyond the service time period; or, the terminal delays the transmission corresponding to the time slot beyond the service time period to the next service time period of the terminal conduct.
  • the "service time period of the terminal" mentioned in the embodiments of the present disclosure can be understood as: the service time period of the wave position where the terminal is located, or the time period serving the wave position where the terminal is located, which is not specifically limited here .
  • the transmissions in the time slots that are not in the service time period of the wave position are discarded; that is to say, in this scheme
  • the multi-slot scheduling or repeated transmission does not continue to the next service time period, but ends directly, and the actual transmission time slot may not reach the configured multi-slot transmission or repeated transmission times.
  • the method further includes:
  • the terminal determines a reference time slot for a Hybrid Automatic Repeat request-ACKnowledgment (HARQ-ACK) feedback time; wherein,
  • the reference time slot is: the last time slot of the service time period.
  • the channel corresponding to the multi-slot scheduling or repeated transmission is PDSCH
  • the time slot used by the multi-slot scheduling or repeated transmission exceeds the service time period of one wave position, the last one in the current wave position service time period
  • the time slot is used as a reference time slot for determining the HARQ-ACK feedback time.
  • the remaining untransmitted time slots are delayed to serve the current wave position in the next beam scanning cycle Transmission is performed in the time period, that is, multi-slot transmission or repeated transmission across service time periods is allowed.
  • the method further includes:
  • the terminal determines a reference time slot for a Hybrid Automatic Repeat request-ACKnowledgment (HARQ-ACK) feedback time; wherein,
  • the reference time slot is: completing the transmission within the next service time period The last time slot transmitted by the first channel and/or the second channel.
  • the channel corresponding to the multi-slot scheduling or repeated transmission is PDSCH
  • the time slot used by the multi-slot scheduling or repeated transmission exceeds the service period of one wave position, then the current wave position will be served in the next beam scanning cycle
  • the last time slot in which the multi-slot scheduling or repeated transmission is completed in the time period is used as a reference time slot for determining the HARQ-ACK feedback time.
  • the first channel includes at least one of the following: Physical Downlink Control Channel PDCCH, PDSCH, PUSCH, Physical Uplink Control Channel PUCCH, Physical Random Access Channel PRACH;
  • the second channel includes a physical downlink shared channel PDSCH and/or a physical uplink shared channel PUSCH.
  • the untransmitted part is discarded or the untransmitted time slots are delayed to the next service time period of the terminal; Therefore, when the beam is periodically switched between different wave positions in satellite communication, the base station and the terminal can correctly perform multi-slot scheduled transmission or repeated transmission.
  • the embodiment of the present disclosure also provides a multi-slot transmission method, which includes:
  • Step 701 the network side device transmits the first channel and/or the second channel in some time slots that do not exceed the service time period within the service time period;
  • Step 702 the network side device discards the transmission corresponding to the time slot beyond the service time period; or, the network side device delays the transmission corresponding to the time slot beyond the service time period to the next time slot of the terminal during service hours.
  • the "service time period of the terminal" mentioned in the embodiments of the present disclosure can be understood as: the service time period of the wave position where the terminal is located, or the time period serving the wave position where the terminal is located, which is not specifically limited here .
  • the transmissions in the time slots that are not in the service time period of the wave position are discarded; that is to say, in this scheme
  • the multi-slot scheduling or repeated transmission does not continue to the next service time period, but ends directly, and the actual transmission time slot may not reach the configured multi-slot transmission or repeated transmission times.
  • the method further includes: the network side device determines the reference time slot of the HARQ-ACK feedback time; wherein,
  • the reference time slot is: the last time slot of the service time period.
  • the channel corresponding to the multi-slot scheduling or repeated transmission is PDSCH
  • the time slot used by the multi-slot scheduling or repeated transmission exceeds the service time period of one wave position, the last one in the current wave position service time period
  • the time slot is used as a reference time slot for determining the HARQ-ACK feedback time.
  • the remaining untransmitted time slots are delayed to serve the current wave position in the next beam scanning cycle Transmission is performed in the time period, that is, multi-slot transmission or repeated transmission across service time periods is allowed.
  • the method further includes:
  • the network side device determines a reference time slot for a Hybrid Automatic Repeat request-ACKnowledgment (HARQ-ACK) feedback time; wherein,
  • the reference time slot is: the next service time period The last time slot in which the transmission of the first channel and/or the second channel is completed.
  • the channel corresponding to the multi-slot scheduling or repeated transmission is PDSCH
  • the time slot used by the multi-slot scheduling or repeated transmission exceeds the service period of one wave position, then the current wave position will be served in the next beam scanning cycle
  • the last time slot in which the multi-slot scheduling or repeated transmission is completed in the time period is used as a reference time slot for determining the HARQ-ACK feedback time.
  • the first channel includes at least one of the following: Physical Downlink Control Channel PDCCH, PDSCH, PUSCH, Physical Uplink Control Channel PUCCH, Physical Random Access Channel PRACH;
  • the second channel includes a physical downlink shared channel PDSCH and/or a physical uplink shared channel PUSCH.
  • the untransmitted part is discarded or the untransmitted time slots are delayed to the next service time period of the terminal; Therefore, when the beam is periodically switched between different wave positions in satellite communication, the base station and the terminal can correctly perform multi-slot scheduled transmission or repeated transmission.
  • the subcarrier interval for transmission is 120 kHz, and 1 ms contains 8 time slots.
  • the beam polling period is 20ms.
  • the 1st ms of every 20ms is allocated to the wave position where UE1 is located, and the last 19ms is allocated to the wave positions where other UEs are located. Then for UE1, there are only 8 beam positions in each beam scanning period. time slots for transmission. In order not to limit the flexibility of base station scheduling, it is allowed for multi-slot scheduling or the time slots used for repeated transmission to exceed the service time period of one wave bit.
  • time slot #7 is used as a reference time slot to determine the HARQ-ACK feedback position. For example, if the HARQ-ACK feedback time is determined based on time slot n+K-offset+K1, then time slot n is the last time slot #7 in the service time of the current wave.
  • the subcarrier interval for transmission is 120 kHz, and 1 ms includes 8 time slots.
  • the beam polling period is 20ms.
  • the 1st ms of every 20ms is allocated to the wave position where UE1 is located, and the last 19ms is allocated to the wave positions where other UEs are located.
  • time slots for transmission In order not to limit the flexibility of base station scheduling, it is allowed for multi-slot scheduling or the time slots used for repeated transmission to exceed the service time period of one wave bit. At the same time, in order to ensure the transmission performance, it is supported to delay the remaining untransmitted time slots to the time period serving the current wave position in the next beam scanning cycle for transmission.
  • the base station configures or indicates that multi-slot scheduled transmission lasting 8 time slots or repeated transmission starts from time slot #5, since time slot #8 has exceeded the service time of the current wave position, the unfinished The transmission in the 5 time slots is delayed to the time period serving the current wave position in the next wave position cycle, that is, the transmission is performed in slot #0 to time slot #4, so that the performance of multi-slot scheduling and repeated transmission can be guaranteed , and reduce the delay.
  • the feedback timing refers to the time when multi-slot transmission or repeated transmission of PDSCH is completed in the next beam period as a reference. That is, time slot #4 in the next wave bit period is used as a reference time slot to determine the HARQ-ACK feedback position. For example, if the feedback time is determined based on time slot n+K-offset+K1, then the time slot n is the time slot #4 in the wave service time of the next wave period.
  • the embodiments of the present disclosure do not allow the time slots used by multi-slot scheduling or repeated transmission to exceed one service time period of the terminal, or when the time slots used by multi-slot scheduling or repeated transmission exceed one service time period of the terminal, the unused time slots are discarded.
  • the transmission part or the untransmitted time slot is delayed to the next service time period of the terminal; thus, it can support correct multi-slot scheduling between the base station and the terminal when the beam periodically switches between different wave positions in satellite communication transmission or retransmission.
  • an embodiment of the present disclosure also provides a multi-slot transmission device, which is applied to a terminal, including:
  • the receiving unit 1001 is configured to receive transmission configuration or indication information sent by the network side device; the transmission configuration or indication information is used to configure or indicate repeated transmission of the first channel and/or multi-slot transmission of the second channel;
  • the repeated transmission of the first channel and/or the multi-slot transmission of the second channel are within the service period of the terminal; or, the terminal does not expect the repeated transmission of the first channel and/or The multi-slot transmission of the second channel cannot be completed within the service period of the terminal.
  • the device also includes:
  • the first channel transmission unit is configured to perform transmission of the first channel and/or the second channel within the service period of the terminal according to the transmission configuration or indication information.
  • the device also includes:
  • a channel processing unit configured to not execute the first channel and/or the second channel if it is determined that the repeated transmission of the first channel and/or the multi-slot transmission of the second channel cannot be completed within the service period of the terminal. channel transmission.
  • the first channel includes at least one of the following: Physical Downlink Control Channel PDCCH, PDSCH, PUSCH, Physical Uplink Control Channel PUCCH, Physical Random Access Channel PRACH;
  • the second channel includes a physical downlink shared channel PDSCH and/or a physical uplink shared channel PUSCH.
  • the network-side device or terminal does not allow multi-slot scheduling or the time slot used for repeated transmission exceeds a service time period of the terminal; thus, it can support when the beam periodically switches between different wave positions in satellite communication, the base station Multi-slot scheduled transmission or repeated transmission can be correctly performed between the terminal and the terminal.
  • the method and the device are conceived based on the same application. Since the principle of solving problems of the method and the device is similar, the implementation of the device and the method can be referred to each other, and the repetition will not be repeated.
  • an embodiment of the present disclosure also provides a terminal, including a memory 1120, a transceiver 1110, and a processor 1100:
  • the memory 1120 is used to store computer programs; the transceiver 1110 is used to send and receive data under the control of the processor 1100; the processor 1100 is used to read the computer programs in the memory 1120 and perform the following operations:
  • the transmission configuration or indication information is used to configure or indicate repeated transmission of the first channel and/or multi-slot transmission of the second channel;
  • the repeated transmission of the first channel and/or the multi-slot transmission of the second channel are within the service period of the terminal; or, the terminal does not expect the repeated transmission of the first channel and/or The multi-slot transmission of the second channel cannot be completed within the service period of the terminal.
  • the processor is further configured to read a computer program in the memory and perform the following operations:
  • the transmission of the first channel and/or the second channel is performed within the service period of the terminal.
  • the processor is further configured to read a computer program in the memory and perform the following operations:
  • the transmission of the first channel and/or the second channel is not performed.
  • the first channel includes at least one of the following: Physical Downlink Control Channel PDCCH, PDSCH, PUSCH, Physical Uplink Control Channel PUCCH, Physical Random Access Channel PRACH;
  • the second channel includes a physical downlink shared channel PDSCH and/or a physical uplink shared channel PUSCH.
  • the bus architecture may include any number of interconnected buses and bridges, specifically one or more processors represented by the processor 1100 and various circuits of the memory represented by the memory 1120 are linked together.
  • the bus architecture can also link together various other circuits such as peripherals, voltage regulators, and power management circuits, etc., which are well known in the art and therefore will not be further described herein.
  • the bus interface provides the interface.
  • Transceiver 1110 may be a plurality of elements, including a transmitter and a receiver, providing means for communicating with various other devices over transmission media, including wireless channels, wired channels, fiber optic cables, etc. Transmission medium.
  • the user interface 1130 may also be an interface capable of connecting externally and internally to required equipment, and the connected equipment includes but not limited to a keypad, a display, a speaker, a microphone, a joystick, and the like.
  • the processor 1100 is responsible for managing the bus architecture and general processing, and the memory 1120 can store data used by the processor 1100 when performing operations.
  • the processor 1100 may be a central processing unit (Central Processing Unit, CPU), an application specific integrated circuit (Application Specific Integrated Circuit, ASIC), a field programmable gate array (Field-Programmable Gate Array, FPGA) or a complex programmable Logic device (Complex Programmable Logic Device, CPLD), the processor can also adopt a multi-core architecture.
  • CPU Central Processing Unit
  • ASIC Application Specific Integrated Circuit
  • FPGA Field-Programmable Gate Array
  • CPLD Complex Programmable Logic Device
  • the processor is used to execute any one of the methods provided by the embodiments of the present disclosure according to the obtained executable instructions by calling the computer program stored in the memory.
  • the processor and memory may also be physically separated.
  • the network-side device or terminal does not allow multi-slot scheduling or the time slot used for repeated transmission exceeds a service time period of the terminal; thus, it can support when the beam periodically switches between different wave positions in satellite communication, the base station Multi-slot scheduled transmission or repeated transmission can be correctly performed between the terminal and the terminal.
  • the method and the terminal are conceived based on the same application. Since the principle of solving problems of the method and the terminal is similar, the implementation of the terminal and the method can be referred to each other, and the repetition will not be repeated.
  • the embodiment of the present disclosure also provides a multi-slot transmission device, which is applied to network side equipment, including:
  • the sending unit 1201 is configured to send transmission configuration or indication information to the terminal; the transmission configuration information is used to configure or indicate repeated transmission of the first channel and/or multi-slot transmission of the second channel;
  • the repeated transmission of the first channel and/or the multi-slot transmission of the second channel are within the service period of the terminal.
  • the device also includes:
  • the second channel transmission unit is configured to perform transmission of the first channel and/or the second channel within the service period of the terminal according to the transmission configuration or indication information.
  • the first channel includes at least one of the following: Physical Downlink Control Channel PDCCH, PDSCH, PUSCH, Physical Uplink Control Channel PUCCH, Physical Random Access Channel PRACH;
  • the second channel includes a physical downlink shared channel PDSCH and/or a physical uplink shared channel PUSCH.
  • the network-side device or terminal does not allow multi-slot scheduling or the time slot used for repeated transmission exceeds a service time period of the terminal; thus, it can support when the beam periodically switches between different wave positions in satellite communication, the base station Multi-slot scheduled transmission or repeated transmission can be correctly performed between the terminal and the terminal.
  • the method and the device are conceived based on the same application. Since the principle of solving problems of the method and the device is similar, the implementation of the device and the method can be referred to each other, and the repetition will not be repeated.
  • the embodiment of the present disclosure also provides a network side device, including a memory 1320, a transceiver 1310, and a processor 1300:
  • the memory 1320 is used to store computer programs; the transceiver 1310 is used to send and receive data under the control of the processor 1300; the processor 1300 is used to read the computer programs in the memory 1320 and perform the following operations:
  • the transmission configuration information is used to configure or indicate repeated transmission of the first channel and/or multi-slot transmission of the second channel;
  • the repeated transmission of the first channel and/or the multi-slot transmission of the second channel are within the service period of the terminal.
  • the processor is further configured to read a computer program in the memory and perform the following operations:
  • the transmission of the first channel and/or the second channel is performed within the service period of the terminal.
  • the first channel includes at least one of the following: Physical Downlink Control Channel PDCCH, PDSCH, PUSCH, Physical Uplink Control Channel PUCCH, Physical Random Access Channel PRACH;
