WO2023186014A1 - 信号发送方法、信号接收方法及通信设备 - Google Patents

信号发送方法、信号接收方法及通信设备 Download PDF

Info

Publication number
WO2023186014A1
WO2023186014A1 PCT/CN2023/085092 CN2023085092W WO2023186014A1 WO 2023186014 A1 WO2023186014 A1 WO 2023186014A1 CN 2023085092 W CN2023085092 W CN 2023085092W WO 2023186014 A1 WO2023186014 A1 WO 2023186014A1
Authority
WO
WIPO (PCT)
Prior art keywords
ssb
target signal
information
related information
signal
Prior art date
Application number
PCT/CN2023/085092
Other languages
English (en)
French (fr)
Inventor
施源
Original Assignee
维沃移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 维沃移动通信有限公司 filed Critical 维沃移动通信有限公司
Publication of WO2023186014A1 publication Critical patent/WO2023186014A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0091Signaling for the administration of the divided path
    • H04L5/0096Indication of changes in allocation
    • H04L5/0098Signalling of the activation or deactivation of component carriers, subcarriers or frequency bands
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/02Arrangements for optimising operational condition

Definitions

  • the present application belongs to the field of communication technology, and specifically relates to a signal sending method, a signal receiving method and communication equipment.
  • each of the synchronization signal block burst set (Synchronization Signal and PBCH block burst set, SSB burst set) is mainly indicated through radio resource signaling (Radio Resource Control, RRC) combined with a bitmap.
  • RRC Radio Resource Control
  • SSB occasion (occasion) whether to send SSB (or enable SSB).
  • RRC signaling can be used to obtain Update the bitmap mapping relationship to solve the problem of unsent or unenabled SSB in the SSB burst set.
  • this method not only has the problem of slow parameter update, but also due to the SSB occasion and System Information Block (SIB) It is related to the content, so if you update the bitmap mapping relationship, you will inevitably need to change the system information, which will have an impact on other users in the community.
  • SIB System Information Block
  • Embodiments of the present application provide a signal sending method, a signal receiving method and a communication device, which can obtain information such as beam quality related information, beam gain related information, etc., while also avoiding updating the bitmap mapping relationship through RRC signaling in related technologies. There is a problem that parameter updates are slow and have an impact on other users in the community.
  • a signal sending method including: a first communication device sending a target signal to a second communication device; wherein the target signal is associated with a first synchronization signal block SSB, and the target signal is used for a target Verification of the AI model and/or prediction of target beam related information, where the first SSB is at least part of the unenabled SSBs in the SSB burst set.
  • a signal receiving method including: a second communication device receiving a target signal sent by a first communication device; wherein the target signal is associated with the first SSB, and the target signal is used for a target AI model Checksum/or prediction of target beam related information, the first SSB is at least part of the unenabled SSB in the SSB burst set burst set.
  • a signal sending device including: a first sending module for sending a target signal to a second communication device; wherein the target signal is associated with the first synchronization signal block SSB, and the target signal
  • the first SSB is at least part of the unenabled SSB in the SSB burst set.
  • a signal receiving apparatus including: a first receiving module, configured to receive a target signal sent by a first communication device; wherein the target signal is associated with the first SSB, and the target signal is used for Verification of the target AI model and/or prediction of target beam related information, where the first SSB is at least part of the unenabled SSBs in the SSB burst set.
  • a communication device in a fifth aspect, includes a processor and a memory.
  • the memory stores programs or instructions that can be run on the processor.
  • the program or instructions are executed by the processor, the following is implemented: The steps of the method described in the first aspect or the second aspect.
  • a sixth aspect provides a communication device, including a processor and a communication interface, wherein the communication interface is coupled to the processor, and the processor is used to run programs or instructions to implement the method as described in the first aspect. steps, or steps to implement the method described in the second aspect.
  • a signal transmission system including: a seismometer communication device and a second communication device.
  • the first communication device can be used to perform the steps of the signal sending method as described in the first aspect.
  • the second communication device The device may be configured to perform the steps of the signal receiving method as described in the second aspect.
  • a readable storage medium is provided. Programs or instructions are stored on the readable storage medium. When the programs or instructions are executed by a processor, the steps of the method described in the first aspect are implemented, or the steps of the method are implemented as described in the first aspect. The steps of the method described in the second aspect.
  • a chip in a ninth aspect, includes a processor and a communication interface.
  • the communication interface is coupled to the processor.
  • the processor is used to run programs or instructions to implement the method described in the first aspect. steps, or steps to implement the method described in the second aspect.
  • a computer program product/program product is provided, the computer program/program product is stored in a storage medium, and the computer program/program product is executed by at least one processor to implement as described in the first aspect
  • the target signal associated with the unenabled SSB in the SSB burst set by sending the target signal associated with the unenabled SSB in the SSB burst set, on the one hand, it is possible to ensure the normal acquisition of beam quality-related information, beam gain-related information and other information, and to ensure the performance of the communication system; on the other hand, On the one hand, it can also avoid the problem in related technologies that the parameter update is slow and affects other users in the cell when the bitmap mapping relationship needs to be updated through RRC signaling.
  • Figure 1 is a schematic structural diagram of a wireless communication system provided by an exemplary embodiment of the present application.
  • Figure 2 is a schematic flowchart of a signal sending method provided by an exemplary embodiment of the present application.
  • Figure 3 is a schematic flowchart of a signal sending method provided by another exemplary embodiment of the present application.
  • Figure 4 is a schematic flowchart of a signal sending method provided by yet another exemplary embodiment of the present application.
  • Figure 5 is a schematic flowchart of a signal receiving method provided by yet another exemplary embodiment of the present application.
  • Figure 6a is a schematic structural diagram of a signal sending device provided by an exemplary embodiment of the present application.
  • Figure 6b is a schematic structural diagram of a signal sending device provided by another exemplary embodiment of the present application.
  • Figure 7a is a schematic structural diagram of a signal receiving device provided by an exemplary embodiment of the present application.
  • Figure 7b is a schematic structural diagram of a signal receiving device provided by another exemplary embodiment of the present application.
  • Figure 8 is a schematic structural diagram of a communication device provided by an exemplary embodiment of the present application.
  • Figure 9 is a schematic structural diagram of a terminal provided by an exemplary embodiment of the present application.
  • Figure 10 is a schematic structural diagram of a network-side device provided by an exemplary embodiment of the present application.
  • first, second, etc. in the description and claims of this application are used to distinguish similar objects and are not used to describe a specific order or sequence. It is to be understood that the terms so used are interchangeable under appropriate circumstances so that the embodiments of the present application can be practiced in sequences other than those illustrated or described herein, and that "first" and “second” are distinguished objects It is usually one type, and the number of objects is not limited.
  • the first object can be one or multiple.
  • “and/or” in the description and claims indicates at least one of the connected objects, and the character “/" generally indicates that the related objects are in an "or” relationship.
  • LTE Long Term Evolution
  • LTE-Advanced, LTE-A Long Term Evolution
  • CDMA Code Division Multiple Access
  • TDMA Time Division Multiple Access
  • FDMA Frequency Division Multiple Access
  • OFDMA Orthogonal Frequency Division Multiple Access
  • SC-FDMA Single-carrier Frequency-Division Multiple Access
  • NR New Radio
  • 6G 6th Generation
  • FIG. 1 shows a block diagram of a wireless communication system to which embodiments of the present application are applicable.
  • the wireless communication system includes a terminal 11 and a network side device 12.
  • the terminal 11 can be a mobile phone, a tablet computer (Tablet Personal Computer), a laptop computer (Laptop Computer), or a notebook computer, a personal digital assistant (Personal Digital Assistant, PDA), a handheld computer, a netbook, or a super mobile personal computer.
  • Tablet Personal Computer Tablet Personal Computer
  • laptop computer laptop computer
  • PDA Personal Digital Assistant
  • PDA Personal Digital Assistant
  • UMPC ultra-mobile personal computer
  • UMPC mobile Internet device
  • MID mobile Internet device
  • augmented reality augmented reality, AR
  • VR virtual reality
  • robots wearable devices
  • Vehicle user equipment VUE
  • pedestrian terminal pedestrian terminal
  • PUE pedestrian terminal
  • smart home home equipment with wireless communication functions, such as refrigerators, TVs, washing machines or furniture, etc.
  • game consoles personal computers (personal computer, PC), teller machine or self-service machine and other terminal-side devices.
  • Wearable devices include: smart watches, smart bracelets, smart headphones, smart glasses, smart jewelry (smart bracelets, smart bracelets, smart rings, smart necklaces, smart anklets) bracelets, smart anklets, etc.), smart wristbands, smart clothing, etc.
  • the network side equipment 12 may include access network equipment or core network equipment, where the access network equipment 12 may also be called wireless access network equipment, radio access network (Radio Access Network, RAN), radio access network function or Wireless access network unit.
  • the access network device 12 may include a base station, a Wireless Local Area Network (WLAN) access point or a Wireless Fidelity (WiFi) node, etc.
  • WLAN Wireless Local Area Network
  • WiFi Wireless Fidelity
  • the base station may be called a Node B, an Evolved Node B (eNB), Access point, Base Transceiver Station (BTS), radio base station, radio transceiver, Basic Service Set (BSS), Extended Service Set (ESS), home B node, home Evolved B node, Transmitting Receiving Point (TRP) or some other suitable term in the field, as long as the same technical effect is achieved, the base station is not limited to specific technical terms. It should be noted that in this article In the application embodiment, the base station in the NR system is only introduced as an example, and the specific type of the base station is not limited. The technical solutions provided by the embodiments of the present application will be described in detail below with reference to the accompanying drawings through some embodiments and their application scenarios.
  • a schematic flowchart of a signal sending method 200 is provided in an exemplary embodiment of the present application.
  • the method may be, but is not limited to, executed by a first communication device. Specifically, it may be executed by hardware and/or installed in the first communication device. or software execution.
  • the method 200 may include at least the following steps.
  • the first communication device sends the target signal to the second communication device.
  • the first communication device and the second communication device may be network-side devices, such as base stations, or may be various combinations of terminals or auxiliary network center units.
  • the first communication device may be a terminal and the second communication device may be a network-side device; or the first communication device may be a network-side device and the second communication device may be a terminal; or the first communication device and the second communication device Both are network-side devices; or the first communication device and the second communication device are both terminals; or the first communication device is an auxiliary network center unit, and the second communication device is a network-side device, etc.; or the first communication device and The second communication device interacts through the auxiliary network center unit, where the auxiliary network center unit is a unit for information interaction.
  • the target signal is associated with the first SSB, and the target signal is used for verification of the target artificial intelligence (Artificial Intelligence, AI) model and/or prediction of target beam related information.
  • the first SSB Is at least part of the SSB burst set that is not enabled.
  • the SSB burst set may be, but is not limited to, configured in the second communication device by the network side, and for the SSBs that are not enabled in the SSB burst set, the first communication device may interact through signaling
  • the method can be determined, for example, through bitmap mapping, explicit indication mode, implicit indication mode, etc.
  • the target signal by associating the target signal with the first SSB, that is, the target signal is associated with at least part of the unenabled SSBs in the SSB burst set, it is possible to generate the target signal based on the SSB burst when needed.
  • SSB that is not enabled in the set can use its association to predict target beam-related information (such as beam quality-related information, beam gain-related information, beam identification-related information, beam angle-related information, etc.) and/or when performing target AI model verification.
  • the relevant information of the target signal replaces (or replaces) the relevant information of the unenabled SSB in the SSB burst set for prediction and/or verification.
  • bitmap mapping relationship is that parameter updates are slow and have an impact on other users in the cell.
  • it can also ensure the reliability and stability of the first AI model obtained by verification, or ensure that the predicted target beam is relevant. Reliability of information.
  • the target signal may include channel state information reference signal (Channel State Information Reference Signal, CSI-RS), sounding reference signal (Sounding Reference Signal, SRS), positioning reference signal ( At least one of Positioning Reference Signal (PRS), Tracking Reference Signal (TRS), Demodulation Reference Signal (DMRS), and SSB.
  • CSI-RS Channel State Information Reference Signal
  • SRS Sounding Reference Signal
  • PRS Positioning Reference Signal
  • TRS Tracking Reference Signal
  • DMRS Demodulation Reference Signal
  • SSB channel state information reference signal
  • the SSB in the SSB burst set is generally located in the first half frame of a wireless frame. Then, when the target signal is an SSB, the target signal can be located in a on the second half of the radio frame.
  • the target AI model may be a first AI model configured in the first communication device, a second AI model configured in a second communication device, or a device other than the first communication device.
  • AI model in other communication devices other than the communication device and the second communication device.
  • the second communication device needs to feed back at least the measured target signal. related information.
  • model verification can also be understood as model verification, adjustment, fine-tuning, updating, etc., which are not limited here, as well as the target AI model, (such as the first AI mentioned later) Model, second AI model)
  • the subsequent second AI model can be a neural network, a decision tree, a support vector machine, a Bayesian classifier, etc., and is not limited here.
  • the first AI model and the subsequent second model may be the same or different, or the target AI model that needs to be verified may be the same as or different from the AI model used when predicting target beam information.
  • the target signal associated with the unenabled SSB in the SSB burst set by sending the target signal associated with the unenabled SSB in the SSB burst set, on the one hand, it is possible to ensure the normal acquisition of beam quality-related information, beam gain-related information and other information, ensuring the performance of the communication system; on the other hand, , and can also avoid the problem in related technologies that the parameter update is slow and affects other users in the cell when the bitmap mapping relationship needs to be updated through RRC signaling.
  • a schematic flow chart of a signal sending method 300 is provided in an exemplary embodiment of the present application.
  • the method may be, but is not limited to, executed by a first communication device. Specifically, it may be executed by hardware and/or installed in the first communication device. or software execution.
  • the method 300 may include at least the following steps.
  • the first communication device sends the target signal to the second communication device.
  • the target signal is associated with the first SSB, and the target signal is used for verification of the target AI model and/or prediction of target beam related information, and the first SSB is an SSB that is not enabled in the SSB burst set at least part of.
  • the first communication device may send the target signal to the second communication device by the The first communication device determines independently or may be triggered by the second communication device. For example, assuming that it is triggered by the second communication device, then the second communication device can send a first request to the first communication device, and the first communication device receives the request sent by the second communication device. In the event of a first request, the target signal is sent to the second communication device.
  • the request may be made directly or indirectly.
  • the direct request may be to directly request the first communication device to send the target signal through signaling interaction;
  • the indirect request may be to feed back corresponding information through signaling, such as verification related information of the target AI model (i.e., characterizing the AI model). performance information) to implicitly request the first communication device to send a target signal.
  • the association method when the target signal is associated with the first SSB can be implemented explicitly or implicitly.
  • the target signal is related to the first SSB
  • the temporal association method may include at least one of the following (11)-(17).
  • the beam information of the target signal is associated with the first SSB.
  • the beam information mentioned in this application can be understood as spatial correlation information, spatial domain transmission filter information, spatial filter information, and transmission configuration indication status ( Transmission Configuration Indicator state, TCI state) information, Quasi co-location (Quasi co-location, QCL) information, QCL parameters, beam association, etc.
  • TCI state Transmission Configuration Indicator state
  • QCL Quasi co-location
  • QCL parameters QCL parameters, beam association, etc.
  • downlink beam information can usually be represented by TCI state information and QCL information
  • uplink beam information can usually be represented by spatial relation information.
  • the target signal is associated with the index of the first SSB.
  • the index of the first SSB is configured in the target signal.
  • the first bitmap may be a newly introduced bitmap dedicated to indicating the association between the target signal and the index of the first SSB.
  • the A communication device can be configured with two additional CSI-RSs, and the first bitmap corresponding to the CSI-RS is 00110000, indicating that the two CSI-RSs are associated with the third and fourth SSBs; alternatively, an additional CSI-RS1 can be configured and CSI-RS2, the first bitmap corresponding to the CSI-RS1 is 10, and the first bitmap corresponding to the CSI-RS2 is 01, indicating that it is associated with the fourth SSB, thus realizing the connection between the target signal and the first An indication of the association of SSB indexes.
  • the length of the first bit image is consistent with the length of the second bit image corresponding to the SSB burst set.
  • the second bitmap corresponds to the SSB burst set and is used to indicate whether each SSB in the SSB burst set is enabled or disabled.
  • the bits in the first bitmap corresponding to the bits indicating enablement in the second bitmap in the SSB burst set should indicate the non-enablement state. For example, if the first bit of the second bitmap in the SSB burst set is 1, it means that the corresponding SSB is enabled, then the first bit of the second bitmap is 0, which means that the corresponding SSB is not enabled.
  • the length of the first bitmap is consistent with the number of disable bits indicated by the second bitmap, that is, the length of the first bitmap is consistent with the number of disable bits indicated in the second bitmap of the SSB burst set.
  • the number of bits i.e. SSB is not enabled
  • the number of "0" bits in the second bitmap of the SSB burst set is consistent with the total number of bits in the first bitmap, where the SSB corresponding to the "0" bit is not enabled.
  • the first indication information is 1-bit information, such as "0" , "1”
  • the first communication device is additionally configured with two CSI-RS (ie, target signals), namely CSI-RS1 and CSI-RS2, CSI-RS1 corresponds to "0", and CSI-RS2 corresponds to "1”
  • the bitmap corresponding to the SSB burst set is 11001111.
  • the target signal may also be directly correlated with the first SSB, such as without any beam information.
  • the target signal may satisfy at least one of the following (21)-(27).
  • the number of target signals is not greater than (or less than/equal to) the number of unenabled SSBs in the SSB burst set. For example, assuming that the number of unenabled SSBs in the SSB burst set is N and the number of target signals is X, then X is less than or equal to N, and X and N are integers greater than or equal to 0.
  • the bandwidth of the target signal is related to the bandwidth of the first SSB; for example, the bandwidth of the target signal is equal to the bandwidth of the first SSB.
  • the bandwidth of the target signal is equal to the smallest bandwidth among the multiple configurable bandwidths.
  • the power control parameters of the target signal are related to the power control parameters of the first SSB. Wherein, the power control parameters are used to adjust the transmission power.
  • the power control parameters of the target signal and the power control parameters of the first SSB may be related to: the power control parameters of the target signal are related to the power control parameters of the first SSB.
  • the power control parameters of an SSB are the same.
  • the beam gain related information of the target signal is consistent with the beam gain related information of the first SSB.
  • the beam gain related information of the target signal is consistent with the beam gain related information of the first SSB as expected by the second communication device.
