WO2016141796A1 - 信道状态信息的测量和反馈方法及发送端和接收端 - Google Patents

信道状态信息的测量和反馈方法及发送端和接收端 Download PDF

Info

Publication number
WO2016141796A1
WO2016141796A1 PCT/CN2016/073862 CN2016073862W WO2016141796A1 WO 2016141796 A1 WO2016141796 A1 WO 2016141796A1 CN 2016073862 W CN2016073862 W CN 2016073862W WO 2016141796 A1 WO2016141796 A1 WO 2016141796A1
Authority
WO
WIPO (PCT)
Prior art keywords
channel measurement
measurement pilot
channel
receiving
codeword
Prior art date
Application number
PCT/CN2016/073862
Other languages
English (en)
French (fr)
Inventor
弓宇宏
陈艺戬
李儒岳
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Publication of WO2016141796A1 publication Critical patent/WO2016141796A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas

Definitions

  • This document relates to the field of measurement and feedback technologies of Channel State Information (CSI), and in particular to a CSI measurement and feedback method and a transmitting end and a receiving end.
  • CSI Channel State Information
  • a transmitting end and a receiving end use a plurality of antennas in a spatial multiplexing manner to obtain a higher transmission rate.
  • a widely used technology is that the transmitting end sends the measurement pilot for the receiving end to measure the channel state information, and the receiving end feeds back the measured channel state information to the transmitting end.
  • the transmitting end uses some transmitter precoding techniques according to the obtained channel state information, thereby greatly improving the transmission performance.
  • a common reference signal (CRS, Common Reference Signal) is used for channel measurement and data demodulation, and up to four transmit antenna ports are supported. Since the CRS transmission does not include the precoding information of the data, when the data is transmitted based on the precoding method, the transmitting end needs to additionally notify the receiving end of the specific precoding matrix (also referred to as precoding weight) information used when transmitting the data. .
  • precoding matrix also referred to as precoding weight
  • CSI-RS Channel State Information Reference Signal
  • PMI Precoding Matrix Indication
  • RI Rank Indication
  • the CSI-RS transmission does not carry precoding information; the DMRS is mainly used for channel estimation of data transmission to complete data. Demodulation, the transmission of the DMRS carries the precoding information used for the corresponding data transmission.
  • the feedback of the channel information is mainly a feedback method using a simple single codebook, and the multiple input multiple output (MIMO) multiple transmit multiple precoding (MIMO) Performance is more dependent on the accuracy of the codebook feedback.
  • MIMO multiple input multiple output
  • MIMO multiple transmit multiple precoding
  • the number of available codewords is one.
  • the feature vector space of the channel matrix is quantized to form a codebook space.
  • the transmitter and the receiver jointly save or generate the codebook in real time (same as the transceiver).
  • the receiving end selects a codeword that best matches the channel according to a certain criterion, and feeds back the codeword sequence number and the number of transmission layers (rank) corresponding to the codeword to the transmitting end.
  • the transmitting end finds the corresponding precoding codeword according to the sequence number and the number of transmission layers (rank) information, thereby obtaining channel information, and representing the feature vector information of the channel.
  • Multi-antenna technology is a key technology to address the explosive growth of wireless data services.
  • the multi-antenna technology supported in 4G is only a beamforming technology with a maximum horizontal dimension of 8 antenna ports, and there is a greater potential for further response to increase system capacity.
  • Massive Multiple Input Multiple Output (Massive Multiple Input Multiple Output) technology is a key enhancement technology in the next generation communication technology.
  • the main feature of the Massive MIMO system is that the base station side is equipped with a large-scale antenna array, which can be used more than Eight antennas transmit, for example, 16 antennas, or 32 antennas, or 64 antennas, or even more antennas.
  • the transmission transmission of more than 8 antennas is Massive MIMO technology.
  • the use of such large-scale multi-antenna technology not only reduces the interference between user channels, but on the other hand, large arrays can also bring about considerable array gain and diversity gain.
  • the space of the base station antenna can be effectively utilized, and multiple antennas can be placed in a small space, thereby obtaining both Massive MIMO in the horizontal direction.
  • the gain in turn, can obtain the Massive MIMO gain in the vertical direction.
  • This is the 3D Massive MIMO (3D Massive MIMO) technology or the Full Dimensional MIMO (FD) technology.
  • Massive MIMO technology a large number of user multiplexing is also an important application for gain.
  • the conventional method that is, each antenna transmits channel measurement pilots
  • the terminal detects channel measurement pilots and obtains a channel matrix corresponding to each transmission resource through channel estimation.
  • the channel matrix the best subband precoding vector and the best transmission layer information of each frequency domain on the baseband are obtained, and then the method is fed back to the base station, which is relatively large in the application of the large-scale antenna array.
  • the pilot overhead increases with the number of transmitting antennas, resulting in a very large pilot overhead. Therefore, in the recent discussion of 3GPP conferences, a method for channel state information measurement based on precoding is proposed.
  • codebooks in large-scale antenna array scenarios often need to contain a large number of codewords, especially considering In the case where the data transmission supports multiple layers, the codeword is more, which increases the difficulty in selecting the codeword in the channel measurement period, and also makes the measurement delay of the channel state information large.
  • the technical problem to be solved by the present invention is to provide a method for measuring and feeding back channel state information, and a transmitting end and a receiving end, so as to avoid the problem that the channel measurement pilot overhead in the large-scale multi-antenna technology is too large, and effectively pre-predict
  • the selection of the encoded codeword or beamforming weight saves the measurement time of the channel state information.
  • a channel state information (CSI) measurement and feedback method comprising:
  • the transmitting end sends a channel measurement pilot according to a preset orientation manner, where the channel measurement pilot is used by the receiving end to perform CSI measurement;
  • the transmitting end receives the CSI fed back by the receiving end.
  • the preset orientation manner includes one of the following ways:
  • Precoding codewords having a transmission layer number of 1 to M in the codebook are respectively used as the channel measurement pilots Beam shaping weight;
  • a base vector of a precoding codeword constituting a transmission layer number of 1 to M in the codebook is used as a beamforming weight of the channel measurement pilot;
  • M is the maximum number of transport layers that the sender can support for data transmission, and M is an integer greater than or equal to 1.
  • the method further includes: configuring N channel measurement pilot ports;
  • the sending, by the sending end, the channel measurement pilot includes: sending, by the sending end, the channel measurement pilots on the N channel measurement pilot ports, where N is an integer greater than or equal to 1;
  • the step of the receiving end receiving the CSI fed back by the receiving end includes: receiving, by the transmitting end, CSI of any one of the channel measurement pilot ports fed back by the receiving end, or any two or more of the channels The CSI on the combination of the pilot ports is measured, and the indication information of the channel measurement pilot port corresponding to the CSI is measured.
  • the N channel measurement pilot ports are respectively bound with different beamforming weights.
  • Any two or more of the N channel measurement pilot ports are bound to different beamforming weights.
  • the combination of any two or more channel measurement pilot ports is used to measure CSI when the number of transmission layers is greater than 1, wherein different channel measurement pilot ports correspond to different transport layers.
  • the method before the step of separately transmitting the channel measurement pilots on the N channel measurement pilot ports, the method further includes:
  • the transmitting end and the receiving end pre-arrange the configuration information of the N channel measurement pilot ports.
  • the configuration information includes at least one of the following:
  • the channel measures pilot period and subframe offset information
  • the channel measures pilot location information
  • the channel measures a binding relationship between a pilot port and a beamforming weight
  • the preset orientation manner is that the precoding codewords with the number of transmission layers being 1 to M are respectively used as beamforming weights of the channel measurement pilots;
  • the step of transmitting a channel measurement pilot based on a preset orientation manner includes:
  • i different channel measurement pilot ports are configured for the transmission of each precoding codeword, corresponding to i different transmission layers; 1 ⁇ i ⁇ M and i is an integer.
  • the preset orientation manner is that a precoding codeword with a transmission layer number of M is used as a beamforming weight of the channel measurement pilot;
  • the method further includes configuring M different channel measurement pilot ports for each precoding codeword transmission, corresponding to M different transmission layers.
  • the precoding codeword with the number of transmission layers of M and the precoding codeword with the number of transmission layers i satisfy a nesting characteristic; 1 ⁇ i ⁇ M and i is an integer.
  • the preset orientation manner is that a base vector of a precoding codeword constituting a transmission layer number of 1 to M is respectively used as a beam shaping weight of the channel measurement pilot;
  • the method also includes configuring one channel measurement pilot port for each base vector transmission.
  • the method before the step of sending, by the sending end, the channel measurement pilot according to a preset orientation manner, the method further includes: configuring a time unit for transmitting the channel measurement pilot.
  • the method before the step of configuring the time unit for transmitting the channel measurement pilot, the method further includes: the sending end receiving a channel state quality measurement request from the receiving end;
  • the method further includes: the sending end notifying the configured time unit of the configured time unit.
  • the step of configuring a time unit for transmitting the channel measurement pilot includes:
  • the transmitting end configures Q consecutive time units for transmitting the channel measurement pilot, where the value of Q is one of the following modes:
  • the value of Q is equal to the number of all beamforming weights that can be used as the channel measurement pilot
  • all beamforming weights that can be used as the channel measurement pilots are divided into P groups, where P is an integer greater than 1, and the beam shaping weights included in each group in the P group are The Euclidean distance is greater than the specified threshold, and the value of Q is equal to P;
  • T is an integer greater than 1
  • signal transmission of the jth level beam or codeword The coverage of the signal transmission coverage of the (j+1)th grade beam or codeword is wider, and the signal transmission coverage of each jth grade beam or codeword includes L j (j+1) levels.
  • the signal transmission coverage of the beam or codeword, the value of Q is equal to L 0 + L 1 + ... + L T-1 ; where L 0 is the number of beams of the first class, and j is an integer less than T.
  • the step of configuring a time unit for transmitting the channel measurement pilot includes:
  • the transmitting end configures a K group equally spaced time unit set for transmitting the channel measurement pilot, where each group of time unit sets includes Q consecutive time units for transmitting the channel measurement pilot, K Is a positive integer.
  • the step of the sending end receiving the CSI fed back by the receiving end includes:
  • index information of the precoding codeword and corresponding channel state quality information from the receiving end, where the index information is a predefined index of all precoding codewords or bound channel measurement pilot ports of the transmission layer being 1 to M Numbering;
  • a precoding codeword index and corresponding transport layer index information and channel state quality information where the index information is a precoding codeword or a bound channel measurement corresponding to the setting of the number of the transport layer Pre-defined index number of the pilot port;
  • base vector index information is a base of precoding code words constituting a transport layer of 1 to M.
  • Vector predefined index number is a base of precoding code words constituting a transport layer of 1 to M.
  • the indication information of the channel measurement pilot port and the corresponding channel state quality information are received from the receiving end, where the indication information is an index number predefined for the channel measurement pilot port to which the transmission layer is 1 to M respectively.
  • the method further includes preserving, in the transmitting end and the receiving end, a codebook containing a precoding codeword or a base vector that can be used as a beamforming weight of the channel measurement pilot.
  • a channel state information (CSI) measurement and feedback method comprising:
  • the receiving end receives the channel measurement pilot transmitted by the transmitting end according to the preset orientation manner, and measures the CSI according to the received channel measurement pilot;
  • the receiving end feeds back the measured CSI to the transmitting end.
  • the step of receiving, by the receiving end, the channel measurement pilot that is sent by the sending end according to the preset orientation manner includes:
  • a channel measurement pilot that is used as a beamforming weight according to a precoding codeword whose number of transmission layers in the codebook is 1 to M respectively;
  • a channel measurement pilot that is used by the transmitting end as a beamforming weight based on a precoding codeword whose number of transmission layers is M in the codebook;
  • a channel measurement pilot based on a base vector of a precoding codeword with a transmission layer number of 1 to M in the codebook as a beamforming weight
  • M is the maximum number of transport layers that the sender can support for data transmission, and M is an integer greater than or equal to 1.
  • the receiving, sending, and receiving, according to the preset channel-measuring manner, the step of measuring the CSI according to the received channel measurement pilot includes: the receiving end measuring pilots on the pre-configured N channels The port respectively receives the channel measurement pilot, where N is an integer greater than or equal to 1;
  • the step of the receiving end feeding back the measured CSI to the transmitting end includes: the receiving end measuring the CSI of any one of the channel measurement pilot ports, or any two or more of the channels The CSI on the combination of the pilot ports and the indication information of the channel measurement pilot port corresponding to the CSI are fed back to the transmitting end.
  • the N channel measurement pilot ports are respectively bound with different beamforming weights
  • any two or more of the N channel measurement pilot ports are bound to different beamforming weights.
  • the combination of any two or more channel measurement pilot ports is used to measure CSI when the number of transmission layers is greater than 1, wherein different channel measurement pilot ports correspond to different transport layers.
  • the method before the step of receiving the channel measurement pilot by the N channel measurement pilot ports, the method further includes:
  • the receiving end and the transmitting end pre-arrange the configuration information of the N channel measurement pilot ports.
  • the configuration information includes at least one of the following:
  • the channel measures pilot period and subframe offset information
  • the channel measures pilot location information
  • the channel measures a binding relationship between a pilot port and a beamforming weight
  • the step of receiving, by the receiving end, the channel measurement pilots, where the transmitting end is based on a precoding codeword with a number of transmission layers of 1 to M as a beamforming weight includes:
  • the receiving end sequentially receives channel measurement pilots that are sent according to precoding codewords whose number of transmission layers is i, where the receiving i different channel measurement pilot ports respectively correspond to i different transmission layers; 1 ⁇ i ⁇ M And i is an integer.
  • the receiving end receives the precoding codeword of the sending end based on the number of transmission layers being M
  • the steps of channel measurement pilots as beamforming weights include:
  • the receiving end receives a channel measurement pilot transmitted according to a precoding codeword with a number of transmission layers of M, where M different channel measurement pilot ports are received, corresponding to M different transmission layers respectively.
  • the precoding codeword with the number of transmission layers of M and the precoding codeword with the number of transmission layers i satisfy a nesting feature; 1 ⁇ i ⁇ M and i is an integer.
  • the step of receiving, by the receiving end, the channel measurement pilots of the precoding codewords with the number of transmission layers being 1 to M respectively as the beamforming weights includes:
  • the receiving end sequentially receives channel measurement pilots transmitted based on each base vector, wherein each base vector is configured with one channel measurement pilot port.
  • the method further includes: receiving time unit information configured to send the channel measurement pilot for the channel measurement pilot.
  • the step of receiving time unit information for transmitting the channel measurement pilot configured for the channel measurement pilot includes:
  • the receiving end receives the channel measurement pilot on a Q consecutive time unit for receiving the channel measurement pilot, where the value of Q is one of the following modes:
  • the value of Q is equal to the number of all beamforming weights that can be used as the channel measurement pilot
  • all beamforming weights that can be used as the channel measurement pilots are divided into P groups, where P is an integer greater than 1, and the beam shaping weights included in each group in the P group are The Euclidean distance is greater than the specified threshold, and the value of Q is equal to P;
  • the beam has a value equal to L 0 + L 1 +... + L T-1 ; where L 0 is the number of beams of the first class and j is a positive integer less than or equal to T.
  • the receiving configured for the channel measurement pilot
  • the receiving is used to send the channel measurement guide
  • the steps of the frequency time unit information include:
  • the receiving end K group is equally spaced sets of time units for transmitting the channel measurement pilots, where each group of time unit sets includes Q consecutive time units for transmitting the channel measurement pilots, where K is A positive integer.
  • the step of the receiving end feeding back the measured CSI to the sending end includes:
  • the index information of the precoding codeword corresponding to the channel state quality information and the corresponding channel state quality information are fed back to the transmitting end, where the index information is a predefined index of all precoding codewords with a transmission layer of 1 to M. Numbering;
  • the index information of the pre-coded codeword corresponding to the channel state quality information and the corresponding transmission layer number setting and the channel state quality information are fed back to the transmitting end, where the index information is corresponding to the setting of the number of the transport layer The index number of the precoded codeword;
  • the base vector index and the combination information and the corresponding channel state quality information that are optimally corresponding to the channel state quality information are fed back to the transmitting end, where the base vector index information is a precoding codeword with a transmission layer of 1 to M.
  • Base vector predefined index number is a precoding codeword with a transmission layer of 1 to M.
  • the method further includes preserving, in the transmitting end and the receiving end, a codebook including a precoding codeword or a base vector that can be used as a beamforming weight of the channel measurement pilot.
  • a transmitting end comprising a sending module and a first receiving module
  • the sending module is configured to: send a channel measurement pilot for causing the receiving end to perform CSI measurement according to a preset orientation manner;
  • the first receiving module is configured to: receive the CSI fed back by the receiving end.
  • the preset orientation manner includes one of the following ways:
  • Precoding codewords having a transmission layer number of 1 to M in the codebook are respectively used as beamforming weights of the channel measurement pilots;
  • the base vectors of the precoding code words constituting the number of transmission layers from 1 to M in the codebook are respectively used as the letter The beam shaping weight of the channel measurement pilot;
  • M is the maximum number of transport layers that the sender can support for data transmission, and M is an integer greater than or equal to 1.
  • the sending module is configured to send the channel measurement pilots according to the following manner: respectively sending the channel measurement pilots on the configured N channel measurement pilot ports, where N is greater than or equal to 1. Integer
  • the receiving module is configured to receive CSI fed back by the receiving end according to the following manner: receiving CSI of any one of the channel measurement pilot ports fed back by the receiving end, or any two or more of the channel measurement guides The CSI on the combination of the frequency ports and the indication signal of the channel measurement pilot port corresponding to the CSI.
  • the N channel measurement pilot ports are bound to different beamforming weights.
  • Any two or more of the N measurement pilot ports are bound to different beamforming weights.
  • the combination of any two or more channel measurement pilot ports is used to measure CSI when the number of transmission layers is greater than 1, wherein different channel measurement pilot ports correspond to different transport layers.
  • the sending module is further configured to: notify the receiving end of the configuration information of the N channel measurement pilot ports: or the transmitting end and the receiving end pre-agreed the N channels. Measure the configuration information of the pilot port.
  • the configuration information includes at least one of the following:
  • the channel measures pilot period and subframe offset information
  • the channel measures pilot location information
  • the channel measures a binding relationship between a pilot port and a beamforming weight
  • the pre-set orientation manner is that the precoding codewords with the number of transmission layers being 1 to M are respectively used as beamforming weights of the channel measurement pilots;
  • the sending module is configured to send a channel measurement pilot according to a preset orientation manner: when transmitting a channel measurement pilot based on a precoding codeword with a transmission layer number i, a transmission configuration for each precoding codeword i different channel measurement pilot ports, corresponding to i different transmission layers; 1 ⁇ i ⁇ M and i is an integer;
  • the precoding codeword and transmission layer of the transmission layer number is M
  • the nesting characteristic is satisfied between precoding codewords of number i; 1 ⁇ i ⁇ M and i is an integer; the transmitting module is further configured to: configure M different channel measurement guides for transmission of each precoding codeword Frequency ports, corresponding to M different transmission layers;
  • the sending module is further configured to: One channel measurement pilot port is configured for transmission of each base vector.
  • the sending end further includes a configuration module, where the configuration module is configured to: configure a time unit for transmitting the channel measurement pilot.
  • the configuration module is further configured to: receive a channel state quality measurement request from the receiving end; and notify the receiving end of the configured time unit.
  • the configuration module is configured to configure, according to the following, a time unit for sending the channel measurement pilot: configuring Q consecutive time units for transmitting the channel measurement pilot, where the value of Q is For one of the following ways:
  • the value of Q is equal to the number of all beamforming weights that can be used as the channel measurement pilot
  • all beamforming weights that can be used as the channel measurement pilots are divided into P groups, where P is an integer greater than 1, and the beam shaping weights included in each group in the P group are The Euclidean distance is greater than the specified threshold, and the value of Q is equal to P;
  • T is an integer greater than 1
  • signal transmission of the jth level beam or codeword The coverage of the signal transmission coverage of the (j+1)th grade beam or codeword is wider, and the signal transmission coverage of each jth grade beam or codeword includes L j (j+1) levels.
  • the signal transmission coverage of the beam or codeword, the value of Q is equal to L 0 + L 1 +... + L T-1 ; where L 0 is the number of beams of the first class, and j is an integer less than T.
  • the configuration module is configured to configure a time unit for transmitting the channel measurement pilot according to the following manner: configuring a K group equal interval time unit set for transmitting the channel measurement pilot, where each group The time unit set includes Q consecutive time units for transmitting the channel measurement pilot, and K is a positive integer.
  • the first receiving module is configured to receive the CSI fed back by the receiving end as follows:
  • index information of the precoding codeword and corresponding channel state quality information where the index information is a predefined index number of all precoding codewords of the transmission layer being 1 to M;
  • a precoding codeword index and corresponding transport layer index information and channel state quality information where the index information is a pre-defined index number corresponding to the precoding codeword corresponding to the setting of the number of the transport layer;
  • the vector index information is a predefined index number of a base vector constituting a precoding codeword whose transport layer is 1 to M ;
  • the indication information of the channel measurement pilot port and the corresponding channel state quality information are received from the receiving end, where the indication information is an index number predefined for the channel measurement pilot port to which the transmission layer is 1 to M respectively.
  • the first receiving module is further configured to: pre-save a codebook that includes a precoding codeword or a base vector that can be used as a beamforming weight of the channel measurement pilot.
  • a receiving end comprising a second receiving module, a measuring module and a feedback module;
  • the second receiving module is configured to: receive a channel measurement pilot that is sent by the sending end according to a preset orientation manner;
  • the measuring module is configured to: measure channel state information (CSI) according to the received channel measurement pilot;
  • the feedback module is configured to: feed back the measured CSI to the transmitting end.
  • the second receiving module is configured to receive, according to the following manner, a channel measurement pilot that is sent by the sending end according to a preset orientation manner:
  • M is the maximum number of transport layers that the sender can support for data transmission, and M is an integer greater than or equal to 1.
  • the channel measurement pilot is N;
  • the second receiving module is configured to measure CSI according to the received channel measurement pilot according to the following manner: respectively receiving channel on the pre-configured N channel measurement pilot ports Measuring a pilot, wherein N is an integer greater than or equal to 1;
  • the feedback module is configured to feed back the measured CSI to the transmitting end by combining CSI of any one of the channel measurement pilot ports or any two or more of the channel measurement pilot ports.
  • the CSI and the indication information of the channel measurement pilot port corresponding to the CSI are fed back to the transmitting end.
  • the N channel measurement pilot ports are respectively bound with different beamforming weights
  • any two or more of the N measurement pilot ports are bound to different beamforming weights.
  • the combination of any two or more channel measurement pilot ports is used to measure CSI when the number of transmission layers is greater than 1, wherein different channel measurement pilot ports correspond to different transport layers.
  • the second receiving module is further configured to: receive configuration information of the N channel measurement pilot port frequencies from the sending end;
  • the configuration information of the N channel measurement pilot ports is pre-agreed with the transmitting end.
  • the configuration information includes at least one of the following:
  • the channel measures pilot period and subframe offset information
  • the channel measures pilot location information
  • the channel measures a binding relationship between a pilot port and a beamforming weight
  • the second receiving module is configured to receive, according to the manner, a channel measurement pilot that is used by the sending end as a beamforming weight according to a precoding codeword with a transmission layer number of 1 to M, respectively: receiving the transmission based on the transmission a channel measurement pilot transmitted by a precoding codeword with a number of layers i, wherein i different channel measurement pilot ports are received, corresponding to i different transmission layers; 1 ⁇ i ⁇ M and i is an integer;
  • the second receiving module When the second receiving module receives the channel measurement pilot of the transmitting end based on the precoding codeword with the number of transmission layers being M as the beamforming weight, the precoding codeword and transmission of the number of the transmission layer is M
  • the pre-coded codewords with layer number i satisfy the nested feature; 1 ⁇ i ⁇ M and i is an integer; the second receiving module is further configured to: receive the pre-coded codewords based on the number of transmission layers M Channel measurement pilot, wherein M different channel measurement pilot ports are received, corresponding to M different transmission layers;
  • the second receiving module When the second receiving module receives the channel measurement pilots of the precoding codewords with the number of transmission layers being 1 to M, respectively, as the channel measurement pilots of the beamforming weights, the second receiving module further sets And receiving channel measurement pilots transmitted based on each base vector, wherein each base vector is configured with one channel measurement pilot port.
  • the second receiving module is further configured to: receive time unit information configured for the channel measurement pilot to send the channel measurement pilot.
  • the second receiving module is configured to receive, according to the manner, a time unit configured for the channel measurement pilot to send the channel measurement pilot:
  • the channel measurement pilot is received on Q consecutive time units for receiving the channel measurement pilot, where the value of Q is one of the following modes:
  • the value of Q is equal to the number of all beamforming weights that can be used as the channel measurement pilot
  • all beamforming weights that can be used as the channel measurement pilots are divided into P groups, where P is an integer greater than 1, and the beam shaping weights included in each group in the P group are The Euclidean distance is greater than the specified threshold, and the value of Q is equal to P;
  • T is an integer greater than 1
  • signal transmission of the jth level beam or codeword The coverage of the signal transmission coverage of the (j+1)th grade beam or codeword is wider, and the signal transmission coverage of each jth grade beam or codeword includes L j (j+1) levels.
  • the signal transmission coverage of the beam or codeword, the value of Q is equal to L 0 + L 1 +... + L T-1 ; where L 0 is the number of beams of the first class, and j is the positive of less than or equal to T Integer.
  • the second receiving module is configured to receive, according to the manner, a time unit configured for the channel measurement pilot to send the channel measurement pilot:
  • Time unit, K is a positive integer.
  • the feedback module is configured to feed the measured CSI to the sending end as follows:
  • the index information of the precoding codeword corresponding to the channel state quality information and the corresponding channel state quality information are fed back to the transmitting end, where the index information is a predefined index of all precoding codewords with a transmission layer of 1 to M. Numbering;
  • the index information of the pre-coded codeword corresponding to the channel state quality information and the corresponding transmission layer number setting and the channel state quality information are fed back to the transmitting end, where the index information is corresponding to the setting of the number of the transport layer The index number of the precoded codeword;
  • the base vector index and the combination information and the corresponding channel state quality information that are optimally corresponding to the channel state quality information are fed back to the transmitting end, where the base vector index is a base vector of the precoding codewords with a transmission layer of 1 to M.
  • the base vector index is a base vector of the precoding codewords with a transmission layer of 1 to M.
  • a predefined index number is a predefined index number.
  • the second receiving module is further configured to: pre-save a codebook that includes a precoding codeword or a base vector that can be a beamforming weight of the channel measurement pilot.
  • the technical solution of the present invention includes: the transmitting end sends a channel measurement pilot according to a preset orientation manner, where the channel measurement pilot is used by the receiving end to perform channel state information measurement; and the transmitting end receives the Channel status information fed back by the receiving end.
  • the technical solution of the present invention solves the problem that the channel measurement pilot overhead in the large-scale multi-antenna technology is too large, and effectively selects the pre-encoded codeword or the beam-forming weight, thereby saving the measurement time of the channel state information.
  • FIG. 1 is a schematic flow chart of channel state information measurement and feedback in an embodiment of the present invention
  • FIG 2 is another schematic flowchart of channel state information measurement and feedback in an embodiment of the present invention.
  • FIG. 3 is another schematic flowchart of channel state information measurement and feedback in an embodiment of the present invention.
  • FIG. 5 is a schematic diagram of beam splitting of different levels in an embodiment of the present invention.
  • FIG. 6 is a schematic diagram of transmitting channel measurement pilots based on different precoding codewords on different time units in an embodiment of the present invention
  • FIG. 7 is a schematic structural diagram of an embodiment of a transmitting end according to the present invention.
  • FIG. 8 is a schematic structural diagram of an embodiment of a receiving end of the present invention.
  • a method for measuring and feedback channel state information comprising:
  • the transmitting end sends a channel measurement pilot according to a preset orientation manner, where the channel measurement guide Frequency is used by the receiving end to measure channel state information;
  • the transmitting end receives channel state information fed back from the receiving end.
  • the main purpose of channel state information measurement is to perform subsequent data transmission for the transmitting end, including determining resource allocation, modulation and coding format, power allocation, and the like for data transmission.
  • the conventional channel measurement pilot transmitted based on the non-directional mode is transmitted depending on the number of transmit antenna ports, that is, the number of channel measurement pilot ports is usually equal to the number of transmit antenna ports. Therefore, in the conventional manner, as the number of transmit antenna ports increases, the pilot overhead increases.
  • the transmission of channel measurement pilots based on the directional manner is no longer dependent on the number of transmit antenna ports, but depends on the maximum supported number of transmission layers, that is, the number of channel measurement pilot ports is the same as the number of transmission layers, so the pilot overhead and The number of transmission layers is proportional. Generally, for a large-scale antenna array scenario, the number of transmission layers is much smaller than the number of antenna ports.
