WO2023179651A1 - 波束处理方法、装置及设备 - Google Patents

波束处理方法、装置及设备 Download PDF

Info

Publication number
WO2023179651A1
WO2023179651A1 PCT/CN2023/083044 CN2023083044W WO2023179651A1 WO 2023179651 A1 WO2023179651 A1 WO 2023179651A1 CN 2023083044 W CN2023083044 W CN 2023083044W WO 2023179651 A1 WO2023179651 A1 WO 2023179651A1
Authority
WO
WIPO (PCT)
Prior art keywords
beam set
beams
information
device determines
reference signal
Prior art date
Application number
PCT/CN2023/083044
Other languages
English (en)
French (fr)
Inventor
施源
Original Assignee
维沃移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 维沃移动通信有限公司 filed Critical 维沃移动通信有限公司
Publication of WO2023179651A1 publication Critical patent/WO2023179651A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W12/00Security arrangements; Authentication; Protecting privacy or anonymity
    • H04W12/30Security of mobile devices; Security of mobile applications
    • H04W12/37Managing security policies for mobile devices or for controlling mobile applications
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W16/00Network planning, e.g. coverage or traffic planning tools; Network deployment, e.g. resource partitioning or cells structures
    • H04W16/24Cell structures
    • H04W16/28Cell structures using beam steering