  • the beam gain related information is used to characterize the gain related information of the beam and/or antenna, including but not limited to at least one of the following: antenna relative gain (unit dBi), full gain Effective Isotropic Radiated Power (EIRP), beam angle gain, beam angle gain spectrum (that is, the gain of a beam relative to different angles, including complete or partial gain spectrum information), each beam angle Corresponding EIRP, main lobe angle, side lobe angle, number of side lobes, side lobe distribution, number of antennas, beam scanning horizontal coverage, beam scanning vertical coverage, 3dB width, 6dB width, etc.
  • antenna relative gain unit dBi
  • EIRP Effective Isotropic Radiated Power
  • beam angle gain beam angle gain spectrum (that is, the gain of a beam relative to different angles, including complete or partial gain spectrum information)
  • each beam angle Corresponding EIRP main lobe angle, side lobe angle, number of side lobes, side lobe distribution, number of antennas, beam scanning horizontal coverage
  • the period of the target signal is greater than or equal to the period of the first SSB.
  • the transmission power of the target signal is related to the transmission power of the first SSB.
  • the transmission power on each resource corresponding to the target signal (such as each resource unit (per Resource element, per RE)) may be consistent with the transmission power on each resource corresponding to the first SSB.
  • the feedback type of the CSI report associated with the target signal may include no feedback (None) or full feedback.
  • the second communication device needs to feed back all the relevant information of the target signal and the relevant information of the SSBs enabled in the SSB burst set. to the first communications device.
  • the feedback information corresponding to the full feedback may include channel state information resource indicator-reference signal received power (CSI-RS Resource Indicator reference signal received power, CRI-RSRP), synchronization signal block-index-reference signal received power At least one of (SSB-Index-RSRP), CRI-Signal-to-Noise and Interference Ratio (SINR), and SSB-Index-SINR. That is, taking the target signal as an example, when the second communication device feeds back the relevant information of the target signal to the first communication device based on the full feedback method, it can feed back the CRI-RSRP and SSB-Index corresponding to the target signal. -At least one of RSRP, CRI-SINR, and SSB-Index-SINR.
  • the first communication device can send SSB periodically, or it can additionally trigger the sending of SSB in the SSB burst set through signaling, that is, when the target signal is aperiodic
  • the first communication device may also trigger the transmission of the second SSB to improve the efficiency of obtaining information (such as beam quality related information, etc.).
  • the first communication device may also send a second request to the second communication device, the second request being used to trigger the second communication device to monitor the target. signal and/or the second SSB.
  • S320 The first communication device receives the first information sent by the second communication device.
  • the first information includes at least one of the related information of the target signal, the related information of the first SSB and the related information of the second SSB, and the second SSB is one of the SSB burst sets. Enable at least part of SSB. It should be noted that, taking the target signal as an example, when there are multiple target signals, in order to save signaling overhead and improve transmission efficiency, the second communication device may only feed back one of the multiple target signals. Information about some target signals. The feedback of the related information of the first SSB and the related information of the second SSB is similar to the target signal and is not limited here.
  • the related information of the target signal may include at least one of beam quality related information, beam identification related information, beam angle related information, and beam gain related information corresponding to the target signal.
  • the beam quality related information mentioned in this application is information characterizing the beam quality, which may include but is not limited to Layer 1 (Layer1, L1)-SINR, L1-RSRP, L1-Reference Signal Receiver Quality (Reference Signal Received Quality (RSRQ), L3-SINR, L3-RSRP, L3-RSRQ, etc.
  • the related information of the first SSB may also include at least one of beam quality related information, beam identification related information, beam angle related information, and beam gain related information corresponding to the first SSB.
  • the related information of the second SSB includes at least one of beam quality related information, beam identification related information, beam angle related information, and beam gain related information corresponding to the second SSB.
  • the first communication device and the second communication device through the feedback of the first information, it is possible to ensure that the first communication device and the second communication device have consistent understanding of the relevant information of the target signal, the relevant information of the second SSB, and the relevant information of the first SSB.
  • the second communication device may feedback based on the full feedback mode the first information.
  • the first communication device may associate the related information of the target signal with the related information of the first SSB in a variety of ways.
  • the index of the related information of the first SSB may be configured in the target signal. in the related information; for another example, a mapping relationship between the related information of the target signal and the related information of the first SSB can be established, which is not limited here. It can be understood that by associating the relevant information of the target signal with the relevant information of the first SSB, the relevant information of the target signal can be used to replace the relevant information of the first SSB to verify the target AI model. and/or prediction of target beam-related information.
  • the first communication device and the second communication device are The information related to the target signal, the related information of the second SSB, and the related information of the first SSB are understood to be consistent.
  • it can also improve the convenience and efficiency of calling the relevant information of the target signal when using the relevant information without SSB enabled.
  • a schematic flow chart of a signal sending method 400 is provided in an exemplary embodiment of the present application.
  • the method 400 can be, but is not limited to, executed by a first communication device. Specifically, it can be performed by hardware installed in the first communication device and /or software execution. In this embodiment, the method 400 may include at least the following steps.
  • the first communication device sends the target signal to the second communication device.
  • the target signal is associated with the first SSB, and the target signal is used for verification of the target AI model and/or prediction of target beam related information, and the first SSB is an SSB that is not enabled in the SSB burst set at least part of.
  • S420 The first communication device receives the first information sent by the second communication device.
  • the first information includes at least one of the related information of the target signal, the related information of the first SSB and the related information of the second SSB, and the second SSB is the SSB At least part of the SSBs enabled in the burst set.
  • S430 Associate the relevant information of the target signal with the relevant information of the first SSB.
  • the first communication device uses the relevant information of the target signal and/or the relevant information of the second SSB associated with the relevant information of the first SSB as input information of the first AI model to predict Obtain relevant information about the target beam.
  • the relevant information of the unenabled SSB i.e., the first SSB
  • the relevant information of the target signal associated with the relevant information of the first SSB can be used as (or replaced, adjusted, etc.) input information to ensure the reliability and stability of the predicted target beam-related information.
  • the relevant information of the target signal and/or the relevant information of the second SSB associated with the relevant information of the first SSB are used as input information of the first AI model.
  • the relevant information of the target signal includes beam quality related information corresponding to the target signal (or the power on each resource corresponding to the target signal is inconsistent with the power on each resource corresponding to the second SSB )
  • the first communication device may adjust the power on each resource corresponding to the target signal according to the first power value.
  • first power value mentioned in this application and the subsequent second power value, third power value, and fourth power value can all be realized by high-level configuration, protocol agreement, etc., such as through signaling " powerControlOffsetSS" indicates that the first communication device or the second communication device can also be used according to the difference between the power on each resource corresponding to the target signal and the power on each resource corresponding to the second SSB.
  • the first power value and the subsequently mentioned second power value, third power value, and fourth power value may be the same or different, and are not limited here.
  • the output of the first AI model is different from the first It is related to the number of beams sent by the communication device (such as the base station), and the number of beams actually sent by the first communication device is less than the number of beams associated with the output of the first AI model, resulting in the first AI model being unable to obtain a complete real label.
  • the first communication device when the first communication device performs target beam related information prediction on the first AI model based on the related information of the target signal and/or the related information of the second SSB, if The first communication device inputs the related information of the target signal and/or the related information of the second SSB into the first AI model, and the predicted target beam related information is associated with the related information of the first SSB.
  • the second information can be used as a target corresponding to the related information of the first SSB associated with the target beam related information. Sign the data to obtain the complete real label.
  • the second information is related to the target signal.
  • the second information may be identification information, name information, beam quality related information, beam gain priority information, etc. of the target signal, which is not limited here.
  • each resource corresponding to the target signal can be configured according to the second power value. Adjust the power on.
  • the input information of the first AI model is the RSRP of the beams corresponding to the SSBs identified as 1, 3, 5, 7, and 9 in the SSB burst set
  • the target beam related information is identified as The RSRP of the beam corresponding to the SSB of 1-32
  • the SSBs identified as 3 and 5 in the SSB burst set are not enabled (that is, their corresponding RSRP cannot be obtained)
  • the target signal includes two SSBs identified as 3 and 5.
  • CSI-RS then the RSRPs of the beams identified as 3 and 5 in the input information need to use the RSRPs of the CSI-RSs identified as 3 and 5.
  • the RSRP of the beam corresponding to the SSB identified as 1-32 in the target beam related information of the first AI model is obtained based on the input information of the first AI model, there is no need to adjust, but Since the tag data associated with the target beam related information is assumed to be the real measurement values of the SSBs identified as 1-32, but since the beams of the SSBs identified as 3 and 5 do not exist, it is necessary to add the two SSBs identified as 3 and 5.
  • CSI-RS is used as tag data for SSBs identified as 3 and 5.
  • the AI model can be configured on the first communication device, that is, the first AI model, or can be directly configured on the second communication device, that is, the second AI model.
  • the second device may also Associating the relevant information of the target signal with the relevant information of the first SSB, and/or the second device, based on the relevant information of the target signal and/or the relevant information of the second SSB, The AI model is verified, and/or the second communication device uses the relevant information of the target signal associated with the relevant information of the first SSB and/or the relevant information of the second SSB as the second AI
  • the input information of the model is used to predict and obtain the target beam-related information.
  • the process of the second communication device verifying the second AI model and/or the process of predicting the target beam-related information is the same as the aforementioned comparison.
  • the process of verifying the first AI model and/or predicting target beam related information is similar and is not limited here.
  • the second communication device performs the power calculation on each resource corresponding to the target signal according to the third power value. Adjustment.
  • the predicted target beam related information is associated with the correlation of the first SSB.
  • the third information is used as tag data corresponding to the related information of the first SSB associated with the target beam related information, and the third information is related to the target signal.
  • the first communication device may: If the relevant information includes beam quality-related information, the power on each resource corresponding to the target signal is adjusted according to the fourth power value.
  • complete information such as beam quality related information, can be obtained together with the SSBs enabled in the SSB burst set while adding less reference signals. wait.
  • a schematic flow chart of a signal receiving method 500 is provided for an exemplary embodiment of the present application.
  • the method 500 can be, but is not limited to, executed by a second communication device. Specifically, it can be performed by hardware installed in the second communication device and /or software execution.
  • the method 500 may include at least the following steps.
  • the second communication device receives the target signal sent by the first communication device.
  • the target signal is associated with the first SSB, and the target signal is used for verification of the target AI model and/or prediction of target beam related information, and the first SSB is an SSB burst set that is not used in the burst set. At least part of the SSB can.
  • the association method when the target signal is associated with the first SSB includes at least one of the following: the beam information of the target signal is associated with the first SSB; the index of the target signal with the first SSB Association; the index of the first SSB is configured in the target signal; associate the first indication information with the index of the first SSB, and the first indication information corresponds to the target signal; through the first bit map
  • the bitmap indicates the association between the target signal and the index of the first SSB; the length of the first bitmap is consistent with the length of the second bitmap corresponding to the SSB burst set; the length of the first bitmap Consistent with the number of unenabled bits indicated by the second bitmap; wherein the second bitmap is used to indicate whether each SSB in the SSB burst set is enabled or disabled.
  • the target signal satisfies at least one of the following: the number of the target signal is not greater than the number of unenabled SSBs in the SSB burst set; the bandwidth of the target signal is equal to the bandwidth of the first SSB Relevant; in the case where the target signal has multiple configurable bandwidths, the bandwidth of the target signal is equal to the minimum bandwidth among the multiple configurable bandwidths; the power control parameter of the target signal is consistent with the first The power control parameters of the SSB are related; the transmission power of the target signal is related to the transmission power of the first SSB; the beam gain related information of the target signal is consistent with the beam gain related information of the first SSB; in the When the target signal is a periodic or semi-persistent reference signal, the period of the target signal is greater than or equal to the period of the first SSB.
  • the bandwidth of the target signal is related to the bandwidth of the first SSB, including: the bandwidth of the target signal is equal to the bandwidth of the first SSB.
  • the transmit power of the target signal is related to the transmit power of the first SSB, including: the transmit power on each resource corresponding to the target signal and the transmit power on each resource corresponding to the first SSB. consistent.
  • the target signal includes at least one of the following: channel state information-reference signal CSI-RS; sounding reference signal SRS; positioning reference signal PRS; tracking reference signal TRS; demodulation reference signal DMRS.
  • the method further includes at least one of the following: the second communication device associates the relevant information of the target signal with the relevant information of the first SSB; the second communication device provides the A communication device sends first information.
  • the first information includes at least one of the related information of the target signal, the related information of the first SSB, and the related information of the second SSB.
  • the second SSB is Is at least part of the SSBs enabled in the SSB burst set.
  • the method further includes: the second communication device associates the related information with the first SSB.
  • the related information of the target signal and/or the related information of the second SSB associated with the related information of one SSB are used as input information of the second AI model to predict and obtain the related information of the target beam.
  • the relevant information of the target signal includes at least one of beam quality related information, beam identification related information, beam angle related information, and beam gain related information corresponding to the target signal; and/or, the third The related information of an SSB includes at least one of beam quality related information, beam identification related information, beam angle related information, and beam gain related information corresponding to the first SSB.
  • the second communication device uses the relevant information of the target signal associated with the relevant information of the first SSB and/or the relevant information of the second SSB as input information of the second AI model.
  • the method also included: in the case where the relevant information of the target signal includes beam quality-related information corresponding to the target signal, performing power on each resource corresponding to the target signal according to a third power value. Adjustment.
  • the method further includes: when the predicted target beam related information is associated with the related information of the first SSB, using the third information as the first SSB associated with the target beam related information.
  • Tag data corresponding to the relevant information, and the third information is related to the target signal.
  • the method further includes: when the related information of the first SSB includes beam quality related In the case of information, the power on each resource corresponding to the target signal is adjusted according to the fourth power value.
  • the fourth power value is the same as the third power value.
  • the method further includes at least one of the following: the second communication device sends a first request to the first communication device; The second communication device receives a second request sent by the first communication device, and the second request is used to trigger the second communication device to monitor the target signal and/or the second SSB.
  • the feedback type of the channel state information CSI report associated with the target signal includes at least one of the following: no feedback None; full feedback, the feedback information corresponding to the full feedback includes channel state information resource indication-reference signal reception At least one of power CRI-RSRP, synchronization signal block-index-reference signal received power SSB-Index-RSRP, CRI-signal-to-interference-noise ratio SINR, and SSB-Index-SINR.
  • the method further includes: when the feedback type of the CSI report associated with the target signal is full feedback and the CSI report is associated with the second SSB, the second communication device feeds back First information.
  • each implementation manner mentioned in the method embodiment 500 has the same or corresponding technical features as the foregoing method embodiments 200-400. Therefore, the implementation process of each implementation manner mentioned in the method embodiment 500 can refer to the foregoing pair. The relevant descriptions of method embodiments 200-400 and achieving the same or corresponding technical effects will not be repeated here to avoid repetition.
  • the execution subject may be a signal sending device.
  • a signal sending device executing the signal sending method 200 is used as an example to describe the signal sending device provided by the embodiment of the present application.
  • the execution subject may be a signal receiving device.
  • a signal sending device executing the signal receiving method 500 is used as an example to illustrate the signal receiving device provided by the embodiment of the present application.
  • FIG. 6a it is a schematic structural diagram of a signal sending device 600 provided by an exemplary embodiment of the present application.
  • the device 600 includes: a first sending module 610, used to send a target signal to a second communication device; wherein, The target signal is associated with the first synchronization signal block SSB, and the target signal is used for verification of the target AI model and/or prediction of target beam related information.
  • the first SSB is not enabled in the SSB burst set At least part of the SSB.
  • the device 600 further includes a first configuration module configured to configure the association between the target signal and the first SSB.
  • the association method when the target signal is associated with the first SSB includes at least one of the following: the beam information of the target signal is associated with the first SSB; the index of the target signal with the first SSB Association; the index of the first SSB is configured in the target signal; associate the first indication information with the index of the first SSB, and the first indication information corresponds to the target signal; through the first bit map
  • the bitmap indicates the association between the target signal and the index of the first SSB; the length of the first bitmap is consistent with the length of the second bitmap corresponding to the SSB burst set; the The length of the first bitmap is consistent with the number of unenabled bits indicated by the second bitmap; wherein the second bitmap is used to indicate whether each SSB in the SSB burst set is enabled or disabled.