  • the so-called directional transmission channel measurement pilot is usually transmitted by binding a channel measurement pilot signal to a specified beamforming weight, wherein the specified beamforming weight is used to implement the channel.
  • the directional transmission function of the pilot signal is measured.
  • Each beamforming weight can also be understood as a beam.
  • the preset orientation manner includes one of the following ways:
  • Precoding codewords having a transmission layer number of 1 to M in the codebook are respectively used as beamforming weights of the channel measurement pilots;
  • M is the maximum number of transport layers that the sender can support for data transmission, and M is an integer greater than or equal to 1.
  • the method further includes: configuring N channel measurement pilot ports;
  • Transmitting, by the transmitting end, the channel measurement pilot includes: transmitting, by the transmitting end, the channel measurement pilots on the N channel measurement pilot ports, where N is an integer greater than or equal to 1;
  • Receiving, by the transmitting end, the channel state information that is fed back by the receiving end includes: receiving, by the sending end, Channel state information of any one of the channel measurement pilot ports fed back by the receiving end, or channel state information on a combination of any two or more of the channel measurement pilot ports; and the channel state information The corresponding channel measures the indication information of the pilot port.
  • the N channel measurement pilot ports are respectively bound with different beamforming weights.
  • any two or more of the N measurement pilot ports are bound to different beamforming weights.
  • the combination of any two or more channel measurement pilot ports may be used to measure channel state information when the number of transmission layers is greater than 1, wherein different channel measurement ports correspond to different transport layers.
  • the method before the sending the channel measurement pilots on the N channel measurement pilot ports, the method further includes:
  • the receiving end acquires configuration information of the N channel measurement pilot ports by using any of the following manners:
  • the sending end notifies the receiving end of the configuration information of the N channel measurement pilot ports:
  • the transmitting end and the receiving end pre-arrange the configuration information of the N channel measurement pilot ports.
  • the configuration information includes at least one of the following:
  • the channel measures the binding relationship between the pilot port and the beamforming weight
  • Directional mode transmission channel measurement pilots include:
  • i different channel measurement pilot ports are configured for each precoding codeword transmission, corresponding to i different transmission layers respectively; 1 ⁇ i ⁇ M and i is an integer.
  • the method further includes:
  • M different channel measurement pilot ports are configured for each precoding codeword transmission, corresponding to M different transmission layers.
  • the pre-coding code of the transmission layer number is M
  • the nesting property is satisfied between the word and the precoding codeword whose number of transmission layers is i (1 ⁇ i ⁇ M and i is an integer).
  • the so-called nesting feature means that for the same codeword index in the codebook, the codeword corresponding to the number of low transmission layers is formed by extracting several columns of codewords corresponding to the number of high transmission layers.
  • the number of transport layers in LTE is also referred to as rank.
  • the method further includes:
  • One channel measurement pilot port is configured for transmission of each base vector.
  • the method before the sending, by the sending end, the channel measurement pilot, the method further includes: configuring a time unit that can be used to send the channel measurement pilot.
  • the method before configuring the time unit for sending the channel measurement pilot, the method further includes: the sending end receiving a channel state quality measurement request from the receiving end;
  • the method further includes: the sending end notifying the configured time unit of the configured time unit.
  • configuring a time unit for transmitting the channel measurement pilot includes:
  • the transmitting end configures, for the channel measurement pilot, Q consecutive time units that can be used to send the channel measurement pilot, where the value of Q is one of the following modes:
  • the value of Q is equal to the number of all beamforming weights that can be used as the channel measurement pilot
  • all beamforming weights that can be used as the channel measurement pilots are divided into P groups, where P is a positive integer less than or equal to Q, and beamforming included in each group in the P group When the Euclidean distance between the weights is greater than the specified threshold, the value of Q is equal to P;
  • T is an integer greater than 1
  • signal transmission of the jth level beam or codeword The coverage of the signal transmission coverage of the (j+1)th grade beam or codeword is wider, and the signal transmission coverage of each jth grade beam or codeword includes L j (j+1) levels.
  • the signal transmission coverage of the beam or codeword, the value of Q is equal to L 0 + L 1 +... + L T-1 ; where L 0 is the number of beams of the first class, and j is the positive of less than or equal to T Integer.
  • the time unit configured to send the channel measurement pilot includes:
  • the transmitting end configures, for the channel measurement pilot, a set of time units that are equally spaced and can be used to send the channel measurement pilot, where each group of time units includes Q consecutive channels that can be used to send the channel measurement guide.
  • the time unit of the frequency, K is a positive integer, and the value of Q is the same as above, and will not be described here.
  • the receiving, by the sending end, channel state information that is fed back from the receiving end includes:
  • the index information of the precoding codeword and the corresponding channel state quality information is an index number predefined for all precoding codewords of the transport layer being 1 to M;
  • a precoding codeword index and corresponding transport layer index information and channel state quality information where the index information is a pre-defined index number corresponding to the precoding codeword corresponding to the setting of the number of the transport layer;
  • the base vector index information is a predefined index number of a base vector constituting the precoding codeword whose transmission layer is 1 to M ;
  • the indication information of the channel measurement pilot port and the corresponding channel state quality information are received from the receiving end, where the indication information is a predefined index number of the channel measurement pilot port to which the transmission layer is respectively 1 to M.
  • the method further includes: preserving, in the transmitting end and the receiving end, a codebook containing a precoding codeword or a base vector that can be used as a beamforming weight of the channel measurement pilot.
  • a method for measuring and feedback channel state information comprising:
  • the receiving end feeds back the measured channel state information to the transmitting end.
  • the channel measurement pilot that is sent by the receiving and transmitting end according to the preset orientation manner includes one of the following manners:
  • the base measurement vectors respectively receiving the precoding codewords having the number of transmission layers of 1 to M in the codebook are respectively used as channel measurement pilots of the beamforming weights.
  • M is the maximum number of transport layers that the sender can support for data transmission, and M is an integer greater than or equal to 1.
  • the receiving and transmitting end channel measurement pilot information that is sent according to the preset orientation manner, and measuring channel state information according to the received channel measurement pilot includes:
  • the receiving end receives channel measurement pilots respectively in pre-configured N channel measurement pilot ports, where N is an integer greater than or equal to 1;
  • the receiving end feeding back the measured channel state information to the sending end includes:
  • the receiving end the channel state information of any one of the channel measurement pilot ports, or the channel state information of a combination of any two or more of the channel measurement pilot ports, and the channel state information
  • the indication information of the channel measurement pilot port is fed back to the transmitting end.
  • the N channel measurement pilot ports are respectively bound with different beamforming weights.
  • any two or more of the N measurement pilot ports are bound to different beamforming weights.
  • a combination of any two or more channel measurement pilot ports is used to measure channel state information when the number of transmission layers is greater than one, wherein different channel measurement ports correspond to different transport layers.
  • the method further includes:
  • the receiving end determines configuration information of the N channel measurement pilots by using any one of the following methods:
  • the receiving end and the transmitting end pre-arrange the configuration information of the N channel measurement pilot ports;
  • the configuration information includes at least one of the following:
  • the channel measures the binding relationship between the pilot port and the beamforming weight
  • the method includes:
  • the receiving end sequentially receives the channel measurement pilots that are sent according to the precoding codewords whose number of transmission layers is i, where the receiving i different channel measurement pilot ports respectively correspond to i different transmission layers; 1 ⁇ i ⁇ M and i Is an integer.
  • the method when the receiving end receives the channel measurement pilot based on the precoding codeword with the number of transmission layers being M as the beamforming weight, the method includes:
  • the receiving end receives the channel measurement pilot transmitted according to the precoding codeword with the number of transmission layers M, wherein the M different channel measurement pilot ports are received, corresponding to M different transmission layers respectively.
  • the precoding codeword with the number of transmission layers being M and the number of transmission layers being i are satisfied between the encoded codewords; 1 ⁇ i ⁇ M and i is an integer.
  • the method includes:
  • the receiving end sequentially receives channel measurement pilots transmitted based on each base vector, wherein each base vector is configured with one channel measurement pilot port.
  • the receiving end before receiving the channel measurement pilot, further includes: receiving time unit information that is configured for the channel measurement pilot and that is used to send the channel measurement pilot.
  • the receiving, by the channel measurement pilot, the time unit information used to send the channel measurement pilot includes:
  • the receiving end receives the channel measurement pilot on Q consecutive time units available for receiving the channel measurement pilot, where the value of Q is one of the following modes:
  • the value of Q is equal to the number of all beamforming weights that can be used as the channel measurement pilot
  • all beamforming weights that can be used as the channel measurement pilots are divided into P groups, where P is greater than an integer of 1, and the beam shaping weights included in each of the P groups are between The Euclidean distance is greater than the specified threshold, and the value of Q is equal to P;
  • Lake synthesis which will be able to divide the beam or codeword corresponding to all beamforming weights of the channel measurement pilot into T levels, where T is an integer greater than 1, and the signal of the jth level beam or codeword
  • the transmission coverage is wider than the signal transmission coverage of the (j+1)th grade beam or codeword, and the signal transmission coverage of each j-th beam or codeword includes L j (j+1)
  • the signal transmission coverage of the grade beam or codeword, the value of Q is equal to L 0 + L 1 +... + L T-1 ; where L 0 is the number of beams of the first class, and j is less than or equal to T A positive integer.
  • the receiving, by the channel measurement pilot, the time unit information used to send the channel measurement pilot includes:
  • each group of time unit sets includes Q consecutive channels for receiving the channel measurement guides.
  • the time unit of the frequency, K is a positive integer, and the value of Q is the same as above, and will not be described here.
  • the receiving end feeds back the measured channel state information to the sending end, including:
  • the index information of the precoding codeword corresponding to the channel state quality information and the corresponding channel state quality information are fed back to the transmitting end, wherein the index information is a predefined index of all precoding codewords of the transport layer being 1 to M. Numbering;
  • the index information of the pre-coded codeword corresponding to the channel state quality information and the corresponding transmission layer number setting and the channel state quality information are fed back to the transmitting end, where the index information is corresponding to the setting of the number of the transport layer The index number of the precoded codeword;
  • the base vector index and the combined information corresponding to the channel state quality information and the corresponding channel state quality information are fed back to the transmitting end, where the base vector index is a base of the precoding codeword constituting the transport layer being 1 to M.
  • Vector predefined index number is a base of the precoding codeword constituting the transport layer being 1 to M.
  • both the transmitting end and the receiving end pre-store a codebook containing a precoding codeword or a base vector that can be used as a beamforming weight of the channel measurement pilot.
  • a method for measuring and feedback channel state information comprising:
  • the transmitting device sends the channel measurement pilot according to a preset orientation manner
  • the receiving end device receives the channel measurement pilot, and performs channel state information measurement according to the received channel measurement pilot, and feeds back the measured channel state information to the transmitting end device.
  • M is a positive integer
  • the measurement and feedback manners of the channel state information include the following:
  • FIG. 1 is a schematic flowchart of channel state information measurement and feedback in an embodiment of the present invention, as shown in FIG. 1, including:
  • Step 100 The transmitting end sends a channel measurement pilot according to a pre-coded codeword with a transmission layer number of 1 to M as a beamforming weight of the channel measurement pilot.
  • Step 101 The receiving end sequentially receives the channel measurement pilots with the precoding codewords included in the number of transmission layers 1 to M as the beamforming weights, and determines the precoding codewords corresponding to the channel state quality according to the SINR.
  • Step 102 The receiving end feeds back the optimal precoding codeword and its corresponding channel state quality information to the transmitting end for scheduling and data transmission by the transmitting end.
  • i different channel measurement pilots are configured for transmission of each precoding codeword. Ports correspond to i different transport layers.
  • the receiving end measures the channel measurement pilot signal received on the pilot port based on the i different channel measurements, and measures the channel state quality when the number of transmission layers is i.
  • a time unit that can be used to transmit the channel measurement pilot is configured for the channel measurement pilot before the transmitting end transmits the channel measurement pilot.
  • one of the following two ways may be selected for the channel measurement pilot to configure a time unit that can be used to transmit channel measurements:
  • Aperiodic mode that is, configuring Q consecutive pilots for the channel measurement pilot to be used to send the letter The time unit of the pilot measurement pilot;
  • a periodic mode that is, a set of time units for transmitting the channel measurement pilots, which are equally spaced for the channel measurement pilot, wherein each set of time units includes Q consecutive channels available for transmitting the channel measurement
  • K is a positive integer.
  • the value of Q is one of the following ways:
  • the value of Q is equal to the number of all beamforming weights that can be used as the pilot of the channel measurement
  • All beamforming weights that can be used as the channel measurement pilots are divided into P groups, where P is an integer greater than 1, and the beamforming weights included in each of the P groups are between The distance is greater than the specified threshold, and the value of Q is equal to P;
  • All beamforming weights that can be used as the channel measurement pilots are divided into T levels, where T is an integer greater than 1, and the jth level beam is wider than the (j+1)th level beam, and The coverage of each i-th beam includes L j (j+1)-level beams, and the value of Q is equal to L 0 +L 1 +...+L T-1 ; where L 0 is the first level The number of beams, j is an integer less than or equal to T.
  • the transmitting end configures, for the transmitting end, a time unit available for channel measurement pilot transmission, and notifies the receiving end of the time unit.
  • the receiving end measures the channel state information under each beam weight according to the received channel measurement pilot, determines the beamforming weight corresponding to the optimal SINR according to the received SINR, and feeds it back to the transmitting end for use in
  • the sender performs user scheduling and data transmission, including:
  • the transmitting end and the receiving end pre-define index numbers of all precoding codewords of the transport layer 1 to M in a unified manner, and optimally match the optimal channel state quality information with the index information of the precoding codeword corresponding to the channel and the corresponding channel.
  • the status quality information is fed back to the sender.
  • both the transmitting end and the receiving end pre-store a codebook containing a pre-encoded codeword capable of being a beamforming weight of the channel measurement pilot.
  • FIG. 2 is another schematic flowchart of channel state information measurement and feedback in the embodiment of the present invention. As shown in FIG. 2, the method includes:
  • Step 200 The transmitting end sends the channel measurement pilot as the beamforming weight only based on the precoding codeword with the number of transmission layers being M.
  • Step 201 The receiving end receives the channel measurement pilot with the pre-coded codeword included in the number of transmission layers as the beamforming weight, and determines, according to the SINR, the pre-corresponding to the optimal channel state quality in the range of 1 to M. Coded codeword
  • Step 202 The receiving end feeds back the optimal precoding codeword and its corresponding channel state quality information to the transmitting end;
  • Step 203 The transmitting end performs user scheduling and data transmission based on the feedback information.
  • the channel measurement pilot when the channel measurement pilot is transmitted based on the precoding codeword with the number of transmission layers being M, M different channel measurement pilot ports are configured for the transmission of each precoding codeword, corresponding to M different transmission layers respectively.
  • the receiving end measures the channel measurement pilot received on the pilot port based on the M different channels, and measures the channel state quality when the number of transmission layers is M.
  • This method requires a precoding codeword with a transmission layer number of M and a nested inclusion relationship between precoding codewords whose transport layer is i (1 ⁇ i ⁇ M and i is an integer).
  • a time unit that can be used to transmit the channel measurement pilot is configured for the channel measurement pilot before the transmitting end transmits the channel measurement pilot.
  • one of the following two ways may be selected for the channel measurement pilot to configure a time unit that can be used to transmit channel measurements:
  • Aperiodic mode that is, configuring, for the channel measurement pilot, Q consecutive time units available for transmitting the channel measurement pilot
  • a periodic mode that is, a set of time units for transmitting the channel measurement pilots, which are equally spaced for the channel measurement pilot, wherein each set of time units includes Q consecutive channels available for transmitting the channel measurement
  • K is a positive integer.
  • the value of Q is one of the following ways:
  • the value of Q is equal to the number of all beamforming weights that can be used as the pilot of the channel measurement
  • All beamforming weights that can be used as the channel measurement pilots are divided into P groups, where P For an integer greater than 1, the Euclidean distance between the beamforming weights included in each group of the P group is greater than a specified threshold, and the value of Q is equal to P;
  • All beamforming weights that can be used as the channel measurement pilots are divided into T levels, where T is an integer greater than 1, and the jth level beam is wider than the (j+1)th level beam, and The coverage of each i-th beam includes L j (j+1)-level beams, and the value of Q is equal to L 0 +L 1 +...+L T-1 ; where L 0 is the first level The number of beams, j is an integer less than or equal to T.
  • the transmitting end configures, for the transmitting end, a time unit available for channel measurement pilot transmission, and notifies the receiving end of the time unit.
  • the receiving end measures the channel state information under each beam weight according to the received channel measurement pilot, determines the beamforming weight corresponding to the optimal SINR according to the received SINR, and feeds it back to the transmitting end for use in
  • the sender performs user scheduling and data transmission, including:
  • the transmitting end and the receiving end set the precoding codeword index number corresponding to the number of different transport layers according to a unified manner, and set the index information of the precoding codeword corresponding to the channel state quality information and the corresponding number of transport layers. And channel state quality information is fed back to the sender.
  • both the transmitting end and the receiving end pre-store a codebook containing a pre-encoded codeword capable of being a beamforming weight of the channel measurement pilot.
  • FIG. 3 is still another schematic flowchart of channel state information measurement and feedback in the embodiment of the present invention, as shown in FIG. 3, including:
  • Step 300 The transmitting end sends a channel measurement pilot as a beamforming weight based on a base vector constituting a precoding codeword whose number of transmission layers is 1 to M.
  • Step 301 The receiving end sequentially receives each base vector as a channel measurement pilot of a beamforming weight, and determines a base vector or a combination of multiple base vectors corresponding to the optimal channel state quality according to the SINR.
  • Step 302 The receiving end feeds back the optimal base vector or base vector combination and its corresponding channel state quality information to the transmitting end; and,
  • Step 303 The transmitting end performs user scheduling and data transmission based on the feedback information.
  • one different channel measurement pilot port is configured for each base vector transmission, corresponding to 1 Transport layer.
  • the receiving end measures a channel measurement pilot signal received on the pilot port based on the one channel measurement, and measures a channel state quality when the number of transmission layers is at least 1.
  • a time unit that can be used to transmit the channel measurement pilot is configured for the channel measurement pilot before the transmitting end transmits the channel measurement pilot.
  • one of the following two ways may be selected for the channel measurement pilot to configure a time unit that can be used to transmit channel measurements:
  • Aperiodic mode that is, configuring, for the channel measurement pilot, Q consecutive time units available for transmitting the channel measurement pilot
  • a periodic mode that is, a set of time units for transmitting the channel measurement pilots, which are equally spaced for the channel measurement pilot, wherein each set of time units includes Q consecutive channels available for transmitting the channel measurement
  • K is a positive integer.
  • the value of Q is one of the following ways:
  • the value of Q is equal to the number of all beamforming weights that can be used as the pilot of the channel measurement
  • All beamforming weights that can be used as the channel measurement pilots are divided into P groups, where P is an integer greater than 1, and the beamforming weights included in each of the P groups are between The distance is greater than the specified threshold, and the value of Q is equal to P;
  • All beamforming weights that can be used as the channel measurement pilots are divided into T levels, where T is an integer greater than 1, and the jth level beam is wider than the (j+1)th level beam, and The coverage of each i-th beam includes L j (j+1)-level beams, and the value of Q is equal to L 0 +L 1 +...+L T-1 ; L 0 is the first-order beam The number, j is an integer less than or equal to T.
  • the transmitting end configures, for the transmitting end, a time unit available for channel measurement pilot transmission, and notifies the receiving end of the time unit.
  • the receiving end measures the channel state information under each beam shaping weight according to the received channel measurement pilot, determines the beam shaping weight corresponding to the optimal SINR according to the received SINR, and feeds it back to the transmitting end to Used by the sender for user scheduling and data transmission, including:
  • the transmitting end and the receiving end pre-define index numbers of base vectors constituting precoding codewords whose transmission layer is 1 to M in a unified manner, and base vector index and combination of channel state quality information optimally corresponding The information and the corresponding channel state quality information are fed back to the transmitting end.
  • both the transmitting end and the receiving end pre-store a codebook containing a base vector capable of being a beamforming weight of the channel measurement pilot.
  • FIG. 4 is still another schematic flowchart of channel state information measurement and feedback in the embodiment of the present invention. As shown in FIG. 4, the method includes:
  • Step 400 The transmitting end sends N channel measurement pilot ports for channel measurement by the receiving end.
  • Step 401 The receiving end receives the N channel measurement pilot ports, and determines an optimal one or a group of channel measurement pilot ports and their corresponding channel state quality according to the received SINR.
  • Step 402 The receiving end feeds back, to the sending end, the indication information of the channel state quality corresponding to the optimal SINR and the corresponding combination of one channel measurement pilot port or multiple channel measurement pilot ports.
  • Step 403 The transmitting end performs user scheduling and data transmission according to the received feedback information.
  • different channel measurement pilot ports can be used to bind different beamforming weights.
  • the number of transmission layers corresponding to the beamforming weight is assumed to be 1.
  • a combination of a plurality of channel measurement pilot ports may be used to measure channel state information when the number of transmission layers is greater than one, wherein different channel measurement ports correspond to different transmission layers.
  • the network side Before the transmitting end sends the N channel measurement pilot ports, the network side notifies the receiving end of the configuration information of the N channel measurement pilot ports, where the configuration information includes at least one of the following:
  • the channel measures the binding relationship between each port of the pilot and the beam shaping weight
  • the configuration information of the N channel measurement pilot ports may also be sent through the sending end and receiving The pre-agreed way is determined.
  • each channel measurement pilot port may be bound to a base vector constituting a precoding codeword whose transmission layer is 1 to M, that is, a base vector based on a precoding codeword constituting a transmission layer of 1 to M is used as a beam assignment.
  • the shaped weights transmit channel measurement pilots.
  • the receiving end may also use one or a group of the channel measurement ports in the feedback information. The indication information of the corresponding base vector or base vector group is fed back to the transmitting end.
  • the transmitting end and the receiving end store the codebook of the precoding codeword composed of the base vector and the transmission is 1 to M
  • the receiving end may also pre-correspond to one or a group of the channel measurement ports.
  • the indication information of the encoded codeword is fed back to the transmitting end.
  • the transmitting end needs to consider the channel state information under different setting of the number of transmission layers to be measured, thereby supporting transmission.
  • the terminal selects the appropriate transport layer settings and appropriate precoding codewords for data transmission.
  • the channel measurement pilot is transmitted based only on the precoding codewords under the supported maximum transport layer.
  • Different precoding codeword sets are set under different transport layers, which requires that the corresponding precoding codewords under the maximum transport layer and the precoding codewords under other transport layers satisfy the nested relationship.
  • the nested relationship means that the column vector constituting the codeword corresponding to the lower transport layer is a subset of the column vector constituting the codeword corresponding to the higher transport layer.
  • the maximum supported transmission layer number is 4, and any one of the precoding codeword sets in the transmission layer number 4 is composed of 4 column vectors. It is well known that the transmission layer is i (1 ⁇ i ⁇ 4).
  • Any precoding codeword in the precoding codeword set is composed of i column vector, then satisfying the nested relationship means that there is at least one precoding codeword with 4 transmission layer layers such that the i column vector is the number of transmission layers
  • a pre-coded codeword of 4 contains a subset of all column vector sets.
  • the maximum number of transmission layers supported may be fixed, or may be pre-scheduled by a network side device (for example, a base station) and a terminal (for example, User Equipment, UE for short), or may be signaled by the network side device. Notify the user device.
  • a network side device for example, a base station
  • a terminal for example, User Equipment, UE for short
  • the receiving end will measure channel state information under different precoding code words based on the received measurement pilot, and feed back the precoding codeword corresponding to the optimal channel state information and its channel quality information to the transmitting end.
  • the receiving end feeds back the precoding codeword index information corresponding to the optimal channel state information, the corresponding transmission layer number indication information, and the corresponding channel quality information to the transmitting end.
  • All supported precoding codewords are divided into a plurality of different groups, and the transmitting end transmits channel measurement pilots based on different sets of precoding codewords, respectively.
  • the interference between the precoding codewords in the same group is the smallest or the chord distance is the largest, so the same channel measurement pilot resources can be configured for them; and there are interferences between different precoding codewords, in order to avoid different groups
  • the interference between precoded codewords can be configured with different channel measurement pilot resources. For example, channel measurement pilots based on precoded codewords within the same group are transmitted on the same time unit, while channel measurement pilots based on different sets of precoded codewords are transmitted on different time units.
  • channel measurement pilots transmitted based on precoding codewords in the same group may also adopt different cyclic shift sequences or orthogonal masks.
  • the code sequence is orthogonal.
  • All supported precoding codewords are divided into a plurality of different levels, and the transmitting end transmits channel measurement pilots based on different levels of precoding codewords, respectively.
  • the transmit beam coverage of the high-level precoding codeword includes the transmit coverage of the pre-coded codeword with lower priority. This requires a mapping relationship between pre-coded words of different priority levels. For example, for any pre-coded codeword with a higher priority level, multiple pre-coded codeword sets with lower priority levels can be mapped.
  • the transmitting end first sends a channel measurement pilot based on the precoding codeword of the priority level, and determines an optimal precoding codeword of the priority level according to the feedback information of the receiving end, and then uses the precoding codeword and the priority level is lower. For the mapping relationship of the precoding codewords, the transmitting end continues to transmit the channel measurement pilots based on the precoding codewords of the priority level, and so on until the channel state information of the lowest priority precoding codewords is measured. Finally, the receiving end feeds back the pre-coded codeword information corresponding to the optimal channel state information and the corresponding channel quality information to the transmitting end, based on the received channel measurement pilot under the lowest priority precoding codeword.
  • mapping relationship between the pre-coded codewords of different levels is fixed, or is pre-agreed by the network side device and the user equipment, or is notified to the user equipment by the network side device by signaling.
  • the network side configures the resource based on the directional transmit channel measurement pilot, where the resource includes at least one of a time resource, a frequency resource, and a pilot sequence.
  • the time resources are consecutive or equally spaced multiple time units for respectively transmitting channel measurement pilots based on different orientations
  • the frequency resources indicate whether channel measurement pilots are transmitted on a per-time unit basis based on full bandwidth or subband.
  • the pilot sequence refers to the sequence used by the transmitted measurement pilot signal to be a PN sequence or a ZC sequence or other sequence.
  • the network side may trigger the channel measurement pilot to be transmitted in a directional manner by using 1-bit signaling.
  • the 1-bit signaling may be physical layer signaling or higher layer signaling.
  • the network side further notifies the receiving end of a continuous or equally spaced set of time units for transmitting the channel measurement pilot, and the group of time units stops transmitting the channel measurement pilots; or the network side further Notifying the receiving end of the interval between the equally spaced times for the transmission of the channel measurement pilots, the transmitting end transmitting the channel measurement pilots on the time units of the equal intervals until receiving the network side The channel measurement pilot will no longer be transmitted after the termination of the instruction.
  • Table 1 Example of codebook when the number of transport layers is greater than 1.
  • the base station is based on each time unit
  • the same measurement pilot sequence can be bound between the code words on different time units, and different measurement pilot sequences need to be used between the M transmission layers of the code words on any time unit to distinguish Channels on different transport layers.
  • H is the channel matrix of Nr ⁇ Nt dimensions
  • Nr is the number of receiving antennas
  • Nt is the number of transmitting antennas
  • W is the precoding codeword or beamforming weight of Nt ⁇ k dimensions
  • k is the number of transmission layers
  • s is The k ⁇ 1 dimensional transmission signal is the measurement pilot
  • n is Nr ⁇ 1 dimensional reception noise
  • y is the reception signal.
  • the so-called nesting property means that for the same codeword index, the low rank codeword is composed of several columns extracted from the high rank codeword. .
  • PMI 1_1 under codeword index 1 is composed of one column extracted from PMI M_1
  • PMI 2_1 is composed of two columns extracted from PMI M_1, and so on
  • the codeword corresponding to RI ⁇ M is included.
  • SINR Signal to Noise Ratio
  • the terminal feeds back information about the maximum received SINR (or the CQI level corresponding to the maximum SINR) and the codeword of the measurement pilot corresponding to the maximum SINR (or the measurement pilot corresponding to the maximum SINR) to Base station.
  • the base station may indicate the measurement pilot sequence or the measurement pilot signal or the configuration information of the measurement pilot port in different time units or different code words to the terminal, or may be pre-determined by the base station and the terminal. The measurement pilot sequence bound to different time units or different code words or the measurement pilot signal or the measurement pilot end is agreed upon. mouth.