Definitions

  • the present application belongs to the field of communication technology, and specifically relates to a beam processing method, device and equipment.
  • AI Artificial Intelligence
  • Embodiments of the present application provide a beam processing method, device and equipment, which can solve the problem of beamforming exposure at the transmitter and receiver caused by the transmission of beam-related information between devices.
  • a beam processing method which method includes:
  • the first device determines a first beam set; wherein the number of beams belonging to the first beam set is associated with the number of beams corresponding to the beam quality related information input by the artificial intelligence model; the artificial intelligence model is used for beam related functions .
  • a beam processing device including:
  • a first determination module configured to determine a first beam set; wherein the number of beams belonging to the first beam set is associated with the number of beams corresponding to the beam quality related information input by the artificial intelligence model;
  • the artificial intelligence model is used for beam correlation functions.
  • a communication device in a third aspect, includes a processor and a memory.
  • the memory stores a program or instructions that can be run on the processor.
  • the program or instructions are implemented when executed by the processor. The steps of the method as described in the first aspect.
  • a communication device including a processor and a communication interface, wherein the processor is used to determine a first beam set; wherein the number of beams belonging to the first beam set is related to the number of people. The number of beams corresponding to the beam quality related information input by the artificial intelligence model is related;
  • the artificial intelligence model is used for beam correlation functions.
  • a beam processing system including: a communication device, the communication device may be configured to perform the steps of the beam processing method as described in the first aspect.
  • a readable storage medium is provided. Programs or instructions are stored on the readable storage medium. When the programs or instructions are executed by a processor, the steps of the method described in the first aspect are implemented.
  • a chip in a seventh aspect, includes a processor and a communication interface.
  • the communication interface is coupled to the processor.
  • the processor is used to run programs or instructions to implement the method described in the first aspect. .
  • a computer program/program product is provided, the computer program/program product is stored in a storage medium, and the computer program/program product is executed by at least one processor to implement the method described in the first aspect Steps of the beam processing method.
  • the first device determines the first beam set, and the number of beams belonging to the first beam set is associated with the number of beams corresponding to the beam quality related information input by the AI model.
  • the input of the AI model determines the beam-related information based on the first beam set, avoiding the exposure of excessive information and ensuring the security of communication.
  • Figure 1 is a block diagram of a wireless communication system
  • FIG. 2 is a schematic flowchart of the beam processing method according to the embodiment of the present application.
  • Figure 3 is a schematic module structure diagram of the beam processing device according to the embodiment of the present application.
  • Figure 4 is a schematic structural diagram of a communication device according to an embodiment of the present application.
  • Figure 5 is a schematic structural diagram of a terminal according to an embodiment of the present application.
  • first, second, etc. in the description and claims of this application are used to distinguish similar objects and are not used to describe a specific order or sequence. It is to be understood that the terms so used are interchangeable under appropriate circumstances so that the embodiments of the present application can be practiced in sequences other than those illustrated or described herein, and that "first" and “second” are distinguished objects Usually one type, The number of objects is not limited. For example, the first object may be one or multiple.
  • “and/or” in the description and claims indicates at least one of the connected objects, and the character “/" generally indicates that the related objects are in an "or” relationship.
  • LTE Long Term Evolution
  • LTE-Advanced, LTE-A Long Term Evolution
  • LTE-A Long Term Evolution
  • CDMA Code Division Multiple Access
  • TDMA Time Division Multiple Access
  • FDMA Frequency Division Multiple Access
  • OFDMA Orthogonal Frequency Division Multiple Access
  • SC-FDMA Single-carrier Frequency Division Multiple Access
  • NR New Radio
  • FIG. 1 shows a block diagram of a wireless communication system to which embodiments of the present application are applicable.
  • the wireless communication system includes a terminal 11 and a network side device 12.
  • the terminal 11 may be a mobile phone, a tablet computer (Tablet Personal Computer), a laptop computer (Laptop Computer), or a notebook computer, a personal digital assistant (Personal Digital Assistant, PDA), a palmtop computer, a netbook, or a super mobile personal computer.
  • Tablet Personal Computer Tablet Personal Computer
  • laptop computer laptop computer
  • PDA Personal Digital Assistant
  • PDA Personal Digital Assistant
  • UMPC ultra-mobile personal computer
  • UMPC mobile Internet device
  • MID mobile Internet Device
  • AR augmented reality
  • VR virtual reality
  • robots wearable devices
  • WUE Vehicle User Equipment
  • PUE Pedestrian User Equipment
  • smart home home equipment with wireless communication functions, such as refrigerators, TVs, washing machines or furniture, etc.
  • game consoles personal computers (personal computer, PC), teller machine or self-service machine and other terminal-side devices.
  • Wearable devices include: smart watches, smart bracelets, smart headphones, smart glasses, smart jewelry (smart bracelets, smart bracelets, smart rings, smart necklaces, smart anklets) bracelets, smart anklets, etc.), smart wristbands, smart clothing, etc.
  • the network side device 12 may include an access network device or a core network device, where the access network device may also be called a radio access network device, a radio access network (Radio Access Network, RAN), a radio access network function or a wireless access network unit.
  • Access network equipment may include base stations, Wireless Local Area Networks (WLAN) access points or WiFi nodes, etc.
  • the base stations may be called Node B, Evolved Node B (eNB), access point, base transceiver station ( Base Transceiver Station (BTS), radio base station, radio transceiver, Basic Service Set (BSS), Extended Service Set (ESS), home B-node, home evolved Node B, Transmitting Receiving Point (TRP) or some other suitable term in the field, as long as the same technical effect is achieved, the base station is not limited to specific technical terms. It should be noted that in the implementation of this application This example only takes the base station in the NR system as an example, and does not limit the specific type of base station.
  • beams include transmitting beams, receiving beams and beam centering. Therefore, the beam set in the embodiment of the present application may be one or any combination of a transmit beam set, a receive beam set, a beam pair set.
  • the input information of the AI model includes at least one of the following:
  • the desired information includes at least one of the following:
  • beam quality-related information refers to information that can characterize beam quality, including but not limited to at least one of the following: Level 1-Signal to Interference plus Noise Ratio (L1-SINR), Layer 1 reference Signal receiving power (L1-RSRP), layer 1 reference signal receiving quality (Level 1-Reference Signal Receiving Quality, L1-RSRQ), layer 3 signal-to-noise ratio (L3-SINR), layer 3 reference signal receiving power ( L3-RSRP), layer 3 reference signal reception quality (L3-RSRQ), etc.
  • L1-SINR Level 1-Signal to Interference plus Noise Ratio
  • L1-RSRP Layer 1 reference Signal receiving power
  • L1-RSRQ Layer 1 reference signal receiving quality
  • L3-SINR layer 3 signal-to-noise ratio
  • L3-RSRP layer 3 reference signal receiving power
  • L3-RSRQ layer 3 reference signal reception quality
  • the first beam association information may include at least one of transmit beam association information, receive beam association information and beam pair association information.
  • the second beam association information may include at least one of transmit beam association information, receive beam association information and beam pair association information.
  • the first device receives the first reference signal sent by the second device
  • the first beam association information includes the beam association information sent by the second device, the beam association information received by the first device, and the beam sent by the second device and the beam received by the first device At least one of the beam pair associated information.
  • the second beam association information includes the beam association information expected by the first device to be transmitted by the second device, the association information of the beam expected by the first device to be received by the first device, and the beam association expected by the first device from the second device to be transmitted and received by the first device. At least one of the beam pair associated information of the beam.
  • the beam correlation information is used to represent the correlation information corresponding to the beam.
  • the beam related information includes at least one of the following: beam identification related information, beam angle related information, and beam gain related information.
  • the information related to the beam identity is also the information related to the beam identity, and is used to represent the information related to the identity of the beam, including but not limited to at least one of the following: transmitting beam identity (IDentity, ID), receive beam ID, beam pair ID, reference signal set ID corresponding to the beam, reference signal resource ID corresponding to the beam, uniquely identified random ID, coded value processed by the additional AI model (or AI network) , beam angle related information, etc.
  • IDentity ID
  • receive beam ID receive beam ID
  • beam pair ID reference signal set ID corresponding to the beam
  • reference signal resource ID corresponding to the beam
  • beam angle related information etc.
  • the beam angle related information is used to represent the angle related information corresponding to the beam, including but not limited to at least one of the following: beam angle related information, sending angle related information, and receiving angle related information.
  • the angle-related information is the relevant information used to characterize the angle, such as: angle, radian, index code value, code value processed by an additional AI network, etc.
  • the beam gain related information is used to characterize the gain related information of the beam and/or antenna, including but not limited to at least one of the following: antenna relative gain (unit dBi), equivalent isotropic radiation power beam power spectrum (Effective Isotropic Radiated Power, EIRP), beam angle gain, beam angle gain spectrum (that is, the gain of a beam relative to different angles, including complete or partial gain spectrum information), EIRP corresponding to each beam angle, main lobe angle, secondary Lobe angle, number of side lobes, distribution of side lobes, number of antennas, beam scanning horizontal coverage, beam scanning vertical coverage, 3dB width, 6dB width, etc.
  • At least one of the angle-related information and the beam identity-related information may be described by two-dimensional components (which may be horizontal-vertical components), or described and determined by higher-dimensional component information.
  • a beam processing method includes:
  • Step 201 the first device determines a first beam set; wherein the number of beams belonging to the first beam set is associated with the number of beams corresponding to the beam quality related information input by the artificial intelligence model;
  • the artificial intelligence model is used for beam correlation functions.
  • beam related functions include beam prediction, beam indication, beam recovery, beam training, etc.
  • the first device determines a first beam set, and the number of beams belonging to the first beam set is associated with the number of beams corresponding to the beam quality related information input by the AI model.
  • the input of the AI model determines the beam-related information based on the first beam set, avoiding the exposure of excessive information and ensuring the security of communication.
  • the beams of the first beam set are used to obtain input information of the AI model.
  • the beam belonging to the first beam set may be at least one of a transmitting beam, a receiving beam, and a beam pair.
  • the number of beams belonging to the first beam set is less than or equal to the number of beams corresponding to the beam quality related information input by the artificial intelligence model.
  • the number of beams corresponding to the first beam set is less than or equal to the beam quality input by the AI model.
  • the number of beams corresponding to the amount of relevant information For example, if the beam quality related information input by the AI model corresponds to 2 beams, then the beams corresponding to the first beam set are less than or equal to 2.
  • the first device determines the first beam set, including:
  • the first device determines the first beam set through interaction with the second device
  • the interaction method includes at least one of the following:
  • the first device determines the first beam set by interacting with the second device.
  • the second device sends a first beam set (eg, beam set 1) to the first device.
  • the first beam set may also have corresponding beam association information, and the first device determines the first beam set, that is, it can determine the corresponding beam association information.
  • the beam correlation information corresponding to the first beam set may be the beam correlation information of the beams in the first beam set.
  • the AI model is used for beam training and its input needs to contain 8 pieces of beam quality-related information (such as Reference Signal Received Power (RSRP)).
  • RSRP Reference Signal Received Power
  • the base station can configure the first beam set (Channel State Information Reference Signal (Channel-State Information Reference Signal) for beam training) for the terminal.
  • CSI-RS State-Information Reference Signal
  • the first beam set contains 8 transmit beams corresponding to CSI-RS with CSI-RS identities from 1-8.
  • the beam corresponding to the monitored beam association information (such as beam angle) is the beam corresponding to the CSI-RS of the 1-8 identities, and the 8 beam angles are obtained as input to the AI model.
  • the 8 RSRPs corresponding to the CSI-RS of identities 1-8 are also used as input to the AI model.
  • the base station can configure a first beam set for the terminal.
  • the first beam set includes 4 transmit beams corresponding to CSI-RS with CSI-RS identities from 1 to 4. And 2 receiving beams used by the terminal.
  • the beam corresponding to the monitored beam angle is the transmit beam of the CSI-RS of identities 1-4, and the four beam angles corresponding to the CSI-RS of identities 1-4 are obtained as the AI model.
  • the beam corresponding to the monitored beam angle is the transmit beam of the CSI-RS of identity 1-4 and the receive beam of identity 1-2, and obtain the CSI-RS of identity 1-4 in the receive beam of identity 1-2
  • the corresponding 8 beam angles below are used as input to the AI model.
  • the 8 RSRPs corresponding to the CSI-RS of identity 1-4 under the receiving beam of identity 1-2 are used as input to the AI model.
  • the 16 RSRPs include the RSRPs of two historical moments, and each moment corresponds to 8 RSRPs. If the base station uses 8 transmit beams and the terminal uses 2 receive beams, the base station can configure a first beam set for the terminal.
  • the first beam set contains CSI-RS identities from 1 to 4 corresponding to 4 transmit beams, and 2 receive beams used by the terminal.
  • the beam corresponding to the beam angle monitored by the terminal is the transmit beam of the CSI-RS of identities 1-4, and the four beam angles corresponding to the CSI-RS of identities 1-4 are obtained as the AI Input of the model; or, the beam corresponding to the monitored beam angle is the transmitting beam of the CSI-RS of the 1-4 identity and the receiving beam of the 1-2 identity, and obtain the CSI-RS of the 1-4 identity in the 1-2 identity
  • the corresponding eight beam angles under the receiving beam are used as input to the AI model at the latest moment.
  • the 8 RSRPs corresponding to the CSI-RS of identity 1-4 under the receiving beam of identity 1-2 are used for the input of the AI model at the latest moment.
  • step 201 it also includes:
  • the first device determines a second beam set; wherein the number of beams belonging to the second beam set is greater than or equal to the number of beams corresponding to the beam quality related information input by the artificial intelligence model;
  • the first device determines a first beam set, including:
  • the first device determines the first beam set according to the second beam set.
  • the first device first determines the second beam set, and then further determines the required first beam set based on the second beam set.
  • the first beam set is a subset or the entire set of the second beam set; or,
  • At least N1 beams in the first beam set are included in the second beam set; where N1 is a positive integer.
  • the first device may select the first beam set from the second beam set, where the first beam set is a subset or the entire set of the second beam set.
  • the first device selects only N1 beams from the second beam set as part of the first beam set, and the first beam set may also include beams that do not belong to the second beam set.
  • the first device determines the second beam set by interacting with the second device in the same manner as the first beam set. For example, the second device sends a second beam set (eg, beam set 2) to the first device, and the first device selects a beam from the beam set 2 to obtain the first beam set (eg, beam set 1).
  • a second beam set eg, beam set 2
  • the first device selects a beam from the beam set 2 to obtain the first beam set (eg, beam set 1).
  • the AI model is used for beam training and its input needs to contain 8 pieces of beam quality-related information (such as RSRP).