  • the second channel includes a physical downlink shared channel PDSCH and/or a physical uplink shared channel PUSCH.
  • the bus architecture may include any number of interconnected buses and bridges, specifically one or more processors represented by the processor 1300 and various circuits of the memory represented by the memory 1320 are linked together.
  • the bus architecture can also link together various other circuits such as peripherals, voltage regulators, and power management circuits, etc., which are well known in the art and therefore will not be further described herein.
  • the bus interface provides the interface.
  • the transceiver 1310 may be a plurality of elements, including a transmitter and a receiver, providing a unit for communicating with various other devices over transmission media, including wireless channels, wired channels, optical cables, and other transmission media.
  • the processor 1300 is responsible for managing the bus architecture and general processing, and the memory 1320 can store data used by the processor 1300 when performing operations.
  • the processor 1300 may be a central processing unit (Central Processing Unit, CPU), an application specific integrated circuit (Application Specific Integrated Circuit, ASIC), a field programmable gate array (Field-Programmable Gate Array, FPGA) or a complex programmable logic device (Complex Programmable Logic Device, CPLD), the processor can also adopt a multi-core architecture.
  • CPU Central Processing Unit
  • ASIC Application Specific Integrated Circuit
  • FPGA Field-Programmable Gate Array
  • CPLD Complex Programmable Logic Device
  • the network-side device or terminal does not allow multi-slot scheduling or the time slot used for repeated transmission exceeds a service time period of the terminal; thus, it can support when the beam periodically switches between different wave positions in satellite communication, the base station Multi-slot scheduled transmission or repeated transmission can be correctly performed between the terminal and the terminal.
  • the method and the network-side equipment are conceived based on the same application. Since the principles of the method and the network-side equipment to solve the problem are similar, the implementation of the network-side equipment and the method can be referred to each other, and the repetition will not be repeated.
  • an embodiment of the present disclosure also provides a multi-slot transmission device, which is applied to a terminal, including:
  • the first transmission unit 1401 is configured to, in the case that the repeated transmission of the first channel and/or the multi-slot transmission of the second channel exceeds the service time period of the terminal, within the service time period, perform the first channel and/or transmission of the second channel within a fraction of the time slots of the service period;
  • the first processing unit 1402 is configured to discard the transmission corresponding to the time slot beyond the service time period; or, delay the transmission corresponding to the time slot beyond the service time period to the next service time period of the terminal. .
  • the device when the first channel and/or the second channel include PDSCH, the device further includes:
  • the first determination unit is used to determine the reference time slot of the hybrid automatic repeat request response HARQ-ACK feedback time;
  • the reference time slot is: the last time slot of the service time period
  • the reference time slot is: completed within the next service time period The last time slot transmitted by the first channel and/or the second channel.
  • the first channel includes at least one of the following: Physical Downlink Control Channel PDCCH, PDSCH, PUSCH, Physical Uplink Control Channel PUCCH, Physical Random Access Channel PRACH;
  • the second channel includes a physical downlink shared channel PDSCH and/or a physical uplink shared channel PUSCH.
  • the untransmitted part is discarded or the untransmitted time slots are delayed to the next service time period of the terminal; thus, it is possible to support When the beam periodically switches between different wave positions in satellite communication, multi-slot scheduled transmission or repeated transmission can be correctly performed between the base station and the terminal.
  • the method and the device are conceived based on the same application. Since the principle of solving problems of the method and the device is similar, the implementation of the device and the method can be referred to each other, and the repetition will not be repeated.
  • an embodiment of the present disclosure also provides a terminal, including a memory 1520, a transceiver 1510, and a processor 1500:
  • the memory 1520 is used to store computer programs; the transceiver 1510 is used to send and receive data under the control of the processor 1500; the processor 1500 is used to read the computer programs in the memory 1520 and perform the following operations:
  • the transmission of the first channel and/or the second channel does not exceed a part of the time slot of the service time period
  • the processor is further configured to read a computer program in the memory and perform the following operations:
  • the reference time slot is: the last time slot of the service time period
  • the reference time slot is: the first time slot is completed within the next service time period The last time slot of a channel and/or second channel transmission.
  • the first channel includes at least one of the following: Physical Downlink Control Channel PDCCH, PDSCH, PUSCH, Physical Uplink Control Channel PUCCH, Physical Random Access Channel PRACH;
  • the second channel includes a physical downlink shared channel PDSCH and/or a physical uplink shared channel PUSCH.
  • the bus architecture may include any number of interconnected buses and bridges, specifically one or more processors represented by the processor 1500 and various circuits of the memory represented by the memory 1520 are linked together.
  • the bus architecture can also link together various other circuits such as peripherals, voltage regulators, and power management circuits, etc., which are well known in the art and therefore will not be further described herein.
  • the bus interface provides the interface.
  • Transceiver 1510 may be a plurality of elements, including a transmitter and a receiver, providing means for communicating with various other devices over transmission media, including wireless channels, wired channels, fiber optic cables, etc. Transmission medium.
  • the user interface 1530 may also be an interface capable of connecting externally and internally to required devices, and the connected devices include but not limited to keypads, displays, speakers, microphones, joysticks, and the like.
  • the processor 1500 is responsible for managing the bus architecture and general processing, and the memory 1520 can store data used by the processor 1500 when performing operations.
  • the processor 1510 may be a central processing unit (Central Processing Unit, CPU), an application specific integrated circuit (Application Specific Integrated Circuit, ASIC), a field programmable gate array (Field-Programmable Gate Array, FPGA) or a complex programmable Logic device (Complex Programmable Logic Device, CPLD), the processor can also adopt multi-core architecture.
  • CPU Central Processing Unit
  • ASIC Application Specific Integrated Circuit
  • FPGA Field-Programmable Gate Array
  • CPLD complex programmable Logic device
  • the processor is used to execute any one of the methods provided by the embodiments of the present disclosure according to the obtained executable instructions by calling the computer program stored in the memory.
  • the processor and memory may also be physically separated.
  • the untransmitted part is discarded or the untransmitted time slots are delayed to the next service time period of the terminal; thus, it is possible to support When the beam periodically switches between different wave positions in satellite communication, multi-slot scheduled transmission or repeated transmission can be correctly performed between the base station and the terminal.
  • the method and the terminal are conceived based on the same application. Since the principle of solving problems of the method and the terminal is similar, the implementation of the terminal and the method can be referred to each other, and the repetition will not be repeated.
  • an embodiment of the present disclosure also provides a multi-slot transmission device, which is applied to network-side equipment, including:
  • the second transmission unit 1601 is configured to, in the case that the repeated transmission of the first channel and/or the multi-slot transmission of the second channel exceeds the service time period of the terminal, within the service time period, perform the first channel and/or transmission of the second channel within a fraction of the time slots of said service period;
  • the second processing unit 1602 is configured to discard the transmission corresponding to the time slot beyond the service time period; or, delay the transmission corresponding to the time slot beyond the service time period to the next service time period of the terminal. .
  • the device when the first channel and/or the second channel include PDSCH, the device further includes:
  • the second determination unit is used to determine the reference time slot of the HARQ-ACK feedback time;
  • the reference time slot is: the last time slot of the service time period
  • the reference time slot is: the next service time period The last time slot in which the transmission of the first channel and/or the second channel is completed within the time period.
  • the first channel includes at least one of the following: Physical Downlink Control Channel PDCCH, PDSCH, PUSCH, Physical Uplink Control Channel PUCCH, Physical Random Access Channel PRACH;
  • the second channel includes a physical downlink shared channel PDSCH and/or a physical uplink shared channel PUSCH.
  • the untransmitted part is discarded or the untransmitted time slots are delayed to the next service time period of the terminal; thus, it is possible to support When the beam periodically switches between different wave positions in satellite communication, multi-slot scheduled transmission or repeated transmission can be correctly performed between the base station and the terminal.
  • the method and the device are conceived based on the same application. Since the principle of solving problems of the method and the device is similar, the implementation of the device and the method can be referred to each other, and the repetition will not be repeated.
  • the embodiment of the present disclosure also provides a network side device, including a memory 1720, a transceiver 1710, and a processor 1700:
  • the memory 1720 is used to store computer programs; the transceiver 1710 is used to send and receive data under the control of the processor 1700; the processor 1700 is used to read the computer programs in the memory 1720 and perform the following operations:
  • the transmission of the first channel and/or the second channel does not exceed a part of the time slot of the service time period
  • the processor is further configured to read a computer program in the memory and perform the following operations:
  • the reference time slot is: the last time slot of the service time period
  • the reference time slot is: The last time slot for the transmission of the first channel and/or the second channel.
  • the first channel includes at least one of the following: Physical Downlink Control Channel PDCCH, PDSCH, PUSCH, Physical Uplink Control Channel PUCCH, Physical Random Access Channel PRACH;
  • the second channel includes a physical downlink shared channel PDSCH and/or a physical uplink shared channel PUSCH.
  • the bus architecture may include any number of interconnected buses and bridges, specifically one or more processors represented by the processor 1700 and various circuits of the memory represented by the memory 1720 are linked together.
  • the bus architecture can also link together various other circuits such as peripherals, voltage regulators, and power management circuits, etc., which are well known in the art and therefore will not be further described herein.
  • the bus interface provides the interface.
  • Transceiver 1710 may be a plurality of elements, including a transmitter and a receiver, providing a unit for communicating with various other devices over transmission media, including wireless channels, wired channels, optical cables, and other transmission media.
  • the processor 1700 is responsible for managing the bus architecture and general processing, and the memory 1720 can store data used by the processor 1700 when performing operations.
  • the processor 1700 can be a central processing unit (Central Processing Unit, CPU), an application specific integrated circuit (Application Specific Integrated Circuit, ASIC), a field programmable gate array (Field-Programmable Gate Array, FPGA) or a complex programmable logic device (Complex Programmable Logic Device, CPLD), the processor can also adopt a multi-core architecture.
  • CPU Central Processing Unit
  • ASIC Application Specific Integrated Circuit
  • FPGA Field-Programmable Gate Array
  • CPLD Complex Programmable Logic Device
  • the untransmitted part is discarded or the untransmitted time slots are delayed to the next service time period of the terminal; thus, it is possible to support When the beam periodically switches between different wave positions in satellite communication, multi-slot scheduled transmission or repeated transmission can be correctly performed between the base station and the terminal.
  • the method and the network-side equipment are conceived based on the same application. Since the principles of the method and the network-side equipment to solve problems are similar, the implementation of the network-side equipment and the method can be referred to each other, and the repetition will not be repeated.
  • each functional unit in each embodiment of the present disclosure may be integrated into one processing unit, each unit may exist separately physically, or two or more units may be integrated into one unit.
  • the above-mentioned integrated units can be implemented in the form of hardware or in the form of software functional units.
  • the integrated unit is implemented in the form of a software function unit and sold or used as an independent product, it can be stored in a processor-readable storage medium.
  • the essence of the technical solution of the present disclosure or the part that contributes to the related technology or all or part of the technical solution can be embodied in the form of a software product, and the computer software product is stored in a storage medium.
  • a computer device which may be a personal computer, a server, or a network device, etc.
  • a processor processor
  • the aforementioned storage media include: U disk, mobile hard disk, read-only memory (Read-Only Memory, ROM), random access memory (Random Access Memory, RAM), magnetic disk or optical disc and other media that can store program codes. .
  • An embodiment of the present disclosure further provides a processor-readable storage medium, where a computer program is stored in the processor-readable storage medium, and the computer program is used to enable the processor to execute the above-mentioned embodiment of the multi-slot transmission method each step in the .
  • the processor-readable storage medium may be any available medium or data storage device that the processor can access, including but not limited to magnetic storage (such as floppy disk, hard disk, magnetic tape, magneto-optical disk (Magneto-Optical Disk, MO) etc.) , optical storage (such as compact disc (Compact Disk, CD), digital video disc (Digital Versatile Disc, DVD), Blu-ray Disc (Blu-ray Disc, BD), high-definition universal disc (High-Definition Versatile Disc, HVD), etc.), And semiconductor memory (such as read-only memory (Read-Only Memory, ROM), erasable programmable read-only memory (Erasable Programmable ROM, EPROM), charged erasable programmable read-only memory (Electrically EPROM, EEPROM), nonvolatile Non-volatile memory (NAND FLASH), solid state hard disk (Solid State Disk or Solid State Drive, SSD)), etc.
  • magnetic storage such as floppy disk, hard disk,
  • the embodiments of the present disclosure may be provided as methods, systems, or computer program products. Accordingly, the present disclosure can take the form of an entirely hardware embodiment, an entirely software embodiment, or an embodiment combining software and hardware aspects. Furthermore, the present disclosure may take the form of a computer program product embodied on one or more computer-usable storage media (including but not limited to disk storage, optical storage, etc.) having computer-usable program code embodied therein.
  • processor-executable instructions may also be stored in a processor-readable memory capable of directing a computer or other programmable data processing device to operate in a specific manner, such that the instructions stored in the processor-readable memory produce a manufacturing product, the instruction device realizes the functions specified in one or more procedures of the flow chart and/or one or more blocks of the block diagram.
  • the division of the above modules is only a division of logical functions, and may be fully or partially integrated into a physical entity or physically separated during actual implementation.
  • these modules can all be implemented in the form of calling software through processing elements; they can also be implemented in the form of hardware; some modules can also be implemented in the form of calling software through processing elements, and some modules can be implemented in the form of hardware.
  • the determining module may be a separate processing element, or may be integrated into a chip of the above-mentioned device.
  • it may also be stored in the memory of the above-mentioned device in the form of program code, and a certain processing element of the above-mentioned device may Call and execute the functions of the modules identified above.
  • each step of the above method or each module above can be completed by an integrated logic circuit of hardware in the processor element or an instruction in the form of software.
  • each module, unit, subunit or submodule may be one or more integrated circuits configured to implement the above method, for example: one or more specific integrated circuits (Application Specific Integrated Circuit, ASIC), or, one or Multiple microprocessors (digital signal processor, DSP), or, one or more field programmable gate arrays (Field Programmable Gate Array, FPGA), etc.
  • ASIC Application Specific Integrated Circuit
  • DSP digital signal processor
  • FPGA Field Programmable Gate Array
  • the processing element may be a general-purpose processor, such as a central processing unit (Central Processing Unit, CPU) or other processors that can call program codes.
  • these modules can be integrated together and implemented in the form of a system-on-a-chip (SOC).
  • SOC system-on-a-chip
  • processor-executable instructions can also be loaded onto a computer or other programmable data processing device, causing a series of operational steps to be performed on the computer or other programmable device to produce a computer-implemented
  • the executed instructions provide steps for implementing the functions specified in the procedure or procedures of the flowchart and/or the block or blocks of the block diagrams.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本公开提供一种多时隙传输方法、装置、终端及网络侧设备,该方法包括:终端接收网络侧设备发送的传输配置或指示信息;所述传输配置或指示信息用于配置或指示第一信道的重复传输和/或第二信道的多时隙传输;其中,所述第一信道的重复传输和/或所述第二信道的多时隙传输在所述终端的服务时间段内;或者,所述终端不期待所述第一信道的重复传输和/或所述第二信道的多时隙传输在所述终端的服务时间段内不能完成。