  • the target signal satisfies at least one of the following: the number of the target signal is not greater than the number of unenabled SSBs in the SSB burst set; the bandwidth of the target signal is equal to the bandwidth of the first SSB Relevant; in the case where the target signal has multiple configurable bandwidths, the bandwidth of the target signal is equal to the minimum bandwidth among the multiple configurable bandwidths; the power control parameter of the target signal is consistent with the first The power control parameters of the SSB are related; the transmission power of the target signal is related to the transmission power of the first SSB; the beam gain related information of the target signal is consistent with the beam gain related information of the first SSB; in the When the target signal is a periodic or semi-persistent reference signal, the period of the target signal is greater than or equal to the period of the first SSB.
  • the bandwidth of the target signal is related to the bandwidth of the first SSB, including: the bandwidth of the target signal is equal to the bandwidth of the first SSB.
  • the transmit power of the target signal is related to the transmit power of the first SSB, including: the transmit power on each resource corresponding to the target signal and the transmit power on each resource corresponding to the first SSB. consistent.
  • the target signal includes at least one of the following: channel state information-reference signal CSI-RS; sounding reference signal SRS; positioning reference signal PRS; tracking reference signal TRS; demodulation reference signal DMRS.
  • the device 600 also includes: a second receiving module 620.
  • the second receiving module 620 is configured to receive the first information sent by the second communication device, where the first information includes At least one of the relevant information of the target signal, the relevant information of the first SSB and the relevant information of the second SSB, the second SSB is at least one of the SSBs enabled in the SSB burst set.
  • the first processing module 630 is used to associate the relevant information of the target signal with the relevant information of the first SSB.
  • the first processing module 630 is also configured to use the relevant information of the target signal and/or the relevant information of the second SSB associated with the relevant information of the first SSB as a first AI model. input information to predict the target beam related information.
  • the relevant information of the target signal includes at least one of beam quality related information, beam identification related information, beam angle related information, and beam gain related information corresponding to the target signal; and/or, the third The related information of an SSB includes at least one of beam quality related information, beam identification related information, beam angle related information, and beam gain related information corresponding to the first SSB.
  • the first processing module 630 is also configured to, in the case where the relevant information of the target signal includes beam quality-related information corresponding to the target signal, calculate each beam corresponding to the target signal according to the first power value. Adjust the power on each resource.
  • the first processing module 630 is also configured to associate the second information as the target beam related information when the predicted target beam related information is associated with the related information of the first SSB.
  • Tag data corresponding to the related information of the first SSB, and the second information is related to the target signal.
  • the first processing module 630 is also configured to, in the case where the second information includes beam quality-related information corresponding to the target signal, calculate each beam corresponding to the target signal according to the second power value. The power on the resource is adjusted.
  • the second power value is the same as the first power value.
  • the second receiving module 620 is further configured to receive a first request sent by the second communication device, and the first sending module 610 is further configured to send a request to the second communication device according to the first request.
  • Send the target signal; the first sending module 610 is also used to send a second request to the second communication device, the second request is used to trigger the second communication device to monitor the target signal and/or The second SSB.
  • the feedback type of the channel state information CSI report associated with the target signal includes at least one of the following: no feedback None; full feedback, the feedback information corresponding to the full feedback includes channel state information resource indication-reference signal reception At least one of power CRI-RSRP, synchronization signal block-index-reference signal received power SSB-Index-RSRP, CRI-signal-to-interference-noise ratio SINR, and SSB-Index-SINR.
  • the device 700 includes: a first receiving module 710, configured to receive a target signal sent by a first communication device; wherein, The target signal is associated with the first SSB, and the target signal is used for verification of the target AI model and/or prediction of target beam related information, and the first SSB is an SSB that is not enabled in the SSB burst set at least part of.
  • the device 700 also includes a second configuration module for configuring the SSB burst set.
  • the association method when the target signal is associated with the first SSB includes at least one of the following: the beam information of the target signal is associated with the first SSB; the index of the target signal with the first SSB Association; the index of the first SSB is configured in the target signal; associate the first indication information with the index of the first SSB, and the first indication information corresponds to the target signal; through the first bit map
  • the bitmap indicates the association between the target signal and the index of the first SSB; the length of the first bitmap is consistent with the length of the second bitmap corresponding to the SSB burst set; the length of the first bitmap Consistent with the number of unenabled bits indicated by the second bitmap; wherein the second bitmap is used to indicate whether each SSB in the SSB burst set is enabled or disabled.
  • the target signal satisfies at least one of the following: the number of the target signal is not greater than the number of unenabled SSBs in the SSB burst set; the bandwidth of the target signal is equal to the bandwidth of the first SSB Relevant; in the case where the target signal has multiple configurable bandwidths, the target signal The bandwidth of the signal is equal to the minimum bandwidth among multiple configurable bandwidths; the power control parameters of the target signal are related to the power control parameters of the first SSB; the transmission power of the target signal is related to the power control parameters of the first SSB.
  • the transmission power is related; the beam gain related information of the target signal is consistent with the beam gain related information of the first SSB; when the target signal is a periodic or semi-persistent reference signal, the period of the target signal is greater than or Equal to the period of the first SSB.
  • the bandwidth of the target signal is related to the bandwidth of the first SSB, including: the bandwidth of the target signal is equal to the bandwidth of the first SSB.
  • the transmit power of the target signal is related to the transmit power of the first SSB, including: the transmit power on each resource corresponding to the target signal and the transmit power on each resource corresponding to the first SSB. consistent.
  • the target signal includes at least one of the following: channel state information-reference signal CSI-RS; sounding reference signal SRS; positioning reference signal PRS; tracking reference signal TRS; demodulation reference signal DMRS.
  • the device 700 also includes a second processing module 720 and/or a second sending module 730.
  • the second processing module 720 is used to combine the relevant information of the target signal with the The related information of the first SSB is associated;
  • the second sending module 730 is configured to send the first information to the first communication device, the first information includes the related information of the target signal, the first SSB At least one of the related information and the related information of the second SSB, which is at least part of the SSBs enabled in the SSB burst set.
  • the second processing module 720 is also configured to use the relevant information of the target signal associated with the relevant information of the first SSB and/or the relevant information of the second SSB as a second AI model. input information to predict the target beam related information.
  • the relevant information of the target signal includes at least one of beam quality related information, beam identification related information, beam angle related information, and beam gain related information corresponding to the target signal; and/or, the third The related information of an SSB includes at least one of beam quality related information, beam identification related information, beam angle related information, and beam gain related information corresponding to the first SSB.
  • the second processing module 720 is also configured to, in the case where the relevant information of the target signal includes beam quality-related information corresponding to the target signal, calculate each beam corresponding to the target signal according to the third power value. Adjust the power on each resource.
  • the second processing module 720 is also configured to associate third information as the target beam related information when the predicted target beam related information is associated with the related information of the first SSB.
  • Tag data corresponding to the related information of the first SSB, and the third information is related to the target signal.
  • the second processing module 720 is also configured to include: In the case of beam quality related information, the power on each resource corresponding to the target signal is adjusted according to the fourth power value.
  • the fourth power value is the same as the third power value.
  • the first sending module is also used to send a first request to the first communication device; the first receiving module 710 is also used to receive a second request sent by the first communication device.
  • the second request is used to trigger the second communication device to monitor the target signal and/or the second SSB.
  • the feedback type of the channel state information CSI report associated with the target signal includes at least one of the following: no feedback None; full feedback, the feedback information corresponding to the full feedback includes channel state information resource indication-reference signal reception At least one of power CRI-RSRP, synchronization signal block-index-reference signal received power SSB-Index-RSRP, CRI-signal-to-interference-noise ratio SINR, and SSB-Index-SINR.
  • the second sending module 730 is also configured to: when the feedback type of the CSI report associated with the target signal is full feedback and the CSI report is associated with the second SSB, the second sending module 730 is configured to: The second communication device performs the step of sending the first information to the first communication device.
  • the signal sending device 600 and the signal receiving device 700 in the embodiment of the present application may be electronic equipment or network side equipment, such as electronic equipment with an operating system, or may be components in electronic equipment, such as integrated circuits or chips.
  • the electronic device may be a terminal or other devices other than the terminal.
  • the terminal may include, but is not limited to, the type of terminal 11 listed above
  • the network side device may include, but is not limited to, the type of network side device 12 listed above, which is not specifically limited in the embodiment of this application.
  • the signal sending device 600 and the signal receiving device 700 provided by the embodiments of the present application can implement each process implemented by the method embodiments of Figures 2 to 5 and achieve the same technical effect. To avoid duplication, they will not be described again here.
  • this embodiment of the present application also provides a communication device 800, including a processor 801 and a memory 802.
  • the memory 802 stores programs or instructions that can be run on the processor 801, for example,
  • the communication device 800 is a terminal, when the program or instruction is executed by the processor 801, each step in the above signal sending method embodiment and/or signal receiving method embodiment is implemented, and the same technical effect can be achieved.
  • the communication device 800 is a network-side device, when the program or instruction is executed by the processor 801, each step in the above signal sending method embodiment and/or the signal receiving method embodiment is implemented, and the same technical effect can be achieved. In order to avoid Repeat, I won’t go into details here.
  • Embodiments of the present application also provide a terminal, including a processor and a communication interface.
  • the communication interface is coupled to the processor.
  • the processor is used to run programs or instructions to implement the methods described in method embodiments 200-500. Method steps.
  • This terminal embodiment corresponds to the above-mentioned terminal-side method embodiment.
  • Each implementation process and implementation manner of the above-mentioned method embodiment can be applied to this terminal embodiment, and can achieve the same technical effect.
  • Figure 9 is a diagram of a terminal that implements an embodiment of the present application. Hardware structure diagram.
  • the terminal 900 includes but is not limited to: a radio frequency unit 901, a network module 902, an audio output unit 903, an input unit 904, a sensor 905, a display unit 906, a user input unit 907, an interface unit 908, a memory 909, a processor 910, etc. at least some parts of it.
  • the terminal 900 may also include a power supply (such as a battery) that supplies power to various components.
  • the power supply may be logically connected to the processor 910 through a power management system, thereby managing charging, discharging, and power consumption through the power management system. Management and other functions.
  • the terminal structure shown in FIG. 9 does not constitute a limitation on the terminal.
  • the terminal may include more or fewer components than shown in the figure, or may combine certain components, or arrange different components, which will not be described again here.
  • the input unit 904 may include a graphics processing unit (Graphics Processing Unit, GPU) 9041 and a microphone 9042.
  • the GPU 9041 is responsible for the image capture device (such as a camera) in the video capture mode or the image capture mode.
  • the image data obtained from still pictures or videos is processed.
  • the display unit 906 may include a display panel 9061, which may be configured in the form of a liquid crystal display, an organic light emitting diode, or the like.
  • the user input unit 907 includes a touch panel 9071 and at least one of other input devices 9072 .
  • Touch panel 9071 also known as touch screen.
  • the touch panel 9071 may include two parts: a touch detection device and a touch controller.
  • Other input devices 9072 may include but are not limited to physical keyboards, function keys (such as volume control keys, switch keys, etc.), trackballs, mice, and joysticks, which will not be described again here.
  • the radio frequency unit 901 after receiving downlink data from the network side device, can transmit it to the processor 910 for processing; in addition, the radio frequency unit 901 can send uplink data to the network side device.
  • the radio frequency unit 901 includes, but is not limited to, an antenna, an amplifier, a transceiver, a coupler, a low noise amplifier, a duplexer, etc.
  • Memory 909 may be used to store software programs or instructions as well as various data.
  • the memory 909 may mainly include a first storage area for storing programs or instructions and a second storage area for storing data, wherein the first storage area may store an operating system, an application program or instructions required for at least one function (such as a sound playback function, Image playback function, etc.) etc.
  • memory 909 may include volatile memory or nonvolatile memory, or memory 909 may include both volatile and nonvolatile memory.
  • the non-volatile memory can be read-only memory (Read-Only Memory, ROM), programmable read-only memory (Programmable ROM, PROM), erasable programmable read-only memory (Erasable PROM, EPROM), electrically removable memory. Erase programmable read-only memory (Electrically EPROM, EEPROM) or flash memory.
  • Volatile memory can be random access memory (Random Access Memory, RAM), static random access memory (Static RAM, SRAM), dynamic random access memory (Dynamic RAM, DRAM), synchronous dynamic random access memory (Synchronous DRAM, SDRAM), double data rate synchronous dynamic random access memory (Double Data Rate SDRAM, DDRSDRAM), enhanced synchronous dynamic random access memory (Enhanced SDRAM, ESDRAM), synchronous link dynamic random access memory (Synch link DRAM, SLDRAM) and direct memory bus random access memory (Direct Rambus RAM, DRRAM).
  • Memory 909 in embodiments of the present application includes, but is not limited to, these and any other suitable types of memory.
  • the processor 910 may include one or more processing units; optionally, the processor 910 integrates an application processor and a modem processor, where the application processor mainly handles operations related to the operating system, user interface, application programs, etc., Modem processors mainly process wireless communication signals, such as baseband processors. It can be understood that the above modem processor may not be integrated into the processor 910.
  • the radio frequency unit 901 is used to send a target signal to the second communication device; wherein the target signal is associated with the first SSB, and the target signal is used for the checksum of the target AI model/ Or the prediction of target beam related information, the first SSB is at least part of the unenabled SSB in the SSB burst set.
  • the radio frequency unit 901 is used to receive a target signal sent by the first communication device; wherein the target signal is associated with the first SSB, and the target signal is used for the checksum of the target AI model/ Or the prediction of target beam related information, the first SSB is at least part of the unenabled SSB in the SSB burst set burst set.
  • An embodiment of the present application also provides a network-side device, including a processor and a communication interface.
  • the communication interface is coupled to the processor.
  • the processor is used to run programs or instructions.
  • the implementation is as described in Embodiments 200-500. steps of the method.
  • This network-side device embodiment corresponds to the above-mentioned network-side device method embodiment.
  • Each implementation process and implementation manner of the above-mentioned method embodiment can be applied to this network-side device embodiment, and can achieve the same technical effect.
  • the embodiment of the present application also provides a network side device.
  • the network side device 1000 includes: an antenna 1001, a radio frequency device 1002, a baseband device 1003, a processor 1004 and a memory 1005.
  • Antenna 1001 is connected to radio frequency device 1002.
  • the radio frequency device 1002 receives information through the antenna 1001 and sends the received information to the baseband device 1003 for processing.
  • the baseband device 1003 processes the information to be sent and sends it to the radio frequency device 1002.
  • the radio frequency device 1002 processes the received information and sends it out through the antenna 1001.
  • the method performed by the network side device in the above embodiment can be implemented in the baseband device 1003, which includes a baseband processor.
  • the baseband device 1003 may include, for example, at least one baseband board on which multiple chips are provided. As shown in FIG. 10 , one of the chips is, for example, a baseband processor, which communicates with the memory through a bus interface 1005 connection to call the program in the memory 1005 to perform the network device operations shown in the above method embodiment.
  • the network side device may also include a network interface 1006, which is, for example, a common public radio interface (CPRI).
  • a network interface 1006 which is, for example, a common public radio interface (CPRI).
  • CPRI common public radio interface
  • the network side device 1000 in this embodiment of the present invention also includes: instructions or programs stored in the memory 1005 and executable on the processor 1004.
  • the processor 1004 calls the instructions or programs in the memory 1005 to execute Figure 6 or Figure 7
  • the execution methods of each module are shown and achieve the same technical effect. To avoid repetition, they will not be described in detail here.
  • Embodiments of the present application also provide a readable storage medium, with programs or instructions stored on the readable storage medium.
  • the program or instructions are executed by a processor, the above signal sending method embodiments and/or signal receiving method embodiments are implemented. Each process can achieve the same technical effect. To avoid repetition, we will not go into details here.
  • the processor is the processor in the terminal described in the above embodiment.
  • the readable storage medium includes computer readable storage media, such as computer read-only memory ROM, random access memory RAM, magnetic disk or optical disk, etc.
  • An embodiment of the present application further provides a chip.
  • the chip includes a processor and a communication interface.
  • the communication interface is coupled to the processor.
  • the processor is used to run network-side device programs or instructions to implement the above signal sending method.
  • Each process of the embodiment or the signal receiving method embodiment can achieve the same technical effect. To avoid repetition, it will not be described again here.
  • chips mentioned in the embodiments of this application may also be called system-on-chip, system-on-a-chip, system-on-chip or system-on-chip, etc.
  • Embodiments of the present application also provide a computer program product.
  • the computer program product includes a processor, a memory, and a program or instructions stored on the memory and executable on the processor.
  • the program or instructions are used by the processor.
  • the processor When the processor is executed, each process of the above-mentioned signal sending method embodiment or signal receiving method embodiment is implemented, and the same technical effect can be achieved. To avoid repetition, the details will not be described here.
  • An embodiment of the present application also provides a signal transmission system, including: a first communication device and a second communication device.
  • the first communication device can be used to perform the steps of the signal sending method as described above.
  • the second communication device May be used to perform the steps of the signal receiving method as described above.
  • the methods of the above embodiments can be implemented by means of software plus the necessary general hardware platform. Of course, it can also be implemented by hardware, but in many cases the former is better. implementation.
  • the technical solution of the present application can be embodied in the form of a computer software product that is essentially or contributes to the existing technology.
  • the computer software product is stored in a storage medium (such as ROM/RAM, disk , CD), including several instructions to cause a terminal (which can be a mobile phone, computer, server, air conditioner, or network device, etc.) to execute the methods described in various embodiments of this application.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请公开了一种信号发送方法、信号接收方法及通信设备,属于通信技术领域,本申请实施例的信号发送方法包括:第一通信设备向第二通信设备发送目标信号;其中,所述目标信号与第一同步信号块SSB关联,且所述目标信号用于目标AI模型的校验和/或目标波束相关信息的预测,所述第一SSB是SSB突发集burst set中未使能的SSB的至少部分。