  • the base station can configure a second beam set (CSI-RS beam set for beam training) for the terminal.
  • the beam set contains 10 transmit beams corresponding to CSI-RS identities from 1-10 CSI-RS.
  • the terminal determines the second beam set based on the configuration, it selects 8 RSRPs from the 10 RSRPs obtained from the 10 transmit beams corresponding to 1-10 CSI-RS and also uses them as input to the AI model. Assume that the 8 RSRPs correspond to CSI-RSs of 1-8 identities.
  • the beam corresponding to the monitored beam association information (such as beam angle) is the 1-8 RSRPs.
  • the beams corresponding to the 8-identity CSI-RS 8 beam angles are obtained as input to the AI model.
  • the first device before the first device determines the second beam set, it further includes:
  • the first device determines a third beam set; wherein the number of beams belonging to the third beam set is greater than or equal to the number of beams corresponding to the beam quality related information input by the artificial intelligence model;
  • the first device determines a second beam set, including:
  • the first device selects the second beam set from the third beam set.
  • the first device can select the second beam set from the third beam set, so that the first beam set can be subsequently determined based on the second beam set.
  • the first beam set is a subset or the entire set of the third beam set; or,
  • At least N2 beams in the first beam set are included in the third beam set; where N2 is a positive integer.
  • the first beam set is a subset or the entire set of the second beam set, It is also a subset or full set of the third beam set; when the first device selects only N1 beams from the second beam set as part of the first beam set, the N2 beams in the third beam set will be used as the first beam set part of the beam, at this time N2 is greater than or equal to N1.
  • the first device may also directly determine the first beam set based on the third beam set. Specifically, the first device selects the first beam set from the third beam set, and the first beam set is a subset or the entire set of the third beam set; or, the first device only selects N2 beam sets from the third beam set.
  • the beams are part of the first beam set, and the first beam set may also include beams that do not belong to the third beam set. At this time, N2 has nothing to do with the size of N1.
  • the first device determines the second beam set based on the third beam set, or it can only select N3 (N3 is a positive integer) beams from the third beam set as part of the second beam set.
  • the second beam set can also Includes beams that do not belong to the third beam set.
  • N2 is also independent of the size of N1.
  • the first device determines the third beam set by interacting with the second device in the same manner as the first beam set. For example, the second device sends a third beam set (eg, beam set 3) to the first device, and the first device selects a beam from the beam set 3 to obtain the second beam set (eg, beam set 2). Afterwards, the first device determines a first beam set (such as beam set 1) based on beam set 2.
  • a third beam set eg, beam set 3
  • the first device selects a beam from the beam set 3 to obtain the second beam set (eg, beam set 2).
  • the first device determines a first beam set (such as beam set 1) based on beam set 2.
  • the first device before the first device determines the third beam set, it further includes:
  • the first device sends a fourth beam set to the second device; wherein the fourth beam set is used by the second device to determine the third beam set.
  • the first device determines the third beam set, which may include, after receiving the fourth beam set from the second device, determining the third beam set related to the fourth beam set based on the fourth beam set.
  • the third beam set is a subset or the entire set of the fourth beam set; or, at least N4 (N4 is a positive integer) beams in the third beam set are included in the fourth beam set.
  • the first device determines the first beam set, it further includes:
  • the first device sends the first beam set to a second device.
  • the first beam set sent by the first device to the second device is not the first beam set determined through interaction with the second device, so that the second device can also know the first beam set.
  • the first device sends the first beam set to the second device.
  • the second device sends beam set 2 to the first device, and the first device selects a beam from the beam set 2 to obtain beam set 1, and then feeds beam set 1 back to the second device; or, the second device sends a beam Set 3 is given to the first device.
  • the first device selects a beam from the beam set 3 to obtain beam set 2.
  • Equipment Equipment.
  • the first device determines the second beam set, it further includes:
  • the first device sends the second beam set to a second device.
  • the second beam set sent by the first device to the second device is not the second beam set determined by interacting with the second device.
  • the second device can use the second beam set as a guide to send an applicable first beam set to the first device. That is to say, the first beam set sent by the second device can be determined based on the second beam set. .
  • the first device sends the second beam set to the second device.
  • the second device sends beam set 3 to the first device, and after the first device selects a beam from the beam set 3 to obtain beam set 2, the first device feeds back the beam set 2 to the second device, and the second device selects a beam from the beam set 3 to obtain the beam set 2.
  • the second device After selecting a beam in beam set 2 to obtain beam set 1, the second device sends beam set 1 to the first device.
  • the first device determines the third beam set, it further includes:
  • the first device sends the third beam set to the second device.
  • the third beam set sent by the first device to the second device is not the third beam set determined by interacting with the second device.
  • the second device can use the third beam set as a guide to send an applicable second beam set to the first device. That is to say, the second beam set sent by the second device can be determined based on the third beam set. .
  • the first device sends the second beam set to the second device.
  • the second device sends the fourth beam set (beam set 4) to the first device.
  • the first device selects a beam from the beam set 4 to obtain the beam set 3
  • the first device feeds back the beam set 3 to the second device.
  • the second device selects a beam from the beam set 3 to obtain the beam set 2
  • the second device sends the beam set 2 to the first device.
  • the first device obtains the beam set 1 by receiving the beam set 2 and selecting a beam from the beam set 2.
  • the first beam set includes at least one of the following:
  • the beam-related information may be a beam pair identification (ID), a transmit beam ID, a transmit beam angle, a receive beam Beam ID, receiving beam angle, bitmap, etc.
  • ID a beam pair identification
  • bitmap is the indication bitmap of the beam ID.
  • the beam starting position may be the first beam ID, and the interval number may be the interval value of the beam ID. Assume that 10 beams are supported and the beam identifiers are 1-10. If the first beam set includes the beam starting position as beam 2 and the number of intervals is 3, it means that beam 2, beam 5 and beam 8 belong to the first beam set.
  • each beam group identifier corresponds to a group of beams. Assume that beams 1-10 are supported and divided into two groups, beam group 1-2, and beam group 1 includes beams 1-5, and beam group 2 includes beams 6-10, then the first beam set includes beam group 1, Indicates that beams 1-5 belong to the first beam set.
  • the second beam set, the third beam set, and the fourth beam set can also be the same as the first beam set, including relevant information of the beam; the starting position of the beam and the number of intervals; and the preconfigured beam group identifier. one of.
  • the input to the AI model needs to contain 8 pieces of beam quality information.
  • the base station configures a second beam set (CSI-RS beam set for beam training) for the terminal.
  • the second beam set includes 32 transmit beams corresponding to CSI-RS identities ranging from 1 to 32 CSI-RS.
  • the terminal uses 1 receive beam and receives a total of 32 transmit beams, the terminal determines that the input first beam set of the AI model used for beam prediction contains the identities of CSI-RS 1, 5, 9, 13, 17, 21, 25, 29 corresponding transmit beam (or beams 1, 5, 9, 13, 17, 21, 25, 29).
  • the first beam set can directly use the identity identifier (or beam ID) of the CSI-RS to indicate the beam; or use a 32-bit bitmap to indicate the beam, such as "10001000100010001000100010001000”, "1" indicates that the beam corresponding to the current bit belongs to the A beam set, "0" indicates that the beam corresponding to the current bit does not belong to the first beam set; or, use the beam starting position as beam 1 (or CSI-RS identity 1) and the interval number 4, indicating that every starting position from beam 1 Choose one beam spaced 4 times apart.
  • the terminal may feed back the first beam set to the base station.
  • the input to the AI model contains 8 pieces of beam quality information.
  • the base station configures a second beam set (CSI-RS beam set for beam training) for the UE side.
  • the second beam set includes 32 transmit beams corresponding to CSI-RS identities ranging from 1 to 32 CSI-RS.
  • the terminal uses 2 receive beams and receives a total of 64 transmit beams, the terminal determines that the identity of the beam pair contained in the first beam set input to the AI model for beam prediction is (1,1)(5,1)(1, 2) (13,1)(13,2)(21,2)(25,2)(29,2), the front corresponds to the identity information of CSI-RS, and the latter corresponds to the terminal receiving beam ID.
  • the first beam set directly uses the identity information of the beam pair (1,1)(5,1)(1,2)(13,1)(13,2)(21,2)(25,2)(29 ,2); or the first beam set uses CSI-RS identity 1 5 1 13 13 21 25 29 to indicate the beam pair.
  • the transmitting beams in the second beam set are all different.
  • the transmitting beams in the third beam set are all different.
  • the determination of the first beam set is used to determine the beam correlation information input by the AI model. Therefore, optionally, after step 201, it also includes:
  • the first device determines the beam correlation information input by the artificial intelligence model according to the first beam set.
  • the first device obtains beam correlation information as input to the AI model based on the beams of the first beam set.
  • the first beam set includes beam 1 and beam 2. If the AI model needs to input the beam angle, the beam angle of beam 1 and the beam angle of beam 2 can be obtained and input into the AI model.
  • the first device obtains beam correlation information as input information of the AI model by interacting with the second device. For example, the first device receives the beam association information corresponding to the first beam set sent by the second device, and the first device inputs the information into the AI model. In this way, the second device does not need to send beam association information for beams other than the first beam set.
  • this embodiment also includes:
  • the first device determines beam association information corresponding to a fifth beam set; wherein the fifth beam set includes at least one of the following: a second beam set, a third beam set, and a fourth beam set.
  • the first device obtains beam association information corresponding to at least one of the second beam set, the third beam set, and the fourth beam set by interacting with the second device.
  • One implementation of this embodiment may be to not exchange the beam association information corresponding to the second beam set, but only exchange the beam association information corresponding to the first beam set, and the first beam set is determined based on the second beam set. ;
  • An implementation may be to not exchange the beam association information corresponding to the third beam set, but only exchange the beam association information corresponding to the second beam set, and the second beam set is determined based on the third beam set;
  • An implementation may be Yes, the beam association information corresponding to the third beam set and the second beam set are not exchanged. Only the beam association information corresponding to the first beam set is exchanged.
  • the first beam set is determined based on the second beam set.
  • the second beam set The set is determined based on this third beam set.
  • the method further includes:
  • the first device sends beam association information corresponding to the second beam set to the second device.
  • the second beam set is determined by the first device based on the third beam set. Therefore, the first device sends the second beam set and the beam association information corresponding to the second beam set to the second device.
  • the method further includes:
  • the first device sends beam association information corresponding to the third beam set to the second device.
  • the third beam set is determined by the first device based on the fourth beam set. Therefore, the first device sends the third beam set and the beam association information corresponding to the third beam set to the second device.
  • the first device determines the beam set, that is, it can determine the corresponding beam association information.
  • the beam association information corresponding to the beam set may be the beam association information of the beams in the first beam set.
  • the beam correlation information is characterized by quantized and coded information; wherein the quantized and coded information is obtained based on the quantization interval.
  • the quantization interval can be determined interactively. For example, when the beam related information is the beam angle and the quantization interval is configured as 10 degrees, quantization is performed every 10 degrees.
  • the beam association information is not associated with the synchronization signal block (Synchronization Signal and PBCH block, SSB)
  • the quasi-co-location (Quasi) of the SSB with the same identity and the same frequency domain position Co-Location, QCL) information remains unchanged.
  • the beam association information is determined based on the configuration information corresponding to the first reference signal.
  • the beam association information is determined based on configuration information of a second reference signal that is quasi-co-located with the first reference signal.
  • the first reference signal may be a reference signal corresponding to the beams of any of the above-mentioned beam sets, or a reference signal corresponding to the beam quality information input by the AI model.
  • the beam association information is determined based on the configuration information corresponding to the first reference signal, that is, the beam association information can be obtained directly.
  • the first reference signal is a CSI-RS
  • the configuration information of a CSI-RS includes an SSB index associated with the CSI-RS.
  • the beam association information is SSB index
  • the beam association information can be directly determined for the CSI-RS interactive configuration information (an associated SSB index).
  • the first reference signal is an SSB
  • the configuration information of an SSB includes an SSB index associated with the SSB.
  • the beam association information is an SSB index
  • the beam association information can be directly determined by exchanging configuration information for the SSB (an associated SSB index) or using the index of the SSB.
  • the beam association information is determined based on the configuration information of the second reference signal that is quasi-co-located with the first reference signal, that is, the beam association information can be obtained indirectly in an implicit manner.
  • the second reference signal includes at least one of the following signals on the quasi-co-location relationship chain of the first reference signal:
  • the first reference signal configured with beam correlation information
  • the last reference signal configured with beam correlation information
  • SSB configured with beam association information.
  • the second reference signal may be the first reference signal on the quasi-co-located relationship chain of the first reference signal.
  • a reference signal configured with beam association information it may be the last reference signal configured with beam association information on the first reference signal quasi-colocation relationship chain; it may be an SSB on the first reference signal quasi-colocation relationship chain; it may be The SSB with beam association information configured on the first reference signal quasi-co-location relationship chain.
  • the upper-level reference signal corresponding to the quasi-co-location relationship chain (QCL chain) is used, or the upper-level reference signal is searched through the QCL chain until specific characteristics are found.
  • the specific characteristics can be used as beam association information.
  • QCL chain can also be replaced by QCL type D
  • the beam association information is SSB index.
  • finding the SSB index associated with the CSI-RS is the beam association information.
  • the beam association information is the beam angle
  • the beam association information is the beam angle
  • the beam angle associated with the SSB index is the beam association of the CSI-RS. information.
  • the first device and the second device transmit and receive the first reference signal.
  • the first device and the second device may be various combinations of network-side devices, terminals and auxiliary network center units.
  • the second device is a terminal and the first device is a network-side device; or the second device is a network-side device and the first device is a network-side device.
  • the device is a terminal; or the second device and the first device are both network-side devices; or the second device and the first device are both terminals; or the second device is an auxiliary network center unit and the first device is a network-side device wait.
  • the first device and the second device may also interact through an auxiliary network center unit, where the auxiliary network center unit is a unit used for information interaction.
  • N1, N2, N3, and N4 can be determined interactively.
  • the first device determines the first beam set, and the number of beams belonging to the first beam set is associated with the number of beams corresponding to the beam quality related information input by the AI model. In this way, when the first device needs When the AI model is used for beam-related functions, the input of the AI model determines the beam-related information based on the first beam set, which avoids the exposure of excessive information and ensures the security of communication.