Description

多时隙传输方法、装置、终端及网络侧设备
相关申请的交叉引用
本公开主张在2021年09月10日在中国提交的中国专利申请号No.202111064098.3的优先权,其全部内容通过引用包含于此。
技术领域
本公开涉及通信技术领域,尤其是指一种多时隙传输方法、装置、终端及网络侧设备。
背景技术
卫星通信系统中支持业务波束周期性切换波位进行传输,每个业务波束可分时服务于多个波位,切换的周期和周期内服务于每个波位的时间范围都由基站半静态通知给终端用户。例如,如图1所示,波束扫描周期为20ms,每个周期范围内前10ms服务于用户设备1(User Equipment1,UE1)的波位,后10ms服务于UE2所在的波位。
卫星通信系统中支持物理下行共享信道(Physical Downlink Shared Channel,PDSCH)/物理上行共享信道(Physical Uplink Shared Channel,PUSCH)/物理上行控制信道(Physical Uplink Control Channel,PUCCH)的重复传输,还支持PDSCH/PUSCH的多时隙调度。重复传输是在连续的M个时隙范围中使用相同的资源传输相同的信息,多时隙调度是在连续的N个时隙范围中使用相同的资源传输不同的信息,其中M和N的具体值由基站通过高层信令配置给终端用户。
卫星通信中卫星波束需要指向用户才能提供网络通信服务器,对于传输数据的业务波束,如果卫星覆盖区域的范围较大,由于每个波束覆盖的范围有限,每个业务波束可分时服务于多个波位,实现时分复用的通信模式。
目前卫星通信系统中的多时隙调度或重复传输没有考虑业务波束的切换过程,如果业务波束并不总是覆盖当前用户所在的波位,可能会出现多次重复传输中的部分时隙位于业务波束指向其它波位的时间范围内,如果终端用 户在这些时隙内仍然发送重复传输数据,基站无法接收,并且可能会影响其它用户的上行传输性能。
发明内容
本公开的目的在于提供一种多时隙传输方法、装置、终端及网络侧设备,以解决相关技术中多时隙调度或重复传输的场景下部分时隙的数据无法正确传输的问题。
为了解决上述问题,本提供一种多时隙传输方法,该方法包括:
终端接收网络侧设备发送的传输配置或指示信息;所述传输配置或指示信息用于配置或指示第一信道的重复传输和/或第二信道的多时隙传输;
其中,所述第一信道的重复传输和/或所述第二信道的多时隙传输在所述终端的服务时间段内;或者,所述终端不期待所述第一信道的重复传输和/或所述第二信道的多时隙传输在所述终端的服务时间段内不能完成。
其中,所述方法还包括:
所述终端根据所述传输配置或指示信息,在所述终端的服务时间段内进行第一信道和/或第二信道的传输。
其中,所述方法还包括:
若所述终端确定所述第一信道的重复传输和/或所述第二信道的多时隙传输在所述终端的服务时间段内不能完成,所述终端不执行第一信道和/或第二信道的传输。
其中,所述第一信道包括以下至少一项:物理下行控制信道PDCCH,PDSCH,PUSCH,物理上行控制信道PUCCH,物理随机接入信道PRACH;
或者,
所述第二信道包括物理下行共享信道PDSCH和/或物理上行共享信道PUSCH。
本公开实施例还提供一种多时隙传输方法,该方法包括:
网络侧设备向终端发送传输配置或指示信息;所述传输配置信息用于配置或指示第一信道的重复传输和/或第二信道的多时隙传输;
其中,所述第一信道的重复传输和/或所述第二信道的多时隙传输在所述 终端的服务时间段内。
其中,所述方法还包括:
所述网络侧设备根据所述传输配置或指示信息,在所述终端的服务时间段内进行第一信道和/或第二信道的传输。
其中,所述第一信道包括以下至少一项:物理下行控制信道PDCCH,PDSCH,PUSCH,物理上行控制信道PUCCH,物理随机接入信道PRACH;
或者,
所述第二信道包括物理下行共享信道PDSCH和/或物理上行共享信道PUSCH。
本公开实施例还提供一种多时隙传输方法,该方法包括:
在第一信道的重复传输和/或第二信道的多时隙传输超出终端的服务时间段的情况下,
终端在所述服务时间段内,进行第一信道和/或第二信道未超出服务时间段的部分时隙的传输;
所述终端丢弃超出所述服务时间段的时隙对应的传输;或者,所述终端将超出所述服务时间段的时隙对应的传输延迟到所述终端的下一个服务时间段中进行。
其中,在所述第一信道和/或第二信道包括PDSCH的情况下,所述方法还包括:
所述终端确定混合自动重传请求应答HARQ-ACK反馈时间的参考时隙;其中,
在所述终端丢弃超出所述服务时间段的时隙对应的传输的情况下,所述参考时隙为:所述服务时间段的最后一个时隙;
或者,在所述终端将超出服务时间段的时隙对应的传输延迟到所述终端的下一个服务时间段中进行的情况下,所述参考时隙为:所述下一个服务时间段内完成所述第一信道和/或第二信道传输的最后一个时隙。
其中,所述第一信道包括以下至少一项:物理下行控制信道PDCCH,PDSCH,PUSCH,物理上行控制信道PUCCH,物理随机接入信道PRACH;
或者,
所述第二信道包括物理下行共享信道PDSCH和/或物理上行共享信道PUSCH。
本公开实施例还提供一种多时隙传输方法,该方法包括:
在第一信道的重复传输和/或第二信道的多时隙传输超出终端的服务时间段的情况下,
网络侧设备在所述服务时间段内,进行第一信道和/或第二信道未超出所述服务时间段的部分时隙的传输;
所述网络侧设备丢弃超出所述服务时间段的时隙对应的传输;或者,所述网络侧设备将超出所述服务时间段的时隙对应的传输延迟到所述终端的下一个服务时间段中进行。
其中,在所述第一信道和/或第二信道包括PDSCH的情况下,所述方法还包括:
所述网络侧设备确定HARQ-ACK反馈时间的参考时隙;其中,
在所述网络侧设备丢弃超出所述服务时间段的时隙对应的传输的情况下,所述参考时隙为:所述服务时间段的最后一个时隙;
或者,在所述网络侧设备将超出所述服务时间段的时隙对应的传输延迟到所述终端的下一个服务时间段中进行的情况下,所述参考时隙为:所述下一个服务时间段内完成所述第一信道和/或第二信道传输的最后一个时隙。
其中,所述第一信道包括以下至少一项:物理下行控制信道PDCCH,PDSCH,PUSCH,物理上行控制信道PUCCH,物理随机接入信道PRACH;
或者,
所述第二信道包括物理下行共享信道PDSCH和/或物理上行共享信道PUSCH。
本公开实施例还提供一种多时隙传输装置,应用于终端,包括:
接收单元,用于接收网络侧设备发送的传输配置或指示信息;所述传输配置或指示信息用于配置或指示第一信道的重复传输和/或第二信道的多时隙传输;
其中,所述第一信道的重复传输和/或所述第二信道的多时隙传输在所述终端的服务时间段内;或者,所述终端不期待所述第一信道的重复传输和/或 所述第二信道的多时隙传输在所述终端的服务时间段内不能完成。
其中,所述装置还包括:
第一信道传输单元,用于根据所述传输配置或指示信息,在所述终端的服务时间段内进行第一信道和/或第二信道的传输。
其中,所述装置还包括:
信道处理单元,用于若确定所述第一信道的重复传输和/或所述第二信道的多时隙传输在所述终端的服务时间段内不能完成,不执行第一信道和/或第二信道的传输。
其中,所述第一信道包括以下至少一项:物理下行控制信道PDCCH,PDSCH,PUSCH,物理上行控制信道PUCCH,物理随机接入信道PRACH;
或者,
所述第二信道包括物理下行共享信道PDSCH和/或物理上行共享信道PUSCH。
本公开实施例还提供一种终端,包括存储器,收发机,处理器:
存储器,用于存储计算机程序;收发机,用于在所述处理器的控制下收发数据;处理器,用于读取所述存储器中的计算机程序并执行以下操作:
接收网络侧设备发送的传输配置或指示信息;所述传输配置或指示信息用于配置或指示第一信道的重复传输和/或第二信道的多时隙传输;
其中,所述第一信道的重复传输和/或所述第二信道的多时隙传输在所述终端的服务时间段内;或者,所述终端不期待所述第一信道的重复传输和/或所述第二信道的多时隙传输在所述终端的服务时间段内不能完成。
其中,所述处理器还用于读取所述存储器中的计算机程序并执行以下操作:
根据所述传输配置或指示信息,在所述终端的服务时间段内进行第一信道和/或第二信道的传输。
其中,所述处理器还用于读取所述存储器中的计算机程序并执行以下操作:
若确定所述第一信道的重复传输和/或所述第二信道的多时隙传输在所述终端的服务时间段内不能完成,不执行第一信道和/或第二信道的传输。
其中,所述第一信道包括以下至少一项:物理下行控制信道PDCCH,PDSCH,PUSCH,物理上行控制信道PUCCH,物理随机接入信道PRACH;
或者,
所述第二信道包括物理下行共享信道PDSCH和/或物理上行共享信道PUSCH。
本公开实施例还提供一种多时隙传输装置,应用于网络侧设备,包括:
发送单元,用于向终端发送传输配置或指示信息;所述传输配置信息用于配置或指示第一信道的重复传输和/或第二信道的多时隙传输;
其中,所述第一信道的重复传输和/或所述第二信道的多时隙传输在所述终端的服务时间段内。
其中,所述装置还包括:
第二信道传输单元,用于根据所述传输配置或指示信息,在所述终端的服务时间段内进行第一信道和/或第二信道的传输。
其中,所述第一信道包括以下至少一项:物理下行控制信道PDCCH,PDSCH,PUSCH,物理上行控制信道PUCCH,物理随机接入信道PRACH;
或者,
所述第二信道包括物理下行共享信道PDSCH和/或物理上行共享信道PUSCH。
本公开实施例还提供一种网络侧设备,包括存储器,收发机,处理器:
存储器,用于存储计算机程序;收发机,用于在所述处理器的控制下收发数据;处理器,用于读取所述存储器中的计算机程序并执行以下操作:
向终端发送传输配置或指示信息;所述传输配置信息用于配置或指示第一信道的重复传输和/或第二信道的多时隙传输;
其中,所述第一信道的重复传输和/或所述第二信道的多时隙传输在所述终端的服务时间段内。
其中,所述处理器还用于读取所述存储器中的计算机程序并执行以下操作:
根据所述传输配置或指示信息,在所述终端的服务时间段内进行第一信道和/或第二信道的传输。
其中,所述第一信道包括以下至少一项:物理下行控制信道PDCCH,PDSCH,PUSCH,物理上行控制信道PUCCH,物理随机接入信道PRACH;
或者,
所述第二信道包括物理下行共享信道PDSCH和/或物理上行共享信道PUSCH。
本公开实施例还提供一种多时隙传输装置,应用于终端,包括:
第一传输单元,用于在第一信道的重复传输和/或第二信道的多时隙传输超出终端的服务时间段的情况下,在所述服务时间段内,进行第一信道和/或第二信道未超出服务时间段的部分时隙的传输;
第一处理单元,用于丢弃超出所述服务时间段的时隙对应的传输;或者,将超出所述服务时间段的时隙对应的传输延迟到所述终端的下一个服务时间段中进行。
其中,在所述第一信道和/或第二信道包括PDSCH的情况下,所述装置还包括:
第一确定单元,用于确定混合自动重传请求应答HARQ-ACK反馈时间的参考时隙;其中,
在所述终端丢弃超出所述服务时间段的时隙对应的传输的情况下,所述参考时隙为:所述服务时间段的最后一个时隙;
或者,在所述终端将超出服务时间段的时隙对应的传输延迟到所述终端的下一个服务时间段中进行的情况下,所述参考时隙为:所述下一个服务时间段内完成所述第一信道和/或第二信道传输的最后一个时隙。
其中,所述第一信道包括以下至少一项:物理下行控制信道PDCCH,PDSCH,PUSCH,物理上行控制信道PUCCH,物理随机接入信道PRACH;
或者,
所述第二信道包括物理下行共享信道PDSCH和/或物理上行共享信道PUSCH。
本公开实施例还提供一种终端,包括存储器,收发机,处理器:
存储器,用于存储计算机程序;收发机,用于在所述处理器的控制下收发数据;处理器,用于读取所述存储器中的计算机程序并执行以下操作:
在第一信道的重复传输和/或第二信道的多时隙传输超出终端的服务时间段的情况下,
在所述服务时间段内,进行第一信道和/或第二信道未超出服务时间段的部分时隙的传输;
丢弃超出所述服务时间段的时隙对应的传输;或者,将超出所述服务时间段的时隙对应的传输延迟到所述终端的下一个服务时间段中进行。
其中,所述处理器还用于读取所述存储器中的计算机程序并执行以下操作:
确定混合自动重传请求应答HARQ-ACK反馈时间的参考时隙;其中,
在丢弃超出所述服务时间段的时隙对应的传输的情况下,所述参考时隙为:所述服务时间段的最后一个时隙;
或者,在将超出服务时间段的时隙对应的传输延迟到所述终端的下一个服务时间段中进行的情况下,所述参考时隙为:所述下一个服务时间段内完成所述第一信道和/或第二信道传输的最后一个时隙。
其中,所述第一信道包括以下至少一项:物理下行控制信道PDCCH,PDSCH,PUSCH,物理上行控制信道PUCCH,物理随机接入信道PRACH;
或者,
所述第二信道包括物理下行共享信道PDSCH和/或物理上行共享信道PUSCH。
本公开实施例还提供一种多时隙传输装置,应用于网络侧设备,包括:
第二传输单元,用于在第一信道的重复传输和/或第二信道的多时隙传输超出终端的服务时间段的情况下,在所述服务时间段内,进行第一信道和/或第二信道未超出所述服务时间段的部分时隙的传输;
第二处理单元,用于丢弃超出所述服务时间段的时隙对应的传输;或者,将超出所述服务时间段的时隙对应的传输延迟到所述终端的下一个服务时间段中进行。
其中,在所述第一信道和/或第二信道包括PDSCH的情况下,所述装置还包括:
第二确定单元,用于确定HARQ-ACK反馈时间的参考时隙;其中,
在所述网络侧设备丢弃超出所述服务时间段的时隙对应的传输的情况下,所述参考时隙为:所述服务时间段的最后一个时隙;
或者,在所述网络侧设备将超出所述服务时间段的时隙对应的传输延迟到所述终端的下一个服务时间段中进行的情况下,所述参考时隙为:所述下一个服务时间段内完成所述第一信道和/或第二信道传输的最后一个时隙。
其中,所述第一信道包括以下至少一项:物理下行控制信道PDCCH,PDSCH,PUSCH,物理上行控制信道PUCCH,物理随机接入信道PRACH;
或者,
所述第二信道包括物理下行共享信道PDSCH和/或物理上行共享信道PUSCH。
本公开实施例还提供一种网络侧设备,包括存储器,收发机,处理器:
存储器,用于存储计算机程序;收发机,用于在所述处理器的控制下收发数据;处理器,用于读取所述存储器中的计算机程序并执行以下操作:
在第一信道的重复传输和/或第二信道的多时隙传输超出终端的服务时间段的情况下,
在所述服务时间段内,进行第一信道和/或第二信道未超出所述服务时间段的部分时隙的传输;
丢弃超出所述服务时间段的时隙对应的传输;或者,将超出所述服务时间段的时隙对应的传输延迟到所述终端的下一个服务时间段中进行。
其中,所述处理器还用于读取所述存储器中的计算机程序并执行以下操作:
确定HARQ-ACK反馈时间的参考时隙;其中,
在丢弃超出所述服务时间段的时隙对应的传输的情况下,所述参考时隙为:所述服务时间段的最后一个时隙;
或者,在将超出所述服务时间段的时隙对应的传输延迟到所述终端的下一个服务时间段中进行的情况下,所述参考时隙为:所述下一个服务时间段内完成所述第一信道和/或第二信道传输的最后一个时隙。
其中,所述第一信道包括以下至少一项:物理下行控制信道PDCCH,PDSCH,PUSCH,物理上行控制信道PUCCH,物理随机接入信道PRACH;
本公开实施例还提供一种处理器可读存储介质,其中,所述处理器可读存储介质存储有计算机程序,所述计算机程序用于使所述处理器执行如上所述的方法。
本公开的上述技术方案至少具有如下有益效果:
本公开实施例的多时隙传输方法、装置、终端及网络侧设备中,不允许多时隙调度或者重复传输使用的时隙超出终端的一个服务时间段,或者多时隙调度或者重复传输使用的时隙超出终端的一个服务时间段时,丢弃未传输部分或者将未传输的时隙延迟到终端的下一个服务时间段中;从而能够支持在卫星通信中波束周期性在不同波位中切换时,基站和终端之间能够正确的进行多时隙调度传输或者重复传输。
附图说明
图1表示相关技术中波束扫描周期中终端的服务时间段的示意图;
图2表示本公开实施例可应用的一种无线通信系统的框图;
图3表示本公开实施例提供的多时隙传输方法的流程示意图之一;
图4表示本公开实施例提供的多时隙传输方法的流程示意图之二;
图5表示本公开实施例提供的示例一的原理示意图;
图6表示本公开实施例提供的多时隙传输方法的流程示意图之三;
图7表示本公开实施例提供的多时隙传输方法的流程示意图之四;
图8表示本公开实施例提供的示例二的原理示意图;
图9表示本公开实施例提供的示例三的原理示意图;
图10表示本公开实施例提供的多时隙传输装置的结构示意图之一;
图11表示本公开实施例提供的终端的结构示意图之一;
图12表示本公开实施例提供的多时隙传输装置的结构示意图之二;
图13表示本公开实施例提供的网络侧设备的结构示意图之一;
图14表示本公开实施例提供的多时隙传输装置的结构示意图之三;
图15表示本公开实施例提供的终端的结构示意图之二;
图16表示本公开实施例提供的多时隙传输装置的结构示意图之四;
图17表示本公开实施例提供的网络侧设备的结构示意图之二。
具体实施方式
为使本公开要解决的技术问题、技术方案和优点更加清楚,下面将结合附图及具体实施例进行详细描述。
图2示出本公开实施例可应用的一种无线通信系统的框图。无线通信系统包括终端11和网络侧设备12。其中,终端11也可以称作终端设备或者用户终端(User Equipment,UE)。需要说明的是,在本公开实施例并不限定终端11的具体类型。网络侧设备12可以是基站或核心网,需要说明的是,在本公开实施例中仅以NR系统中的基站为例,但是并不限定基站的具体类型。
本公开实施例中术语“和/或”,描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。字符“/”一般表示前后关联对象是一种“或”的关系。
本公开实施例中术语“多个”是指两个或两个以上,其它量词与之类似。
下面将结合本公开实施例中的附图,对本公开实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本公开一部分实施例,并不是全部的实施例。基于本公开中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本公开保护的范围。
本公开实施例提供的技术方案可以适用于多种系统,尤其是第五代移动通信技术(5th-Generation,5G)系统。例如适用的系统可以是全球移动通讯(global system of mobile communication,GSM)系统、码分多址(code division multiple access,CDMA)系统、宽带码分多址(Wideband Code Division Multiple Access,WCDMA)通用分组无线业务(general packet radio service,GPRS)系统、长期演进(long term evolution,LTE)系统、LTE频分双工(frequency division duplex,FDD)系统、LTE时分双工(time division duplex,TDD)系统、高级长期演进(long term evolution advanced,LTE-A)系统、通用移动系统(universal mobile telecommunication system,UMTS)、全球互联微波接入(worldwide interoperability for microwave access,WiMAX)系统、5G新空口(New Radio,NR)系统等。这多种系统中均包括终端设备和网络设备。 系统中还可以包括核心网部分,例如演进的分组系统(Evolved Packet System,EPS)、5G系统(5G System,5GS)等。
本公开实施例涉及的终端,可以是指向用户提供语音和/或数据连通性的设备,具有无线连接功能的手持式设备、或连接到无线调制解调器的其他处理设备等。在不同的系统中,终端设备的名称可能也不相同,例如在5G系统中,终端设备可以称为用户设备(User Equipment,UE)。无线终端设备可以经无线接入网(Radio Access Network,RAN)与一个或多个核心网(Core Network,CN)进行通信,无线终端设备可以是移动终端设备,如移动电话(或称为“蜂窝”电话)和具有移动终端设备的计算机,例如,可以是便携式、袖珍式、手持式、计算机内置的或者车载的移动装置,它们与无线接入网交换语言和/或数据。例如,个人通信业务(Personal Communication Service,PCS)电话、无绳电话、会话发起协议(Session Initiated Protocol,SIP)话机、无线本地环路(Wireless Local Loop,WLL)站、个人数字助理(Personal Digital Assistant,PDA)等设备。无线终端设备也可以称为系统、订户单元(subscriber unit)、订户站(subscriber station),移动站(mobile station)、移动台(mobile)、远程站(remote station)、接入点(access point)、远程终端设备(remote terminal)、接入终端设备(access terminal)、用户终端设备(user terminal)、用户代理(user agent)、用户装置(user device),本公开实施例中并不限定。
本公开实施例涉及的网络侧设备,可以是基站,该基站可以包括多个为终端提供服务的小区。根据具体应用场合不同,基站又可以称为接入点,或者可以是接入网中在空中接口上通过一个或多个扇区与无线终端设备通信的设备,或者其它名称。网络设备可用于将收到的空中帧与网际协议(Internet Protocol,IP)分组进行相互更换,作为无线终端设备与接入网的其余部分之间的路由器,其中接入网的其余部分可包括网际协议(IP)通信网络。网络设备还可协调对空中接口的属性管理。例如,本公开实施例涉及的网络设备可以是全球移动通信系统(Global System for Mobile communications,GSM)或码分多址接入(Code Division Multiple Access,CDMA)中的网络设备(Base Transceiver Station,BTS),也可以是带宽码分多址接入(Wide-band Code Division Multiple Access,WCDMA)中的网络设备(NodeB),还可以是长期 演进(long term evolution,LTE)系统中的演进型网络设备(evolutional Node B,eNB或e-NodeB)、5G网络架构(next generation system)中的5G基站(NR Node B,gNB),也可以是家庭演进基站(Home evolved Node B,HeNB)、中继节点(relay node)、家庭基站(femto)、微微基站(pico)等,本公开实施例中并不限定。在一些网络结构中,网络设备可以包括集中单元(centralized unit,CU)节点和分布单元(distributed unit,DU)节点,集中单元和分布单元也可以地理上分开布置。
网络侧设备与终端之间可以各自使用一或多根天线进行多输入多输出(Multi Input Multi Output,MIMO)传输,MIMO传输可以是单用户MIMO(Single User MIMO,SU-MIMO)或多用户MIMO(Multiple User MIMO,MU-MIMO)。根据根天线组合的形态和数量,MIMO传输可以是二维多输入多输出(2 Dimension MIMO,2D-MIMO)、三维多输入多输出(3 Dimension MIMO,3D-MIMO)、全维度多输入多输出(Full Dimension MIMO,FD-MIMO)或大规模多输入多输出(massive-MIMO),也可以是分集传输或预编码传输或波束赋形传输等。
如图3所示,本公开实施例还提供一种多时隙传输方法,该方法包括:
步骤301,终端接收网络侧设备发送的传输配置或指示信息;所述传输配置或指示信息用于配置或指示第一信道的重复传输和/或第二信道的多时隙传输;
其中,所述第一信道的重复传输和/或所述第二信道的多时隙传输在所述终端的服务时间段内;或者,所述终端不期待所述第一信道的重复传输和/或所述第二信道的多时隙传输在所述终端的服务时间段内不能完成。
可选地,本公开实施例中提及的“终端的服务时间段”可以理解为:终端所在波位的服务时间段,或者,服务于终端所在波位的时间段,在此不做具体限定。
本公开的至少一个可选实施例中,网络侧设备保证多时隙调度或者重复传输在一个波位的服务时间段内;或者,终端不期待出现在一个服务时间段内按照多时隙调度指示或者配置的重复传输次数不能完成传输的情况。
作为一个可选实施例,若所述第一信道的重复传输和/或所述第二信道的 多时隙传输在所述终端的服务时间段内,所述方法还包括:
所述终端根据所述传输配置或指示信息,在所述终端的服务时间段内进行第一信道和/或第二信道的传输。
作为另一个可选实施例,若所述终端不期待所述第一信道的重复传输和/或所述第二信道的多时隙传输在所述终端的服务时间段内不能完成,所述方法还包括:
若所述终端确定所述第一信道的重复传输和/或所述第二信道的多时隙传输在所述终端的服务时间段内不能完成,所述终端不执行第一信道和/或第二信道的传输。
可选地,所述第一信道包括以下至少一项:物理下行控制信道(Physical Downlink Control Channel,PDCCH),物理下行共享信道(Physical Downlink Shared Channel,PDSCH),物理上行共享信道(Physical Uplink Shared Channel,PUSCH),物理上行控制信道(Physical Uplink Control Channel,PUCCH),物理随机接入信道(Physical Random Access Channel,PRACH);
或者,
所述第二信道包括物理下行共享信道PDSCH和/或物理上行共享信道PUSCH。
本公开实施例中,网络侧设备或终端不允许多时隙调度或者重复传输使用的时隙超出终端的一个服务时间段;从而能够支持在卫星通信中波束周期性在不同波位中切换时,基站和终端之间能够正确的进行多时隙调度传输或者重复传输。
如图4所示,本公开实施例还提供一种多时隙传输方法,该方法包括:
步骤401,网络侧设备向终端发送传输配置或指示信息;所述传输配置信息用于配置或指示第一信道的重复传输和/或第二信道的多时隙传输;
其中,所述第一信道的重复传输和/或所述第二信道的多时隙传输在所述终端的服务时间段内。
可选地,本公开实施例中提及的“终端的服务时间段”可以理解为:终端所在波位的服务时间段,或者,服务于终端所在波位的时间段,在此不做具体限定。
本公开的至少一个可选实施例中,网络侧设备保证多时隙调度或者重复传输在一个波位的服务时间段内;或者,终端不期待出现在一个服务时间段内按照多时隙调度指示或者配置的重复传输次数不能完成传输的情况。
作为一个可选实施例,若所述第一信道的重复传输和/或所述第二信道的多时隙传输在所述终端的服务时间段内,所述方法还包括:
所述网络侧设备根据所述传输配置或指示信息,在所述终端的服务时间段内进行第一信道和/或第二信道的传输。
可选地,所述第一信道包括以下至少一项:物理下行控制信道PDCCH,PDSCH,PUSCH,物理上行控制信道PUCCH,物理随机接入信道PRACH;
或者,
所述第二信道包括物理下行共享信道PDSCH和/或物理上行共享信道PUSCH。
本公开实施例中,网络侧设备或终端不允许多时隙调度或者重复传输使用的时隙超出终端的一个服务时间段;从而能够支持在卫星通信中波束周期性在不同波位中切换时,基站和终端之间能够正确的进行多时隙调度传输或者重复传输。
示例一
如图5所示,传输的子载波间隔为120kHz,1ms内包含8个时隙。波束进行轮询的周期为20ms,每20ms时间内的第1ms分配给UE1所在的波位,后19ms分配给其它UE所在的波位,那么对于UE 1来说,在每个波束扫描周期中只有8个时隙可进行传输;对于一个持续8个时隙的多时隙调度传输或者重复传输,网络侧设备必须保证配置或者调度的8个时隙总是从时隙0开始传输,终端不期待出现从非时隙0开始的多时隙调度传输或者重复传输;如果终端认为出现了从非时隙0开始的多时隙调度传输或者重复传输,则终端认为是错误的情况,可以不进行传输。
如图6所示,本公开实施例还提供一种多时隙传输方法,该方法包括:
在第一信道的重复传输和/或第二信道的多时隙传输超出终端的服务时间段的情况下,
步骤601,终端在所述服务时间段内,进行第一信道和/或第二信道未超 出服务时间段的部分时隙的传输;
步骤602,所述终端丢弃超出所述服务时间段的时隙对应的传输;或者,所述终端将超出所述服务时间段的时隙对应的传输延迟到所述终端的下一个服务时间段中进行。
可选地,本公开实施例中提及的“终端的服务时间段”可以理解为:终端所在波位的服务时间段,或者,服务于终端所在波位的时间段,在此不做具体限定。
作为一个可选实施例,当多时隙调度或者重复传输使用的时隙超出一个波位的服务时间段时,丢弃不在波位服务时间段内的时隙中的传输;也就是说,该方案中多时隙调度或者重复传输不再延续到下一个服务时间段,直接结束,实际传输的时隙可能并未达到配置的多时隙传输或者重复传输次数。
其中,在所述第一信道和/或第二信道包括PDSCH的情况下,所述方法还包括:
所述终端确定混合自动重传请求应答(Hybrid Automatic Repeat request-ACKnowledgment,HARQ-ACK)反馈时间的参考时隙;其中,
在所述终端丢弃超出所述服务时间段的时隙对应的传输的情况下,所述参考时隙为:所述服务时间段的最后一个时隙。
换言之,当所述多时隙调度或者重复传输对应的信道为PDSCH时,如果多时隙调度或者重复传输使用的时隙超出一个波位的服务时间段,则以当前波位服务时间段中的最后一个时隙作为确定HARQ-ACK反馈时间的参考时隙。
作为另一个可选实施例,当多时隙调度或者重复传输使用的时隙超出一个波位的服务时间段时,将剩余的未传输的时隙延迟到下一个波束扫描周期中服务于当前波位的时间段中进行传输,也就是说允许跨服务时间段的多时隙传输或者重复传输。
其中,在所述第一信道和/或第二信道包括PDSCH的情况下,所述方法还包括:
所述终端确定混合自动重传请求应答(Hybrid Automatic Repeat request-ACKnowledgment,HARQ-ACK)反馈时间的参考时隙;其中,
在所述终端将超出服务时间段的时隙对应的传输延迟到所述终端的下一个服务时间段中进行的情况下,所述参考时隙为:所述下一个服务时间段内完成所述第一信道和/或第二信道传输的最后一个时隙。
换言之,当所述多时隙调度或者重复传输对应的信道为PDSCH时,如果多时隙调度或者重复传输使用的时隙超出一个波位的服务时间段,则以下一个波束扫描周期中服务于当前波位的时间段中完成所述多时隙调度或者重复传输的最后一个时隙作为确定HARQ-ACK反馈时间的参考时隙。
可选地,所述第一信道包括以下至少一项:物理下行控制信道PDCCH,PDSCH,PUSCH,物理上行控制信道PUCCH,物理随机接入信道PRACH;
或者,