Description

信号发送方法、信号接收方法及通信设备
交叉引用
本发明要求在2022年03月31日提交中国专利局、申请号为202210335341.9、发明名称为“信号发送方法、信号接收方法及通信设备”的中国专利申请的优先权,该申请的全部内容通过引用结合在本发明中。
技术领域
本申请属于通信技术领域,具体涉及一种信号发送方法、信号接收方法及通信设备。
背景技术
相关技术中,主要通过无线资源信令(Radio Resource Control,RRC)并结合位图(bitmap)的方式指示同步信号块突发集(Synchronization Signal and PBCH block burst set,SSB burst set)中的每个SSB时机(occasion)是否发送SSB(或使能SSB)。
其中,考虑到对于一些场景,可能需要基于SSB burst set中未使能的SSB获取相关信息,如完整的波束质量相关信息、波束增益相关信息等,对此,相关技术中可通过RRC信令来更新bitmap映射关系,以解决SSB burst set中存在的未发送或未使能的SSB的问题,但该方式不仅存在参数更新慢的问题,还由于SSB occasion与系统信息块(System Information Block,SIB)的内容有关,因此如果更新bitmap映射关系必然需要更改系统信息,从而会对小区内的其他用户造成有影响。
发明内容
本申请实施例提供一种信号发送方法、信号接收方法及通信设备,能够在获取如波束质量相关信息、波束增益相关信息等信息的同时,还能避免相关技术中通过RRC信令更新bitmap映射关系时存在的参数更新慢且对小区内的其他用户造成影响的问题。
第一方面,提供了一种信号发送方法,包括:第一通信设备向第二通信设备发送目标信号;其中,所述目标信号与第一同步信号块SSB关联,且所述目标信号用于目标AI模型的校验和/或目标波束相关信息的预测,所述第一SSB是SSB突发集burst set中未使能的SSB的至少部分。
第二方面,提供了一种信号接收方法,包括:第二通信设备接收第一通信设备发送的目标信号;其中,所述目标信号与第一SSB关联,且所述目标信号用于目标AI模型的校验和/或目标波束相关信息的预测,所述第一SSB是SSB突发集burst set中未使能的SSB的至少部分。
第三方面,提供了一种信号发送装置,包括:第一发送模块,用于向第二通信设备发送目标信号;其中,所述目标信号与第一同步信号块SSB关联,且所述目标信号用于目标AI模型的校验和/或目标波束相关信息的预测,所述第一SSB是SSB突发集burst set中未使能的SSB的至少部分。
第四方面,提供了一种信号接收装置,包括:第一接收模块,用于接收第一通信设备发送的目标信号;其中,所述目标信号与第一SSB关联,且所述目标信号用于目标AI模型的校验和/或目标波束相关信息的预测,所述第一SSB是SSB突发集burst set中未使能的SSB的至少部分。
第五方面,提供了一种通信设备,该终端包括处理器和存储器,所述存储器存储可在所述处理器上运行的程序或指令,所述程序或指令被所述处理器执行时实现如第一方面或第二方面所述的方法的步骤。
第六方面,提供了一种通信设备,包括处理器及通信接口,其中,所述通信接口和所述处理器耦合,所述处理器用于运行程序或指令,实现如第一方面所述的方法的步骤,或实现如第二方面所述的方法的步骤。
第七方面,提供了一种信号传输系统,包括:地动仪通信设备及第二通信设备,所述第一通信设备可用于执行如第一方面所述的信号发送方法的步骤,所述第二通信设备可用于执行如第二方面所述的信号接收方法的步骤。
第八方面,提供了一种可读存储介质,所述可读存储介质上存储程序或指令,所述程序或指令被处理器执行时实现如第一方面所述的方法的步骤,或者实现如第二方面所述的方法的步骤。
第九方面,提供了一种芯片,所述芯片包括处理器和通信接口,所述通信接口和所述处理器耦合,所述处理器用于运行程序或指令,实现如第一方面所述的方法的步骤,或实现如第二方面所述的方法的步骤。
第十方面,提供了一种计算机程序产品/程序产品,所述计算机程序/程序产品被存储在存储介质中,所述计算机程序/程序产品被至少一个处理器执行以实现如第一方面所述的方法的步骤,或实现如第二方面所述的方法的步骤。
在本申请实施例中,通过发送与SSB burst set中未使能的SSB关联的目标信号,一方面,能够确保波束质量相关信息、波束增益相关信息等信息的正常获取,确保通信系统性能;另一方面,还能能够避免相关技术中需要通过RRC信令更新bitmap映射关系时存在的参数更新慢且对小区内的其他用户造成影响的问题。
附图说明
图1是本申请一示例性实施例提供的无线通信系统的结构示意图。
图2是本申请一示例性实施例提供的信号发送方法的流程示意图。
图3是本申请另一示例性实施例提供的信号发送方法的流程示意图。
图4是本申请又一示例性实施例提供的信号发送方法的流程示意图。
图5是本申请又一示例性实施例提供的信号接收方法的流程示意图。
图6a是本申请一示例性实施例提供的信号发送装置的结构示意图。
图6b是本申请另一示例性实施例提供的信号发送装置的结构示意图。
图7a是本申请一示例性实施例提供的信号接收装置的结构示意图。
图7b是本申请另一示例性实施例提供的信号接收装置的结构示意图。
图8是本申请一示例性实施例提供的通信设备的结构示意图。
图9是本申请一示例性实施例提供的终端的结构示意图。
图10是本申请一示例性实施例提供的网络侧设备的结构示意图。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚地描述,显然,所描述的实施例是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员所获得的所有其他实施例,都属于本申请保护的范围。
本申请的说明书和权利要求书中的术语“第一”、“第二”等是用于区别类似的对象,而不用于描述特定的顺序或先后次序。应该理解这样使用的术语在适当情况下可以互换,以便本申请的实施例能够以除了在这里图示或描述的那些以外的顺序实施,且“第一”、“第二”所区别的对象通常为一类,并不限定对象的个数,例如第一对象可以是一个,也可以是多个。此外,说明书以及权利要求中“和/或”表示所连接对象的至少其中之一,字符“/”一般表示前后关联对象是一种“或”的关系。
值得指出的是,本申请实施例所描述的技术不限于长期演进型(Long Term Evolution,LTE)/LTE的演进(LTE-Advanced,LTE-A)系统,还可用于其他无线通信系统,诸如码分多址(Code Division Multiple Access,CDMA)、时分多址(Time Division Multiple Access,TDMA)、频分多址(Frequency Division Multiple Access,FDMA)、正交频分多址(Orthogonal Frequency Division Multiple Access,OFDMA)、单载波频分多址(Single-carrier Frequency-Division Multiple Access,SC-FDMA)和其他系统。本申请实施例 中的术语“系统”和“网络”常被可互换地使用,所描述的技术既可用于以上提及的系统和无线电技术,也可用于其他系统和无线电技术。以下描述出于示例目的描述了新空口(New Radio,NR)系统,并且在以下大部分描述中使用NR术语,但是这些技术也可应用于NR系统应用以外的应用,如第6代(6th Generation,6G)通信系统。
图1示出本申请实施例可应用的一种无线通信系统的框图。无线通信系统包括终端11和网络侧设备12。其中,终端11可以是手机、平板电脑(Tablet Personal Computer)、膝上型电脑(Laptop Computer)或称为笔记本电脑、个人数字助理(Personal Digital Assistant,PDA)、掌上电脑、上网本、超级移动个人计算机(ultra-mobile personal computer,UMPC)、移动上网装置(Mobile Internet Device,MID)、增强现实(augmented reality,AR)/虚拟现实(virtual reality,VR)设备、机器人、可穿戴式设备(Wearable Device)、车载设备(Vehicle User Equipment,VUE)、行人终端(Pedestrian User Equipment,PUE)、智能家居(具有无线通信功能的家居设备,如冰箱、电视、洗衣机或者家具等)、游戏机、个人计算机(personal computer,PC)、柜员机或者自助机等终端侧设备,可穿戴式设备包括:智能手表、智能手环、智能耳机、智能眼镜、智能首饰(智能手镯、智能手链、智能戒指、智能项链、智能脚镯、智能脚链等)、智能腕带、智能服装等。需要说明的是,在本申请实施例并不限定终端11的具体类型。网络侧设备12可以包括接入网设备或核心网设备,其中,接入网设备12也可以称为无线接入网设备、无线接入网(Radio Access Network,RAN)、无线接入网功能或无线接入网单元。接入网设备12可以包括基站、无线局域网(Wireless Local Area Network,WLAN)接入点或无线保真(Wireless Fidelity,WiFi)节点等,基站可被称为节点B、演进节点B(eNB)、接入点、基收发机站(Base Transceiver Station,BTS)、无线电基站、无线电收发机、基本服务集(Basic Service Set,BSS)、扩展服务集(Extended Service Set,ESS)、家用B节点、家用演进型B节点、发送接收点(Transmitting Receiving Point,TRP)或所述领域中其他某个合适的术语,只要达到相同的技术效果,所述基站不限于特定技术词汇,需要说明的是,在本申请实施例中仅以NR系统中的基站为例进行介绍,并不限定基站的具体类型。下面结合附图,通过一些实施例及其应用场景对本申请实施例提供的技术方案进行详细地说明。
如图2所示,为本申请一示例性实施例提供的信号发送方法200的流程示意图,该方法可以但不限于由第一通信设备执行,具体可由安装于第一通信设备中的硬件和/或软件执行。本实施例中,所述方法200至少可以包括如下步骤。
S210,第一通信设备向第二通信设备发送目标信号。
其中,所述第一通信设备、所述第二通信设备可以是网络侧设备,如基站等,也可以是终端或辅助网络中心单元的各种组合。例如,所述第一通信设备可以为终端、第二通信设备为网络侧设备;或者,第一通信设备为网络侧设备,第二通信设备为终端;或者,第一通信设备和第二通信设备均为网络侧设备;或者,第一通信设备和第二通信设备均为终端;或者,第一通信设备为辅助网络中心单元,第二通信设备为网络侧设备等;或者,第一通信设备和第二通信设备通过辅助网络中心单元进行交互,其中辅助网络中心单元是用于信息交互的单元。
本实施例中,所述目标信号与第一SSB关联,且所述目标信号用于目标人工智能(Artificial Intelligence,AI)模型的校验和/或目标波束相关信息的预测,所述第一SSB是SSB burst set中未使能的SSB的至少部分。其中,所述SSB burst set可以是但不限于由网络侧配置在所述第二通信设备中,且对于所述SSB burst set中未使能的SSB,所述第一通信设备可以通过信令交互方式确定,例如,可以通过bitmap映射、显示指示方式、隐式指示方式等。
可以理解的是,本实施例中通过将所述目标信号与第一SSB关联,即所述目标信号与SSB burst set中未使能的SSB中的至少部分关联,能够在需要基于所述SSB burst set中未使能的SSB预测目标波束相关信息(如波束质量相关信息、波束增益相关信息、波束标识相关信息、波束角度相关信息等)和/或进行目标AI模型校验时,可利用与其关联的目标信号的相关信息代替(或替换)所述SSB burst set中未使能的SSB的相关信息进行预测和/或校验,由此,一方面,能够避免相关技术中需要通过RRC信令更新bitmap映射关系时存在的参数更新慢且对小区内的其他用户造成影响的问题,另一方面,还能确保校验得到的第一AI模型可靠性和稳定性,或者确保预测得到的目标波束相关信息的可靠性。
基于此,作为一种可能的实现方式,所述目标信号可以包括信道状态信息-参考信号(Channel State Information Reference Signal,CSI-RS)、探测参考信号(Sounding Reference Signal,SRS)、定位参考信号(Positioning Reference Signal,PRS)、跟踪参考信号(Tracking Reference Signal,TRS)、解调参考信号(Demodulation Reference Signal,DMRS)、SSB中的至少一项。需要注意,考虑到在进行信号发送时,所述SSB burst set中的SSB一般位于一个无线帧的第一个半帧上,那么,当所述目标信号是SSB时,所述目标信号可位于一个无线帧的第二个半帧上。
所述目标AI模型可以是配置在所述第一通信设备中的第一AI模型,也可以是配置在第二通信设备中的第二AI模型,还可以是配置在除所述第一通 信设备和所述第二通信设备之外的其他通信设备中的AI模型,当然,对于除所述第二通信设备之外的其他设备,第二通信设备需要至少反馈测量到的所述目标信号的相关信息。可以理解,本申请中提及的模型“校验”也可以理解为模型验证、调整、微调、更新等,在此不做限制,以及所述目标AI模型,(如后续提及的第一AI模型、第二AI模型)后续的第二AI模型可以为神经网络、决策树、支持向量机、贝叶斯分类器等,在此不做限制。当然,所述第一AI模型与后续的第二模型可以相同或不同,或者,需要校验的目标AI模型与进行目标波束信息预测时的AI模型可以相同或不同。
本实施例中,通过发送与SSB burst set中未使能的SSB关联的目标信号,一方面,能够确保波束质量相关信息、波束增益相关信息等信息的正常获取,确保通信系统性能;另一方面,还能能够避免相关技术中需要通过RRC信令更新bitmap映射关系时存在的参数更新慢且对小区内的其他用户造成影响的问题。
如图3所示,为本申请一示例性实施例提供的信号发送方法300的流程示意图,该方法可以但不限于由第一通信设备执行,具体可由安装于第一通信设备中的硬件和/或软件执行。本实施例中,所述方法300至少可以包括如下步骤。
S310,第一通信设备向第二通信设备发送目标信号。
其中,所述目标信号与第一SSB关联,且所述目标信号用于目标AI模型的校验和/或目标波束相关信息的预测,所述第一SSB是SSB burst set中未使能的SSB的至少部分。
可以理解,S310的实现过程除了可参照方法实施例200中的相关描述之外,作为一种可能的实现方式,所述第一通信设备向所述第二通信设备发送目标信号可以是由所述第一通信设备自主确定,也可以由所述第二通信设备触发。例如,假设是由所述第二通信设备触发,那么,所述第二通信设备可以向所述第一通信设备发送第一请求,所述第一通信设备在接收到所述第二通信设备发送的第一请求的情况下,向所述第二通信设备发送所述目标信号。
可选的,所述第二通信设备通过第一请求请求所述第一通信设备发送所述目标信号时,可以直接请求也可以间接请求。例如,所述直接请求可以是通过信令交互方式直接请求第一通信设备发送目标信号;所述间接请求可以是通过信令方式反馈相应信息,如目标AI模型的验证相关信息(即表征AI模型性能的信息),以隐式请求所述第一通信设备发送目标信号。
当然,无论所述第一通信设备基于何种触发方式向所述第二通信设备发送所述目标信号,所述目标信号与第一SSB关联时的关联方式可以通过显式或隐式等方式实现。例如,在一种实现方式中,所述目标信号与第一SSB关 联时的关联方式可以包括以下(11)-(17)中至少一项。
(11)所述目标信号的波束信息与所述第一SSB关联。
值得注意的是,本申请中提及的波束信息可以理解为空间相关(spatial relation)信息、空域传输滤波器(spatial domain transmission filter)信息、空间滤波器(spatial filter)信息、传输配置指示状态(Transmission Configuration Indicator state,TCI state)信息、准共址(Quasi co-location,QCL)信息、QCL参数、波束关联关系等。其中,对于下行波束信息通常可使用TCI state信息、QCL信息表示,而上行波束信息通常可使用spatial relation信息表示。
(12)所述目标信号与所述第一SSB的索引(index)关联。
(13)所述目标信号内配置有所述第一SSB的索引。
(14)通过第一bitmap指示所述目标信号与所述第一SSB的索引的关联关系。
可选的,所述第一bitmap可以是新引入的、且专用于指示所述目标信号与所述第一SSB的索引的关联关系的bitmap。
示例性的,假设所述目标信号为CSI-RS,所述SSB burst set中共有8个SSB,其中使能了6个SSB,即所述SSB burst set对应的bitmap为11001111,那么,所述第一通信设备可以额外配置两个CSI-RS,且CSI-RS对应的第一bitmap为00110000,表示关联两个CSI-RS到第三和第四个SSB;或者,也可以额外配置一个CSI-RS1和CSI-RS2,该CSI-RS1对应的第一bitmap为10,该CSI-RS2对应的第一bitmap为01,表示关联到第四个SSB,由此,实现所述目标信号与所述第一SSB的索引的关联关系的指示。
(15)所述第一位图的长度与所述SSB burst set对应的第二位图的长度一致。其中,所述第二位图与所述SSB burst set对应、且用于指示所述SSB burst set中的各SSB使能或未使能。
一种实现方式中,所述SSB burst set内的第二bitmap中指示使能的比特位对应的所述第一bitmap的比特位应指示非使能状态。例如,所述SSB burst set内的第二bitmap的第一位为1,表示对应的SSB使能,那所述第二bitmap对应的第一位为0,表示对应的SSB非使能。
(16)所述第一位图的长度与第二位图所指示的未使能比特的数量一致,即所述第一bitmap的长度与所述SSB burst set的第二bitmap内指示不使能比特(即未使能SSB)的数量保持一致。例如,所述SSB burst set的第二bitmap中“0”比特的个数与所述第一位图中的总比特一致,其中,“0”比特对应的SSB未使能。
(17)将第一指示信息与所述第一SSB的索引关联,所述第一指示信息与所述目标信号对应,例如,假设所述第一指示信息为1比特的信息,如“0”、 “1”,所述第一通信设备额外配置两个CSI-RS(即目标信号),即CSI-RS1、CSI-RS2,CSI-RS1对应“0”,CSI-RS2对应“1”,所述SSB burst set中共有8个SSB,其中使能了6个SSB,即所述SSB burst set对应的bitmap为11001111,那么,将“0”与第三个SSB的索引关联,即第三个SSB与CSI-RS1关联,“1”与第四个SSB的索引关联,即第四个SSB与CSI-RS2关联,
当然,除了前述(11)-(17)中所述的关联方式之外,在一种实现方式中,所述目标信号也可以与所述第一SSB直接关联,如不关联任何波束信息等。
此外,在另一种实现方式中,所述目标信号可以满足以下(21)-(27)中的至少一项。
(21)所述目标信号的数量不大于(或小于/等于)所述SSB burst set中未使能的SSB的数量。例如,假设所述SSB burst set中未使能的SSB的数量为N,所述目标信号的数量X,那么,X小于或等于N,X、N为大于等于0的整数。
(22)所述目标信号的带宽与所述第一SSB的带宽相关;例如,所述目标信号的带宽等于所述第一SSB的带宽。
(23)在所述目标信号的可配置带宽为多个的情况下,所述目标信号的带宽等于多个所述可配置带宽中的最小带宽。
(24)所述目标信号的功控参数与所述第一SSB的功控参数相关。其中,所述功控参数用于调整发送功率,本实施例中,所述目标信号的功控参数与所述第一SSB的功控参数相关可以是:所述目标信号的功控参数与第一SSB的功控参数一致。
(25)所述目标信号的波束增益相关信息与所述第一SSB的波束增益相关信息一致。
可以理解,所述目标信号的波束增益相关信息与所述第一SSB的波束增益相关信息一致可以理解为是所述第二通信设备所期望的。
值得注意的是,在本实施例中,所述波束增益相关信息用于表征所述波束和/或天线的增益相关信息,包括但不限于以下至少之一:天线相对增益(单位dBi)、全向辐射功率波束功率谱(Effective Isotropic Radiated Power,EIRP)、波束角度增益、波束角度增益谱(也就是一个波束相对于不同角度上的增益,包括完整的或部分增益谱信息)、每个波束角度对应的EIRP、主瓣角度、副瓣角度、副瓣数量、副瓣分布、天线数量、波束扫描水平覆盖范围、波束扫描垂直覆盖范围、3dB宽度、6dB宽度等。
(26)在所述目标信号为周期或半持续参考信号的情况下,所述目标信号的周期大于或等于所述第一SSB的周期。
(27)所述目标信号的发送功率与所述第一SSB的发送功率相关。其中,所述目标信号对应的每个资源(如每个资源单元(per Resource element,per RE))上的发送功率与第一SSB对应的每个资源上的发送功率可以一致。
在此情况下,作为一种实现方式,与所述目标信号关联的CSI报告的反馈类型可以包括无反馈(None)或全反馈。其中,在所述目标信号关联的CSI报告的反馈类型为全反馈时,所述第二通信设备需要将所述目标信号的相关信息以及所述SSB burst set中使能的SSB的相关信息全部反馈给所述第一通信设备。
可选的,所述全反馈对应的反馈信息可以包括信道状态信息资源指示-参考信号接收功率(CSI-RS Resource Indicator reference signal received power,CRI-RSRP)、同步信号块-索引-参考信号接收功率(SSB-Index-RSRP)、CRI-信干噪比(Signal-to-Noise and Interference Ratio,SINR)、SSB-Index-SINR中至少一项。即以目标信号为例,所述第二通信设备在基于全反馈方式向所述第一通信设备反馈所述目标信号的相关信息时,可以反馈所述目标信号对应的CRI-RSRP、SSB-Index-RSRP、CRI-SINR、SSB-Index-SINR中至少一项。
当然,考虑到配置了所述SSB burst set后,所述第一通信设备可以周期性发送SSB,也可以通过信令额外触发SSB burst set中的SSB的发送,即在所述目标信号是非周期的情况下,所述第一通信设备在触发目标信号发送的同时,也可以触发第二SSB的发送,以提高信息(如波束质量相关信息等)获取效率。对此,作为一种可能的实现方式中,所述第一通信设备还可以向所述第二通信设备发送第二请求,所述第二请求用于触发所述第二通信设备监测所述目标信号和/或所述第二SSB。
S320,所述第一通信设备接收第二通信设备发送的第一信息。
其中,所述第一信息中包括所述目标信号的相关信息、所述第一SSB的相关信息以及第二SSB的相关信息中的至少一项,所述第二SSB是所述SSB burst set中使能的SSB的至少部分。需要注意,以所述目标信号为例,在所述目标信号为多个的情况下,为节省信令开销,提高传输效率,所述第二通信设备可以仅反馈多个所述目标信号中的部分目标信号的相关信息。所述第一SSB的相关信息、所述第二SSB的相关信息的反馈,与所述目标信号类似,在此不做限制。
可选的,所述目标信号的相关信息可以包括所述目标信号对应的波束质量相关信息、波束标识相关信息、波束角度相关信息、波束增益相关信息中的至少一项。其中,本申请中提及的所述波束质量相关信息是表征波束质量的信息,其可以包括但不限于层1(Layer1,L1)-SINR、L1-RSRP、L1-参考信号接收质量(Reference Signal Received Quality,RSRQ)、L3-SINR、 L3-RSRP、L3-RSRQ等。
对应的,所述第一SSB的相关信息也可以包括第一SSB对应的波束质量相关信息、波束标识相关信息、波束角度相关信息、波束增益相关信息中的至少一项。所述第二SSB的相关信息包括第二SSB对应的波束质量相关信息、波束标识相关信息、波束角度相关信息、波束增益相关信息中的至少一项。
本实施例中,通过第一信息的反馈,能够确保第一通信设备与第二通信设备对所述目标信号的相关信息、第二SSB的相关信息、第一SSB的相关信息的理解一致性。
值得注意的是,在与所述目标信号关联的CSI报告的反馈类型为全反馈、且所述CSI报告与所述第二SSB关联的情况下,所述第二通信设备可以基于全反馈方式反馈所述第一信息。
S330,将所述目标信号的相关信息与所述第一SSB的相关信息进行关联。
其中,所述第一通信设备对所述目标信号的相关信息与第一SSB的相关信息进行关联方式可以有多种,如可以将所述第一SSB的相关信息的索引配置在所述目标信号的相关信息中;又如,可以建立所述目标信号的相关信息与第一SSB的相关信息之间的映射关系等,在此不做限制。可以理解,通过将所述目标信号的相关信息与所述第一SSB的相关信息进行关联,能够利用该所述目标信号的相关信息代替所述第一SSB的相关信息进行目标AI模型的校验和/或目标波束相关信息的预测。
本实施例中,通过第一信息的反馈,以及所述目标信号的相关信息与所述第一SSB的相关信息的关联,一方面,能够确保所述第一通信设备与第二通信设备对所述目标信号的相关信息、第二SSB的相关信息、第一SSB的相关信息的理解一致性。另一方面,还能够提高在使用未使能SSB的相关信息时对目标信号的相关信息调用时的便捷性、高效性。
如图4所示,为本申请一示例性实施例提供的信号发送方法400的流程示意图,该方法400可以但不限于由第一通信设备执行,具体可由安装于第一通信设备中的硬件和/或软件执行。本实施例中,所述方法400至少可以包括如下步骤。
S410,第一通信设备向第二通信设备发送目标信号。
其中,所述目标信号与第一SSB关联,且所述目标信号用于目标AI模型的校验和/或目标波束相关信息的预测,所述第一SSB是SSB burst set中未使能的SSB的至少部分。
S420,所述第一通信设备接收第二通信设备发送的第一信息。
其中,所述第一信息中包括所述目标信号的相关信息、所述第一SSB的相关信息以及第二SSB的相关信息中的至少一项,所述第二SSB是所述SSB 突发集burst set中使能的SSB的至少部分。
S430,将所述目标信号的相关信息与所述第一SSB的相关信息进行关联。
可以理解,S410-S430的实现过程可参照方法实施例200-300中的相关描述,为避免重复,在此不再赘述。
S440,所述第一通信设备将与所述第一SSB的相关信息关联的所述目标信号的相关信息和/或所述第二SSB的相关信息,作为第一AI模型的输入信息,以预测得到所述目标波束相关信息。
可以理解,对于需要利用所述SSB burst set中的SSB进行目标波束相关信息预测的场景,如果第一AI模型的输入信息中包括SSB burst set中未使能的SSB(即第一SSB)的相关信息,由于无法获取到未使能的SSB(即第一SSB)的相关信息,因此,可利用与所述第一SSB的相关信息关联的目标信号的相关信息作为(或替换、调整等)输入信息,以确保预测得到的目标波束相关信息的可靠性和稳定性。
基于此,在一种实现方式中,在将与所述第一SSB的相关信息关联的所述目标信号的相关信息和/或所述第二SSB的相关信息,作为第一AI模型的输入信息之前,如果所述目标信号的相关信息包括所述目标信号对应的波束质量相关信息(或所述目标信号对应的每个资源上的功率与所述第二SSB对应的每个资源上的功率不一致),那么,所述第一通信设备可以按照第一功率值对所述目标信号对应的每个资源上的功率进行调整。
值得注意的是,本申请中提及的所述第一功率值以及后续的第二功率值、第三功率值、第四功率值均可以由高层配置、协议约定等实现,如通过信令“powerControlOffsetSS”指示,也可以由所述第一通信设备或第二通信设备根据所述目标信号对应的每个资源上的功率与所述第二SSB对应的每个资源上的功率之间的差值确定。此外,所述第一功率值以及后续提及的第二功率值、第三功率值、第四功率值可以相同或不同,在此不做限制。
可选的,考虑到相关技术中在基于所述SSB burst set对第一AI模型进行目标波束相关信息预测时,需要获得完整的真实标签(label),但由于第一AI模型的输出与第一通信设备(如基站)发送的波束数量有关,且所述第一通信设备实际发送的波束数量小于第一AI模型输出所关联的波束数量,导致第一AI模型无法获得完整的真实label。对此,在本实施例中,所述第一通信设备在根据所述目标信号的相关信息和/或所述第二SSB的相关信息,对第一AI模型进行目标波束相关信息预测时,如果所述第一通信设备将所述目标信号的相关信息和/或所述第二SSB的相关信息输入所述第一AI模型,预测得到的目标波束相关信息关联所述第一SSB的相关信息的情况下,那么,可将第二信息作为所述目标波束相关信息关联的第一SSB的相关信息对应的标 签数据,以获得完整的真实label。其中,所述第二信息与所述目标信号相关,如所述第二信息可以所述目标信号的标识信息、名称信息、波束质量相关信息、波束增益先关信息等,在此不做限制。
一种实现方式中,所述第一通信设备在将第二信息作为所述目标波束相关信息关联的第一SSB的相关信息对应的标签数据之前,如果所述第二信息包括所述目标信号对应的波束质量相关信息(或目标信号对应的每个资源上的功率与所述第二SSB对应的每个资源上的功率不一致),可按照第二功率值对所述目标信号对应的每个资源上的功率进行调整。
在此情况下,假设所述第一AI模型的输入信息是所述SSB burst set中标识为1、3、5、7、9的SSB对应的波束的RSRP,所述目标波束相关信息是标识为1-32的SSB对应的波束的RSRP,但所述SSB burst set中标识为3、5的SSB未使能(即其对应的RSRP无法获得),所述目标信号包括标识为3、5的两个CSI-RS,那么,输入信息中的标识为3、5的波束的RSRP需要使用标识为3、5的CSI-RS的RSRP。
基于此,由于所述第一AI模型的目标波束相关信息中的标识为1-32的SSB对应的波束的RSRP,其是根据所述第一AI模型的输入信息得到的,因为无需调整,但是由于目标波束相关信息所关联的标签数据假设也是标识为1-32的SSB的真实测量值,但由于标识为3、5的SSB的波束并不存在,因此需要将标识为3、5的两个CSI-RS作为标识为3、5的SSB的标签数据。
值得注意的是,在本实施例中,考虑到AI模型可以配置在第一通信设备,即第一AI模型,也可以直接配置在所述第二通信设备,即第二AI模型。那么在本实施例中,除了所述第二通信设备将所述第一信息发送给所述第一设备进行AI模型的校验和目标波束相关信息的预测之外,所述第二设备也可以将所述目标信号的相关信息与所述第一SSB的相关信息进行关联,和/或,所述第二设备根据所述目标信号的相关信息和/或所述第二SSB的相关信息,对AI模型进行校验,和/或,所述第二通信设备将与所述第一SSB的相关信息关联的所述目标信号的相关信息和/或所述第二SSB的相关信息作为第二AI模型的输入信息,以预测得到所述目标波束相关信息,当然,关于所述第二通信设备对第二AI模型进行校验的过程和/或对目标波束相关信息进行预测的过程与前述的对第一AI模型进行校验的过程和/或对目标波束相关信息进行预测的过程类似,在此不做限制。
例如,所述第二通信设备在所述目标信号的相关信息包括所述目标信号对应的波束质量相关信息的情况下,按照第三功率值对所述目标信号对应的每个资源上的功率进行调整。
又例如,在预测得到的所述目标波束相关信息关联所述第一SSB的相关 信息的情况下,将第三信息作为所述目标波束相关信息关联的第一SSB的相关信息对应的标签数据,所述第三信息与所述目标信号相关。
其中,作为一种实现方式,所述第一通信设备在将第三信息作为所述目标波束相关信息关联的第一SSB的相关信息对应的标签数据的步骤之前,可在所述第一SSB的相关信息包括波束质量相关信息的情况下,按照第四功率值对所述目标信号对应的每个资源上的功率进行调整。
本实施例中,通过与第一SSB关联的目标信号的发送,能够在增加较少的参考信号的情况下,结合SSB burst set中使能的SSB,共同获得完整的信息,如波束质量相关信息等。
如图5所示,为本申请一示例性实施例提供的信号接收方法500的流程示意图,该方法500可以但不限于由第二通信设备执行,具体可由安装于第二通信设备中的硬件和/或软件执行。本实施例中,所述方法500至少可以包括如下步骤。
S510,第二通信设备接收第一通信设备发送的目标信号。
其中,所述目标信号与第一SSB关联,且所述目标信号用于目标AI模型的校验和/或目标波束相关信息的预测,所述第一SSB是SSB突发集burst set中未使能的SSB的至少部分。
可选的,所述目标信号与第一SSB关联时的关联方式包括以下至少一项:所述目标信号的波束信息与所述第一SSB关联;所述目标信号与所述第一SSB的索引关联;所述目标信号内配置有所述第一SSB的索引;将第一指示信息与所述第一SSB的索引关联,所述第一指示信息与所述目标信号对应;通过第一位图bitmap指示所述目标信号与所述第一SSB的索引的关联关系;所述第一位图的长度与所述SSB burst set对应的第二位图的长度一致;所述第一位图的长度与第二位图所指示的未使能比特的数量一致;其中,所述第二位图用于指示所述SSB burst set中每个SSB使能或未使能。
可选的,所述目标信号满足以下至少一项:所述目标信号的数量不大于所述SSB burst set中未使能的SSB的数量;所述目标信号的带宽与所述第一SSB的带宽相关;在所述目标信号的可配置带宽为多个的情况下,所述目标信号的带宽等于多个所述可配置带宽中的最小带宽;所述目标信号的功控参数与所述第一SSB的功控参数相关;所述目标信号的发送功率与所述第一SSB的发送功率相关;所述目标信号的波束增益相关信息与所述第一SSB的波束增益相关信息一致;在所述目标信号为周期或半持续参考信号的情况下,所述目标信号的周期大于或等于所述第一SSB的周期。
可选的,所述目标信号的带宽与所述第一SSB的带宽相关,包括:所述目标信号的带宽等于所述第一SSB的带宽。
可选的,所述目标信号的发送功率与所述第一SSB的发送功率相关,包括:所述目标信号对应的每个资源上的发送功率与第一SSB对应的每个资源上的发送功率一致。
可选的,所述目标信号包括以下至少一项:信道状态信息-参考信号CSI-RS;探测参考信号SRS;定位参考信号PRS;跟踪参考信号TRS;解调参考信号DMRS。
可选的,所述方法还包括以下至少一项:所述第二通信设备将所述目标信号的相关信息与所述第一SSB的相关信息进行关联;所述第二通信设备向所述第一通信设备发送第一信息,所述第一信息中包括所述目标信号的相关信息、所述第一SSB的相关信息、第二SSB的相关信息中的至少一项,所述第二SSB是是所述SSB burst set中使能的SSB中的至少部分。
可选的,所述第二通信设备将所述目标信号的相关信息与所述第一SSB的相关信息进行关联的步骤之后,所述方法还包括:所述第二通信设备将与所述第一SSB的相关信息关联的所述目标信号的相关信息和/或所述第二SSB的相关信息作为第二AI模型的输入信息,以预测得到所述目标波束相关信息。
可选的,所述目标信号的相关信息包括所述目标信号对应的波束质量相关信息、波束标识相关信息、波束角度相关信息、波束增益相关信息中的至少一项;和/或,所述第一SSB的相关信息至少包括所述第一SSB对应的波束质量相关信息、波束标识相关信息、波束角度相关信息、波束增益相关信息中的至少一项。
可选的,所述第二通信设备将与所述第一SSB的相关信息关联的所述目标信号的相关信息和/或所述第二SSB的相关信息作为第二AI模型的输入信息的步骤之前,所述方法还包括:在所述目标信号的相关信息包括所述目标信号对应的波束质量相关信息的情况下,按照第三功率值对所述目标信号对应的每个资源上的功率进行调整。
可选的,所述方法还包括:在预测得到的所述目标波束相关信息关联所述第一SSB的相关信息的情况下,将第三信息作为所述目标波束相关信息关联的第一SSB的相关信息对应的标签数据,所述第三信息与所述目标信号相关。
可选的,将第三信息作为所述目标波束相关信息关联的第一SSB的相关信息对应的标签数据的步骤之前,所述方法还包括:在所述第一SSB的相关信息包括波束质量相关信息的情况下,按照第四功率值对所述目标信号对应的每个资源上的功率进行调整。
可选的,所述第四功率值与所述第三功率值相同。
可选的,第二通信设备接收第一通信设备发送的目标信号的步骤之前,所述方法还包括以下至少一项:所述第二通信设备向所述第一通信设备发送第一请求;所述第二通信设备接收所述第一通信设备发送的第二请求,所述第二请求用于触发所述第二通信设备监测所述目标信号和/或所述第二SSB。
可选的,与所述目标信号关联的信道状态信息CSI报告的反馈类型包括以下至少一项:无反馈None;全反馈,所述全反馈对应的反馈信息包括信道状态信息资源指示-参考信号接收功率CRI-RSRP、同步信号块-索引-参考信号接收功率SSB-Index-RSRP、CRI-信干噪比SINR、SSB-Index-SINR中至少一项。
可选的,所述方法还包括:在与所述目标信号关联的CSI报告的反馈类型为全反馈、且所述CSI报告与所述第二SSB关联的情况下,所述第二通信设备反馈第一信息。
可以理解,方法实施例500中提及的各实现方式与前述方法实施例200-400具有相同或相应的技术特征,因此,方法实施例500中提及的各实现方式的实现过程可参照前述对方法实施例200-400的相关描述,并达到相同或相应的技术效果,为避免重复,在此不再赘述。
本申请实施例提供的信号发送方法200-400,执行主体可以为信号发送装置。本申请实施例中以信号发送装置执行信号发送方法200为例,说明本申请实施例提供的信号发送装置。
对应的,本申请实施例提供的信号接收方法500,执行主体可以为信号接收装置。本申请实施例中以信号发送装置执行信号接收方法500为例,说明本申请实施例提供的信号接收装置。
如图6a所示,为本申请一示例性实施例提供的信号发送装置600的结构示意图,该装置600包括:第一发送模块610,用于向第二通信设备发送目标信号;其中,所述目标信号与第一同步信号块SSB关联,且所述目标信号用于目标AI模型的校验和/或目标波束相关信息的预测,所述第一SSB是SSB突发集burst set中未使能的SSB的至少部分。
可选的,所述装置600还包括第一配置模块,用于配置所述目标信号与所述第一SSB的关联关系。
可选的,所述目标信号与第一SSB关联时的关联方式包括以下至少一项:所述目标信号的波束信息与所述第一SSB关联;所述目标信号与所述第一SSB的索引关联;所述目标信号内配置有所述第一SSB的索引;将第一指示信息与所述第一SSB的索引关联,所述第一指示信息与所述目标信号对应;通过第一位图bitmap指示所述目标信号与所述第一SSB的索引的关联关系;所述第一位图的长度与所述SSB burst set对应的第二位图的长度一致;所述 第一位图的长度与第二位图所指示的未使能比特的数量一致;其中,所述第二位图用于指示所述SSB burst set中的各SSB使能或未使能。
可选的,所述目标信号满足以下至少一项:所述目标信号的数量不大于所述SSB burst set中未使能的SSB的数量;所述目标信号的带宽与所述第一SSB的带宽相关;在所述目标信号的可配置带宽为多个的情况下,所述目标信号的带宽等于多个所述可配置带宽中的最小带宽;所述目标信号的功控参数与所述第一SSB的功控参数相关;所述目标信号的发送功率与所述第一SSB的发送功率相关;所述目标信号的波束增益相关信息与所述第一SSB的波束增益相关信息一致;在所述目标信号为周期或半持续参考信号的情况下,所述目标信号的周期大于或等于所述第一SSB的周期。
可选的,所述目标信号的带宽与所述第一SSB的带宽相关,包括:所述目标信号的带宽等于所述第一SSB的带宽。
可选的,所述目标信号的发送功率与所述第一SSB的发送功率相关,包括:所述目标信号对应的每个资源上的发送功率与第一SSB对应的每个资源上的发送功率一致。
可选的,所述目标信号包括以下至少一项:信道状态信息-参考信号CSI-RS;探测参考信号SRS;定位参考信号PRS;跟踪参考信号TRS;解调参考信号DMRS。
可选的,请结合参阅图6b,所述装置600还包括:第二接收模块620,所述第二接收模块620用于接收第二通信设备发送的第一信息,所述第一信息中包括所述目标信号的相关信息、所述第一SSB的相关信息以及第二SSB的相关信息中的至少一项,所述第二SSB是所述SSB突发集burst set中使能的SSB的至少部分;第一处理模块630,用于将所述目标信号的相关信息与所述第一SSB的相关信息进行关联。
可选的,所述第一处理模块630还用于将与所述第一SSB的相关信息关联的所述目标信号的相关信息和/或所述第二SSB的相关信息,作为第一AI模型的输入信息,以预测得到所述目标波束相关信息。
可选的,所述目标信号的相关信息包括所述目标信号对应的波束质量相关信息、波束标识相关信息、波束角度相关信息、波束增益相关信息中的至少一项;和/或,所述第一SSB的相关信息包括第一SSB对应的波束质量相关信息、波束标识相关信息、波束角度相关信息、波束增益相关信息中的至少一项。
可选的,所述第一处理模块630还用于在所述目标信号的相关信息包括所述目标信号对应的波束质量相关信息的情况下,按照第一功率值对所述目标信号对应的每个资源上的功率进行调整。
可选的,所述第一处理模块630还用于在预测得到的所述目标波束相关信息关联所述第一SSB的相关信息的情况下,将第二信息作为所述目标波束相关信息关联的第一SSB的相关信息对应的标签数据,所述第二信息与所述目标信号相关。
可选的,所述第一处理模块630,还用于在所述第二信息包括所述目标信号对应的波束质量相关信息的情况下,按照第二功率值对所述目标信号对应的每个资源上的功率进行调整。
可选的,所述第二功率值与所述第一功率值相同。
可选的,所述第二接收模块620还用于接收所述第二通信设备发送的第一请求,所述第一发送模块610还用于根据所述第一请求向所述第二通信设备发送所述目标信号;所述第一发送模块610还用于向所述第二通信设备发送第二请求,所述第二请求用于触发所述第二通信设备监测所述目标信号和/或所述第二SSB。
可选的,与所述目标信号关联的信道状态信息CSI报告的反馈类型包括以下至少一项:无反馈None;全反馈,所述全反馈对应的反馈信息包括信道状态信息资源指示-参考信号接收功率CRI-RSRP、同步信号块-索引-参考信号接收功率SSB-Index-RSRP、CRI-信干噪比SINR、SSB-Index-SINR中至少一项。
如图7a所示,为本申请一示例性实施例提供的信号发送装置700的结构示意图,该装置700包括:第一接收模块710,用于接收第一通信设备发送的目标信号;其中,所述目标信号与第一SSB关联,且所述目标信号用于目标AI模型的校验和/或目标波束相关信息的预测,所述第一SSB是SSB突发集burst set中未使能的SSB的至少部分。
可选的,所述装置700还包括第二配置模块,用于配置SSB burst set。
可选的,所述目标信号与第一SSB关联时的关联方式包括以下至少一项:所述目标信号的波束信息与所述第一SSB关联;所述目标信号与所述第一SSB的索引关联;所述目标信号内配置有所述第一SSB的索引;将第一指示信息与所述第一SSB的索引关联,所述第一指示信息与所述目标信号对应;通过第一位图bitmap指示所述目标信号与所述第一SSB的索引的关联关系;所述第一位图的长度与所述SSB burst set对应的第二位图的长度一致;所述第一位图的长度与第二位图所指示的未使能比特的数量一致;其中,所述第二位图用于指示所述SSB burst set中每个SSB使能或未使能。
可选的,所述目标信号满足以下至少一项:所述目标信号的数量不大于所述SSB burst set中未使能的SSB的数量;所述目标信号的带宽与所述第一SSB的带宽相关;在所述目标信号的可配置带宽为多个的情况下,所述目标 信号的带宽等于多个所述可配置带宽中的最小带宽;所述目标信号的功控参数与所述第一SSB的功控参数相关;所述目标信号的发送功率与所述第一SSB的发送功率相关;所述目标信号的波束增益相关信息与所述第一SSB的波束增益相关信息一致;在所述目标信号为周期或半持续参考信号的情况下,所述目标信号的周期大于或等于所述第一SSB的周期。
可选的,所述目标信号的带宽与所述第一SSB的带宽相关,包括:所述目标信号的带宽等于所述第一SSB的带宽。
可选的,所述目标信号的发送功率与所述第一SSB的发送功率相关,包括:所述目标信号对应的每个资源上的发送功率与第一SSB对应的每个资源上的发送功率一致。
可选的,所述目标信号包括以下至少一项:信道状态信息-参考信号CSI-RS;探测参考信号SRS;定位参考信号PRS;跟踪参考信号TRS;解调参考信号DMRS。
可选的,请结合参阅图7b,所述装置700还包括第二处理模块720和/或第二发送模块730,所述第二处理模块720用于将所述目标信号的相关信息与所述第一SSB的相关信息进行关联;所述第二发送模块730用于向所述第一通信设备发送第一信息,所述第一信息中包括所述目标信号的相关信息、所述第一SSB的相关信息、第二SSB的相关信息中的至少一项,所述第二SSB是是所述SSB burst set中使能的SSB中的至少部分。
可选的,所述第二处理模块720还用于备将与所述第一SSB的相关信息关联的所述目标信号的相关信息和/或所述第二SSB的相关信息作为第二AI模型的输入信息,以预测得到所述目标波束相关信息。
可选的,所述目标信号的相关信息包括所述目标信号对应的波束质量相关信息、波束标识相关信息、波束角度相关信息、波束增益相关信息中的至少一项;和/或,所述第一SSB的相关信息至少包括所述第一SSB对应的波束质量相关信息、波束标识相关信息、波束角度相关信息、波束增益相关信息中的至少一项。
可选的,所述第二处理模块720还用于在所述目标信号的相关信息包括所述目标信号对应的波束质量相关信息的情况下,按照第三功率值对所述目标信号对应的每个资源上的功率进行调整。
可选的,所述第二处理模块720还用于在预测得到的所述目标波束相关信息关联所述第一SSB的相关信息的情况下,将第三信息作为所述目标波束相关信息关联的第一SSB的相关信息对应的标签数据,所述第三信息与所述目标信号相关。
可选的,所述第二处理模块720还用于在所述第一SSB的相关信息包括 波束质量相关信息的情况下,按照第四功率值对所述目标信号对应的每个资源上的功率进行调整。
可选的,所述第四功率值与所述第三功率值相同。
可选的,所述第一发送模块还用于向所述第一通信设备发送第一请求;所述第一接收模块710还用于接收所述第一通信设备发送的第二请求,所述第二请求用于触发所述第二通信设备监测所述目标信号和/或所述第二SSB。
可选的,与所述目标信号关联的信道状态信息CSI报告的反馈类型包括以下至少一项:无反馈None;全反馈,所述全反馈对应的反馈信息包括信道状态信息资源指示-参考信号接收功率CRI-RSRP、同步信号块-索引-参考信号接收功率SSB-Index-RSRP、CRI-信干噪比SINR、SSB-Index-SINR中至少一项。
可选的,所述第二发送模块730还用于在与所述目标信号关联的CSI报告的反馈类型为全反馈、且所述CSI报告与所述第二SSB关联的情况下,所述第二通信设备执行所述向所述第一通信设备发送第一信息的步骤。
本申请实施例中的信号发送装置600、信号接收装置700可以是电子设备或网络侧设备,例如具有操作系统的电子设备,也可以是电子设备中的部件,例如集成电路或芯片。该电子设备可以是终端,也可以为除终端之外的其他设备。示例性的,终端可以包括但不限于上述所列举的终端11的类型,所述网络侧设备可以包括但不限于上述所列举的网络侧设备12的类型,本申请实施例不作具体限定。
本申请实施例提供的信号发送装置600、信号接收装置700能够实现图2至图5的方法实施例实现的各个过程,并达到相同的技术效果,为避免重复,这里不再赘述。
可选的,如图8所示,本申请实施例还提供一种通信设备800,包括处理器801和存储器802,存储器802存储有可在所述处理器801上运行的程序或指令,例如,该通信设备800为终端时,该程序或指令被处理器801执行时实现上述信号发送方法实施例和/或信号接收方法实施例中的各个步骤,且能达到相同的技术效果。该通信设备800为网络侧设备时,该程序或指令被处理器801执行时实现上述信号发送方法实施例和/或信号接收方法实施例中的各个步骤,且能达到相同的技术效果,为避免重复,这里不再赘述。
本申请实施例还提供一种终端,包括处理器和通信接口,所述通信接口和所述处理器耦合,所述处理器用于运行程序或指令,实现如方法实施例200-500中所述的方法的步骤。该终端实施例是与上述终端侧方法实施例对应的,上述方法实施例的各个实施过程和实现方式均可适用于该终端实施例中,且能达到相同的技术效果。具体地,图9为实现本申请实施例的一种终端的 硬件结构示意图。
该终端900包括但不限于:射频单元901、网络模块902、音频输出单元903、输入单元904、传感器905、显示单元906、用户输入单元907、接口单元908、存储器909、以及处理器910等中的至少部分部件。
本领域技术人员可以理解,终端900还可以包括给各个部件供电的电源(比如电池),电源可以通过电源管理系统与处理器910逻辑相连,从而通过电源管理系统实现管理充电、放电、以及功耗管理等功能。图9中示出的终端结构并不构成对终端的限定,终端可以包括比图示更多或更少的部件,或者组合某些部件,或者不同的部件布置,在此不再赘述。
应理解的是,本申请实施例中,输入单元904可以包括图形处理单元(Graphics Processing Unit,GPU)9041和麦克风9042,GPU9041对在视频捕获模式或图像捕获模式中由图像捕获装置(如摄像头)获得的静态图片或视频的图像数据进行处理。显示单元906可包括显示面板9061,可以采用液晶显示器、有机发光二极管等形式来配置显示面板9061。用户输入单元907包括触控面板9071以及其他输入设备9072中的至少一种。触控面板9071,也称为触摸屏。触控面板9071可包括触摸检测装置和触摸控制器两个部分。其他输入设备9072可以包括但不限于物理键盘、功能键(比如音量控制按键、开关按键等)、轨迹球、鼠标、操作杆,在此不再赘述。
本申请实施例中,射频单元901接收来自网络侧设备的下行数据后,可以传输给处理器910进行处理;另外,射频单元901可以向网络侧设备发送上行数据。通常,射频单元901包括但不限于天线、放大器、收发信机、耦合器、低噪声放大器、双工器等。
存储器909可用于存储软件程序或指令以及各种数据。存储器909可主要包括存储程序或指令的第一存储区和存储数据的第二存储区,其中,第一存储区可存储操作系统、至少一个功能所需的应用程序或指令(比如声音播放功能、图像播放功能等)等。此外,存储器909可以包括易失性存储器或非易失性存储器,或者,存储器909可以包括易失性和非易失性存储器两者。其中,非易失性存储器可以是只读存储器(Read-Only Memory,ROM)、可编程只读存储器(Programmable ROM,PROM)、可擦除可编程只读存储器(Erasable PROM,EPROM)、电可擦除可编程只读存储器(Electrically EPROM,EEPROM)或闪存。易失性存储器可以是随机存取存储器(Random Access Memory,RAM),静态随机存取存储器(Static RAM,SRAM)、动态随机存取存储器(Dynamic RAM,DRAM)、同步动态随机存取存储器(Synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(Double Data Rate SDRAM,DDRSDRAM)、增强型同步动态随机存取存储器(Enhanced SDRAM, ESDRAM)、同步连接动态随机存取存储器(Synch link DRAM,SLDRAM)和直接内存总线随机存取存储器(Direct Rambus RAM,DRRAM)。本申请实施例中的存储器909包括但不限于这些和任意其它适合类型的存储器。
处理器910可包括一个或多个处理单元;可选的,处理器910集成应用处理器和调制解调处理器,其中,应用处理器主要处理涉及操作系统、用户界面和应用程序等的操作,调制解调处理器主要处理无线通信信号,如基带处理器。可以理解的是,上述调制解调处理器也可以不集成到处理器910中。
其中,在一种实现方式中,射频单元901用于向第二通信设备发送目标信号;其中,所述目标信号与第一SSB关联,且所述目标信号用于目标AI模型的校验和/或目标波束相关信息的预测,所述第一SSB是SSB burst set中未使能的SSB的至少部分。
在另一种实现方式中,射频单元901用于接收第一通信设备发送的目标信号;其中,所述目标信号与第一SSB关联,且所述目标信号用于目标AI模型的校验和/或目标波束相关信息的预测,所述第一SSB是SSB突发集burst set中未使能的SSB的至少部分。
本实施例中,通过发送或接收与SSB burst set中未使能的SSB关联的目标信号,一方面,能够确保波束质量相关信息、波束增益相关信息等信息的正常获取,确保通信系统性能;另一方面,还能够避免相关技术中需要通过RRC信令更新bitmap映射关系时存在的参数更新慢且对小区内的其他用户造成影响的问题。
本申请实施例还提供一种网络侧设备,包括处理器和通信接口,所述通信接口和所述处理器耦合,所述处理器用于运行程序或指令,实现如实施例200-500中所述的方法的步骤。该网络侧设备实施例是与上述网络侧设备方法实施例对应的,上述方法实施例的各个实施过程和实现方式均可适用于该网络侧设备实施例中,且能达到相同的技术效果。
具体地,本申请实施例还提供了一种网络侧设备。如图10所示,该网络侧设备1000包括:天线1001、射频装置1002、基带装置1003、处理器1004和存储器1005。天线1001与射频装置1002连接。在上行方向上,射频装置1002通过天线1001接收信息,将接收的信息发送给基带装置1003进行处理。在下行方向上,基带装置1003对要发送的信息进行处理,并发送给射频装置1002,射频装置1002对收到的信息进行处理后经过天线1001发送出去。
以上实施例中网络侧设备执行的方法可以在基带装置1003中实现,该基带装置1003包基带处理器。
基带装置1003例如可以包括至少一个基带板,该基带板上设置有多个芯片,如图10所示,其中一个芯片例如为基带处理器,通过总线接口与存储器 1005连接,以调用存储器1005中的程序,执行以上方法实施例中所示的网络设备操作。
该网络侧设备还可以包括网络接口1006,该接口例如为通用公共无线接口(common public radio interface,CPRI)。
具体地,本发明实施例的网络侧设备1000还包括:存储在存储器1005上并可在处理器1004上运行的指令或程序,处理器1004调用存储器1005中的指令或程序执行图6或图7所示各模块执行的方法,并达到相同的技术效果,为避免重复,故不在此赘述。
本申请实施例还提供一种可读存储介质,所述可读存储介质上存储有程序或指令,该程序或指令被处理器执行时实现上述信号发送方法实施例和/或信号接收方法实施例的各个过程,且能达到相同的技术效果,为避免重复,这里不再赘述。
其中,所述处理器为上述实施例中所述的终端中的处理器。所述可读存储介质,包括计算机可读存储介质,如计算机只读存储器ROM、随机存取存储器RAM、磁碟或者光盘等。
本申请实施例另提供了一种芯片,所述芯片包括处理器和通信接口,所述通信接口和所述处理器耦合,所述处理器用于运行网络侧设备程序或指令,实现上述信号发送方法实施例或信号接收方法实施例的各个过程,且能达到相同的技术效果,为避免重复,这里不再赘述。
应理解,本申请实施例提到的芯片还可以称为系统级芯片,系统芯片,芯片系统或片上系统芯片等。
本申请实施例还提供了一种计算机程序产品,该计算机程序产品包括处理器、存储器及存储在所述存储器上并可在所述处理器上运行的程序或指令,所述程序或指令被所述处理器执行时,实现上述信号发送方法实施例或信号接收方法实施例的各个过程,且能达到相同的技术效果,为避免重复,这里不再赘述。
本申请实施例还提供了一种信号传输系统,包括:第一通信设备及第二通信设备,所述第一通信设备可用于执行如上所述的信号发送方法的步骤,所述第二通信设备可用于执行如上所述的信号接收方法的步骤。
需要说明的是,在本文中,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者装置不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者装置所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括该要素的过程、方法、物品或者装置中还存在另外的相同要素。此外,需要指出的是,本申请 实施方式中的方法和装置的范围不限按示出或讨论的顺序来执行功能,还可包括根据所涉及的功能按基本同时的方式或按相反的顺序来执行功能,例如,可以按不同于所描述的次序来执行所描述的方法,并且还可以添加、省去、或组合各种步骤。另外,参照某些示例所描述的特征可在其他示例中被组合。
通过以上的实施方式的描述,本领域的技术人员可以清楚地了解到上述实施例方法可借助软件加必需的通用硬件平台的方式来实现,当然也可以通过硬件,但很多情况下前者是更佳的实施方式。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分可以以计算机软件产品的形式体现出来,该计算机软件产品存储在一个存储介质(如ROM/RAM、磁碟、光盘)中,包括若干指令用以使得一台终端(可以是手机,计算机,服务器,空调器,或者网络设备等)执行本申请各个实施例所述的方法。
上面结合附图对本申请的实施例进行了描述,但是本申请并不局限于上述的具体实施方式,上述的具体实施方式仅仅是示意性的,而不是限制性的,本领域的普通技术人员在本申请的启示下,在不脱离本申请宗旨和权利要求所保护的范围情况下,还可做出很多形式,均属于本申请的保护之内。

Claims (34)

  1. 一种信号发送方法,包括:
    第一通信设备向第二通信设备发送目标信号;
    其中,所述目标信号与第一同步信号块SSB关联,且所述目标信号用于目标AI模型的校验和/或目标波束相关信息的预测,所述第一SSB是SSB突发集burst set中未使能的SSB的至少部分。
  2. 如权利要求1所述的方法,其中,所述目标信号与第一SSB关联时的关联方式包括以下至少一项:
    所述目标信号的波束信息与所述第一SSB关联;
    所述目标信号与所述第一SSB的索引关联;
    所述目标信号内配置有所述第一SSB的索引;
    将第一指示信息与所述第一SSB的索引关联,所述第一指示信息与所述目标信号对应;
    通过第一位图bitmap指示所述目标信号与所述第一SSB的索引的关联关系;
    所述第一位图的长度与所述SSB burst set对应的第二位图的长度一致;
    所述第一位图的长度与第二位图所指示的未使能比特的数量一致;
    其中,所述第二位图用于指示所述SSB burst set中的各SSB使能或未使能。
  3. 如权利要求1-2中任一项所述的方法,其中,所述目标信号满足以下至少一项:
    所述目标信号的数量不大于所述SSB burst set中未使能的SSB的数量;
    所述目标信号的带宽与所述第一SSB的带宽相关;
    在所述目标信号的可配置带宽为多个的情况下,所述目标信号的带宽等于多个所述可配置带宽中的最小带宽;
    所述目标信号的功控参数与所述第一SSB的功控参数相关;
    所述目标信号的发送功率与所述第一SSB的发送功率相关;
    所述目标信号的波束增益相关信息与所述第一SSB的波束增益相关信息一致;
    在所述目标信号为周期或半持续参考信号的情况下,所述目标信号的周期大于或等于所述第一SSB的周期。
  4. 如权利要求3所述的方法,其中,所述目标信号的带宽与所述第一SSB的带宽相关,包括:
    所述目标信号的带宽等于所述第一SSB的带宽。
  5. 如权利要求3所述的方法,其中,所述目标信号的发送功率与所述第 一SSB的发送功率相关,包括:
    所述目标信号对应的每个资源上的发送功率与所述第一SSB对应的每个资源上的发送功率一致。
  6. 如权利要求1-5中任一项所述的方法,其中,所述目标信号包括以下至少一项:
    信道状态信息-参考信号CSI-RS;
    探测参考信号SRS;
    定位参考信号PRS;
    跟踪参考信号TRS;
    解调参考信号DMRS。
  7. 如权利要求1-6中任一项所述的方法,其中,所述方法包括:
    所述第一通信设备接收第二通信设备发送的第一信息,所述第一信息中包括所述目标信号的相关信息、所述第一SSB的相关信息以及第二SSB的相关信息中的至少一项,所述第二SSB是所述SSB burst set中使能的SSB的至少部分;
    所述第一通信设备将所述目标信号的相关信息与所述第一SSB的相关信息进行关联。
  8. 如权利要求7所述的方法,其中,所述方法还包括:
    所述第一通信设备将与所述第一SSB的相关信息关联的所述目标信号的相关信息和/或所述第二SSB的相关信息,作为第一AI模型的输入信息,以预测得到所述目标波束相关信息。
  9. 如权利要求7或8所述的方法,其中,所述目标信号的相关信息包括所述目标信号对应的波束质量相关信息、波束标识相关信息、波束角度相关信息、波束增益相关信息中的至少一项;
    和/或,
    所述第一SSB的相关信息包括第一SSB对应的波束质量相关信息、波束标识相关信息、波束角度相关信息、波束增益相关信息中的至少一项。
  10. 如权利要求9所述的方法,其中,所述第一通信设备将与第一SSB的相关信息关联的所述目标信号的相关信息和/或所述第二SSB的相关信息,作为第一AI模型的输入信息的步骤之前,所述方法还包括:
    在所述目标信号的相关信息包括所述目标信号对应的波束质量相关信息的情况下,按照第一功率值对所述目标信号对应的每个资源上的功率进行调整。
  11. 如权利要求8-10中任一项所述的方法,其中,所述方法还包括:
    在预测得到的所述目标波束相关信息关联所述第一SSB的相关信息的情 况下,将第二信息作为所述目标波束相关信息关联的第一SSB的相关信息对应的标签数据,所述第二信息与所述目标信号相关。
  12. 如权利要求11所述的方法,其中,将第二信息作为所述目标波束相关信息关联的第一SSB的相关信息对应的标签数据的步骤之前,所述方法还包括:
    在所述第二信息包括所述目标信号对应的波束质量相关信息的情况下,按照第二功率值对所述目标信号对应的每个资源上的功率进行调整。
  13. 如权利要求11所述的方法,其中,所述第二功率值与所述第一功率值相同。
  14. 如权利要求1-13中任一项所述的方法,其中,第一通信设备向第二通信设备发送目标信号的步骤之前,所述方法还包括以下至少一项:
    所述第一通信设备接收所述第二通信设备发送的第一请求,根据所述第一请求向所述第二通信设备发送所述目标信号;
    所述第一通信设备向所述第二通信设备发送第二请求,所述第二请求用于触发所述第二通信设备监测所述目标信号和/或所述第二SSB。
  15. 如权利要求1-14中任一项所述的方法,其中,与所述目标信号关联的信道状态信息CSI报告的反馈类型包括以下至少一项:
    无反馈None;
    全反馈,所述全反馈对应的反馈信息包括信道状态信息资源指示-参考信号接收功率CRI-RSRP、同步信号块-索引-参考信号接收功率SSB-Index-RSRP、CRI-信干噪比SINR、SSB-Index-SINR中至少一项。
  16. 一种信号接收方法,包括:
    第二通信设备接收第一通信设备发送的目标信号;
    其中,所述目标信号与第一SSB关联,且所述目标信号用于目标AI模型的校验和/或目标波束相关信息的预测,所述第一SSB是SSB突发集burstset中未使能的SSB的至少部分。
  17. 如权利要求16所述的方法,其中,所述目标信号与第一SSB关联时的关联方式包括以下至少一项:
    所述目标信号的波束信息与所述第一SSB关联;
    所述目标信号与所述第一SSB的索引关联;
    所述目标信号内配置有所述第一SSB的索引;
    将第一指示信息与所述第一SSB的索引关联,所述第一指示信息与所述目标信号对应;
    通过第一位图bitmap指示所述目标信号与所述第一SSB的索引的关联关 系;
    所述第一位图的长度与所述SSB burst set对应的第二位图的长度一致;
    所述第一位图的长度与第二位图所指示的未使能比特的数量一致;
    其中,所述第二位图用于指示所述SSB burst set中每个SSB使能或未使能。
  18. 如权利要求16-17中任一项所述的方法,其中,所述目标信号满足以下至少一项:
    所述目标信号的数量不大于所述SSB burst set中未使能的SSB的数量;
    所述目标信号的带宽与所述第一SSB的带宽相关;
    在所述目标信号的可配置带宽为多个的情况下,所述目标信号的带宽等于多个所述可配置带宽中的最小带宽;
    所述目标信号的功控参数与所述第一SSB的功控参数相关;
    所述目标信号的发送功率与所述第一SSB的发送功率相关;
    所述目标信号的波束增益相关信息与所述第一SSB的波束增益相关信息一致;
    在所述目标信号为周期或半持续参考信号的情况下,所述目标信号的周期大于或等于所述第一SSB的周期。
  19. 如权利要求18所述的方法,其中,所述目标信号的带宽与所述第一SSB的带宽相关,包括:
    所述目标信号的带宽等于所述第一SSB的带宽。
  20. 如权利要求18所述的方法,其中,所述目标信号的发送功率与所述第一SSB的发送功率相关,包括:
    所述目标信号对应的每个资源上的发送功率与第一SSB对应的每个资源上的发送功率一致。
  21. 如权利要求16-20中任一项所述的方法,其中,所述目标信号包括以下至少一项:
    信道状态信息-参考信号CSI-RS;
    探测参考信号SRS;
    定位参考信号PRS;
    跟踪参考信号TRS;
    解调参考信号DMRS。
  22. 如权利要求16-20中任一项所述的方法,其中,所述方法还包括以下至少一项:
    所述第二通信设备将所述目标信号的相关信息与所述第一SSB的相关信息进行关联;
    所述第二通信设备向所述第一通信设备发送第一信息,所述第一信息中包括所述目标信号的相关信息、所述第一SSB的相关信息、第二SSB的相关信息中的至少一项,所述第二SSB是是所述SSB burst set中使能的SSB中的至少部分。
  23. 如权利要求22所述的方法,其中,所述第二通信设备将所述目标信号的相关信息与所述第一SSB的相关信息进行关联的步骤之后,所述方法还包括:
    所述第二通信设备将与所述第一SSB的相关信息关联的所述目标信号的相关信息和/或所述第二SSB的相关信息作为第二AI模型的输入信息,以预测得到所述目标波束相关信息。
  24. 如权利要求23中任一项所述的方法,其中,所述目标信号的相关信息包括所述目标信号对应的波束质量相关信息、波束标识相关信息、波束角度相关信息、波束增益相关信息中的至少一项;
    和/或,
    所述第一SSB的相关信息至少包括所述第一SSB对应的波束质量相关信息、波束标识相关信息、波束角度相关信息、波束增益相关信息中的至少一项。
  25. 如权利要求24所述的方法,其中,所述第二通信设备将与所述第一SSB的相关信息关联的所述目标信号的相关信息和/或所述第二SSB的相关信息作为第二AI模型的输入信息的步骤之前,所述方法还包括:
    在所述目标信号的相关信息包括所述目标信号对应的波束质量相关信息的情况下,按照第三功率值对所述目标信号对应的每个资源上的功率进行调整。
  26. 如权利要求23-25中任一项所述的方法,其中,所述方法还包括:
    在预测得到的所述目标波束相关信息关联所述第一SSB的相关信息的情况下,将第三信息作为所述目标波束相关信息关联的第一SSB的相关信息对应的标签数据,所述第三信息与所述目标信号相关。
  27. 如权利要求26所述的方法,其中,将第三信息作为所述目标波束相关信息关联的第一SSB的相关信息对应的标签数据的步骤之前,所述方法还包括:
    在所述第一SSB的相关信息包括波束质量相关信息的情况下,按照第四功率值对所述目标信号对应的每个资源上的功率进行调整。
  28. 如权利要求27所述的方法,其中,所述第四功率值与所述第三功率值相同。
  29. 如权利要求16-28中任一项所述的方法,其中,第二通信设备接收第 一通信设备发送的目标信号的步骤之前,所述方法还包括以下至少一项:
    所述第二通信设备向所述第一通信设备发送第一请求;
    所述第二通信设备接收所述第一通信设备发送的第二请求,所述第二请求用于触发所述第二通信设备监测所述目标信号和/或所述第二SSB。
  30. 如权利要求16-29中任一项所述的方法,其中,与所述目标信号关联的信道状态信息CSI报告的反馈类型包括以下至少一项:
    无反馈None;
    全反馈,所述全反馈对应的反馈信息包括信道状态信息资源指示-参考信号接收功率CRI-RSRP、同步信号块-索引-参考信号接收功率SSB-Index-RSRP、CRI-信干噪比SINR、SSB-Index-SINR中至少一项。
  31. 一种信号发送装置,包括:
    第一发送模块,用于向第二通信设备发送目标信号;
    其中,所述目标信号与第一同步信号块SSB关联,且所述目标信号用于目标AI模型的校验和/或目标波束相关信息的预测,所述第一SSB是SSB突发集burst set中未使能的SSB的至少部分。
  32. 一种信号接收装置,包括:
    第一接收模块,用于接收第一通信设备发送的目标信号;
    其中,所述目标信号与第一同步信号块SSB关联,且所述目标信号用于目标AI模型的校验和/或目标波束相关信息的预测,所述第一SSB是SSB突发集burst set中未使能的SSB的至少部分。
  33. 一种通信设备,包括处理器和存储器,所述存储器存储可在所述处理器上运行的程序或指令,所述程序或指令被所述处理器执行时实现如权利要求1至15中任一项所述的信号发送方法的步骤,或者,实现如权利要求16至30中任一项所述的信号接收方法的步骤。
  34. 一种可读存储介质,所述可读存储介质上存储程序或指令,所述程序或指令被处理器执行时实现如权利要求1-15任一项所述的信号发送方法的步骤,或者实现如权利要求16至30任一项所述的信号接收的方法的步骤。
PCT/CN2023/085092 2022-03-31 2023-03-30 信号发送方法、信号接收方法及通信设备 WO2023186014A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210335341.9A CN116938402A (zh) 2022-03-31 2022-03-31 信号发送方法、信号接收方法及通信设备
CN202210335341.9 2022-03-31

Publications (1)

Publication Number Publication Date
WO2023186014A1 true WO2023186014A1 (zh) 2023-10-05

Family

ID=88199386

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/085092 WO2023186014A1 (zh) 2022-03-31 2023-03-30 信号发送方法、信号接收方法及通信设备

Country Status (2)

Country Link
CN (1) CN116938402A (zh)
WO (1) WO2023186014A1 (zh)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109756924A (zh) * 2017-11-08 2019-05-14 维沃移动通信有限公司 一种波束历史信息传输方法、终端及网络设备
WO2020103160A1 (zh) * 2018-11-23 2020-05-28 Oppo广东移动通信有限公司 无线通信方法、网络设备和终端设备

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109756924A (zh) * 2017-11-08 2019-05-14 维沃移动通信有限公司 一种波束历史信息传输方法、终端及网络设备
WO2020103160A1 (zh) * 2018-11-23 2020-05-28 Oppo广东移动通信有限公司 无线通信方法、网络设备和终端设备

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
LG ELECTRONICS: "Discussion on SS burst set composition", 3GPP DRAFT; R1-1710259 DISCUSSION ON SS BURST SET COMPOSITION_FINAL, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, no. Qingdao, P.R. China; 20170627 - 20170630, 26 June 2017 (2017-06-26), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , XP051299476 *

Also Published As

Publication number Publication date
CN116938402A (zh) 2023-10-24

Similar Documents

Publication Publication Date Title
JP2020534719A (ja) チャネル状態情報の報告方法及び関連装置
WO2023186014A1 (zh) 信号发送方法、信号接收方法及通信设备
CN114205201A (zh) 信号补偿方法、装置、中继设备、存储介质和程序产品
WO2023179651A1 (zh) 波束处理方法、装置及设备
WO2023198093A1 (zh) 模型有效性的确定方法、装置及通信设备
WO2023179649A1 (zh) 人工智能模型的输入处理方法、装置及设备
WO2023179653A1 (zh) 波束处理方法、装置及设备
WO2024022398A1 (zh) 托管网络的选网信息的获取方法、终端及网络侧设备
US20240080723A1 (en) Information processing method and apparatus, terminal, and network side device
WO2023241448A1 (zh) 测量处理方法、终端及网络侧设备
WO2024027580A1 (zh) 事件信息传输方法、lmf、接入网设备及终端
WO2023174325A1 (zh) Ai模型的处理方法及设备
WO2023198062A1 (zh) Csi测量和上报方法、装置、设备、系统及存储介质
US20240080700A1 (en) Information processing method and apparatus, terminal, and network side device
WO2023217023A1 (zh) 旁链路定位方法、装置、终端、服务器和无线接入网设备
US20240137781A1 (en) Spatial relation indication method and device
WO2024022316A1 (zh) 下行参考信号发送方法、装置、终端及网络侧设备
WO2023179664A1 (zh) 信道信息的传输方法、装置及通信设备
WO2024067281A1 (zh) Ai模型的处理方法、装置及通信设备
WO2023227022A1 (zh) 信道状态信息csi的传输方法、装置及终端
WO2023151650A1 (zh) 信息激活方法、终端及网络侧设备
WO2023160571A1 (zh) 干扰或自激处理方法及装置、中继节点及宿主基站
WO2023185724A1 (zh) 定位处理方法、装置、终端及网络侧设备
WO2024061287A1 (zh) 人工智能ai模型传输方法、装置、终端及介质
WO2023143581A1 (zh) 信息传输方法、装置、终端及网络侧设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23778379

Country of ref document: EP

Kind code of ref document: A1