  • the execution subject may be a beam processing device.
  • the beam processing method performed by the beam processing apparatus is used as an example to illustrate the beam processing apparatus provided by the embodiment of the present application.
  • a beam processing device 300 in this embodiment of the present application includes:
  • the first determination module 310 is used to determine the first beam set; wherein the number of beams belonging to the first beam set is associated with the number of beams corresponding to the beam quality related information input by the artificial intelligence model;
  • the artificial intelligence model is used for beam correlation functions.
  • the device also includes:
  • a second determination module configured to determine a second beam set; wherein the number of beams belonging to the second beam set is greater than or equal to the number of beams corresponding to the beam quality related information input by the artificial intelligence model;
  • the first determination module is also used to:
  • the first beam set is determined based on the second beam set.
  • the first beam set is a subset or the entire set of the second beam set; or,
  • At least N1 beams in the first beam set are included in the second beam set; where N1 is a positive integer.
  • the device also includes:
  • a third determination module configured to determine a third beam set; wherein the number of beams belonging to the third beam set is greater than or equal to the number of beams corresponding to the beam quality related information input by the artificial intelligence model;
  • the second determination module is also used to:
  • the second beam set is selected from the third beam set.
  • the first beam set is a subset or the entire set of the third beam set; or,
  • At least N2 beams in the first beam set are included in the third beam set; where N2 is a positive integer.
  • the device also includes:
  • the first sending module is configured to send a fourth beam set to the second device; wherein the fourth beam set is used by the second device to determine the third beam set.
  • the device also includes:
  • the second sending module is configured to send the first beam set to the second device.
  • the device also includes:
  • the first sending module is configured to send the second beam set to the second device.
  • the device also includes:
  • the second sending module is configured to send the third beam set to the second device.
  • the first determination module is also used to:
  • the interaction method includes at least one of the following:
  • the first beam set includes at least one of the following:
  • the transmitting beams in the second beam set are all different.
  • the transmitting beams in the third beam set are all different.
  • the device also includes:
  • a fourth determination module configured to determine the beam correlation information input by the artificial intelligence model according to the first beam set.
  • the device also includes:
  • the fifth determination module is used to determine beam association information corresponding to the fifth beam set; wherein the fifth beam set includes at least one of the following: a second beam set, a third beam set, and a fourth beam set.
  • the device also includes:
  • the third sending module is configured to send beam association information corresponding to the second beam set to the second device.
  • the device also includes:
  • a fourth sending module is configured to send beam association information corresponding to the third beam set to the second device.
  • the beam correlation information is represented by quantized and coded information; wherein the quantized and coded information is obtained based on a quantization interval.
  • the quasi-co-located QCL information of the SSB with the same identifier and the same frequency domain position remains unchanged.
  • the beam association information is determined based on configuration information corresponding to the first reference signal.
  • the beam association information is determined based on configuration information of a second reference signal that is quasi-co-located with the first reference signal.
  • the number of beams belonging to the first beam set is less than or equal to the number of beams corresponding to the beam quality related information input by the artificial intelligence model.
  • the second reference signal includes at least one of the following signals on the quasi-co-location relationship chain of the first reference signal:
  • the first reference signal configured with beam correlation information
  • the last reference signal configured with beam correlation information
  • SSB configured with beam association information.
  • the beam processing device of this embodiment determines the first beam set, and the number of beams belonging to the first beam set is associated with the number of beams corresponding to the beam quality related information input by the AI model. In this way, in the device When the AI model needs to be used for beam-related functions, the input of the AI model determines the beam-related information based on the first beam set, avoiding the exposure of excessive information and ensuring the security of communication.
  • the beam processing device in the embodiment of the present application may be an electronic device, such as an operating system with Electronic equipment can also be components in electronic equipment, such as integrated circuits or chips.
  • the electronic device may be a terminal or other devices other than the terminal.
  • terminals may include but are not limited to the types of terminals 11 listed above, and other devices may be servers, network attached storage (Network Attached Storage, NAS), etc., which are not specifically limited in the embodiment of this application.
  • NAS Network Attached Storage
  • the beam processing device provided by the embodiment of the present application can implement each process implemented by the method embodiment in Figure 2 and achieve the same technical effect. To avoid duplication, the details will not be described here.
  • this embodiment of the present application also provides a communication device 400, which includes a processor 401 and a memory 402.
  • the memory 402 stores programs or instructions that can be run on the processor 401, such as , when the communication device 400 is the first device, when the program or instruction is executed by the processor 401, each step of the above beam processing method embodiment is implemented, and the same technical effect can be achieved. To avoid duplication, it will not be described again here.
  • An embodiment of the present application also provides a communication device, including a processor and a communication interface.
  • the processor is used to determine a first beam set; wherein the number of beams belonging to the first beam set is determined by the beam quality input by the artificial intelligence model. The number of beams corresponding to the relevant information is related;
  • the artificial intelligence model is used for beam correlation functions.
  • the communication interface is used to send and receive data under the control of the processor.
  • FIG. 5 is a schematic diagram of the hardware structure of the terminal when the communication device that implements the embodiment of the present application is a terminal.
  • the terminal 500 includes but is not limited to: a radio frequency unit 501, a network module 502, an audio output unit 503, an input unit 504, a sensor 505, a display unit 506, a user input unit 507, an interface unit 508, a memory 509, a processor 510, etc. At least some parts.
  • the terminal 500 may also include a power supply (such as a battery) that supplies power to various components.
  • the power supply may be logically connected to the processor 510 through a power management system, thereby managing charging, discharging, and power consumption through the power management system. Management and other functions.
  • the terminal structure shown in FIG. 5 does not constitute a limitation on the terminal.
  • the terminal may include more or fewer components than shown in the figure, or some components may be combined or arranged differently, which will not be described again here.
  • the input unit 504 may include a graphics processing unit (GPU) 5041 and a microphone 5042.
  • the graphics processor 5041 is responsible for the image capture device (GPU) in the video capture mode or the image capture mode. Process the image data of still pictures or videos obtained by cameras (such as cameras).
  • the display unit 506 may include a display panel 5061, which may be configured in the form of a liquid crystal display, an organic light emitting diode, or the like.
  • the user input unit 507 includes a touch panel 5071 and at least one of other input devices 5072 . Touch panel 5071, also called touch screen.
  • the touch panel 5071 may include two touch detection devices and a touch controller. part.
  • Other input devices 5072 may include, but are not limited to, physical keyboards, function keys (such as volume control keys, switch keys, etc.), trackballs, mice, and joysticks, which will not be described again here.
  • the radio frequency unit 501 after receiving downlink data from the network side device, the radio frequency unit 501 can transmit it to the processor 510 for processing; in addition, the radio frequency unit 501 can send uplink data to the network side device.
  • the radio frequency unit 501 includes, but is not limited to, an antenna, amplifier, transceiver, coupler, low noise amplifier, duplexer, etc.
  • Memory 509 may be used to store software programs or instructions as well as various data.
  • the memory 509 may mainly include a first storage area for storing programs or instructions and a second storage area for storing data, wherein the first storage area may store an operating system, an application program or instructions required for at least one function (such as a sound playback function, Image playback function, etc.) etc.
  • memory 509 may include volatile memory or non-volatile memory, or memory 509 may include both volatile and non-volatile memory.
  • non-volatile memory can be read-only memory (Read-Only Memory, ROM), programmable read-only memory (Programmable ROM, PROM), erasable programmable read-only memory (Erasable PROM, EPROM), electrically removable memory. Erase programmable read-only memory (Electrically EPROM, EEPROM) or flash memory.
  • Volatile memory can be random access memory (Random Access Memory, RAM), static random access memory (Static RAM, SRAM), dynamic random access memory (Dynamic RAM, DRAM), synchronous dynamic random access memory (Synchronous DRAM, SDRAM), double data rate synchronous dynamic random access memory (Double Data Rate SDRAM, DDRSDRAM), enhanced synchronous dynamic random access memory (Enhanced SDRAM, ESDRAM), synchronous link dynamic random access memory (Synch link DRAM) , SLDRAM) and direct memory bus random access memory (Direct Rambus RAM, DRRAM).
  • RAM Random Access Memory
  • SRAM static random access memory
  • DRAM dynamic random access memory
  • DRAM synchronous dynamic random access memory
  • SDRAM double data rate synchronous dynamic random access memory
  • Double Data Rate SDRAM Double Data Rate SDRAM
  • DDRSDRAM double data rate synchronous dynamic random access memory
  • Enhanced SDRAM, ESDRAM enhanced synchronous dynamic random access memory
  • Synch link DRAM synchronous link dynamic random access memory
  • SLDRAM direct memory bus
  • the processor 510 may include one or more processing units; optionally, the processor 510 integrates an application processor and a modem processor, where the application processor mainly handles operations related to the operating system, user interface, application programs, etc., Modem processors mainly process wireless communication signals, such as baseband processors. It can be understood that the above modem processor may not be integrated into the processor 510.
  • the processor 510 is used to determine the first beam set; wherein the number of beams belonging to the first beam set is associated with the number of beams corresponding to the beam quality related information input by the artificial intelligence model;
  • the artificial intelligence model is used for beam correlation functions.
  • the input of the AI model determines the beam-related information based on the first beam set, avoiding the exposure of excessive information and ensuring the security of communication.
  • the processor 510 is also used to determine a second beam set; wherein the second beam set belongs to The number of beams in the beam set is greater than or equal to the number of beams corresponding to the beam quality related information input by the artificial intelligence model;
  • the first beam set is determined based on the second beam set.
  • the first beam set is a subset or the entire set of the second beam set; or,
  • At least N1 beams in the first beam set are included in the second beam set; where N1 is a positive integer.
  • the processor 510 is also configured to determine a third beam set; wherein the number of beams belonging to the third beam set is greater than or equal to the number of beams corresponding to the beam quality related information input by the artificial intelligence model;
  • the second beam set is selected from the third beam set.
  • the first beam set is a subset or the entire set of the third beam set; or,
  • At least N2 beams in the first beam set are included in the third beam set; where N2 is a positive integer.
  • the radio frequency unit 501 is configured to send a fourth beam set to the second device; wherein the fourth beam set is used by the second device to determine the third beam set.
  • the radio frequency unit 501 is also used to send the first beam set to the second device.
  • the radio frequency unit 501 is also used to send the second beam set to the second device.
  • the radio frequency unit 501 is also used to send the third beam set to the second device.
  • the processor 510 is also configured to determine the first beam set through interaction with the second device;
  • the interaction method includes at least one of the following:
  • the first beam set includes at least one of the following:
  • the transmitting beams in the second beam set are all different.
  • the transmitting beams in the third beam set are all different.
  • the processor 510 is also configured to determine the beam association information input by the artificial intelligence model according to the first beam set.
  • the processor 510 is also configured to determine beam association information corresponding to the fifth beam set; wherein the fifth beam set includes at least one of the following: a second beam set, a third beam set, and a fourth beam set. .
  • the radio frequency unit 501 is also configured to send beam association information corresponding to the second beam set to the second device.
  • the radio frequency unit 501 is also configured to send beam association information corresponding to the third beam set to the second device.
  • the beam correlation information is represented by quantized and coded information; wherein the quantized and coded information is obtained based on a quantization interval.
  • the quasi-co-located QCL information of the SSB with the same identifier and the same frequency domain position remains unchanged.
  • the beam association information is determined based on configuration information corresponding to the first reference signal.
  • the beam association information is determined based on configuration information of a second reference signal that is quasi-co-located with the first reference signal.
  • the number of beams belonging to the first beam set is less than or equal to the number of beams corresponding to the beam quality related information input by the artificial intelligence model.
  • the second reference signal includes at least one of the following signals on the quasi-co-location relationship chain of the first reference signal:
  • the first reference signal configured with beam correlation information
  • the last reference signal configured with beam correlation information
  • SSB configured with beam association information.
  • Embodiments of the present application also provide a readable storage medium.
  • Programs or instructions are stored on the readable storage medium.
  • the program or instructions are executed by a processor, each process of the above-mentioned beam processing method embodiment is implemented, and the same can be achieved. The technical effects will not be repeated here to avoid repetition.
  • the processor is the processor in the communication device described in the above embodiment.
  • the readable storage medium includes computer readable storage media, such as computer read-only memory ROM, random access memory RAM, magnetic disk or optical disk, etc.
  • An embodiment of the present application further provides a chip.
  • the chip includes a processor and a communication interface.
  • the communication interface is coupled to the processor.
  • the processor is used to run programs or instructions to implement the above beam processing method embodiment. Each process can achieve the same technical effect. To avoid duplication, it will not be described again here.
  • chips mentioned in the embodiments of this application may also be called system-on-chip, system-on-a-chip, system-on-chip or system-on-chip, etc.
  • Embodiments of the present application further provide a computer program/program product.
  • the computer program/program product is stored in a storage medium.
  • the computer program/program product is executed by at least one processor to implement the above beam processing method embodiment.
  • Each process can achieve the same technical effect. To avoid repetition, we will not go into details here.
  • An embodiment of the present application also provides a beam processing system, including: a communication device, the communication device
  • the apparatus may be used to perform the steps of the beam processing method as described above.
  • the methods of the above embodiments can be implemented by means of software plus the necessary general hardware platform. Of course, it can also be implemented by hardware, but in many cases the former is better. implementation.
  • the technical solution of the present application can be embodied in the form of a computer software product that is essentially or contributes to the existing technology.
  • the computer software product is stored in a storage medium (such as ROM/RAM, disk , CD), including several instructions to cause a terminal (which can be a mobile phone, computer, server, air conditioner, or network device, etc.) to execute the methods described in various embodiments of this application.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Security & Cryptography (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请公开了一种波束处理方法、装置及设备,属于通信技术领域,本申请实施例的方法包括:第一设备确定第一波束集;其中,归属所述第一波束集的波束的数量与人工智能模型输入的波束质量相关信息对应的波束的数量相关联;所述人工智能模型用于波束相关功能。