  • the base station receives the feedback information, and obtains relevant downlink channel state information according to the feedback information, and performs operations such as user scheduling, resource allocation, and data transmission according to the information.
  • P ⁇ N P time units
  • the same measurement pilot sequence or measurement pilot port can be used between code words on different time units, and mutually orthogonal measurement pilot sequences are used between M transmission layers of the same codeword on the same time unit.
  • different codewords within a group of codewords on the same time unit are orthogonal or nearly orthogonal, or different codewords having the largest Euclidean distance are assigned to the same set of codewords.
  • This method can further shorten the measurement time of different channel state information under the condition of all precoding weights (here, precoding weights are codewords). Or, assuming that the number of codewords included in each group of codewords is Q, mutually orthogonal measurement pilot sequences are used between M*Q transmission layers on the same time unit.
  • the transmitting end may also be a terminal, and correspondingly, the receiving end is a base station.
  • the channel measurement pilot is sent by the terminal to the base station, and the configuration information of the channel measurement pilot is indicated by the base station to the terminal or pre-agreed by the terminal and the base station.
  • the channel measurement pilot is transmitted in a precoding manner, which can effectively save the channel measurement pilot overhead.
  • different transmit antennas need to be configured with different channel measurement pilot ports, and In the precoding mode, it is only necessary to configure different channel measurement pilot ports for different transport layers.
  • a disadvantage introduced by the precoding method is that the codebook corresponding to the large-scale antenna array often contains more codewords. If the traditional channel measurement in the non-precoding mode is regarded as an omnidirectional channel measurement, the channel measurement based on the precoding mode can be understood as a channel measurement based on the directional mode, in which different code words Represents different beam directions.
  • channel state information under all codewords needs to be measured, thereby obtaining optimal channel state information and codeword information corresponding to the optimal channel state information, so that the subsequent transmitting end can be based on
  • the optimal codeword transmits data, and the transmitted data matches the optimal MCS, time-frequency resources, and the like.
  • Table 2 is detailed in the related LTE standard TS36.211. Assuming that the maximum number of transmission layers (RI) supported by the downlink transmission is 4, according to the four antenna codebook, when the RI is 1, 2, 3, and 4, respectively, corresponding to 16 codewords, the base station needs to measure a maximum of 64 The channel status information under the code word, as shown in the rightmost 4 columns in Table 2:
  • the measurement process of the channel state information corresponding to the embodiment includes the following:
  • Step 1 The base station sends channel measurement guides on different time units based on different codewords respectively.
  • Channel measurement pilots based on different codewords are respectively transmitted on 64 different codewords for the terminal to separately measure respective channel state information based on the 64 codeword transmissions.
  • Step 2 The terminal measures channel state information under different codeword transmission conditions by receiving channel measurement pilot port signals on different channel measurement time units.
  • the terminal determines the optimal transmit codeword by measuring the maximum received SINR of the pilot port signal received by the channel on different time units, and feeds back the optimal codeword information and the maximum received SINR information to the base station.
  • the terminal may also indirectly indicate the determined optimal codeword information to the base station by feeding back, to the base station, the indication information of the time unit corresponding to the optimal codeword, the channel measurement pilot port configuration, and the like.
  • Step 3 The base station performs user scheduling according to the optimal downlink transmission codeword information fed back by the terminal and channel state information corresponding to the optimal codeword, allocates appropriate time-frequency resources for the next data transmission of the terminal, and determines corresponding MCS program.
  • the related LTE four-antenna codebook is taken as an example for convenience of description, and of course, any other codebook may be used.
  • the codeword design satisfies the nesting property between the codewords under different transmission layer number transmission conditions.
  • the so-called nested property means that for the same codeword index, the low rank codeword is extracted from the high rank codeword. A few columns are formed.
  • the RI is the maximum number of transmission layers, and the base station only needs to transmit the channel measurement guide based on the codeword whose RI is equal to the maximum number of transmission layers. Frequency can be.
  • the measurement process of the channel state information corresponding to the embodiment includes the following:
  • the channel state information corresponding to the received SINR for example, CQI, etc.
  • the codeword information corresponding to the optimal received SINR are fed back to the base station.
  • the terminal may also indirectly indicate the determined optimal codeword information to the base station by feeding back, to the base station, the indication information of the time unit corresponding to the optimal codeword, the channel measurement pilot port configuration, and the like.
  • Step 3 The base station performs user scheduling according to the optimal downlink transmission codeword information fed back by the terminal and the channel state information corresponding to the optimal codeword, allocates appropriate time-frequency resources for the next number transmission of the terminal, and determines corresponding MCS program.
  • the related LTE four-antenna codebook is taken as an example for convenience of description, and of course, other codebooks may also be used. Preferably, however, the nesting characteristics are satisfied between code words under different number of transport layers in the codebook.
  • all codewords are divided into three levels, namely level 1 codeword, level 2 Codeword and level 3 codeword, the characteristic between the three grade codewords is that the signal transmission coverage of the grade 1 codeword is the widest, the grade 2 codeword is the second, and the signal transmission coverage of the grade 3 codeword is the narrowest. And there is a one-to-one or one-to-many mapping relationship between signal transmission coverages of different levels of codewords.
  • the coverage of the transmission signal of the level 1 codeword PMI1-1 corresponds to the sum of the coverage of the transmission signal of the level 2 codewords PMI2-1 to PMI2-4
  • the coverage of the transmission signal of the level 2 codeword PMI2-1 corresponds to the level 3 codeword.
  • the base station first transmits a channel measurement pilot based on the level 1 precoding codeword, and the receiving end determines an optimal transmitter precoding codeword according to the SINR of the received channel measurement pilot signal, and feeds the codeword index back to the base station;
  • the base station sends a channel measurement pilot based on the level 2 precoding codeword based on the mapping relationship between the optimal codeword and the level 2 codeword.
  • the optimal level 1 codeword is PMI1-2
  • the level 2 corresponding to the codeword is The codeword range is PMI2-4 ⁇ PMI2-8, so the base station sends channel measurement pilots based on PMI2-4 ⁇ PMI2-8 respectively, and the receiving end determines the optimal level 2 codeword according to the SINR of the received channel measurement pilot signal.
  • the base station transmits channel measurement pilot based on the level 3 codeword based on the mapping relationship between the optimal level 2 codeword and the level 3 codeword
  • the optimal level 2 codeword is PMI2-6, and the level 3 codeword corresponding to the codeword is PMI3-41 ⁇ PMI3-48 through the lookup table or the indication of the network side device, and then the base station is respectively based on PMI3-41.
  • ⁇ PMI3-48 sends channel measurement pilot, the receiving end is connected
  • the SINR of the received channel measurement pilot signal determines an optimal level 3 codeword, and feeds the codeword and the corresponding received SINR or CQI level information under the codeword to the base station.
  • the receiving end may feed back the corresponding SINR or CQI level information under the codeword while feeding back the level 1 or level 2 codeword information to the transmitting end.
  • the level 1 or level 2 codewords can also be used by the sender to send some broadcast information, control information, and the like.
  • the level 3 codeword can be understood as a precoding codeword to be used for data transmission by the final base station, which is an effective codeword, and the level 1 codeword and the level 2 codeword are mainly used to save channel measurement resources for the level 3 codeword. And the newly introduced codeword.
  • the level 3 codeword may include all codewords corresponding to different transport layers in Table 2, or may only include all codewords corresponding to the maximum transport layer in Table 3.
  • the channel measurement pilot is transmitted in a directional manner, one implementation is based on a pre-coded codeword, and the other implementation can be understood as a beamforming-based approach.
  • the so-called beamforming method means that the channel measurement pilot is based on beamforming weights when transmitting.
  • the precoding codeword based method is essentially the same as the beamforming based method, and the channel measurement pilot signal is bound to a transmission weight for implementing directional transmission when transmitting, the difference is based on
  • the precoding method uses a precoding codeword as the transmission weight, and the beamforming based method uses a beamforming weight as the transmission weight. Among them, the precoding codeword usually comes from the sender and the interface.
  • a fixed fixed codebook is stored together at the receiving end, and the beamforming weight is not necessarily derived from the codebook, and it may be characterized by a beam index.
  • the implementation of the so-called directional mode is understood as binding different beamforming weights when transmitting channel measurement pilots, wherein different precoding codewords from the codebook are used as Beamforming weights can be understood as one of the implementations of directional beams.
  • the following is an example of a beamforming orientation.
  • the measurement process of the channel state information based on the beam mode is divided into three phases, which are a beam level 1 based measurement process, a beam level 2 based measurement process, and a beam level 3 based measurement process.
  • beam level 1 is used for a larger range of beam acknowledgments
  • beam level 2 has a medium resolution, which is a further division of the beam in beam level 1
  • beam level 3 has the highest beam resolution and is in beam level 2 Further division of the beam.
  • the transmitting end first transmits the channel measurement pilot based on the beam included in the beam level 1 to obtain the optimal beam i in the beam level 1; then determines the optimal beam ii in which the beam level 2 is in the optimal beam i range; The optimal beam iii of beam level 3 within the range of the optimal beam ii is determined.
  • the division of the beam level is not limited to only three levels, as shown in FIG. 6, and may be divided into two levels, four levels, and the like. For convenience of description, the following description will be made by taking FIG. 6 as an example.
  • the transmitting end sequentially performs a beam level 1 based measurement process, a beam level 2 based measurement process, and a beam level 3 based measurement process.
  • the three stages of the measurement process of beam grading are described below.
  • the channel measurement period of the beam level 1 may further include at least three sub-phases, respectively: the transmitting end transmits the channel measurement pilot based on the level 1 beam, the receiving end feedbacks the optimal beam measurement result, and the optimal level 1 beam to the level 2 beam. Notification of mapping relationships.
  • the receiving end receives the channel measurement pilot, and determines the optimal level 1 transmit beam according to the estimated received SINR, and then feeds it back to the transmitting end, so that the transmitting end knows the optimal level 1 transmit beam information. Then, the mapping relationship information of the level 1 beam to the level 2 is notified to the receiving end, so that the receiving end completes the channel measurement process in the second stage, that is, the beam level 2.
  • the transmitting end measures the pilot based on the level 1 beam transmission channel
  • the base station transmits a channel measurement pilot sequence to the terminal based on each level 1 transmit beam, respectively, wherein different level 1 transmit beams may be transmitted using the same channel measurement pilot sequence with different time units. It is assumed that T s is the transmission, reception, and processing time of the channel measurement pilot sequence on each level 1 transmit beam. After all Q (1, t) times T s are over, the terminal receives the channel measurement pilot sequence on each level 1 transmit beam, and estimates the SINR information on each level 1 transmit beam. Based on the information, The terminal selects the optimal level 1 transmit beam.
  • the terminal feeds back the determined optimal level 1 transmit beam index information to the base station.
  • the terminal may also feed back information about the corresponding SINR on the optimal level 1 transmit beam to the base station, so that the base station can use the SINR information to send some control information or target requirements based on the level 1 transmit beam. Not high data information.
  • the base station transmits the mapping information of the optimal beam to the level 2 beam to the terminal through its optimal level 1 transmit beam.
  • the base station may further send, by using the optimal level 1 transmit beam, an ACK/NACK request for the terminal to confirm the received mapping information of the optimal beam to the level 2 beam.
  • the mapping information includes at least the number of level 2 beams included in the optimal beam level 1.
  • the third parameter may not be needed in the channel measurement process of the level 1 beam.
  • the step is a notification process of the mapping relationship of the level 1 beam to the level 2 beam.
  • Phases two and three measurement process based on beam level 2 and beam level 3
  • the base station and the terminal Through the measurement process of the channel state information based on the level 1 beam between the base station and the terminal, the base station and the terminal have been able to find each other through the optimal transmitted wide beam, and these wide beams can be used to control the transmission of the command.
  • each process of the two beam training processes is similar to the measurement process of the level 1 beam, and at least three sub-phases are included: pilot Send, measurement result feedback, mapping relationship notification.
  • mapping area indicates the change of the search area indicated by the mapping information: etc.
  • the optimal level 2 beam is searched from the optimal level 1 beam pair; and in the level 3 beam measurement process, the search is performed from the optimal level 2 beam pair.
  • Optimal level 3 beam is set up to find the optimal beam faster.
  • the uplink terminal in addition to the feedback of the optimal level 3 beam index information, the uplink terminal must feed back the received SINR corresponding to the optimal level 3 beam or the base station. CQI information, so that the base station performs user scheduling, resource allocation, and data transmission processing in the next step.
  • each beam may correspond to a beam shaping weight, and the number of transmission layers corresponding to the beam shaping weight may be equal to 1 or greater than 1; if the beam shaping weight corresponds to the number of transmission layers When the value is equal to 1, a channel measurement pilot port is configured on each beam; when the number of transmission layers corresponding to the beam shaping weight is greater than 1, a plurality of channel measurement pilot ports are configured on each beam, and The number of configured channel measurement pilot ports is equal to the number of transmission layers corresponding to the beamforming weights.
  • the beamforming weight or the number of transmission layers or the channel measurement pilot port information corresponding to each beam is notified to the terminal by the base station, or is pre-agreed by the base station and the terminal. After the measurement ends, the terminal may feed back the indication information of the optimal beam or the indication information of the beamforming weight corresponding to the optimal beam or the indication information of the channel measurement port to the base station.
  • the optimal beam may include not only one optimal beam, but also an optimal multiple beams, which respectively correspond to different transport layers of beamforming weights.
  • the correspondence between each beam and the base vector may be notified to the terminal by the base station or pre-agreed by the base station and the terminal. After the order is measured, the terminal may feed back the indication information of the optimal beam or the optimal beam group or the indication information of the beamforming weight corresponding thereto or the indication information of the channel measurement port to the base station.
  • the terminal side may also adopt directional transmission and/or reception.
  • the transmission and/or reception on the terminal side may also adopt the manner of the above-described hierarchical beam measurement.
  • the base station sends N channel measurement pilot port signals to the terminal,
  • the channel measurement pilot signal on each channel measurement port is bound to a base vector constituting a beamforming weight.
  • the combination of multiple base vectors may constitute one transmit beam shaping weight, and the different base vectors also correspond to beamforming vectors on different layers of the transmit beamforming weight.
  • the correspondence between the channel measurement pilot port and the base vector and/or the correspondence between each beamforming weight and the channel measurement pilot port and/or the correspondence between each base vector and the transmission beam may be performed by the base station.
  • the notification is sent to the terminal or determined by the base station and the terminal in a pre-agreed manner.
  • the base station and the terminal pre-store the precoding codebooks constituting the beamforming weights and the correspondence between the different precoding codewords and the channel measurement pilot ports, and may also be the base station.
  • the terminal pre-stores a table of correspondence between different base vectors constituting beamforming weights and channel measurement pilot ports, and may also be that the base station and the terminal pre-store different channel measurement pilot ports and different beams and different bases.
  • the correspondence between the vectors may also be that the base station and the terminal pre-store the correspondence between different beams and different precoding code words and different beams and different channel measurement pilot ports.
  • the terminal determines the channel state quality on the pilot port from the different channel measurement pilot ports or on which group of channel measurement pilot ports, that is, the received SINR is optimal, and then the terminal corresponds to the optimal SINR.
  • the CQI level information and the indication information of one or a group of channel measurement pilot ports corresponding to the optimal SINR are fed back to the base station.
  • the terminal may be the feedback optimal SINR.
  • the CQI level and the indication information of the precoding codeword corresponding to the one or a group of channel measurement pilot ports corresponding to the optimal SINR are sent to the base station; when the base station and the terminal pre-store different base vectors constituting the beamforming weights When the table of the correspondence between the channel measurement pilot ports or the base station notifies the terminal of the correspondence between the different base vectors and the channel measurement pilot ports, the terminal may also feed back the CQI level corresponding to the optimal SINR and the optimal.
  • the set of base vector information preferably further comprises a base vector constituting the set of base vectors Arranging order information; when the base station and the terminal pre-store or notify the terminal of different channel measurement pilot ports and different beams and different basis vectors by the base station
  • the terminal may also feed back the CQI level corresponding to the optimal SINR and the indication information of one or more beams corresponding to one or a group of channel measurement pilot ports corresponding to the optimal SINR to the terminal; And the terminal pre-saves or the base station notifies the terminal of different beams and different
  • the precoding codeword and the correspondence between different beams and different channel measurement pilot ports the terminal may also feed back the CQI level corresponding to the optimal SINR and one or a group of channel measurement pilot ports corresponding to the optimal SINR.
  • the indication information of the corresponding optimal beam is given to the terminal.
  • the embodiment of the invention further provides a transmitting end and a receiving end, wherein
  • FIG. 7 is a schematic structural diagram of an embodiment of a transmitting end of the present invention. As shown in Figure 7, the transmitting end of the embodiment of the present invention includes at least a sending module 701 and a first receiving module 702;
  • the sending module 701 is configured to: send, according to a preset orientation manner, a channel measurement pilot used by the receiving end to perform measurement of channel state information;
  • the first receiving module 702 is configured to: receive channel state information fed back from the receiving end.
  • the preset orientation mode includes one of the following ways:
  • Precoding codewords having a transmission layer number of 1 to M in the codebook are respectively used as beamforming weights of the channel measurement pilots;
  • M is the maximum number of transport layers that the sender can support for data transmission, and M is an integer greater than or equal to 1.
  • the sending module 701 is specifically configured to: respectively send channel measurement pilots on the configured N channel measurement pilot ports, where N is an integer greater than or equal to 1;
  • the receiving module 702 is specifically configured to: receive channel state information of any one of the channel measurement pilot ports fed back by the receiving end, or a combination of any two or more of the channel measurement pilot ports The channel state information on the channel and the indication signal of the channel measurement pilot port corresponding to the channel state information.
  • the N channel measurement pilot ports are bound to different beamforming weights; or any two or more of the N measurement pilot ports are bound to different beamforming weights.
  • the combination of any two or more channel measurement pilot ports is used to measure channel state information when the number of transmission layers is greater than 1, wherein different channel measurement ports correspond to different transmission layers.
  • the sending module 701 is further configured to: notify the receiving end of the configuration information of the N channel measurement pilot ports: or the transmitting end and the receiving end pre-agreed the N channel measurement guides Frequency port configuration information.
  • the configuration information includes at least one of the following:
  • the channel measures pilot period and subframe offset information
  • the channel measures pilot location information
  • the channel measures a binding relationship between a pilot port and a beamforming weight
  • the sending module 701 is specifically configured to: when the pre-set orientation mode is to use the precoding codewords with the number of the transmission layers being 1 to M as the beam shaping weights of the channel measurement pilots respectively; When the channel measurement pilot is transmitted based on the precoding codeword with the number of transmission layers i, i different channel measurement pilot ports are configured for each precoding codeword transmission, corresponding to i different transmission layers; 1 ⁇ i ⁇ M and i is an integer;
  • the precoding codeword and transmission layer of the transmission layer number is M
  • the nesting characteristic is satisfied between the precoding codewords of number i; 1 ⁇ i ⁇ M and i is an integer; the sending module 701 is specifically configured to: configure M different channel measurements for each precoding codeword transmission. Pilot ports, corresponding to M different transport layers;
  • the sending module 701 is further configured to: One channel measurement pilot port is configured for transmission of each base vector.
  • the transmitting end of the embodiment of the present invention further includes a configuration module 703, configured to: configure a time unit for transmitting the channel measurement pilot.
  • the configuration module 703 is further configured to: receive a channel state quality measurement request from the receiving end; and notify the receiving end of the configured time unit.
  • the configuration module 703 is specifically configured to: configure Q consecutive time units for transmitting the channel measurement pilot, where the value of Q is one of the following modes:
  • the value of Q is equal to the number of all beamforming weights that can be used as the channel measurement pilot
  • all beamforming weights that can be used as the channel measurement pilots are divided into P groups, where P is an integer greater than 1, and the beam shaping weights included in each group in the P group are The Euclidean distance is greater than the specified threshold, and the value of Q is equal to P;
  • T is an integer greater than 1
  • signal transmission of the jth level beam or codeword The coverage of the signal transmission coverage of the (j+1)th grade beam or codeword is wider, and the signal transmission coverage of each jth grade beam or codeword includes L j (j+1) levels.
  • the signal transmission coverage of the beam or codeword, the value of Q is equal to L 0 + L 1 + ... + L T-1 ; where L 0 is the number of beams of the first class, and j is an integer less than T.
  • the configuration module 703 is specifically configured to: configure a K group equally spaced time unit set for transmitting the channel measurement pilot, where each group of time unit sets includes Q consecutive channels for transmitting the channel measurement pilot
  • the time unit, K is a positive integer.
  • the first receiving module 702 is specifically configured to: receive, from the receiving end, index information of the precoding codeword and corresponding channel state quality information, where the index information is all precoding codes of the pair of transmission layers being 1 to M.
  • a precoding codeword index and corresponding transport layer index information and channel state quality information where the index information is a pre-defined index number corresponding to the precoding codeword corresponding to the setting of the number of the transport layer;
  • the vector index information is a predefined index number of a base vector constituting a precoding codeword whose transport layer is 1 to M ;
  • the indication information of the channel measurement pilot port and the corresponding channel state quality information is that the channel measurement pilot port bound to the transmission layer is respectively 1 to M The index number of the meaning.
  • the first receiving module 702 is further configured to: pre-store a codebook containing a precoding codeword or a base vector that can be used as a beamforming weight of the channel measurement pilot.
  • FIG. 8 is a schematic structural diagram of an embodiment of a receiving end according to the present invention. As shown in FIG. 8, the receiving end of the embodiment of the present invention includes at least a second receiving module 801, a measuring module 802, and a feedback module 803.
  • the second receiving module 801 is configured to: receive a channel measurement pilot that is sent by the sending end according to a preset orientation manner;
  • the measuring module 802 is configured to: measure channel state information according to the received channel measurement pilot;
  • the feedback module 803 is configured to: feed back the measured channel state information to the sending end.
  • the second receiving module 801 is specifically configured to: receive channel measurement pilots that are respectively used as beamforming weights based on precoding codewords whose number of transmission layers in the codebook is 1 to M respectively; or
  • M is the maximum number of transport layers that the sender can support for data transmission, and M is an integer greater than or equal to 1.
  • the second receiving module 801 is specifically configured to: respectively receive channel measurement pilots in the pre-configured N channel measurement pilot ports, where N is an integer greater than or equal to 1;
  • the feedback module 803 is specifically configured to: channel state information of any one of the channel measurement pilot ports, or channel state information of a combination of any two or more of the channel measurement pilot ports, And the indication information of the channel measurement pilot port corresponding to the channel state information is fed back to the sending end.
  • the N channel measurement pilot ports are respectively bound with different beamforming weights; or any two or more of the N measurement pilot ports are bound to different beam shaping weights.
  • the combination of any two or more channel measurement pilot ports is used to measure channel state information when the number of transmission layers is greater than 1, wherein different channel measurement ports correspond to different transmission layers.
  • the second receiving module 801 is further configured to: receive configuration information of the N channel measurement pilot port frequencies from the transmitting end;
  • the configuration information of the N channel measurement pilot ports is pre-agreed with the transmitting end.
  • the configuration information includes at least one of the following:
  • the channel measures pilot period and subframe offset information
  • the channel measures pilot location information
  • the channel measures a binding relationship between a pilot port and a beamforming weight
  • the second receiving module 801 When the second receiving module 801 receives the channel measurement pilots respectively based on the precoding codewords of the transmission layer number of 1 to M as the beamforming weights, the second receiving module 801 is specifically configured to: sequentially receive the transmission based on the transmission. a channel measurement pilot transmitted by a precoding codeword with a number of layers i, wherein i different channel measurement pilot ports are received, corresponding to i different transmission layers; 1 ⁇ i ⁇ M and i is an integer;
  • the second receiving module 801 When the second receiving module 801 receives a channel measurement pilot based on a precoding codeword with a number of transmission layers of M as a beamforming weight, the number of precoding codewords and transmission layers of the number of transmission layers being M is The pre-coded codewords of i satisfy the nested feature; 1 ⁇ i ⁇ M and i is an integer; the second receiving module 801 is specifically configured to: receive channel measurement based on precoding codeword transmission with the number of transmission layers being M a pilot, wherein: receiving M different channel measurement pilot ports, respectively corresponding to M different transmission layers;
  • the base vector of the precoding codewords based on the number of transmission layers respectively being 1 to M is used as a beamforming weight.
  • the second receiving module 801 is specifically configured to: sequentially receive channel measurement pilots that are sent based on each base vector, where each base vector is configured with one channel measurement pilot port.
  • the second receiving module 801 is further configured to: receive time unit information for transmitting the channel measurement pilot configured for the channel measurement pilot.
  • the second receiving module 801 receives the time unit, it is specifically configured to:
  • the channel measurement pilot is received on Q consecutive time units for receiving the channel measurement pilot, where the value of Q is one of the following modes:
  • the value of Q is equal to the number of all beamforming weights that can be used as the channel measurement pilot
  • all beamforming weights that can be used as the channel measurement pilots are divided into P groups, where P is an integer greater than 1, and the beam shaping weights included in each group in the P group are The Euclidean distance is greater than the specified threshold, and the value of Q is equal to P;
  • T is an integer greater than 1
  • signal transmission of the jth level beam or codeword The coverage of the signal transmission coverage of the (j+1)th grade beam or codeword is wider, and the signal transmission coverage of each jth grade beam or codeword includes L j (j+1) levels.
  • the signal transmission coverage of the beam or codeword, the value of Q is equal to L 0 + L 1 +... + L T-1 ; where L 0 is the number of beams of the first class, and j is the positive of less than or equal to T Integer.
  • the second receiving module 801 receives the time unit, it is specifically configured to:
  • Time unit, K is a positive integer.
  • the feedback module 803 is specifically configured to: feed back the index information of the pre-coded codeword corresponding to the channel state quality information and the corresponding channel state quality information to the sending end, where the index information is 1 to M for the transport layer. a pre-defined index number for all precoded codewords;
  • the index information of the pre-coded codeword corresponding to the channel state quality information and the corresponding transmission layer number setting and the channel state quality information are fed back to the transmitting end, where the index information is corresponding to the setting of the number of the transport layer The index number of the precoded codeword;
  • the base vector index and the combined information that best match the channel state quality information and the corresponding The channel state quality information is fed back to the transmitting end, and the base vector index is an index number predefined for a base vector of a precoding codeword whose transmission layer is 1 to M.
  • the second receiving module 801 is further configured to: pre-store a codebook containing a precoding codeword or a base vector that can be used as a beamforming weight of the channel measurement pilot.
  • the embodiment of the present invention further discloses a computer program, including a program instruction, when the program instruction is executed by a CSI transmitting end, so that the CSI transmitting end can perform the measurement and feedback method of the CSI of any of the foregoing transmitting end sides.
  • the embodiment of the invention also discloses a carrier carrying the computer program.
  • the embodiment of the present invention further discloses a computer program, including program instructions.
  • the program instruction is executed by the CSI receiving end, the CSI receiving end can perform the measurement and feedback method of the CSI of any of the receiving end sides.
  • the embodiment of the invention also discloses a carrier carrying the computer program.
  • all or part of the steps of the above embodiments may also be implemented by using an integrated circuit. These steps may be separately fabricated into individual integrated circuit modules, or multiple modules or steps may be fabricated into a single integrated circuit module. achieve. Thus, the invention is not limited to any specific combination of hardware and software.
  • the devices/function modules/functional units in the above embodiments may be implemented by a general-purpose computing device, which may be centralized on a single computing device or distributed over a network of multiple computing devices.
  • each device/function module/functional unit in the above embodiment When each device/function module/functional unit in the above embodiment is implemented in the form of a software function module and sold or used as a stand-alone product, it can be stored in a computer readable storage medium.
  • the above mentioned computer readable storage medium may be a read only memory, a magnetic disk or an optical disk or the like.
  • the technical solution of the present invention includes that the transmitting end sends a channel measurement pilot according to a preset orientation manner, where the channel measurement pilot is used by the receiving end to perform measurement of channel state information; and the transmitting end receives the channel state fed back by the receiving end. information.
  • the technical solution of the present invention solves the problem that the channel measurement pilot overhead in the large-scale multi-antenna technology is too large, and effectively selects the pre-encoded codeword or the beam-forming weight, thereby saving the measurement time of the channel state information. Therefore, the present invention has strong industrial applicability.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