所述第二信道包括物理下行共享信道PDSCH和/或物理上行共享信道PUSCH。
综上,本公开实施例中,多时隙调度或者重复传输使用的时隙超出终端的一个服务时间段时,丢弃未传输部分或者将未传输的时隙延迟到终端的下一个服务时间段中;从而能够支持在卫星通信中波束周期性在不同波位中切换时,基站和终端之间能够正确的进行多时隙调度传输或者重复传输。
如图7所示,本公开实施例还提供一种多时隙传输方法,该方法包括:
在第一信道的重复传输和/或第二信道的多时隙传输超出终端的服务时间段的情况下,
步骤701,网络侧设备在所述服务时间段内,进行第一信道和/或第二信道未超出所述服务时间段的部分时隙的传输;
步骤702,所述网络侧设备丢弃超出所述服务时间段的时隙对应的传输;或者,所述网络侧设备将超出所述服务时间段的时隙对应的传输延迟到所述终端的下一个服务时间段中进行。
可选地,本公开实施例中提及的“终端的服务时间段”可以理解为:终端所在波位的服务时间段,或者,服务于终端所在波位的时间段,在此不做具体限定。
作为一个可选实施例,当多时隙调度或者重复传输使用的时隙超出一个波位的服务时间段时,丢弃不在波位服务时间段内的时隙中的传输;也就是 说,该方案中多时隙调度或者重复传输不再延续到下一个服务时间段,直接结束,实际传输的时隙可能并未达到配置的多时隙传输或者重复传输次数。
其中,在所述第一信道和/或第二信道包括PDSCH的情况下,所述方法还包括:所述网络侧设备确定HARQ-ACK反馈时间的参考时隙;其中,
在所述网络侧设备丢弃超出所述服务时间段的时隙对应的传输的情况下,所述参考时隙为:所述服务时间段的最后一个时隙。
换言之,当所述多时隙调度或者重复传输对应的信道为PDSCH时,如果多时隙调度或者重复传输使用的时隙超出一个波位的服务时间段,则以当前波位服务时间段中的最后一个时隙作为确定HARQ-ACK反馈时间的参考时隙。
作为另一个可选实施例,当多时隙调度或者重复传输使用的时隙超出一个波位的服务时间段时,将剩余的未传输的时隙延迟到下一个波束扫描周期中服务于当前波位的时间段中进行传输,也就是说允许跨服务时间段的多时隙传输或者重复传输。
其中,在所述第一信道和/或第二信道包括PDSCH的情况下,所述方法还包括:
所述网络侧设备确定混合自动重传请求应答(Hybrid Automatic Repeat request-ACKnowledgment,HARQ-ACK)反馈时间的参考时隙;其中,
在所述网络侧设备将超出所述服务时间段的时隙对应的传输延迟到所述终端的下一个服务时间段中进行的情况下,所述参考时隙为:所述下一个服务时间段内完成所述第一信道和/或第二信道传输的最后一个时隙。
换言之,当所述多时隙调度或者重复传输对应的信道为PDSCH时,如果多时隙调度或者重复传输使用的时隙超出一个波位的服务时间段,则以下一个波束扫描周期中服务于当前波位的时间段中完成所述多时隙调度或者重复传输的最后一个时隙作为确定HARQ-ACK反馈时间的参考时隙。
可选地,所述第一信道包括以下至少一项:物理下行控制信道PDCCH,PDSCH,PUSCH,物理上行控制信道PUCCH,物理随机接入信道PRACH;
或者,
所述第二信道包括物理下行共享信道PDSCH和/或物理上行共享信道 PUSCH。
综上,本公开实施例中,多时隙调度或者重复传输使用的时隙超出终端的一个服务时间段时,丢弃未传输部分或者将未传输的时隙延迟到终端的下一个服务时间段中;从而能够支持在卫星通信中波束周期性在不同波位中切换时,基站和终端之间能够正确的进行多时隙调度传输或者重复传输。
示例二
如图8所示,传输的子载波间隔为120kHz,1ms内包含8个时隙。波束进行轮询的周期为20ms,每20ms时间内的第1ms分配给UE1所在的波位,后19ms分配给其它UE所在的波位,那么对于UE1来说,在每个波束扫描周期中只有8个时隙可进行传输。为了不限制基站调度的灵活性,允许多时隙调度或者重复传输使用的时隙超出一个波位的服务时间段。如图8所示,如果基站配置或者指示持续8个时隙的多时隙调度传输或者重复传输从时隙#5开始,由于时隙#8已经超出当前波位的服务时间,则丢弃时隙#8至时隙#12中的传输,仅发送或者接收时隙#5至时隙#7中的传输。
如果时隙#5至时隙#7中传输的是PDSCH,则以时隙#7作为参考时隙确定HARQ-ACK反馈位置。例如,如果HARQ-ACK反馈时间基于时隙n+K-offset+K1确定,则其中的时隙n就是当前波位的服务时间中的最后一个时隙#7。
示例三
如图9所示,传输的子载波间隔为120kHz,1ms内包含8个时隙。波束进行轮询的周期为20ms,每20ms时间内的第1ms分配给UE1所在的波位,后19ms分配给其它UE所在的波位,那么对于UE1来说,在每个波束扫描周期中只有8个时隙可进行传输。为了不限制基站调度的灵活性,允许多时隙调度或者重复传输使用的时隙超出一个波位的服务时间段。同时为了保证传输性能,支持将剩余的未传输的时隙延迟到下一个波束扫描周期中服务于当前波位的时间段中进行传输。如图9所示,如果基站配置或者指示持续8个时隙的多时隙调度传输或者重复传输从时隙#5开始,由于时隙#8已经超出当前波位的服务时间,则将未完成的5个时隙中的传输延迟到下一个波位周期中服务于当前波位的时间段传输,即时隙#0~时隙#4中进行传输,这样就 能够保证多时隙调度和重复传输的性能,且降低时延。
如果时隙#5至时隙#7中传输的是PDSCH,由于时隙#7中并未实际完成传输,反馈时序参考下一个波束周期内完成PDSCH的多时隙传输或者重复传输的时间作为参考,即以下一个波位周期中的时隙#4作为参考时隙确定HARQ-ACK反馈位置。例如,如果反馈时间基于时隙n+K-offset+K1确定,则其中的时隙n就是下一个波位周期的波位服务时间中的时隙#4。
综上,本公开实施例中不允许多时隙调度或者重复传输使用的时隙超出终端的一个服务时间段,或者多时隙调度或者重复传输使用的时隙超出终端的一个服务时间段时,丢弃未传输部分或者将未传输的时隙延迟到终端的下一个服务时间段中;从而能够支持在卫星通信中波束周期性在不同波位中切换时,基站和终端之间能够正确的进行多时隙调度传输或者重复传输。
如图10所示,本公开实施例还提供一种多时隙传输装置,应用于终端,包括:
接收单元1001,用于接收网络侧设备发送的传输配置或指示信息;所述传输配置或指示信息用于配置或指示第一信道的重复传输和/或第二信道的多时隙传输;
其中,所述第一信道的重复传输和/或所述第二信道的多时隙传输在所述终端的服务时间段内;或者,所述终端不期待所述第一信道的重复传输和/或所述第二信道的多时隙传输在所述终端的服务时间段内不能完成。
作为一个可选实施例,所述装置还包括:
第一信道传输单元,用于根据所述传输配置或指示信息,在所述终端的服务时间段内进行第一信道和/或第二信道的传输。
作为一个可选实施例,所述装置还包括:
信道处理单元,用于若确定所述第一信道的重复传输和/或所述第二信道的多时隙传输在所述终端的服务时间段内不能完成,不执行第一信道和/或第二信道的传输。
作为一个可选实施例,所述第一信道包括以下至少一项:物理下行控制信道PDCCH,PDSCH,PUSCH,物理上行控制信道PUCCH,物理随机接入信道PRACH;
或者,
所述第二信道包括物理下行共享信道PDSCH和/或物理上行共享信道PUSCH。
本公开实施例中,网络侧设备或终端不允许多时隙调度或者重复传输使用的时隙超出终端的一个服务时间段;从而能够支持在卫星通信中波束周期性在不同波位中切换时,基站和终端之间能够正确的进行多时隙调度传输或者重复传输。
其中,方法和装置是基于同一申请构思的,由于方法和装置解决问题的原理相似,因此装置和方法的实施可以相互参见,重复之处不再赘述。
如图11所示,本公开实施例还提供一种终端,包括存储器1120,收发机1110,处理器1100:
存储器1120,用于存储计算机程序;收发机1110,用于在所述处理器1100的控制下收发数据;处理器1100,用于读取所述存储器1120中的计算机程序并执行以下操作:
接收网络侧设备发送的传输配置或指示信息;所述传输配置或指示信息用于配置或指示第一信道的重复传输和/或第二信道的多时隙传输;
其中,所述第一信道的重复传输和/或所述第二信道的多时隙传输在所述终端的服务时间段内;或者,所述终端不期待所述第一信道的重复传输和/或所述第二信道的多时隙传输在所述终端的服务时间段内不能完成。
作为一个可选实施例,所述处理器还用于读取所述存储器中的计算机程序并执行以下操作:
根据所述传输配置或指示信息,在所述终端的服务时间段内进行第一信道和/或第二信道的传输。
作为一个可选实施例,所述处理器还用于读取所述存储器中的计算机程序并执行以下操作:
若确定所述第一信道的重复传输和/或所述第二信道的多时隙传输在所述终端的服务时间段内不能完成,不执行第一信道和/或第二信道的传输。
作为一个可选实施例,所述第一信道包括以下至少一项:物理下行控制信道PDCCH,PDSCH,PUSCH,物理上行控制信道PUCCH,物理随机接入 信道PRACH;
或者,
所述第二信道包括物理下行共享信道PDSCH和/或物理上行共享信道PUSCH。
其中,在图11中,总线架构可以包括任意数量的互联的总线和桥,具体由处理器1100代表的一个或多个处理器和存储器1120代表的存储器的各种电路链接在一起。总线架构还可以将诸如外围设备、稳压器和功率管理电路等之类的各种其他电路链接在一起,这些都是本领域所公知的,因此,本文不再对其进行进一步描述。总线接口提供接口。收发机1110可以是多个元件,即包括发送机和接收机,提供用于在传输介质上与各种其他装置通信的单元,这些传输介质包括,这些传输介质包括无线信道、有线信道、光缆等传输介质。针对不同的用户设备,用户接口1130还可以是能够外接内接需要设备的接口,连接的设备包括但不限于小键盘、显示器、扬声器、麦克风、操纵杆等。
处理器1100负责管理总线架构和通常的处理,存储器1120可以存储处理器1100在执行操作时所使用的数据。
可选地,处理器1100可以是中央处理器(Central Processing Unit,CPU)、专用集成电路(Application Specific Integrated Circuit,ASIC)、现场可编程门阵列(Field-Programmable Gate Array,FPGA)或复杂可编程逻辑器件(Complex Programmable Logic Device,CPLD),处理器也可以采用多核架构。
处理器通过调用存储器存储的计算机程序,用于按照获得的可执行指令执行本公开实施例提供的任一所述方法。处理器与存储器也可以物理上分开布置。
本公开实施例中,网络侧设备或终端不允许多时隙调度或者重复传输使用的时隙超出终端的一个服务时间段;从而能够支持在卫星通信中波束周期性在不同波位中切换时,基站和终端之间能够正确的进行多时隙调度传输或者重复传输。
其中,方法和终端是基于同一申请构思的,由于方法和终端解决问题的原理相似,因此终端和方法的实施可以相互参见,重复之处不再赘述。
如图12所示,本公开实施例还提供一种多时隙传输装置,应用于网络侧设备,包括:
发送单元1201,用于向终端发送传输配置或指示信息;所述传输配置信息用于配置或指示第一信道的重复传输和/或第二信道的多时隙传输;
其中,所述第一信道的重复传输和/或所述第二信道的多时隙传输在所述终端的服务时间段内。
作为一个可选实施例,所述装置还包括:
第二信道传输单元,用于根据所述传输配置或指示信息,在所述终端的服务时间段内进行第一信道和/或第二信道的传输。
作为一个可选实施例,所述第一信道包括以下至少一项:物理下行控制信道PDCCH,PDSCH,PUSCH,物理上行控制信道PUCCH,物理随机接入信道PRACH;
或者,
所述第二信道包括物理下行共享信道PDSCH和/或物理上行共享信道PUSCH。
本公开实施例中,网络侧设备或终端不允许多时隙调度或者重复传输使用的时隙超出终端的一个服务时间段;从而能够支持在卫星通信中波束周期性在不同波位中切换时,基站和终端之间能够正确的进行多时隙调度传输或者重复传输。
其中,方法和装置是基于同一申请构思的,由于方法和装置解决问题的原理相似,因此装置和方法的实施可以相互参见,重复之处不再赘述。
如图13所示,本公开实施例还提供一种网络侧设备,包括存储器1320,收发机1310,处理器1300:
存储器1320,用于存储计算机程序;收发机1310,用于在所述处理器1300的控制下收发数据;处理器1300,用于读取所述存储器1320中的计算机程序并执行以下操作:
向终端发送传输配置或指示信息;所述传输配置信息用于配置或指示第一信道的重复传输和/或第二信道的多时隙传输;
其中,所述第一信道的重复传输和/或所述第二信道的多时隙传输在所述 终端的服务时间段内。
作为一个可选实施例,所述处理器还用于读取所述存储器中的计算机程序并执行以下操作:
根据所述传输配置或指示信息,在所述终端的服务时间段内进行第一信道和/或第二信道的传输。
作为一个可选实施例,所述第一信道包括以下至少一项:物理下行控制信道PDCCH,PDSCH,PUSCH,物理上行控制信道PUCCH,物理随机接入信道PRACH;
或者,
所述第二信道包括物理下行共享信道PDSCH和/或物理上行共享信道PUSCH。
其中,在图13中,总线架构可以包括任意数量的互联的总线和桥,具体由处理器1300代表的一个或多个处理器和存储器1320代表的存储器的各种电路链接在一起。总线架构还可以将诸如外围设备、稳压器和功率管理电路等之类的各种其他电路链接在一起,这些都是本领域所公知的,因此,本文不再对其进行进一步描述。总线接口提供接口。收发机1310可以是多个元件,即包括发送机和接收机,提供用于在传输介质上与各种其他装置通信的单元,这些传输介质包括无线信道、有线信道、光缆等传输介质。处理器1300负责管理总线架构和通常的处理,存储器1320可以存储处理器1300在执行操作时所使用的数据。
处理器1300可以是中央处理器(Central Processing Unit,CPU)、专用集成电路(Application Specific Integrated Circuit,ASIC)、现场可编程门阵列(Field-Programmable Gate Array,FPGA)或复杂可编程逻辑器件(Complex Programmable Logic Device,CPLD),处理器也可以采用多核架构。
本公开实施例中,网络侧设备或终端不允许多时隙调度或者重复传输使用的时隙超出终端的一个服务时间段;从而能够支持在卫星通信中波束周期性在不同波位中切换时,基站和终端之间能够正确的进行多时隙调度传输或者重复传输。
其中,方法和网络侧设备是基于同一申请构思的,由于方法和网络侧设 备解决问题的原理相似,因此网络侧设备和方法的实施可以相互参见,重复之处不再赘述。
如图14所示,本公开实施例还提供一种多时隙传输装置,应用于终端,包括:
第一传输单元1401,用于在第一信道的重复传输和/或第二信道的多时隙传输超出终端的服务时间段的情况下,在所述服务时间段内,进行第一信道和/或第二信道未超出服务时间段的部分时隙的传输;
第一处理单元1402,用于丢弃超出所述服务时间段的时隙对应的传输;或者,将超出所述服务时间段的时隙对应的传输延迟到所述终端的下一个服务时间段中进行。
作为一个可选实施例,在所述第一信道和/或第二信道包括PDSCH的情况下,所述装置还包括:
第一确定单元,用于确定混合自动重传请求应答HARQ-ACK反馈时间的参考时隙;其中,
在所述终端丢弃超出所述服务时间段的时隙对应的传输的情况下,所述参考时隙为:所述服务时间段的最后一个时隙;
或者,在所述终端将超出服务时间段的时隙对应的传输延迟到所述终端的下一个服务时间段中进行的情况下,所述参考时隙为:所述下一个服务时间段内完成所述第一信道和/或第二信道传输的最后一个时隙。