Description

波束处理方法、装置及设备
相关申请的交叉引用
本申请主张在2022年3月23日在中国提交的中国专利申请No.202210295967.1的优先权,其全部内容通过引用包含于此。
技术领域
本申请属于通信技术领域,具体涉及一种波束处理方法、装置及设备。
背景技术
人工智能(Artificial Intelligence,AI)目前在各个领域获得了广泛的应用,所以,在通信技术领域也提出了使用AI进行波束预测的方案。其中,为获得较好的性能,AI模型的输入不仅仅是波束质量相关信息,还需要包括其他更多的波束关联信息。
然而,这些波束关联信息在设备间直接传输,会暴露发送端和接收端波束赋形的实现,影响通信的安全。
发明内容
本申请实施例提供一种波束处理方法、装置及设备,能够解决波束关联信息在设备间传输所造成的发送端和接收端波束赋形暴露的问题。
第一方面,提供了一种波束处理方法,该方法包括:
第一设备确定第一波束集;其中,归属所述第一波束集的波束的数量与人工智能模型输入的波束质量相关信息对应的波束的数量相关联;所述人工智能模型用于波束相关功能。
第二方面,提供了一种波束处理的装置,包括:
第一确定模块,用于确定第一波束集;其中,归属所述第一波束集的波束的数量与人工智能模型输入的波束质量相关信息对应的波束的数量相关联;
所述人工智能模型用于波束相关功能。
第三方面,提供了一种通信设备,该通信设备包括处理器和存储器,所述存储器存储可在所述处理器上运行的程序或指令,所述程序或指令被所述处理器执行时实现如第一方面所述的方法的步骤。
第四方面,提供了一种通信设备,包括处理器及通信接口,其中,所述处理器用于确定第一波束集;其中,归属所述第一波束集的波束的数量与人 工智能模型输入的波束质量相关信息对应的波束的数量相关联;
所述人工智能模型用于波束相关功能。
第五方面,提供了一种波束处理系统,包括:通信设备,所述通信设备可用于执行如第一方面所述的波束处理方法的步骤。
第六方面,提供了一种可读存储介质,所述可读存储介质上存储程序或指令,所述程序或指令被处理器执行时实现如第一方面所述的方法的步骤。
第七方面,提供了一种芯片,所述芯片包括处理器和通信接口,所述通信接口和所述处理器耦合,所述处理器用于运行程序或指令,实现如第一方面所述的方法。
第八方面,提供了一种计算机程序/程序产品,所述计算机程序/程序产品被存储在存储介质中,所述计算机程序/程序产品被至少一个处理器执行以实现如第一方面所述的波束处理方法的步骤。
在本申请实施例中,第一设备确定第一波束集,而归属该第一波束集的波束的数量是与AI模型输入的波束质量相关信息对应的波束的数量相关联的,这样,在该第一设备需要使用AI模型进行波束相关功能的情况下,AI模型的输入基于该第一波束集确定波束关联信息,避免了过多信息的暴露,保障了通信的安全性。
附图说明
图1是无线通信系统的框图;
图2是本申请实施例的波束处理方法的流程示意图;
图3是本申请实施例的波束处理装置的模块结构示意图;
图4是本申请实施例的通信设备的结构示意图;
图5是本申请实施例的终端的结构示意图。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚描述,显然,所描述的实施例是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员所获得的所有其他实施例,都属于本申请保护的范围。
本申请的说明书和权利要求书中的术语“第一”、“第二”等是用于区别类似的对象,而不用于描述特定的顺序或先后次序。应该理解这样使用的术语在适当情况下可以互换,以便本申请的实施例能够以除了在这里图示或描述的那些以外的顺序实施,且“第一”、“第二”所区别的对象通常为一类, 并不限定对象的个数,例如第一对象可以是一个,也可以是多个。此外,说明书以及权利要求中“和/或”表示所连接对象的至少其中之一,字符“/”一般表示前后关联对象是一种“或”的关系。
值得指出的是,本申请实施例所描述的技术不限于长期演进型(Long Term Evolution,LTE)/LTE的演进(LTE-Advanced,LTE-A)系统,还可用于其他无线通信系统,诸如码分多址(Code Division Multiple Access,CDMA)、时分多址(Time Division Multiple Access,TDMA)、频分多址(Frequency Division Multiple Access,FDMA)、正交频分多址(Orthogonal Frequency Division Multiple Access,OFDMA)、单载波频分多址(Single-carrier Frequency Division Multiple Access,SC-FDMA)和其他系统。本申请实施例中的术语“系统”和“网络”常被可互换地使用,所描述的技术既可用于以上提及的系统和无线电技术,也可用于其他系统和无线电技术。以下描述出于示例目的描述了新空口(New Radio,NR)系统,并且在以下大部分描述中使用NR术语,但是这些技术也可应用于NR系统应用以外的应用,如第6代(6th Generation,6G)通信系统。
图1示出本申请实施例可应用的一种无线通信系统的框图。无线通信系统包括终端11和网络侧设备12。其中,终端11可以是手机、平板电脑(Tablet Personal Computer)、膝上型电脑(Laptop Computer)或称为笔记本电脑、个人数字助理(Personal Digital Assistant,PDA)、掌上电脑、上网本、超级移动个人计算机(ultra-mobile personal computer,UMPC)、移动上网装置(Mobile Internet Device,MID)、增强现实(augmented reality,AR)/虚拟现实(virtual reality,VR)设备、机器人、可穿戴式设备(Wearable Device)、车载设备(Vehicle User Equipment,VUE)、行人终端(Pedestrian User Equipment,PUE)、智能家居(具有无线通信功能的家居设备,如冰箱、电视、洗衣机或者家具等)、游戏机、个人计算机(personal computer,PC)、柜员机或者自助机等终端侧设备,可穿戴式设备包括:智能手表、智能手环、智能耳机、智能眼镜、智能首饰(智能手镯、智能手链、智能戒指、智能项链、智能脚镯、智能脚链等)、智能腕带、智能服装等。需要说明的是,在本申请实施例并不限定终端11的具体类型。网络侧设备12可以包括接入网设备或核心网设备,其中,接入网设备也可以称为无线接入网设备、无线接入网(Radio Access Network,RAN)、无线接入网功能或无线接入网单元。接入网设备可以包括基站、无线局域网(Wireless Local Area Networks,WLAN)接入点或WiFi节点等,基站可被称为节点B、演进节点B(eNB)、接入点、基收发机站(Base Transceiver Station,BTS)、无线电基站、无线电收发机、基本服务集(Basic Service Set,BSS)、扩展服务集(Extended Service Set,ESS)、家用B节点、家用演进型 B节点、发送接收点(Transmitting Receiving Point,TRP)或所述领域中其他某个合适的术语,只要达到相同的技术效果,所述基站不限于特定技术词汇,需要说明的是,在本申请实施例中仅以NR系统中的基站为例进行介绍,并不限定基站的具体类型。
应该知道的是,在本申请实施例中,波束包括发送波束、接收波束和波束对中的。所以,本申请实施例中的波束集可以是发送波束集、接收波束集、波束对集中的一者或任意组合。
另外,在本申请实施例中,AI模型的输入信息包括以下至少一项:
期望信息;
波束质量相关信息;
第一波束关联信息;
时间相关信息。
可选地,所述期望信息包括以下至少一项:
第二波束关联信息;
预测时间相关信息。
其中,波束质量相关信息是指能表征波束质量的信息,包括但不限于以下至少之一:层1的信噪比(Level 1-Signal to Interference plus Noise Ratio,L1-SINR),层1的参考信号接收功率(L1-RSRP),层1的参考信号接收质量(Level 1-Reference Signal Receiving Quality,L1-RSRQ),层3的信噪比(L3-SINR),层3的参考信号接收功率(L3-RSRP),层3的参考信号接收质量(L3-RSRQ)等。
其中,第一波束关联信息可以包括发送波束关联信息,接收波束关联信息和波束对关联信息中的至少一项。同样的,第二波束关联信息可以包括发送波束关联信息,接收波束关联信息和波束对关联信息中的至少一项。
例如,第一设备接收第二设备发送的第一参考信号,第一波束关联信息包括第二设备发送波束关联信息,第一设备接收波束关联信息,以及第二设备发送波束与第一设备接收波束的波束对关联信息中的至少一者。而第二波束关联信息则包括第一设备期望的第二设备发送波束关联信息,第一设备期望的第一设备接收波束关联信息,以及第一设备期望的第二设备发送波束与第一设备接收波束的波束对关联信息中的至少一者。
需要说明的是,该实施例中,波束关联信息用于表征波束对应的关联信息。可选地,波束关联信息包括以下至少一项:波束标识相关信息,波束角度相关信息,波束增益相关信息。
其中,波束标识相关信息,也是波束身份相关信息,用于表征波束的身份识别的相关信息,包含但不限于以下至少之一:发送波束标识(IDentity, ID),接收波束ID,波束对ID,所述波束对应的参考信号集ID,所述波束对应的参考信号资源ID,唯一标识的随机ID,额外AI模型(或AI网络)处理后的编码值,波束角度相关信息等。
其中,波束角度相关信息用于表征所述波束对应的角度相关信息,包含但不限于以下至少之一:波束对角度相关信息,发送角度相关信息,接收角度相关信息。这里,角度相关信息是用于表征角度的相关信息,例如:角度,弧度,索引编码值,额外AI网络处理后的编码值等。
其中,波束增益相关信息用于表征所述波束和/或天线的增益相关信息,包括但不限于以下至少之一:天线相对增益(单位dBi),等效全向辐射功率波束功率谱(Effective Isotropic Radiated Power,EIRP),波束角度增益,波束角度增益谱(也就是一个波束相对于不同角度上的增益,包括完整的或部分增益谱信息),每个波束角度对应的EIRP,主瓣角度,副瓣角度,副瓣数量,副瓣分布,天线数量,波束扫描水平覆盖范围,波束扫描垂直覆盖范围,3dB宽度,6dB宽度等。
可选地,角度相关信息和波束标识相关信息中至少一项可以是通过二维分量(可以是水平-垂直分量)进行描述,或通过更高维度的分量信息进行描述确定。
下面结合附图,通过一些实施例及其应用场景对本申请实施例提供的一种波束处理方法、装置及设备进行详细地说明。
如图2所示,本申请实施例的一种波束处理方法,包括:
步骤201,第一设备确定第一波束集;其中,归属所述第一波束集的波束的数量与人工智能模型输入的波束质量相关信息对应的波束的数量相关联;
所述人工智能模型用于波束相关功能。
这里,波束相关功能包括波束预测,波束指示,波束恢复,波束训练等。
按照步骤201,第一设备确定第一波束集,而归属该第一波束集的波束的数量是与AI模型输入的波束质量相关信息对应的波束的数量相关联的,这样,在该第一设备需要使用AI模型进行波束相关功能的情况下,AI模型的输入基于该第一波束集确定波束关联信息,避免了过多信息的暴露,保障了通信的安全性。
其中,所述第一波束集的波束用于AI模型的输入信息的获取。
当然,归属该第一波束集的波束,即第一波束集对应的波束,可以是发送波束、接收波束和波束对中的至少一者。
可选地,归属所述第一波束集的波束的数量小于或等于所述人工智能模型输入的波束质量相关信息对应的波束的数量。
也就是,第一波束集对应的波束的数量小于或等于AI模型输入的波束质 量相关信息对应的波束的数量。例如,AI模型输入的波束质量相关信息对应2个波束,则第一波束集对应的波束小于或等于2。
可选地,该实施例中,所述第一设备确定所述第一波束集,包括:
所述第一设备通过与第二设备的交互确定所述第一波束集;
其中,所述交互的方式包括以下至少一项:
发送;上报;指示;配置;请求;预先约定。
这样,第一设备通过与第二设备交互该第一波束集,确定该第一波束集。例如,第二设备发送第一波束集(如波束集1)给第一设备。
其中,第一波束集还可以存在对应的波束关联信息,第一设备确定第一波束集,即能够确定对应的波束关联信息。这里,第一波束集对应的波束关联信息,可以是第一波束集中波束的波束关联信息。
假设,AI模型用于波束训练,需要其输入包含8个波束质量相关信息(如参考信号接收功率(Reference Signal Received Power,RSRP))。若第二设备(如基站)使用8个发送波束,第一设备(如终端)使用1个接收波束,基站可为终端配置第一波束集(用于波束训练的信道状态信息参考信号(Channel-State-Information Reference Signal,CSI-RS)波束集),该第一波束集是包含CSI-RS身份从1-8的CSI-RS对应的8个发送波束。终端基于配置确定第一波束集后,监测的波束关联信息(如波束角度)对应的波束即该1-8身份的CSI-RS对应的波束,获取8个波束角度作为AI模型的输入。此时,1-8身份的CSI-RS对应的8个RSRP也用于AI模型的输入。
若基站使用8个发送波束,终端使用2个接收波束,基站可为终端配置第一波束集,该第一波束集包含CSI-RS身份从1-4的CSI-RS对应的4个发送波束,以及终端使用的2个接收波束。终端基于配置确定第一波束集后,监测的波束角度对应的波束即为1-4身份的CSI-RS的发送波束,获取1-4身份的CSI-RS对应的4个波束角度作为AI模型的输入;或者,监测的波束角度对应的波束即为1-4身份的CSI-RS的发送波束和1-2身份的接收波束,获取1-4身份的CSI-RS在1-2身份的接收波束下对应的8个波束角度用于AI模型的输入。此时1-4身份的CSI-RS在1-2身份的接收波束下对应的8个RSRP用于AI模型的输入。
而当AI模型需要其输入包含16个波束质量相关信息(如RSRP),但是16个RSRP包含两次历史时刻的RSRP,每个时刻对应8个RSRP。若基站使用8个发送波束,终端使用2个接收波束,基站可为终端配置第一波束集,该第一波束集包含CSI-RS身份从1-4的CSI-RS对应4个发送波束,以及终端使用的2个接收波束。终端监测的波束角度对应的波束即为1-4身份的CSI-RS的发送波束,获取1-4身份的CSI-RS对应的4个波束角度作为AI 模型的输入;或者,监测的波束角度对应的波束即为1-4身份的CSI-RS的发送波束和1-2身份的接收波束,获取1-4身份的CSI-RS在1-2身份的接收波束下对应的8个波束角度用于最近时刻的AI模型的输入。此时1-4身份的CSI-RS在1-2身份的接收波束下对应的8个RSRP用于最近时刻的AI模型的输入。
或者,可选地,该实施例中,步骤201之前,还包括:
所述第一设备确定第二波束集;其中,归属所述第二波束集的波束的数量大于或等于所述人工智能模型输入的波束质量相关信息对应的波束的数量;
所述第一设备确定第一波束集,包括:
所述第一设备根据所述第二波束集,确定所述第一波束集。
也就是说,第一设备通过先确定第二波束集,从而基于该第二波束集进一步确定所需的第一波束集。
可选地,所述第一波束集为所述第二波束集的子集或全集;或者,
所述第一波束集中至少有N1个波束包含于所述第二波束集中;其中N1为正整数。
即,第一设备可以从第二波束集中选出该第一波束集,此时第一波束集为所述第二波束集的子集或全集。或者,第一设备仅从第二波束集中选出N1个波束作为第一波束集中的部分波束,而第一波束集还可以包括不属于第二波束集的波束。
可选地,该实施例中,第一设备确定第二波束集,可以如上述确定第一波束集的方式:通过与第二设备的交互来确定。例如,第二设备发送第二波束集(如波束集2)给第一设备,第一设备从该波束集2中选择波束来得到第一波束集(如波束集1)。
假设,AI模型用于波束训练,需要其输入包含8个波束质量相关信息(如RSRP)。若第二设备(基站)使用10个发送波束,第二设备(终端)使用1个接收波束,基站可为终端配置第二波束集(用于波束训练的CSI-RS波束集),该第二波束集是包含CSI-RS身份从1-10CSI-RS对应的10个发送波束。终端基于配置确定第二波束集后,从1-10CSI-RS对应的10个发送波束获得的10个RSRP中选择8个RSRP也用于AI模型的输入。假设,该8个RSRP对应的1-8身份的CSI-RS,则终端基于该8个RSRP对应的CSI-RS的身份信息,监测的波束关联信息(如波束角度)对应的波束即该1-8身份的CSI-RS对应的波束,获取8个波束角度作为AI模型的输入。
可选地,该实施例中,所述第一设备确定第二波束集之前,还包括:
所述第一设备确定第三波束集;其中,归属所述第三波束集的波束的数量大于或等于所述人工智能模型输入的波束质量相关信息对应的波束的数量;
所述第一设备确定第二波束集,包括:
所述第一设备从所述第三波束集中选出所述第二波束集。
也就是说,第一设备通过先确定第三波束集,从而能够从该第三波束集中选出第二波束集,以便后续再根据该第二波束集确定第一波束集。
可选地,所述第一波束集为所述第三波束集的子集或全集;或者,
所述第一波束集中至少有N2个波束包含于所述第三波束集中;其中N2为正整数。
其中,若第二波束集是从第三波束集中选择的,当第一设备从第二波束集中选出该第一波束集时,该第一波束集为第二波束集的子集或全集,也为第三波束集的子集或全集;当第一设备仅从第二波束集中选出N1个波束作为第一波束集中的部分波束,第三波束集中的N2个波束将作为第一波束集中的部分波束,此时N2大于或等于N1。
该实施例中,第一设备还可以直接根据第三波束集确定第一波束集。具体的,第一设备从第三波束集中选出该第一波束集,该第一波束集为第三波束集的子集或全集;或者,第一设备仅从第三波束集中选出N2个波束作为第一波束集中的部分波束,第一波束集还可以包括不属于第三波束集的波束。此时N2与N1的大小无关。
当然,第一设备基于第三波束集确定第二波束集,也可以仅从第三波束集中选出N3(N3为正整数)个波束作为第二波束集中的部分波束,第二波束集中还可以包括不属于第三波束集的波束。当第一设备从第二波束集中选择不属于第三波束集的波束作为第一波束集的波束的情况下,N2也与N1的大小无关。
可选地,该实施例中,第一设备确定第三波束集,可以如上述确定第一波束集的方式:通过与第二设备的交互来确定。例如,第二设备发送第三波束集(如波束集3)给第一设备,第一设备从该波束集3中选择波束来得到第二波束集(如波束集2)。之后,第一设备根据波束集2确定第一波束集(如波束集1)。
可选地,该实施例中,所述第一设备确定第三波束集之前,还包括:
所述第一设备向第二设备发送第四波束集;其中,所述第四波束集用于所述第二设备确定所述第三波束集。
即,第一设备确定第三波束集,可以是在接收第二设备的第四波束集后,基于该第四波束集确定与该第四波束集相关的第三波束集。如,第三波束集为第四波束集的子集或全集;或者,第三波束集中至少有N4(N4为正整数)个波束包含于第四波束集。
可选地,该实施例中,所述第一设备确定所述第一波束集之后,还包括:
所述第一设备向第二设备发送所述第一波束集。
这里,第一设备向第二设备发送的第一波束集,并非是与第二设备交互而确定的第一波束集,以便第二设备也能知道第一波束集。
具体的,第一设备在根据第二波束集确定第一波束集后,将该第一波束集发送给第二设备。例如,第二设备发送波束集2给第一设备,第一设备从该波束集2中选择波束来得到如波束集1后,将波束集1反馈给第二设备;或者,第二设备发送波束集3给第一设备,第一设备从该波束集3中选择波束来得到波束集2,第一设备从该波束集2中选择波束来得到如波束集1后,将波束集1反馈给第二设备。
可选地,该实施例中,所述第一设备确定所述第二波束集之后,还包括:
所述第一设备向第二设备发送所述第二波束集。
这里,第一设备向第二设备发送的第二波束集,并非是与第二设备交互而确定的第二波束集。这样,第二设备能够以该第二波束集为指导,向第一设备发送适用的第一波束集,也就是说,第二设备发送的第一波束集,可以是基于第二波束集确定的。
具体的,第一设备在根据第三波束集确定第二波束集后,将该第二波束集发送给第二设备。例如,第二设备发送波束集3给第一设备,第一设备从该波束集3中选择波束来得到波束集2后,第一设备将波束集2反馈给第二设备,第二设备从该波束集2中选择波束来得到波束集1后,第二设备发送该波束集1给第一设备。
可选地,该实施例中,所述第一设备确定所述第三波束集之后,还包括:
所述第一设备向第二设备发送所述第三波束集。
这里,第一设备向第二设备发送的第三波束集,并非是与第二设备交互而确定的第三波束集。这样,第二设备能够以该第三波束集为指导,向第一设备发送适用的第二波束集,也就是说,第二设备发送的第二波束集,可以是基于第三波束集确定的。
具体的,第一设备在根据第三波束集确定第二波束集后,将该第二波束集发送给第二设备。例如,第二设备发送第四波束集(波束集4)给第一设备,第一设备从该波束集4中选择波束来得到波束集3后,第一设备将波束集3反馈给第二设备,第二设备从该波束集3中选择波束来得到波束集2后,第二设备发送该波束集2给第一设备。第一设备通过接收该波束集2,从该波束集2中选择波束来得到波束集1。
可选地,该实施例中,所述第一波束集包括以下至少一项:
波束的相关信息;
波束起始位置和间隔数量;
预配置的波束组标识。
其中,若该第一波束集包括波束的相关信息,即该第一波束集指示了波束的相关信息,该波束的相关信息可以是波束对标识(ID),发送波束ID,发送波束角度,接收波束ID,接收波束角度,位图(bitmap)等。其中,bitmap是波束ID的指示位图。
其中,波束起始位置可以是第一个波束ID,间隔数量可以是波束ID的间隔值。假设支持10个波束,波束标识为1-10,若第一波束集包括波束起始位置为波束2,间隔数量为3,则表示波束2,波束5和波束8属于第一波束集。
其中,预配置的波束组标识中,每个波束组标识对应一组波束。假设支持波束1-10,将其分为两组,波束组为1-2,且波束组1包括波束1-5,波束组2包括波束6-10,则第一波束集包括波束组1,表示波束1-5属于第一波束集。
当然,该实施例中,第二波束集、第三波束集、第四波束集也可如第一波束集,包括波束的相关信息;波束起始位置和间隔数量;预配置的波束组标识中的一者。
例如,AI模型的输入需要包含8个波束质量信息。基站为终端配置了第二波束集(用于波束训练的CSI-RS波束集合),该第二波束集包含CSI-RS身份从1-32个CSI-RS对应的32个发送波束。终端使用1个接收波束,共接收32个发送波束后,终端确定用于波束预测的AI模型的输入第一波束集包含CSI-RS的身份1、5、9、13、17、21、25、29对应的发送波束(或波束1、5、9、13、17、21、25、29)。其中,第一波束集可直接使用CSI-RS的身份标识(或波束ID)来指示波束;或者,使用32位bitmap来指示波束,如“10001000100010001000100010001000”,“1”表示当前位对应的波束属于第一波束集,“0”表示当前位对应的波束不属于第一波束集;或者,使用波束起始位置为波束1(或CSI-RS的身份1)和间隔数量4,表示从波束1开始每间隔4个波束选择一个。终端可以将第一波束集反馈给基站。
例如,AI模型的输入包含8个波束质量信息。基站为UE侧配置第二波束集(用于波束训练的CSI-RS波束集合),该第二波束集包含CSI-RS身份从1-32个CSI-RS对应的32个发送波束。终端使用2个接收波束,共接收64个发送波束后,终端确定用于波束预测的AI模型的输入第一波束集包含的波束对的身份是(1,1)(5,1)(1,2)(13,1)(13,2)(21,2)(25,2)(29,2),前面对应CSI-RS的身份信息,后面对应终端接收波束ID。其中,第一波束集直接使用波束对的身份信息(1,1)(5,1)(1,2)(13,1)(13,2)(21,2)(25,2)(29,2);或者第一波束集使用CSI-RS身份1 5 1 13 13 21 25 29来指示波束对。
可选地,该实施例中,所述第二波束集中的发送波束均不相同。
可选地,该实施例中,所述第三波束集中的发送波束均不相同。
需要知道的是,该实施例中,第一波束集的确定是用来确定AI模型输入的波束关联信息。故,可选地,步骤201之后,还包括:
所述第一设备根据所述第一波束集,确定所述人工智能模型输入的波束关联信息。
也就是说,第一设备基于该第一波束集的波束,来获取作为AI模型输入的波束关联信息。例如,第一波束集包括波束1和波束2,在AI模型需要输入波束角度的情况下,可获取波束1的波束角度和波束2的波束角度输入AI模型。
其中,第一设备通过与第二设备交互获取作为AI模型输入信息的波束关联信息。例如,第一设备接收第二设备发送的第一波束集对应的波束关联信息,第一设备将该些信息输入AI模型中。这样,第二设备无需发送除第一波束集之外波束的波束关联信息。
可选地,该实施例中,还包括:
所述第一设备确定第五波束集对应的波束关联信息;其中,所述第五波束集包括以下至少之一:第二波束集,第三波束集,第四波束集。
这里,第一设备通过与第二设备交互获取第二波束集,第三波束集,第四波束集中至少一者对应的波束关联信息。
其中,该实施例的一种实现可以是,不交互第二波束集对应的波束关联信息,仅交互第一波束集对应的波束关联信息,该第一波束集是根据该第二波束集确定的;一种实现可以是,不交互第三波束集对应的波束关联信息,仅交互第二波束集对应的波束关联信息,该第二波束集是根据该第三波束集确定的;一种实现可以是,不交互第三波束集和第二波束集对应的波束关联信息,仅交互第一波束集对应的波束关联信息,该第一波束集是根据该第二波束集确定的,该第二波束集是根据该第三波束集确定的。
可选地,该实施例中,所述方法还包括:
所述第一设备向所述第二设备发送所述第二波束集对应的波束关联信息。
这里,第二波束集是第一设备根据第三波束集确定的。故,第一设备向第二设备发送该第二波束集以及该第二波束集对应的波束关联信息。
可选地,该实施例中,所述方法还包括:
所述第一设备向所述第二设备发送所述第三波束集对应的波束关联信息。
这里,第三波束集是第一设备根据第四波束集确定的。故,第一设备向第二设备发送该第三波束集以及该第三波束集对应的波束关联信息。
当然,类似于第一波束集,第二波束集、第三波束集、第四波束集也可 以存在对应的波束关联信息,第一设备确定波束集,即能够确定对应的波束关联信息。而波束集对应的波束关联信息,可以是第一波束集中波束的波束关联信息。
可选地,该实施例中,所述波束关联信息是采用量化编码后的信息表征的;其中,所述量化编码后的信息是基于量化区间获得的。
这里,该量化区间可以通过交互确定。例如,波束关联信息是波束角度时,量化区间配置为10度,则以每10度进行一次量化。
可选地,该实施例中,所述波束关联信息未与同步信号块(Synchronization Signal and PBCH block,SSB)关联的情况下,具有相同标识、且频域位置相同的SSB的准共址(Quasi Co-Location,QCL)信息保持不变。
可选地,该实施例中,所述波束关联信息是基于第一参考信号对应的配置信息确定的;或者
所述波束关联信息是基于与所述第一参考信号准共址的第二参考信号的配置信息确定的。
这里,该第一参考信号可以是上述任一波束集合的波束所对应的参考信号,或者是AI模型输入的波束质量信息对应的参考信号。
波束关联信息基于第一参考信号对应的配置信息确定,即波束关联信息可以直接获取。
例如,第一参考信号为CSI-RS,一个CSI-RS的配置信息中包括该CSI-RS关联的一个SSB索引(index)。波束关联信息是SSB index时,对于一个CSI-RS,对该CSI-RS交互配置信息(一个关联的SSB index),可直接确定波束关联信息。
又如,第一参考信号为SSB,一个SSB的配置信息中包括该SSB关联的一个SSB index。波束关联信息是SSB index时,对于一个SSB,对该SSB交互配置信息(一个关联的SSB index)或使用该SSB的index,可直接确定波束关联信息。
波束关联信息基于与第一参考信号准共址的第二参考信号的配置信息确定,即波束关联信息可以隐式方式间接获取。
可选地,所述第二参考信号包括在所述第一参考信号准共址关系链上的以下至少一个信号:
第一个配置了波束关联信息的参考信号;
最后一个配置了波束关联信息的参考信号;
SSB;
配置了波束关联信息的SSB。
也就是说,第二参考信号可以是在第一参考信号准共址关系链上的第一 个配置波束关联信息的参考信号;可以是第一参考信号准共址关系链上的最后一个配置波束关联信息的参考信号;可以是在第一参考信号准共址关系链上的SSB;可以是在第一参考信号准共址关系链上配置了波束关联信息的SSB。
具体的,通过准共址关系链(QCL chain)对应的上一级参考信号,或通过QCL chain一直找上一级参考信号,直到找到特定特征时停止,所述特定特征即可作为波束关联信息。其中,QCL chain也可替换为QCL type D
例如,波束关联信息是SSB index,对于一个第一参考信号(如CSI-RS),根据CSI-RS配置的QCL关系,找到CSI-RS关联的SSB index即为波束关联信息。
例如,波束关联信息是波束角度时,对于一个CSI-RS,根据CSI-RS配置的QCL关系,找到CSI-RS关联的SSB index,该SSB index关联的波束角度即为该CSI-RS的波束关联信息。
还应该知道的是,该实施例中,第一设备与第二设备进行第一参考信号的收发。第一设备和第二设备可以是网络侧设备,终端以及辅助网络中心单元的各种组合,第二设备为终端,第一设备为网络侧设备;或,第二设备为网络侧设备,第一设备为终端;或,第二设备和第一设备均为网络侧设备;或,第二设备和第一设备均为终端;或,第二设备是辅助网络中心单元,第一设备是网络侧设备等。其中,第一设备和第二设备还可以通过辅助网络中心单元进行交互,其中辅助网络中心单元是用于信息交互的单元。
该实施例中,N1、N2、N3、N4可以通过交互确定。
综上,第一设备确定第一波束集,而归属该第一波束集的波束的数量是与AI模型输入的波束质量相关信息对应的波束的数量相关联的,这样,在该第一设备需要使用AI模型进行波束相关功能的情况下,AI模型的输入基于该第一波束集确定波束关联信息,避免了过多信息的暴露,保障了通信的安全性。
本申请实施例提供的波束处理方法,执行主体可以为波束处理装置。本申请实施例中以波束处理装置执行波束处理方法为例,说明本申请实施例提供的波束处理装置。
如图3所示,本申请实施例的一种波束处理装置300,包括:
第一确定模块310,用于确定第一波束集;其中,归属所述第一波束集的波束的数量与人工智能模型输入的波束质量相关信息对应的波束的数量相关联;
所述人工智能模型用于波束相关功能。
可选地,所述装置还包括:
第二确定模块,用于确定第二波束集;其中,归属所述第二波束集的波束的数量大于或等于所述人工智能模型输入的波束质量相关信息对应的波束的数量;
所述第一确定模块还用于:
根据所述第二波束集,确定所述第一波束集。
可选地,所述第一波束集为所述第二波束集的子集或全集;或者,
所述第一波束集中至少有N1个波束包含于所述第二波束集中;其中N1为正整数。
可选地,所述装置还包括:
第三确定模块,用于确定第三波束集;其中,归属所述第三波束集的波束的数量大于或等于所述人工智能模型输入的波束质量相关信息对应的波束的数量;
所述第二确定模块还用于:
从所述第三波束集中选出所述第二波束集。
可选地,所述第一波束集为所述第三波束集的子集或全集;或者,
所述第一波束集中至少有N2个波束包含于所述第三波束集中;其中N2为正整数。
可选地,所述装置还包括:
第一发送模块,用于向第二设备发送第四波束集;其中,所述第四波束集用于所述第二设备确定所述第三波束集。
可选地,所述装置还包括:
第二发送模块,用于向第二设备发送所述第一波束集。
可选地,所述装置还包括:
第一发送模块,用于向第二设备发送所述第二波束集。
可选地,所述装置还包括:
第二发送模块,用于向第二设备发送所述第三波束集。
可选地,所述第一确定模块还用于:
通过与第二设备的交互确定所述第一波束集;
其中,所述交互的方式包括以下至少一项:
发送;上报;指示;配置;请求;预先约定。
可选地,所述第一波束集包括以下至少一项:
波束的相关信息;
波束起始位置和间隔数量;
预配置的波束组标识。
可选地,所述第二波束集中的发送波束均不相同。
可选地,所述第三波束集中的发送波束均不相同。
可选地,所述装置还包括:
第四确定模块,用于根据所述第一波束集,确定所述人工智能模型输入的波束关联信息。
可选地,所述装置还包括:
第五确定模块,用于确定第五波束集对应的波束关联信息;其中,所述第五波束集包括以下至少之一:第二波束集,第三波束集,第四波束集。
可选地,所述装置还包括:
第三发送模块,用于向所述第二设备发送所述第二波束集对应的波束关联信息。
可选地,所述装置还包括:
第四发送模块,用于向所述第二设备发送所述第三波束集对应的波束关联信息。
可选地,所述波束关联信息是采用量化编码后的信息表征的;其中,所述量化编码后的信息是基于量化区间获得的。
可选地,所述波束关联信息未与同步信号块SSB关联的情况下,具有相同标识、且频域位置相同的SSB的准共址QCL信息保持不变。
可选地,所述波束关联信息是基于第一参考信号对应的配置信息确定的;或者
所述波束关联信息是基于与所述第一参考信号准共址的第二参考信号的配置信息确定的。
可选地,归属所述第一波束集的波束的数量小于或等于所述人工智能模型输入的波束质量相关信息对应的波束的数量。
可选地,所述第二参考信号包括在所述第一参考信号准共址关系链上的以下至少一个信号:
第一个配置了波束关联信息的参考信号;
最后一个配置了波束关联信息的参考信号;
SSB;
配置了波束关联信息的SSB。
该实施例的波束处理装置,确定了第一波束集,而归属该第一波束集的波束的数量是与AI模型输入的波束质量相关信息对应的波束的数量相关联的,这样,在该装置需要使用AI模型进行波束相关功能的情况下,AI模型的输入基于该第一波束集确定波束关联信息,避免了过多信息的暴露,保障了通信的安全性。
本申请实施例中的波束处理装置可以是电子设备,例如具有操作系统的 电子设备,也可以是电子设备中的部件,例如集成电路或芯片。该电子设备可以是终端,也可以为除终端之外的其他设备。示例性的,终端可以包括但不限于上述所列举的终端11的类型,其他设备可以为服务器、网络附属存储器(Network Attached Storage,NAS)等,本申请实施例不作具体限定。
本申请实施例提供的波束处理装置能够实现图2的方法实施例实现的各个过程,并达到相同的技术效果,为避免重复,这里不再赘述。
可选地,如图4所示,本申请实施例还提供一种通信设备400,包括处理器401和存储器402,存储器402上存储有可在所述处理器401上运行的程序或指令,例如,该通信设备400为第一设备时,该程序或指令被处理器401执行时实现上述波束处理方法实施例的各个步骤,且能达到相同的技术效果,为避免重复,这里不再赘述。
本申请实施例还提供一种通信设备,包括处理器和通信接口,所示处理器用于确定第一波束集;其中,归属所述第一波束集的波束的数量与人工智能模型输入的波束质量相关信息对应的波束的数量相关联;
所述人工智能模型用于波束相关功能。
所述通信接口用于在所述处理器的控制下收发数据。
该通信设备实施例与上述第一设备执行的方法实施例对应,上述方法实施例的各个实施过程和实现方式均可适用于该终端实施例中,且能达到相同的技术效果。具体地,图5为实现本申请实施例的通信设备为终端的情况下,终端的硬件结构示意图。
该终端500包括但不限于:射频单元501、网络模块502、音频输出单元503、输入单元504、传感器505、显示单元506、用户输入单元507、接口单元508、存储器509以及处理器510等中的至少部分部件。
本领域技术人员可以理解,终端500还可以包括给各个部件供电的电源(比如电池),电源可以通过电源管理系统与处理器510逻辑相连,从而通过电源管理系统实现管理充电、放电、以及功耗管理等功能。图5中示出的终端结构并不构成对终端的限定,终端可以包括比图示更多或更少的部件,或者组合某些部件,或者不同的部件布置,在此不再赘述。
应理解的是,本申请实施例中,输入单元504可以包括图形处理单元(Graphics Processing Unit,GPU)5041和麦克风5042,图形处理器5041对在视频捕获模式或图像捕获模式中由图像捕获装置(如摄像头)获得的静态图片或视频的图像数据进行处理。显示单元506可包括显示面板5061,可以采用液晶显示器、有机发光二极管等形式来配置显示面板5061。用户输入单元507包括触控面板5071以及其他输入设备5072中的至少一种。触控面板5071,也称为触摸屏。触控面板5071可包括触摸检测装置和触摸控制器两个 部分。其他输入设备5072可以包括但不限于物理键盘、功能键(比如音量控制按键、开关按键等)、轨迹球、鼠标、操作杆,在此不再赘述。
本申请实施例中,射频单元501接收来自网络侧设备的下行数据后,可以传输给处理器510进行处理;另外,射频单元501可以向网络侧设备发送上行数据。通常,射频单元501包括但不限于天线、放大器、收发信机、耦合器、低噪声放大器、双工器等。
存储器509可用于存储软件程序或指令以及各种数据。存储器509可主要包括存储程序或指令的第一存储区和存储数据的第二存储区,其中,第一存储区可存储操作系统、至少一个功能所需的应用程序或指令(比如声音播放功能、图像播放功能等)等。此外,存储器509可以包括易失性存储器或非易失性存储器,或者,存储器509可以包括易失性和非易失性存储器两者。其中,非易失性存储器可以是只读存储器(Read-Only Memory,ROM)、可编程只读存储器(Programmable ROM,PROM)、可擦除可编程只读存储器(Erasable PROM,EPROM)、电可擦除可编程只读存储器(Electrically EPROM,EEPROM)或闪存。易失性存储器可以是随机存取存储器(Random Access Memory,RAM),静态随机存取存储器(Static RAM,SRAM)、动态随机存取存储器(Dynamic RAM,DRAM)、同步动态随机存取存储器(Synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(Double Data Rate SDRAM,DDRSDRAM)、增强型同步动态随机存取存储器(Enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(Synch link DRAM,SLDRAM)和直接内存总线随机存取存储器(Direct Rambus RAM,DRRAM)。本申请实施例中的存储器509包括但不限于这些和任意其它适合类型的存储器。
处理器510可包括一个或多个处理单元;可选地,处理器510集成应用处理器和调制解调处理器,其中,应用处理器主要处理涉及操作系统、用户界面和应用程序等的操作,调制解调处理器主要处理无线通信信号,如基带处理器。可以理解的是,上述调制解调处理器也可以不集成到处理器510中。
其中,处理器510,用于确定第一波束集;其中,归属所述第一波束集的波束的数量与人工智能模型输入的波束质量相关信息对应的波束的数量相关联;
所述人工智能模型用于波束相关功能。
这样,通过确定第一波束集,而归属该第一波束集的波束的数量是与AI模型输入的波束质量相关信息对应的波束的数量相关联的,能够在该第一设备需要使用AI模型进行波束相关功能的情况下,AI模型的输入基于该第一波束集确定波束关联信息,避免了过多信息的暴露,保障了通信的安全性。
可选地,处理器510,还用于确定第二波束集;其中,归属所述第二波 束集的波束的数量大于或等于所述人工智能模型输入的波束质量相关信息对应的波束的数量;
根据所述第二波束集,确定所述第一波束集。
可选地,所述第一波束集为所述第二波束集的子集或全集;或者,
所述第一波束集中至少有N1个波束包含于所述第二波束集中;其中N1为正整数。
可选地,处理器510,还用于确定第三波束集;其中,归属所述第三波束集的波束的数量大于或等于所述人工智能模型输入的波束质量相关信息对应的波束的数量;
从所述第三波束集中选出所述第二波束集。
可选地,所述第一波束集为所述第三波束集的子集或全集;或者,
所述第一波束集中至少有N2个波束包含于所述第三波束集中;其中N2为正整数。
可选地,射频单元501,用于向第二设备发送第四波束集;其中,所述第四波束集用于所述第二设备确定所述第三波束集。
可选地,射频单元501,还用于向第二设备发送所述第一波束集。
可选地,射频单元501,还用于向第二设备发送所述第二波束集。
可选地,射频单元501,还用于向第二设备发送所述第三波束集。
可选地,处理器510,还用于通过与第二设备的交互确定所述第一波束集;
其中,所述交互的方式包括以下至少一项:
发送;上报;指示;配置;请求;预先约定。
可选地,所述第一波束集包括以下至少一项:
波束的相关信息;
波束起始位置和间隔数量;
预配置的波束组标识。
可选地,所述第二波束集中的发送波束均不相同。
可选地,所述第三波束集中的发送波束均不相同。
可选地,处理器510,还用于根据所述第一波束集,确定所述人工智能模型输入的波束关联信息。
可选地,处理器510,还用于确定第五波束集对应的波束关联信息;其中,所述第五波束集包括以下至少之一:第二波束集,第三波束集,第四波束集。
可选地,射频单元501,还用于向所述第二设备发送所述第二波束集对应的波束关联信息。
可选地,射频单元501,还用于向所述第二设备发送所述第三波束集对应的波束关联信息。
可选地,所述波束关联信息是采用量化编码后的信息表征的;其中,所述量化编码后的信息是基于量化区间获得的。
可选地,所述波束关联信息未与同步信号块SSB关联的情况下,具有相同标识、且频域位置相同的SSB的准共址QCL信息保持不变。
可选地,所述波束关联信息是基于第一参考信号对应的配置信息确定的;或者
所述波束关联信息是基于与所述第一参考信号准共址的第二参考信号的配置信息确定的。
可选地,归属所述第一波束集的波束的数量小于或等于所述人工智能模型输入的波束质量相关信息对应的波束的数量。
可选地,所述第二参考信号包括在所述第一参考信号准共址关系链上的以下至少一个信号:
第一个配置了波束关联信息的参考信号;
最后一个配置了波束关联信息的参考信号;
SSB;
配置了波束关联信息的SSB。
本申请实施例还提供一种可读存储介质,所述可读存储介质上存储有程序或指令,该程序或指令被处理器执行时实现上述波束处理方法实施例的各个过程,且能达到相同的技术效果,为避免重复,这里不再赘述。
其中,所述处理器为上述实施例中所述的通信设备中的处理器。所述可读存储介质,包括计算机可读存储介质,如计算机只读存储器ROM、随机存取存储器RAM、磁碟或者光盘等。
本申请实施例另提供了一种芯片,所述芯片包括处理器和通信接口,所述通信接口和所述处理器耦合,所述处理器用于运行程序或指令,实现上述波束处理方法实施例的各个过程,且能达到相同的技术效果,为避免重复,这里不再赘述。
应理解,本申请实施例提到的芯片还可以称为系统级芯片,系统芯片,芯片系统或片上系统芯片等。
本申请实施例另提供了一种计算机程序/程序产品,所述计算机程序/程序产品被存储在存储介质中,所述计算机程序/程序产品被至少一个处理器执行以实现上述波束处理方法实施例的各个过程,且能达到相同的技术效果,为避免重复,这里不再赘述。
本申请实施例还提供了一种波束处理系统,包括:通信设备,所述通信 设备可用于执行如上所述的波束处理方法的步骤。
需要说明的是,在本文中,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者装置不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者装置所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括该要素的过程、方法、物品或者装置中还存在另外的相同要素。此外,需要指出的是,本申请实施方式中的方法和装置的范围不限按示出或讨论的顺序来执行功能,还可包括根据所涉及的功能按基本同时的方式或按相反的顺序来执行功能,例如,可以按不同于所描述的次序来执行所描述的方法,并且还可以添加、省去、或组合各种步骤。另外,参照某些示例所描述的特征可在其他示例中被组合。
通过以上的实施方式的描述,本领域的技术人员可以清楚地了解到上述实施例方法可借助软件加必需的通用硬件平台的方式来实现,当然也可以通过硬件,但很多情况下前者是更佳的实施方式。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分可以以计算机软件产品的形式体现出来,该计算机软件产品存储在一个存储介质(如ROM/RAM、磁碟、光盘)中,包括若干指令用以使得一台终端(可以是手机,计算机,服务器,空调器,或者网络设备等)执行本申请各个实施例所述的方法。
上面结合附图对本申请的实施例进行了描述,但是本申请并不局限于上述的具体实施方式,上述的具体实施方式仅仅是示意性的,而不是限制性的,本领域的普通技术人员在本申请的启示下,在不脱离本申请宗旨和权利要求所保护的范围情况下,还可做出很多形式,均属于本申请的保护之内。

Claims (26)

  1. 一种波束处理方法,包括:
    第一设备确定第一波束集;其中,归属所述第一波束集的波束的数量与人工智能模型输入的波束质量相关信息对应的波束的数量相关联;
    所述人工智能模型用于波束相关功能。
  2. 根据权利要求1所述的方法,其中,所述第一设备确定第一波束集之前,还包括:
    所述第一设备确定第二波束集;其中,归属所述第二波束集的波束的数量大于或等于所述人工智能模型输入的波束质量相关信息对应的波束的数量;
    所述第一设备确定第一波束集,包括:
    所述第一设备根据所述第二波束集,确定所述第一波束集。
  3. 根据权利要求2所述的方法,其中,所述第一波束集为所述第二波束集的子集或全集;或者,
    所述第一波束集中至少有N1个波束包含于所述第二波束集中;其中N1为正整数。
  4. 根据权利要求2所述的方法,其中,所述第一设备确定第二波束集之前,还包括:
    所述第一设备确定第三波束集;其中,归属所述第三波束集的波束的数量大于或等于所述人工智能模型输入的波束质量相关信息对应的波束的数量;
    所述第一设备确定第二波束集,包括:
    所述第一设备从所述第三波束集中选出所述第二波束集。
  5. 根据权利要求4所述的方法,其中,所述第一波束集为所述第三波束集的子集或全集;或者,
    所述第一波束集中至少有N2个波束包含于所述第三波束集中;其中N2为正整数。
  6. 根据权利要求4所述的方法,其中,所述第一设备确定第三波束集之前,还包括:
    所述第一设备向第二设备发送第四波束集;其中,所述第四波束集用于所述第二设备确定所述第三波束集。
  7. 根据权利要求1所述的方法,其中,所述第一设备确定所述第一波束集之后,还包括:
    所述第一设备向第二设备发送所述第一波束集。
  8. 根据权利要求2所述的方法,其中,所述第一设备确定所述第二波束集之后,还包括:
    所述第一设备向第二设备发送所述第二波束集。
  9. 根据权利要求4所述的方法,其中,所述第一设备确定所述第三波束集之后,还包括:
    所述第一设备向第二设备发送所述第三波束集。
  10. 根据权利要求1所述的方法,其中,所述第一设备确定所述第一波束集,包括:
    所述第一设备通过与第二设备的交互确定所述第一波束集;
    其中,所述交互的方式包括以下至少一项:
    发送;上报;指示;配置;请求;预先约定。
  11. 根据权利要求1所述的方法,其中,所述第一波束集包括以下至少一项:
    波束的相关信息;
    波束起始位置和间隔数量;
    预配置的波束组标识。
  12. 根据权利要求2所述的方法,其中,所述第二波束集中的发送波束均不相同。
  13. 根据权利要求4所述的方法,其中,所述第三波束集中的发送波束均不相同。
  14. 根据权利要求1所述的方法,其中,所述第一设备确定所述第一波束集之后,还包括:
    所述第一设备根据所述第一波束集,确定所述人工智能模型输入的波束关联信息。
  15. 根据权利要求1所述的方法,其中,还包括:
    所述第一设备确定第五波束集对应的波束关联信息;其中,所述第五波束集包括以下至少之一:第二波束集,第三波束集,第四波束集。
  16. 根据权利要求8所述的方法,其中,所述方法还包括:
    所述第一设备向所述第二设备发送所述第二波束集对应的波束关联信息。
  17. 根据权利要求9所述的方法,其中,所述方法还包括:
    所述第一设备向所述第二设备发送所述第三波束集对应的波束关联信息。
  18. 根据权利要求14或15所述的方法,其中,所述波束关联信息是采用量化编码后的信息表征的;其中,所述量化编码后的信息是基于量化区间获得的。
  19. 根据权利要求14或15所述的方法,其中,所述波束关联信息未与同步信号块SSB关联的情况下,具有相同标识、且频域位置相同的SSB的准共址QCL信息保持不变。
  20. 根据权利要求14或15所述的方法,其中,所述波束关联信息是基于第一参考信号对应的配置信息确定的;或者
    所述波束关联信息是基于与所述第一参考信号准共址的第二参考信号的配置信息确定的。
  21. 根据权利要求1所述的方法,其中,归属所述第一波束集的波束的数量小于或等于所述人工智能模型输入的波束质量相关信息对应的波束的数量。
  22. 根据权利要求20所述的方法,其中,所述第二参考信号包括在所述第一参考信号准共址关系链上的以下至少一个信号:
    第一个配置了波束关联信息的参考信号;
    最后一个配置了波束关联信息的参考信号;
    SSB;
    配置了波束关联信息的SSB。
  23. 一种波束处理装置,包括:
    第一确定模块,用于确定第一波束集;其中,归属所述第一波束集的波束的数量与人工智能模型输入的波束质量相关信息对应的波束的数量相关联;
    所述人工智能模型用于波束相关功能。
  24. 根据权利要求23所述的装置,其中,还包括:
    第二确定模块,用于确定第二波束集;其中,归属所述第二波束集的波束的数量大于或等于所述人工智能模型输入的波束质量相关信息对应的波束的数量;
    所述第一确定模块还用于:
    根据所述第二波束集,确定所述第一波束集。
  25. 一种通信设备,包括处理器和存储器,所述存储器存储可在所述处理器上运行的程序或指令,其中,所述程序或指令被所述处理器执行时实现如权利要求1至22任一项所述的波束处理方法的步骤。
  26. 一种可读存储介质,所述可读存储介质上存储程序或指令,其中,所述程序或指令被处理器执行时实现如权利要求1-22任一项所述的波束处理方法的步骤。
PCT/CN2023/083044 2022-03-23 2023-03-22 波束处理方法、装置及设备 WO2023179651A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210295967.1A CN116847356A (zh) 2022-03-23 2022-03-23 波束处理方法、装置及设备
CN202210295967.1 2022-03-23

Publications (1)

Publication Number Publication Date
WO2023179651A1 true WO2023179651A1 (zh) 2023-09-28

Family

ID=88100045

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/083044 WO2023179651A1 (zh) 2022-03-23 2023-03-22 波束处理方法、装置及设备

Country Status (2)

Country Link
CN (1) CN116847356A (zh)
WO (1) WO2023179651A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112751595A (zh) * 2019-10-29 2021-05-04 中国移动通信集团山东有限公司 一种波束调整方法、装置、存储介质和源基站
WO2021112592A1 (ko) * 2019-12-03 2021-06-10 엘지전자 주식회사 무선 통신 시스템에서 인공 지능 기반의 빔 관리 방법 및 이에 대한 장치
CN113438002A (zh) * 2021-06-07 2021-09-24 北京邮电大学 基于lstm的模拟波束切换方法、装置、设备及介质
CN113994598A (zh) * 2019-04-17 2022-01-28 诺基亚技术有限公司 无线网络的波束预测

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113994598A (zh) * 2019-04-17 2022-01-28 诺基亚技术有限公司 无线网络的波束预测
CN112751595A (zh) * 2019-10-29 2021-05-04 中国移动通信集团山东有限公司 一种波束调整方法、装置、存储介质和源基站
WO2021112592A1 (ko) * 2019-12-03 2021-06-10 엘지전자 주식회사 무선 통신 시스템에서 인공 지능 기반의 빔 관리 방법 및 이에 대한 장치
CN113438002A (zh) * 2021-06-07 2021-09-24 北京邮电大学 基于lstm的模拟波束切换方法、装置、设备及介质

Also Published As

Publication number Publication date
CN116847356A (zh) 2023-10-03

Similar Documents

Publication Publication Date Title
WO2023179651A1 (zh) 波束处理方法、装置及设备
WO2023284801A1 (zh) Tci状态确定方法、装置、终端及网络侧设备
WO2023179649A1 (zh) 人工智能模型的输入处理方法、装置及设备
WO2023179653A1 (zh) 波束处理方法、装置及设备
WO2023186014A1 (zh) 信号发送方法、信号接收方法及通信设备
WO2023198093A1 (zh) 模型有效性的确定方法、装置及通信设备
WO2024001981A1 (zh) 预编码矩阵的指示方法、终端及网络侧设备
WO2023160571A1 (zh) 干扰或自激处理方法及装置、中继节点及宿主基站
WO2024012303A1 (zh) 一种ai网络模型交互方法、装置和通信设备
WO2024007950A1 (zh) Sl定位方法、设备及可读存储介质
WO2024061111A1 (zh) 资源处理方法、装置及通信设备
WO2024041523A1 (zh) 签名信息传输方法、设备及可读存储介质
WO2023109828A1 (zh) 数据收集方法及装置、第一设备、第二设备
WO2023160547A1 (zh) 信息响应方法、信息发送方法、终端及网络侧设备
US20240137781A1 (en) Spatial relation indication method and device
WO2023221819A1 (zh) 信号发送条件确定方法、ssb周期控制方法、装置、终端和网络侧设备
WO2023241448A1 (zh) 测量处理方法、终端及网络侧设备
WO2023185724A1 (zh) 定位处理方法、装置、终端及网络侧设备
WO2023174253A1 (zh) Ai模型的处理方法及设备
WO2024055906A1 (zh) 条件重配置方法、装置及通信设备
WO2023198125A1 (zh) 副链路发现传输处理方法、装置及终端
WO2023198058A1 (zh) 信息传输方法、装置、终端及网络侧设备
WO2023151650A1 (zh) 信息激活方法、终端及网络侧设备
WO2023193708A1 (zh) 信息上报方法及装置、终端及网络侧设备
WO2024041470A1 (zh) 系统信息消息接收方法、发送方法、终端及网络侧设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23773898

Country of ref document: EP

Kind code of ref document: A1