一种信道状态信息(CSI)的测量和反馈方法及发送端和接收端,该方法包括:发送端基于预先设置的定向方式发送信道测量导频,所述信道测量导频用于接收端进行CSI的测量;所述发送端接收所述接收端反馈的CSI。本发明技术方案解决了大规模多天线技术中的信道测量导频开销太大的问题,并且有效地进行了预编码码字或者波束赋形权值的选择,节约了CSI的测量时间。

Description

信道状态信息的测量和反馈方法及发送端和接收端 技术领域
本文涉及信道状态信息(CSI,Channel State Information)的测量和反馈技术领域,尤其涉及一种CSI的测量和反馈方法及发送端和接收端。
背景技术
无线通信系统中,发送端和接收端采取空间复用的方式使用多根天线来获取更高的传输速率。相对于一般的空间复用方法,一种被广泛应用的技术是发送端发送测量导频以用于接收端对信道状态信息进行测量,接收端将所测量得到的信道状态信息反馈给发送端,发送端根据获得的信道状态信息使用一些发射端预编码技术,从而极大地提高传输性能。
在长期演进(LTE,Long Term Evolution)系统中,采用的是公共参考信号(CRS,Common Reference Signal)进行信道测量和数据解调,并且最多支持4个发射天线端口。由于CRS传输不包含数据的预编码信息,因此,当数据基于预编码方式进行传输时,需要发射端额外通知接收端数据发送时所使用的具体预编码矩阵(也称为预编码权值)信息。
在高级长期演进(LTE-A,Advanced Long Term Evolution)系统中,为了最多支持8个天线端口,且有效控制导频开销和提高信道估计准确度,将信道测量和数据解调功能分开,分别定义了两类参考信号,即信道状态信息参考信号(CSI-RS,Channel State Information Reference Signal)和解调参考信号(DMRS,Demodulation Reference Signal)。其中,CSI-RS主要用于信道测量以获得信道信息,例如信道质量信息(CQI,Channel Quality Information)/预编码矩阵信息(PMI,Precoding Matrix Indication)/秩即传输层数(RI,Rank Indication),并将这些信息反馈给基站,以便基站侧可以利用这些信息完成用户调度、数据传输等,CSI-RS的传输中并不携带预编码信息;DMRS主要用于数据传输的信道估计以完成数据的解调,DMRS的传输携带有相应数据传输所使用的预编码信息。
在4G的一些技术如LTE、802.16m标准规范中,信道信息的反馈主要是利用较简单的单一码本的反馈方法,而多输入多输出(MIMO,Multiple Input Multiple Output)的发射预编码技术的性能更依赖于其中码本反馈的准确度。这里将基于码本的信道信息量化反馈的基本原理简要阐述如下:
假设有限反馈信道容量为bps/Hz,那么,可用的码字的个数为个。信道矩阵的特征矢量空间经过量化构成码本空间。发射端与接收端共同保存或实时产生此码本(收发端相同)。根据接收端获得的信道矩阵H,接收端根据一定准则从中选择一个与信道最匹配的码字,并将码字序号以及该码字多对应的传输层数(秩)反馈回发射端。发射端根据此序号和传输层数(秩)信息找到相应的预编码码字,从而获得信道信息,表示了信道的特征矢量信息。
随着无线通信技术的高速发展,用户无线应用越来越丰富,带动了无线数据业务迅速增长。据预测,未来10年间数据业务以每年1.6~2倍速率增长。这给无线接入网络带来了巨大的挑战。多天线技术是应对无线数据业务爆发式增长挑战的关键技术。目前4G中支持的多天线技术仅仅最大为8天线端口水平维度的波束赋形技术,还有较大的潜力进一步的答复提升系统容量。
大规模多输入多输出(Massive MIMO,Massive Multiple Input Multiple Output)技术是下一代通信技术中的一个关键的增强技术,Massive MIMO系统主要特征为:基站侧配置有大规模天线阵列,可以使用多于8根天线进行发射,例如可以使用16根天线,或32根天线,或64根天线,甚至更多根天线进行发射。多于8根天线的发射传输就是Massive MIMO技术。使用这种大规模多天线技术,不仅有利用降低用户信道之间的干扰,另一方面,大阵列也可以带来非常可观的阵列增益和分集增益。如果将多根天线排在竖直的平面上形成一个面阵进行发射传输,这样可以有效地利用基站天线的空间,在一个小的空间内放置多根天线,从而既获得水平方向上的Massive MIMO的增益,又能获得垂直方向上的Massive MIMO增益,这就是三维大规模多输入多输出(3D Massive MIMO,3Dimensional Massive MIMO)技术或者成为全维(FD MIMO,Full Dimensional MIMO)技术。在Massive MIMO技术中,大量用户复用也是其重要的获得增益的应用情况。
另一方面,随着通信业务需求的不断增长,传统的频谱资源(主要指300MHz~3GHz之间的频谱资源)变得越来越拥挤,已经不能满足未来通信的需求,因此,研究高频频谱资源下的无线宽带通信是一个非常有前景的方向。由于高频信号的波长极短,可以应用大量小型天线阵,进一步增加了Massive MIMO在未来实际中的应用前景。
然而,对于Massive MIMO或者FD MIMO来说,由于大量天线的引入,传统的方法,即每根天线发送信道测量导频,终端检测信道测量导频并通过信道估计获得每个传输资源对应的信道矩阵,根据信道矩阵获得最佳的基带上每个频域子带预编码矢量和宽带的最佳传输层数信息,然后将其反馈给基站的方法,在大规模天线阵列的应用时存在比较大的问题。主要体现在,导频开销会随发射天线数目的增多而增多,导致导频开销非常巨大。为此,在近期3GPP会议的讨论中提出了一种基于预编码方式进行信道状态信息测量的方法,然而,由于大规模天线阵列场景中码本中往往需要包含非常多的码字,尤其是考虑到数据传输支持多层的情况下码字就更多了,这增加了信道测量时期码字选择的困难,另外也使得信道状态信息的测量时延很大。
发明内容
本发明要解决的技术问题是提供了一种信道状态信息的测量和反馈方法及发送端和接收端,以避免大规模多天线技术中的信道测量导频开销太大的问题,有效地进行预编码码字或者波束赋形权值的选择,从而节约信道状态信息的测量时间。
为了达到上述技术目的,采用如下技术方案:
一种信道状态信息(CSI)的测量和反馈方法,包括:
发送端基于预先设置的定向方式发送信道测量导频,所述信道测量导频用于接收端进行CSI的测量;
所述发送端接收所述接收端反馈的CSI。
可选地,所述预先设置的定向方式包括以下方式之一:
将码本中传输层数目为1~M的预编码码字分别作为所述信道测量导频的 波束赋形权值;
将码本中传输层数目为M的预编码码字作为所述信道测量导频的波束赋形权值;
将码本中构成传输层数目为1~M的预编码码字的基矢量作为所述信道测量导频的波束赋形权值;
其中,M表示发送端进行数据发送所能支持的最大的传输层数目,M为大于或等于1的整数。
可选地,该方法还包括:配置N个信道测量导频端口;
所述发送端发送信道测量导频的步骤包括:所述发送端在N个信道测量导频端口上分别发送所述信道测量导频,其中,N为大于或等于1的整数;
所述发送端接收所述接收端反馈的CSI的步骤包括:所述发送端接收所述接收端反馈的任一个所述信道测量导频端口的CSI、或任意两个或两个以上所述信道测量导频端口的组合上的CSI,以及所述CSI所对应的信道测量导频端口的指示信息。
可选地,所述N个信道测量导频端口分别绑定不同的波束赋形权值;或者,
所述N个信道测量导频端口中的任意两个或两个以上绑定不同的波束赋形权值。
可选地,所述任意两个或两个以上信道测量导频端口的组合用于测量传输层数目大于1时的CSI,其中不同的所述信道测量导频端口对应不同的传输层。
可选地,所述在N个信道测量导频端口上分别发送所述信道测量导频的步骤之前,该方法还包括:
所述发送端将所述N个信道测量导频端口的配置信息通知给所述接收端;
或者,所述发送端和所述接收端预先约定所述N个信道测量导频端口的配置信息。
可选地,所述配置信息至少包括以下之一:
所述信道测量导频的周期及子帧偏置信息;
所述信道测量导频的位置信息;
所述信道测量导频的端口数目信息;
所述信道测量导频端口与波束赋形权值之间的绑定关系;
构成每个所述信道测量导频的组合的多个端口的指示信息;
构成每个所述信道测量导频的组合的多个端口与不同传输层的对应关系。
可选地,所述预先设置的定向方式为将所述传输层数目为1~M的预编码码字分别作为所述信道测量导频的波束赋形权值;
所述基于预先设置的定向方式发送信道测量导频的步骤包括:
当基于传输层数目为i的预编码码字发送信道测量导频时,为每个预编码码字的发送配置i个不同的信道测量导频端口,分别对应i个不同的传输层;1≤i≤M且i为整数。
可选地,所述预先设置的定向方式为将传输层数目为M的预编码码字作为所述信道测量导频的波束赋形权值;
所述方法还包括:为每个预编码码字的发送配置M个不同的信道测量导频端口,分别对应M个不同的传输层。
可选地,所述传输层数目为M的预编码码字与传输层数目为i的预编码码字之间满足嵌套特性;1≤i<M且i为整数。
可选地,所述预先设置的定向方式为将构成传输层数目为1~M的预编码码字的基矢量分别作为所述信道测量导频的波束赋形权值;
该方法还包括:为每个基矢量的发送配置1个信道测量导频端口。
可选地,所述发送端基于预先设置的定向方式发送所述信道测量导频的步骤之前,该方法还包括:配置用于发送所述信道测量导频的时间单元。
可选地,所述配置用于发送所述信道测量导频的时间单元的步骤之前,该方法还包括:所述发送端接收到来自所述接收端的信道状态质量测量请求;
所述配置用于发送所述信道测量导频的时间单元的步骤之后,该方法还包括:所述发送端将配置好的时间单元通知给所述接收端。
可选地,所述配置用于发送所述信道测量导频的时间单元的步骤包括:
所述发送端配置Q个连续的用于发送所述信道测量导频的时间单元,其中Q的取值为以下方式之一:
Q的取值等于能够作为所述信道测量导频的所有波束赋形权值的数目;
或者,将能够作为所述信道测量导频的所有波束赋形权值划分为P组,其中P为大于1的整数,所述P组中每一组中所包含的波束赋形权值之间的欧氏距离大于指定门限值,Q的取值等于P;
或者,将能够作为所述信道测量导频的所有波束赋形权值对应的波束或码字划分为T个等级,其中T为大于1的整数,第j个等级的波束或码字的信号发射覆盖范围比第(j+1)个等级的波束或码字的信号发射覆盖范围宽,而且每个第j等级波束或码字的信号发射覆盖范围中包含Lj个第(j+1)等级的波束或码字的信号发射覆盖范围,Q的取值等于L0+L1+…+LT-1;其中,L0为第1等级波束的个数,j为小于T的整数。
可选地,所述配置用于发送所述信道测量导频的时间单元的步骤包括:
所述发送端配置K组等间隔的用于发送所述信道测量导频的时间单元集合,其中每组时间单元集合中包括Q个连续的用于发送所述信道测量导频的时间单元,K为正整数。
可选地,所述发送端接收所述接收端反馈的CSI的步骤包括:
从接收端接收预编码码字的索引信息以及对应的信道状态质量信息,所述索引信息是对传输层为1~M的所有预编码码字或绑定的信道测量导频端口预定义的索引编号;
或者,从接收端接收预编码码字索引以及对应的传输层索引信息和信道状态质量信息,所述索引信息是对所述传输层数目设置条件下对应的预编码码字或绑定的信道测量导频端口预定义的索引编号;
或者,从接收端接收基矢量索引信息及基矢量组合信息和对应的信道状态质量信息,所述基矢量索引信息是对构成传输层为1~M的预编码码字的基 矢量预定义的索引编号;
或者,从接收端接收信道测量导频端口的指示信息和对应的信道状态质量信息,所述指示信息是对传输层为1~M分别绑定的信道测量导频端口预定义的索引编号。
可选地,该方法还包括,在所述发送端和所述接收端均预先保存包含能够作为所述信道测量导频的波束赋形权值的预编码码字或者基矢量的码本。
一种信道状态信息(CSI)的测量和反馈方法,包括:
接收端接收发送端基于预先设置的定向方式发送的信道测量导频,并根据接收到的信道测量导频测量CSI;
所述接收端将测量得到的CSI反馈给所述发送端。
可选地,所述接收端接收发送端基于预先设置的定向方式发送的信道测量导频的步骤包括:
所述接收端接收所述发送端分别基于码本中传输层数目为1~M的预编码码字分别作为波束赋形权值的信道测量导频;
所述接收端接收所述发送端基于码本中传输层数目为M的预编码码字作为波束赋形权值的信道测量导频;或者,
所述接收端接收所述发送端分别基于码本中传输层数目为1~M的预编码码字的基矢量作为波束赋形权值的信道测量导频;
其中,M表示发送端进行数据发送所能支持的最大的传输层数目,M为大于或等于1的整数。
可选地,所述接收发送端基于预先设置的定向方式发送的信道测量导频,根据接收到的信道测量导频测量CSI的步骤包括:所述接收端在预先配置的N个信道测量导频端口分别接收所述信道测量导频,其中,N为大于或等于1的整数;
所述接收端将测量得到的CSI反馈给发送端的步骤包括:所述接收端将任一个所述信道测量导频端口的CSI、或任意两个或两个以上所述信道测量 导频端口的组合上的CSI,以及所述CSI所对应的的信道测量导频端口的指示信息反馈给所述发送端。
可选地,所述N个信道测量导频端口分别绑定不同的波束赋形权值;
或者,所述N个信道测量导频端口中的任意两个或两个以上绑定不同的波束赋形权值。
可选地,所述任意两个或两个以上信道测量导频端口的组合用于测量传输层数目大于1时的CSI,其中不同的信道测量导频端口对应不同的传输层。
可选地,所述在N个信道测量导频端口分别接收所述信道测量导频的步骤之前,该方法还包括:
所述接收端接收来自所述发送端的所述N个信道测量导端口频的配置信息;
或者,所述接收端与所述发送端预先约定所述N个信道测量导频端口的配置信息。
可选地,所述配置信息至少包括以下之一:
所述信道测量导频的周期及子帧偏置信息;
所述信道测量导频的位置信息;
所述信道测量导频的端口数目信息;
所述信道测量导频端口与波束赋形权值之间的绑定关系;
构成每个所述信道测量导频的组合的多个端口的指示信息;
构成每个所述信道测量导频的组合的多个端口与不同传输层的对应关系。
可选地,所述接收端接收所述发送端分别基于传输层数目为1~M的预编码码字作为波束赋形权值的信道测量导频的步骤包括:
所述接收端依次接收基于传输层数目为i的预编码码字发送的信道测量导频,其中,接收i个不同的信道测量导频端口分别对应i个不同的传输层;1≤i≤M且i为整数。
可选地,所述接收端接收所述发送端基于传输层数目为M的预编码码字 作为波束赋形权值的信道测量导频的步骤包括:
所述接收端接收基于传输层数目为M的预编码码字发送的信道测量导频,其中,接收M个不同的信道测量导频端口,分别对应M个不同的传输层。
可选地,所述传输层数目为M的预编码码字与传输层数目为i的预编码码字之间满足嵌套特征;1≤i<M且i为整数。
可选地,所述接收端接收所以发送端分别基于传输层数目为1~M的预编码码字的基矢量作为波束赋形权值的信道测量导频的步骤包括:
所述接收端依次接收基于每个基矢量发送的信道测量导频,其中,每个基矢量配置了1个信道测量导频端口。
可选地,所述接收端接收所述信道测量导频的步骤之前,该方法还包括:接收为所述信道测量导频配置的用于发送所述信道测量导频的时间单元信息。
可选地,所述接收为所述信道测量导频配置的用于发送所述信道测量导频的时间单元信息的步骤包括:
所述接收端在Q个连续的用于接收所述信道测量导频的时间单元上接收所述信道测量导频,其中Q的取值为以下方式之一:
Q的取值等于能够作为所述信道测量导频的所有波束赋形权值的数目;
或者,将能够作为所述信道测量导频的所有波束赋形权值划分为P组,其中P为大于1的整数,所述P组中每一组中所包含的波束赋形权值之间的欧氏距离大于指定门限值,Q的取值等于P;
或者,将能够作为所述信道测量导频的所有波束赋形权值对应的波束或码字划分为T个等级,其中T为大于1的整数,第j个等级的波束或码字的信号发射覆盖范围比第(j+1)个等级的波束或码字的信号发射覆盖范围宽,而且每个第j等级波束或码字的信号发射覆盖范围中包含Lj个第(j+1)等级的波束,Q的取值等于L0+L1+…+LT-1;其中,L0为第1等级波束的个数,j为小于或等于T的正整数。
可选地,所述接收为所述信道测量导频配置的用于发送所述信道测量导 频的时间单元信息的步骤包括:
所述接收端K组等间隔的用于发送所述信道测量导频的时间单元集合,其中每组时间单元集合中包括Q个连续的用于发送所述信道测量导频的时间单元,K为正整数。
可选地,所述接收端将测量得到的CSI反馈给发送端的步骤包括:
将信道状态质量信息最优对应的预编码码字的索引信息以及对应的信道状态质量信息反馈给发送端,所述索引信息是对传输层为1~M的所有预编码码字预定义的索引编号;
或者,将信道状态质量信息最优对应的预编码码字的索引信息以及对应的传输层数目设置和信道状态质量信息反馈给发送端,所述索引信息是对所述传输层数目设置条件下对应的预编码码字的索引编号;
或者,将信道状态质量信息最优对应的基矢量索引及组合信息以及对应的信道状态质量信息反馈给发送端,所述述基矢量索引信息是对传输层为1~M的预编码码字的基矢量预定义的索引编号。
可选地,该方法还包括:在所述发送端和接收端均预先保存包含能够作为所述信道测量导频的波束赋形权值的预编码码字或者基矢量的码本。
一种发送端,包括发送模块和第一接收模块;其中,
所述发送模块设置成:基于预先设置的定向方式发送用于使得接收端进行CSI测量的信道测量导频;
所述第一接收模块设置成:接收所述接收端反馈的CSI。
可选地,所述预先设置的定向方式包括以下方式之一:
将码本中传输层数目为1~M的预编码码字分别作为所述信道测量导频的波束赋形权值;
将码本中传输层数目为M的预编码码字作为所述信道测量导频的波束赋形权值;
将码本中构成传输层数目为1~M的预编码码字的基矢量分别作为所述信 道测量导频的波束赋形权值;
其中,M表示发送端进行数据发送所能支持的最大的传输层数目,M为大于或等于1的整数。
可选地,所述发送模块设置成按照如下方式发送所述信道测量导频:在配置的N个信道测量导频端口上分别发送所述信道测量导频,其中,N为大于或等于1的整数;
所述接收模块设置成按照如下方式接收所述接收端反馈的CSI:接收所述接收端反馈的任一个所述信道测量导频端口的CSI、或任意两个或两个以上所述信道测量导频端口的组合上的CSI,以及所述CSI所对应的信道测量导频端口的指示信。
可选地,所述N个信道测量导频端口绑定不同的波束赋形权值;或者,
所述N个测量导频端口中的任意两个或两个以上绑定不同的波束赋形权值。
可选地,所述任意两个或两个以上信道测量导频端口的组合用于测量传输层数目大于1时的CSI,其中不同的信道测量导频端口对应不同的传输层。
可选地,所述发送模块还设置成:将所述N个信道测量导频端口的配置信息通知给所述接收端:或者,所述发送端和所述接收端预先约定所述N个信道测量导频端口的配置信息。
可选地,所述配置信息至少包括以下之一:
所述信道测量导频的周期及子帧偏置信息;
所述信道测量导频的位置信息;
所述信道测量导频的端口数目信息;
所述信道测量导频端口与波束赋形权值之间的绑定关系;
构成每个所述信道测量导频的组合的多个端口的指示信息;
构成每个所述信道测量导频的组合的多个端口与不同传输层的对应关。
可选地,当所述预先设置的定向方式为将所述传输层数目为1~M的预编码码字分别作为所述信道测量导频的波束赋形权值时;
所述发送模块设置成按照如下方式基于预先设置的定向方式发送信道测量导频:当基于传输层数目为i的预编码码字发送信道测量导频时,为每个预编码码字的发送配置i个不同的信道测量导频端口,分别对应i个不同的传输层;1≤i≤M且i为整数;
当所述预先设置的定向方式为将传输层数目为M的预编码码字作为所述信道测量导频的波束赋形权值时,所述传输层数目为M的预编码码字与传输层数目为i的预编码码字之间满足嵌套特性;1≤i<M且i为整数;所述发送模块还设置成:为每个预编码码字的发送配置M个不同的信道测量导频端口,分别对应M个不同的传输层;
当所述预先设置的定向方式为将构成传输层数目为1~M的预编码码字的基矢量分别作为所述信道测量导频的波束赋形权值时,所述发送模块还设置成:为每个基矢量的发送配置1个信道测量导频端口。
可选地,该发送端还包括配置模块,该配置模块设置成:配置用于发送所述信道测量导频的时间单元。
可选地,所述配置模块还设置成:接收到来自所述接收端的信道状态质量测量请求;将配置好的时间单元通知给所述接收端。
可选地,所述配置模块设置成按照如下方式配置用于发送所述信道测量导频的时间单元:配置Q个连续的用于发送所述信道测量导频的时间单元,其中Q的取值为以下方式之一:
Q的取值等于能够作为所述信道测量导频的所有波束赋形权值的数目;
或者,将能够作为所述信道测量导频的所有波束赋形权值划分为P组,其中P为大于1的整数,所述P组中每一组中所包含的波束赋形权值之间的欧氏距离大于指定门限值,Q的取值等于P;
或者,将能够作为所述信道测量导频的所有波束赋形权值对应的波束或码字划分为T个等级,其中T为大于1的整数,第j个等级的波束或码字的信号发射覆盖范围比第(j+1)个等级的波束或码字的信号发射覆盖范围宽,而且每个第j等级波束或码字的信号发射覆盖范围中包含Lj个第(j+1)等级的波束或码字的信号发射覆盖范围,Q的取值等于L0+L1+…+LT-1;其中,L0为第 1等级波束的个数,j为小于T的整数。
可选地,所述配置模块设置成按照如下方式配置用于发送所述信道测量导频的时间单元:配置K组等间隔的用于发送所述信道测量导频的时间单元集合,其中每组时间单元集合中包括Q个连续的用于发送所述信道测量导频的时间单元,K为正整数。
可选地,所述第一接收模块设置成按照如下方式接收所述接收端反馈的CSI:
从所述接收端接收预编码码字的索引信息以及对应的信道状态质量信息,索引信息是所述对传输层为1~M的所有预编码码字预定义的索引编号;
或者,从接收端接收预编码码字索引以及对应的传输层索引信息和信道状态质量信息,所述索引信息是对所述传输层数目设置条件下对应的预编码码字预定义的索引编号;
或者,从接收端接收基矢量索引信息及基矢量组合信息和对应的信道状态质量信息,所述矢量索引信息是对构成传输层为1~M的预编码码字的基矢量预定义的索引编号;
或者,从接收端接收信道测量导频端口的指示信息和对应的信道状态质量信息,所述指示信息是对传输层为1~M分别绑定的信道测量导频端口预定义的索引编号。
可选地,所述第一接收模块还设置成:预先保存包含能够作为所述信道测量导频的波束赋形权值的预编码码字或者基矢量的码本。
一种接收端,包括第二接收模块、测量模块和反馈模块;其中,
所述第二接收模块设置成:接收发送端基于预先设置的定向方式发送的信道测量导频;
所述测量模块设置成:根据接收到的所述信道测量导频测量信道状态信息(CSI);
所述反馈模块设置成:将测量得到的CSI反馈给所述发送端。
可选地,所述第二接收模块设置成按照如下方式接收发送端基于预先设置的定向方式发送的信道测量导频:
接收所述发送端分别基于码本中传输层数目为1~M的预编码码字分别作为波束赋形权值的信道测量导频;或者,
接收所述发送端基于码本中传输层数目为M的预编码码字作为波束赋形权值的信道测量导频;或者,
接收所述发送端分别基于码本中传输层数目为1~M的预编码码字的基矢量分别作为波束赋形权值的信道测量导频;
其中,M表示所述发送端进行数据发送所能支持的最大的传输层数目,M为大于或等于1的整数。
可选地,所述信道测量导频为N个;所述第二接收模块设置成按照如下方式根据接收到的信道测量导频测量CSI:在预先配置的N个信道测量导频端口分别接收信道测量导频,其中,N为大于或等于1的整数;
所述反馈模块设置成按照如下方式将测量得到的CSI反馈给发送端:将任一个所述信道测量导频端口的CSI、或任意两个或两个以上所述信道测量导频端口的组合上的CSI,以及所述CSI所对应的信道测量导频端口的指示信息反馈给所述发送端。
可选地,所述N个信道测量导频端口分别绑定不同的波束赋形权值;
或者,所述N个测量导频端口中的任意两个或两个以上绑定不同的波束赋形权值。
可选地,所述任意两个或两个以上信道测量导频端口的组合用于测量传输层数目大于1时的CSI,其中不同的信道测量导频端口对应不同的传输层。
可选地,所述第二接收模块还设置成:接收来自所述发送端的所述N个信道测量导端口频的配置信息;
或者,与所述发送端预先约定所述N个信道测量导频端口的配置信息。
可选地,所述配置信息至少包括以下之一:
所述信道测量导频的周期及子帧偏置信息;
所述信道测量导频的位置信息;
所述信道测量导频的端口数目信息;
所述信道测量导频端口与波束赋形权值之间的绑定关系;
构成每个所述信道测量导频的组合的多个端口的指示信息;
构成每个所述信道测量导频的组合的多个端口与不同传输层的对应关系。
可选地,所述第二接收模块设置成按照如下方式接收所述发送端分别基于传输层数目为1~M的预编码码字作为波束赋形权值的信道测量导频:依次接收基于传输层数目为i的预编码码字发送的信道测量导频,其中,接收i个不同的信道测量导频端口,分别对应i个不同的传输层;1≤i≤M且i为整数;
当所述第二接收模块接收所述发送端基于传输层数目为M的预编码码字作为波束赋形权值的信道测量导频时,所述传输层数目为M的预编码码字与传输层数目为i的预编码码字之间满足嵌套特征;1≤i<M且i为整数;所述第二接收模块还设置成:接收基于传输层数目为M的预编码码字发送的信道测量导频,其中,接收M个不同的信道测量导频端口,分别对应M个不同的传输层;
当所述第二接收模块接收所述发送端分别基于传输层数目为1~M的预编码码字的基矢量作为波束赋形权值的信道测量导频时,所述第二接收模块还设置成;依次接收基于每个基矢量发送的信道测量导频,其中,每个基矢量配置了1个信道测量导频端口。
可选地,所述第二接收模块还设置成:接收为所述信道测量导频配置的用于发送所述信道测量导频的时间单元信息。
可选地,所述第二接收模块设置成按照如下方式接收为所述信道测量导频配置的用于发送所述信道测量导频的时间单元:
在Q个连续的用于接收所述信道测量导频的时间单元上接收所述信道测量导频,其中Q的取值为以下方式之一:
Q的取值等于能够作为所述信道测量导频的所有波束赋形权值的数目;
或者,将能够作为所述信道测量导频的所有波束赋形权值划分为P组,其中P为大于1的整数,所述P组中每一组中所包含的波束赋形权值之间的欧氏距离大于指定门限值,Q的取值等于P;
或者,将能够作为所述信道测量导频的所有波束赋形权值对应的波束或码字划分为T个等级,其中T为大于1的整数,第j个等级的波束或码字的信号发射覆盖范围比第(j+1)个等级的波束或码字的信号发射覆盖范围宽,而且每个第j等级波束或码字的信号发射覆盖范围中包含Lj个第(j+1)等级的波束或码字的信号发射覆盖范围,Q的取值等于L0+L1+…+LT-1;其中,L0为第1等级波束的个数,j为小于或等于T的正整数。
可选地,所述第二接收模块设置成按照如下方式接收为所述信道测量导频配置的用于发送所述信道测量导频的时间单元:
在K组等间隔的用于接收所述信道测量导频的时间单元集合上接收所述信道测量导频,其中每组时间单元集合中包括Q个连续的用于接收所述信道测量导频的时间单元,K为正整数。
可选地,所述反馈模块设置成按照如下方式将测量得到的CSI反馈给发送端:
将信道状态质量信息最优对应的预编码码字的索引信息以及对应的信道状态质量信息反馈给发送端,所述索引信息是对传输层为1~M的所有预编码码字预定义的索引编号;
或者,将信道状态质量信息最优对应的预编码码字的索引信息以及对应的传输层数目设置和信道状态质量信息反馈给发送端,所述索引信息是对所述传输层数目设置条件下对应的预编码码字的索引编号;
或者,将信道状态质量信息最优对应的基矢量索引及组合信息以及对应的信道状态质量信息反馈给发送端,所述基矢量索引是对传输层为1~M的预编码码字的基矢量预定义的索引编号。
可选地,所述第二接收模块还设置成:预先保存包含能够作为所述信道测量导频的波束赋形权值的预编码码字或者基矢量的码本。
与相关技术相比,本发明的技术方案包括发送端基于预先设置的定向方式发送信道测量导频,所述信道测量导频用于接收端进行信道状态信息的测量;所述发送端接收所述接收端反馈的信道状态信息。本发明技术方案解决了大规模多天线技术中的信道测量导频开销太大的问题,并且有效地进行了预编码码字或者波束赋形权值的选择,节约了信道状态信息的测量时间。
附图概述
图1是本发明实施例中信道状态信息测量和反馈的一种流程示意图;
图2是本发明实施例中信道状态信息测量和反馈的另一种流程示意图;
图3是本发明实施例中信道状态信息测量和反馈的又一种流程示意图;
图4是本发明实施例中信道状态信息测量和反馈的再一种流程示意图;
图5是本发明实施例中不同等级的波束划分示意图;
图6是本发明实施例中在不同的时间单元上发送基于不同的预编码码字的信道测量导频的一种示意图;
图7为本发明发送端的实施例的组成结构示意图;
图8为本发明接收端的实施例的组成结构示意图。
本发明的较佳实施方式
以下是对本文详细描述的主题的概述。本概述并非是为了限制权利要求的保护范围。
下面将结合附图及实施例对本发明的技术方案进行更详细的说明。
需要说明的是,如果不冲突,本发明实施例以及实施例中的各个特征可以相互结合,均在本发明的保护范围之内。另外,虽然在流程图中示出了逻辑顺序,但是在某些情况下,可以以不同于此处的顺序执行所示出或描述的步骤。
一种信道状态信息的测量和反馈方法,包括:
发送端基于预先设置的定向方式发送信道测量导频,其中,信道测量导 频用于接收端测量信道状态信息;
发送端接收来自接收端反馈的信道状态信息。
信道状态信息测量的主要目的是为了发射端进行后续的数据发送,包括确定用于数据发送的资源分配、调制编码格式、功率分配等。