作为一个可选实施例,所述第一信道包括以下至少一项:物理下行控制信道PDCCH,PDSCH,PUSCH,物理上行控制信道PUCCH,物理随机接入信道PRACH;
或者,
所述第二信道包括物理下行共享信道PDSCH和/或物理上行共享信道PUSCH。
本公开实施例中,多时隙调度或者重复传输使用的时隙超出终端的一个服务时间段时,丢弃未传输部分或者将未传输的时隙延迟到终端的下一个服务时间段中;从而能够支持在卫星通信中波束周期性在不同波位中切换时,基站和终端之间能够正确的进行多时隙调度传输或者重复传输。
其中,方法和装置是基于同一申请构思的,由于方法和装置解决问题的原理相似,因此装置和方法的实施可以相互参见,重复之处不再赘述。
如图15所示,本公开实施例还提供一种终端,包括存储器1520,收发机1510,处理器1500:
存储器1520,用于存储计算机程序;收发机1510,用于在所述处理器1500的控制下收发数据;处理器1500,用于读取所述存储器1520中的计算机程序并执行以下操作:
在第一信道的重复传输和/或第二信道的多时隙传输超出终端的服务时间段的情况下,
在所述服务时间段内,进行第一信道和/或第二信道未超出服务时间段的部分时隙的传输;
丢弃超出所述服务时间段的时隙对应的传输;或者,将超出所述服务时间段的时隙对应的传输延迟到所述终端的下一个服务时间段中进行。
作为一个可选实施例,所述处理器还用于读取所述存储器中的计算机程序并执行以下操作:
确定混合自动重传请求应答HARQ-ACK反馈时间的参考时隙;其中,
在丢弃超出所述服务时间段的时隙对应的传输的情况下,所述参考时隙为:所述服务时间段的最后一个时隙;
或者,在将超出服务时间段的时隙对应的传输延迟到所述终端的下一个服务时间段中进行的情况下,所述参考时隙为:所述下一个服务时间段内完成所述第一信道和/或第二信道传输的最后一个时隙。
作为一个可选实施例,所述第一信道包括以下至少一项:物理下行控制信道PDCCH,PDSCH,PUSCH,物理上行控制信道PUCCH,物理随机接入信道PRACH;
或者,
所述第二信道包括物理下行共享信道PDSCH和/或物理上行共享信道PUSCH。
其中,在图15中,总线架构可以包括任意数量的互联的总线和桥,具体由处理器1500代表的一个或多个处理器和存储器1520代表的存储器的各种 电路链接在一起。总线架构还可以将诸如外围设备、稳压器和功率管理电路等之类的各种其他电路链接在一起,这些都是本领域所公知的,因此,本文不再对其进行进一步描述。总线接口提供接口。收发机1510可以是多个元件,即包括发送机和接收机,提供用于在传输介质上与各种其他装置通信的单元,这些传输介质包括,这些传输介质包括无线信道、有线信道、光缆等传输介质。针对不同的用户设备,用户接口1530还可以是能够外接内接需要设备的接口,连接的设备包括但不限于小键盘、显示器、扬声器、麦克风、操纵杆等。
处理器1500负责管理总线架构和通常的处理,存储器1520可以存储处理器1500在执行操作时所使用的数据。
可选地,处理器1510可以是中央处理器(Central Processing Unit,CPU)、专用集成电路(Application Specific Integrated Circuit,ASIC)、现场可编程门阵列(Field-Programmable Gate Array,FPGA)或复杂可编程逻辑器件(Complex Programmable Logic Device,CPLD),处理器也可以采用多核架构。
处理器通过调用存储器存储的计算机程序,用于按照获得的可执行指令执行本公开实施例提供的任一所述方法。处理器与存储器也可以物理上分开布置。
本公开实施例中,多时隙调度或者重复传输使用的时隙超出终端的一个服务时间段时,丢弃未传输部分或者将未传输的时隙延迟到终端的下一个服务时间段中;从而能够支持在卫星通信中波束周期性在不同波位中切换时,基站和终端之间能够正确的进行多时隙调度传输或者重复传输。
其中,方法和终端是基于同一申请构思的,由于方法和终端解决问题的原理相似,因此终端和方法的实施可以相互参见,重复之处不再赘述。
如图16所示,本公开实施例还提供一种多时隙传输装置,应用于网络侧设备,包括:
第二传输单元1601,用于在第一信道的重复传输和/或第二信道的多时隙传输超出终端的服务时间段的情况下,在所述服务时间段内,进行第一信道和/或第二信道未超出所述服务时间段的部分时隙的传输;
第二处理单元1602,用于丢弃超出所述服务时间段的时隙对应的传输; 或者,将超出所述服务时间段的时隙对应的传输延迟到所述终端的下一个服务时间段中进行。
作为一个可选实施例,在所述第一信道和/或第二信道包括PDSCH的情况下,所述装置还包括:
第二确定单元,用于确定HARQ-ACK反馈时间的参考时隙;其中,
在所述网络侧设备丢弃超出所述服务时间段的时隙对应的传输的情况下,所述参考时隙为:所述服务时间段的最后一个时隙;
或者,在所述网络侧设备将超出所述服务时间段的时隙对应的传输延迟到所述终端的下一个服务时间段中进行的情况下,所述参考时隙为:所述下一个服务时间段内完成所述第一信道和/或第二信道传输的最后一个时隙。
作为一个可选实施例,所述第一信道包括以下至少一项:物理下行控制信道PDCCH,PDSCH,PUSCH,物理上行控制信道PUCCH,物理随机接入信道PRACH;
或者,
所述第二信道包括物理下行共享信道PDSCH和/或物理上行共享信道PUSCH。
本公开实施例中,多时隙调度或者重复传输使用的时隙超出终端的一个服务时间段时,丢弃未传输部分或者将未传输的时隙延迟到终端的下一个服务时间段中;从而能够支持在卫星通信中波束周期性在不同波位中切换时,基站和终端之间能够正确的进行多时隙调度传输或者重复传输。
其中,方法和装置是基于同一申请构思的,由于方法和装置解决问题的原理相似,因此装置和方法的实施可以相互参见,重复之处不再赘述。
如图17所示,本公开实施例还提供一种网络侧设备,包括存储器1720,收发机1710,处理器1700:
存储器1720,用于存储计算机程序;收发机1710,用于在所述处理器1700的控制下收发数据;处理器1700,用于读取所述存储器1720中的计算机程序并执行以下操作:
在第一信道的重复传输和/或第二信道的多时隙传输超出终端的服务时间段的情况下,
在所述服务时间段内,进行第一信道和/或第二信道未超出所述服务时间段的部分时隙的传输;
丢弃超出所述服务时间段的时隙对应的传输;或者,将超出所述服务时间段的时隙对应的传输延迟到所述终端的下一个服务时间段中进行。
作为一个可选实施例,所述处理器还用于读取所述存储器中的计算机程序并执行以下操作:
确定HARQ-ACK反馈时间的参考时隙;其中,
在丢弃超出所述服务时间段的时隙对应的传输的情况下,所述参考时隙为:所述服务时间段的最后一个时隙;
或者,在将超出所述服务时间段的时隙对应的传输延迟到所述终端的下一个服务时间段中进行的情况下,所述参考时隙为:所述下一个服务时间段内完成所述第一信道和/或第二信道传输的最后一个时隙。
作为一个可选实施例,所述第一信道包括以下至少一项:物理下行控制信道PDCCH,PDSCH,PUSCH,物理上行控制信道PUCCH,物理随机接入信道PRACH;
或者,
所述第二信道包括物理下行共享信道PDSCH和/或物理上行共享信道PUSCH。
其中,在图17中,总线架构可以包括任意数量的互联的总线和桥,具体由处理器1700代表的一个或多个处理器和存储器1720代表的存储器的各种电路链接在一起。总线架构还可以将诸如外围设备、稳压器和功率管理电路等之类的各种其他电路链接在一起,这些都是本领域所公知的,因此,本文不再对其进行进一步描述。总线接口提供接口。收发机1710可以是多个元件,即包括发送机和接收机,提供用于在传输介质上与各种其他装置通信的单元,这些传输介质包括无线信道、有线信道、光缆等传输介质。处理器1700负责管理总线架构和通常的处理,存储器1720可以存储处理器1700在执行操作时所使用的数据。
处理器1700可以是中央处理器(Central Processing Unit,CPU)、专用集成电路(Application Specific Integrated Circuit,ASIC)、现场可编程门阵列 (Field-Programmable Gate Array,FPGA)或复杂可编程逻辑器件(Complex Programmable Logic Device,CPLD),处理器也可以采用多核架构。
本公开实施例中,多时隙调度或者重复传输使用的时隙超出终端的一个服务时间段时,丢弃未传输部分或者将未传输的时隙延迟到终端的下一个服务时间段中;从而能够支持在卫星通信中波束周期性在不同波位中切换时,基站和终端之间能够正确的进行多时隙调度传输或者重复传输。
其中,方法和网络侧设备是基于同一申请构思的,由于方法和网络侧设备解决问题的原理相似,因此网络侧设备和方法的实施可以相互参见,重复之处不再赘述。
需要说明的是,本公开实施例中对单元的划分是示意性的,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式。另外,在本公开各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用软件功能单元的形式实现。
所述集成的单元如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个处理器可读取存储介质中。基于这样的理解,本公开的技术方案本质上或者说对相关技术做出贡献的部分或者该技术方案的全部或部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)或处理器(processor)执行本公开各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(Read-Only Memory,ROM)、随机存取存储器(Random Access Memory,RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
本公开实施例还提供一种处理器可读存储介质,所述处理器可读存储介质存储有计算机程序,所述计算机程序用于使所述处理器执行如上所述的多时隙传输方法实施例中的各个步骤。所述处理器可读存储介质可以是处理器能够存取的任何可用介质或数据存储设备,包括但不限于磁性存储器(例如软盘、硬盘、磁带、磁光盘(Magneto-Optical Disk,MO)等)、光学存储器(例如光盘(Compact Disk,CD)、数字视频光盘(Digital Versatile Disc,DVD)、 蓝光光碟(Blu-ray Disc,BD)、高清通用光盘(High-Definition Versatile Disc,HVD)等)、以及半导体存储器(例如只读存储器(Read-Only Memory,ROM)、可擦除可编程只读存储器(Erasable Programmable ROM,EPROM)、带电可擦可编程只读存储器(Electrically EPROM,EEPROM)、非易失性存储器(NAND FLASH)、固态硬盘(Solid State Disk或Solid State Drive,SSD))等。
本领域内的技术人员应明白,本公开的实施例可提供为方法、系统、或计算机程序产品。因此,本公开可采用完全硬件实施例、完全软件实施例、或结合软件和硬件方面的实施例的形式。而且,本公开可采用在一个或多个其中包含有计算机可用程序代码的计算机可用存储介质(包括但不限于磁盘存储器和光学存储器等)上实施的计算机程序产品的形式。
本公开是参照根据本公开实施例的方法、设备(系统)、和计算机程序产品的流程图和/或方框图来描述的。应理解可由计算机可执行指令实现流程图和/或方框图中的每一流程和/或方框、以及流程图和/或方框图中的流程和/或方框的结合。可提供这些计算机可执行指令到通用计算机、专用计算机、嵌入式处理机或其他可编程数据处理设备的处理器以产生一个机器,使得通过计算机或其他可编程数据处理设备的处理器执行的指令产生用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的装置。
这些处理器可执行指令也可存储在能引导计算机或其他可编程数据处理设备以特定方式工作的处理器可读存储器中,使得存储在该处理器可读存储器中的指令产生包括指令装置的制造品,该指令装置实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能。
需要说明的是,应理解以上各个模块的划分仅仅是一种逻辑功能的划分,实际实现时可以全部或部分集成到一个物理实体上,也可以物理上分开。且这些模块可以全部以软件通过处理元件调用的形式实现;也可以全部以硬件的形式实现;还可以部分模块通过处理元件调用软件的形式实现,部分模块通过硬件的形式实现。例如,确定模块可以为单独设立的处理元件,也可以集成在上述装置的某一个芯片中实现,此外,也可以以程序代码的形式存储 于上述装置的存储器中,由上述装置的某一个处理元件调用并执行以上确定模块的功能。其它模块的实现与之类似。此外这些模块全部或部分可以集成在一起,也可以独立实现。这里所述的处理元件可以是一种集成电路,具有信号的处理能力。在实现过程中,上述方法的各步骤或以上各个模块可以通过处理器元件中的硬件的集成逻辑电路或者软件形式的指令完成。
例如,各个模块、单元、子单元或子模块可以是被配置成实施以上方法的一个或多个集成电路,例如:一个或多个特定集成电路(Application Specific Integrated Circuit,ASIC),或,一个或多个微处理器(digital signal processor,DSP),或,一个或者多个现场可编程门阵列(Field Programmable Gate Array,FPGA)等。再如,当以上某个模块通过处理元件调度程序代码的形式实现时,该处理元件可以是通用处理器,例如中央处理器(Central Processing Unit,CPU)或其它可以调用程序代码的处理器。再如,这些模块可以集成在一起,以片上系统(system-on-a-chip,SOC)的形式实现。
本公开的说明书和权利要求书中的术语“第一”、“第二”等是用于区别类似的对象,而不必用于描述特定的顺序或先后次序。应该理解这样使用的数据在适当情况下可以互换,以便这里描述的本公开的实施例,例如除了在这里图示或描述的那些以外的顺序实施。此外,术语“包括”和“具有”以及他们的任何变形,意图在于覆盖不排他的包含,例如,包含了一系列步骤或单元的过程、方法、系统、产品或设备不必限于清楚地列出的那些步骤或单元,而是可包括没有清楚地列出的或对于这些过程、方法、产品或设备固有的其它步骤或单元。此外,说明书以及权利要求中使用“和/或”表示所连接对象的至少其中之一,例如A和/或B和/或C,表示包含单独A,单独B,单独C,以及A和B都存在,B和C都存在,A和C都存在,以及A、B和C都存在的7种情况。类似地,本说明书以及权利要求中使用“A和B中的至少一个”应理解为“单独A,单独B,或A和B都存在”。
这些处理器可执行指令也可装载到计算机或其他可编程数据处理设备上,使得在计算机或其他可编程设备上执行一系列操作步骤以产生计算机实现的处理,从而在计算机或其他可编程设备上执行的指令提供用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的步骤。
显然,本领域的技术人员可以对本公开进行各种改动和变型而不脱离本公开的精神和范围。这样,倘若本公开的这些修改和变型属于本公开权利要求及其等同技术的范围之内,则本公开也意图包含这些改动和变型在内。

