WO2022104665A1 - 一种通信方法和装置 - Google Patents

一种通信方法和装置 Download PDF

Info

Publication number
WO2022104665A1
WO2022104665A1 PCT/CN2020/130256 CN2020130256W WO2022104665A1 WO 2022104665 A1 WO2022104665 A1 WO 2022104665A1 CN 2020130256 W CN2020130256 W CN 2020130256W WO 2022104665 A1 WO2022104665 A1 WO 2022104665A1
Authority
WO
WIPO (PCT)
Prior art keywords
precoding matrix
precoding
subsets
precoding matrices
matrices
Prior art date
Application number
PCT/CN2020/130256
Other languages
English (en)
French (fr)
Inventor
余健
余雅威
郭志恒
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to CN202080106592.9A priority Critical patent/CN116648969A/zh
Priority to PCT/CN2020/130256 priority patent/WO2022104665A1/zh
Publication of WO2022104665A1 publication Critical patent/WO2022104665A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation

Definitions

  • the present application relates to the field of wireless communication, and in particular, to a communication method and apparatus.
  • the base station In uplink transmission, when both the terminal and the base station are configured with multiple antennas, the base station needs to send precoding information to the terminal through downlink control information (DCI), and the terminal obtains the precoding matrix according to the precoding information.
  • DCI downlink control information
  • the data is mapped to multiple antenna ports, and the physical uplink shared channel (PUSCH) is sent.
  • Precoding makes the transmitted signal more directional, rather than simply radiating around.
  • the physical uplink shared channel supports both codebook-based and non-codebook-based transmission modes.
  • the codebook-based transmission mode it means that the base station selects a precoding matrix in the codebook, and sends a Transmitted Precoding Matrix Indicator (TPMI) to the terminal, where the TPMI corresponds to a precoding matrix.
  • TPMI Transmitted Precoding Matrix Indicator
  • the accuracy of the precoding matrix affects the demodulation performance of PUSCH.
  • the NR system only supports uplink wideband precoding, that is, the same precoding matrix is used on the scheduled bandwidth. When the frequency selection characteristics of the channel are relatively large, this method will cause system performance loss. If subband precoding is used, the base station will Sending information to the terminal equipment indicating the TPMI of each subband will increase signaling overhead. Therefore, when designing uplink precoding, reducing signaling overhead and improving transmission performance become contradictory aspects.
  • the present invention provides a communication method and device to reduce the signaling overhead of subband precoding.
  • the present application provides a communication method, and the execution body of the method may be a terminal device or a chip applied in the terminal device.
  • the following description takes the execution subject being a terminal device as an example.
  • the terminal device receives downlink control information sent by the network device, where the downlink control information includes indices of N precoding matrix subsets, where the N precoding matrix subsets are one of multiple precoding matrix subsets divided by the first codebook Or multiple, N precoding subsets, there is at least one precoding matrix subset including at least two precoding matrices.
  • the terminal device determines at least N precoding matrices from the N precoding matrix subsets, and the terminal device sends an uplink signal based on the determined at least N precoding matrices, where N is a positive integer.
  • the terminal device can select one or more precoding matrices from the N precoding matrix subsets for sending uplink signals, which improves the transmission performance. Moreover, the terminal device receives the indication information of the index of the precoding matrix subset through the downlink control information, because the number of the precoding matrix subsets divided by the first codebook may be smaller or much smaller than the precoding matrix included in the first codebook Therefore, compared with receiving the indication information of the index of the precoding matrix included in the whole first codebook, receiving the indication information of the index of the precoding matrix subset can reduce the overhead of downlink control information, which is beneficial to reduce End-device detection complexity and end-device power consumption.
  • the downlink control information further includes resource indication information used to indicate the first downlink reference signal
  • the terminal device based on the first downlink reference signal on the resource indicated by the resource indication information, is At least N precoding matrices are determined in the subset of precoding matrices.
  • the terminal device determines at least N precoding matrices based on the first downlink reference signal. Since the first downlink reference signal can reflect the channel state of the downlink channel, the terminal device can consider the influence of the channel state and determine the number of precoding matrices. Appropriate precoding matrix to obtain better multi-antenna gain.
  • the uplink signal is a physical uplink shared channel PUSCH
  • the PUSCH occupies M subbands
  • the downlink control information further includes indication information of the M subbands
  • at least the N precoding matrices are M precoding matrices
  • Each of the M subbands corresponds to one of the M precoding matrices, where M is a positive integer greater than N.
  • precoding matrices corresponding to at least two subbands in the M subbands belong to the same precoding matrix subset.
  • the terminal device transmits the PUSCH on the M subbands based on the M precoding matrices.
  • the uplink signal is the physical uplink shared channel PUSCH
  • the PUSCH occupies N subbands, that is, M is equal to N
  • the downlink control information also includes the indication information of the N subbands, and N precoding matrix subsets.
  • the terminal device transmits the PUSCH on the N subbands based on the N precoding matrices.
  • the uplink signal is the physical uplink shared channel PUSCH
  • the PUSCH occupies M subbands
  • M is greater than N
  • the downlink control information also includes the indication information of the M subbands
  • the N precoding matrix subsets are one Precoding matrix subset, N is 1.
  • the precoding matrices of each of the M subbands are determined according to a subset of precoding matrices. At least N precoding matrices are M precoding matrices, and the M subbands are in one-to-one correspondence with the M precoding matrices. M precoding matrices transmit PUSCH on M subbands.
  • the downlink control information indicates the index of the subset of precoding matrices and subband indication information, and each subband corresponds to a precoding matrix, such as the most suitable precoding matrix for terminal equipment to send uplink signals, which is beneficial to improve transmission performance.
  • M precoding matrices may be completely different M precoding matrices, or may be partially identical precoding matrices, which are not limited in this embodiment of the present invention.
  • At least two different precoding matrix subsets in the multiple precoding matrix subsets correspond to different values of the first codebook parameter, and the first codebook parameter includes a phase.
  • the number of multiple precoding matrix subsets is K
  • the first codebook includes L precoding matrices
  • each precoding matrix subset in the K precoding matrix subsets includes precoding The index of the matrix satisfies The values of are the same; or, the indices of the precoding matrices included in each precoding matrix subset satisfy the same value of mod(j, K).
  • j is the index of the precoding matrix in the first codebook, is the round-down function, is the round-up function.
  • the first codebook is generated based on a discrete Fourier transform matrix, and at least two different precoding matrix subsets in the multiple precoding matrix subsets correspond to different columns in the discrete Fourier transform matrix. vector.
  • the downlink control information further includes an index of at least one precoding matrix, and the at least one precoding matrix is a precoding matrix that the terminal device is not expected to use, or a precoding matrix that the terminal device is expected to avoid.
  • the precoding matrix that the terminal device is not expected to use is the precoding matrix of the interference channel.
  • the terminal device determines at least N precoding matrices from the subset of N precoding matrices, it also considers precoding matrices that the network device does not expect the terminal device to use, so that the terminal device can minimize interference and improve transmission performance.
  • the present application provides a communication method, and the execution body of the method may be a network device or a chip applied in the network device.
  • the following description takes the execution subject being a network device as an example.
  • the network device determines N precoding matrix subsets, and the network device sends downlink control information to the terminal device, where the downlink control information includes indices of the N precoding matrix subsets, and the N precoding matrix subsets are divided into the first codebook In one or more of the plurality of precoding matrix subsets, among the N precoding matrix subsets, there is at least one precoding matrix subset including at least two precoding matrices.
  • the network device indicates the indices of one or more precoding matrix subsets through downlink control information, because the number of precoding matrix subsets divided by the first codebook may be smaller or much smaller than the precoding matrix subsets contained in the first codebook.
  • the number of coding matrices therefore, compared with indicating the index of the precoding matrix included in the first codebook through the downlink control information, the network device indicates the index of the precoding matrix subset through the downlink control information, which can reduce the information of the downlink control information. make overhead.
  • the downlink control information further includes resource indication information used to indicate the first downlink reference signal, and the terminal device, based on the first downlink reference signal on the resource indicated by the resource indication information, is At least N precoding matrices are determined in the coding matrix subset.
  • At least N precoding matrices correspond to M subbands, where M is greater than or equal to N, and the network device receives uplink signals on the M subbands.
  • the number of at least N precoding matrices is M
  • the M precoding matrices are in one-to-one correspondence with the M subbands
  • the network device receives uplink signals on the M subbands.
  • M precoding matrices may be completely different M precoding matrices, or may be partially identical precoding matrices, which are not limited in this embodiment of the present invention.
  • the uplink signal is the physical uplink shared channel PUSCH.
  • the N precoding matrix subsets are one precoding matrix subset, N is 1, and at least N+1 precoding matrixes belong to the same precoding matrix subset.
  • At least two different precoding matrix subsets in the multiple precoding matrix subsets correspond to different values of the first codebook parameter, and the first codebook parameter includes a phase.
  • the number of multiple precoding matrix subsets is K
  • the first codebook includes L precoding matrices
  • each precoding matrix subset in the K precoding matrix subsets includes precoding matrices.
  • the index of the encoding matrix satisfies: The values of are the same; or, the indices of the precoding matrices included in each precoding matrix subset satisfy the same value of mod(j, K).
  • j is the index of each precoding matrix in the first codebook, is the round-down function, is the round-up function.
  • the first codebook is generated based on a discrete Fourier transform matrix, and at least two different precoding matrix subsets in the multiple precoding matrix subsets correspond to different columns in the discrete Fourier transform matrix. vector.
  • the downlink control information further includes an index of at least one precoding matrix, and the at least one precoding matrix is a precoding matrix that the terminal device is not expected to use, or a precoding matrix that the terminal device is expected to avoid.
  • the precoding matrix that the terminal device is not expected to use is the precoding matrix of the interference channel.
  • the network device not only indicates the indices of the N precoding matrix subsets, but also indicates the precoding matrix that the network device does not expect the terminal device to use, which is beneficial for the terminal device to minimize interference and improve transmission performance.
  • a communication device having a function of implementing the behavior in the method example of the first aspect above.
  • the functions can be implemented by hardware, or can be implemented by hardware executing corresponding software.
  • the hardware or software includes one or more modules corresponding to the above functions.
  • the communication apparatus includes: a receiving unit, where the transceiver unit is configured to receive downlink control information, where the downlink control information includes indices of N precoding matrix subsets, and N precoding matrix subsets For one or more of the plurality of precoding matrix subsets divided by the first codebook, among the N precoding matrix subsets, there is at least one precoding matrix subset including at least two precoding matrices.
  • a processing unit configured to determine at least N precoding matrices in the subset of N precoding matrices.
  • a sending unit configured to send uplink signals based on at least N precoding matrices, where N is a positive integer.
  • a communication device having a function of implementing the behavior in the method example of the second aspect above.
  • the functions can be implemented by hardware, or can be implemented by hardware executing corresponding software.
  • the hardware or software includes one or more modules corresponding to the above functions.
  • the communication apparatus includes: a processing unit configured to determine N precoding matrix subsets.
  • a sending unit configured to send downlink control information, where the downlink control information includes indices of N precoding matrix subsets, where the N precoding matrix subsets are one of multiple precoding matrix subsets divided by the first codebook or Among the multiple, N precoding matrix subsets, there is at least one precoding matrix subset including at least two precoding matrices.
  • a communication device is provided, and the communication device may be the terminal device in the above method embodiments, or a chip provided in the terminal device, or a larger device including the terminal device.
  • the communication device includes at least one processor and an interface circuit, and optionally, also includes a memory.
  • the interface circuit is used to provide input or output of instructions and/or data for the at least one processor
  • the memory is used to store computer programs or instructions
  • at least the processor is coupled to the memory and the interface circuit, and when the at least one processor executes the When the computer program or instruction is executed, the communication apparatus is made to execute the method executed by the terminal device in the above method embodiment.
  • a communication device is provided, and the communication device may be the network device in the above method embodiments, or a chip provided in the network device, or a larger device including the network device.
  • the communication device includes at least one processor and an interface circuit, and optionally, also includes a memory.
  • the interface circuit is used to provide input or output of instructions and/or data for the at least one processor
  • the memory is used to store computer programs or instructions
  • at least the processor is coupled to the memory and the interface circuit, and when the at least one processor executes the When the computer program or instruction is executed, the communication apparatus is made to execute the method executed by the network device in the above method embodiment.
  • a computer program product comprising: computer program code, when the computer program code is executed, the method performed by the terminal device in the above aspects is executed.
  • a computer program product comprising: computer program code, when the computer program code is executed, the method performed by the network device in the above aspects is executed.
  • the present application provides a chip system, where the chip system includes a processor for implementing the functions of the terminal device in the methods of the above aspects.
  • the chip system further includes a memory for storing program instructions and/or data.
  • the chip system may be composed of chips, or may include chips and other discrete devices.
  • the present application provides a chip system, where the chip system includes a processor for implementing the functions of the network device in the methods of the above aspects.
  • the chip system further includes a memory for storing program instructions and/or data.
  • the chip system may be composed of chips, or may include chips and other discrete devices.
  • the present application provides a computer-readable storage medium, where a computer program is stored in the computer-readable storage medium, and when the computer program is executed, the method executed by the terminal device in the above aspects is implemented.
  • the present application provides a computer-readable storage medium, where a computer program is stored in the computer-readable storage medium, and when the computer program is executed, the method executed by the network device in the above aspects is implemented.
  • a thirteenth aspect provides a communication system, where the communication system includes the network device and the terminal device involved in any one of the foregoing aspects.
  • FIG. 1 is a schematic diagram of a possible communication architecture provided by this application.
  • FIG. 2 is a schematic flowchart of a communication method provided by the present application.
  • FIG. 3 is a schematic diagram of the hardware structure of a network device and a terminal device provided by this application;
  • FIG. 6 is a schematic structural diagram of a possible communication device provided by the present application.
  • LTE Long Term Evolution
  • 5G fifth generation
  • future mobile communication systems etc.
  • FIG. 1 it is a schematic diagram of a possible network architecture applicable to the embodiment of the present application, including a terminal device 110 and an access network device 120 , and optionally a core network device 130 .
  • the terminal device 110 and the access network device 120 can communicate through the Uu air interface, and the Uu air interface can be understood as a universal interface between the terminal device 110 and the access network device 120 (universal UE to network interface). Transmission on the Uu air interface includes uplink transmission and downlink transmission.
  • the uplink transmission refers to that the terminal device 110 sends an uplink signal to the access network device 120 .
  • the uplink signal may include one or more of uplink data, uplink control information, or reference signal (Reference Signal, RS).
  • the channel used to transmit the uplink signal is called the uplink channel, and the uplink channel can be the PUSCH or the physical uplink control channel (PUCCH).
  • the PUSCH is used to carry uplink data, and uplink data may also be referred to as uplink data information.
  • PUSCH can also be used to carry uplink control information.
  • PUCCH is used to carry uplink control information (uplink control information, UCI) fed back by terminal equipment.
  • the UCI may include one or more of channel state information (channel state information, CSI), acknowledgement (acknowledgement, ACK), negative acknowledgement (negative acknowledgement, NACK), or scheduling request (scheduling request, SR).
  • the core network device 130 includes: an access and mobility management function (AMF), a session management function (SMF), or a user plane Function (user plane function, UPF), etc.
  • the access network device 120 is a device with a wireless transceiver function, and is used to communicate with the terminal device 110.
  • the access network equipment includes but is not limited to a base station (BTS, Node B, eNodeB/eNB, or gNodeB/gNB), a transceiver point (transmission reception point, TRP), a 3GPP subsequent evolution base station, and an access node in a WiFi system , wireless relay node, wireless backhaul node, etc.
  • the base station may be: a macro base station, a micro base station, a pico base station, a small base station, a relay station, and the like. Multiple base stations may support the aforementioned networks of the same access technology, or may support the aforementioned networks of different access technologies.
  • a base station may contain one or more co-sited or non-co-sited transmission reception points.
  • the above-mentioned access network equipment and core network equipment are collectively referred to as network equipment relative to terminal equipment.
  • a terminal device may be referred to as a terminal for short, also referred to as user equipment (user equipment, UE), which is a device with a wireless transceiver function.
  • Terminal equipment can be deployed on land, including indoor or outdoor, handheld or vehicle; can also be deployed on water (such as ships, etc.); can also be deployed in the air (such as aircraft, drones, balloons and satellites, etc.).
  • the terminal equipment can be mobile phones, cars, tablet computers, smart speakers, detectors, gas station sensors, computers with wireless transceiver functions, virtual reality terminal equipment, augmented reality terminal equipment, wireless terminal equipment in industrial control, unmanned Wireless terminal equipment in driving, wireless terminal equipment in telemedicine, wireless terminal equipment in smart grid, wireless terminal equipment in transportation safety, wireless terminal equipment in smart city, or wireless terminal equipment in smart home, etc.
  • Terminal devices can also be stationary or mobile. This embodiment of the present application does not limit this.
  • the apparatus for implementing the function of the terminal may be a terminal device; it may also be an apparatus capable of supporting the terminal device to implement the function, such as a chip system, and the apparatus may be installed in the terminal device.
  • the chip system may be composed of chips, or may include chips and other discrete devices.
  • a network device can be an access network device, and an access network device can also be called a radio access network (RAN) device or a base station, which is a device that provides wireless communication functions for terminal devices.
  • access network equipment includes but is not limited to: next-generation node B (generation node B, gNB) in 5G, evolved node B (evolved node B, eNB), baseband unit (baseband unit, BBU), transceiver point (transmitting and receiving point, TRP), transmitting point (transmitting point, TP), access network equipment in future mobile communication systems or access points in WiFi systems, etc.
  • the access network device may also be a wireless controller, a centralized unit (centralized unit, CU), and/or a distributed unit (DU) in a cloud radio access network (cloud radio access network, CRAN) scenario, or a network
  • the device may be a relay station, a vehicle-mounted device, and a network device in a future evolved PLMN network, and the like.
  • a terminal device can communicate with multiple access network devices of different technologies. For example, a terminal device can communicate with an access network device that supports long term evolution (LTE), and can also communicate with an access network device that supports 5G. It can also communicate with LTE-enabled access network devices and 5G-enabled access network devices at the same time.
  • LTE long term evolution
  • 5G 5th Generationан ⁇
  • the apparatus for implementing the function of the network device may be a network device; it may also be an apparatus capable of supporting the network device to implement the function, such as a chip system, and the apparatus may be installed in the network device.
  • the technical solutions provided by the embodiments of the present application are described by taking the device for realizing the function of the network device being a network device as an example.
  • communication can be classified into different types according to different types of transmitting nodes and receiving nodes.
  • sending information from a network device to a terminal device is called downlink (downlink, DL) communication
  • sending information from a terminal device to a network device is called uplink (uplink, UL) communication.
  • the uplink communication can obtain the channel state through the sounding reference signal (SRS).
  • SRS sounding reference signal
  • downlink communication can obtain channel state information through a channel state information reference signal (CSI-reference signal, CSI-RS).
  • Time-frequency resources may also be referred to as resources for short, and time-frequency resource granularity may also be referred to as resource granularity for short.
  • the resource granularity of uplink scheduling supports two types. , resource allocation 0, ) and resource block (resource block, RB)-based allocation types (also known as resource allocation 1, resource allocation 1).
  • Each RB includes 12 resource elements (REs) in the frequency domain, that is, 12 subcarriers.
  • Each RBG includes one or more RBs, and the number of RBs included in each RBG is also called the size of the RBG. In this application, the size of each RBG may be related to a bandwidth part (Bandwidth Part, BWP).
  • each RBG may not be related to the BWP, and the size of each RBG may be indicated by higher layer signaling.
  • One subband includes one or more RBs in the frequency domain, or one subband may include one or more RBGs in the frequency domain. Since each RBG also includes multiple RBs, the size of the subband may be the same as or different from the size of the RBG. For example, it is assumed that one bandwidth part BWP includes 10 RBs, and two consecutive RBs are divided into subbands, which can be divided into 5 subbands. Optionally, the division of the subbands may be divided based on the scheduling bandwidth, and the scheduling bandwidth is less than or equal to the BWP size of the bandwidth part.
  • the scheduling bandwidth is the bandwidth corresponding to the actual frequency domain resources occupied by the terminal device to transmit the PUSCH at a certain moment (eg, a certain time slot).
  • a subband in this embodiment of the present invention may be an RBG occupied by the PUSCH, or may be an RB occupied by the PUSCH.
  • Frequency selection gain means that the network device calculates the priority of each subband according to the channel quality indicator (CQI) or signal to interference and noise ratio of each subband, and schedules each subband according to the subband of each terminal device. The priority is scheduled so that each terminal device performs signal transmission on the subband with the best channel quality.
  • CQI channel quality indicator
  • signal to interference and noise ratio of each subband
  • the terminal device weights the uplink signal to form a narrow beam aimed at the network device, or is understood as a directional beam, aiming the energy at the target network device, which is beneficial to improve the received signal strength.
  • the terminal device can directly derive the uplink channel information through the downlink channel information, or the network device can directly obtain the downlink channel information through the uplink channel information, it can be considered that the communication system has the channel reciprocity feature.
  • a codebook consists of multiple precoding matrices. Taking the transmitting antenna port of the terminal device as an example of 2 antenna ports, Table 1 and Table 2 show the codebook examples when the terminal device transmits one stream and two streams, wherein each precoding matrix in the codebook corresponds to an index value, Or call it TPMI index.
  • Table 1 is an example of a codebook when the terminal device transmits antenna port 2 and rank 1. As shown in Table 1, there are six types of precoding matrices, and the corresponding TPMI index values are 0 to 5, respectively.
  • Table 2 shows the codebook when the terminal transmit antenna port is 2 and the rank is 2, there are three kinds of precoding matrices, and the corresponding TPMI index values are 0 to 2 respectively.
  • W is a precoding matrix or vector.
  • the terminal device maps the PUSCH data to each antenna port through the precoding matrix. For example, the terminal device can map the data of the PUSCH to the antenna port through the process of formula (1-1):
  • y ( ⁇ -1) (i) is the data before precoding
  • v is the layer index
  • v is the data after precoding, that is, the data on the corresponding antenna port p ⁇ -1 .
  • p ⁇ -1 is 2
  • v is 1. If it is a single-antenna transmission, W defaults to 1, which is equivalent to no precoding.
  • the network device can obtain the channel state information of the uplink channel by measuring the SRS, and select a precoding matrix. For example, it may be the precoding matrix that is most suitable for the current uplink channel, and the TPMI of the precoding matrix is sent to the terminal device. In an example of selecting a precoding matrix, the network device may select an optimal precoding matrix for uplink PUSCH transmission based on a capacity maximization criterion. After the network device determines the TPMI, it needs to send the TPMI to the terminal device before the terminal device sends the uplink data, so as to notify the terminal device which precoding matrix to use to send the uplink data.
  • the terminal device is k
  • the power on the mth frequency domain resource is p k,m
  • the mth frequency domain resource The Signal to Interference plus Noise Ratio (SINR) on the signal is ⁇ k,m
  • the channel on the mth frequency domain resource of the terminal device k is an H k,m matrix. SINR is defined as:
  • g k,m is the weight coefficient on the receiving antenna of the network device
  • w k is the precoding matrix of the terminal device k.
  • g k,m (H k,m w k ) H
  • I k,m is the interference covariance matrix between cells
  • ⁇ 2 is the noise power.
  • An optional selection criterion is to choose the precoding matrix by a capacity maximization criterion:
  • is the set of precoding matrices.
  • w k is independent of the frequency domain resource index.
  • the network device and the terminal device may use the same codebook.
  • the precoding matrices in different codebooks may also be different.
  • some existing candidate codebooks may be used, and in addition, some new codebooks may also be used. For example, a codebook generated based on structured antenna grouping or a codebook generated based on Discrete Fourier Transform (DFT).
  • DFT Discrete Fourier Transform
  • a codebook generated based on structured antenna grouping is used. This embodiment may divide the codebook into subsets of precoding matrices based on phase. Further, in the codebook generated based on the structured antenna grouping, since each precoding matrix corresponds to one phase value or multiple phase values, in this embodiment of the present invention, the precoding matrix included in the codebook is based on the phase corresponding to the precoding matrix. The coding matrix is divided into subsets to form multiple precoding matrix subsets. For example, for a codebook with 8 antenna ports, if A 1 is a precoding matrix with 8 antenna ports and a rank of 1, the codebook is generated as follows:
  • ⁇ , ⁇ , ⁇ , and ⁇ are different phases. Since each phase can have multiple values, the phase can also be understood as a phase variable.
  • the quantization factor may be configured through Radio Resource Control (Radio Resource Control, RRC) signaling, or may be configured by a Media Access Control Control Element (Media Access Control Element, MAC CE).
  • RRC Radio Resource Control
  • MAC CE Media Access Control Element
  • the structure of the precoding matrix of this method can be expressed as:
  • v t,m is the precoding matrix formed in the same polarization direction, which is composed of DFT matrix, and ⁇ is the phase offset in different polarization directions.
  • This method is also applicable to the case where the number of antenna ports is not 8, for example, the codebook generation when the number of antenna ports is 2, 4, or 16.
  • the codebook can also be understood as a codebook set.
  • the choice of the precoding matrix will affect the demodulation performance of PUSCH, and an inappropriate precoding matrix will lead to the degradation of the PUSCH demodulation performance. Therefore, the larger the codebook, the more the number of precoding matrices in the codebook, and the more precoding matrices that can be selected. Therefore, the precision of the precoding matrix is also higher, but at this time, the indication information indicating TPMI The signaling overhead is also greater.
  • the codebook includes 256 precoding matrices
  • 8 bits are required to indicate the index of the precoding matrix.
  • M the number of bits carried by the DCI exceeds the DCI used for downlink scheduling. size, which will increase the number of blind checks of the terminal device.
  • the precoding matrix when designing the precoding matrix, only the bandwidth-based precoding matrix is considered, that is, the same precoding matrix is used on all scheduling resources allocated by the terminal equipment. This method is suitable for the case where the frequency domain channel is relatively flat and the channel variation is small. When the channel fluctuates greatly in the frequency domain, the bandwidth-based precoding matrix may not be able to match the channel change, which is not conducive to obtaining frequency selection gain and beamforming gain. In addition, when multi-terminal device pairing is performed, since different terminal devices can be paired on different frequency domain resource blocks, if a bandwidth-based precoding matrix is used, it is not conducive to suppress interference between paired terminal devices.
  • a communication method for enabling an uplink subband-level precoding matrix while reducing signaling overhead.
  • FIG. 2 it is a flow chart of the method. In the following introduction, the method is applied to the schematic diagram of the network architecture shown in FIG. 1 as an example.
  • the method is performed by a network device and a terminal device as an example.
  • the network device described below is, for example, an access network device in the network architecture shown in FIG. 1
  • the terminal device described below may be a terminal device in the network architecture shown in FIG. 1 .
  • FIG. 2 it is a schematic flowchart of a communication method provided by the present application.
  • the method mainly includes S21 to S25.
  • the terminal device sends the SRS to the network device, and correspondingly, the network device receives the SRS sent by the terminal device.
  • the terminal device sends the SRS to the network device on the SRS resource configured by the network device, and accordingly, the network device receives the SRS on the SRS resource configured by the network device, measures the uplink channel, and obtains the channel state information.
  • the network device determines N precoding matrix subsets.
  • the network device determines N precoding matrix subsets according to the status information of the uplink channel and the scheduling bandwidth obtained by the SRS measurement.
  • the N precoding matrix subsets are one or more of multiple precoding matrix subsets divided by the first codebook, and among the N precoding matrix subsets, at least one precoding matrix subset includes at least two precoding matrix subsets. encoding matrix.
  • the N precoding matrix subsets determined by the network device may be N different precoding matrix subsets, or may include two or more identical precoding matrix subsets. For example, the network device determines 5 precoding matrix subsets. Precoding matrix subsets, where there are two precoding matrix subsets that are the same precoding matrix subset. This is because the scheduling bandwidth may include multiple subbands.
  • the network device When determining the N precoding matrix subsets, the network device considers the channel state information on each subband to determine the precoding matrix subset based on each subband. When , there may be two or more subbands in the scheduling bandwidth that are applicable to the same precoding matrix subset.
  • the first codebook may be one of the existing candidate codebooks, a codebook generated based on structured antenna grouping, a codebook generated based on DFT transform, or a codebook generated in other ways. Since the first codebook includes multiple precoding matrices, the first codebook can be divided into multiple precoding matrix subsets, and each precoding matrix subset includes several precoding matrices. Of course, there may also be one or more Only one precoding matrix is included in the subsets of precoding matrices. When N is greater than 1, the multiple precoding matrices in the first codebook are divided into different precoding matrix subsets.
  • the N precoding matrix subsets may include one or more precoding matrix subsets among the multiple precoding matrix subsets divided by the first codebook, or may include one or more precoding matrix subsets among the multiple precoding matrix subsets divided by the first codebook All precoding matrix subsets, in this case, can be understood as N precoding matrix subsets, that is, the first codebook itself. Since each precoding subset also includes one or more precoding matrices, at this time, if each precoding matrix subset is regarded as a codebook, the first codebook can be understood as a codebook set.
  • the first codebook includes at least one first codebook parameter, and among the plurality of precoding matrix subsets divided by the first codebook, at least two different precoding matrix subsets correspond to the first codebook.
  • the codebook parameter includes the phase.
  • the multiple precoding matrices in the first codebook are divided into multiple precoding matrix subsets by phase.
  • the phase may be the phase offset between the antennas or antenna ports. Since each phase can correspond to different values, the phase can also be understood as a phase variable. For example, when the first codebook is a codebook generated based on structured antenna grouping, the codebook generated based on structured antenna grouping may have multiple phase variables.
  • a precoding matrix subset may be constructed by fixing the values of one or more phases and traversing the values of the remaining one or more phases. The value of each phase is determined based on the quantization factor, and the value of the quantization factor is the maximum number of optional values of each phase.
  • the quantization factor may be a predefined value, or may be indicated by indication information, and the indication information indicating the quantization factor may be carried in RRC signaling, in MAC CE, or in RRC signaling and MAC CE. Based on this division method, the precoding matrix in the first codebook can be divided into multiple precoding matrix subsets. After the precoding matrix subset division is determined, in order to indicate different subsets, each subset needs to be divided into multiple subsets.
  • the number of the subset can also be understood as the index of each precoding matrix subset.
  • Different precoding matrix subsets may be indicated by different state values of one or more bits of an indication field, each state value representing a precoding matrix subset. For example, if the codebook generated based on structured antenna grouping has 4 phases, which are ⁇ , ⁇ , ⁇ , ⁇ , and fixed values of ⁇ , ⁇ , ⁇ , by traversing the possible values of ⁇ to construct a subset of precoding matrices, where each possible value of ⁇ corresponds to a precoding matrix.
  • the quantization factors of the phases ⁇ , ⁇ , ⁇ , ⁇ are N 1 , N 1 , N 3 , N 4 respectively, that is, ⁇ , ⁇ , ⁇ , ⁇ have N 1 , N 1 , N 3 , N 4 respectively.
  • Table 3 shows a way of dividing the first codebook into multiple precoding matrix subsets.
  • phase variables ⁇ , ⁇ , ⁇ , ⁇ which are the first phase to the fourth phase, respectively, and the values of the quantization factors N 1 , N 1 , N 3 , and N 4 corresponding to each phase variable are all is 4, corresponding to 64 kinds of precoding matrix subsets.
  • three phases are fixed values, and different values of the remaining one phase correspond to multiple precoding matrices in the subset.
  • the subset number is 1, the first phase, the second phase, and the third phase are all fixed values, and the N 4 values of the fourth phase correspond to the N 4 precoding matrices in the precoding matrix subset numbered 1 .
  • different state values of a 6-bit indication field of the indication information may be used to indicate different precoding matrix subsets.
  • phase variables are equal, at this time, it is equivalent to only three phases.
  • only three phases are variable at this time, that is, only the phase values of the three phases are needed to determine a subset of the precoding matrix.
  • a precoding matrix subset can be constructed by traversing the value of the remaining one phase. Table 4 shows an example of dividing the first codebook into multiple precoding matrix subsets when there are 4 phases and there are two equal phases.
  • N 1 , N 1 , N 3 , and N 4 are all 4, and there are three variable phases ⁇ , ⁇ , ⁇ , which are the first phase, the second phase and the fourth phase, respectively , at this time, it can be understood that the first phase and the third phase are the same, and it can also be understood that the second phase and the third phase are the same.
  • ⁇ , ⁇ , ⁇ which are the first phase, the second phase and the fourth phase, respectively , at this time, it can be understood that the first phase and the third phase are the same, and it can also be understood that the second phase and the third phase are the same.
  • the subset number is 1, the first phase and the second phase are fixed, and the 4 different values of the fourth phase correspond to the 4 precoding matrices and 3 phases in the precoding matrix subset, and the quantization factor of each phase is 4.
  • is one of the above phases, and a subset of precoding matrices can be constructed by traversing different values of ⁇ .
  • ⁇ and ⁇ are the first phase and the second phase, respectively.
  • the value of the first phase ⁇ is fixed as ⁇ x , and a precoding matrix subset can be constructed by traversing different values of the second phase ⁇ .
  • phase and the quantization factor is only exemplary, and the value of the phase and the size of the quantization factor may also be in other forms, which are not limited in this application.
  • a precoding matrix subset is constructed by traversing the value of one phase and fixing the value of the remaining phase. In practical applications, it can also traverse the value of two or more phases and fix the remaining phase.
  • a precoding matrix subset is constructed in the manner of the phase value, which is not limited in this application.
  • the first codebook includes L precoding matrices, each of the L precoding matrices corresponds to an index value of a precoding matrix, and the L precoding matrices Divided into K precoding matrix subsets, each precoding matrix subset contains one or more precoding matrices, and for each precoding matrix subset, the index value of the precoding matrix it contains satisfies
  • the value of the precoding matrix is the same, or the index value of the precoding matrix it contains satisfies the same value of mod(j, K), where j is the index of the precoding matrix, is the round-down function, is the round-up function.
  • Example 1 when L is equal to 28 and K is equal to 4, the first codebook contains 28 precoding matrices, the index values of the precoding matrices corresponding to the 28 precoding matrices are 0 to 27 respectively, and are divided into 4 precoding matrices. Encoding matrix subsets.
  • the index value of the precoding matrix in each precoding matrix subset satisfies the relational expression 1
  • the index value 0 to index value 6 the index value 7 to the index value 13, the index value 14 to 20, the index value 21 to
  • the precoding matrices with index value 27 belong to the first to fourth precoding matrix subsets respectively: for the first precoding matrix subset, the index values of the precoding matrices contained therein are substituted into relational formula 1 and the values are 0; for the second subset of precoding matrices, the index values of the precoding matrices contained in it are substituted into relational formula 1, and the value is 1; for the third subset of precoding matrices, the indexes of the precoding matrices contained in the subset are 1
  • the value of the value substituted into the relational expression 1 is 2; for the fourth precoding matrix subset, the index value of the precoding matrix included in the precoding matrix is substituted into the relational expression 1 and the value is 3.
  • Example 2 when L is equal to 28 and K is equal to 4, the first codebook contains 28 precoding matrices, and the index values of the precoding matrices corresponding to the 28 precoding matrices are 0 to 27 respectively, and are divided into 4 precoding matrices. Encoding matrix subsets. When the index values of the precoding matrices in each precoding matrix subset satisfy the same value substituted into relational expression 2, it can be understood that several precoding matrices whose index values are equally spaced are one precoding matrix subset.
  • Precoding matrices with index values of 0, 4, 8, 12, 16, 20, and 24 belong to the same subset of precoding matrices, or the first subset of precoding matrices; index values are 1, 5, 9, and 13 , 17, 21, 25 precoding matrices belong to the same precoding matrix subset, or called the second precoding matrix subset; precoding matrices with index values 2, 6, 10, 14, 18, 22, 26 belong to the same precoding matrix subset, or the third precoding matrix subset; precoding matrices with index values of 3, 7, 11, 15, 19, 23, 27 belong to the same precoding matrix subset, or It is the fourth precoding matrix subset.
  • Relation 1 can also be expressed in another way, that is, when the first codebook is divided into multiple precoding matrix subsets, it can be divided by multiple precoding matrices with adjacent index values, that is, each The precoding matrix subset includes multiple precoding matrices with adjacent index values.
  • Relational formula 2 can also be expressed in another way, that is, when the first codebook is divided into multiple precoding matrix subsets, the multiple precoding matrices can be divided by index values at equal intervals, that is, Each precoding matrix subset includes multiple precoding matrices whose index values are equally spaced.
  • precoding matrix subsets when L is divisible by K, the number of precoding matrices included in different precoding matrix subsets in the first codebook is the same, and when L cannot be divisible by K, different precoding matrices in the first codebook The number of precoding matrices included in the precoding matrix subsets may be different. Further, there may also be a situation that only one precoding matrix exists in a certain precoding matrix subset, which is not limited in this application.
  • the first codebook is a codebook generated based on DFT
  • at least two different precoding matrix subsets in the multiple precoding matrix subsets in the first codebook correspond to the DFT transformation matrix.
  • the multiple precoding matrices in the first codebook are divided into multiple precoding matrix subsets by at least one column vector in the DFT transformation matrix.
  • the column vectors in the DFT transformation matrix corresponding to different precoding matrix subsets are different.
  • the matrix generated by this method can be expressed as: in, um can be understood as a certain column in the DFT matrix, where N 1 and N 2 are the number of antenna ports in the horizontal and vertical dimensions, respectively, and O 1 and O 2 are the oversampling factors in the horizontal and vertical dimensions, respectively.
  • the codebook generation method mainly includes selected beams in vertical position and horizontal dimension, and phase offsets in different polarization directions. When constructing a subset of precoding matrices, it is necessary to determine the difference between t and m in v t,m . Index and phase ⁇ , where each value of t corresponds to a beam in the horizontal direction, and each value of m corresponds to a beam in the vertical direction.
  • an optional precoding matrix subset construction method can be expressed as: given a certain t and m, ⁇ is variable. For example, when t and m take 1, ⁇ takes Another optional method for constructing a subset of precoding matrices can be expressed as: grouping the values of t and m, and each group of t, m and ⁇ can form a precoding matrix set.
  • the beams corresponding to the indices t, t+O 1 , m, m+O 2 are grouped into a group, and the indices are t+1, t+1+O 1 , m+1, m+1+O 2
  • the corresponding beams are grouped together, and so on.
  • the grouping method in this example assumes that m>1, t>1, O 1 >1, O 2 >1.
  • the grouping method may be different.
  • the network device sends downlink control information to the terminal device, where the downlink control information includes indices of N precoding matrix subsets.
  • the terminal device receives the downlink control information.
  • the downlink control information includes indices of N precoding matrix subsets, and optionally, the downlink control information may further include resource indication information of a first downlink reference signal, which may be a channel state Reference Signal CSI-RS.
  • the indices of the N precoding matrix subsets may all be indices of different precoding matrix subsets.
  • the downlink control information indicates the indices of five precoding matrix subsets, and the five index values are 1 and 2 respectively. , 3, 4, 5.
  • the downlink control information indicates the indices of five precoding matrix subsets, and the index values may be 1, 1, 2, 3, and 4 respectively, that is, at this time, there are two precoding matrixes in the five precoding matrix subsets
  • the subsets are the same subset of precoding matrices.
  • the terminal device determines at least N precoding matrices in the N precoding matrix subsets.
  • the terminal device receives the downlink control information, and according to the indices of the N precoding matrix subsets indicated by the downlink control information, the terminal device determines at least N precoding matrices.
  • the downlink control information further includes resource indication information of the first downlink reference signal
  • the terminal device determines at least N precoding matrix subset indices indicated by the downlink control information and the first reference signal on the resource indication information. precoding matrix.
  • the resources corresponding to the resource indication information of the first reference signal may be time domain resources, frequency domain resources or time-frequency resources.
  • the terminal device sends uplink signals based on at least N precoding matrices, where N is a positive integer.
  • the terminal device determines at least N precoding matrices, and sends the uplink signal based on the at least N precoding matrices.
  • the uplink signal is a physical shared uplink channel PUSCH, and the PUSCH occupies multiple subbands.
  • each subband includes at least one RB or RBG, and the bandwidth of each subband is smaller than the bandwidth part BWP.
  • the size of each subband is the same as the size of the RBG.
  • BWP bandwidth part
  • each subband contains multiple RBGs
  • the number of RBGs contained in each subband can be indicated by the indication information, and it can also be understood that the size of each subband is independently configured, regardless of the size of the bandwidth part WBP.
  • the indication information may be borne in DCI, may be borne in RRC signaling, may also be borne in MAC CE, or may be borne in RRC signaling and MCA CE, which is not limited in this application.
  • each subband corresponds to a precoding matrix
  • the precoding matrices on different subbands may be the same or different. Further, the precoding matrices on different subbands may belong to the same
  • the precoding matrix subsets may also belong to different precoding matrix subsets, that is, M is a positive integer greater than or equal to N.
  • the number of precoding matrix subsets indicated by the downlink control information is N, and the N precoding matrix subsets are different from each other.
  • the terminal equipment occupies M subbands when sending PUSCH, and M is equal to N.
  • the precoding matrices corresponding to different subbands belong to different precoding matrix subsets, that is, the M precoding matrix subsets and the M subbands are in one-to-one correspondence , and further, when the precoding matrices in the M precoding matrix subsets are different, the M different precoding matrices determined by the terminal device correspond to the M subbands one-to-one.
  • the number of precoding matrix subsets indicated by the downlink control information is N, wherein the N precoding matrix subsets include n different precoding matrix subsets in total, and N is greater than n.
  • the terminal equipment occupies M subbands for sending PUSCH, and M is greater than n.
  • M subbands there are at least two subbands corresponding to the same subset of precoding matrices.
  • the precoding matrices corresponding to the at least two subbands may be The same precoding matrix in the same subset of precoding matrices may also be different precoding matrices.
  • Example 3 The number of precoding matrix subsets indicated by the downlink control information is 1, that is, N is equal to 1, and the terminal equipment occupies M subbands for sending PUSCH, and M is greater than N. At this time, M subbands correspond to one precoding matrix subband. Set, further, the precoding matrices corresponding to the M subbands may all be different, or there may be at least two subbands corresponding to the same precoding matrix.
  • each subband may correspond to the N precoding matrix subsets.
  • the precoding matrices corresponding to different subbands may be the same or different, and the precoding matrices on different subbands may belong to the same precoding matrix subset, or may belong to the same precoding matrix subset. Different subsets of precoding matrices.
  • the terminal equipment can only use one precoding matrix to transmit uplink signals on the M subbands, the one precoding matrix may not be able to match the channel change and the reduction of frequency selection gain and beamforming gain are avoided.
  • the network device indicates partial precoding matrix information to the terminal device, which can reduce the signaling overhead of subband-level precoding, reduce the detection complexity of the terminal device, and improve the transmission performance.
  • the above-mentioned downlink control information is further used to indicate an index of at least one precoding matrix
  • the precoding matrix corresponding to the at least one precoding matrix index is a precoding matrix that the network device does not expect the terminal device to use, or understands A precoding matrix that the network device expects the end device to avoid.
  • the precoding matrix corresponding to the at least one precoding matrix index may be the precoding matrix of the interference channel
  • the interference channel may be the interference channel of the bandwidth part BWP.
  • the network device indicates the precoding matrix of the interference channel to the terminal device.
  • the precoding matrix of the interference channel is considered.
  • the precoding matrix with the lowest possible correlation with the precoding matrix of the interference channel is selected to avoid the influence of the interference channel, so that the terminal equipment can better transmit the uplink signal and improve the communication quality.
  • this application uses downlink control information as an example to indicate information.
  • the content indicated by the downlink control information in this application can be carried in DCI, and can also be carried in RRC signaling or MAC CE, Alternatively, the content indicated by the downlink control information requested by itself may also be jointly indicated by RRC signaling and MAC CE, which is not limited in this application.
  • FIG. 3 is a schematic diagram of a hardware structure of a network device and a terminal device provided by the present application.
  • the terminal device 130 includes at least one processor 301 , at least one memory 302 , and at least one transceiver 303 .
  • the terminal device 130 may further include an output device 304 and an input device 305 .
  • the processor 301, the memory 302 and the transceiver 303 are connected by a bus.
  • the processor 301 may be a general-purpose central processing unit (Central Processing Unit, CPU), a microprocessor, an application-specific integrated circuit (Application-Specific Integrated Circuit, ASIC), or one or more processors for controlling the execution of the programs of the present application. integrated circuit.
  • the processor 301 may also include multiple CPUs, and the processor 301 may be a single-CPU processor or a multi-CPU processor.
  • a processor herein may refer to one or more devices, circuits, or processing cores for processing data (eg, computer program instructions).
  • Memory 302 may be Read-Only Memory (ROM) or other types of static storage devices that can store static information and instructions, Random Access Memory (RAM), or other types of information and instructions that can be stored It can also be an electrically erasable programmable read-only memory (Electrically Erasable Programmable Read-Only Memory, EEPROM), a compact disc read-only memory (CD-ROM) or other optical disk storage, optical disk storage (including compact discs, laser discs, optical discs, digital versatile discs, Blu-ray discs, etc.), magnetic disk storage media or other magnetic storage devices, or capable of carrying or storing desired program code in the form of instructions or data structures and capable of being executed by a computer Access any other medium without limitation.
  • ROM Read-Only Memory
  • RAM Random Access Memory
  • EEPROM Electrically erasable programmable Read-only memory
  • CD-ROM Compact disc read-only memory
  • CD-ROM compact disc read-only memory
  • optical disk storage including compact discs, laser discs, optical discs, digital versatile discs
  • the memory 302 may exist independently and be connected to the processor 301 through a bus.
  • the memory 302 may also be integrated with the processor 301 .
  • the memory 302 is used for storing the application program code for executing the solution of the present application, and the execution is controlled by the processor 301 .
  • the processor 301 is configured to execute the computer program code stored in the memory 302, so as to implement the coordinated transmission method described in the embodiments of the present application.
  • the transceiver 303 can use any transceiver-like device for communicating with other devices or communication networks, such as Ethernet, Radio Access Network (RAN), Wireless Local Area Networks (WLAN), etc. .
  • the transceiver 303 includes a transmitter Tx and a receiver Rx.
  • the output device 304 communicates with the processor 301 and can display information in a variety of ways.
  • the output device 304 may be a Liquid Crystal Display (LCD), a Light Emitting Diode (LED) display device, a Cathode Ray Tube (CRT) display device, or a projector (projector) Wait.
  • the input device 305 is in communication with the processor 301 and can receive user input in a variety of ways.
  • the input device 305 may be a mouse, a keyboard, a touch screen device or a sensing device, or the like.
  • the network device 120 includes at least one processor 201 , at least one memory 202 , at least one transceiver 203 and at least one network interface 204 .
  • the processor 201, the memory 202, the transceiver 203 and the network interface 204 are connected by a bus.
  • the network interface 204 is used to connect with the core network device through a link (such as the S1 interface), or connect with the network interface of other access network devices through a wired or wireless link (such as the X2 interface) (not shown in the figure). ), which is not specifically limited in the embodiments of the present application.
  • FIG. 4 is a schematic structural diagram of a possible communication apparatus provided by the present application.
  • the communication apparatus 400 can implement the functions of the network device in the above method embodiments, and thus can also achieve the beneficial effects of the above method embodiments.
  • the communication apparatus may be the access network device 120 shown in FIG. 1 , or may be a module (eg, a chip) applied to the access network device.
  • the communication device 400 includes a transceiver unit 401 and a processing unit 402 .
  • the processing unit 402 is configured to determine N precoding matrix subsets, the N precoding matrix subsets are one or more of the multiple precoding matrix subsets divided by the first codebook, and the N precoding matrix subsets are In the set, there is at least one subset of precoding matrices including at least two precoding matrices.
  • the transceiver unit 401 is configured to send downlink control information to a terminal device, where the downlink control information includes indices of N precoding matrix subsets.
  • the transceiver unit 401 is further configured to receive an uplink signal sent by the terminal device, the uplink signal occupies M subbands, the downlink control information further includes indication information of the M subbands, and the M subbands correspond to N precoding matrices.
  • the uplink signal occupies M subbands
  • the downlink control information further includes indication information of the M subbands
  • the M subbands correspond to N precoding matrices.
  • FIG. 5 is a schematic structural diagram of a possible communication apparatus provided by an embodiment of the present application.
  • the communication apparatus 500 can implement the functions of the terminal device in the above method embodiments, and thus can also achieve the beneficial effects of the above method embodiments.
  • the communication apparatus may be the terminal device 110 shown in FIG. 1 , or may be a module (eg, a chip) applied to the terminal device.
  • the communication device 500 includes a transceiver module 501 and a processing module 502 .
  • the transceiver module 501 is configured to receive downlink control information from a network device, where the downlink control information includes indices of N precoding matrix subsets, and the N precoding matrix subsets are multiple precoding matrixes divided by the first codebook. One or more of the coding matrix subsets, among the N precoding matrix subsets, at least one precoding matrix subset includes at least two precoding matrices.
  • the processing module 502 is configured to determine at least N precoding matrices in the subset of N precoding matrices.
  • the transceiver module 501 is further configured to send an uplink signal to the network device based on the at least N precoding matrices.
  • the downlink control information further includes resource indication information indicating the first downlink reference signal
  • the terminal device determines at least one of the N precoding matrix subsets based on the first downlink reference signal on the resource indicated by the resource indication information. N precoding matrices.
  • the uplink signal is a PUSCH, and the PUSCH occupies M subbands.
  • the M subbands correspond to N precoding matrix subsets.
  • each subband corresponds to a precoding matrix, and different subbands correspond to different precoding matrices.
  • the matrix subset can correspond to different precoding matrices in the same precoding matrix subset, and can also correspond to the same precoding matrix in the same precoding matrix subset:
  • M is equal to N
  • M subbands are in one-to-one correspondence with N different precoding matrix subsets
  • M subbands are in one-to-one correspondence with N precoding matrices in the N precoding matrix subsets.
  • M is greater than N, and M subbands correspond to N different precoding subsets, that is, there are two or more subbands corresponding to the same precoding subset.
  • the precoding matrices corresponding to two or more subbands corresponding to the same precoding matrix subset may be the same or different.
  • N 1
  • M subbands and M precoding matrices in a precoding subset are in one-to-one correspondence, and the M precoding matrices may be M different precoding matrices, or there may be two or two.
  • transceiver unit 401 transceiver module 501 , processing unit 402 , and processing module 502
  • the above-mentioned hardware element of the transceiver unit 401 or the transceiver module 501 may be a transceiver
  • the hardware element of the processing unit 402 or the processing module 502 may be a processor.
  • FIG. 6 is a schematic structural diagram of a possible communication apparatus provided by this application.
  • the communication apparatus 600 includes a processor 601 and an interface circuit 602 .
  • the processor 601 and the interface circuit 602 may be connected through a bus 603 .
  • the interface circuit 602 is a transceiver or an input-output interface.
  • the communication apparatus 600 may further include a memory for storing instructions executed by the processor 601 or input data required by the processor 601 to execute the instructions or data generated after the processor 601 executes the instructions.
  • the processor 601 is used to execute the functions of the above processing unit 402 or the processing module 502
  • the interface circuit 602 is used to execute the functions of the above transceiver unit 401 or the transceiver module 501 .
  • the terminal device chip When the above communication apparatus 600 is a chip applied to a terminal device, the terminal device chip implements the functions of the terminal device in the above method embodiments.
  • the terminal device chip receives information from other modules (such as a radio frequency module or an antenna) in the terminal device, and the information is sent by the network device to the terminal device; or, the terminal device chip sends information to other modules (such as a radio frequency module or an antenna) in the terminal device antenna) to send information, the information is sent by the terminal equipment to the network equipment.
  • modules such as a radio frequency module or an antenna
  • the network device chip When the foregoing communication apparatus 600 is a chip applied to a network device, the network device chip implements the functions of the network device in the foregoing method embodiments.
  • the network device chip receives information from other modules (such as a radio frequency module or an antenna) in the network device, and the information is sent by the terminal device to the network device; or, the network device chip sends information to other modules in the network device (such as a radio frequency module or an antenna). antenna) to send information, the information is sent by the network equipment to the terminal equipment.
  • modules such as a radio frequency module or an antenna
  • processor in the embodiments of the present application may be a central processing unit (central processing unit, CPU), and may also be other general-purpose processors, digital signal processors (digital signal processors, DSP), application-specific integrated circuits (application specific integrated circuit, ASIC), field programmable gate array (field programmable gate array, FPGA) or other programmable logic devices, transistor logic devices, hardware components or any combination thereof.
  • CPU central processing unit
  • DSP digital signal processors
  • ASIC application specific integrated circuit
  • FPGA field programmable gate array
  • a general-purpose processor may be a microprocessor or any conventional processor.
  • the terminal device or the network device includes a hardware layer, an operating system layer running on the hardware layer, and an application layer running on the operating system layer.
  • This hardware layer includes hardware such as central processing unit (CPU), memory management unit (MMU), and memory (also called main memory).
  • the operating system may be any one or more computer operating systems that implement business processing through processes, such as a Linux operating system, a Unix operating system, an Android operating system, an iOS operating system, or a Windows operating system.
  • the application layer includes applications such as browsers, address books, word processing software, and instant messaging software.
  • the embodiments of the present application do not specifically limit the specific structure of the execution body of the methods provided by the embodiments of the present application, as long as the program that records the codes of the methods provided by the embodiments of the present application can be executed to provide the methods provided by the embodiments of the present application.
  • the execution subject of the method provided by the embodiment of the present application may be a terminal device or a network device, or a functional module in the terminal device or network device that can call and execute a program.
  • various aspects or features of the present application may be implemented as a method, apparatus, or article of manufacture using standard programming and/or engineering techniques.
  • article of manufacture encompasses a computer program accessible from any computer readable device, carrier or medium.
  • computer readable media may include, but are not limited to: magnetic storage devices (eg, hard disks, floppy disks, or magnetic tapes, etc.), optical disks (eg, compact discs (CDs), digital versatile discs (DVDs) etc.), smart cards and flash memory devices (eg, erasable programmable read-only memory (EPROM), card, stick or key drives, etc.).
  • various storage media described herein can represent one or more devices and/or other machine-readable media for storing information.
  • the term "machine-readable medium” may include, but is not limited to, wireless channels and various other media capable of storing, containing, and/or carrying instructions and/or data.
  • memory of the systems and methods described herein is intended to include, but not be limited to, these and any other suitable types of memory.
  • the present application further provides a computer program product, the computer program product includes: computer program code, when the computer program code is run on a computer, the computer is made to execute any of the foregoing method embodiments by a terminal device or a network device. Methods.
  • the present application also provides a computer-readable storage medium, where program codes are stored in the computer-readable storage medium, and when the program codes are run on a computer, the computer is made to execute the foregoing method embodiments by a network device or a terminal device. Methods.
  • the present application also provides a system, which includes at least one terminal device and at least one network device.
  • the above-mentioned embodiments it may be implemented in whole or in part by software, hardware, firmware or any combination thereof.
  • software it can be implemented in whole or in part in the form of a computer program product.
  • the computer program product includes one or more computer instructions. When the computer instructions are loaded and executed on a computer, all or part of the processes or functions described in the embodiments of the present application are generated.
  • the computer may be a general purpose computer, special purpose computer, computer network, or other programmable device.
  • the computer instructions may be stored in or transmitted from one computer readable storage medium to another computer readable storage medium, for example, the computer instructions may be downloaded from a website site, computer, server or data center Transmission to another website site, computer, server, or data center by wire (eg, coaxial cable, optical fiber, digital subscriber line, DSL) or wireless (eg, infrared, wireless, microwave, etc.).
  • the computer-readable storage medium may be any available medium that can be accessed by a computer or a data storage device such as a server, data center, etc. that includes an integration of one or more available media.
  • the available media may be magnetic media (eg, floppy disks, hard disks, magnetic tapes), optical media (eg, high-density digital video discs (DVDs)), or semiconductor media (eg, solid state discs, SSD)) etc.
  • a component may be, but is not limited to, a process running on a processor, a processor, an object, an executable, a thread of execution, a program, or a computer.
  • an application running on a computing device and the computing device may be components.
  • One or more components may reside within a process or thread of execution, and a component may be localized on one computer or distributed among 2 or more computers.
  • these components can execute from various computer readable media having various data structures stored thereon.
  • a component may, for example, pass a signal through a local system based on a signal having one or more data packets (such as data from two components interacting with another component between a local system, a distributed system, or a network, such as the Internet interacting with other systems through signals). or remote process to communicate.
  • a signal having one or more data packets (such as data from two components interacting with another component between a local system, a distributed system, or a network, such as the Internet interacting with other systems through signals). or remote process to communicate.
  • B corresponding to A indicates that B is associated with A, and B can be determined according to A.
  • determining B according to A does not mean that B is only determined according to A, and B may also be determined according to A and/or other information.
  • an item includes one or more of the following: A, B, and C
  • the item can be any of the following: A; B, unless otherwise specified. ;C;A and B;A and C;B and C;A,B and C;A and A;A,A and A;A,A and B;A,A and C,A,B and B;A , C and C; B and B, B, B and B, B, B and C, C and C; C, C and C, and other combinations of A, B and C.
  • a total of three elements of A, B and C are used as examples above to illustrate the optional items of the item.
  • the terminal device and/or the network device may perform some or all of the steps in the embodiments of the present application, these steps or operations are only examples, and the embodiments of the present application may also perform other operations or various Variation of operations.
  • various steps may be performed in different orders presented in the embodiments of the present application, and may not be required to perform all the operations in the embodiments of the present application.
  • the disclosed system, apparatus and method may be implemented in other manners.
  • the apparatus embodiments described above are only illustrative.
  • the division of the units is only a logical function division. In actual implementation, there may be other division methods.
  • multiple units or components may be combined or Can be integrated into another system, or some features can be ignored, or not implemented.
  • the shown or discussed mutual coupling or direct coupling or communication connection may be through some interfaces, indirect coupling or communication connection of devices or units, and may be in electrical, mechanical or other forms.
  • the units described as separate components may or may not be physically separated, and components displayed as units may or may not be physical units, that is, may be located in one place, or may be distributed to multiple network units. Some or all of the units may be selected according to actual needs to achieve the purpose of the solution in this embodiment.
  • each functional unit in each embodiment of the present application may be integrated into one processing unit, or each unit may exist physically alone, or two or more units may be integrated into one unit.
  • the functions, if implemented in the form of software functional units and sold or used as independent products, may be stored in a computer-readable storage medium.
  • the technical solution of the present application can be embodied in the form of a software product in essence, or the part that contributes to the prior art or the part of the technical solution.
  • the computer software product is stored in a storage medium, including Several instructions are used to cause a computer device (which may be a personal computer, a server, or a network device, etc.) to execute all or part of the steps of the methods described in the various embodiments of the present application.
  • the aforementioned storage medium includes: a U disk, a removable hard disk, a read-only memory ROM, a random access memory RAM, a magnetic disk or an optical disk and other media that can store program codes.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请提供一种通信方法和装置。该通信方法包括:网络设备向终端设备发送下行控制信息,该下行控制信息包括N个预编码矩阵子集的索引,终端设备根据下行控制信息,从N个预编码矩阵子集中确定至少N个预编码矩阵,并基于至少N个预编码矩阵发送上行信号,提高传输性能的同时,降低了子带预编码指示信息的信令开销和终端设备检测子带预编码指示信息的复杂度。

Description

一种通信方法和装置 技术领域
本申请涉及无线通信领域,尤其涉及一种通信方法和装置。
背景技术
上行传输中,当终端和基站都配置多天线时,基站需要通过下行控制信息(downlink control information,DCI)向终端发送预编码信息,终端根据预编码信息获得预编码矩阵,通过预编码矩阵将要发射的数据映射到多个天线端口,发送物理上行共享信道(physical uplink shared channel,PUSCH)。预编码使得发送的信号更有指向性,而不是单纯地向四周辐射。
物理上行共享信道支持基于码本的传输模式和基于非码本的传输模式。对于基于码本的传输模式,是指在基站在码本中选择预编码矩阵,并向终端发送发射预编码指示(Transmitted Precoding Matrix Indicator,TPMI),该TPMI对应一个预编码矩阵。预编码矩阵的准确性会影响PUSCH的解调性能。NR系统仅支持上行宽带预编码,即在所调度的带宽上采用相同的预编码矩阵,当信道的频选特性比较大时,这种方式会使得系统性能损失,如果采用子带预编码,基站向终端设备发送信息指示每个子带的TPMI,信令开销会增大,因此,在设计上行预编码时,降低信令开销和提高传输性能成为互相矛盾的方面。
发明内容
本发明提供了一种通信方法及装置,用以减少子带预编码的信令开销。
第一方面,本申请提供一种通信方法,该方法的执行主体可以是终端设备,也可以是应用于终端设备中的芯片。下面以执行主体是终端设备为例进行描述。终端设备接收网络设备发送的下行控制信息,所述下行控制信息包括N个预编码矩阵子集的索引,N个预编码矩阵子集为第一码本划分的多个预编码矩阵子集中的一个或者多个,N个预编码子集中,存在至少一个预编码矩阵子集包括至少两个预编码矩阵。终端设备在N个预编码矩阵子集中确定至少N个预编码矩阵,终端设备基于所确定的至少N个预编码矩阵发送上行信号,N为正整数。
上述实施方式,终端设备可以从N个预编码矩阵子集中分别选择一个或多个预编码矩阵用于发送上行信号,提高了传输性能。而且,终端设备通过下行控制信息接收预编码矩阵子集的索引的指示信息,由于第一码本划分的预编码矩阵子集的个数可以小于或远小于第一码本中包含的预编码矩阵的数量,因此,相较于接收整个第一码本中所包含的预编码矩阵的索引的指示信息,接收预编码矩阵子集的索引的指示信息能够降低下行控制信息的开销,从而有利于减少终端设备检测的复杂度以及终端设备的功率消耗。
一种可选的实施方式中,下行控制信息还包括用于指示第一下行参考信号的资源指示信息,终端设备基于资源指示信息所指示的资源上的第一下行参考信号,在N个预编码矩阵子集中确定至少N个预编码矩阵。
上述实施例中,终端设备基于第一下行参考信号,确定至少N个预编码矩阵,由于第一下行参考信号可以反映下行信道的信道状态,从而终端设备能够考虑信道状态的影响,确定出合适的预编码矩阵,获得更好的多天线增益。
一种可选的实施方式中,上行信号为物理上行共享信道PUSCH,该PUSCH占用M个子带,下行控制信息还包括M个子带的指示信息,至少N个预编码矩阵为M个预编码矩阵,M个子带中的每个子带对应M个预编码矩阵中的一个,M为大于N的正整数。此时,M个子带中存在至少两个子带对应的预编码矩阵属于同一预编码矩阵子集。终端设备基于M个预编码矩阵在M个子带上发送PUSCH。
一种可选的实施方式中,上行信号为物理上行共享信道PUSCH,该PUSCH占用N个子带,也即M等于N,下行控制信息还包括N个子带的指示信息,N个预编码矩阵子集和N个子带一一对应,终端设备基于N个预编码矩阵在N个子带上发送PUSCH。
一种可选的实施方式中,上行信号为物理上行共享信道PUSCH,该PUSCH占用M个子带,M大于N,下行控制信息还包括M个子带的指示信息,N个预编码矩阵子集为一个预编码矩阵子集,N为1。根据一个预编码矩阵子集分别确定M个子带中每个子带的预编码矩阵,至少N个预编码矩阵为M个预编码矩阵,M个子带和M个预编码矩阵一一对应,终端设备基于M个预编码矩阵在M个子带上发送PUSCH。
上述方式,下行控制信息指示预编码矩阵子集的索引和子带指示信息,每个子带对应一个预编码矩阵,例如可以是最适合终端设备发送上行信号的预编码矩阵,有利于提高传输性能。
需要说明的是,M个预编码矩阵可以是完全不同的M个预编码矩阵,也可以是部分相同的预编码矩阵,本发明实施例并不限定。
一种可选的实施方式中,多个预编码矩阵子集中至少两个不同的预编码矩阵子集对应第一码本参数的不同取值,第一码本参数包括相位。一种可选的方式中,多个预编码矩阵子集为K个,第一码本中包含L个预编码矩阵,K个预编码矩阵子集中的每个预编码矩阵子集包括的预编码矩阵的索引满足
Figure PCTCN2020130256-appb-000001
的取值相同;或者,每个预编码矩阵子集中包含的预编码矩阵的索引满足mod(j,K)的取值相同。其中,j为第一码本中预编码矩阵的索引,
Figure PCTCN2020130256-appb-000002
为下取整函数,
Figure PCTCN2020130256-appb-000003
为上取整函数。
一种可选的方式中,第一码本基于离散傅里叶变换矩阵生成,多个预编码矩阵子集中至少两个不同的预编码矩阵子集对应离散傅里叶变换矩阵中的不同的列向量。
一种可选的方式中,下行控制信息还包括至少一个预编码矩阵的索引,至少一个预编码矩阵为不期望终端设备使用的预编码矩阵,或者为期望终端设备避免使用的预编码矩阵。一种可选的方式中,所述不期望终端设备使用的预编码矩阵为干扰信道的预编码矩阵。
上述方式,终端设备在从N个预编码矩阵子集中确定至少N个预编码矩阵时,同时考虑网络设备不期望终端设备使用的预编码矩阵,终端设备能够尽量减少干扰,提高传输性能
第二方面,本申请提供一种通信方法,该方法的执行主体可以是网络设备,也可以是应用于网络设备中的芯片。下面以执行主体是网络设备为例进行描述。网络设备确定N个预编码矩阵子集,网络设备向终端设备发送下行控制信息,所述下行控制信息包括N个预编码矩阵子集的索引,N个预编码矩阵子集为第一码本划分的多个预编码矩阵子集中的一个或者多个,N个预编码矩阵子集中,存在至少一个预编码矩阵子集包括至少两个预编码矩阵。
上述方式,网络设备通过下行控制信息指示一个或者多个预编码矩阵子集的索引,由于第一码本划分的预编码矩阵子集的个数可以小于或者远小于第一码本中包含的预编码矩阵的数目,因此,相较于通过下行控制信息指示第一码本中包含的预编码矩阵的索引,网络设备通过下行控制信息指示预编码矩阵子集的索引,可以降低下行控制信息的信令开销。
一种可选的实施方式中,下行控制信息还包括用于指示第一下行参考信号的资源指 示信息,终端设备基于资源指示信息指示的资源上的第一下行参考信号,在N个预编码矩阵子集中确定至少N个预编码矩阵。
一种可选的实施方式中,至少N个预编码矩阵和M个子带对应,M大于等于N,网络设备在M个子带上接收上行信号。
一种可选的实施方式中,至少N个预编码矩阵为M个,M个预编码矩阵和M个子带一一对应,网络设备在M个子带上接收上行信号。
需要说明的是,M个预编码矩阵可以是完全不同的M个预编码矩阵,也可以是部分相同的预编码矩阵,本发明实施例并不限定。
一种可选的实施方式中,上行信号为物理上行共享信道PUSCH。
一种可选的实施方式中,N个预编码矩阵子集为一个预编码矩阵子集,N为1,至少N+1个预编码矩阵属于同一预编码矩阵子集。
一种可选的实施方式中,多个预编码矩阵子集中至少两个不同的预编码矩阵子集对应第一码本参数的不同取值,第一码本参数包括相位。
一种可选的实施方式中,多个预编码矩阵子集为K个,第一码本中包含L个预编码矩阵,K个预编码矩阵子集中的每个预编码矩阵子集包括的预编码矩阵的索引满足:
Figure PCTCN2020130256-appb-000004
的取值相同;或者,每个预编码矩阵子集中包含的预编码矩阵的索引满足mod(j,K)的取值相同。其中,j为第一码本中每个预编码矩阵的索引,
Figure PCTCN2020130256-appb-000005
为下取整函数,
Figure PCTCN2020130256-appb-000006
为上取整函数。
一种可选的方式中,第一码本基于离散傅里叶变换矩阵生成,多个预编码矩阵子集中至少两个不同的预编码矩阵子集对应离散傅里叶变换矩阵中的不同的列向量。
一种可选的方式中,下行控制信息还包括至少一个预编码矩阵的索引,至少一个预编码矩阵为不期望终端设备使用的预编码矩阵,或者为期望终端设备避免使用的预编码矩阵。
一种可选的方式中,不期望终端设备使用的预编码矩阵为干扰信道的预编码矩阵。
上述方式,网络设备在指示N个预编码矩阵子集的索引的同时,同时指示网络设备不期望终端设备使用的预编码矩阵,有利于终端设备尽量减少干扰,提高传输性能。
第三方面,提供一种通信装置,所述通信装置具有实现上述第一方面的方法实例中行为的功能。所述功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。所述硬件或软件包括一个或多个与上述功能相对应的模块。在一个可能的设计中,所述通信装置包括:接收单元,所述收发单元用于接收下行控制信息,所述下行控制信息包括N个预编码矩阵子集的索引,N个预编码矩阵子集为第一码本划分的多个预编码矩阵子集中的一个或者多个,N个预编码矩阵子集中,存在至少一个预编码矩阵子集包括至少两个预编码矩阵。处理单元,用于在N个预编码矩阵子集中确定至少N个预编码矩阵。发送单元,用于基于至少N个预编码矩阵发送上行信号,N为正整数。
这些模块可以执行上述第一方面方法示例中的相应功能,具体参见方法示例中的详细描述,此处不再赘述。同时,关于第三方面或相应的实施方式所带来的技术效果,可参考对于第一方面或相应的实施方式的技术效果的介绍。
第四方面,提供一种通信装置,所述通信装置具有实现上述第二方面的方法实例中行为的功能。所述功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。所述硬件或软件包括一个或多个与上述功能相对应的模块。在一个可能的设计中,所述通信装置包括:处理单元,用于确定N个预编码矩阵子集。发送单元,用于发送下行控制信息,所述下行控制信息包括N个预编码矩阵子集的索引,N个预编码矩阵子集为第一码本划分的多个预编码矩阵子集中的一个或者多个,N个预编码矩阵子集中,存在至少一个预编码矩阵子集包括至少两个预编码矩阵。
这些模块可以执行上述第二方面方法示例中的相应功能,具体参见方法示例中的详 细描述,此处不再赘述。同时,关于第三方面或相应的实施方式所带来的技术效果,可参考对于第一方面或相应的实施方式的技术效果的介绍。
第五方面,提供了一种通信装置,该通信装置可以为上述方法实施例中的终端设备,或者为设置在终端设备中的芯片,或者为包括终端设备的较大设备。该通信装置包括至少一个处理器及接口电路,可选的,还包括存储器。其中,接口电路用于为所述至少一个处理器提供指令和/或数据的输入或输出,存储器用于存储计算机程序或指令,至少处理器与存储器、接口电路耦合,当至少一个处理器执行所述计算机程序或指令时,使通信装置执行上述方法实施例中由终端设备所执行的方法。
第六方面,提供了一种通信装置,该通信装置可以为上述方法实施例中的网络设备,或者为设置在网络设备中的芯片,或者为包括网络设备的较大设备。该通信装置包括至少一个处理器及接口电路,可选的,还包括存储器。其中,接口电路用于为所述至少一个处理器提供指令和/或数据的输入或输出,存储器用于存储计算机程序或指令,至少处理器与存储器、接口电路耦合,当至少一个处理器执行所述计算机程序或指令时,使通信装置执行上述方法实施例中由网络设备所执行的方法。
第七方面,提供了一种计算机程序产品,所述计算机程序产品包括:计算机程序代码,当所述计算机程序代码并运行时,使得上述各方面中由终端设备执行的方法被执行。
第八方面,提供了一种计算机程序产品,所述计算机程序产品包括:计算机程序代码,当所述计算机程序代码被运行时,使得上述各方面中由网络设备执行的方法被执行。
第九方面,本申请提供了一种芯片系统,该芯片系统包括处理器,用于实现上述各方面的方法中终端设备的功能。在一种可能的设计中,所述芯片系统还包括存储器,用于保存程序指令和/或数据。该芯片系统,可以由芯片构成,也可以包括芯片和其他分立器件。
第十方面,本申请提供了一种芯片系统,该芯片系统包括处理器,用于实现上述各方面的方法中网络设备的功能。在一种可能的设计中,所述芯片系统还包括存储器,用于保存程序指令和/或数据。该芯片系统,可以由芯片构成,也可以包括芯片和其他分立器件。
第十一方面,本申请提供了一种计算机可读存储介质,该计算机可读存储介质存储有计算机程序,当该计算机程序被运行时,实现上述各方面中由终端设备执行的方法。
第十二方面,本申请提供了一种计算机可读存储介质,该计算机可读存储介质存储有计算机程序,当该计算机程序被运行时,实现上述各方面中由网络设备执行的方法。
第十三方面,提供了一种通信系统,所述通信系统包括上述任一方面涉及的网络设备以及终端设备。
附图说明
图1为本申请提供的一种可能的通信架构示意图;
图2为本申请提供的通信方法的流程示意图;
图3为本申请提供的网络设备和终端设备的硬件结构示意图;
图4为本申请提供的一种可能的装置示意图;
图5为本申请提供的一种可能的装置示意图;
图6为本申请提供的可能的通信装置的结构示意图;
具体实施方式
本申请实施例中的技术方案,可应用于各种通信系统。比如,长期演进(long term evolution,LTE)系统、第五代(5th generation,5G)移动通信系统以及未来的移动通信系统等。
如图1所示,为本申请实施例适用的一种可能的网络架构示意图,包括终端设备110和接入网设备120,可选的还可以包括核心网设备130。终端设备110和接入网设备120间可通过Uu空口进行通信,Uu空口可以理解为通用的终端设备110和接入网设备120之间的接口(universal UE to network interface)。Uu空口的传输包括上行传输和下行传输。
示例的,上行传输指终端设备110向接入网设备120发送上行信号。其中,上行信号可包括上行数据、上行控制信息、或参考信号(Reference Signal,RS)中的一个或多个。用于传输上行信号的信道称为上行信道,上行信道可以为PUSCH或物理上行控制信道(physical uplink control channel,PUCCH)。PUSCH用于承载上行数据,上行数据也可以称为上行数据信息。PUSCH也可以用于承载上行控制信息。PUCCH用于承载终端设备反馈的上行控制信息(uplink control information,UCI)。UCI中可以包括信道状态信息(channel state information,CSI)、肯定应答(acknowledgement,ACK)、否定应答(negative acknowledgement,NACK)、或调度请求(scheduling request,SR)等中的一种或多种。
以第五代(Fifth generation,5G)通信系统为例,核心网设备130包括:访问和移动管理功能(access and mobility management function,AMF)、会话管理功能(session management function,SMF)、或用户面功能(user plane function,UPF)等,接入网设备120为具有无线收发功能的设备,用于与所述终端设备110进行通信。所述接入网设备包括但不限于基站(BTS,Node B,eNodeB/eNB,或gNodeB/gNB)、收发点(transmission reception point,TRP),3GPP后续演进的基站,WiFi系统中的接入节点,无线中继节点,无线回传节点等。所述基站可以是:宏基站,微基站,微微基站,小站,中继站等。多个基站可以支持上述提及的同一种接入技术的网络,也可以支持上述提及的不同接入技术的网络。基站可以包含一个或多个共站或非共站的传输接收点。在下面的实施例中,上述接入网设备和核心网设备相对于终端设备都统称为网络设备。
下面对本申请所使用到的一些名词或术语进行解释说明,该名词或术语也作为发明内容的一部分。
一、终端设备
终端设备可以简称为终端,也称为用户设备(user equipment,UE),是一种具有无线收发功能的设备。终端设备可以部署在陆地上,包括室内或室外、手持或车载;也可以部署在水面上(如轮船等);还可以部署在空中(例如飞机、无人机、气球和卫星上等)。所述终端设备可以是手机、车、平板电脑、智能音箱、探测器、加油站传感器、带无线收发功能的电脑、虚拟现实终端设备、增强现实终端设备、工业控制中的无线终端设备、无人驾驶中的无线终端设备、远程医疗中的无线终端设备、智能电网中的无线终端设备、运输安全中的无线终端设备、智慧城市中的无线终端设备、或智慧家庭中的无线终端设备等。终端设备也可以是固定的或者移动的。本申请实施例对此并不限定。
本申请实施例中,用于实现终端的功能的装置可以是终端设备;也可以是能够支持终端设备实现该功能的装置,例如芯片系统,该装置可以被安装在终端设备中。本申请实施例中,芯片系统可以由芯片构成,也可以包括芯片和其他分立器件。本申请实施例 提供的技术方案中,以用于实现终端设备的功能的装置是终端设备为例,描述本申请实施例提供的技术方案。
二、网络设备
网络设备可以是接入网设备,接入网设备也可以称为无线接入网(radio access network,RAN)设备或基站,是一种为终端设备提供无线通信功能的设备。接入网设备例如包括但不限于:5G中的下一代节点B(generation nodeB,gNB)、演进型节点B(evolved node B,eNB)、基带单元(baseband unit,BBU)、收发点(transmitting and receiving point,TRP)、发射点(transmitting point,TP)、未来移动通信系统中的接入网设备或WiFi系统中的接入点等。接入网设备还可以是云无线接入网络(cloud radio access network,CRAN)场景下的无线控制器、集中单元(centralized unit,CU),和/或分布单元(distributed unit,DU),或者网络设备可以为中继站、车载设备以及未来演进的PLMN网络中的网络设备等。
终端设备可以与不同技术的多个接入网设备进行通信,例如,终端设备可以与支持长期演进(long term evolution,LTE)的接入网设备通信,也可以与支持5G的接入网设备通信,还可以同时与支持LTE的接入网设备以及支持5G的接入网设备进行通信。本申请实施例并不限定。
本申请实施例中,用于实现网络设备的功能的装置可以是网络设备;也可以是能够支持网络设备实现该功能的装置,例如芯片系统,该装置可以被安装在网络设备中。在本申请实施例提供的技术方案中,以用于实现网络设备的功能的装置是网络设备为例,描述本申请实施例提供的技术方案。
三、上行(uplink,UL)通信和下行(downlink,DL)通信
在无线通信系统中,按照发送节点和接收节点种类的不同,可以将通信分为不同的类型。通常将网络设备向终端设备发送信息称为下行(downlink,DL)通信,将终端设备向网络设备发送信息称为上行(uplink,UL)通信。在第四代(Fourth generation,4G)和5G无线通信系统——新无线接入技术(new radio access technology,NR)系统中,上行通信可通过探测参考信号(Sounding reference signal,SRS)获得信道状态信息(Channel state information,CSI)测量,下行通信可以通过信道状态信息参考信号(CSI-reference signal,CSI-RS)获得信道状态信息。
四、时频资源粒度
时频资源也可以简称为资源,时频资源粒度也可以简称为资源粒度。在NR系统中,上行调度的资源粒度支持两种类型,或者说,NR中存在两种时频资源分配类型,分别为基于资源组(resource block group,RBG)的分配类型(又称resource allocation 0,资源分配0,)和基于资源块(resource block,RB)的分配类型(又称resource allocation 1,资源分配1)。每个RB在频域上包括12个资源单元(resource element,RE),也即12个子载波。每个RBG包含一个或多个RB,每个RBG包含的RB的数目又称为RBG的大小。本申请中,每个RBG的大小可以与带宽部分(Bandwidth Part,BWP)相关。例如,当带宽部分BWP包含的RB的数目不同时,每个RBG包含的RB的数目也不同。可选地,每个RBG的大小可以与BWP不相关,每个RBG的大小可以由高层信令指示。
五、子带
一个子带包括频域上的一个或多个RB,或者,一个子带可以包括频域上的一个或 者多个RBG。由于每个RBG同样包含多个RB,因此,子带的大小可以与RBG的大小相同,也可以不同。例如,假定一个带宽部分BWP中包括10个RB,将两个连续的RB划分成子带,则可以划分成5个子带。可选地,子带的划分可以基于调度带宽来划分,调度带宽小于或等于带宽部分BWP大小。调度带宽为在某一个时刻(如某一个时隙(slot)),终端设备发送PUSCH所占用的实际频域资源所对应的带宽。本发明实施例中的一个子带可以是PUSCH占用的一个RBG,或者可以是PUSCH占用的一个RB。
六、频选增益和波束赋形增益
频选增益是指网络设备根据每个子带的信道质量指示(Channel Quality Indicator,CQI)或信干噪比进行各个子带优先级的计算,并在每个子带上根据各个终端设备的子带调度的优先级进行调度,使得各个终端设备分别在各自信道质量最好的子带上进行信号传输。
对于波束赋形增益,终端设备对上行信号进行加权,形成对准网络设备的窄波束,或者理解为定向波束,将能量对准目标网络设备,有利于提升接收信号强度。
七、信道互易性
通常,终端设备可以通过下行信道信息直接推导获得上行信道信息,或者网络设备可以通过上行信道信息直接推导获得下行信道信息时,可以认为通信系统中具有信道互易性特征。
八、码本
一个码本由多个预编码矩阵构成。以终端设备发射天线端口为2天线端口为例,表1和表2给出了终端设备传输一流和两流时的码本示例,其中,码本中的每个预编码矩阵对应一个索引值,或者称之为TPMI索引。
表1
Figure PCTCN2020130256-appb-000007
表1为终端设备发射天线端口为2且秩为1时的码本的一种示例,在表1所示中,共有六种预编码矩阵,对应的TPMI索引值分别为0至5。
表2
Figure PCTCN2020130256-appb-000008
表2为终端发射天线端口为2且秩为2时的码本,共有三种预编码矩阵,对应的TPMI索引值分别为0至2。
其中,表1和表2中,W为预编码矩阵或向量。当预编码矩阵确定后,终端设备通过预编码矩阵将PUSCH数据映射到每个天线端口。例如,终端设备可以通过式(1-1)的过程将PUSCH的数据映射到天线端口:
Figure PCTCN2020130256-appb-000009
y (υ-1)(i)为经过预编码之前的数据,v为层索引,
Figure PCTCN2020130256-appb-000010
为经过预编码之后的数据,即对 应天线端口p ρ-1上的数据。对于两天线的单层传输,即p ρ-1为2,v为1。如果是单天线传输,则W默认为1,相当于不做预编码。
网络设备通过测量SRS,可以获得上行信道的信道状态信息,并选择预编码矩阵。例如,可以是最适合当前上行信道的预编码矩阵,并将该预编码矩阵的TPMI发送给终端设备。在选择预编码矩阵的一个示例中,网络设备可以基于容量最大化准则选出一个最佳的预编码矩阵用于上行PUSCH传输。网络设备确定好TPMI后,需要在终端设备发送上行数据前将该TPMI发送给终端设备,以通知终端设备使用何种预编码矩阵发送上行数据。例如,以传输一层的码本为例,假定终端设备为k,在终端设备到网络设备的信道中,在第m个频域资源上的功率为p k,m,第m个频域资源上的信号与干扰加噪声比(Signal to Interference plus Noise Ratio,SINR)为γ k,m。终端设备k的第m个频域资源上的信道为H k,m矩阵。SINR定义为:
Figure PCTCN2020130256-appb-000011
其中g k,m为网络设备接收天线上的权重系数,w k为终端设备k的预编码矩阵。比如,采用匹配滤波的方法来求解,可得g k,m=(H k,mw k) H,I k,m为小区间的干扰协方差矩阵,σ 2为噪声功率。一种可选的选择准则是通过容量最大化准则来选择预编码矩阵:
Figure PCTCN2020130256-appb-000012
其中Φ为预编码矩阵集合。当终端设备的每个频域资源上采用相同的预编码矩阵时,w k与频域资源索引无关。
本发明实施例中,在基于码本的传输模式中,网络设备和终端设备可以使用相同的码本。不同码本中的预编码矩阵也可能不同。本发明实施例可以使用现有的一些候选的码本,除此之外,还可以使用一些新的码本。例如,基于结构化天线分组生成的码本或者基于离散傅里叶(Discrete Fourier Transform,DFT)生成的码本。
一种实施方式中,采用基于结构化天线分组生成的码本。该实施方式可以基于相位将码本划分为预编码矩阵子集。进一步的,基于结构化天线分组生成的码本中,由于每个预编码矩阵对应一个相位值或多个相位值,因此,本发明实施例基于预编码矩阵对应的相位将码本中包括的预编码矩阵划分到各个子集中,构成多个预编码矩阵子集。例如,对于8天线端口的码本,若A 1为8天线端口且秩为1的预编码矩阵,码本生成如下:
Figure PCTCN2020130256-appb-000013
其中,θ,ε,δ,φ为不同的相位,由于每个相位可以有多个取值,该相位也可以理解为相位变量。B,D,E,F∈{exp(jθ)},
Figure PCTCN2020130256-appb-000014
Figure PCTCN2020130256-appb-000015
p为A 1矩阵的行数,q为列数,N 1,N 1,N 3,N 4为量化因子,量化因子可以控制码本的精度,量化因子取值越大,可选的相位越多,码本中预编码矩阵的精度也越高。量化因子可通过无线资源控制(Radio Resource Control,RRC)信令配置,也可以媒体接入控制控制单元(Media Access Control Control Element,MAC CE)配置。对于非8天线端口的情况,例如,2天线或者4天线端口,本方法依然适用,不同之处在于相位的大小可能不同。
对于基于DFT生成的码本,以8天线端口的情况为例,该方法的预编码矩阵的结构可表示为:
Figure PCTCN2020130256-appb-000016
其中v t,m为同一个极化方向上形成的预编码矩阵,由DFT矩阵构成,θ为不同极化方向上的相位偏移。该方法同样适用于非8天线端口数的情况,例如天线端口数为2,4,或16等情况下的码本生成。
由于码本中的预编码矩阵划分为多个预编码矩阵子集,这种情况下,码本也可以理解为码本集合。
预编码矩阵的选择会影响PUSCH的解调性能,不合适的预编码矩阵会导致PUSCH解调性能下降。因此,码本越大,码本中的预编码矩阵的数目越多,可供选择的预编码矩阵的也越多,因此,预编码矩阵的精度也越高,但此时指示TPMI的指示信息的信令开销也越大。
比如,码本中包括256个预编码矩阵,则需要8比特指示预编码矩阵索引。基于这种情况,如果按子带指示,假定有M个子带,每个子带都可选择该码本中的预编码矩阵,则需要8*M比特指示每个子带对应的一个预编码矩阵索引,假定M=40,则需要320个比特。如果该320个比特直接用DCI承载,一方面,该DCI所占的控制信道资源多,会造成控制信道拥塞、可靠性降低,另一方面,该DCI所承载比特数超过了下行调度所用DCI的大小,会增加终端设备盲检的次数。
目前,在设计预编码矩阵时,仅考虑了基于带宽的预编码矩阵,即在终端设备所分配的所有调度资源上采用相同的预编码矩阵。这种方式适用于频域信道比较平坦,信道 变化较小的情况。当信道在频域起伏变化较大时,基于带宽的预编码矩阵可能无法匹配信道的变化,不利于获得频选增益和波束赋形增益。此外,在进行多终端设备配对时,由于在不同的频域资源块上可以配对不同的终端设备,如果采用基于带宽的预编码矩阵,不利于抑制配对的终端设备之间的干扰。
本申请的一个实施例中,提供一种通信方法,用于使能上行子带级预编码矩阵,同时降低信令开销。参考图2,为该方法的流程图。在下文介绍中,以该方法应用于图1所示的网络架构示意图为例。
为了便于介绍,在下文中,以该方法由网络设备和终端设备执行为例。因为本申请实施例是以应用在图1所示的网络架构为例。因此,下文所述的网络设备例如为图1所示的网络架构中的接入网设备,下文所述的终端设备可以是图1所示的网络架构中的终端设备。
参考图2,为本申请提供的通信方法的一种流程示意图。该方法主要包括S21至S25。
S21:终端设备向网络设备发送SRS,相应的,网络设备接收终端设备发送的SRS。
具体的,终端设备在网络设备配置的SRS资源上,向网络设备发送SRS,相应的,网络设备在其配置的SRS资源上接收SRS,对上行信道进行测量,获得信道状态信息。
S22:网络设备确定N个预编码矩阵子集。
具体的,网络设备根据SRS测量所得到上行信道的状态信息以及调度带宽,确定N个预编码矩阵子集。其中,N个预编码矩阵子集为第一码本划分的多个预编码矩阵子集的一个或者多个,N个预编码矩阵子集中,至少存在一个预编码矩阵子集包括至少两个预编码矩阵。对于网络设备确定的N个预编码矩阵子集,可以是N个不同的预编码矩阵子集,也可以包括两个及两个以上相同的预编码矩阵子集,例如,网络设备确定了5个预编码矩阵子集,其中存在两个预编码矩阵子集为同一个预编码矩阵子集。这是由于,调度带宽可以包含多个子带,网络设备在确定N个预编码矩阵子集时,考虑每个子带上的信道状态信息,确定出基于每个子带上的预编码矩阵子集,此时,可能存在调度带宽中的两个或两个以上的子带适用于同一个预编码矩阵子集。
第一码本可以是现有的候选码本中的一个,可以是基于结构化的天线分组生成的码本,也可以是基于DFT变换生成的码本,还可以是其他方式生成的码本。由于第一码本中包含多个预编码矩阵,第一码本可以划分为多个预编码矩阵子集,每个预编码矩阵子集包含若干个预编码矩阵,当然,也可能存在一个或多个预编码矩阵子集中仅包含一个预编码矩阵。N大于1时,第一码本中的多个预编码矩阵划分为不同的预编码矩阵子集。N个预编码矩阵子集可以包含第一码本划分的多个预编码矩阵子集中的一个或者多个预编码矩阵子集,也可以包括第一码本划分的多个预编码矩阵子集中的全部预编码矩阵子集,此时,可以理解为N个预编码矩阵子集即第一码本本身。由于每个预编码子集也包括一个或多个预编码矩阵,此时,若将每个预编码矩阵子集看成是一个码本,第一码本可以理解为一个码本集合。
一种可选的方式中,第一码本包含至少一个第一码本参数,第一码本划分的多个预编码矩阵子集中,至少两个不同的预编码矩阵子集对应第一码本参数的不同取值,该码本参数包括相位。可选的,第一码本中的多个预编码矩阵通过相位划分为多个预编码矩阵子集。该相位可以是天线或者天线端口之间的相位偏移。由于每个相位可以对应不同 的取值,相位也可以理解为相位变量。例如,当第一码本为基于结构化天线分组生成的码本时,由于基于结构化的天线分组生成的码本可以有多个相位变量。可以通过固定一个或者多个相位的取值,遍历剩余的一个或者多个相位的取值来构造一个预编码矩阵子集。每个相位的取值基于量化因子确定,量化因子的取值也即每个相位最多可选的取值的数目。该量化因子可以是预定义的数值,也可以由指示信息指示,该指示量化因子的指示信息可以承载于RRC信令,也可以承载于MAC CE中,或者承载于RRC信令和MAC CE中。基于这种划分方式,可以将第一码本中的预编码矩阵划分为多个预编码矩阵子集,当预编码矩阵子集划分确定后,为了指示不同的子集,需要对每个子集进行编号,所述子集的编号也可以理解为每个预编码矩阵子集的索引。可以通过一个指示字段的一个或多个比特的不同状态值来指示不同的预编码矩阵子集,每种状态值表征一个预编码矩阵子集。例如,若基于结构化的天线分组生成的码本有4个相位,分别为θ,ε,δ,φ,固定θ,ε,δ的取值,通过遍历φ的可能取值
Figure PCTCN2020130256-appb-000017
来构造一个预编码矩阵子集,其中,φ的每个可能的取值都对应一个预编码矩阵。进一步的,相位θ,ε,δ,φ的量化因子分别为N 1,N 1,N 3,N 4,也即θ,ε,δ,φ分别有N 1,N 1,N 3,N 4种不同的取值,表3所示为第一码本划分成多个预编码矩阵子集的一种方式。
表3
Figure PCTCN2020130256-appb-000018
表3中,存在四个相位变量θ,ε,δ,φ,分别为第一相位至第四相位,每个相位变量对应的量化因子N 1,N 1,N 3,N 4的取值均为4,对应64种预编码矩阵子集。对于每个子集,三个相位为固定值,剩余一个相位的不同取值即对应该子集内的多个预编码矩阵。例如子集编号1,第一相位、第二相位、第三相位均为固定值,第四相位的N 4个取值,即对应编号为1的预编码矩阵子集中的N 4个预编码矩阵。可选的,对于64个预编码矩阵子集,可以通过指示信息的一个6比特指示字段的不同状态值来指示不同的预编码矩阵子集。
在生成码本时,为了降低开销,可能其中会存在两个相位相等的情况,例如,对于上述4个相位变量的情况,若有两个相位变量相等,此时,相当于只有3个相位,或者理解为此时只有3个相位可变,也即只需要3个相位的相位值就能确定出一个预编码矩阵子集。例如,存在4个相位θ,ε,δ,φ,分别为第一相位至第四相位,以第二相位和第三相位相同为例,也即ε和δ相同,此时,只需要固定两个相位的值,遍历剩余一个相位的取值即可构造出一个预编码矩阵子集。表4所示为4个相位且存在两个相位相等 时,第一码本划分成多个预编码矩阵子集的一种示例。
表4
Figure PCTCN2020130256-appb-000019
表4所示中,N 1,N 1,N 3,N 4的取值均为4,存在三个可变的相位θ,ε,δ,分别为第一相位、第二相位和第四相位,此时可以理解为第一相位和第三相位相同,也可以理解为第二相位和第三相位相同。对于3个可变的相位,只需固定其中2个相位变量的值,遍历剩余1个相位的取值即可确定出一个预编码矩阵子集中的预编码矩阵。例如子集编号1,第一相位和第二相位固定,第四相位的4个不同取值对应该预编码矩阵子集中的4个预编码矩阵,3个相位,每个相位的量化因子均为4,共有16种预编码矩阵子集,此时可以通过4比特指示字段的不同状态值来指示不同的预编码矩阵子集。
例如只存在一个相位可变,该一个相位对应的预编码矩阵子集可以表示为如下表格5:
表5
Figure PCTCN2020130256-appb-000020
表5中,θ即为上述一个相位,遍历θ的不同取值即可构造出一个预编码矩阵子集。
例如存在两个相位可变,固定一个相位的取值,遍历另一个相位的取值即可构造出一个预编码矩阵子集。参考表格6所示为可能的一种示例:
表6
Figure PCTCN2020130256-appb-000021
表6中,θ和ε分别为第一相位和第二相位,固定第一相位θ的取值为θ x,遍历第二相位ε的不同取值即可构造出一个预编码矩阵子集。
以上对相位和量化因子的描述仅仅是示例性的,相位的取值和量化因子的大小还可以其他形式,本申请对此不做限定。同时,以上示例中采用遍历一个相位的取值,固定剩余相位的取值的方式构造一个预编码矩阵子集,在实际应用中,还可以是遍历两个及两个以上相位取值,固定剩余相位的取值的方式构造一个预编码矩阵子集,本申请对此不做限定。
又一种可选的方式中,第一码本中包含L个预编码矩阵,该L个预编码矩阵中的每 个预编码矩阵都对应一个预编码矩阵的索引值,该L个预编码矩阵划分为K个预编码矩阵子集,每个预编码矩阵子集中的包含一个或者多个预编码矩阵,对于每个预编码矩阵子集,其包含的预编码矩阵的索引值满足
Figure PCTCN2020130256-appb-000022
的取值相同,或者,其包含的预编码矩阵的索引值满足mod(j,K)的取值相同,其中,j为预编码矩阵的索引,
Figure PCTCN2020130256-appb-000023
为下取整函数,
Figure PCTCN2020130256-appb-000024
为上取整函数。方便描述,以下用关系式一代表每个预编码矩阵子集中的预编码矩阵的索引满足
Figure PCTCN2020130256-appb-000025
的取值相同,用关系式二代表每个预编码矩阵子集中的预编码矩阵的索引满足mod(j,K)的取值相同。
示例一,当L等于28,K等于4时,第一码本包含28个预编码矩阵,该28个预编码矩阵对应的预编码矩阵的索引值分别为0至27,并划分为4个预编码矩阵子集。当每个预编码矩阵子集中的预编码矩阵的索引值满足关系式一时,可选的,索引值0至索引值6、索引值7至索引值13、索引值14至20,索引值21至索引值27的预编码矩阵分别属于第一个至第四个预编码矩阵子集:对第一个预编码矩阵子集,其包含的预编码矩阵的索引值代入关系式一的取值均为0;对第二个预编码矩阵子集,其包含的预编码矩阵的索引值代入关系式一的取值均为1;对第三个预编码矩阵子集,其包含的预编码矩阵的索引值代入关系式一的取值均为2;对第四个预编码矩阵子集,其包含的预编码矩阵的索引值代入关系式一的取值均为3。
示例二,当L等于28,K等于4时,第一码本包含28个预编码矩阵,该28个预编码矩阵对应的预编码矩阵的索引值分别为0至27,并划分为4个预编码矩阵子集。当每个预编码矩阵子集中的预编码矩阵的索引值满足代入关系式二的取值相同时,可以理解为索引值等间隔的若干个预编码矩阵为一个预编码矩阵子集。索引值为0、4、8、12、16、20、24的预编码矩阵属于同一预编码矩阵子集,或者称之为第一预编码矩阵子集;索引值为1、5、9、13、17、21、25的预编码矩阵属于同一预编码矩阵子集,或者称之为第二预编码矩阵子集;索引值为2、6、10、14、18、22、26的预编码矩阵属于同一预编码矩阵子集,或者称之为第三预编码矩阵子集;索引值为3、7、11、15、19、23、27的预编码矩阵属于同一预编码矩阵子集,或者称之为第四预编码矩阵子集。
关系式一还可以有另一种的表述方式,也即对于第一码本划分为多个预编码矩阵子集时,可以通过索引值相邻的多个预编码矩阵进行划分,也即每个预编码矩阵子集中包含索引值相邻的多个预编码矩阵。关系式二还可以有另一种的表述方式,也即对于第一码本划分为多个预编码矩阵子集时,可以通过索引值等间隔的方式对多个预编码矩阵进行划分,也即每个预编码矩阵子集中包含索引值等间隔的多个预编码矩阵。
需要说明的是,当L可以被K整除时,第一码本中的不同预编码矩阵子集中包含的预编码矩阵的数目相同,当L无法被K整除时,第一码本中的不同的预编码矩阵子集中包含的预编码矩阵的数目可能不同,进一步的,还可能存在某个预编码矩阵子集中只存在一个预编码矩阵的情况,本申请对此不做限定。
再一种可选的方式中,若第一码本是基于DFT生成的码本,第一码本中的多个预编码矩阵子集中至少两个不同的预编码矩阵子集对应DFT变换矩阵中的不同列向量,也即,第一码本中的多个预编码矩阵通过DFT变换矩阵中的至少一个列向量划分为多个预编码矩阵子集。不同的预编码矩阵子集对应的DFT变换矩阵中的列向量不同。
例如,对于基于DFT生成的码本,该方法生成的矩阵可以表示为:
Figure PCTCN2020130256-appb-000026
其中,
Figure PCTCN2020130256-appb-000027
u m可以理解为DFT矩阵中的某一列,其中,N 1和N 2分别为水平维度和垂直维度的天线端口数, O 1和O 2分别为水平维度和垂直维度的过采样因子。该码本生成方式中,主要包括选择的垂直位置和水平维度的波束,以及不同极化方向上的相位偏移,在构造预编码矩阵子集时,需要确定v t,m中t和m的索引以及相位θ,其中,每一个t值对应水平方向一个波束(beam),每一个m值对应垂直方向一个波束。
对于基于DFT生成的码本的预编码矩阵子集划分,一种可选的预编码矩阵子集构造方法可以表示为:给定一个确定的t和m,θ可变。例如,t和m取1时,θ取
Figure PCTCN2020130256-appb-000028
又一种可选的预编码矩阵子集构造方法可以表示为:对t和m的取值进行分组,每一组t和m和θ可构成一个预编码矩阵集合。例如,将索引为t,t+O 1,m,m+O 2所对应的波束分成一组,索引为t+1,t+1+O 1,m+1,m+1+O 2所对应的波束分成一组,以此类推,另外,本示例中的分组方式假定m>1,t>1,O 1>1,O 2>1。当上述参数取其它值时,分组方法可能不同。
S23:网络设备向终端设备发送下行控制信息,该下行控制信息包括N个预编码矩阵子集的索引。相应的,终端设备接收下行控制信息。
具体的,该下行控制信息包括N个预编码矩阵子集的索引,可选的,该下行控制信息可以还包括第一下行参考信号的资源指示信息,第一下行参考信号可以是信道状态参考信号CSI-RS。N个预编码矩阵子集的索引中,可以均为不同的预编码矩阵子集的索引,例如,下行控制信息指示5个预编码矩阵子集的索引,该5个索引值分别为1、2、3、4、5。也可以存在相同的预编码矩阵子集的索引,也即N个预编码矩阵子集的索引中,可以存在相同的索引值。例如,下行控制信息指示5个预编码矩阵子集的索引,该索引值可以分别为1、1、2、3、4,也即此时,5个预编码矩阵子集中存在两个预编码矩阵子集为相同的预编码矩阵子集。
S24:终端设备在N个预编码矩阵子集中确定至少N个预编码矩阵。
具体的,终端设备接收下行控制信息,根据该下行控制信息指示的N个预编码矩阵子集的索引,终端设备确定出至少N个预编码矩阵。当下行控制信息还包括第一下行参考信号的资源指示信息时,终端设备根据下行控制信息指示的N个预编码矩阵子集的索引和资源指示信息上的第一参考信号确定出至少N个预编码矩阵。该第一参考信号的资源指示信息对应的资源可以是时域资源、频域资源或者时频资源。
S25:终端设备基于至少N个预编码矩阵发送上行信号,N为正整数。
具体的,终端设备确定出至少N个预编码矩阵,基于该至少N个预编码矩阵发送上行信号。可选的,该上行信号为物理共享上行信道PUSCH,该PUSCH占用多个子带。对于多个子带,其中,每个子带包括至少一个RB或者RBG,且每个子带的带宽小于带宽部分BWP。当每个子带包括一个RBG时,每个子带的大小和RBG的大小相同,此时,由于每个BBG包含的RB的数目与带宽部分BWP相关,也可以理解为每个子带的 大小与带宽部分BWP相关。当每个子带包含多个的RBG时,每个子带中包含的RBG的数目可以由指示信息指示,此时也可以理解为每个子带的大小是独立配置的,与带宽部分WBP的大小无关。该指示信息可以承载于DCI,可以承载于RRC信令,也可以承载于MAC CE,或者承载于RRC信令和MCA CE中,本申请对此不做限制。
若该PUSCH占用M个子带,每个子带上均对应一个预编码矩阵,不同的子带上的预编码矩阵可能相同,也可能不同,进一步的,不同子带上的预编码矩阵可能属于同一个预编码矩阵子集,也可能属于不同的预编码矩阵子集,也即,M为大于等于N的正整数。
示例一,下行控制信息指示的预编码矩阵子集的数目为N个,N个预编码矩阵子集各不相同。终端设备发送PUSCH占用M个子带,M等于N,此时,不同子带对应的预编码矩阵属于不同的预编码矩阵子集,也即,M个预编码矩阵子集和M个子带一一对应,进一步的,M个预编码矩阵子集中的预编码矩阵各不相同时,终端设备确定的M个不同的预编码矩阵和M个子带一一对应。
示例二,下行控制信息指示的预编码矩阵子集的数目为N个,其中,N个预编码矩阵子集中共包括n个不同的预编码矩阵子集,N大于n。终端设备发送PUSCH占用M个子带,M大于n,此时,M个子带中,存在至少两个子带对应的预编码矩阵子集相同,进一步的,该至少两个子带对应的预编码矩阵可以是该相同预编码矩阵子集中的相同的预编码矩阵,也可以是不同的预编码矩阵。
示例三,下行控制信息指示的预编码矩阵子集的数目为1个,也即N等于1,终端设备发送PUSCH占用M个子带,M大于N,此时,M个子带对应一个预编码矩阵子集,进一步的,M个子带对应的预编码矩阵可以均不相同,也可以存在至少两个子带对应的预编码矩阵相同。
以上N个预编码矩阵子集和多个子带的对应仅仅是示例性的,本申请中,对多个子带而言,基于容量最大化原则,每个子带可以对应N个预编码矩阵子集中的任一预编码矩阵子集中的任一预编码矩阵,不同子带对应的预编码矩阵可以相同,也可以不同,不同子带上的预编码矩阵可以属于同一个预编码矩阵子集,也可以属于不同的预编码矩阵子集。避免了终端设备在M个子带上只能使用一个预编码矩阵发送上行信号时,造成的该一个预编码矩阵可能无法匹配信道变化造成的频选增益降低和波束赋形增益降低。同时,网络设备向终端设备指示部分预编码矩阵信息,可以减少子带级预编码的信令开销,降低终端设备检测的复杂度,提高传输性能。
另外,一个实施例中,上述下行控制信息还用于指示至少一个预编码矩阵的索引,该至少一个预编码矩阵索引对应的预编码矩阵为网络设备不期望终端设备使用的预编码矩阵,或者理解为网络设备期望终端设备避免使用的预编码矩阵。可选的,该至少一个预编码矩阵索引对应的预编码矩阵可以是干扰信道的预编码矩阵,进一步可选的,该干扰信道可以是带宽部分BWP的干扰信道。例如,网络设备向终端设备指示干扰信道的预编码矩阵,终端设备根据下行控制信息确定在N个预编码矩阵子集中确定至少N个预编码矩阵时,考虑干扰信道的预编码矩阵,终端设备会在N个预编码矩阵子集中,选择和干扰信道的预编码矩阵相关性尽可能低的预编码矩阵,避免了干扰信道的影响,从而终端设备能够更好的进行上行信号的传输,提高通信质量。
需要说明的是,本申请以下行控制信息为例进行信息指示,在实际应用中,本申请 中的下行控制信息指示的内容可以承载于DCI中,还可以承载于RRC信令或MAC CE中,或者,本身请的下行控制信息指示的内容还可以由RRC信令和MAC CE联合指示,本申请对此不做限制。
图3为本申请提供的网络设备和终端设备的硬件结构示意图。
终端设备130包括至少一个处理器301、至少一个存储器302、至少一个收发器303。可选的,终端设备130还可以包括输出设备304和输入设备305。
处理器301、存储器302和收发器303通过总线相连接。处理器301可以是一个通用中央处理器(Central Processing Unit,CPU)、微处理器、特定应用集成电路(Application-Specific Integrated Circuit,ASIC),或者一个或多个用于控制本申请方案程序执行的集成电路。处理器301也可以包括多个CPU,并且处理器301可以是一个单核(single-CPU)处理器或多核(multi-CPU)处理器。这里的处理器可以指一个或多个设备、电路或用于处理数据(例如计算机程序指令)的处理核。
存储器302可以是只读存储器(Read-Only Memory,ROM)或可存储静态信息和指令的其他类型的静态存储设备、随机存取存储器(Random Access Memory,RAM)或者可存储信息和指令的其他类型的动态存储设备,也可以是电可擦可编程只读存储器(Electrically Erasable Programmable Read-Only Memory,EEPROM)、只读光盘(Compact Disc Read-Only Memory,CD-ROM)或其他光盘存储、光碟存储(包括压缩光碟、激光碟、光碟、数字通用光碟、蓝光光碟等)、磁盘存储介质或者其他磁存储设备、或者能够用于携带或存储具有指令或数据结构形式的期望的程序代码并能够由计算机存取的任何其他介质,但不限于此。存储器302可以是独立存在,通过总线与处理器301相连接。存储器302也可以和处理器301集成在一起。其中,存储器302用于存储执行本申请方案的应用程序代码,并由处理器301来控制执行。处理器301用于执行存储器302中存储的计算机程序代码,从而实现本申请实施例中所述协同传输的方法。
收发器303可以使用任何收发器一类的装置,用于与其他设备或通信网络通信,如以太网、无线接入网(Radio Access Network,RAN)、无线局域网(Wireless Local Area Networks,WLAN)等。收发器303包括发射机Tx和接收机Rx。
输出设备304和处理器301通信,可以以多种方式来显示信息。例如,输出设备304可以是液晶显示器(Liquid Crystal Display,LCD),发光二级管(Light Emitting Diode,LED)显示设备,阴极射线管(Cathode Ray Tube,CRT)显示设备,或投影仪(projector)等。输入设备305和处理器301通信,可以以多种方式接收用户的输入。例如,输入设备305可以是鼠标、键盘、触摸屏设备或传感设备等。
网络设备120包括至少一个处理器201、至少一个存储器202、至少一个收发器203和至少一个网络接口204。处理器201、存储器202、收发器203和网络接口204通过总线相连接。其中,网络接口204用于通过链路(例如S1接口)与核心网设备连接,或者通过有线或无线链路(例如X2接口)与其它接入网设备的网络接口进行连接(图中未示出),本申请实施例对此不作具体限定。另外,处理器201、存储器202和收发器203的相关描述可参考终端设备130中处理器301、存储器302和收发器303的描述,在此不再赘述。
图4所示为本申请提供的一种可能的通信装置的结构示意图。通信装置400可以实 现上述方法实施例中网络设备的功能,因此也能实现上述方法实施例所具备的有益效果。在本申请实施例中,该通信装置可以是如图1所示的接入网设备120,还可以是应用于接入网设备的模块(如芯片)。通信装置400包括收发单元401和处理单元402。
具体的,处理单元402用于确定N个预编码矩阵子集,N个预编码矩阵子集为第一码本划分的多个预编码矩阵子集中的一个或者多个,N个预编码矩阵子集中,至少存在一个预编码矩阵子集包括至少两个预编码矩阵。收发单元401用于向终端设备发送下行控制信息,所述下行控制信息包括N个预编码矩阵子集的索引。可选的,收发单元401还用于接收终端设备发送的上行信号,该上行信号占用M个子带,下行控制信息还包括M个子带的指示信息,M个子带和N个预编码矩阵对应。具体描述可以参见上述方法实施例中的说明。
图5为本申请的实施例提供的可能的通信装置的结构示意图。通信装置500可以实现上述方法实施例中终端设备的功能,因此也能实现上述方法实施例所具备的有益效果。在本申请实施例中,该通信装置可以是如图1所示的终端设备110,还可以是应用于终端设备的模块(如芯片)。通信装置500包括收发模块501和处理模块502。
具体的,收发模块501用于接收来自网络设备的下行控制信息,所述下行控制信息包括N个预编码矩阵子集的索引,N个预编码矩阵子集为第一码本划分的多个预编码矩阵子集中的一个或者多个,N个预编码矩阵子集中,至少存在一个预编码矩阵子集包括至少两个预编码矩阵。处理模块502用于在N个预编码矩阵子集中确定至少N个预编码矩阵。收发模块501还用于基于至少N个预编码矩阵向网络设备发送上行信号。
可选的,下行控制信息还包括指示第一下行参考信号的资源指示信息,终端设备基于资源指示信息所指示的资源上的第一下行参考信号,在N个预编码矩阵子集中确定至少N个预编码矩阵。
该上行信号为PUSCH,该PUSCH占用M个子带,该M个子带和N个预编码矩阵子集对应,M个子带中,每个子带对应一个预编码矩阵,不同子带对应的不同的预编码矩阵子集,可以对应同一预编码矩阵子集中的不同的预编码矩阵,还可以对应同一预编码矩阵子集中的同一预编码矩阵:
示例一,M等于N,M个子带和N个不同的预编码矩阵子集一一对应,M个子带和N个预编码矩阵子集中的N个预编码矩阵一一对应。
实例二,M大于N,M个子带和N个不同的预编码子集对应,也即存在两个或两个以上的子带对应同一个预编码子集。此时,对应同一预编码矩阵子集的两个或两个以上子带对应的预编码矩阵可以相同,也可以不同。
示例三,N等于1,M个子带和一个预编码子集中的M个预编码矩阵一一对应,该M个预编码矩阵可以是M个不同的预编码矩阵,也可以存在两个及两个以上相同的预编码矩阵。
关于上述收发单元401、收发模块501、处理单元402和处理模块502更详细的描述,可参考上述方法实施例中的相关描述,在此不再说明。上述收发单元401或收发模块501的硬件元素可以是收发器,处理单元402或处理模块502的硬件元素可以是处理器。
图6为本申请提供的可能的通信装置的结构示意图,通信装置600包括处理器601和接口电路602。处理器601和接口电路602之间可以通过总线603连接。可以理解的 是,接口电路602以为收发器或输入输出接口。可选的,通信装置600还可以包括存储器,用于存储处理器601执行的指令或存储处理器601运行指令所需要的输入数据或存储处理器601运行指令后产生的数据。
当通信装置600用于实现上述方法实施例中的方法时,处理器601用于执行上述处理单元402或处理模块502的功能,接口电路602用于执行上述收发单元401或收发模块501的功能。
当上述通信装置600为应用于终端设备的芯片时,该终端设备芯片实现上述方法实施例中终端设备的功能。该终端设备芯片从终端设备中的其它模块(如射频模块或天线)接收信息,该信息是网络设备发送给终端设备的;或者,该终端设备芯片向终端设备中的其它模块(如射频模块或天线)发送信息,该信息是终端设备发送给网络设备的。
当上述通信装置600为应用于网络设备的芯片时,该网络设备芯片实现上述方法实施例中网络设备的功能。该网络设备芯片从网络设备中的其它模块(如射频模块或天线)接收信息,该信息是终端设备发送给网络设备的;或者,该网络设备芯片向网络设备中的其它模块(如射频模块或天线)发送信息,该信息是网络设备发送给终端设备的。
可以理解的是,本申请的实施例中的处理器可以是中央处理单元(central processing unit,CPU),还可以是其它通用处理器、数字信号处理器(digital signal processor,DSP)、专用集成电路(application specific integrated circuit,ASIC)、现场可编程门阵列(field programmable gate array,FPGA)或者其它可编程逻辑器件、晶体管逻辑器件,硬件部件或者其任意组合。通用处理器可以是微处理器,也可以是任何常规的处理器。
在本申请实施例中,终端设备或网络设备包括硬件层、运行在硬件层之上的操作系统层,以及运行在操作系统层上的应用层。该硬件层包括中央处理器(central processing unit,CPU)、内存管理单元(memory management unit,MMU)和内存(也称为主存)等硬件。该操作系统可以是任意一种或多种通过进程(process)实现业务处理的计算机操作系统,例如,Linux操作系统、Unix操作系统、Android操作系统、iOS操作系统或windows操作系统等。该应用层包含浏览器、通讯录、文字处理软件、即时通信软件等应用。并且,本申请实施例并未对本申请实施例提供的方法的执行主体的具体结构特别限定,只要能够通过运行记录有本申请实施例的提供的方法的代码的程序,以根据本申请实施例提供的方法进行通信即可,例如,本申请实施例提供的方法的执行主体可以是终端设备或网络设备,或者,是终端设备或网络设备中能够调用程序并执行程序的功能模块。
另外,本申请的各个方面或特征可以实现成方法、装置或使用标准编程和/或工程技术的制品。本申请中使用的术语“制品”涵盖可从任何计算机可读器件、载体或介质访问的计算机程序。例如,计算机可读介质可以包括,但不限于:磁存储器件(例如,硬盘、软盘或磁带等),光盘(例如,压缩盘(compact disc,CD)、数字通用盘(digital versatile disc,DVD)等),智能卡和闪存器件(例如,可擦写可编程只读存储器(erasable programmable read-only memory,EPROM)、卡、棒或钥匙驱动器等)。另外,本文描述的各种存储介质可代表用于存储信息的一个或多个设备和/或其它机器可读介质。术语“机器可读介质”可包括但不限于,无线信道和能够存储、包含和/或承载指令和/或数据的各种其它介质。
应注意,本文描述的系统和方法的存储器旨在包括但不限于这些和任意其它适合类型的存储器。
本申请还提供一种计算机程序产品,该计算机程序产品包括:计算机程序代码,当该计算机程序代码在计算机上运行时,使得该计算机执行前述任一方法实施例中由终端设备或网络设备所执行的方法。
本申请还提供一种计算机可读存储介质,该计算机可读存储介质存储有程序代码,当该程序代码在计算机上运行时,使得该计算机执行前述方法实施例中由网络设备或终端设备所执行的方法。
本申请还提供一种系统,其包括至少一个终端设备和至少一个网络设备。
在上述实施例中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。所述计算机程序产品包括一个或多个计算机指令。在计算机上加载和执行所述计算机指令时,全部或部分地产生按照本申请实施例所述的流程或功能。所述计算机可以是通用计算机、专用计算机、计算机网络、或者其他可编程装置。所述计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,所述计算机指令可以从一个网站站点、计算机、服务器或数据中心通过有线(例如同轴电缆、光纤、数字用户线(digital subscriber line,DSL))或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。所述计算机可读存储介质可以是计算机能够存取的任何可用介质或者是包含一个或多个可用介质集成的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质(例如,软盘、硬盘、磁带)、光介质(例如,高密度数字视频光盘(digital video disc,DVD))、或者半导体介质(例如,固态硬盘(solid state disc,SSD))等。
在本说明书中使用的术语“部件”、“模块”、“系统”等用于表示计算机相关的实体、硬件、固件、硬件和软件的组合、软件、或执行中的软件。例如,部件可以是但不限于,在处理器上运行的进程、处理器、对象、可执行文件、执行线程、程序或计算机。通过图示,在计算设备上运行的应用和计算设备都可以是部件。一个或多个部件可驻留在进程或执行线程中,部件可位于一个计算机上或分布在2个或更多个计算机之间。此外,这些部件可从在上面存储有各种数据结构的各种计算机可读介质执行。部件可例如根据具有一个或多个数据分组(例如来自与本地系统、分布式系统或网络间的另一部件交互的二个部件的数据,例如通过信号与其它系统交互的互联网)的信号通过本地或远程进程来通信。
应理解,说明书通篇中提到的“实施例”意味着与实施例有关的特定特征、结构或特性包括在本申请的至少一个实施例中。因此,在整个说明书各个实施例未必一定指相同的实施例。此外,这些特定的特征、结构或特性可以任意适合的方式结合在一个或多个实施例中。
应理解,在本申请实施例中,编号“第一”、“第二”…仅仅为了区分不同的对象,比如为了区分不同的网络设备,并不对本申请实施例的范围构成限制,本申请实施例并不限于此。
还应理解,在本申请中,“当…时”、“若”以及“如果”均指在某种客观情况下网元会 做出相应的处理,并非是限定时间,且也不要求网元实现时一定要有判断的动作,也不意味着存在其它限定。
还应理解,在本申请中,“至少一个”是指一个或者多个,“多个”是指两个或两个以上。
还应理解,在本申请各实施例中,“A对应的B”表示B与A相关联,根据A可以确定B。但还应理解,根据A确定B并不意味着仅仅根据A确定B,还可以根据A和/或其它信息确定B。
还应理解,本文中术语“和/或”,仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,本文中字符“/”,一般表示前后关联对象是一种“或”的关系。
本申请中出现的类似于“项目包括如下中的一项或多项:A,B,以及C”表述的含义,如无特别说明,通常是指该项目可以为如下中任一个:A;B;C;A和B;A和C;B和C;A,B和C;A和A;A,A和A;A,A和B;A,A和C,A,B和B;A,C和C;B和B,B,B和B,B,B和C,C和C;C,C和C,以及其他A,B和C的组合。以上是以A,B和C共3个元素进行举例来说明该项目的可选用条目,当表达为“项目包括如下中至少一种:A,B,……,以及X”时,即表达中具有更多元素时,那么该项目可以适用的条目也可以按照前述规则获得。
可以理解的,本申请实施例中,终端设备和/或网络设备可以执行本申请实施例中的部分或全部步骤,这些步骤或操作仅是示例,本申请实施例还可以执行其它操作或者各种操作的变形。此外,各个步骤可以按照本申请实施例呈现的不同的顺序来执行,并且有可能并非要执行本申请实施例中的全部操作。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是 各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
所述功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器ROM、随机存取存储器RAM、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以所述权利要求的保护范围为准。

Claims (34)

  1. 一种通信方法,其特征在于,所述方法包括:
    接收来自网络设备的下行控制信息,所述下行控制信息包括N个预编码矩阵子集的索引,所述N个预编码矩阵子集为第一码本划分的多个预编码矩阵子集中的一个或多个,所述N个预编码矩阵子集中的至少一个预编码矩阵子集包括至少两个预编码矩阵;
    在所述N个预编码矩阵子集中确定至少N个预编码矩阵;
    基于所述至少N个预编码矩阵发送上行信号,N为正整数。
  2. 如权利要求1所述的方法,其特征在于,所述下行控制信息还包括:用于指示第一下行参考信号的资源指示信息;
    所述在所述N个预编码矩阵中确定至少N个预编码矩阵,包括:基于所述资源指示信息指示的资源上的所述第一下行参考信号,在所述N个预编码矩阵子集中确定至少N个预编码矩阵。
  3. 如权利要求1或者2所述的方法,其特征在于,所述上行信号为物理上行共享信道PUSCH,所述PUSCH占用N个子带,所述下行控制信息还包括所述N个子带的指示信息,所述至少N个预编码矩阵为N个,所述N个预编码矩阵子集和所述N个子带一一对应,所述N个预编码矩阵和所述N个子带一一对应;
    所述基于所述N个预编码矩阵发送上行信号,包括:基于所述N个预编码矩阵在所述N个子带上发送所述PUSCH。
  4. 如权利要求1或者2所述的方法,其特征在于,所述上行信号为物理上行共享信道PUSCH,所述N个预编码矩阵子集为一个预编码矩阵子集,所述PUSCH占用M个子带;
    所述在所述N个预编码矩阵子集中确定至少N个预编码矩阵,包括:在所述一个预编码矩阵子集中确定M个预编码矩阵,所述M个预编码矩阵与所述M个子带一一对应;
    所述基于所述N个预编码矩阵发送上行信号,包括:基于所述M个预编码矩阵在所述M个子带上发送所述PUSCH。
  5. 如权利要求1-4任一项所述的方法,其特征在于,所述多个预编码矩阵子集中至少两个不同的预编码矩阵子集对应所述第一码本参数的不同取值,所述第一码本参数包括相位。
  6. 如权利要求1-4任一项所述的方法,其特征在于,所述多个预编码矩阵子集为K个,所述第一码本中包含L个预编码矩阵,所述多个预编码矩阵子集中的每个预编码矩阵子集包括的预编码矩阵的索引满足:
    Figure PCTCN2020130256-appb-100001
    的取值相同,或者,mod(j,K)的取值相同,其中,j为第一码本中每个预编码矩阵的索引,
    Figure PCTCN2020130256-appb-100002
    为下取整函数,
    Figure PCTCN2020130256-appb-100003
    为上取整函数。
  7. 如权利要求1-4任一项所述的方法,其特征在于,所述第一码本基于离散傅里叶变换矩阵生成,所述多个预编码矩阵子集中至少两个不同的预编码矩阵子集对应所述离散傅里叶变换矩阵中的不同的列向量。
  8. 如权利要求1-7任一项所述的方法,其特征在于,所述下行控制信息还包括:至少一个预编码矩阵的索引,所述至少一个预编码矩阵为不期望终端设备使用的预编码矩阵。
  9. 一种通信方法,其特征在于,所述方法包括:
    确定N个预编码矩阵子集;
    向终端设备发送下行控制信息,所述下行控制信息包括N个预编码矩阵子集的索引,所述N个预编码矩阵子集为第一码本划分的多个预编码矩阵子集中的一个或多个,所述N个预编码矩阵子集中的至少一个预编码矩阵子集包括至少两个预编码矩阵。
  10. 如权利要求9所述的方法,其特征在于,所述下行控制信息还包括:用于指示第一下行参考信号的资源指示信息,所述下行参考信号用于所述终端设备确定所述N个预编码矩阵子集中的至少N个预编码矩阵。
  11. 如权利要求9或者10所述的方法,其特征在于,所述至少N个预编码矩阵与M个子带对应,M大于等于N,所述方法还包括:在所述M个子带上接收上行信号,所述上行信号为物理上行共享信道PUSCH。
  12. 如权利要求10或者11所述的方法,其特征在于,所述至少N个预编码矩阵属于M个不同的预编码矩阵子集,或者,所述至少N个预编码矩阵属于同一预编码矩阵子集。
  13. 如权利要求9-12任一项所述的方法,其特征在于,所述多个预编码矩阵子集中至少两个不同的预编码矩阵子集对应所述第一码本参数的不同取值,所述第一码本参数包括相位。
  14. 如权利要求9-12任一项所述的方法,其特征在于,所述多个预编码矩阵子集为K个,所述第一码本中包含L个预编码矩阵,所述多个预编码矩阵子集中的每个预编码矩阵子集包括的预编码矩阵满足:
    Figure PCTCN2020130256-appb-100004
    的取值相同,或者,mod(j,K)的取值相同,其中,j为第一码本中每个预编码矩阵的索引,
    Figure PCTCN2020130256-appb-100005
    为下取整函数,
    Figure PCTCN2020130256-appb-100006
    为上取整函数。
  15. 如权利要求9-12任一项所述的方法,其特征在于,所述第一码本基于离散傅里叶变换矩阵生成,所述多个预编码矩阵子集中至少两个不同的预编码矩阵子集对应所述离散傅里叶变换矩阵中的不同的列向量。
  16. 如权利要求9-15任一项所述的方法,其特征在于,所述下行控制信息还包括:至少一个预编码矩阵的索引,所述至少一个预编码矩阵为不期望终端设备使用的预编码矩阵。
  17. 一种通信装置,所述装置包括:
    接收单元,用于接收来自网络设备的下行控制信息,所述下行控制信息包括N个预编码矩阵子集的索引,所述N个预编码矩阵子集为第一码本划分的多个预编码矩阵子集中的一个或多个,所述N个预编码矩阵子集中的至少一个预编码矩阵子集包括至少两个预编码矩阵;
    处理单元,用于在所述N个预编码矩阵子集中确定至少N个预编码矩阵;
    发送单元,用于基于所述至少N个预编码矩阵发送上行信号,N为正整数。
  18. 如权利要求17所述的通信装置,其特征在于,所述下行控制信息还包括:用于指示第一下行参考信号的资源指示信息;
    所述在所述N个预编码矩阵中确定至少N个预编码矩阵,包括:基于所述资源指示信息指示的资源上的所述第一下行参考信号,在所述N个预编码矩阵子集中确定至少N 个预编码矩阵。
  19. 如权利要求17或者18所述的通信装置,其特征在于,所述上行信号为物理上行共享信道PUSCH,所述PUSCH占用N个子带,所述下行控制信息还包括所述N个子带的指示信息,所述N个预编码矩阵子集和所述N个子带一一对应,所述N个预编码矩阵和所述N个子带一一对应;
    所述基于所述N个预编码矩阵发送上行信号,包括:基于所述N个预编码矩阵在所述N个子带上发送所述PUSCH。
  20. 如权利要求17或者18所述的通信装置,其特征在于,所述上行信号为物理上行共享信道PUSCH,所述N个预编码矩阵子集为一个预编码矩阵子集,所述PUSCH占用M个子带;
    所述在所述N个预编码矩阵子集中确定至少N个预编码矩阵,包括:在所述一个预编码矩阵子集中确定M个预编码矩阵,所述M个预编码矩阵与所述M个子带一一对应;
    所述基于所述N个预编码矩阵发送上行信号,包括:基于所述M个预编码矩阵在所述M个子带上发送所述PUSCH。
  21. 如权利要求17-20任一项所述的通信装置,其特征在于,所述多个预编码矩阵子集中至少两个不同的预编码矩阵子集对应所述第一码本参数的不同取值,所述第一码本参数包括相位。
  22. 如权利要求17-20任一项所述的通信装置,其特征在于,所述多个预编码矩阵子集为K个,所述第一码本中包含L个预编码矩阵,所述多个预编码矩阵子集中的每个预编码矩阵子集包括的预编码矩阵满足:
    Figure PCTCN2020130256-appb-100007
    的取值相同,或者,mod(j,K)的取值相同,其中,j为第一码本中每个预编码矩阵的索引,
    Figure PCTCN2020130256-appb-100008
    为下取整函数,
    Figure PCTCN2020130256-appb-100009
    为上取整函数。
  23. 如权利要求17-20任一项所述的通信装置,其特征在于,所述第一码本基于离散傅里叶变换矩阵生成,所述多个预编码矩阵子集中至少两个不同的预编码矩阵子集对应所述离散傅里叶变换矩阵中的不同的列向量。
  24. 如权利要求17-23任一项所述的通信装置,其特征在于,所述下行控制信息还包括:至少一个预编码矩阵的索引,所述至少一个预编码矩阵为不期望终端设备使用的预编码矩阵。
  25. 一种通信装置,其特征在于,所述通信装置包括:
    处理单元,用于确定N个预编码矩阵子集;
    发送单元,用于向终端设备发送下行控制信息,所述下行控制信息包括N个预编码矩阵子集的索引,所述N个预编码矩阵子集为第一码本划分的多个预编码矩阵子集中的一个或多个,所述N个预编码矩阵子集中的至少一个预编码矩阵子集包括至少两个预编码矩阵。
  26. 如权利要求25所述的通信装置,其特征在于,所述下行控制信息还包括:用于指示第一下行参考信号的资源指示信息,所述下行参考信号用于所述终端设备确定所述N个预编码矩阵子集中的至少N个预编码矩阵。
  27. 如权利要求25或者26所述的通信装置,其特征在于,所述至少N个预编码矩阵与至少N个子带一一对应,所述通信装置还包括:接收单元,用于在所述至少N个子带上接收上行信号,所述上行信号为物理上行共享信道PUSCH。
  28. 如权利要求26或者27所述的通信装置,其特征在于,所述至少N个预编码矩阵属于M个不同的预编码矩阵子集,或者,所述至少N个预编码矩阵属于同一预编码矩阵子集。
  29. 如权利要求25-28任一项所述的通信装置,其特征在于,所述多个预编码矩阵子集中至少两个不同的预编码矩阵子集对应所述第一码本参数的不同取值,所述第一码本参数包括相位。
  30. 如权利要求25-28任一项所述的通信装置,其特征在于,所述多个预编码矩阵子集为K个,所述第一码本中包含L个预编码矩阵,所述多个预编码矩阵子集中的每个预编码矩阵子集包括的预编码矩阵满足:
    Figure PCTCN2020130256-appb-100010
    的取值相同,或者,mod(j,K)的取值相同,其中,j为第一码本中每个预编码矩阵的索引,
    Figure PCTCN2020130256-appb-100011
    为下取整函数,
    Figure PCTCN2020130256-appb-100012
    为上取整函数。
  31. 如权利要求25-28任一项所述的通信装置,其特征在于,所述第一码本基于离散傅里叶变换矩阵生成,所述多个预编码矩阵子集中至少两个不同的预编码矩阵子集对应所述离散傅里叶变换矩阵中的不同的列向量。
  32. 如权利要求25-31任一项所述的方法,其特征在于,所述下行控制信息还包括:至少一个预编码矩阵的索引,所述至少一个预编码矩阵为不期望终端设备使用的预编码矩阵。
  33. 一种通信装置,其特征在于,包括:至少一个处理器及接口电路,所述接口电路用于为所述至少一个处理器提供指令和/或数据的输入或输出,所述至少一个处理器执行上述指令时,使得所述装置实现如权利要求1-8或权利要求9-16任一项所述的方法。
  34. 一种计算机可读存储介质,其特征在于包括程序或指令,当所述程序或指令在计算机上运行时,如权利要求1-8或者权利要求9-16任一项所述的方法被执行。
PCT/CN2020/130256 2020-11-19 2020-11-19 一种通信方法和装置 WO2022104665A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202080106592.9A CN116648969A (zh) 2020-11-19 2020-11-19 一种通信方法和装置
PCT/CN2020/130256 WO2022104665A1 (zh) 2020-11-19 2020-11-19 一种通信方法和装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/130256 WO2022104665A1 (zh) 2020-11-19 2020-11-19 一种通信方法和装置

Publications (1)

Publication Number Publication Date
WO2022104665A1 true WO2022104665A1 (zh) 2022-05-27

Family

ID=81708189

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/130256 WO2022104665A1 (zh) 2020-11-19 2020-11-19 一种通信方法和装置

Country Status (2)

Country Link
CN (1) CN116648969A (zh)
WO (1) WO2022104665A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024002195A1 (zh) * 2022-07-01 2024-01-04 华为技术有限公司 数据传输方法和装置
WO2024001981A1 (zh) * 2022-06-30 2024-01-04 维沃移动通信有限公司 预编码矩阵的指示方法、终端及网络侧设备

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170201307A1 (en) * 2014-07-31 2017-07-13 Lg Electronics Inc. Method for estimating channel and device therefor
WO2018117738A1 (en) * 2016-12-22 2018-06-28 Samsung Electronics Co., Ltd. Uplink mimo codebook for advanced wireless communication systems
CN109600838A (zh) * 2017-09-30 2019-04-09 华为技术有限公司 一种上行子带预编码矩阵的指示方法、终端及基站
CN109690962A (zh) * 2017-12-27 2019-04-26 Oppo广东移动通信有限公司 数据预编码的方法、终端设备和网络设备

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170201307A1 (en) * 2014-07-31 2017-07-13 Lg Electronics Inc. Method for estimating channel and device therefor
WO2018117738A1 (en) * 2016-12-22 2018-06-28 Samsung Electronics Co., Ltd. Uplink mimo codebook for advanced wireless communication systems
CN109600838A (zh) * 2017-09-30 2019-04-09 华为技术有限公司 一种上行子带预编码矩阵的指示方法、终端及基站
CN109690962A (zh) * 2017-12-27 2019-04-26 Oppo广东移动通信有限公司 数据预编码的方法、终端设备和网络设备

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
ICERA SEMICONDUCTOR: "Compression of MIMO Precoding Information for E-UTRA", 3GPP DRAFT; R1-080499, vol. RAN WG1, 10 January 2008 (2008-01-10), Sevilla, Spain, pages 1 - 5, XP050109015 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024001981A1 (zh) * 2022-06-30 2024-01-04 维沃移动通信有限公司 预编码矩阵的指示方法、终端及网络侧设备
WO2024002195A1 (zh) * 2022-07-01 2024-01-04 华为技术有限公司 数据传输方法和装置

Also Published As

Publication number Publication date
CN116648969A (zh) 2023-08-25

Similar Documents

Publication Publication Date Title
US20230413256A1 (en) Apparatus and method for transmitting and receiving beam information in wireless communication system
US11863271B2 (en) Reporting of coefficients for channel state information
US20230171623A1 (en) Channel state information reporting
CN109150439B (zh) 一种数据传输方法、装置、网络侧设备和用户设备
US11095343B2 (en) Method and device for feeding back and receiving channel information, and computer storage medium
WO2016141796A1 (zh) 信道状态信息的测量和反馈方法及发送端和接收端
WO2020125655A1 (zh) 一种通信方法及设备
WO2021052179A1 (zh) 一种上行数据传输方法及装置
WO2015192777A1 (zh) 一种数据传输的方法和装置
WO2022002079A1 (zh) 预编码矩阵确定方法及装置
US20220247459A1 (en) Multibeam Precoder Based Channel State Information
US11855729B2 (en) Uneven frequency-domain basis allocation for type II CSI enhancements
WO2022104665A1 (zh) 一种通信方法和装置
WO2022117046A1 (zh) 一种通信方法、装置、芯片、存储介质及程序产品
WO2022017325A1 (zh) 一种通信方法及装置
WO2022027625A1 (en) Frequency domain precoding for fdd reciprocity
EP4233281A1 (en) Codebook and pmi override in downlink mu-mimo transmission
CN110875768B (zh) 一种信道状态信息的反馈方法及装置、网络设备和终端
WO2021053370A1 (en) Pmi distance (pmid) assisted mu-mimo transmission
WO2023151564A1 (zh) 通信方法、装置及系统
WO2020063287A1 (zh) 一种信道状态信息的反馈方法及装置、终端和基站
WO2019200595A1 (zh) 通信方法和通信设备
CN118120154A (zh) 针对类型ii信道状态信息的信道状态信息省略

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20961956

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 202080106592.9

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20961956

Country of ref document: EP

Kind code of ref document: A1