传统的基于非定向方式发送的信道测量导频是依赖于发射天线端口数发送的,即信道测量导频端口数通常等于发射天线端口数。因此,对于传统的方式,随着发射天线端口数的增加,导频开销会不断增加。采用基于定向方式发送信道测量导频,则不再依赖于发射天线端口数,而是依赖于最大支持的传输层数,即信道测量导频端口数与传输层数一致,因此导频开销与传输层数成正比。通常情况下,对于大规模天线阵列场景,传输层数远小于天线端口数。因此,基于定向方式发送信道测量导频,能够有效解决信道测量导频在大规模天线阵列场景中开销大的问题。所谓基于定向方式发送信道测量导频,通常是通过在将信道测量导频信号与指定的波束赋形权值绑定后发送的,其中,该指定的波束赋形权值用于实现所述信道测量导频信号的定向发送功能。每个波束赋形权值也可以理解为一个波束。
可选地,所述预先设置的定向方式包括以下方式之一:
将码本中传输层数目为1~M的预编码码字分别作为所述信道测量导频的波束赋形权值;
将码本中传输层数目为M的预编码码字作为所述信道测量导频的波束赋形权值;
将码本中构成传输层数目为1~M的预编码码字的基矢量分别作为所述信道测量导频的波束赋形权值;
其中,M表示发送端进行数据发送所能支持的最大的传输层数目,M为大于或等于1的整数。
可选地,该方法还包括:配置N个信道测量导频端口;
所述发送端发送信道测量导频包括:发送端在N个信道测量导频端口上分别发送所述信道测量导频,其中,N为大于或等于1的整数;
所述发送端接收所述接收端反馈的信道状态信息包括:所述发送端接收 所述接收端反馈的任一个所述信道测量导频端口的信道状态信息,或任意两个或两个以上所述信道测量导频端口的组合上的信道状态信息;以及所述信道状态信息所对应的信道测量导频端口的指示信息。
可选地,N个信道测量导频端口分别绑定不同的波束赋形权值。或者,所述N个测量导频端口中的任意两个或两个以上绑定不同的波束赋形权值。
可选地,所述任意两个或两个以上信道测量导频端口的组合可用于测量传输层数目大于1时的信道状态信息,其中不同的信道测量端口对应不同的传输层。
可选地,所述在N个信道测量导频端口上分别发送所述信道测量导频之前还包括:
通过以下任一种方式使所述接收端获取所述N个信道测量导频端口的配置信息:
所述发送端将所述N个信道测量导频端口的配置信息通知给接收端:
或者,所述发送端和所述接收端预先约定所述N个信道测量导频端口的配置信息。
其中,所述配置信息至少包括以下之一:
信道测量导频的周期及子帧偏置信息;
信道测量导频的位置信息;
信道测量导频的端口数目信息;
信道测量导频端口与波束赋形权值之间的绑定关系;
构成每个信道测量导频的组合的多个端口的指示信息;
构成每个信道测量导频的组合的多个端口与不同传输层的对应关系。
可选地,当所述预先设置的定向方式为将所述传输层数目为1~M的预编码码字分别作为所述信道测量导频的波束赋形权值时,所述基于预先设置的定向方式发送信道测量导频包括:
当基于传输层数目为i的预编码码字发送信道测量导频时,为每个预编码码字的发送配置i个不同的信道测量导频端口,分别对应i个不同的传输层; 1≤i≤M且i为整数。
可选地,当所述预先设置的定向方式为将传输层数目为M的预编码码字作为所述信道测量导频的波束赋形权值时,所述方法还包括:
为每个预编码码字的发送配置M个不同的信道测量导频端口,分别对应M个不同的传输层。
可选地,当所述预先设置的定向方式为将传输层数目为M的预编码码字作为所述信道测量导频的波束赋形权值时,所述传输层数目为M的预编码码字与传输层数目为i(1≤i<M且i为整数)的预编码码字之间满足嵌套特性。所谓嵌套特性是指,对于码本中同一个码字索引,低传输层数目对应的码字是由高传输层数目对应的码字中抽取几列构成的。在LTE中传输层数目也称为秩(rank)。
可选地,当所述预先设置的定向方式为将构成传输层数目为1~M的预编码码字的基矢量分别作为所述信道测量导频的波束赋形权值;该方法还包括:
为每个基矢量的发送配置1个信道测量导频端口。
可选地,在发送端发送所述信道测量导频之前,还包括:配置可用于发送所述信道测量导频的时间单元。
可选地,配置用于发送所述信道测量导频的时间单元之前还包括:所述发送端接收到来自所述接收端的信道状态质量测量请求;
所述配置用于发送所述信道测量导频的时间单元之后,还包括:所述发送端将配置好的时间单元通知给所述接收端。
可选地,配置用于发送所述信道测量导频的时间单元包括:
发送端为所述信道测量导频配置Q个连续的可用于发送所述信道测量导频的时间单元,其中Q的取值为以下方式之一:
Q的取值等于能够作为所述信道测量导频的所有波束赋形权值的数目;
或者,将能够作为所述信道测量导频的所有波束赋形权值划分为P组,其中P为小于或等于Q的正整数,当所述P组中每一组中所包含的波束赋形权值之间的欧氏距离大于指定门限值时,Q的取值等于P;
或者,将能够作为所述信道测量导频的所有波束赋形权值对应的波束或码字划分为T个等级,其中T为大于1的整数,第j个等级的波束或码字的信号发射覆盖范围比第(j+1)个等级的波束或码字的信号发射覆盖范围宽,而且每个第j等级波束或码字的信号发射覆盖范围中包含Lj个第(j+1)等级的波束或码字的信号发射覆盖范围,Q的取值等于L0+L1+…+LT-1;其中,L0为第1等级波束的个数,j为小于或等于T的正整数。
可选地,所述配置用于发送所述信道测量导频的时间单元包括:
发送端为所述信道测量导频配置K组等间隔的可用于发送所述信道测量导频的时间单元集合,其中,每组时间单元集合中包括Q个连续的可用于发送所述信道测量导频的时间单元,K为正整数,Q的取值同上,这里不再赘述。
可选地,发送端接收来自接收端反馈的信道状态信息包括:
从接收端接收预编码码字的索引信息以及对应的信道状态质量信息,其中,索引信息是对传输层为1~M的所有预编码码字预定义的索引编号;
或者,从接收端接收预编码码字索引以及对应的传输层索引信息和信道状态质量信息,其中,索引信息是对所述传输层数目设置条件下对应的预编码码字预定义的索引编号;
或者,从接收端接收基矢量索引信息及基矢量组合信息和对应的信道状态质量信息,其中,基矢量索引信息对构成传输层为1~M的预编码码字的基矢量预定义的索引编号;
从接收端接收信道测量导频端口的指示信息和对应的信道状态质量信息,其中指示信息是对传输层为1~M分别绑定的信道测量导频端口预定义的索引编号。
可选地,该方法还包括:在发送端和接收端都预先保存有包含能够作为信道测量导频的波束赋形权值的预编码码字或者基矢量的码本。
一种信道状态信息的测量和反馈方法,包括:
接收端接收发送端基于预先设置的定向方式发送的信道测量导频,根据接收到的信道测量导频测量信道状态信息;
所述接收端将测量得到的信道状态信息反馈给发送端。
可选地,所述接收发送端基于预先设置的定向方式发送的信道测量导频包括以下方式之一:
接收分别基于码本中传输层数目为1~M的预编码码字分别作为波束赋形权值的信道测量导频;
接收基于码本中传输层数目为M的预编码码字作为波束赋形权值的信道测量导频;
接收分别基于码本中传输层数目为1~M的预编码码字的基矢量分别作为波束赋形权值的信道测量导频。
其中,M表示发送端进行数据发送所能支持的最大的传输层数目,M为大于或等于1的整数。
可选地,所述接收发送端基于预先设置的定向方式发送的信道测量导频,根据接收到的信道测量导频测量信道状态信息包括:
所述接收端在预先配置的N个信道测量导频端口分别接收信道测量导频,其中,N为大于或等于1的整数;
所述接收端将测量得到的信道状态信息反馈给发送端包括:
所述接收端将任一个所述信道测量导频端口的信道状态信息、或任意两个或两个以上所述信道测量导频端口的组合上的信道状态信息,以及所述信道状态信息所对应的的信道测量导频端口的指示信息反馈给所述发送端。
可选地,N个信道测量导频端口分别绑定不同的波束赋形权值。或者,所述N个测量导频端口中的任意两个或两个以上绑定不同的波束赋形权值。
可选地,任意两个或两个以上信道测量导频端口的组合用于测量传输层数目大于1时的信道状态信息,其中不同的信道测量端口对应不同的传输层。
可选地,在N个信道测量导频端口分别接收信道测量导频之前还包括:
接收端通过以下任一种方式确定所述N个信道测量导频的配置信息:
接收端接收所述N个信道测量导频端口的配置信息;
或者,接收端与发送端预先约定所述N个信道测量导频端口的配置信息;
其中,配置信息至少包括以下之一:
信道测量导频的周期及子帧偏置信息;
信道测量导频的位置信息;
信道测量导频的端口数目信息;
信道测量导频端口与波束赋形权值之间的绑定关系;
构成每个信道测量导频的组合的多个端口的指示信息;
构成每个信道测量导频的组合的多个端口与不同传输层的对应关系。
可选地,当所述接收端接收分别基于传输层数目为1~M的预编码码字作为波束赋形权值的信道测量导频时,包括:
接收端依次接收基于传输层数目为i的预编码码字发送的信道测量导频,其中,接收i个不同的信道测量导频端口分别对应i个不同的传输层;1≤i≤M且i为整数。
可选地,当接收端接收基于传输层数目为M的预编码码字作为波束赋形权值的信道测量导频时,包括:
接收端接收基于传输层数目为M的预编码码字发送的信道测量导频,其中,接收M个不同的信道测量导频端口,分别对应M个不同的传输层。
可选地,当接收基于传输层数目为M的预编码码字作为波束赋形权值的信道测量导频时,所述传输层数目为M的预编码码字与传输层数目为i的预编码码字之间满足嵌套特征;1≤i<M且i为整数。
可选地,当接收端接收分别基于传输层数目为1~M的预编码码字的基矢量作为波束赋形权值的信道测量导频时,包括:
接收端依次接收基于每个基矢量发送的信道测量导频,其中,每个基矢量配置了1个信道测量导频端口。
可选地,接收端在接收所述信道测量导频之前还包括:接收为所述信道测量导频配置的可用于发送所述信道测量导频的时间单元信息。
可选地,所述接收为所述信道测量导频配置的用于发送所述信道测量导频的时间单元信息包括:
接收端在Q个连续的可用于接收所述信道测量导频的时间单元上接收所述信道测量导频,其中Q的取值为以下方式之一:
Q的取值等于能够作为所述信道测量导频的所有波束赋形权值的数目;
或者,将能够作为所述信道测量导频的所有波束赋形权值划分为P组,其中P大于1的整数,所述P组中每一组中所包含的波束赋形权值之间的欧氏距离大于指定门限值,Q的取值等于P;
湖综合,将能够作为所述信道测量导频的所有波束赋形权值对应的波束或码字划分为T个等级,其中T为大于1的整数,第j个等级的波束或码字的信号发射覆盖范围比第(j+1)个等级的波束或码字的信号发射覆盖范围宽,而且每个第j等级波束或码字的信号发射覆盖范围中包含Lj个第(j+1)等级的波束或码字的信号发射覆盖范围,Q的取值等于L0+L1+…+LT-1;其中,L0为第1等级波束的个数,j为小于或等于T的正整数。
可选地,所述接收为所述信道测量导频配置的用于发送所述信道测量导频的时间单元信息包括:
接收端在K组等间隔的可用于接收所述信道测量导频的时间单元集合上接收所述信道测量导频,其中每组时间单元集合中包括Q个连续的可用于接收所述信道测量导频的时间单元,K为正整数,Q的取值同上,这里不再赘述。
可选地,接收端将测量得到的信道状态信息反馈给发送端包括:
将信道状态质量信息最优对应的预编码码字的索引信息以及对应的信道状态质量信息反馈给发送端,其中,索引信息是对传输层为1~M的所有预编码码字预定义的索引编号;
或者,将信道状态质量信息最优对应的预编码码字的索引信息以及对应的传输层数目设置和信道状态质量信息反馈给发送端,其中,索引信息是对所述传输层数目设置条件下对应的预编码码字的索引编号;
或者,将信道状态质量信息最优对应的基矢量索引及组合信息以及对应的信道状态质量信息反馈给发送端,其中,基矢量索引是对构成传输层为1~M的预编码码字的基矢量预定义的索引编号。
可选地,发送端和接收端都预先保存了包含了能够作为信道测量导频的波束赋形权值的预编码码字或者基矢量的码本。
一种信道状态信息的测量和反馈方法,包括:
发送端设备基于预先设置的定向方式发送信道测量导频;
接收端设备接收所述信道测量导频,并根据接收到的信道测量导频进行信道状态信息的测量,并将测量到的信道状态信息反馈给发送端设备。
假设发射端数据发送所允许的最大传输层数目为M(M为正整数)。
具体地,信道状态信息的测量和反馈方式包括以下几种:
方式一:
图1是本发明实施例中信道状态信息测量和反馈的一种流程示意图,如图1所示,包括:
步骤100:发送端基于传输层数目为1~M的预编码码字作为信道测量导频的波束赋形权值发送信道测量导频;
步骤101:接收端依次接收传输层数目为1~M包含的预编码码字作为波束赋形权值的信道测量导频,根据SINR,确定信道状态质量所对应的预编码码字;
步骤102:接收端将最优预编码码字及其对应的信道状态质量信息反馈给发送端,以用于发送端进行调度和数据传输。
其中,当基于传输层数目为i(1≤i≤M且i为整数)的预编码码字发送信道测量导频时,为每个预编码码字的发送配置i个不同的信道测量导频端口,分别对应i个不同的传输层。接收端基于这i个不同的信道测量导频端口上接收到的信道测量导频信号,测量传输层数目为i时的信道状态质量。
进一步地,在发送端发送信道测量导频之前为所述信道测量导频配置可用于发送所述信道测量导频的时间单元。优选地,可选择以下两种方式之一为所述信道测量导频配置可用于发送信道测量的时间单元:
时间单元配置方式一:
非周期方式,即为所述信道测量导频配置Q个连续的可用于发送所述信 道测量导频的时间单元;
时间单元配置方式二:
周期方式,即为所述信道测量导频配置K组等间隔的可用于发送所述信道测量导频的时间单元集合,其中每组时间单元集合中包括Q个连续的可用于发送所述信道测量导频的时间单元,K为正整数。
其中,Q的取值为以下方式之一:
Q的取值等于能够作为所述信道测量导频的所有波束赋形权值的个数;
将能够作为所述信道测量导频的所有波束赋形权值划分为P组,其中P为大于1的整数,所述P组中每一组中所包含的波束赋形权值之间的欧氏距离大于指定门限值,Q的取值等于P;
将能够作为所述信道测量导频的所有波束赋形权值划分为T个等级,其中T为大于1的整数,第j个等级的波束比第(j+1)个等级的波束宽,而且每个第i等级波束的覆盖范围中包含Lj个第(j+1)等级的波束,Q的取值等于L0+L1+…+LT-1;其中,L0为第1等级波束的个数,j为小于或等于T的整数。
进一步地,发送端在接收到来自接收端的信道状态测量请求之后,为发送端配置可用于信道测量导频发送的时间单元,并将其通知给所述接收端。
接收端根据接收到的信道测量导频,测量各个波束权值下的信道状态信息,根据接收SINR,确定最优SINR所对应的波束赋形权值,并将其反馈给发送端,以用于发送端进行用户调度和数据传输,具体包括:
发送端和接收端按照统一的方式对传输层为1~M的所有预编码码字预定义索引编号,并将最优信道状态质量信息最优对应的预编码码字的索引信息以及对应的信道状态质量信息反馈给发送端。
优选地,发送端和接收端都预先保存包含了能够作为信道测量导频的波束赋形权值的预编码码字的码本。
方式二:
图2是本发明实施例中信道状态信息测量和反馈的另一种流程示意图,如图2所示,包括:
步骤200:发送端仅基于传输层数目为M的预编码码字作为波束赋形权值发送信道测量导频;
步骤201:接收端接收传输层数目为M包含的预编码码字作为波束赋形权值的信道测量导频,根据SINR,确定传输层数目为1~M中最优信道状态质量所对应的预编码码字;
步骤202:接收端将最优预编码码字及其对应的信道状态质量信息反馈给发送端;以及,
步骤203:发送端基于反馈信息进行用户调度和数据传输。
其中,当基于传输层数目为M的预编码码字发送信道测量导频时,为每个预编码码字的发送配置M个不同的信道测量导频端口,分别对应M个不同的传输层。接收端基于这M个不同的信道测量导频端口上接收到的信道测量导频,测量传输层数目为M时的信道状态质量。
该方式要求传输层数目为M的预编码码字与传输层为i(1≤i<M且i为整数)的预编码码字之间具有嵌套包含关系。
进一步地,在发送端发送信道测量导频之前为所述信道测量导频配置可用于发送所述信道测量导频的时间单元。优选地,可选择以下两种方式之一为所述信道测量导频配置可用于发送信道测量的时间单元:
时间单元配置方式一:
非周期方式,即为所述信道测量导频配置Q个连续的可用于发送所述信道测量导频的时间单元;
时间单元配置方式二:
周期方式,即为所述信道测量导频配置K组等间隔的可用于发送所述信道测量导频的时间单元集合,其中每组时间单元集合中包括Q个连续的可用于发送所述信道测量导频的时间单元,K为正整数。
其中,Q的取值为以下方式之一:
Q的取值等于能够作为所述信道测量导频的所有波束赋形权值的个数;
将能够作为所述信道测量导频的所有波束赋形权值划分为P组,其中P 为大于1的整数,所述P组中每一组中所包含的波束赋形权值之间的欧氏距离大于指定门限值,Q的取值等于P;
将能够作为所述信道测量导频的所有波束赋形权值划分为T个等级,其中T为大于1的整数,第j个等级的波束比第(j+1)个等级的波束宽,而且每个第i等级波束的覆盖范围中包含Lj个第(j+1)等级的波束,Q的取值等于L0+L1+…+LT-1;其中,L0为第1等级波束的个数,j为小于或等于T的整数。
进一步地,发送端在接收到来自接收端的信道状态测量请求之后,为发送端配置可用于信道测量导频发送的时间单元,并将其通知给所述接收端。
接收端根据接收到的信道测量导频,测量各个波束权值下的信道状态信息,根据接收SINR,确定最优SINR所对应的波束赋形权值,并将其反馈给发送端,以用于发送端进行用户调度和数据传输,具体包括:
发送端和接收端按照统一的方式对不同传输层数目设置条件下对应的预编码码字索引编号,并将信道状态质量信息最优对应的预编码码字的索引信息以及对应的传输层数目设置和信道状态质量信息反馈给发送端。
优选地,发送端和接收端都预先保存包含了能够作为信道测量导频的波束赋形权值的预编码码字的码本。
方式三:
图3是本发明实施例中信道状态信息测量和反馈的又一种流程示意图,如图3所示,包括:
步骤300:发送端基于构成传输层数目为1~M的预编码码字的基矢量作为波束赋形权值发送信道测量导频;
步骤301:接收端依次接收各个基矢量作为波束赋形权值的信道测量导频,根据SINR,确定最优信道状态质量所对应的基矢量或者多个基矢量的组合;
步骤302:接收端将最优基矢量或基矢量组合及其对应的信道状态质量信息反馈给发送端;以及,
步骤303:发送端基于反馈信息进行用户调度和数据传输。
其中,为每个基矢量的发送配置1个不同的信道测量导频端口,对应1 个传输层。接收端基于这1个信道测量导频端口上接收到的信道测量导频信号,测量传输层数目至少为1时的信道状态质量。
进一步地,在发送端发送信道测量导频之前为所述信道测量导频配置可用于发送所述信道测量导频的时间单元。优选地,可选择以下两种方式之一为所述信道测量导频配置可用于发送信道测量的时间单元:
时间单元配置方式一:
非周期方式,即为所述信道测量导频配置Q个连续的可用于发送所述信道测量导频的时间单元;
时间单元配置方式二:
周期方式,即为所述信道测量导频配置K组等间隔的可用于发送所述信道测量导频的时间单元集合,其中每组时间单元集合中包括Q个连续的可用于发送所述信道测量导频的时间单元,K为正整数。
其中,Q的取值为以下方式之一:
Q的取值等于能够作为所述信道测量导频的所有波束赋形权值的个数;
将能够作为所述信道测量导频的所有波束赋形权值划分为P组,其中P为大于1的整数,所述P组中每一组中所包含的波束赋形权值之间的欧氏距离大于指定门限值,Q的取值等于P;
将能够作为所述信道测量导频的所有波束赋形权值划分为T个等级,其中T为大于1的整数,第j个等级的波束比第(j+1)个等级的波束宽,而且每个第i等级波束的覆盖范围中包含Lj个第(j+1)等级的波束,Q的取值等于L0+L1+…+LT-1;L0为第1等级波束的个数,j为小于或等于T的整数。
进一步地,发送端在接收到来自接收端的信道状态测量请求之后,为发送端配置可用于信道测量导频发送的时间单元,并将其通知给所述接收端。
接收端根据接收到的信道测量导频,测量各个波束赋形权值下的信道状态信息,根据接收SINR,确定最优SINR所对应的波束赋形权值,并将其反馈给发送端,以用于发送端进行用户调度和数据传输,具体包括:
发送端和接收端按照统一的方式对构成传输层为1~M的预编码码字的基矢量预定义索引编号,并将信道状态质量信息最优对应的基矢量索引及组合 信息以及对应的信道状态质量信息反馈给发送端。
优选地,发送端和接收端都预先保存包含了能够作为信道测量导频的波束赋形权值的基矢量的码本。
方式四:
图4是本发明实施例中信道状态信息测量和反馈的再一种流程示意图,如图4所示,包括:
步骤400:发送端发送N个信道测量导频端口,以用于接收端进行信道测量;
步骤401:接收端接收所述N个信道测量导频端口,根据接收SINR,确定最优的一个或者一组信道测量导频端口及其对应的信道状态质量;
步骤402:接收端将最优SINR所对应的信道状态质量及其对应的一个信道测量导频端口或多个信道测量导频端口的组合的指示信息反馈给发送端;
步骤403:发送端根据接收到的反馈信息,进行用户调度和数据传输。
作为本方式的其中一个方面,不同的信道测量导频端口可以用于绑定不同的波束赋形权值。优选地,该波束赋形权值对应的传输层数目假设为1。
作为本方式的其中另一个方面,多个信道测量导频端口的组合可以用于测量传输层数目大于1时的信道状态信息,其中不同的信道测量端口对应不同的传输层。
在发送端发送N个信道测量导频端口之前,网络侧将所述N个信道测量导频端口的配置信息通知给接收端,其中所述配置信息至少包括以下之一:
信道测量导频的周期及子帧偏置信息;
信息测量导频的位置信息;
信道测量导频的端口数目信息;
信道测量导频各个端口与波束赋形权值之间的绑定关系;
构成每个信道测量导频的组合的多个端口的指示信息;
构成每个信道测量导频的组合的多个端口与不同传输层的对应关系。
其中,所述N个信道测量导频端口的配置信息也可以通过发送端和接收 端预先约定好的方式确定。
优选地,每个信道测量导频端口可以绑定一个构成传输层为1~M的预编码码字的基矢量,即基于构成传输层为1~M的预编码码字的基矢量作为波束赋形权值发送信道测量导频。在已经约定好或者已经向接收端指示信道测量导频各个端口与波束赋形权值之间的绑定关系的情况下,接收端也可以将上述反馈信息中的一个或一组信道测量端口所对应的基矢量或者基矢量组的指示信息反馈给发送端。
当发送端和接收端保存了所述基矢量构成的传输为1~M的预编码码字的码本时,接收端也可以将上述反馈信息中的一个或一组信道测量端口所对应的预编码码字的指示信息反馈给发送端。对于基于预编码方式发送的信道测量导频来说,当数据发送支持的最大传输层数大于1时,发射端需要考虑对不同传输层数设置情况下的信道状态信息均进行测量,进而支持发送端选择合适的传输层设置和合适的预编码码字进行数据传输。
然而,如果直接对最大传输层及其以下的传输层对应的所有预编码码字下的信道状态信息测量,所需要耗费的测量时间开销即测量所带来的时延问题也是不可忽略的。对于该问题,可以考虑以下几种解决方式:
解决方式一:
仅基于所支持的最大传输层下的预编码码字发送信道测量导频。不同传输层下设置有不同的预编码码字集合,该方式要求最大传输层下对应的预编码码字与其它传输层下的预编码码字之间满足嵌套关系。所谓嵌套关系是指构成较低传输层对应的码字的列向量是构成较高传输层对应的码字的列向量的子集。比如最大支持的传输层数为4,传输层数4下的预编码码字集合中的任意一个码字均是由4列向量构成,众所周知,传输层为i(1≤i<4)下对应的预编码码字集合中的任意一个预编码码字由i列向量构成,那么满足嵌套关系是指至少存在一个传输层数为4的预编码码字使得这i列向量是该传输层数为4的预编码码字所包含所有列向量集合的子集。
其中,所支持的最大传输层数可以是固定的,或者由网络侧设备(例如基站)和终端(例如用户设备,User Equipment,简称为UE)预先预定好的,或者由网络侧设备通过信令通知给用户设备。
接收端将基于接收到的测量导频测量不同预编码码字下的信道状态信息,并将最优信道状态信息对应的预编码码字及其信道质量信息反馈给发送端。优选地,接收端将最优信道状态信息对应的预编码码字索引信息、对应的传输层数指示信息、对应的信道质量信息反馈给发送端。
解决方式二:
将所支持的所有预编码码字划分为多个不同组,发送端分别基于不同组的预编码码字发送信道测量导频。其中,同一组内的预编码码字之间的干扰最小或者弦距离最大,因此可以为其配置相同的信道测量导频资源;而不同的预编码码字之间存在干扰,为了避免不同组的预编码码字之间的干扰,可以为其配置不同的信道测量导频资源。例如,基于同一组内的预编码码字的信道测量导频在相同的时间单元上发送,而基于不同组的预编码码字的信道测量导频在不同的时间单元上发送。
可选地,为了进一步增加同一组内的预编码码字之间的正交性,基于同一组内的预编码码字发送的信道测量导频也可以通过采用不同循环移位序列或者正交掩码序列等正交。
解决方式三:
将所支持的所有预编码码字划分为多个不同等级,发送端分别基于不同等级的预编码码字发送信道测量导频。其中,等级高的预编码码字的发射波束覆盖范围包含优先等级较低的预编码码字的发射覆盖范围。这就要求不同优先等级的预编码字之间具有一种映射关系,例如对于任意一个优先等级高的预编码码字都可以映射多个优先等级较其低的预编码码字集合。
发送端首先基于优先等级的预编码码字发送信道测量导频,并根据接收端的反馈信息确定该优先等级下的最优预编码码字,然后利用该预编码码字和优先等级较其低的预编码码字的映射关系,发送端继续基于该优先等级交期第的预编码码字发送信道测量导频,依次类推,直到测量到最低优先级的预编码码字的信道状态信息。最后,接收端基于接收到的所述最低优先级的预编码码字下的信道测量导频,将最优信道状态信息所对应预编码码字信息和对应的信道质量信息反馈给发送端。
其中,不同等级的预编码码字之间的映射关系是固定的,或者是由网络侧设备和用户设备预先约定好的,或者由网络侧设备通过信令通知给用户设备。
本发明实施例的另一方面,网络侧配置所述基于定向发送信道测量导频的资源,其中所述资源包括时间资源、频率资源、导频序列至少之一。例如时间资源为连续的或者等间隔的多个时间单元分别用于基于不同定向发送信道测量导频,频率资源指明在每个时间单元上是基于全带宽还是子带的方式发送信道测量导频,导频序列指发送的测量导频信号所采用的序列为PN序列或ZC序列或者其它的序列。
本发明实施例的另一方面,网络侧可以通过1比特信令触发所述信道测量导频基于定向方式发送。所述1比特信令可以是物理层信令或者高层信令。优选地,网络侧还向接收端通知连续或者等间隔的一组时间单元用于所述信道测量导频的发送,该组时间单元之后即停止所述信道测量导频的发送;或者网络侧还向接收端通知用于所述信道测量导频的发送的等间隔的时间之间的间隔大小,发送端在这些等间隔的时间单元上发送所述信道测量导频,直到接收到来自网络侧的终止指令后将不再发送所述信道测量导频。
下面通过具体实施例进一步说明所述方法。
具体实施例1
假设系统最大允许的传输层数目RI为M,RI=i(i≤M)条件下包含的码字个数分别为N个,如表1所示。
表1\传输层数目大于1时的码本示例
Figure PCTCN2016073862-appb-000001
如图5所示,网络侧配置N个时间单元为一个信道测量周期,其中,N的大小等于码本中RI=M时所包含的码字个数。基站在每个时间单元上基于 码本中RI=M时所包含的其中一个码字发送测量导频,N个时间单元完成对码本中RI=M对应条件下所包含的所有码字(如表1中PMI M_1~PMI M_N)的发送。不同的时间单元上的码字之间可以绑定相同的测量导频序列,而任一时间单元上的码字的M个传输层之间则需要使用不同的测量导频序列,以用于区分不同传输层上的信道。
根据一般通信系统中的接收信号公式:
Figure PCTCN2016073862-appb-000002
其中,H表示Nr×Nt维的信道矩阵,Nr为接收天线数,Nt为发射天线数,W表示Nt×k维的预编码码字或者波束赋形权值,k为传输层数,s表示k×1维的发射信号即测量导频,n为Nr×1维的接收噪声,y表示接收信号。
因此,当测量导频的传输层数k大于1时,为了实现对不同层之间的测量,需要为不同的层配置不同的信道测量导频端口;优选地,这些不同层上的信道测量导频端口之间是正交的。
假设不同传输层数目传输条件下的码字之间是满足嵌套特性的,所谓嵌套特性是指,对于同一个码字索引,低秩码字是由高秩码字中抽取几列构成的。例如表1中码字索引1下的PMI 1_1是由PMI M_1中抽取一列构成的,PMI 2_1是由PMI M_1中抽取两列构成的,以此类推,构成RI<M所对应的码字所包含的列为RI=M所对应的码字所包含的列的子集。正是因为这种嵌套特性,终端可以根据接收到的基于RI=M的码字下的测量导频信号,不仅计算出RI=M所对应的所有码字传输下的测量导频的接收信干噪比(Signal to Noise Ratio,简称为SINR),还可以推算出RI<M下所对应的所有码字传输下的测量导频的接收SINR。
然后,终端将最大接收SINR(或者所述最大SINR所对应的CQI等级)和所述最大SINR所对应的测量导频的码字(或者所述最大SINR所对应的测量导频)相关信息反馈给基站。当然,在终端反馈之前,可选地,基站可以将不同时间单元或者不同码字下的测量导频序列或者测量导频信号或者测量导频端口的配置信息指示给终端,或者由基站和终端预先约定好不同时间单元或者不同码字下所绑定的测量导频序列或者测量导频信号或者测量导频端 口。
基站接收上述反馈信息,并且根据上述反馈信息获得相关的下行信道状态信息,并根据该信息进行用户调度、资源分配、数据传输等操作。
本实施例的另一种实施方式是,网络侧配置P个时间单元(P<N),其中,每个时间单元上发送RI=M条件下的一组码字,P个时间单元完成对码本中RI=M对应条件下所包含的所有码字(如表1中PMI M_1~PMI M_N)的发送。不同的时间单元上的码字之间可以使用相同的测量导频序列或者测量导频端口,同一时间单元上的同一个码字的M个传输层之间使用相互正交的测量导频序列,同一时间单元上的一组码字内的不同码字之间最好是正交的或者接近于正交的,或者将欧氏距离最大的不同码字分配在同一组码字内。该方式可以进一步缩短对所有预编码权值(这里预编码权值为码字)条件下的不同信道状态信息的测量时间。或者假设每组码字中所包含的码字数为Q,同一时间单元上的M×Q个传输层之间使用相互正交的测量导频序列。
本实施例的另一方面,发送端也可以是终端,对应地接收端为基站。其中,信道测量导频由终端发送给基站,信道测量导频的配置信息由基站指示给终端或者由终端和基站预先约定好。
具体实施例2
对于大规模天线阵列,采用基于预编码的方式发送信道测量导频,可以有效地节省信道测量导频开销,例如在非预编码方式下不同的发送天线需要配置不同的信道测量导频端口,而在预编码方式下只需要为不同的传输层配置不同的信道测量导频端口就可以了。然而,采用预编码方式所引入的一个缺点就是,大规模天线阵列所对应的码本中往往包含较多的码字数目。如果将传统的在非预编码方式下的信道测量看作是基于全向方式的信道测量,那么基于预编码方式下的信道测量则可以理解为是基于定向方式的信道测量,其中不同的码字代表不同的波束方向。
基于预编码方式下的信道测量,需要对所有码字下的信道状态信息测量,进而获得最优的信道状态信息以及该最优信道状态信息所对应的码字信息,以便于后续发送端可以基于最优的码字发送数据,并且给所发送数据匹配最优的MCS、时频资源等。
以LTE相关标准中的下行链路传输所采用的四天线码本为例,如表2所示,表2详见相关LTE标准TS36.211中。假设下行链路传输支持的最大传输层数(RI)为4,按照该四天线码本,RI为1、2、3、4情况下分别对应16个码字,则基站最多共需要测量64个码字下的信道状态信息,例如表2中最右4列所示:
表2、LTE四天线码本
Figure PCTCN2016073862-appb-000003
具体地,本实施例对应的信道状态信息的测量过程包括如下:
步骤1:基站分别基于不同的码字在不同的时间单元上发送信道测量导 频,例如如果基站采用的码本为LTE相关标准的四天线码本的话,需要在64个时间单元(四天线最大支持4个传输层发送,而在四天线码本中RI=1~4一共包含64个不同的码字)上分别发送基于不同码字的信道测量导频,以用于终端分别测量基于这64个码字传输下各自的信道状态信息。其中,对于层数目RI=1,基站配置1个信道测量导频端口并且在该信道测量导频端口上测量一层传输情况下的信道状态信息;对于层数目RI=2,基站配置2个信道测量导频端口并且通过这两个信道测量导频端口测量两层传输情况下的信道状态信息;对于层数目RI=3,基站配置3个信道测量导频端口并且通过这三个信道测量导频端口测量三层传输情况下的信道状态信息;对于层数目RI=4,基站配置4个信道测量导频端口并且通过这四个信道测量导频端口测量四层传输情况下的信道状态信息。
步骤2:终端通过接收不同信道测量时间单元上的信道测量导频端口信号,测量基于不同码字传输情况下的信道状态信息。其中,终端通过不同时间单元上所接收到的信道测量导频端口信号的最大接收SINR,确定最优的发送码字,并将该最优的码字信息以及最大接收SINR信息反馈给基站。可选地,终端也可以通过向基站反馈最优码字所对应的时间单元、信道测量导频端口配置等的指示信息来向基站间接指示所确定的最优码字信息。
步骤3:基站根据终端所反馈上来的最优下行发射码字信息以及该最优码字所对应的信道状态信息,进行用户调度、为终端下一步的数据传输分配合适的时频资源以及确定相应的MCS方案。
值得说明的是,该实施例中为了描述方便以相关的LTE四天线码本为例,当然也可以是其它任意码本。
具体实施例3
假设码本设计时不同传输层数目传输条件下的码字之间是满足嵌套特性的,所谓嵌套特性是指,对于同一个码字索引,低秩码字是由高秩码字中抽取几列构成的。这种情况下,为了进一步节省信道测量时延,信道测量导频发射的时候,只需要假设RI为最大传输层数目,并且基站只需要基于RI等于最大传输层数目条件的码字发送信道测量导频即可。
仍然以LTE相关标准中的下行链路四天线码本为例,基站只需要基于 RI=4情况下的16个码字分别发送信道测量导频,例如表2中的最右一列所示。由于不同传输层数目条件下的码字之间满足嵌套关系,终端可以由接收到的RI=4情况下不同码字传输下的接收SINR,推断出RI<4情况下不同码字传输下的接收SINR。
具体地,本实施例对应的信道状态信息的测量过程包括如下:
步骤1:基站分别基于RI为最大传输层条件下所包含的不同的码字在不同的时间单元上发送信道测量导频,例如如果基站采用的码本为LTE相关标准的四天线码本的话,需要在16个时间单元(RI=4一共包含16个不同的码字)上分别发送基于不同码字进行预编码的信道测量导频。其中,在每个信道状态信息的测量时间单元上,基站配置4个信道测量导频端口,并且通过这四个信道测量导频端口上发送的信道测量导频信号测量四层传输情况下的信道状态信息。
步骤2:终端通过接收不同测量时间单元上的信道测量导频端口信号,测量基于RI=4不同码字传输情况下的信道状态信息。其中,由于码本的嵌套特性,终端可以由RI=4下的不同码字发送的信道测量导频的接收SINR,推算出RI=1~3的不同码字下的接收SINR,进而将最优的接收SINR对应的信道状态信息(例如CQI等)以及该最优接收SINR所对应的码字信息反馈给基站。可选地,终端也可以通过向基站反馈最优码字所对应的时间单元、信道测量导频端口配置等的指示信息来向基站间接指示所确定的最优码字信息。
步骤3:基站根据终端所反馈上来的最优下行发射码字信息以及该最优码字所对应的信道状态信息,进行用户调度、为终端下一步的数目传输分配合适的时频资源以及确定相应的MCS方案。
值得说明的是,该实施例中为了描述方便以相关的LTE四天线码本为例,当然也可以是其它码本。但是优选地,码本中不同传输层数目下的码字之间满足嵌套特性。
具体实施例4
如表3所示,将所有码字划分为3个等级,分别为等级1码字、等级2 码字和等级3码字,这三个等级码字之间的特征是,等级1码字的信号发射覆盖范围最宽,等级2码字次之,等级3码字的信号发射覆盖范围最窄,而且不同等级的码字的信号发射覆盖范围之间具有一对一或者一对多的映射关系。例如等级1码字PMI1-1的发射信号覆盖范围对应等级2码字PMI2-1~PMI2-4的发射信号覆盖范围的总和,等级2码字PMI2-1的发射信号覆盖范围对应等级3码字PMI3-1~PMI3-8的发射信号覆盖范围的总和,依次类推。
基站首先基于等级1预编码码字发送信道测量导频,接收端根据接收到的信道测量导频信号的SINR确定最优的发射端预编码码字,并将该码字索引反馈给基站;然后基站基于该最优码字与等级2码字的映射关系,基站基于等级2预编码码字发送信道测量导频,例如最优等级1码字为PMI1-2,与该码字对应的等级2码字范围为PMI2-4~PMI2-8,于是基站分别基于PMI2-4~PMI2-8发送信道测量导频,接收端根据接收到的信道测量导频信号的SINR确定最优的等级2码字(为PMI2-4~PMI2-8其中的一个),并将其索引反馈给基站;基站基于该最优等级2码字与等级3码字的映射关系,基于等级3码字发送信道测量导频,例如最优等级2码字为PMI2-6,通过查表或者网络侧设备的指示获知该与该码字对应的等级3码字为PMI3-41~PMI3-48,然后基站分别基于PMI3-41~PMI3-48发送信道测量导频,接收端根据接收到的信道测量导频信号的SINR确定最优的等级3码字,并将该码字以及该码字下对应的接收SINR或者CQI等级信息反馈给基站。
可选地,接收端在向发送端反馈等级1或等级2码字信息的同时,也可以反馈该码字下对应的接收SINR或者CQI等级信息。等级1或等级2码字也可以用于发送端发送一些广播信息、控制信息等。
表3、不同等级的码字
Figure PCTCN2016073862-appb-000004
Figure PCTCN2016073862-appb-000005
通过这种划分等级码字的方式,可以有效节省信道测量时延或者信道测量资源。例如在无等级码字的情况下,基站需要对所有的等级3码字下的信道状态进行测量,64个码字最多需要64个信道测量资源;而通过使用等级码字的方式,64个码字只需要2+8+8=18个信道测量资源。其中,等级3码字可以理解为最终基站要用于数据传输的预编码码字,为有效码字,而等级1码字和等级2码字主要是为了节省对等级3码字的信道测量资源而新引入的码字。与具体实施例2和具体实施例3结合看的话,等级3码字可以包括表格2下不同传输层对应的所有码字,也可以仅表3下最大传输层所对应的所有码字。
具体实施例5
采用定向方式发送信道测量导频,一种实现方式为基于预编码码字的方式,另一种实现方式可以理解为基于波束赋形的方式。其中,所谓波束赋形的方式是指,信道测量导频在发送的时候是基于波束赋形权值的。基于预编码码字的方式与基于波束赋形的方式本质上是一样的,都是要给信道测量导频信号在发送的时候绑定一个用于实现定向发送的发送权值,不同的是基于预编码的方式采用预编码码字作为该发送权值,而基于波束赋形的方式是采用波束赋形权值作为该发送权值。其中,预编码码字通常来自于发送端和接 收端共同保存的较固定的一个码本,而波束赋形权值则不一定是来源于码本,它可能是以波束索引来表征的。在本发明实施例中为了方便描述,将所谓的定向方式的实现理解为在发送信道测量导频的时候绑定不同的波束赋形权值,其中将来自码本的不同的预编码码字作为波束赋形权值可以理解为是定向波束的其中一种实现方式。下面是以波束赋形为定向方式描述的一个例子。
如图6所示,将基于波束方式的信道状态信息的测量过程划分为3个阶段,分别为基于波束等级1的测量过程、基于波束等级2的测量过程、基于波束等级3中的测量过程。其中,波束等级1用于较大范围的波束确认;波束等级2具有中等分辨率,是对波束等级1中的波束的进一步划分;波束等级3具有最高的波束分辨率,是对波束等级2中的波束的进一步划分。发射端首先基于波束等级1中包含的波束发送信道测量导频,获得波束等级1中的最优波束i;然后再确定波束等级2处于该最优波束i范围内的最优波束ii;最后再确定波束等级3处于该最优波束ii范围内的最优波束iii。
波束等级的划分不限于只能划分为3个等级,如图6所示,也可以划分为2个等级、4个等级等。下面为了描述方便,以图6为例进行说明。
发射端依次进行基于波束等级1的测量过程、基于波束等级2的测量过程、基于波束等级3的测量过程。下面分别对波束等级划分的测量过程的这三个阶段进行说明。
阶段一:波束等级1下的信道测量过程
波束等级1的信道测量周期内又可以包括至少三个子阶段,分别为:发射端基于等级1波束发送信道测量导频、接收端反馈最优波束测量结果、最优等级1波束到等级2波束的映射关系的通知。测量周期内,接收端接收信道测量导频,并根据估计到的接收SINR确定最优的等级1发射波束,然后将该其反馈给发射端,于是发射端获知了最优的等级1发射波束信息,然后将等级1波束到等级2的映射关系信息通知给接收端,以便于接收端完成阶段二即波束等级2下的信道测量过程。
1)发送端基于等级1波束发送信道测量导频
假设基站具有Q(1,t)个等级1发射波束,如图6最左侧的图所示,Q(1,t)=2。
基站分别基于每个等级1发射波束向终端发送信道测量导频序列,其中不同的等级1发射波束可以采用不同的时间单元相同的信道测量导频序列发送。假设Ts为每个等级1发射波束上信道测量导频序列的发送、接收、处理时间。当Q(1,t)次Ts全部结束之后,终端就接收到了每个等级1发射波束上的信道测量导频序列,并估计出每个等级1发射波束上的SINR信息,基于该信息,终端选择出最优的等级1发射波束。
2)等级1波束的反馈
终端将所确定的最优的等级1发射波束索引信息反馈给基站。可选地,终端还可以将该最优的等级1发射波束上对应的SINR的信息也一并反馈给基站,以便于基站可以利用该SINR信息基于等级1发射波束发送一些控制信息或者对定向要求不高的数据信息。
3)等级1波束到等级2波束的映射关系的通知
映射阶段中,基站通过其最优的等级1发射波束向终端发送该最优波束到等级2波束的映射信息。可选地,基站还可以通过该最优的等级1发射波束向终端发送终端确认接收到该最优波束到等级2波束的映射信息的ACK/NACK请求。其中,该映射信息至少包含最优波束等级1中包含的等级2波束的数目。
当然,如果等级1波束中的每个波束到等级2波束的映射关系是固定的,或者由基站和终端预先约定好的,那么等级1波束的信道测量过程中也可以不需要上述第3)个步骤即等级1波束到等级2波束的映射关系的通知过程。
阶段二、三:基于波束等级2和波束等级3的测量过程
经过基站与终端之间基于等级1波束的信道状态信息的测量过程,基站与终端之间已经能够通过最优的发射宽波束找到彼此,并且这些宽波束可用于控制命令的传输。
然后,波束赋形训练过程将进入等级2和等级3的测量过程,事实上这两个波束训练过程的每个过程都类似于等级1波束的测量过程,都至少包含了三个子阶段:导频发送、测量结果反馈、映射关系通知。
其中一个不同点在于,映射阶段映射信息所指示的搜索区域的变化:等 级2波束的测量过程中,是从最优的等级1波束对中搜索找出最优的等级2波束;而等级3波束的测量过程中,是从最优的等级2波束对中搜索找出最优的等级3波束。之所以设置两级搜索,是为了更快地找到最优的波束。
另一个不同点在于,等级3波束的测量过程中的反馈阶段,上行终端除了需要反馈最优的等级3波束索引信息之外,还必须向基站反馈该最优的等级3波束对应的接收SINR或CQI信息,以便于基站进行用户调度、资源分配、以及下一步的数据传输处理等。
本发明实施例的一个方面,每个波束可以对应一个波束赋形权值,该波束赋形权值对应的传输层数可以等于1或者大于1;若该波束赋形权值对应的传输层数等于1的时候,每个波束上配置一个信道测量导频端口;当该波束赋形权值对应的传输层数大于1的时候,每个波束上则需配置多个信道测量导频端口,且所配置的信道测量导频端口的数目等于该波束赋形权值对应的传输层的数目。优选地,每个波束对应的波束赋形权值或者传输层数目或者信道测量导频端口信息由基站通知给终端,或者由基站和终端预先约定好。在测量结束之后,终端可以将最优波束的指示信息或者最优波束对应的波束赋形权值的指示信息或者信道测量端口的指示信息反馈给基站。
本发明实施例的另一个方面,每个波束仅配置一个信道测量导频端口,并且不同的信道测量端口与不同的基矢量,不同的基矢量组合可以构成不同的波束赋形权值。上述实施例中的每个等级最优波束的选择中,所述最优波束不仅可以包括一个最优波束,也可以包括最优的多个波束,分别对应波束赋形权值的不同传输层。优选地,每个波束与基矢量的对应关系可以由基站通知给终端,或者由基站和终端预先约定好。在测量阶数之后,终端可以将最优波束或者最优波束组的指示信息或者其所对应的波束赋形权值的指示信息或者信道测量端口的指示信息反馈给基站。
本发明实施例的另一个方面,终端侧也可以采用定向发送和/或接收,这种情况下,终端侧的发送和/或接收也可以采用上述这种分等级波束测量的方式。
具体实施例6
本发明的另一个实施例中,基站向终端发送N个信道测量导频端口信号, 其中每个信道测量端口上的信道测量导频信号绑定一个构成波束赋形权值的基矢量。当传输层数目大于1时,多个基矢量的组合可以构成一个发射波束赋形权值,不同的基矢量也对应该发射波束赋形权值的不同层上的波束赋形向量。其中,信道测量导频端口与基矢量的对应关系和/或每个波束赋形权值与信道测量导频端口的对应关系和/或每个基矢量与发送波束之间的对应关系可以由基站通知给终端,或者由基站和终端按照预先约定好的方式确定。其中,所述按照预先约定好的方式包括基站和终端预先保存了构成波束赋形权值的预编码码本以及不同预编码码字与信道测量导频端口之间的对应关系,还可能是基站和终端预先保存了构成波束赋形权值的不同基矢量与信道测量导频端口之间的对应关系的表格,还可能是基站和终端预先保存了不同信道测量导频端口与不同波束以及不同基矢量的对应关系,还可能是基站和终端预先保存了不同波束与不同预编码码字以及不同波束与不同信道测量导频端口之间的对应关系。
终端从不同信道测量导频端口上的接收信号判断哪一个信道测量导频端口上或者哪一组信道测量导频端口上的信道状态质量即接收SINR最优,然后终端将最优SINR所对应的CQI等级信息以及该最优SINR所对应的一个或一组信道测量导频端口的指示信息反馈给基站。其中,当基站和终端预先保存了构成波束赋形权值的预编码码本或者基站将构成不同波束赋形权值的预编码码字通知给终端时,终端可以是反馈最优SINR所对应的CQI等级以及该最优SINR所对应的一个或一组信道测量导频端口所对应的预编码码字的指示信息给基站;当基站和终端预先保存了构成波束赋形权值的不同基矢量与信道测量导频端口之间的对应关系的表格或者基站将不同基矢量与信道测量导频端口之间的对应关系通知给终端时,终端也可以反馈最优SINR所对应的CQI等级以及该最优SINR所对应的一个或多个信道测量导频端口的组合所对应的一个或一组基矢量的指示信息给基站,其中一组基矢量信息还优选地包括构成这组基矢量的基矢量之间排列顺序信息;当基站和终端预先保存或者由基站通知给终端不同信道测量导频端口与不同波束以及不同基矢量的对应关系时,终端也可以反馈最优SINR所对应的CQI等级以及该最优SINR所对应的一个或一组信道测量导频端口所对应的一个或多个波束的指示信息给终端;当基站和终端预先保存或者基站通知给终端不同波束与不同 预编码码字以及不同波束与不同信道测量导频端口之间的对应关系,终端也可以反馈最优SINR所对应的CQI等级以及该最优SINR所对应的一个或一组信道测量导频端口所对应的最优波束的指示信息给终端。
本发明实施例还提供了一种发送端和接收端,其中,
图7为本发明发送端的实施例的组成结构示意图,如图7所示,本发明实施例的发送端至少包括发送模块701和第一接收模块702;
其中,发送模块701,设置成:基于预先设置的定向方式发送用于接收端进行信道状态信息的测量的信道测量导频;
第一接收模块702,设置成:接收来自接收端反馈的信道状态信息。
其中,预先设置的定向方式包括以下方式之一:
将码本中传输层数目为1~M的预编码码字分别作为所述信道测量导频的波束赋形权值;
将码本中传输层数目为M的预编码码字作为所述信道测量导频的波束赋形权值;
将码本中构成传输层数目为1~M的预编码码字的基矢量分别作为所述信道测量导频的波束赋形权值;
其中,M表示发送端进行数据发送所能支持的最大的传输层数目,M为大于或等于1的整数。
所述发送模块701具体设置成:在配置的N个信道测量导频端口上分别发送信道测量导频,其中,N为大于或等于1的整数;
相应地,所述接收模块702具体设置成:接收所述接收端反馈的任一个所述信道测量导频端口的信道状态信息、或任意两个或两个以上所述信道测量导频端口的组合上的信道状态信息,以及所述信道状态信息所对应的信道测量导频端口的指示信。
所述N个信道测量导频端口绑定不同的波束赋形权值;或者,所述N个测量导频端口中的任意两个或两个以上绑定不同的波束赋形权值。
所述任意两个或两个以上信道测量导频端口的组合用于测量传输层数目大于1时的信道状态信息,其中不同的所述信道测量端口对应不同的传输层。
进一步地,所述发送模块701还设置成:将所述N个信道测量导频端口的配置信息通知给接收端:或者,所述发送端和所述接收端预先约定所述N个信道测量导频端口的配置信息。其中,配置信息至少包括以下之一:
所述信道测量导频的周期及子帧偏置信息;
所述信道测量导频的位置信息;
所述信道测量导频的端口数目信息;
所述信道测量导频端口与波束赋形权值之间的绑定关系;
构成每个所述信道测量导频的组合的多个端口的指示信息;
构成每个所述信道测量导频的组合的多个端口与不同传输层的对应关。
具体地,
当所述预先设置的定向方式为将所述传输层数目为1~M的预编码码字分别作为所述信道测量导频的波束赋形权值时;所述发送模块701具体设置成:当基于传输层数目为i的预编码码字发送信道测量导频时,为每个预编码码字的发送配置i个不同的信道测量导频端口,分别对应i个不同的传输层;1≤i≤M且i为整数;
当所述预先设置的定向方式为将传输层数目为M的预编码码字作为所述信道测量导频的波束赋形权值时,所述传输层数目为M的预编码码字与传输层数目为i的预编码码字之间满足嵌套特性;1≤i<M且i为整数;所述发送模块701具体设置成:为每个预编码码字的发送配置M个不同的信道测量导频端口,分别对应M个不同的传输层;
当所述预先设置的定向方式为将构成传输层数目为1~M的预编码码字的基矢量作为所述信道测量导频的波束赋形权值时,所述发送模块701还设置成:为每个基矢量的发送配置1个信道测量导频端口。
本发明实施例的发送端还包括配置模块703,设置成:配置用于发送所述信道测量导频的时间单元。
所述配置模块703还设置成:接收到来自所述接收端的信道状态质量测量请求;将配置好的时间单元通知给所述接收端。
所述配置模块703具体设置成:配置Q个连续的用于发送所述信道测量导频的时间单元,其中Q的取值为以下方式之一:
Q的取值等于能够作为所述信道测量导频的所有波束赋形权值的数目;
或者,将能够作为所述信道测量导频的所有波束赋形权值划分为P组,其中P为大于1的整数,所述P组中每一组中所包含的波束赋形权值之间的欧氏距离大于指定门限值,Q的取值等于P;
或者,将能够作为所述信道测量导频的所有波束赋形权值对应的波束或码字划分为T个等级,其中T为大于1的整数,第j个等级的波束或码字的信号发射覆盖范围比第(j+1)个等级的波束或码字的信号发射覆盖范围宽,而且每个第j等级波束或码字的信号发射覆盖范围中包含Lj个第(j+1)等级的波束或码字的信号发射覆盖范围,Q的取值等于L0+L1+…+LT-1;其中,L0为第1等级波束的个数,j为小于T的整数。
所述配置模块703具体设置成:配置K组等间隔的用于发送所述信道测量导频的时间单元集合,其中每组时间单元集合中包括Q个连续的用于发送所述信道测量导频的时间单元,K为正整数。
进一步地,所述第一接收模块702具体设置成:从接收端接收预编码码字的索引信息以及对应的信道状态质量信息,索引信息是所述对传输层为1~M的所有预编码码字预定义的索引编号;
或者,从接收端接收预编码码字索引以及对应的传输层索引信息和信道状态质量信息,所述索引信息是对所述传输层数目设置条件下对应的预编码码字预定义的索引编号;
或者,从接收端接收基矢量索引信息及基矢量组合信息和对应的信道状态质量信息,所述矢量索引信息是对构成传输层为1~M的预编码码字的基矢量预定义的索引编号;
或者,从接收端接收信道测量导频端口的指示信息和对应的信道状态质量信息,所述指示信息是对传输层为1~M分别绑定的信道测量导频端口预定 义的索引编号。
进一步地,所述第一接收模块702还设置成:预先保存有包含能够作为所述信道测量导频的波束赋形权值的预编码码字或者基矢量的码本。
图8为本发明接收端的实施例的组成结构示意图,如图8所示,本发明实施例的接收端至少包括第二接收模块801、测量模块802和反馈模块803;其中,
第二接收模块801,设置成:接收发送端基于预先设置的定向方式发送的信道测量导频;
测量模块802,设置成:根据接收到的信道测量导频测量信道状态信息;
反馈模块803,设置成:将测量得到的信道状态信息反馈给发送端。
其中,第二接收模块801具体设置成:接收分别基于码本中传输层数目为1~M的预编码码字分别作为波束赋形权值的信道测量导频;或者,
接收基于码本中传输层数目为M的预编码码字作为波束赋形权值的信道测量导频;或者,
接收分别基于码本中传输层数目为1~M的预编码码字的基矢量分别作为波束赋形权值的信道测量导频;
其中,M表示发送端进行数据发送所能支持的最大的传输层数目,M为大于或等于1的整数。
所述第二接收模块801具体设置成:在预先配置的N个信道测量导频端口分别接收信道测量导频,N为大于或等于1的整数;
相应地,所述反馈模块803具体设置成:将任一个所述信道测量导频端口的信道状态信息、或任意两个或两个以上所述信道测量导频端口的组合上的信道状态信息,以及所述信道状态信息所对应的的信道测量导频端口的指示信息反馈给所述发送端。
所述N个信道测量导频端口分别绑定不同的波束赋形权值;或者,所述N个测量导频端口中的任意两个或两个以上绑定不同的波束赋形权值。
所述任意两个或两个以上信道测量导频端口的组合用于测量传输层数目大于1时的信道状态信息,其中不同的信道测量端口对应不同的传输层。
进一步地,所述第二接收模块801还设置成:接收来自发送端的所述N个信道测量导端口频的配置信息;
或者,与所述发送端预先约定所述N个信道测量导频端口的配置信息。
其中,配置信息至少包括以下之一:
所述信道测量导频的周期及子帧偏置信息;
所述信道测量导频的位置信息;
所述信道测量导频的端口数目信息;
所述信道测量导频端口与波束赋形权值之间的绑定关系;
构成每个所述信道测量导频的组合的多个端口的指示信息;
构成每个所述信道测量导频的组合的多个端口与不同传输层的对应关系。
具体地,
当所述第二接收模块801接收分别基于传输层数目为1~M的预编码码字分别作为波束赋形权值的信道测量导频时,第二接收模块801具体设置成:依次接收基于传输层数目为i的预编码码字发送的信道测量导频,其中,接收i个不同的信道测量导频端口,分别对应i个不同的传输层;1≤i≤M且i为整数;
当所述第二接收模块801接收基于传输层数目为M的预编码码字作为波束赋形权值的信道测量导频时,所述传输层数目为M的预编码码字与传输层数目为i的预编码码字之间满足嵌套特征;1≤i<M且i为整数;所述第二接收模块801具体设置成:接收基于传输层数目为M的预编码码字发送的信道测量导频,其中,接收M个不同的信道测量导频端口,分别对应M个不同的传输层;
当所述接收发送端基于预先设置的定向方式发送的信道测量导频为所述接收分别基于传输层数目为1~M的预编码码字的基矢量作为波束赋形权值的 信道测量导频时,所述第二接收模块801具体设置成:依次接收基于每个基矢量发送的信道测量导频,其中,每个基矢量配置了1个信道测量导频端口。
进一步地,所述第二接收模块801还设置成:接收为所述信道测量导频配置的用于发送所述信道测量导频的时间单元信息。
所述第二接收模块801接收时间单元时,具体设置成:
在Q个连续的用于接收所述信道测量导频的时间单元上接收所述信道测量导频,其中Q的取值为以下方式之一:
Q的取值等于能够作为所述信道测量导频的所有波束赋形权值的数目;
或者,将能够作为所述信道测量导频的所有波束赋形权值划分为P组,其中P为大于1的整数,所述P组中每一组中所包含的波束赋形权值之间的欧氏距离大于指定门限值,Q的取值等于P;
或者,将能够作为所述信道测量导频的所有波束赋形权值对应的波束或码字划分为T个等级,其中T为大于1的整数,第j个等级的波束或码字的信号发射覆盖范围比第(j+1)个等级的波束或码字的信号发射覆盖范围宽,而且每个第j等级波束或码字的信号发射覆盖范围中包含Lj个第(j+1)等级的波束或码字的信号发射覆盖范围,Q的取值等于L0+L1+…+LT-1;其中,L0为第1等级波束的个数,j为小于或等于T的正整数。
所述第二接收模块801接收时间单元时,具体设置成:
在K组等间隔的用于接收所述信道测量导频的时间单元集合上接收所述信道测量导频,其中每组时间单元集合中包括Q个连续的用于接收所述信道测量导频的时间单元,K为正整数。
所述反馈模块803具体设置成:将信道状态质量信息最优对应的预编码码字的索引信息以及对应的信道状态质量信息反馈给发送端,所述索引信息是对传输层为1~M的所有预编码码字预定义的索引编号;
或者,将信道状态质量信息最优对应的预编码码字的索引信息以及对应的传输层数目设置和信道状态质量信息反馈给发送端,所述索引信息是对所述传输层数目设置条件下对应的预编码码字的索引编号;
或者,将信道状态质量信息最优对应的基矢量索引及组合信息以及对应 的信道状态质量信息反馈给发送端,所述基矢量索引是对传输层为1~M的预编码码字的基矢量预定义的索引编号。
进一步地,所述第二接收模块801还设置成:预先保存有包含能够作为所述信道测量导频的波束赋形权值的预编码码字或者基矢量的码本。
本发明实施例还公开了一种计算机程序,包括程序指令,当该程序指令被CSI发送端执行时,使得该CSI发送端可执行上述任意的发送端侧的CSI的测量和反馈方法。
本发明实施例还公开了一种载有所述的计算机程序的载体。
本发明实施例还公开了一种计算机程序,包括程序指令,当该程序指令被CSI接收端执行时,使得该CSI接收端可执行上述任意的接收端侧的CSI的测量和反馈方法。
本发明实施例还公开了一种载有所述的计算机程序的载体。
在阅读并理解了附图和详细描述后,可以明白其他方面。
本领域普通技术人员可以理解上述实施例的全部或部分步骤可以使用计算机程序流程来实现,所述计算机程序可以存储于一计算机可读存储介质中,所述计算机程序在相应的硬件平台上(如系统、设备、装置、器件等)执行,在执行时,包括方法实施例的步骤之一或其组合。
可选地,上述实施例的全部或部分步骤也可以使用集成电路来实现,这些步骤可以被分别制作成一个个集成电路模块,或者将它们中的多个模块或步骤制作成单个集成电路模块来实现。这样,本发明不限制于任何特定的硬件和软件结合。
上述实施例中的各装置/功能模块/功能单元可以采用通用的计算装置来实现,它们可以集中在单个的计算装置上,也可以分布在多个计算装置所组成的网络上。
上述实施例中的各装置/功能模块/功能单元以软件功能模块的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。上述提到的计算机可读取存储介质可以是只读存储器,磁盘或光盘等。
任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本发明的保护范围之内。因此,本发明的保护范围应以权利要求所述的保护范围为准。
工业实用性
本发明的技术方案包括发送端基于预先设置的定向方式发送信道测量导频,所述信道测量导频用于接收端进行信道状态信息的测量;所述发送端接收所述接收端反馈的信道状态信息。本发明技术方案解决了大规模多天线技术中的信道测量导频开销太大的问题,并且有效地进行了预编码码字或者波束赋形权值的选择,节约了信道状态信息的测量时间。因此本发明具有很强的工业实用性。

Claims (60)

  1. 一种信道状态信息(CSI)的测量和反馈方法,包括:
    发送端基于预先设置的定向方式发送信道测量导频,所述信道测量导频用于接收端进行CSI的测量;
    所述发送端接收所述接收端反馈的CSI。
  2. 根据权利要求1所述的CSI的测量和反馈方法,其中,所述预先设置的定向方式包括以下方式之一:
    将码本中传输层数目为1~M的预编码码字分别作为所述信道测量导频的波束赋形权值;
    将码本中传输层数目为M的预编码码字作为所述信道测量导频的波束赋形权值;
    将码本中构成传输层数目为1~M的预编码码字的基矢量作为所述信道测量导频的波束赋形权值;
    其中,M表示发送端进行数据发送所能支持的最大的传输层数目,M为大于或等于1的整数。
  3. 根据权利要求1所述的CSI的测量和反馈方法,该方法还包括:配置N个信道测量导频端口;
    所述发送端发送信道测量导频的步骤包括:所述发送端在N个信道测量导频端口上分别发送所述信道测量导频,其中,N为大于或等于1的整数;
    所述发送端接收所述接收端反馈的CSI的步骤包括:所述发送端接收所述接收端反馈的任一个所述信道测量导频端口的CSI、或任意两个或两个以上所述信道测量导频端口的组合上的CSI,以及所述CSI所对应的信道测量导频端口的指示信息。
  4. 根据权利要求3所述的CSI的测量和反馈方法,其中,
    所述N个信道测量导频端口分别绑定不同的波束赋形权值;或者,
    所述N个信道测量导频端口中的任意两个或两个以上绑定不同的波束赋形权值。
  5. 根据权利要求3所述的CSI的测量和反馈方法,其中,所述任意两个或两个以上信道测量导频端口的组合用于测量传输层数目大于1时的CSI,其中不同的所述信道测量导频端口对应不同的传输层。
  6. 根据权利要求3所述的CSI的测量和反馈方法,其中,所述在N个信道测量导频端口上分别发送所述信道测量导频的步骤之前,该方法还包括:
    所述发送端将所述N个信道测量导频端口的配置信息通知给所述接收端;
    或者,所述发送端和所述接收端预先约定所述N个信道测量导频端口的配置信息。
  7. 根据权利要求6所述的CSI的测量和反馈方法,其中,所述配置信息至少包括以下之一:
    所述信道测量导频的周期及子帧偏置信息;
    所述信道测量导频的位置信息;
    所述信道测量导频的端口数目信息;
    所述信道测量导频端口与波束赋形权值之间的绑定关系;
    构成每个所述信道测量导频的组合的多个端口的指示信息;
    构成每个所述信道测量导频的组合的多个端口与不同传输层的对应关系。
  8. 根据权利要求1所述的CSI的测量和反馈方法,其中,所述预先设置的定向方式为将所述传输层数目为1~M的预编码码字分别作为所述信道测量导频的波束赋形权值;
    所述基于预先设置的定向方式发送信道测量导频的步骤包括:
    当基于传输层数目为i的预编码码字发送信道测量导频时,为每个预编码码字的发送配置i个不同的信道测量导频端口,分别对应i个不同的传输层;1≤i≤M且i为整数。
  9. 根据权利要求1所述的CSI的测量和反馈方法,其中,所述预先设置的定向方式为将传输层数目为M的预编码码字作为所述信道测量导频的波束 赋形权值;
    所述方法还包括:为每个预编码码字的发送配置M个不同的信道测量导频端口,分别对应M个不同的传输层。
  10. 根据权利要求9所述的CSI的测量和反馈方法,其中,所述传输层数目为M的预编码码字与传输层数目为i的预编码码字之间满足嵌套特性;1≤i<M且i为整数。
  11. 根据权利要求1所述的CSI的测量和反馈方法,其中,所述预先设置的定向方式为将构成传输层数目为1~M的预编码码字的基矢量分别作为所述信道测量导频的波束赋形权值;
    该方法还包括:为每个基矢量的发送配置1个信道测量导频端口。
  12. 根据权利要求2所述的CSI的测量和反馈方法,其中,所述发送端基于预先设置的定向方式发送所述信道测量导频的步骤之前,该方法还包括:配置用于发送所述信道测量导频的时间单元。
  13. 根据权利要求12所述的CSI的测量和反馈方法,其中,所述配置用于发送所述信道测量导频的时间单元的步骤之前,该方法还包括:所述发送端接收到来自所述接收端的信道状态质量测量请求;
    所述配置用于发送所述信道测量导频的时间单元的步骤之后,该方法还包括:所述发送端将配置好的时间单元通知给所述接收端。
  14. 根据权利要求12或13所述的CSI的测量和反馈方法,其中,所述配置用于发送所述信道测量导频的时间单元的步骤包括:
    所述发送端配置Q个连续的用于发送所述信道测量导频的时间单元,其中Q的取值为以下方式之一:
    Q的取值等于能够作为所述信道测量导频的所有波束赋形权值的数目;
    或者,将能够作为所述信道测量导频的所有波束赋形权值划分为P组,其中P为大于1的整数,所述P组中每一组中所包含的波束赋形权值之间的欧氏距离大于指定门限值,Q的取值等于P;
    或者,将能够作为所述信道测量导频的所有波束赋形权值对应的波束或码字划分为T个等级,其中T为大于1的整数,第j个等级的波束或码字的 信号发射覆盖范围比第(j+1)个等级的波束或码字的信号发射覆盖范围宽,而且每个第j等级波束或码字的信号发射覆盖范围中包含Lj个第(j+1)等级的波束或码字的信号发射覆盖范围,Q的取值等于L0+L1+…+LT-1;其中,L0为第1等级波束的个数,j为小于T的整数。
  15. 根据权利要求12或13所述的CSI的测量和反馈方法,其中,所述配置用于发送所述信道测量导频的时间单元的步骤包括:
    所述发送端配置K组等间隔的用于发送所述信道测量导频的时间单元集合,其中每组时间单元集合中包括Q个连续的用于发送所述信道测量导频的时间单元,K为正整数。
  16. 根据权利要求2所述的CSI的测量和反馈方法,其中,所述发送端接收所述接收端反馈的CSI的步骤包括:
    从接收端接收预编码码字的索引信息以及对应的信道状态质量信息,所述索引信息是对传输层为1~M的所有预编码码字或绑定的信道测量导频端口预定义的索引编号;
    或者,从接收端接收预编码码字索引以及对应的传输层索引信息和信道状态质量信息,所述索引信息是对所述传输层数目设置条件下对应的预编码码字或绑定的信道测量导频端口预定义的索引编号;
    或者,从接收端接收基矢量索引信息及基矢量组合信息和对应的信道状态质量信息,所述基矢量索引信息是对构成传输层为1~M的预编码码字的基矢量预定义的索引编号;
    或者,从接收端接收信道测量导频端口的指示信息和对应的信道状态质量信息,所述指示信息是对传输层为1~M分别绑定的信道测量导频端口预定义的索引编号。
  17. 根据权利要求16所述的CSI的测量和反馈方法,该方法还包括,在所述发送端和所述接收端均预先保存包含能够作为所述信道测量导频的波束赋形权值的预编码码字或者基矢量的码本。
  18. 一种信道状态信息(CSI)的测量和反馈方法,包括:
    接收端接收发送端基于预先设置的定向方式发送的信道测量导频,并根 据接收到的信道测量导频测量CSI;
    所述接收端将测量得到的CSI反馈给所述发送端。
  19. 根据权利要求18所述的CSI的测量和反馈方法,其中,所述接收端接收发送端基于预先设置的定向方式发送的信道测量导频的步骤包括:
    所述接收端接收所述发送端分别基于码本中传输层数目为1~M的预编码码字分别作为波束赋形权值的信道测量导频;
    所述接收端接收所述发送端基于码本中传输层数目为M的预编码码字作为波束赋形权值的信道测量导频;或者,
    所述接收端接收所述发送端分别基于码本中传输层数目为1~M的预编码码字的基矢量作为波束赋形权值的信道测量导频;
    其中,M表示发送端进行数据发送所能支持的最大的传输层数目,M为大于或等于1的整数。
  20. 根据权利要求18所述的CSI的测量和反馈方法,其中,所述接收发送端基于预先设置的定向方式发送的信道测量导频,根据接收到的信道测量导频测量CSI的步骤包括:所述接收端在预先配置的N个信道测量导频端口分别接收所述信道测量导频,其中,N为大于或等于1的整数;
    所述接收端将测量得到的CSI反馈给发送端的步骤包括:所述接收端将任一个所述信道测量导频端口的CSI、或任意两个或两个以上所述信道测量导频端口的组合上的CSI,以及所述CSI所对应的的信道测量导频端口的指示信息反馈给所述发送端。
  21. 根据权利要求20所述的CSI的测量和反馈方法,其中,
    所述N个信道测量导频端口分别绑定不同的波束赋形权值;
    或者,所述N个信道测量导频端口中的任意两个或两个以上绑定不同的波束赋形权值。
  22. 根据权利要求20所述的CSI的测量和反馈方法,其中,所述任意两个或两个以上信道测量导频端口的组合用于测量传输层数目大于1时的CSI,其中不同的信道测量导频端口对应不同的传输层。
  23. 根据权利要求19所述的CSI的测量和反馈方法,其中,所述在N个信道测量导频端口分别接收所述信道测量导频的步骤之前,该方法还包括:
    所述接收端接收来自所述发送端的所述N个信道测量导端口频的配置信息;
    或者,所述接收端与所述发送端预先约定所述N个信道测量导频端口的配置信息。
  24. 根据权利要求23所述的CSI的测量和反馈方法,其中,所述配置信息至少包括以下之一:
    所述信道测量导频的周期及子帧偏置信息;
    所述信道测量导频的位置信息;
    所述信道测量导频的端口数目信息;
    所述信道测量导频端口与波束赋形权值之间的绑定关系;
    构成每个所述信道测量导频的组合的多个端口的指示信息;
    构成每个所述信道测量导频的组合的多个端口与不同传输层的对应关系。
  25. 根据权利要求19所述的CSI的测量和反馈方法,其中,所述接收端接收所述发送端分别基于传输层数目为1~M的预编码码字作为波束赋形权值的信道测量导频的步骤包括:
    所述接收端依次接收基于传输层数目为i的预编码码字发送的信道测量导频,其中,接收i个不同的信道测量导频端口分别对应i个不同的传输层;1≤i≤M且i为整数。
  26. 根据权利要求19所述的CSI的测量和反馈方法,其中,所述接收端接收所述发送端基于传输层数目为M的预编码码字作为波束赋形权值的信道测量导频的步骤包括:
    所述接收端接收基于传输层数目为M的预编码码字发送的信道测量导频,其中,接收M个不同的信道测量导频端口,分别对应M个不同的传输层。
  27. 根据权利要求26所述的CSI的测量和反馈方法,其中,所述传输层数目为M的预编码码字与传输层数目为i的预编码码字之间满足嵌套特征;1≤i<M且i为整数。
  28. 根据权利要求19所述的CSI的测量和反馈方法,其中,所述接收端接收所以发送端分别基于传输层数目为1~M的预编码码字的基矢量作为波束赋形权值的信道测量导频的步骤包括:
    所述接收端依次接收基于每个基矢量发送的信道测量导频,其中,每个基矢量配置了1个信道测量导频端口。
  29. 根据权利要求19所述的CSI的测量和反馈方法,其中,所述接收端接收所述信道测量导频的步骤之前,该方法还包括:接收为所述信道测量导频配置的用于发送所述信道测量导频的时间单元信息。
  30. 根据权利要求29所述的CSI的测量和反馈方法,其中,所述接收为所述信道测量导频配置的用于发送所述信道测量导频的时间单元信息的步骤包括:
    所述接收端在Q个连续的用于接收所述信道测量导频的时间单元上接收所述信道测量导频,其中Q的取值为以下方式之一:
    Q的取值等于能够作为所述信道测量导频的所有波束赋形权值的数目;
    或者,将能够作为所述信道测量导频的所有波束赋形权值划分为P组,其中P为大于1的整数,所述P组中每一组中所包含的波束赋形权值之间的欧氏距离大于指定门限值,Q的取值等于P;
    或者,将能够作为所述信道测量导频的所有波束赋形权值对应的波束或码字划分为T个等级,其中T为大于1的整数,第j个等级的波束或码字的信号发射覆盖范围比第(j+1)个等级的波束或码字的信号发射覆盖范围宽,而且每个第j等级波束或码字的信号发射覆盖范围中包含Lj个第(j+1)等级的波束,Q的取值等于L0+L1+…+LT-1;其中,L0为第1等级波束的个数,j为小于或等于T的正整数。
  31. 根据权利要求29所述的CSI的测量和反馈方法,其中,所述接收为所述信道测量导频配置的用于发送所述信道测量导频的时间单元信息的步骤 包括:
    所述接收端K组等间隔的用于发送所述信道测量导频的时间单元集合,其中每组时间单元集合中包括Q个连续的用于发送所述信道测量导频的时间单元,K为正整数。
  32. 根据权利要求19所述的CSI的测量和反馈方法,其中,所述接收端将测量得到的CSI反馈给发送端的步骤包括:
    将信道状态质量信息最优对应的预编码码字的索引信息以及对应的信道状态质量信息反馈给发送端,所述索引信息是对传输层为1~M的所有预编码码字预定义的索引编号;
    或者,将信道状态质量信息最优对应的预编码码字的索引信息以及对应的传输层数目设置和信道状态质量信息反馈给发送端,所述索引信息是对所述传输层数目设置条件下对应的预编码码字的索引编号;
    或者,将信道状态质量信息最优对应的基矢量索引及组合信息以及对应的信道状态质量信息反馈给发送端,所述述基矢量索引信息是对传输层为1~M的预编码码字的基矢量预定义的索引编号。
  33. 根据权利要求32所述的CSI的测量和反馈方法,该方法还包括:在所述发送端和接收端均预先保存包含能够作为所述信道测量导频的波束赋形权值的预编码码字或者基矢量的码本。
  34. 一种发送端,包括发送模块和第一接收模块;其中,
    所述发送模块设置成:基于预先设置的定向方式发送用于使得接收端进行CSI测量的信道测量导频;
    所述第一接收模块设置成:接收所述接收端反馈的CSI。
  35. 根据权利要求34所述的发送端,其中,所述预先设置的定向方式包括以下方式之一:
    将码本中传输层数目为1~M的预编码码字分别作为所述信道测量导频的波束赋形权值;
    将码本中传输层数目为M的预编码码字作为所述信道测量导频的波束赋形权值;
    将码本中构成传输层数目为1~M的预编码码字的基矢量分别作为所述信道测量导频的波束赋形权值;
    其中,M表示发送端进行数据发送所能支持的最大的传输层数目,M为大于或等于1的整数。
  36. 根据权利要求34所述的发送端,其中,所述发送模块设置成按照如下方式发送所述信道测量导频:在配置的N个信道测量导频端口上分别发送所述信道测量导频,其中,N为大于或等于1的整数;
    所述接收模块设置成按照如下方式接收所述接收端反馈的CSI:接收所述接收端反馈的任一个所述信道测量导频端口的CSI、或任意两个或两个以上所述信道测量导频端口的组合上的CSI,以及所述CSI所对应的信道测量导频端口的指示信。
  37. 根据权利要求36所述的发送端,其中,
    所述N个信道测量导频端口绑定不同的波束赋形权值;或者,
    所述N个测量导频端口中的任意两个或两个以上绑定不同的波束赋形权值。
  38. 根据权利要求37所述的发送端,其中,所述任意两个或两个以上信道测量导频端口的组合用于测量传输层数目大于1时的CSI,其中不同的信道测量导频端口对应不同的传输层。
  39. 根据权利要求36所述的发送端,其中,所述发送模块还设置成:将所述N个信道测量导频端口的配置信息通知给所述接收端:或者,所述发送端和所述接收端预先约定所述N个信道测量导频端口的配置信息。
  40. 根据权利要求39所述的发送端,其中,所述配置信息至少包括以下之一:
    所述信道测量导频的周期及子帧偏置信息;
    所述信道测量导频的位置信息;
    所述信道测量导频的端口数目信息;
    所述信道测量导频端口与波束赋形权值之间的绑定关系;
    构成每个所述信道测量导频的组合的多个端口的指示信息;
    构成每个所述信道测量导频的组合的多个端口与不同传输层的对应关。
  41. 根据权利要求34所述的发送端,其中,
    当所述预先设置的定向方式为将所述传输层数目为1~M的预编码码字分别作为所述信道测量导频的波束赋形权值时;
    所述发送模块设置成按照如下方式基于预先设置的定向方式发送信道测量导频:当基于传输层数目为i的预编码码字发送信道测量导频时,为每个预编码码字的发送配置i个不同的信道测量导频端口,分别对应i个不同的传输层;1≤i≤M且i为整数;
    当所述预先设置的定向方式为将传输层数目为M的预编码码字作为所述信道测量导频的波束赋形权值时,所述传输层数目为M的预编码码字与传输层数目为i的预编码码字之间满足嵌套特性;1≤i<M且i为整数;所述发送模块还设置成:为每个预编码码字的发送配置M个不同的信道测量导频端口,分别对应M个不同的传输层;
    当所述预先设置的定向方式为将构成传输层数目为1~M的预编码码字的基矢量分别作为所述信道测量导频的波束赋形权值时,所述发送模块还设置成:为每个基矢量的发送配置1个信道测量导频端口。
  42. 根据权利要求35所述的发送端,该发送端还包括配置模块,该配置模块设置成:配置用于发送所述信道测量导频的时间单元。
  43. 根据权利要求42所述的发送端,其中,所述配置模块还设置成:接收到来自所述接收端的信道状态质量测量请求;将配置好的时间单元通知给所述接收端。
  44. 根据权利要求41或42所述的发送端,其中,所述配置模块设置成按照如下方式配置用于发送所述信道测量导频的时间单元:配置Q个连续的用于发送所述信道测量导频的时间单元,其中Q的取值为以下方式之一:
    Q的取值等于能够作为所述信道测量导频的所有波束赋形权值的数目;
    或者,将能够作为所述信道测量导频的所有波束赋形权值划分为P组,其中P为大于1的整数,所述P组中每一组中所包含的波束赋形权值之间的 欧氏距离大于指定门限值,Q的取值等于P;
    或者,将能够作为所述信道测量导频的所有波束赋形权值对应的波束或码字划分为T个等级,其中T为大于1的整数,第j个等级的波束或码字的信号发射覆盖范围比第(j+1)个等级的波束或码字的信号发射覆盖范围宽,而且每个第j等级波束或码字的信号发射覆盖范围中包含Lj个第(j+1)等级的波束或码字的信号发射覆盖范围,Q的取值等于L0+L1+…+LT-1;其中,L0为第1等级波束的个数,j为小于T的整数。
  45. 根据权利要求41或42所述的发送端,其中,所述配置模块设置成按照如下方式配置用于发送所述信道测量导频的时间单元:配置K组等间隔的用于发送所述信道测量导频的时间单元集合,其中每组时间单元集合中包括Q个连续的用于发送所述信道测量导频的时间单元,K为正整数。
  46. 根据权利要求35所述的发送端,其中,所述第一接收模块设置成按照如下方式接收所述接收端反馈的CSI:
    从所述接收端接收预编码码字的索引信息以及对应的信道状态质量信息,索引信息是所述对传输层为1~M的所有预编码码字预定义的索引编号;
    或者,从接收端接收预编码码字索引以及对应的传输层索引信息和信道状态质量信息,所述索引信息是对所述传输层数目设置条件下对应的预编码码字预定义的索引编号;
    或者,从接收端接收基矢量索引信息及基矢量组合信息和对应的信道状态质量信息,所述矢量索引信息是对构成传输层为1~M的预编码码字的基矢量预定义的索引编号;
    或者,从接收端接收信道测量导频端口的指示信息和对应的信道状态质量信息,所述指示信息是对传输层为1~M分别绑定的信道测量导频端口预定义的索引编号。
  47. 根据权利要求46所述的发送端,其中,所述第一接收模块还设置成:预先保存包含能够作为所述信道测量导频的波束赋形权值的预编码码字或者基矢量的码本。
  48. 一种接收端,包括第二接收模块、测量模块和反馈模块;其中,
    所述第二接收模块设置成:接收发送端基于预先设置的定向方式发送的信道测量导频;
    所述测量模块设置成:根据接收到的所述信道测量导频测量信道状态信息(CSI);
    所述反馈模块设置成:将测量得到的CSI反馈给所述发送端。
  49. 根据权利要求48所述的接收端,其中,所述第二接收模块设置成按照如下方式接收发送端基于预先设置的定向方式发送的信道测量导频:
    接收所述发送端分别基于码本中传输层数目为1~M的预编码码字分别作为波束赋形权值的信道测量导频;或者,
    接收所述发送端基于码本中传输层数目为M的预编码码字作为波束赋形权值的信道测量导频;或者,
    接收所述发送端分别基于码本中传输层数目为1~M的预编码码字的基矢量分别作为波束赋形权值的信道测量导频;
    其中,M表示所述发送端进行数据发送所能支持的最大的传输层数目,M为大于或等于1的整数。
  50. 根据权利要求48所述的接收端,其中,所述信道测量导频为N个;所述第二接收模块设置成按照如下方式根据接收到的信道测量导频测量CSI:在预先配置的N个信道测量导频端口分别接收信道测量导频,其中,N为大于或等于1的整数;
    所述反馈模块设置成按照如下方式将测量得到的CSI反馈给发送端:将任一个所述信道测量导频端口的CSI、或任意两个或两个以上所述信道测量导频端口的组合上的CSI,以及所述CSI所对应的信道测量导频端口的指示信息反馈给所述发送端。
  51. 根据权利要求50所述的接收端,其中,
    所述N个信道测量导频端口分别绑定不同的波束赋形权值;
    或者,所述N个测量导频端口中的任意两个或两个以上绑定不同的波束赋形权值。
  52. 根据权利要求50所述的接收端,其中,所述任意两个或两个以上信道测量导频端口的组合用于测量传输层数目大于1时的CSI,其中不同的信道测量导频端口对应不同的传输层。
  53. 根据权利要求49所述的接收端,其中,所述第二接收模块还设置成:接收来自所述发送端的所述N个信道测量导端口频的配置信息;
    或者,与所述发送端预先约定所述N个信道测量导频端口的配置信息。
  54. 根据权利要求53所述的接收端,其中,所述配置信息至少包括以下之一:
    所述信道测量导频的周期及子帧偏置信息;
    所述信道测量导频的位置信息;
    所述信道测量导频的端口数目信息;
    所述信道测量导频端口与波束赋形权值之间的绑定关系;
    构成每个所述信道测量导频的组合的多个端口的指示信息;
    构成每个所述信道测量导频的组合的多个端口与不同传输层的对应关系。
  55. 根据权利要求49所述的接收端,其中,
    所述第二接收模块设置成按照如下方式接收所述发送端分别基于传输层数目为1~M的预编码码字作为波束赋形权值的信道测量导频:依次接收基于传输层数目为i的预编码码字发送的信道测量导频,其中,接收i个不同的信道测量导频端口,分别对应i个不同的传输层;1≤i≤M且i为整数;
    当所述第二接收模块接收所述发送端基于传输层数目为M的预编码码字作为波束赋形权值的信道测量导频时,所述传输层数目为M的预编码码字与传输层数目为i的预编码码字之间满足嵌套特征;1≤i<M且i为整数;所述第二接收模块还设置成:接收基于传输层数目为M的预编码码字发送的信道测量导频,其中,接收M个不同的信道测量导频端口,分别对应M个不同的传输层;
    当所述第二接收模块接收所述发送端分别基于传输层数目为1~M的预编 码码字的基矢量作为波束赋形权值的信道测量导频时,所述第二接收模块还设置成;依次接收基于每个基矢量发送的信道测量导频,其中,每个基矢量配置了1个信道测量导频端口。
  56. 根据权利要求49所述的接收端,其中,所述第二接收模块还设置成:接收为所述信道测量导频配置的用于发送所述信道测量导频的时间单元信息。
  57. 根据权利要求56所述的接收端,其中,所述第二接收模块设置成按照如下方式接收为所述信道测量导频配置的用于发送所述信道测量导频的时间单元:
    在Q个连续的用于接收所述信道测量导频的时间单元上接收所述信道测量导频,其中Q的取值为以下方式之一:
    Q的取值等于能够作为所述信道测量导频的所有波束赋形权值的数目;
    或者,将能够作为所述信道测量导频的所有波束赋形权值划分为P组,其中P为大于1的整数,所述P组中每一组中所包含的波束赋形权值之间的欧氏距离大于指定门限值,Q的取值等于P;
    或者,将能够作为所述信道测量导频的所有波束赋形权值对应的波束或码字划分为T个等级,其中T为大于1的整数,第j个等级的波束或码字的信号发射覆盖范围比第(j+1)个等级的波束或码字的信号发射覆盖范围宽,而且每个第j等级波束或码字的信号发射覆盖范围中包含Lj个第(j+1)等级的波束或码字的信号发射覆盖范围,Q的取值等于L0+L1+…+LT-1;其中,L0为第1等级波束的个数,j为小于或等于T的正整数。
  58. 根据权利要求56所述的接收端,其中,所述第二接收模块设置成按照如下方式接收为所述信道测量导频配置的用于发送所述信道测量导频的时间单元:
    在K组等间隔的用于接收所述信道测量导频的时间单元集合上接收所述信道测量导频,其中每组时间单元集合中包括Q个连续的用于接收所述信道测量导频的时间单元,K为正整数。
  59. 根据权利要求49所述的接收端,其中,所述反馈模块设置成按照如 下方式将测量得到的CSI反馈给发送端:
    将信道状态质量信息最优对应的预编码码字的索引信息以及对应的信道状态质量信息反馈给发送端,所述索引信息是对传输层为1~M的所有预编码码字预定义的索引编号;
    或者,将信道状态质量信息最优对应的预编码码字的索引信息以及对应的传输层数目设置和信道状态质量信息反馈给发送端,所述索引信息是对所述传输层数目设置条件下对应的预编码码字的索引编号;
    或者,将信道状态质量信息最优对应的基矢量索引及组合信息以及对应的信道状态质量信息反馈给发送端,所述基矢量索引是对传输层为1~M的预编码码字的基矢量预定义的索引编号。
  60. 根据权利要求59所述的接收端,其中,所述第二接收模块还设置成:预先保存包含能够作为所述信道测量导频的波束赋形权值的预编码码字或者基矢量的码本。
PCT/CN2016/073862 2015-03-06 2016-02-16 信道状态信息的测量和反馈方法及发送端和接收端 WO2016141796A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201510100255.X 2015-03-06
CN201510100255.XA CN105991238A (zh) 2015-03-06 2015-03-06 信道状态信息的测量和反馈方法及发送端和接收端

Publications (1)

Publication Number Publication Date
WO2016141796A1 true WO2016141796A1 (zh) 2016-09-15

Family

ID=56878963

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/073862 WO2016141796A1 (zh) 2015-03-06 2016-02-16 信道状态信息的测量和反馈方法及发送端和接收端

Country Status (2)

Country Link
CN (1) CN105991238A (zh)
WO (1) WO2016141796A1 (zh)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109150273A (zh) * 2017-06-28 2019-01-04 捷开通讯(深圳)有限公司 波束管理方法及装置
CN112152686A (zh) * 2019-06-27 2020-12-29 中兴通讯股份有限公司 一种实现波束扫描与通信的方法、装置
CN112262589A (zh) * 2018-09-19 2021-01-22 Oppo广东移动通信有限公司 一种信息传输方法、设备及存储介质
CN113783660A (zh) * 2017-04-10 2021-12-10 华为技术有限公司 传输方法、发送端和接收端
US11203595B2 (en) 2016-09-23 2021-12-21 Novartis Ag Aza-indazole compounds for use in tendon and/or ligament injuries
WO2022257121A1 (zh) * 2021-06-11 2022-12-15 Oppo广东移动通信有限公司 通信方法、设备及存储介质

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106685623B (zh) * 2016-11-28 2020-04-21 上海华为技术有限公司 一种时延补偿方法、用户设备及基站
CN108282250B (zh) * 2017-01-06 2021-03-26 维沃移动通信有限公司 一种下行信道状态信息的测量方法、基站及终端
CN108631830B (zh) * 2017-03-24 2021-05-07 电信科学技术研究院 一种发送波束确定方法、发送端和接收端
CN108988915B (zh) * 2017-06-01 2022-04-05 中兴通讯股份有限公司 一种信道测量的方法、信道测量装置和基站
CN109150452B (zh) * 2017-06-16 2021-03-09 电信科学技术研究院 一种指示导频预编码方式的方法、网络侧设备及终端
CN109150270B (zh) * 2017-06-28 2021-01-05 华为技术有限公司 信道状态信息反馈和接收方法、发送端设备和接收端设备
EP3665987A4 (en) * 2017-08-11 2021-06-23 Lenovo (Beijing) Limited DETERMINATION OF AN ASSOCIATION BETWEEN DMRS AND PTRS
CN110198181B (zh) * 2018-02-27 2021-01-29 华为技术有限公司 发送wlan帧的方法、装置及存储介质
CN111130604B (zh) * 2018-11-01 2021-05-25 电信科学技术研究院有限公司 一种csi反馈方法、终端和网络侧设备
CN111586741B (zh) * 2019-02-15 2022-07-12 大唐移动通信设备有限公司 一种信息上报方法及终端
CN113067787B (zh) * 2021-03-26 2023-02-28 广东奎晟信息科技有限公司 一种基于有限反馈的无线能量传输系统预编码方法
CN113271131B (zh) * 2021-04-14 2022-08-23 北京邮电大学 波束选择反馈方法及系统

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101867533A (zh) * 2010-05-27 2010-10-20 东南大学 空分多址多天线传输下行链路导频与信道估计方法
CN104322092A (zh) * 2012-05-22 2015-01-28 阿尔卡特朗讯 使用定向天线的无线通信的方法及设备
WO2015016489A1 (en) * 2013-07-30 2015-02-05 Lg Electronics Inc. Method for reporting channel state information for partial antenna array based beamforming in wireless communication system, and apparatus therefor

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103475397B (zh) * 2012-06-08 2018-03-23 中兴通讯股份有限公司 一种三维波束赋形的方法、通信站及移动站
CN104184561B (zh) * 2014-01-13 2019-04-30 中兴通讯股份有限公司 预编码导频处理方法、装置、基站及终端

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101867533A (zh) * 2010-05-27 2010-10-20 东南大学 空分多址多天线传输下行链路导频与信道估计方法
CN104322092A (zh) * 2012-05-22 2015-01-28 阿尔卡特朗讯 使用定向天线的无线通信的方法及设备
WO2015016489A1 (en) * 2013-07-30 2015-02-05 Lg Electronics Inc. Method for reporting channel state information for partial antenna array based beamforming in wireless communication system, and apparatus therefor

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11203595B2 (en) 2016-09-23 2021-12-21 Novartis Ag Aza-indazole compounds for use in tendon and/or ligament injuries
CN113783660A (zh) * 2017-04-10 2021-12-10 华为技术有限公司 传输方法、发送端和接收端
CN109150273A (zh) * 2017-06-28 2019-01-04 捷开通讯(深圳)有限公司 波束管理方法及装置
CN112262589A (zh) * 2018-09-19 2021-01-22 Oppo广东移动通信有限公司 一种信息传输方法、设备及存储介质
CN112262589B (zh) * 2018-09-19 2023-05-30 Oppo广东移动通信有限公司 一种信息传输方法、设备及存储介质
CN112152686A (zh) * 2019-06-27 2020-12-29 中兴通讯股份有限公司 一种实现波束扫描与通信的方法、装置
CN112152686B (zh) * 2019-06-27 2023-09-26 中兴通讯股份有限公司 一种实现波束扫描与通信的方法、装置
WO2022257121A1 (zh) * 2021-06-11 2022-12-15 Oppo广东移动通信有限公司 通信方法、设备及存储介质

Also Published As

Publication number Publication date
CN105991238A (zh) 2016-10-05

Similar Documents

Publication Publication Date Title
WO2016141796A1 (zh) 信道状态信息的测量和反馈方法及发送端和接收端
CN109952716B (zh) 用于高级csi反馈开销减少的可配置码本
RU2726850C2 (ru) Система и способ передачи информации о выборе подпространства
US11569879B2 (en) Multi-beam codebooks with further optimized overhead
CN113346935B (zh) 用于码本设计和信令的方法和装置
KR102270375B1 (ko) 개선된 무선 통신 시스템에서의 선형 조합 pmi 코드북 기반 csi 보고
US11025322B2 (en) Progressive advanced CSI feedback
EP3289817B1 (en) System and method for multi-level beamformed non-orthogonal multiple access communications
US10205499B2 (en) Systems and methods for adapting a codebook for use with multiple antenna configurations
CN108292943B (zh) 用于在无线通信系统中发送和接收反馈信号的方法和设备
JP6411367B2 (ja) アドバンスト無線通信システムにおけるチャンネル状態情報フィードバック設計
WO2016163542A1 (ja) ビーム選択方法、移動局及び基地局
US10312983B2 (en) Precoding a transmission from a one-dimensional antenna array that includes co-polarized antenna elements aligned in the array&#39;s only spatial dimension
CN106953672B (zh) 一种多天线系统中信道信息反馈的方法及终端
CN109075828B (zh) 用于实现上行链路mimo的方法和设备
CN109964414B (zh) 针对混合类a/b操作的高级csi报告
CN106330272A (zh) 预编码矩阵指示的发送、接收方法及设备
CN106982088B (zh) 3d mimo系统中一种基于csi-rs端口的多流传输方法
US20240187908A1 (en) Csi codebook parameters and csi reporting for coherent joint transmission

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16761023

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16761023

Country of ref document: EP

Kind code of ref document: A1