Claims (27)

  1. 一种多时隙传输方法,该方法包括:
    终端接收网络侧设备发送的传输配置或指示信息;所述传输配置或指示信息用于配置或指示第一信道的重复传输和/或第二信道的多时隙传输;
    其中,所述第一信道的重复传输和/或所述第二信道的多时隙传输在所述终端的服务时间段内;或者,所述终端不期待所述第一信道的重复传输和/或所述第二信道的多时隙传输在所述终端的服务时间段内不能完成。
  2. 根据权利要求1所述的方法,其中,所述方法还包括:
    所述终端根据所述传输配置或指示信息,在所述终端的服务时间段内进行第一信道和/或第二信道的传输。
  3. 根据权利要求1所述的方法,其中,所述方法还包括:
    若所述终端确定所述第一信道的重复传输和/或所述第二信道的多时隙传输在所述终端的服务时间段内不能完成,所述终端不执行第一信道和/或第二信道的传输。
  4. 根据权利要求1至3任一项所述的方法,其中,所述第一信道包括以下至少一项:物理下行控制信道PDCCH,PDSCH,PUSCH,物理上行控制信道PUCCH,物理随机接入信道PRACH;
    或者,
    所述第二信道包括物理下行共享信道PDSCH和/或物理上行共享信道PUSCH。
  5. 一种多时隙传输方法,该方法包括:
    网络侧设备向终端发送传输配置或指示信息;所述传输配置信息用于配置或指示第一信道的重复传输和/或第二信道的多时隙传输;
    其中,所述第一信道的重复传输和/或所述第二信道的多时隙传输在所述终端的服务时间段内。
  6. 根据权利要求5所述的方法,其中,所述方法还包括:
    所述网络侧设备根据所述传输配置或指示信息,在所述终端的服务时间段内进行第一信道和/或第二信道的传输。
  7. 根据权利要求5或6所述的方法,其中,所述第一信道包括以下至少一项:物理下行控制信道PDCCH,PDSCH,PUSCH,物理上行控制信道PUCCH,物理随机接入信道PRACH;
    或者,
    所述第二信道包括物理下行共享信道PDSCH和/或物理上行共享信道PUSCH。
  8. 一种多时隙传输方法,该方法包括:
    在第一信道的重复传输和/或第二信道的多时隙传输超出终端的服务时间段的情况下,
    终端在所述服务时间段内,进行第一信道和/或第二信道未超出服务时间段的部分时隙的传输;
    所述终端丢弃超出所述服务时间段的时隙对应的传输;或者,所述终端将超出所述服务时间段的时隙对应的传输延迟到所述终端的下一个服务时间段中进行。
  9. 根据权利要求8所述的方法,其中,在所述第一信道和/或第二信道包括PDSCH的情况下,所述方法还包括:
    所述终端确定混合自动重传请求应答HARQ-ACK反馈时间的参考时隙;其中,
    在所述终端丢弃超出所述服务时间段的时隙对应的传输的情况下,所述参考时隙为:所述服务时间段的最后一个时隙;
    或者,在所述终端将超出服务时间段的时隙对应的传输延迟到所述终端的下一个服务时间段中进行的情况下,所述参考时隙为:所述下一个服务时间段内完成所述第一信道和/或第二信道传输的最后一个时隙。
  10. 根据权利要求8或9所述的方法,其中,所述第一信道包括以下至少一项:物理下行控制信道PDCCH,PDSCH,PUSCH,物理上行控制信道PUCCH,物理随机接入信道PRACH;
    或者,
    所述第二信道包括物理下行共享信道PDSCH和/或物理上行共享信道PUSCH。
  11. 一种多时隙传输方法,其特征在于,该方法包括:
    在第一信道的重复传输和/或第二信道的多时隙传输超出终端的服务时间段的情况下,
    网络侧设备在所述服务时间段内,进行第一信道和/或第二信道未超出所述服务时间段的部分时隙的传输;
    所述网络侧设备丢弃超出所述服务时间段的时隙对应的传输;或者,所述网络侧设备将超出所述服务时间段的时隙对应的传输延迟到所述终端的下一个服务时间段中进行。
  12. 根据权利要求11所述的方法,其中,在所述第一信道和/或第二信道包括PDSCH的情况下,所述方法还包括:
    所述网络侧设备确定HARQ-ACK反馈时间的参考时隙;其中,
    在所述网络侧设备丢弃超出所述服务时间段的时隙对应的传输的情况下,所述参考时隙为:所述服务时间段的最后一个时隙;
    或者,在所述网络侧设备将超出所述服务时间段的时隙对应的传输延迟到所述终端的下一个服务时间段中进行的情况下,所述参考时隙为:所述下一个服务时间段内完成所述第一信道和/或第二信道传输的最后一个时隙。
  13. 根据权利要求11或12所述的方法,其中,所述第一信道包括以下至少一项:物理下行控制信道PDCCH,PDSCH,PUSCH,物理上行控制信道PUCCH,物理随机接入信道PRACH;
    或者,
    所述第二信道包括物理下行共享信道PDSCH和/或物理上行共享信道PUSCH。
  14. 一种多时隙传输装置,应用于终端,包括:
    接收单元,用于接收网络侧设备发送的传输配置或指示信息;所述传输配置或指示信息用于配置或指示第一信道的重复传输和/或第二信道的多时隙传输;
    其中,所述第一信道的重复传输和/或所述第二信道的多时隙传输在所述终端的服务时间段内;或者,所述终端不期待所述第一信道的重复传输和/或所述第二信道的多时隙传输在所述终端的服务时间段内不能完成。
  15. 一种终端,包括存储器,收发机,处理器:
    存储器,用于存储计算机程序;收发机,用于在所述处理器的控制下收发数据;处理器,用于读取所述存储器中的计算机程序并执行以下操作:
    接收网络侧设备发送的传输配置或指示信息;所述传输配置或指示信息用于配置或指示第一信道的重复传输和/或第二信道的多时隙传输;
    其中,所述第一信道的重复传输和/或所述第二信道的多时隙传输在所述终端的服务时间段内;或者,所述终端不期待所述第一信道的重复传输和/或所述第二信道的多时隙传输在所述终端的服务时间段内不能完成。
  16. 根据权利要求15所述的终端,其中,所述处理器还用于读取所述存储器中的计算机程序并执行以下操作:
    根据所述传输配置或指示信息,在所述终端的服务时间段内进行第一信道和/或第二信道的传输。
  17. 根据权利要求15所述的终端,其中,所述处理器还用于读取所述存储器中的计算机程序并执行以下操作:
    若确定所述第一信道的重复传输和/或所述第二信道的多时隙传输在所述终端的服务时间段内不能完成,不执行第一信道和/或第二信道的传输。
  18. 一种多时隙传输装置,应用于网络侧设备,包括:
    发送单元,用于向终端发送传输配置或指示信息;所述传输配置信息用于配置或指示第一信道的重复传输和/或第二信道的多时隙传输;
    其中,所述第一信道的重复传输和/或所述第二信道的多时隙传输在所述终端的服务时间段内。
  19. 一种网络侧设备,包括存储器,收发机,处理器:
    存储器,用于存储计算机程序;收发机,用于在所述处理器的控制下收发数据;处理器,用于读取所述存储器中的计算机程序并执行以下操作:
    向终端发送传输配置或指示信息;所述传输配置信息用于配置或指示第一信道的重复传输和/或第二信道的多时隙传输;
    其中,所述第一信道的重复传输和/或所述第二信道的多时隙传输在所述终端的服务时间段内。
  20. 根据权利要求19所述的网络侧设备,其中,所述处理器还用于读取 所述存储器中的计算机程序并执行以下操作:
    根据所述传输配置或指示信息,在所述终端的服务时间段内进行第一信道和/或第二信道的传输。
  21. 一种多时隙传输装置,应用于终端,包括:
    第一传输单元,用于在第一信道的重复传输和/或第二信道的多时隙传输超出终端的服务时间段的情况下,在所述服务时间段内,进行第一信道和/或第二信道未超出服务时间段的部分时隙的传输;
    第一处理单元,用于丢弃超出所述服务时间段的时隙对应的传输;或者,将超出所述服务时间段的时隙对应的传输延迟到所述终端的下一个服务时间段中进行。
  22. 一种终端,包括存储器,收发机,处理器:
    存储器,用于存储计算机程序;收发机,用于在所述处理器的控制下收发数据;处理器,用于读取所述存储器中的计算机程序并执行以下操作:
    在第一信道的重复传输和/或第二信道的多时隙传输超出终端的服务时间段的情况下,
    在所述服务时间段内,进行第一信道和/或第二信道未超出服务时间段的部分时隙的传输;
    丢弃超出所述服务时间段的时隙对应的传输;或者,将超出所述服务时间段的时隙对应的传输延迟到所述终端的下一个服务时间段中进行。
  23. 根据权利要求22所述的终端,其中,所述处理器还用于读取所述存储器中的计算机程序并执行以下操作:
    确定混合自动重传请求应答HARQ-ACK反馈时间的参考时隙;其中,
    在丢弃超出所述服务时间段的时隙对应的传输的情况下,所述参考时隙为:所述服务时间段的最后一个时隙;
    或者,在将超出服务时间段的时隙对应的传输延迟到所述终端的下一个服务时间段中进行的情况下,所述参考时隙为:所述下一个服务时间段内完成所述第一信道和/或第二信道传输的最后一个时隙。
  24. 一种多时隙传输装置,应用于网络侧设备,包括:
    第二传输单元,用于在第一信道的重复传输和/或第二信道的多时隙传输 超出终端的服务时间段的情况下,在所述服务时间段内,进行第一信道和/或第二信道未超出所述服务时间段的部分时隙的传输;
    第二处理单元,用于丢弃超出所述服务时间段的时隙对应的传输;或者,将超出所述服务时间段的时隙对应的传输延迟到所述终端的下一个服务时间段中进行。
  25. 一种网络侧设备,包括存储器,收发机,处理器:
    存储器,用于存储计算机程序;收发机,用于在所述处理器的控制下收发数据;处理器,用于读取所述存储器中的计算机程序并执行以下操作:
    在第一信道的重复传输和/或第二信道的多时隙传输超出终端的服务时间段的情况下,
    在所述服务时间段内,进行第一信道和/或第二信道未超出所述服务时间段的部分时隙的传输;
    丢弃超出所述服务时间段的时隙对应的传输;或者,将超出所述服务时间段的时隙对应的传输延迟到所述终端的下一个服务时间段中进行。
  26. 根据权利要求25所述的网络侧设备,其中,所述处理器还用于读取所述存储器中的计算机程序并执行以下操作:
    确定HARQ-ACK反馈时间的参考时隙;其中,
    在丢弃超出所述服务时间段的时隙对应的传输的情况下,所述参考时隙为:所述服务时间段的最后一个时隙;
    或者,在将超出所述服务时间段的时隙对应的传输延迟到所述终端的下一个服务时间段中进行的情况下,所述参考时隙为:所述下一个服务时间段内完成所述第一信道和/或第二信道传输的最后一个时隙。
  27. 一种处理器可读存储介质,所述处理器可读存储介质存储有计算机程序,所述计算机程序用于使所述处理器执行如权利要求1至4中任一项所述的方法,或如权利要求5至7中任一项所述的方法,或如权利要求8至10任一项所述的方法,或如权利要求11-13中任一项所述的方法。
PCT/CN2022/114472 2021-09-10 2022-08-24 多时隙传输方法、装置、终端及网络侧设备 WO2023035945A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111064098.3A CN115801200A (zh) 2021-09-10 2021-09-10 多时隙传输方法、装置、终端及网络侧设备
CN202111064098.3 2021-09-10

Publications (1)

Publication Number Publication Date
WO2023035945A1 true WO2023035945A1 (zh) 2023-03-16

Family

ID=85416865

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/114472 WO2023035945A1 (zh) 2021-09-10 2022-08-24 多时隙传输方法、装置、终端及网络侧设备

Country Status (2)

Country Link
CN (1) CN115801200A (zh)
WO (1) WO2023035945A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117896835B (zh) * 2024-03-14 2024-05-10 成都星联芯通科技有限公司 时隙资源调度方法、装置、地球站、通信系统和存储介质

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20190268920A1 (en) * 2018-01-12 2019-08-29 Telefonaktiebolaget Lm Ericsson (Publ) Scheduling request resource configuration
CN111130713A (zh) * 2018-11-01 2020-05-08 维沃移动通信有限公司 一种传输方法、发送端设备、接收端设备及网络侧设备
CN111586845A (zh) * 2019-02-15 2020-08-25 电信科学技术研究院有限公司 数据信道的传输方法、指示方法、终端及网络侧设备
CN112910541A (zh) * 2021-01-20 2021-06-04 华力智芯(成都)集成电路有限公司 一种应用于卫星移动通信系统的卫星用户侧波束设计方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20190268920A1 (en) * 2018-01-12 2019-08-29 Telefonaktiebolaget Lm Ericsson (Publ) Scheduling request resource configuration
CN111130713A (zh) * 2018-11-01 2020-05-08 维沃移动通信有限公司 一种传输方法、发送端设备、接收端设备及网络侧设备
CN111586845A (zh) * 2019-02-15 2020-08-25 电信科学技术研究院有限公司 数据信道的传输方法、指示方法、终端及网络侧设备
CN112910541A (zh) * 2021-01-20 2021-06-04 华力智芯(成都)集成电路有限公司 一种应用于卫星移动通信系统的卫星用户侧波束设计方法

Also Published As

Publication number Publication date
CN115801200A (zh) 2023-03-14

Similar Documents

Publication Publication Date Title
TWI795261B (zh) 傳輸配置指示(tci)狀態的確定方法、裝置及終端設備
WO2023035945A1 (zh) 多时隙传输方法、装置、终端及网络侧设备
WO2022161204A1 (zh) 信息指示方法、装置及终端
WO2022142891A1 (zh) 上行调度方法、装置以及存储介质
WO2022048681A1 (zh) 信息处理方法、装置、终端设备及网络侧设备
KR20230088907A (ko) 데이터 전송 방법, 장치 및 기기
WO2022237539A1 (zh) 反馈处理方法、发送方法、反馈方法、设备和存储介质
WO2023193580A1 (zh) 一种信息处理方法、装置和可读存储介质
WO2022237498A1 (zh) 重复传输的确定方法、装置、终端及网络侧设备
WO2023155614A1 (zh) 一种信息处理方法、装置及可读存储介质
WO2023011529A1 (zh) 一种波束生效时间确定方法、装置、终端和网络设备
WO2023051689A1 (zh) 上行信息发送方法、接收方法、终端和网络设备
WO2022152052A1 (zh) Pdcch传输方法、装置、终端及网络侧设备
WO2023207459A1 (zh) 一种信息处理方法、装置及可读存储介质
WO2023155729A1 (zh) 一种信息处理方法、装置及可读存储介质
WO2024066666A1 (zh) 数据传输优先级确定方法、装置及设备
WO2024032719A1 (zh) Csi报告方法、终端、网络设备、装置及存储介质
WO2022152317A1 (zh) 信息处理方法、装置、终端及网络设备
WO2024067208A1 (zh) 广播消息反馈和公共配置信息获取方法、装置及设备
WO2023011030A1 (zh) 一种数据包激活方法、装置、网络设备和终端
WO2023207744A1 (zh) 资源调度方法、设备、装置及存储介质
WO2022257774A1 (zh) 一种数据传输方法、装置及可读存储介质
WO2024017292A1 (zh) 一种信息处理方法、装置及可读存储介质
WO2022206357A1 (zh) 资源感知方法、装置及存储介质
WO2022193832A1 (zh) 信息传输方法、装置及存储介质

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22866415

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE