WO2023179653A1 - 波束处理方法、装置及设备 - Google Patents

波束处理方法、装置及设备 Download PDF

Info

Publication number
WO2023179653A1
WO2023179653A1 PCT/CN2023/083048 CN2023083048W WO2023179653A1 WO 2023179653 A1 WO2023179653 A1 WO 2023179653A1 CN 2023083048 W CN2023083048 W CN 2023083048W WO 2023179653 A1 WO2023179653 A1 WO 2023179653A1
Authority
WO
WIPO (PCT)
Prior art keywords
information
association information
reference signal
correlation
association
Prior art date
Application number
PCT/CN2023/083048
Other languages
English (en)
French (fr)
Inventor
施源
Original Assignee
维沃移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 维沃移动通信有限公司 filed Critical 维沃移动通信有限公司
Publication of WO2023179653A1 publication Critical patent/WO2023179653A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W12/00Security arrangements; Authentication; Protecting privacy or anonymity
    • H04W12/03Protecting confidentiality, e.g. by encryption
    • H04W12/037Protecting confidentiality, e.g. by encryption of the control plane, e.g. signalling traffic
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W12/00Security arrangements; Authentication; Protecting privacy or anonymity
    • H04W12/30Security of mobile devices; Security of mobile applications
    • H04W12/37Managing security policies for mobile devices or for controlling mobile applications
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W16/00Network planning, e.g. coverage or traffic planning tools; Network deployment, e.g. resource partitioning or cells structures
    • H04W16/24Cell structures
    • H04W16/28Cell structures using beam steering

Definitions

  • the present application belongs to the field of communication technology, and specifically relates to a beam processing method, device and equipment.
  • AI Artificial Intelligence
  • Embodiments of the present application provide a beam processing method, device and equipment, which can solve the problem of beamforming exposure at the transmitter and receiver caused by the transmission of beam-related information between devices.
  • a beam processing method which method includes:
  • the first device receives first beam association information; wherein the first beam association information includes second beam association information and/or third beam association information, and the first beam association information serves as input information for the artificial intelligence model,
  • the artificial intelligence model is used for beam related functions;
  • the second beam correlation information is obtained by the second device after transforming the fourth beam correlation information, and the fourth beam correlation information is the beam correlation information of the first reference signal receiving end;
  • the third beam correlation information is obtained by the second device transforming the fifth beam correlation information, and the fifth beam correlation information is the beam correlation information of the first reference signal transmitting end.
  • a beam processing device including:
  • a first receiving module configured to receive first beam associated information; wherein the first beam associated information includes second beam associated information and/or third beam associated information, and the first beam associated information serves as an artificial intelligence model
  • the input information of the artificial intelligence model is used for beam related functions
  • the second beam correlation information is obtained by the second device after transforming the fourth beam correlation information, and the fourth beam correlation information is the beam correlation information of the first reference signal receiving end;
  • the third beam correlation information is obtained by the second device transforming the fifth beam correlation information, and the fifth beam correlation information is the beam correlation information of the first reference signal transmitting end.
  • a beam processing method which method includes:
  • the second device sends first beam association information; wherein the first beam association information includes second beam association information and/or third beam association information, and the first beam association information serves as input information for the artificial intelligence model,
  • the artificial intelligence model is used for beam related functions;
  • the second beam correlation information is obtained by the second device after transforming the fourth beam correlation information, and the fourth beam correlation information is the beam correlation information of the first reference signal receiving end;
  • the third beam correlation information is obtained by the second device transforming the fifth beam correlation information, and the fifth beam correlation information is the beam correlation information of the first reference signal transmitting end.
  • a beam processing device including:
  • a first sending module configured to send first beam associated information; wherein the first beam associated information includes second beam associated information and/or third beam associated information, and the first beam associated information serves as an artificial intelligence model
  • the input information of the artificial intelligence model is used for beam related functions;
  • the second beam correlation information is obtained by the second device after transforming the fourth beam correlation information, and the fourth beam correlation information is the beam correlation information of the first reference signal receiving end;
  • the third beam correlation information is obtained by the second device transforming the fifth beam correlation information, and the fifth beam correlation information is the beam correlation information of the first reference signal transmitting end.
  • a communication device in a fifth aspect, includes a processor and a memory.
  • the memory stores programs or instructions that can be run on the processor.
  • the program or instructions are executed by the processor, the following is implemented: The method described in the first aspect, or the steps for implementing the method described in the third aspect.
  • a communication device including a processor and a communication interface, wherein the communication interface is used to receive first beam association information; wherein the first beam association information includes second beam association information and/or or third beam related information, and the first beam related information is used as input information of an artificial intelligence model, and the artificial intelligence model is used for beam related functions;
  • the second beam correlation information is obtained by the second device after transforming the fourth beam correlation information, and the fourth beam correlation information is the beam correlation information of the first reference signal receiving end;
  • the third beam correlation information is obtained by the second device transforming the fifth beam correlation information, and the fifth beam correlation information is the beam correlation information of the first reference signal transmitting end.
  • a communication device including a processor and a communication interface, wherein the communication interface is used to send first beam association information; wherein the first beam association information includes second beam association information and/or or third beam related information, and the first beam related information is used as input information of an artificial intelligence model, and the artificial intelligence model is used for beam related functions;
  • the second beam correlation information is obtained by the second device after transforming the fourth beam correlation information, and the fourth beam correlation information is the beam correlation information of the first reference signal receiving end;
  • the third beam correlation information is obtained by the second device transforming the fifth beam correlation information, and the fifth beam correlation information is the beam correlation information of the first reference signal transmitting end.
  • An eighth aspect provides a beam processing system, including: a first device and a second device.
  • the first device can be used to perform the steps of the beam processing method as described in the first aspect.
  • the second device can be used to The steps of the beam processing method as described in the third aspect are performed.
  • a readable storage medium is provided. Programs or instructions are stored on the readable storage medium. When the programs or instructions are executed by a processor, the steps of the method described in the first aspect are implemented, or the steps of the method are implemented as described in the first aspect. The steps of the method described in the third aspect.
  • a chip in a tenth aspect, includes a processor and a communication interface.
  • the communication interface is coupled to the processor.
  • the processor is used to run programs or instructions to implement the method described in the first aspect. , or implement the method as described in the third aspect.
  • a computer program/program product is provided, the computer program/program product is stored in a storage medium, and the computer program/program product is executed by at least one processor to implement the first aspect method, or steps for implementing the method described in the third aspect.
  • the first beam associated information received by the first device includes the second beam associated information and/or the third beam associated information, and since the second beam associated information and the third beam associated information are both processed
  • the second device transforms the original information. Therefore, when the first device receives the first beam-related information, the original information will not be directly exposed, thus ensuring the security of communication.
  • Figure 1 is a block diagram of a wireless communication system
  • FIG. 2 is one of the flow diagrams of the beam processing method according to the embodiment of the present application.
  • FIG. 3 is the second schematic flowchart of the beam processing method according to the embodiment of the present application.
  • Figure 4 is one of the module structure schematic diagrams of the beam processing device according to the embodiment of the present application.
  • Figure 5 is the second module structure schematic diagram of the beam processing device according to the embodiment of the present application.
  • Figure 6 is a schematic structural diagram of a communication device according to an embodiment of the present application.
  • Figure 7 is a schematic structural diagram of a terminal according to an embodiment of the present application.
  • Figure 8 is a schematic structural diagram of a network side device according to an embodiment of the present application.
  • first, second, etc. in the description and claims of this application are used to distinguish similar objects and are not used to describe a specific order or sequence. It is to be understood that the terms so used are interchangeable under appropriate circumstances so that the embodiments of the present application can be practiced in sequences other than those illustrated or described herein, and that "first" and “second” are distinguished objects It is usually one type, and the number of objects is not limited.
  • the first object can be one or multiple.
  • “and/or” in the description and claims indicates at least one of the connected objects, and the character “/" generally indicates that the related objects are in an "or” relationship.
  • LTE Long Term Evolution
  • LTE-Advanced, LTE-A Long Term Evolution
  • LTE-A Long Term Evolution
  • CDMA Code Division Multiple Access
  • TDMA Time Division Multiple Access
  • FDMA Frequency Division Multiple Access
  • OFDMA Orthogonal Frequency Division Multiple Access
  • SC-FDMA Single-carrier Frequency Division Multiple Access
  • NR New Radio
  • FIG. 1 shows a block diagram of a wireless communication system to which embodiments of the present application are applicable.
  • the wireless communication system includes a terminal 11 and a network side device 12.
  • the terminal 11 may be a mobile phone, a tablet computer (Tablet Personal Computer), a laptop computer (Laptop Computer), or a notebook computer, a personal digital assistant (Personal Digital Assistant, PDA), a palmtop computer, a netbook, or a super mobile personal computer.
  • Tablet Personal Computer Tablet Personal Computer
  • laptop computer laptop computer
  • PDA Personal Digital Assistant
  • PDA Personal Digital Assistant
  • UMPC ultra-mobile personal computer
  • UMPC mobile Internet device
  • MID mobile Internet Device
  • AR augmented reality
  • VR virtual reality
  • robots wearable devices
  • WUE Vehicle User Equipment
  • PUE Pedestrian User Equipment
  • smart home home equipment with wireless communication functions, such as refrigerators, TVs, washing machines or furniture, etc.
  • game consoles personal computers (personal computer, PC), teller machine or self-service machine and other terminal-side devices.
  • Wearable devices include: smart watches, smart bracelets, smart headphones, smart glasses, smart jewelry (smart bracelets, smart bracelets, smart rings, smart necklaces, smart anklets) bracelets, smart anklets, etc.), smart wristbands, smart clothing, etc.
  • the network side device 12 may include an access network device or a core network device, where the access network device may also be called a radio access network device, a radio access network (Radio Access Network, RAN), a radio access network function or a wireless access network unit.
  • Access network equipment may include a base station, a Wireless Local Area Network (WLAN) access point or a WiFi node, etc.
  • WLAN Wireless Local Area Network
  • the base station may be called a Node B, an Evolved Node B (eNB), an access point, a base transceiver station ( Base Transceiver Station (BTS), radio base station, radio transceiver, Basic Service Set (BSS), Extended Service Set (ESS), home B-node, home evolved B-node, transmitting and receiving point ( Transmitting Receiving Point (TRP) or some other appropriate term in the field, as long as the same technical effect is achieved, the base station is not limited to specific technical terms, and needs to be explained However, in the embodiment of this application, only the base station in the NR system is used as an example for introduction, and the specific type of the base station is not limited.
  • BTS Base Transceiver Station
  • BSS Basic Service Set
  • ESS Extended Service Set
  • TRP Transmitting Receiving Point
  • beams include transmitting beams, receiving beams and beam centering. Therefore, the beam set in the embodiment of the present application may be one or any combination of a transmit beam set, a receive beam set, a beam pair set.
  • the input information of the AI model includes at least one of the following:
  • the desired information includes at least one of the following:
  • beam quality-related information refers to information that can characterize beam quality, including but not limited to at least one of the following: Layer 1 Signal to Interference and Noise Ratio (L1-SINR), Layer 1 reference signal Received power (Layer 1 reference signal received power, L1-RSRP), Layer 1 Reference Signal Received Quality (L1-RSRQ), Layer 3 Signal to Interference and Noise Ratio , L3-SINR), Layer 3 reference signal received power (Layer 3 reference signal received power, L3-RSRP), Layer 3 reference signal received quality (Layer 3 Reference Signal Received Quality, L3-RSRQ), etc.
  • L1-SINR Layer 1 Signal to Interference and Noise Ratio
  • L1-RSRP Layer 1 reference signal Received power
  • L1-RSRQ Layer 1 Reference Signal Received Quality
  • L3-SINR Layer 3 reference signal received power
  • Layer 3 reference signal received quality Layer 3 Reference Signal Received Quality, L3-RSRQ
  • the first beam association information may include at least one of transmit beam association information, receive beam association information and beam pair association information.
  • the second beam association information may include at least one of transmit beam association information, receive beam association information and beam pair association information.
  • the first device receives the first reference signal sent by the second device
  • the first beam association information includes the beam association information sent by the second device, the beam association information received by the first device, and the beam sent by the second device and the beam received by the first device At least one of the beam pair associated information.
  • the second beam association information includes the beam association information expected by the first device to be transmitted by the second device, the association information of the beam expected by the first device to be received by the first device, and the beam association expected by the first device from the second device to be transmitted and received by the first device. At least one of the beam pair associated information of the beam.
  • the beam correlation information is used to represent the correlation information corresponding to the beam.
  • the beam related information includes at least one of the following: beam identification related information, beam angle related information, and beam gain related information.
  • the information related to the beam identity is also the information related to the beam identity, which is used to characterize the identity of the beam, including but not limited to at least one of the following: transmitting beam identifier (user identifier, ID), receiving beam ID, beam pair ID , the reference signal set ID corresponding to the beam, the reference signal resource ID corresponding to the beam, the uniquely identified random ID, the coded value processed by the additional AI model (or AI network), beam angle related information, etc.
  • the beam angle related information is used to characterize the angle related information corresponding to the beam, including but not limited to the following At least one of: beam pair angle-related information, transmitting angle-related information, and receiving angle-related information.
  • the angle-related information is the relevant information used to characterize the angle, such as: angle, radian, index code value, code value processed by an additional AI network, etc.
  • the beam gain related information is used to characterize the gain related information of the beam and/or antenna, including but not limited to at least one of the following: antenna relative gain (unit dBi), equivalent isotropic radiation power beam power spectrum (Effective Isotropic Radiated Power, EIRP), beam angle gain, beam angle gain spectrum (that is, the gain of a beam relative to different angles, including complete or partial gain spectrum information), EIRP corresponding to each beam angle, main lobe angle, secondary Lobe angle, number of side lobes, distribution of side lobes, number of antennas, beam scanning horizontal coverage, beam scanning vertical coverage, 3dB width, 6dB width, etc.
  • At least one of the angle-related information and the beam identity-related information may be described by two-dimensional components (which may be horizontal-vertical components), or described and determined by higher-dimensional component information.
  • a beam processing method includes:
  • Step 201 The first device receives first beam association information; wherein the first beam association information includes second beam association information and/or third beam association information, and the first beam association information serves as an artificial intelligence model. Input information, the artificial intelligence model is used for beam related functions;
  • the second beam correlation information is obtained by the second device after transforming the fourth beam correlation information, and the fourth beam correlation information is the beam correlation information of the first reference signal receiving end;
  • the third beam correlation information is obtained by the second device transforming the fifth beam correlation information, and the fifth beam correlation information is the beam correlation information of the first reference signal transmitting end.
  • beam related functions include beam prediction, beam indication, beam recovery, beam training, etc.
  • the first beam associated information received by the first device includes the second beam associated information and/or the third beam associated information, and since the second beam associated information and the third beam associated information are both transmitted through the second It is obtained after the device transforms the original information. Therefore, when the first device receives the first beam-related information, the original information will not be directly exposed, thus ensuring the security of communication.
  • the first device before the first device receives the first beam association information, it further includes:
  • the first device sends the fourth beam association information to the second device.
  • the first device sends the fourth beam association information to the second device, so that the second device performs transformation processing on the fourth beam association information.
  • the fifth beam association information is the beam association information of the second device or the beam association information of the third device received by the second device, and still can avoid the conflict between the first device and the second device.
  • the exposure of the fifth beam associated information ensures a certain degree of communication security.
  • both the first device and the second device may be terminals or network side devices.
  • the second device such as a base station
  • the fourth beam association information is the beam (transmitting beam, receiving beam) in which the terminal monitors the base station to send the first reference signal.
  • the fifth beam correlation information is the beam correlation information obtained by the base station monitoring the beam (transmitting beam, receiving beam, beam pair) that transmits the first reference signal.
  • the second device can also receive the fifth beam sent by the third device.
  • the associated information is then transformed separately to obtain the second beam associated information and the third beam associated information, so that the second device can send the second beam associated information and/or the third beam associated information to the first device.
  • the second device may also send the second beam association information and/or the third beam association information to the third device.
  • the third device transmits the first reference signal with the first device.
  • the fourth beam association information includes at least one of the following:
  • Desired beam association information is:
  • the fourth beam association information includes but is not limited to at least one of the following: the first device receives Beam association information; beam association information of the first device receiving beam expected by the first device; beam pair association information of the first device receiving beam and the second device transmitting beam expected by the first device.
  • the second beam related information is obtained after transformation processing as the fourth beam related information, and the second beam related information also includes at least one of the following: transmitting beam related information; receiving beam related information; and desired beam related information.
  • the specific implementation is related to the information related to the fourth beam, which will not be described again here.
  • the fifth beam association information includes at least one of the following:
  • Desired beam association information is:
  • the fifth beam associated information includes but is not limited to at least one of the following: the second device sends Beam association information; beam association information expected by the first device to be sent by the second device; beam pair association information of beams expected by the first device to be received by the first device and beams sent by the second device.
  • the third beam related information is obtained after transformation processing as the fifth beam related information, and the third beam related information also includes at least one of the following: transmitting beam related information; receiving beam related information; and desired beam related information.
  • the transformation process includes at least one of the following methods:
  • the preset model is a configured transformation processing model
  • the transformation processing model may also be an AI model.
  • Adopt pre Suppose the model is transformed by inputting the fourth beam correlation information into the preset model to obtain the output of the second beam correlation information; inputting the fifth beam correlation information into the preset model to obtain the output of the third beam correlation information.
  • the transformation based on random numbers may be to randomly assign corresponding values to the information.
  • a transformation based on random numbers is used to randomly assign a value to the beam angle.
  • the beam angle is 60 degrees
  • the randomly assigned value is 3.
  • the value 3 is the beam angle of 60 degrees. obtained by transformation processing.
  • the transformation processing method adopted by the second device is related to input information processing for training and inference of the AI model.
  • the AI model will determine the transformation processing method for its input information.
  • the second device will use the determined transformation processing method to transform the original information so as not to affect subsequent Enter the AI model.
  • the second beam associated information and the third beam associated information are processed using the same transformation.
  • the third beam related information also needs to be obtained by hash transformation of the fifth beam related information.
  • the fourth beam associated information needs to be transformed, and when the fourth beam associated information includes multiple beam associated information, at least one beam associated information in the multiple beam associated information is the The object of transformation processing.
  • the fifth beam associated information needs to be transformed, and when the fifth beam associated information includes multiple beam associated information, at least one beam associated information in the multiple beam associated information is the The object of transformation processing.
  • the type of the fourth beam associated information is different from the type of the fifth beam associated information.
  • the fourth beam associated information includes beam angle related information
  • the fifth beam associated information includes beam identity related information.
  • the quantity of the fourth beam correlation information and the fifth beam correlation is greater than or equal to the quantity of input information of the artificial intelligence model.
  • the amount of the second beam related information and the third beam related information is greater than or equal to the amount of input information of the AI model.
  • the first device can select the same amount of information from the second beam associated information and the third beam associated information according to the amount of beam associated information required to be input by the AI model, and input the selected information into the AI model.
  • the first device sends the fourth beam association information, including:
  • the first device sends capability information including the fourth beam association information.
  • the first device reports capability information to send fourth beam association information.
  • the fourth beam correlation information and the fifth beam correlation information are represented by quantized and coded information; wherein the quantized and coded information is obtained based on the quantization interval.
  • the quantization interval can be determined interactively. For example, when the beam related information is the beam angle, the quantization interval If the configuration is 10 degrees, quantization will be performed every 10 degrees.
  • the fourth beam association information and the fifth beam association information are not associated with a synchronization signal block (Synchronization Signal Block, SSB), they have the same identifier and the same frequency domain position.
  • SSB Synchronization Signal Block
  • the quasi-co-location information of the SSBs with the same identifier and the same frequency domain position remains unchanged.
  • the quasi-co-location information of the SSB with the same identifier and the same frequency domain position remains unchanged.
  • the fourth beam association information and the fifth beam association information are determined based on the configuration information corresponding to the first reference signal;
  • the fourth beam association information and the fifth beam association information are determined based on the configuration information of the second reference signal that is quasi-co-located with the first reference signal.
  • the first reference signal may be a reference signal corresponding to the beams of any of the above-mentioned beam sets, or a reference signal corresponding to the beam quality information input by the AI model.
  • the fourth beam association information can be obtained directly.
  • the first reference signal is a Channel State Information Reference Signal (CSI-RS)
  • the configuration information of a CSI-RS includes an SSB index (index) associated with the CSI-RS.
  • the beam association information is SSB index
  • the beam association information can be directly determined for the CSI-RS interactive configuration information (an associated SSB index).
  • the first reference signal is an SSB
  • the configuration information of an SSB includes an SSB index associated with the SSB.
  • the beam association information is an SSB index
  • the beam association information can be directly determined by exchanging configuration information for the SSB (an associated SSB index) or using the index of the SSB.
  • the fifth beam associated information is determined based on the configuration information corresponding to the first reference signal, which is the same as the fourth beam associated information, and will not be described again here.
  • the fourth beam association information is determined based on the configuration information of the second reference signal that is quasi-co-located with the first reference signal, that is, the fourth beam association information can be obtained indirectly in an implicit manner.
  • the fifth beam association information is determined based on the configuration information of the second reference signal that is quasi-co-located with the first reference signal, that is, the fifth beam association information can be obtained indirectly in an implicit manner.
  • the second reference signal includes at least one of the following signals on the quasi-co-location relationship chain of the first reference signal:
  • the first reference signal configured with beam correlation information
  • the last reference signal configured with beam correlation information
  • SSB configured with beam association information.
  • the second reference signal may be the first reference signal configured with beam association information on the quasi-co-located relationship chain of the first reference signal; it may be the last configured beam on the quasi-co-located relationship chain of the first reference signal.
  • the reference signal may be an SSB on the first reference signal quasi-co-location relationship chain; may be an SSB configured with beam association information on the first reference signal quasi-co-location relationship chain.
  • the upper-level reference signal corresponding to the quasi co-location chain is used, or the upper-level reference signal is searched through the QCL chain until a specific feature is found, and the specific feature is stopped. It can be used as beam correlation information.
  • QCL chain can also be replaced by QCL type D.
  • the beam association information is SSB index.
  • finding the SSB index associated with the CSI-RS is the beam association information.
  • the beam association information is the beam angle
  • the beam association information is the beam angle
  • the beam angle associated with the SSB index is the beam association of the CSI-RS. information.
  • the first beam associated information received by the first device includes the second beam associated information and/or the third beam associated information, and since the second beam associated information and the third beam associated information are both processed by the second device,
  • the original information is obtained after transformation processing. Therefore, when the first device receives the first beam-related information, the original information will not be directly exposed, thus ensuring the security of communication.
  • a beam processing method includes:
  • Step 301 The second device sends first beam association information; wherein the first beam association information includes second beam association information and/or third beam association information, and the first beam association information serves as an artificial intelligence model. Input information, the artificial intelligence model is used for beam related functions;
  • the second beam correlation information is obtained by the second device after transforming the fourth beam correlation information, and the fourth beam correlation information is the beam correlation information of the first reference signal receiving end;
  • the third beam correlation information is obtained by the second device transforming the fifth beam correlation information, and the fifth beam correlation information is the beam correlation information of the first reference signal transmitting end.
  • the second device sends the first beam association information, including the second beam association information and/or the third beam association information. Since the second beam association information and the third beam association information The related information is obtained after the second device transforms the original information. Therefore, during the process of sending the first beam related information, the original information will not be directly exposed, ensuring the security of communication.
  • the second device before the second device sends the second beam association information, it further includes:
  • the second device receives the fourth beam association information.
  • the first device sends the fourth beam association information to the second device, so that the second device performs transformation processing on the fourth beam association information.
  • the fourth beam related information is exposed, the exposure of the fifth beam related information can still be avoided, ensuring a certain degree of communication security.
  • the second device before the second device sends the third beam association information, it further includes:
  • the second device receives the fifth beam association information.
  • the second device does not participate in the sending and receiving of the first reference signal, for example, the second device is an auxiliary network center unit, and in addition to receiving the fourth beam association information sent by the first device, the second device can also receive Sent by third device The fifth beam associated information is then transformed separately to obtain the second beam associated information and the third beam associated information, so that the second device can send the second beam associated information and/or the third beam associated information to the first equipment.
  • the second device may also send the second beam association information and/or the third beam association information to the third device.
  • the third device transmits the first reference signal with the first device.
  • the fourth beam association information includes at least one of the following:
  • Desired beam association information is:
  • the fifth beam association information includes at least one of the following:
  • Desired beam association information is:
  • the transformation process includes at least one of the following methods:
  • the second beam related information and the third beam related information adopt the same transformation process.
  • the fourth beam associated information needs to be transformed, and when the fourth beam associated information includes multiple beam associated information, at least one beam associated information in the multiple beam associated information is the The object of transformation processing.
  • the fifth beam associated information needs to be transformed, and when the fifth beam associated information includes multiple beam associated information, at least one beam associated information in the multiple beam associated information is the The object of transformation processing.
  • the type of the fourth beam associated information is different from the type of the fifth beam associated information.
  • the quantity of the fourth beam correlation information and the fifth beam correlation information is greater than or equal to the quantity of input information of the artificial intelligence model.
  • the first device sends the fourth beam association information, including:
  • the first device sends capability information including the fourth beam association information.
  • the fourth beam correlation information and the fifth beam correlation information are characterized by quantized and coded information; wherein the quantized and coded information is obtained based on the quantization interval.
  • the quasi-co-location information of the SSB with the same identifier and the same frequency domain position remains unchanged.
  • the fourth beam association information and the fifth beam association information are determined based on configuration information corresponding to the first reference signal; or
  • the fourth beam association information and the fifth beam association information are based on quasi-co-location with the first reference signal. determined by the configuration information of the second reference signal.
  • the second reference signal includes at least one of the following signals on the quasi-co-location relationship chain of the first reference signal:
  • the first reference signal configured with beam correlation information
  • the last reference signal configured with beam correlation information
  • SSB configured with beam association information.
  • this method is implemented in conjunction with the above-mentioned method executed by the first device.
  • the implementation of the above-mentioned method embodiment executed by the first device is applicable to this method and can also achieve the same technical effect.
  • the execution subject may be a beam processing device.
  • the beam processing method performed by the beam processing apparatus is used as an example to illustrate the beam processing apparatus provided by the embodiment of the present application.
  • a beam processing device 400 in this embodiment of the present application includes:
  • the first receiving module 410 is configured to receive first beam associated information; wherein the first beam associated information includes second beam associated information and/or third beam associated information, and the first beam associated information is used as artificial intelligence Input information to the model, the artificial intelligence model used for beam related functions;
  • the second beam correlation information is obtained by the second device after transforming the fourth beam correlation information, and the fourth beam correlation information is the beam correlation information of the first reference signal receiving end;
  • the third beam correlation information is obtained by the second device transforming the fifth beam correlation information, and the fifth beam correlation information is the beam correlation information of the first reference signal transmitting end.
  • the device also includes:
  • the second sending module is configured to send the fourth beam association information to the second device.
  • the fourth beam association information includes at least one of the following:
  • Desired beam association information is:
  • the fifth beam association information includes at least one of the following:
  • Desired beam association information is:
  • the transformation process includes at least one of the following methods:
  • the second beam related information and the third beam related information adopt the same transformation process.
  • the fourth beam associated information needs to be transformed, and the fourth beam associated information includes multiple In the case of multiple beam related information, at least one beam related information among the plurality of beam related information is the object of the transformation process.
  • the fifth beam associated information needs to be transformed, and when the fifth beam associated information includes multiple beam associated information, at least one beam associated information in the multiple beam associated information is the The object of transformation processing.
  • the type of the fourth beam associated information is different from the type of the fifth beam associated information.
  • the quantity of the fourth beam correlation information and the fifth beam correlation information is greater than or equal to the quantity of input information of the artificial intelligence model.
  • the second sending module is also used to:
  • the fourth beam correlation information and the fifth beam correlation information are characterized by quantized and coded information; wherein the quantized and coded information is obtained based on the quantization interval.
  • the quasi-co-location information of the SSB with the same identifier and the same frequency domain position remains unchanged.
  • the fourth beam association information and the fifth beam association information are determined based on configuration information corresponding to the first reference signal; or
  • the fourth beam association information and the fifth beam association information are determined based on the configuration information of the second reference signal that is quasi-co-located with the first reference signal.
  • the second reference signal includes at least one of the following signals on the quasi-co-location relationship chain of the first reference signal:
  • the first reference signal configured with beam correlation information
  • the last reference signal configured with beam correlation information
  • SSB configured with beam association information.
  • the first beam associated information received includes the second beam associated information and/or the third beam associated information, and since the second beam associated information and the third beam associated information are all processed by the second device, The information is obtained after transformation processing. Therefore, in the process of receiving the first beam-related information, the original information will not be directly exposed, thus ensuring the security of communication.
  • the beam processing device in the embodiment of the present application may be an electronic device, such as an electronic device with an operating system, or may be a component in the electronic device, such as an integrated circuit or chip.
  • the electronic device may be a terminal or other devices other than the terminal.
  • terminals may include but are not limited to the types of terminals 11 listed above, and other devices may be servers, network attached storage (Network Attached Storage, NAS), etc., which are not specifically limited in the embodiment of this application.
  • NAS Network Attached Storage
  • the beam processing device provided by the embodiment of the present application can implement each process implemented by the method embodiment in Figure 2 and achieve the same technical effect. To avoid duplication, the details will not be described here.
  • a beam processing device 500 in this embodiment of the present application includes:
  • the first sending module 510 is configured to send first beam associated information; wherein the first beam associated information includes second beam associated information and/or third beam associated information, and the first beam associated information is used as artificial intelligence Input information to the model, the artificial intelligence model used for beam related functions;
  • the second beam correlation information is obtained by the second device after transforming the fourth beam correlation information, and the fourth beam correlation information is the beam correlation information of the first reference signal receiving end;
  • the third beam correlation information is obtained by the second device transforming the fifth beam correlation information, and the fifth beam correlation information is the beam correlation information of the first reference signal transmitting end.
  • the device also includes:
  • the second receiving module is used to receive the fourth beam association information.
  • the device also includes:
  • the third receiving module is used to receive the fifth beam related information.
  • the fourth beam association information includes at least one of the following:
  • Desired beam association information is:
  • the fifth beam association information includes at least one of the following:
  • Desired beam association information is:
  • the transformation process includes at least one of the following methods:
  • the second beam related information and the third beam related information adopt the same transformation process.
  • the fourth beam associated information needs to be transformed, and when the fourth beam associated information includes multiple beam associated information, at least one beam associated information in the multiple beam associated information is the The object of transformation processing.
  • the fifth beam associated information needs to be transformed, and when the fifth beam associated information includes multiple beam associated information, at least one beam associated information in the multiple beam associated information is the The object of transformation processing.
  • the type of the fourth beam associated information is different from the type of the fifth beam associated information.
  • the quantity of the fourth beam correlation information and the fifth beam correlation information is greater than or equal to the quantity of input information of the artificial intelligence model.
  • the first device sends the fourth beam association information, including:
  • the first device sends capability information including the fourth beam association information.
  • the fourth beam correlation information and the fifth beam correlation information are characterized by quantized and coded information; wherein the quantized and coded information is obtained based on the quantization interval.
  • the quasi-co-location information of the SSB with the same identifier and the same frequency domain position remains unchanged.
  • the fourth beam association information and the fifth beam association information are determined based on configuration information corresponding to the first reference signal; or
  • the fourth beam association information and the fifth beam association information are determined based on the configuration information of the second reference signal that is quasi-co-located with the first reference signal.
  • the second reference signal includes at least one of the following signals on the quasi-co-location relationship chain of the first reference signal:
  • the first reference signal configured with beam correlation information
  • the last reference signal configured with beam correlation information
  • SSB configured with beam association information.
  • the device sends the first beam associated information, including the second beam associated information and/or the third beam associated information, and since the second beam associated information and the third beam associated information are both transformed by the second device, the original information Therefore, during the process of sending the first beam related information, the original information will not be directly exposed, thus ensuring the security of communication.
  • the beam processing device in the embodiment of the present application may be an electronic device, such as an electronic device with an operating system, or may be a component in the electronic device, such as an integrated circuit or chip.
  • the electronic device may be a terminal or other devices other than the terminal.
  • terminals may include but are not limited to the types of terminals 11 listed above, and other devices may be servers, network attached storage (Network Attached Storage, NAS), etc., which are not specifically limited in the embodiment of this application.
  • NAS Network Attached Storage
  • the beam processing device provided by the embodiment of the present application can implement each process implemented by the method embodiment in Figure 3 and achieve the same technical effect. To avoid duplication, the details will not be described here.
  • this embodiment of the present application also provides a communication device 600, which includes a processor 601 and a memory 602.
  • the memory 602 stores programs or instructions that can be run on the processor 601, for example.
  • the communication device 600 is a terminal, when the program or instruction is executed by the processor 601, each step of the above beam processing method embodiment is implemented, and the same technical effect can be achieved.
  • the communication device 600 is a network-side device, when the program or instruction is executed by the processor 601, each step of the above beam processing method embodiment is implemented, and the same technical effect can be achieved. To avoid duplication, the details will not be described here.
  • An embodiment of the present application also provides a communication device, including a processor and a communication interface, the communication interface being used to receive first beam association information; wherein the first beam association information includes second beam association information and/or the third beam association information.
  • a communication device including a processor and a communication interface, the communication interface being used to receive first beam association information; wherein the first beam association information includes second beam association information and/or the third beam association information.
  • Three beam correlation information, and the first beam correlation information is used as the input information of the artificial intelligence model, and the artificial intelligence model is used for the beam correlation function;
  • the second beam correlation information is obtained by the second device after transforming the fourth beam correlation information, and the fourth beam correlation information is the beam correlation information of the first reference signal receiving end;
  • the third beam correlation information is obtained by the second device transforming the fifth beam correlation information, and the fifth beam correlation information is the beam correlation information of the first reference signal transmitting end.
  • the communication interface is used to send and receive data under the control of the processor.
  • FIG. 7 is a schematic diagram of the hardware structure of the terminal when the communication device that implements the embodiment of the present application is a terminal.
  • the terminal 700 includes but is not limited to: a radio frequency unit 701, a network module 702, an audio output unit 703, an input unit 704, a sensor 705, a display unit 706, a user input unit 707, an interface unit 708, a memory 709, a processor 710, etc. At least some parts.
  • the terminal 700 may also include a power supply (such as a battery) that supplies power to various components.
  • the power supply may be logically connected to the processor 710 through a power management system, thereby managing charging, discharging, and power consumption through the power management system. Management and other functions.
  • the terminal structure shown in FIG. 7 does not constitute a limitation on the terminal.
  • the terminal may include more or fewer components than shown in the figure, or some components may be combined or arranged differently, which will not be described again here.
  • the input unit 704 may include a graphics processing unit (Graphics Processing Unit, GPU) 7041 and a microphone 7042.
  • the graphics processor 7041 is responsible for the image capture device (GPU) in the video capture mode or the image capture mode. Process the image data of still pictures or videos obtained by cameras (such as cameras).
  • the display unit 706 may include a display panel 7061, which may be configured in the form of a liquid crystal display, an organic light emitting diode, or the like.
  • the user input unit 707 includes a touch panel 7071 and at least one of other input devices 7072 .
  • Touch panel 7071 also called touch screen.
  • the touch panel 7071 may include two parts: a touch detection device and a touch controller.
  • Other input devices 7072 may include but are not limited to physical keyboards, function keys (such as volume control keys, switch keys, etc.), trackballs, mice, and joysticks, which will not be described again here.
  • the radio frequency unit 701 after receiving downlink data from the network side device, can transmit it to the processor 710 for processing; in addition, the radio frequency unit 701 can send uplink data to the network side device.
  • the radio frequency unit 701 includes, but is not limited to, an antenna, amplifier, transceiver, coupler, low noise amplifier, duplexer, etc.
  • Memory 709 may be used to store software programs or instructions as well as various data.
  • the memory 709 may mainly include a first storage area for storing programs or instructions and a second storage area for storing data, wherein the first storage area may store an operating system, an application program or instructions required for at least one function (such as a sound playback function, Image playback function, etc.) etc.
  • memory 709 may include volatile memory or non-volatile memory, or memory 709 may include both volatile and non-volatile memory.
  • the non-volatile memory can be read-only memory (Read-Only Memory, ROM), programmable read-only memory (Programmable ROM, PROM), erasable programmable read-only memory (Erasable PROM, EPROM), electrically removable memory. Erase programmable read-only memory (Electrically EPROM, EEPROM) or flash memory.
  • Volatile memory can be random access memory (Random Access Memory, RAM), static random access memory (Static RAM, SRAM), dynamic random access memory (Dynamic RAM, DRAM), synchronous dynamic random access memory Access memory (Synchronous DRAM, SDRAM), double data rate synchronous dynamic random access memory (Double Data Rate SDRAM, DDRSDRAM), enhanced synchronous dynamic random access memory (Enhanced SDRAM, ESDRAM), synchronous connection dynamic random access memory (Synch link DRAM, SLDRAM) and direct memory bus random access memory (Direct Rambus RAM, DRRAM).
  • RAM Random Access Memory
  • SRAM static random access memory
  • DRAM dynamic random access memory
  • DRAM synchronous dynamic random access memory Access memory
  • SDRAM double data rate synchronous dynamic random access memory
  • Double Data Rate SDRAM Double Data Rate SDRAM
  • ESDRAM enhanced synchronous dynamic random access memory
  • Synch link DRAM, SLDRAM synchronous connection dynamic random access memory
  • Direct Rambus RAM Direct Rambus RAM
  • the processor 710 may include one or more processing units; optionally, the processor 710 integrates an application processor and a modem processor, where the application processor mainly handles operations related to the operating system, user interface, application programs, etc., Modem processors mainly process wireless communication signals, such as baseband processors. It can be understood that the above-mentioned modem processor may not be integrated into the processor 710.
  • the radio frequency unit 701 is used to receive the first beam associated information; wherein the first beam associated information includes the second beam associated information and/or the third beam associated information, and the first beam associated information is used as artificial intelligence Input information to the model, the artificial intelligence model used for beam related functions;
  • the second beam correlation information is obtained by the second device after transforming the fourth beam correlation information, and the fourth beam correlation information is the beam correlation information of the first reference signal receiving end;
  • the third beam correlation information is obtained by the second device transforming the fifth beam correlation information, and the fifth beam correlation information is the beam correlation information of the first reference signal transmitting end.
  • the first beam associated information received by the terminal includes the second beam associated information and/or the third beam associated information, and because the second beam associated information and the third beam associated information both transform the original information through the second device Therefore, during the process of receiving the related information of the first beam, the original information will not be directly exposed, thus ensuring the security of communication.
  • the radio frequency unit 701 is also configured to send the fourth beam association information to the second device.
  • the fourth beam association information includes at least one of the following:
  • Desired beam association information is:
  • the fifth beam association information includes at least one of the following:
  • Desired beam association information is:
  • the transformation process includes at least one of the following methods:
  • the second beam related information and the third beam related information adopt the same transformation process.
  • the fourth beam associated information needs to be transformed, and the fourth beam associated information includes multiple In the case of multiple beam related information, at least one beam related information among the plurality of beam related information is the object of the transformation process.
  • the fifth beam associated information needs to be transformed, and when the fifth beam associated information includes multiple beam associated information, at least one beam associated information in the multiple beam associated information is the The object of transformation processing.
  • the type of the fourth beam associated information is different from the type of the fifth beam associated information.
  • the quantity of the fourth beam correlation information and the fifth beam correlation information is greater than or equal to the quantity of input information of the artificial intelligence model.
  • the radio frequency unit 701 is also configured to send capability information including the fourth beam association information.
  • the fourth beam correlation information and the fifth beam correlation information are characterized by quantized and coded information; wherein the quantized and coded information is obtained based on the quantization interval.
  • the quasi-co-location information of the SSB with the same identifier and the same frequency domain position remains unchanged.
  • the fourth beam association information and the fifth beam association information are determined based on the configuration information corresponding to the first reference signal;
  • the fourth beam association information and the fifth beam association information are determined based on the configuration information of the second reference signal that is quasi-co-located with the first reference signal.
  • the second reference signal includes at least one of the following signals on the quasi-co-located relationship chain of the first reference signal:
  • the first reference signal configured with beam correlation information
  • the last reference signal configured with beam correlation information
  • SSB configured with beam association information.
  • An embodiment of the present application also provides a communication device, including a processor and a communication interface, wherein the communication interface is used to send first beam association information; wherein the first beam association information includes second beam association information and/or or third beam related information, and the first beam related information is used as input information of an artificial intelligence model, and the artificial intelligence model is used for beam related functions;
  • the second beam correlation information is obtained by the second device after transforming the fourth beam correlation information, and the fourth beam correlation information is the beam correlation information of the first reference signal receiving end;
  • the third beam correlation information is obtained by the second device transforming the fifth beam correlation information, and the fifth beam correlation information is the beam correlation information of the first reference signal transmitting end.
  • the communication interface is used to send and receive data under the control of the processor.
  • FIG. 8 is a schematic diagram of the hardware results of the network-side device when the communication device that implements the embodiment of the present application is a network-side device.
  • the network side device 800 includes: an antenna 81 , a radio frequency device 82 , a baseband device 83 , a processor 84 and a memory 85 .
  • the antenna 81 is connected to the radio frequency device 82 .
  • the radio frequency device 82 receives information through the antenna 81 and sends the received information to the baseband device 83 for processing.
  • the baseband device 83 processes the information to be sent and sends it to the radio frequency device 82.
  • the radio frequency device 82 processes the received information and then sends it out through the antenna 81.
  • the method performed by the network side device in the above embodiment can be implemented in the baseband device 83, which includes a baseband processor.
  • the baseband device 83 may include, for example, at least one baseband board on which multiple chips are disposed, as shown in FIG. Program to perform the network device operations shown in the above method embodiments.
  • the network side device may also include a network interface 86, which is, for example, a common public radio interface (CPRI).
  • a network interface 86 which is, for example, a common public radio interface (CPRI).
  • CPRI common public radio interface
  • the network side device 800 in this embodiment of the present invention also includes: instructions or programs stored in the memory 85 and executable on the processor 84.
  • the processor 84 calls the instructions or programs in the memory 85 to execute the various operations shown in Figure 5. The method of module execution and achieving the same technical effect will not be described in detail here to avoid duplication.
  • Embodiments of the present application also provide a readable storage medium, with a program or instructions stored on the readable storage medium.
  • the program or instructions are executed by a processor, the above-mentioned beam processing method executed by the first device is implemented, or the above-mentioned beam processing method executed by the first device is implemented.
  • Each process of the embodiment of the beam processing method executed by the second device can achieve the same technical effect. To avoid duplication, it will not be described again here.
  • the processor is the processor in the communication device described in the above embodiment.
  • the readable storage medium includes computer readable storage media, such as computer read-only memory ROM, random access memory RAM, magnetic disk or optical disk, etc.
  • An embodiment of the present application further provides a chip.
  • the chip includes a processor and a communication interface.
  • the communication interface is coupled to the processor.
  • the processor is used to run programs or instructions to implement the above-mentioned operations executed by the first device.
  • the beam processing method, or each process of the above embodiment of the beam processing method executed by the second device can achieve the same technical effect. To avoid duplication, it will not be described again here.
  • chips mentioned in the embodiments of this application may also be called system-on-chip, system-on-a-chip, system-on-chip or system-on-chip, etc.
  • Embodiments of the present application further provide a computer program/program product.
  • the computer program/program product is stored in a storage medium.
  • the computer program/program product is executed by at least one processor to implement the above execution by the first device.
  • the beam processing method, or each process of the beam processing method embodiment performed by the second device can achieve the same technical effect. To avoid duplication, it will not be described again here.
  • An embodiment of the present application also provides a beam processing system, including: a first device and a second device.
  • the first device can be used to perform the steps of the beam processing method performed by the first device.
  • the second device can To perform the steps of the beam processing method performed by the above-mentioned second device.
  • the methods of the above embodiments can be implemented by means of software plus the necessary general hardware platform. Of course, it can also be implemented by hardware, but in many cases the former is better. implementation.
  • the technical solution of the present application can be embodied in the form of a computer software product that is essentially or contributes to related technologies.
  • the computer software product is stored in a storage medium (such as ROM/RAM, disk, CD), including several instructions to cause a terminal (which can be a mobile phone, computer, server, air conditioner, or network device, etc.) to execute the methods described in various embodiments of this application.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Security & Cryptography (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Radio Transmission System (AREA)

Abstract

本申请公开了一种波束处理方法、装置及设备,属于通信技术领域,本申请实施例的方法包括:第一设备接收第一波束关联信息;其中,所述第一波束关联信息包括第二波束关联信息和/或第三波束关联信息,且所述第一波束关联信息作为人工智能模型的输入信息,所述人工智能模型用于波束相关功能;所述第二波束关联信息是第二设备对第四波束关联信息进行变换处理后所得,所述第四波束关联信息是第一参考信号接收端的波束关联信息;所述第三波束关联信息是第二设备对第五波束关联信息进行变换处理后所得,所述第五波束关联信息是所述第一参考信号发送端的波束关联信息。

Description

波束处理方法、装置及设备
相关申请的交叉引用
本申请主张在2022年03月23日在中国提交的中国专利申请No.202210294652.5的优先权,其全部内容通过引用包含于此。
技术领域
本申请属于通信技术领域,具体涉及一种波束处理方法、装置及设备。
背景技术
人工智能(Artificial Intelligence,AI)目前在各个领域获得了广泛的应用,所以,在通信技术领域也提出了使用AI进行波束预测的方案。其中,为获得较好的性能,AI模型的输入不仅仅是波束质量相关信息,还需要包括其他更多的波束关联信息。
然而,这些波束关联信息在设备间直接传输,会暴露发送端和接收端波束赋形的实现,影响通信的安全。
发明内容
本申请实施例提供一种波束处理方法、装置及设备,能够解决波束关联信息在设备间传输所造成的发送端和接收端波束赋形暴露的问题。
第一方面,提供了一种波束处理方法,该方法包括:
第一设备接收第一波束关联信息;其中,所述第一波束关联信息包括第二波束关联信息和/或第三波束关联信息,且所述第一波束关联信息作为人工智能模型的输入信息,所述人工智能模型用于波束相关功能;
所述第二波束关联信息是第二设备对第四波束关联信息进行变换处理后所得,所述第四波束关联信息是第一参考信号接收端的波束关联信息;
所述第三波束关联信息是第二设备对第五波束关联信息进行变换处理后所得,所述第五波束关联信息是所述第一参考信号发送端的波束关联信息。
第二方面,提供了一种波束处理装置,包括:
第一接收模块,用于接收第一波束关联信息;其中,所述第一波束关联信息包括第二波束关联信息和/或第三波束关联信息,且所述第一波束关联信息作为人工智能模型的输入信息,所述人工智能模型用于波束相关功能;
所述第二波束关联信息是第二设备对第四波束关联信息进行变换处理后所得,所述第四波束关联信息是第一参考信号接收端的波束关联信息;
所述第三波束关联信息是第二设备对第五波束关联信息进行变换处理后所得,所述第五波束关联信息是所述第一参考信号发送端的波束关联信息。
第三方面,提供了一种波束处理方法,该方法包括:
第二设备发送第一波束关联信息;其中,所述第一波束关联信息包括第二波束关联信息和/或第三波束关联信息,且所述第一波束关联信息作为人工智能模型的输入信息,所述人工智能模型用于波束相关功能;
所述第二波束关联信息是所述第二设备对第四波束关联信息进行变换处理后所得,所述第四波束关联信息是第一参考信号接收端的波束关联信息;
所述第三波束关联信息是所述第二设备对第五波束关联信息进行变换处理后所得,所述第五波束关联信息是所述第一参考信号发送端的波束关联信息。
第四方面,提供了一种波束处理装置,包括:
第一发送模块,用于发送第一波束关联信息;其中,所述第一波束关联信息包括第二波束关联信息和/或第三波束关联信息,且所述第一波束关联信息作为人工智能模型的输入信息,所述人工智能模型用于波束相关功能;
所述第二波束关联信息是所述第二设备对第四波束关联信息进行变换处理后所得,所述第四波束关联信息是第一参考信号接收端的波束关联信息;
所述第三波束关联信息是所述第二设备对第五波束关联信息进行变换处理后所得,所述第五波束关联信息是所述第一参考信号发送端的波束关联信息。
第五方面,提供了一种通信设备,该终端包括处理器和存储器,所述存储器存储可在所述处理器上运行的程序或指令,所述程序或指令被所述处理器执行时实现如第一方面所述的方法,或者实现如第三方面所述的方法的步骤。
第六方面,提供了一种通信设备,包括处理器及通信接口,其中,所述通信接口用于接收第一波束关联信息;其中,所述第一波束关联信息包括第二波束关联信息和/或第三波束关联信息,且所述第一波束关联信息作为人工智能模型的输入信息,所述人工智能模型用于波束相关功能;
所述第二波束关联信息是第二设备对第四波束关联信息进行变换处理后所得,所述第四波束关联信息是第一参考信号接收端的波束关联信息;
所述第三波束关联信息是第二设备对第五波束关联信息进行变换处理后所得,所述第五波束关联信息是所述第一参考信号发送端的波束关联信息。
第七方面,提供了一种通信设备,包括处理器及通信接口,其中,所述通信接口用于发送第一波束关联信息;其中,所述第一波束关联信息包括第二波束关联信息和/或第三波束关联信息,且所述第一波束关联信息作为人工智能模型的输入信息,所述人工智能模型用于波束相关功能;
所述第二波束关联信息是所述第二设备对第四波束关联信息进行变换处理后所得,所述第四波束关联信息是第一参考信号接收端的波束关联信息;
所述第三波束关联信息是所述第二设备对第五波束关联信息进行变换处理后所得,所述第五波束关联信息是所述第一参考信号发送端的波束关联信息。
第八方面,提供了一种波束处理系统,包括:第一设备及第二设备,所述第一设备可用于执行如第一方面所述的波束处理方法的步骤,所述第二设备可用于执行如第三方面所述的波束处理方法的步骤。
第九方面,提供了一种可读存储介质,所述可读存储介质上存储程序或指令,所述程序或指令被处理器执行时实现如第一方面所述的方法的步骤,或者实现如第三方面所述的方法的步骤。
第十方面,提供了一种芯片,所述芯片包括处理器和通信接口,所述通信接口和所述处理器耦合,所述处理器用于运行程序或指令,实现如第一方面所述的方法,或实现如第三方面所述的方法。
第十一方面,提供了一种计算机程序/程序产品,所述计算机程序/程序产品被存储在存储介质中,所述计算机程序/程序产品被至少一个处理器执行以实现如第一方面所述的方法,或实现如第三方面所述的方法的步骤。
在本申请实施例中,第一设备接收到的第一波束关联信息,包括第二波束关联信息和/或第三波束关联信息,而由于第二波束关联信息、第三波束关联信息均是经第二设备对原信息进行变换处理后所得的,故,第一设备接收该第一波束关联信息的过程中,不会直接暴露原信息,保障了通信的安全性。
附图说明
图1是无线通信系统的框图;
图2是本申请实施例的波束处理方法的流程示意图之一;
图3是本申请实施例的波束处理方法的流程示意图之二;
图4是本申请实施例的波束处理装置的模块结构示意图之一;
图5是本申请实施例的波束处理装置的模块结构示意图之二;
图6是本申请实施例的通信设备的结构示意图;
图7是本申请实施例的终端的结构示意图;
图8是本申请实施例的网络侧设备的结构示意图。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚描述,显然,所描述的实施例是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员所获得的所有其他实施例,都属于本申请保护的范围。
本申请的说明书和权利要求书中的术语“第一”、“第二”等是用于区别类似的对象,而不用于描述特定的顺序或先后次序。应该理解这样使用的术语在适当情况下可以互换,以便本申请的实施例能够以除了在这里图示或描述的那些以外的顺序实施,且“第一”、“第二”所区别的对象通常为一类,并不限定对象的个数,例如第一对象可以是一个,也可以是多个。此外,说明书以及权利要求中“和/或”表示所连接对象的至少其中之一,字符“/”一般表示前后关联对象是一种“或”的关系。
值得指出的是,本申请实施例所描述的技术不限于长期演进型(Long Term Evolution,LTE)/LTE的演进(LTE-Advanced,LTE-A)系统,还可用于其他无线通信系统,诸如码分多址(Code Division Multiple Access,CDMA)、时分多址(Time Division Multiple Access,TDMA)、频分多址(Frequency Division Multiple Access,FDMA)、正交频分多址(Orthogonal Frequency Division Multiple Access,OFDMA)、单载波频分多址(Single-carrier Frequency Division Multiple Access,SC-FDMA)和其他系统。本申请实施例中的术语“系统”和“网络”常被可互换地使用,所描述的技术既可用于以上提及的系统和无线电技术,也可用于其他系统和无线电技术。以下描述出于示例目的描述了新空口(New Radio,NR)系统,并且在以下大部分描述中使用NR术语,但是这些技术也可应用于NR系统应用以外的应用,如第6代(6th Generation,6G)通信系统。
图1示出本申请实施例可应用的一种无线通信系统的框图。无线通信系统包括终端11和网络侧设备12。其中,终端11可以是手机、平板电脑(Tablet Personal Computer)、膝上型电脑(Laptop Computer)或称为笔记本电脑、个人数字助理(Personal Digital Assistant,PDA)、掌上电脑、上网本、超级移动个人计算机(ultra-mobile personal computer,UMPC)、移动上网装置(Mobile Internet Device,MID)、增强现实(augmented reality,AR)/虚拟现实(virtual reality,VR)设备、机器人、可穿戴式设备(Wearable Device)、车载设备(Vehicle User Equipment,VUE)、行人终端(Pedestrian User Equipment,PUE)、智能家居(具有无线通信功能的家居设备,如冰箱、电视、洗衣机或者家具等)、游戏机、个人计算机(personal computer,PC)、柜员机或者自助机等终端侧设备,可穿戴式设备包括:智能手表、智能手环、智能耳机、智能眼镜、智能首饰(智能手镯、智能手链、智能戒指、智能项链、智能脚镯、智能脚链等)、智能腕带、智能服装等。需要说明的是,在本申请实施例并不限定终端11的具体类型。网络侧设备12可以包括接入网设备或核心网设备,其中,接入网设备也可以称为无线接入网设备、无线接入网(Radio Access Network,RAN)、无线接入网功能或无线接入网单元。接入网设备可以包括基站、无线局域网(Wireless Local Area Network,WLAN)接入点或WiFi节点等,基站可被称为节点B、演进节点B(eNB)、接入点、基收发机站(Base Transceiver Station,BTS)、无线电基站、无线电收发机、基本服务集(Basic Service Set,BSS)、扩展服务集(Extended Service Set,ESS)、家用B节点、家用演进型B节点、发送接收点(Transmitting Receiving Point,TRP)或所述领域中其他某个合适的术语,只要达到相同的技术效果,所述基站不限于特定技术词汇,需要说明的 是,在本申请实施例中仅以NR系统中的基站为例进行介绍,并不限定基站的具体类型。
应该知道的是,在本申请实施例中,波束包括发送波束、接收波束和波束对中的。所以,本申请实施例中的波束集可以是发送波束集、接收波束集、波束对集中的一者或任意组合。
另外,在本申请实施例中,AI模型的输入信息包括以下至少一项:
期望信息;
波束质量相关信息;
第一波束关联信息;
时间相关信息。
可选地,所述期望信息包括以下至少一项:
第二波束关联信息;
预测时间相关信息。
其中,波束质量相关信息是指能表征波束质量的信息,包括但不限于以下至少之一:层1的信噪比(Layer 1 Signal to Interference and Noise Ratio,L1-SINR),层1的参考信号接收功率(Layer 1 reference signal received power,L1-RSRP),层1的参考信号接收质量(Layer 1 Reference Signal Received Quality,L1-RSRQ),层3的信噪比(Layer 3 Signal to Interference and Noise Ratio,L3-SINR),层3的参考信号接收功率(Layer 3 reference signal received power,L3-RSRP),层3的参考信号接收质量(Layer 3 Reference Signal Received Quality,L3-RSRQ)等。
其中,第一波束关联信息可以包括发送波束关联信息,接收波束关联信息和波束对关联信息中的至少一项。同样的,第二波束关联信息可以包括发送波束关联信息,接收波束关联信息和波束对关联信息中的至少一项。
例如,第一设备接收第二设备发送的第一参考信号,第一波束关联信息包括第二设备发送波束关联信息,第一设备接收波束关联信息,以及第二设备发送波束与第一设备接收波束的波束对关联信息中的至少一者。而第二波束关联信息则包括第一设备期望的第二设备发送波束关联信息,第一设备期望的第一设备接收波束关联信息,以及第一设备期望的第二设备发送波束与第一设备接收波束的波束对关联信息中的至少一者。
需要说明的是,该实施例中,波束关联信息用于表征波束对应的关联信息。可选地,波束关联信息包括以下至少一项:波束标识相关信息,波束角度相关信息,波束增益相关信息。
其中,波束标识相关信息,也是波束身份相关信息,用于表征波束的身份识别的相关信息,包含但不限于以下至少之一:发送波束标识(user identifier,ID),接收波束ID,波束对ID,所述波束对应的参考信号集ID,所述波束对应的参考信号资源ID,唯一标识的随机ID,额外AI模型(或AI网络)处理后的编码值,波束角度相关信息等。
其中,波束角度相关信息用于表征所述波束对应的角度相关信息,包含但不限于以下 至少之一:波束对角度相关信息,发送角度相关信息,接收角度相关信息。这里,角度相关信息是用于表征角度的相关信息,例如:角度,弧度,索引编码值,额外AI网络处理后的编码值等。
其中,波束增益相关信息用于表征所述波束和/或天线的增益相关信息,包括但不限于以下至少之一:天线相对增益(单位dBi),等效全向辐射功率波束功率谱(Effective Isotropic Radiated Power,EIRP),波束角度增益,波束角度增益谱(也就是一个波束相对于不同角度上的增益,包括完整的或部分增益谱信息),每个波束角度对应的EIRP,主瓣角度,副瓣角度,副瓣数量,副瓣分布,天线数量,波束扫描水平覆盖范围,波束扫描垂直覆盖范围,3dB宽度,6dB宽度等。
可选地,角度相关信息和波束标识相关信息中至少一项可以是通过二维分量(可以是水平-垂直分量)进行描述,或通过更高维度的分量信息进行描述确定。
下面结合附图,通过一些实施例及其应用场景对本申请实施例提供的一种波束处理方法、装置及设备进行详细地说明。
如图2所示,本申请实施例的一种波束处理方法,包括:
步骤201,第一设备接收第一波束关联信息;其中,所述第一波束关联信息包括第二波束关联信息和/或第三波束关联信息,且所述第一波束关联信息作为人工智能模型的输入信息,所述人工智能模型用于波束相关功能;
所述第二波束关联信息是第二设备对第四波束关联信息进行变换处理后所得,所述第四波束关联信息是第一参考信号接收端的波束关联信息;
所述第三波束关联信息是第二设备对第五波束关联信息进行变换处理后所得,所述第五波束关联信息是所述第一参考信号发送端的波束关联信息。
这里,波束相关功能包括波束预测,波束指示,波束恢复,波束训练等。
按照上述步骤201,第一设备接收到的第一波束关联信息,包括第二波束关联信息和/或第三波束关联信息,而由于第二波束关联信息、第三波束关联信息均是经第二设备对原信息进行变换处理后所得的,故,第一设备接收该第一波束关联信息的过程中,不会直接暴露原信息,保障了通信的安全性。
可选地,所述第一设备接收所述第一波束关联信息之前,还包括:
所述第一设备向所述第二设备发送所述第四波束关联信息。
即,第一设备会向第二设备发送第四波束关联信息,以便第二设备对该第四波束关联信息进行变换处理。这里,虽然暴露了第四波束关联信息,但第五波束关联信息是第二设备的波束关联信息或第二设备接收的第三设备的波束关联信息,仍然能够避免第一设备和第二设备之间第五波束关联信息的暴露,保障了一定的通信安全性。
其中,若第二设备与第一设备进行第一参考信号的传输,第一设备和第二设备均可以是终端或网络侧设备。例如,第二设备(如基站)向第一设备(如终端)发送该第一参考信号,则第四波束关联信息是终端监测基站发送第一参考信号的波束(发送波束、接收波 束、波束对)所得的波束关联信息;第五波束关联信息是基站监测其发送第一参考信号的波束(发送波束、接收波束、波束对)所得的波束关联信息。
若第二设备是辅助网络中心单元,而不参与第一参考信号的收发,该第二设备除接收第一设备发送的第四波束关联信息之外,还可以接收第三设备发送的第五波束关联信息,然后分别进行变换处理得到第二波束关联信息、第三波束关联信息,以便第二设备可以将该第二波束关联信息和/或该第三波束关联信息发送至第一设备。
当然,第二设备也可以将该第二波束关联信息和/或该第三波束关联信息发送至第三设备。这里,第三设备与第一设备进行第一参考信号的传输。
可选地,该实施例中,所述第四波束关联信息包括以下至少一项:
发送波束关联信息;
接收波束关联信息;
期望的波束关联信息。
其中,若第一设备为第一参考信号的接收端,第二设备为第一参考信号的发送端,优选地,所述第四波束关联信息包括但不限于以下至少一项:第一设备接收波束关联信息;第一设备期望的第一设备接收波束关联信息;第一设备期望的第一设备接收波束和第二设备发送波束的波束对关联信息。
此外,第二波束关联信息作为第四波束关联信息进行变换处理后所得,该第二波束关联信息也包括以下至少一项:发送波束关联信息;接收波束关联信息;期望的波束关联信息。具体实现同第四波束关联信息,在此不再赘述。
可选地,该实施例中,所述第五波束关联信息包括以下至少一项:
发送波束关联信息;
接收波束关联信息;
期望的波束关联信息。
其中,若第一设备为第一参考信号的接收端,第二设备为第一参考信号的发送端,优选地,所述第五波束关联信息包括但不限于以下至少一项:第二设备发送波束关联信息;第一设备期望的第二设备发送波束关联信息;第一设备期望的第一设备接收波束和第二设备发送波束的波束对关联信息。
此外,第三波束关联信息作为第五波束关联信息进行变换处理后所得,该第三波束关联信息也包括以下至少一项:发送波束关联信息;接收波束关联信息;期望的波束关联信息。具体实现如上所述,在此不再赘述。
可选地,该实施例中,所述变换处理包括以下至少一种方式:
预设模型的变换;
基于随机数的变换;
哈希变换。
这里,预设模型是配置的变换处理模型,该变换处理模型也可以是AI模型。采用预 设模型进行变换,是将第四波束关联信息输入到该预设模型,得到输出第二波束关联信息;将第五波束关联信息输入到该预设模型,得到输出第三波束关联信息。
这里,基于随机数的变换可以是为信息随机分配对应的数值。以波束关联信息是波束角度为例,采用基于随机数的变换,是为波束角度随机分配一个数值,如波束角度为60度,随机分配的数值为3,该数值3即为对波束角度60度进行变换处理所得。
可选地,第二设备采用的变换处理的方式,是与AI模型的训练和推理的输入信息处理相关。
也就是说,AI模型在训练和推理的处理过程中,会确定对其输入信息的变换处理方式,如此,第二设备会采用所确定的变换处理的方式对原信息进行变换,以便不影响后续输入AI模型。
可选地,考虑到第二波束关联信息和第三波束关联信息作为AI模型的输入信息,往往是相同属性的,故,该实施例中,所述第二波束关联信息和所述第三波束关联信息采用相同的变换处理。
也就是说,第二波束关联信息是第四波束关联信息经哈希变换所得,则第三波束关联信息也需要是第五波束关联信息经哈希变换所得。
可选地,所述第四波束关联信息需要进行变换处理,且所述第四波束关联信息包括多个波束关联信息的情况下,所述多个波束关联信息中的至少一个波束关联信息为所述变换处理的对象。
可选地,所述第五波束关联信息需要进行变换处理,且所述第五波束关联信息包括多个波束关联信息的情况下,所述多个波束关联信息中的至少一个波束关联信息为所述变换处理的对象。
可选地,所述第四波束关联信息的类型与所述第五波束关联信息的类型不同。例如,第四波束关联信息包含波束角度相关信息,第五波束关联信息包含波束身份相关信息。
可选地,该实施例中,所述第四波束关联信息和所述第五波束相关的数量大于或等于所述人工智能模型的输入信息的数量。
这样,由于变换处理并不会改变信息的数量,第二波束关联信息和第三波束关联信息数量大于或等于AI模型的输入信息的数量。而第一设备则可在第二波束关联信息和第三波束关联信息中,按照AI模型所需输入的波束关联信息的数量选择相同数量的信息,并将选择后的信息输入到AI模型。
可选地,该实施例中,所述第一设备发送所述第四波束关联信息,包括:
所述第一设备发送包括所述第四波束关联信息的能力信息。
即,第一设备上报能力信息,来发送第四波束关联信息。
可选地,该实施例中,所述第四波束关联信息和所述第五波束关联信息是采用量化编码后的信息表征的;其中,所述量化编码后的信息是基于量化区间获得的。
这里,该量化区间可以通过交互确定。例如,波束关联信息是波束角度时,量化区间 配置为10度,则以每10度进行一次量化。
可选地,该实施例中,所述第四波束关联信息和所述第五波束关联信息未与同步信号块(Synchronization Signal Block,SSB)关联的情况下,具有相同标识、且频域位置相同的SSB的准共址信息保持不变。
即,对于第一设备,第四波束关联信息未与SSB关联的情况下,具有相同标识、且频域位置相同的SSB的准共址信息保持不变。对于第二设备,第五波束关联信息未与SSB关联的情况下,具有相同标识、且频域位置相同的SSB的准共址信息保持不变。
可选地,该实施例中,所述第四波束关联信息和所述第五波束关联信息是基于第一参考信号对应的配置信息确定的;或者
所述第四波束关联信息和所述第五波束关联信息是基于与所述第一参考信号准共址的第二参考信号的配置信息确定的。
这里,该第一参考信号可以是上述任一波束集合的波束所对应的参考信号,或者是AI模型输入的波束质量信息对应的参考信号。
以第四波束关联信息基于第一参考信号对应的配置信息确定为例,即第四波束关联信息可以直接获取。
例如,第一参考信号为信道状态信息参考信号(Channel State Information Reference Signal,CSI-RS),一个CSI-RS的配置信息中包括该CSI-RS关联的一个SSB索引(index)。波束关联信息是SSB index时,对于一个CSI-RS,对该CSI-RS交互配置信息(一个关联的SSB index),可直接确定波束关联信息。
又如,第一参考信号为SSB,一个SSB的配置信息中包括该SSB关联的一个SSB index。波束关联信息是SSB index时,对于一个SSB,对该SSB交互配置信息(一个关联的SSB index)或使用该SSB的index,可直接确定波束关联信息。
同样的,第五波束关联信息基于第一参考信号对应的配置信息确定,同第四波束关联信息,在此不再赘述。
第四波束关联信息基于与第一参考信号准共址的第二参考信号的配置信息确定,即第四波束关联信息可以隐式方式间接获取。第五波束关联信息基于与第一参考信号准共址的第二参考信号的配置信息确定,即第五波束关联信息可以隐式方式间接获取。
可选地,所述第二参考信号包括在所述第一参考信号准共址关系链上的以下至少一个信号:
第一个配置了波束关联信息的参考信号;
最后一个配置了波束关联信息的参考信号;
SSB;
配置了波束关联信息的SSB。
也就是说,第二参考信号可以是在第一参考信号准共址关系链上的第一个配置波束关联信息的参考信号;可以是第一参考信号准共址关系链上的最后一个配置波束关联信息的 参考信号;可以是在第一参考信号准共址关系链上的SSB;可以是在第一参考信号准共址关系链上配置了波束关联信息的SSB。
具体的,通过准共址关系链(Quasi co-location chain,QCL chain)对应的上一级参考信号,或通过QCL chain一直找上一级参考信号,直到找到特定特征时停止,所述特定特征即可作为波束关联信息。其中,QCL chain也可替换为QCL type D。
例如,波束关联信息是SSB index,对于一个第一参考信号(如CSI-RS),根据CSI-RS配置的QCL关系,找到CSI-RS关联的SSB index即为波束关联信息。
例如,波束关联信息是波束角度时,对于一个CSI-RS,根据CSI-RS配置的QCL关系,找到CSI-RS关联的SSB index,该SSB index关联的波束角度即为该CSI-RS的波束关联信息。
综上,第一设备接收到的第一波束关联信息,包括第二波束关联信息和/或第三波束关联信息,而由于第二波束关联信息、第三波束关联信息均是经第二设备对原信息进行变换处理后所得的,故,第一设备接收该第一波束关联信息的过程中,不会直接暴露原信息,保障了通信的安全性。
如图3所示,本申请实施例的一种波束处理方法,包括:
步骤301,第二设备发送第一波束关联信息;其中,所述第一波束关联信息包括第二波束关联信息和/或第三波束关联信息,且所述第一波束关联信息作为人工智能模型的输入信息,所述人工智能模型用于波束相关功能;
所述第二波束关联信息是所述第二设备对第四波束关联信息进行变换处理后所得,所述第四波束关联信息是第一参考信号接收端的波束关联信息;
所述第三波束关联信息是所述第二设备对第五波束关联信息进行变换处理后所得,所述第五波束关联信息是所述第一参考信号发送端的波束关联信息。
这样,对应于上述实施例第一设备执行的方法,第二设备发送第一波束关联信息,包括第二波束关联信息和/或第三波束关联信息,而由于第二波束关联信息、第三波束关联信息均是经第二设备对原信息进行变换处理后所得的,故,发送该第一波束关联信息的过程中,不会直接暴露原信息,保障了通信的安全性。
可选地,所述第二设备发送所述第二波束关联信息之前,还包括:
所述第二设备接收所述第四波束关联信息。
即,第一设备会向第二设备发送第四波束关联信息,以便第二设备对该第四波束关联信息进行变换处理。这里,虽然暴露了第四波束关联信息,但仍然能够避免第五波束关联信息的暴露,保障了一定的通信安全性。
可选地,所述第二设备发送所述第三波束关联信息之前,还包括:
所述第二设备接收所述第五波束关联信息。
这里,针对若第二设备不参与第一参考信号的收发,如第二设备是辅助网络中心单元,而,该第二设备除接收第一设备发送的第四波束关联信息之外,还可以接收第三设备发送 的第五波束关联信息,然后分别进行变换处理得到第二波束关联信息、第三波束关联信息,以便第二设备可以将该第二波束关联信息和/或该第三波束关联信息发送至第一设备。
当然,第二设备也可以将该第二波束关联信息和/或该第三波束关联信息发送至第三设备。这里,第三设备与第一设备进行第一参考信号的传输。
可选地,所述第四波束关联信息包括以下至少一项:
发送波束关联信息;
接收波束关联信息;
期望的波束关联信息。
可选地,所述第五波束关联信息包括以下至少一项:
发送波束关联信息;
接收波束关联信息;
期望的波束关联信息。
可选地,所述变换处理包括以下至少一种方式:
预设模型的变换;
基于随机数的变换;
哈希变换。
可选地,所述第二波束关联信息和所述第三波束关联信息采用相同的变换处理。
可选地,所述第四波束关联信息需要进行变换处理,且所述第四波束关联信息包括多个波束关联信息的情况下,所述多个波束关联信息中的至少一个波束关联信息为所述变换处理的对象。
可选地,所述第五波束关联信息需要进行变换处理,且所述第五波束关联信息包括多个波束关联信息的情况下,所述多个波束关联信息中的至少一个波束关联信息为所述变换处理的对象。
可选地,所述第四波束关联信息的类型与所述第五波束关联信息的类型不同。
可选地,所述第四波束关联信息和所述第五波束关联信息数量大于或等于所述人工智能模型的输入信息的数量。
可选地,所述第一设备发送所述第四波束关联信息,包括:
所述第一设备发送包括所述第四波束关联信息的能力信息。
可选地,所述第四波束关联信息和所述第五波束关联信息是采用量化编码后的信息表征的;其中,所述量化编码后的信息是基于量化区间获得的。
可选地,所述第四波束关联信息和所述第五波束关联信息未与同步信号块SSB关联的情况下,具有相同标识、且频域位置相同的SSB的准共址信息保持不变。
可选地,所述第四波束关联信息和所述第五波束关联信息是基于第一参考信号对应的配置信息确定的;或者
所述第四波束关联信息和所述第五波束关联信息是基于与所述第一参考信号准共址 的第二参考信号的配置信息确定的。
可选地,所述第二参考信号包括在所述第一参考信号准共址关系链上的以下至少一个信号:
第一个配置了波束关联信息的参考信号;
最后一个配置了波束关联信息的参考信号;
SSB;
配置了波束关联信息的SSB。
需要说明的是,该方法是与上述由第一设备执行的方法配合实现的,上述由第一设备执行的方法实施例的实现方式适用于该方法,也能达到相同的技术效果。
本申请实施例提供的波束处理方法,执行主体可以为波束处理装置。本申请实施例中以波束处理装置执行波束处理方法为例,说明本申请实施例提供的波束处理装置。
如图4所示,本申请实施例的一种波束处理装置400,包括:
第一接收模块410,用于接收第一波束关联信息;其中,所述第一波束关联信息包括第二波束关联信息和/或第三波束关联信息,且所述第一波束关联信息作为人工智能模型的输入信息,所述人工智能模型用于波束相关功能;
所述第二波束关联信息是第二设备对第四波束关联信息进行变换处理后所得,所述第四波束关联信息是第一参考信号接收端的波束关联信息;
所述第三波束关联信息是第二设备对第五波束关联信息进行变换处理后所得,所述第五波束关联信息是所述第一参考信号发送端的波束关联信息。
可选地,所述装置还包括:
第二发送模块,用于向所述第二设备发送所述第四波束关联信息。
可选地,所述第四波束关联信息包括以下至少一项:
发送波束关联信息;
接收波束关联信息;
期望的波束关联信息。
可选地,所述第五波束关联信息包括以下至少一项:
发送波束关联信息;
接收波束关联信息;
期望的波束关联信息。
可选地,所述变换处理包括以下至少一种方式:
预设模型的变换;
基于随机数的变换;
哈希变换。
可选地,所述第二波束关联信息和所述第三波束关联信息采用相同的变换处理。
可选地,所述第四波束关联信息需要进行变换处理,且所述第四波束关联信息包括多 个波束关联信息的情况下,所述多个波束关联信息中的至少一个波束关联信息为所述变换处理的对象。
可选地,所述第五波束关联信息需要进行变换处理,且所述第五波束关联信息包括多个波束关联信息的情况下,所述多个波束关联信息中的至少一个波束关联信息为所述变换处理的对象。
可选地,所述第四波束关联信息的类型与所述第五波束关联信息的类型不同。
可选地,所述第四波束关联信息和所述第五波束关联信息数量大于或等于所述人工智能模型的输入信息的数量。
可选地,所述第二发送模块还用于:
发送包括所述第四波束关联信息的能力信息。
可选地,所述第四波束关联信息和所述第五波束关联信息是采用量化编码后的信息表征的;其中,所述量化编码后的信息是基于量化区间获得的。
可选地,所述第四波束关联信息和所述第五波束关联信息未与同步信号块SSB关联的情况下,具有相同标识、且频域位置相同的SSB的准共址信息保持不变。
可选地,所述第四波束关联信息和所述第五波束关联信息是基于第一参考信号对应的配置信息确定的;或者
所述第四波束关联信息和所述第五波束关联信息是基于与所述第一参考信号准共址的第二参考信号的配置信息确定的。
可选地,所述第二参考信号包括在所述第一参考信号准共址关系链上的以下至少一个信号:
第一个配置了波束关联信息的参考信号;
最后一个配置了波束关联信息的参考信号;
SSB;
配置了波束关联信息的SSB。
该波束处理装置,接收到的第一波束关联信息,包括第二波束关联信息和/或第三波束关联信息,而由于第二波束关联信息、第三波束关联信息均是经第二设备对原信息进行变换处理后所得的,故,接收该第一波束关联信息的过程中,不会直接暴露原信息,保障了通信的安全性。
本申请实施例中的波束处理装置可以是电子设备,例如具有操作系统的电子设备,也可以是电子设备中的部件,例如集成电路或芯片。该电子设备可以是终端,也可以为除终端之外的其他设备。示例性的,终端可以包括但不限于上述所列举的终端11的类型,其他设备可以为服务器、网络附属存储器(Network Attached Storage,NAS)等,本申请实施例不作具体限定。
本申请实施例提供的波束处理装置能够实现图2的方法实施例实现的各个过程,并达到相同的技术效果,为避免重复,这里不再赘述。
如图5所示,本申请实施例的一种波束处理装置500,包括:
第一发送模块510,用于发送第一波束关联信息;其中,所述第一波束关联信息包括第二波束关联信息和/或第三波束关联信息,且所述第一波束关联信息作为人工智能模型的输入信息,所述人工智能模型用于波束相关功能;
所述第二波束关联信息是所述第二设备对第四波束关联信息进行变换处理后所得,所述第四波束关联信息是第一参考信号接收端的波束关联信息;
所述第三波束关联信息是所述第二设备对第五波束关联信息进行变换处理后所得,所述第五波束关联信息是所述第一参考信号发送端的波束关联信息。
可选地,所述装置还包括:
第二接收模块,用于接收所述第四波束关联信息。
可选地,所述装置还包括:
第三接收模块,用于接收所述第五波束关联信息。
可选地,所述第四波束关联信息包括以下至少一项:
发送波束关联信息;
接收波束关联信息;
期望的波束关联信息。
可选地,所述第五波束关联信息包括以下至少一项:
发送波束关联信息;
接收波束关联信息;
期望的波束关联信息。
可选地,所述变换处理包括以下至少一种方式:
预设模型的变换;
基于随机数的变换;
哈希变换。
可选地,所述第二波束关联信息和所述第三波束关联信息采用相同的变换处理。
可选地,所述第四波束关联信息需要进行变换处理,且所述第四波束关联信息包括多个波束关联信息的情况下,所述多个波束关联信息中的至少一个波束关联信息为所述变换处理的对象。
可选地,所述第五波束关联信息需要进行变换处理,且所述第五波束关联信息包括多个波束关联信息的情况下,所述多个波束关联信息中的至少一个波束关联信息为所述变换处理的对象。
可选地,所述第四波束关联信息的类型与所述第五波束关联信息的类型不同。
可选地,所述第四波束关联信息和所述第五波束关联信息数量大于或等于所述人工智能模型的输入信息的数量。
可选地,所述第一设备发送所述第四波束关联信息,包括:
所述第一设备发送包括所述第四波束关联信息的能力信息。
可选地,所述第四波束关联信息和所述第五波束关联信息是采用量化编码后的信息表征的;其中,所述量化编码后的信息是基于量化区间获得的。
可选地,所述第四波束关联信息和所述第五波束关联信息未与同步信号块SSB关联的情况下,具有相同标识、且频域位置相同的SSB的准共址信息保持不变。
可选地,所述第四波束关联信息和所述第五波束关联信息是基于第一参考信号对应的配置信息确定的;或者
所述第四波束关联信息和所述第五波束关联信息是基于与所述第一参考信号准共址的第二参考信号的配置信息确定的。
可选地,所述第二参考信号包括在所述第一参考信号准共址关系链上的以下至少一个信号:
第一个配置了波束关联信息的参考信号;
最后一个配置了波束关联信息的参考信号;
SSB;
配置了波束关联信息的SSB。
该装置发送第一波束关联信息,包括第二波束关联信息和/或第三波束关联信息,而由于第二波束关联信息、第三波束关联信息均是经第二设备对原信息进行变换处理后所得的,故,发送该第一波束关联信息的过程中,不会直接暴露原信息,保障了通信的安全性。
本申请实施例中的波束处理装置可以是电子设备,例如具有操作系统的电子设备,也可以是电子设备中的部件,例如集成电路或芯片。该电子设备可以是终端,也可以为除终端之外的其他设备。示例性的,终端可以包括但不限于上述所列举的终端11的类型,其他设备可以为服务器、网络附属存储器(Network Attached Storage,NAS)等,本申请实施例不作具体限定。
本申请实施例提供的波束处理装置能够实现图3的方法实施例实现的各个过程,并达到相同的技术效果,为避免重复,这里不再赘述。
可选的,如图6所示,本申请实施例还提供一种通信设备600,包括处理器601和存储器602,存储器602上存储有可在所述处理器601上运行的程序或指令,例如,该通信设备600为终端时,该程序或指令被处理器601执行时实现上述波束处理方法实施例的各个步骤,且能达到相同的技术效果。该通信设备600为网络侧设备时,该程序或指令被处理器601执行时实现上述波束处理方法实施例的各个步骤,且能达到相同的技术效果,为避免重复,这里不再赘述。
本申请实施例还提供一种通信设备,包括处理器和通信接口,所述通信接口用于接收第一波束关联信息;其中,所述第一波束关联信息包括第二波束关联信息和/或第三波束关联信息,且所述第一波束关联信息作为人工智能模型的输入信息,所述人工智能模型用于波束相关功能;
所述第二波束关联信息是第二设备对第四波束关联信息进行变换处理后所得,所述第四波束关联信息是第一参考信号接收端的波束关联信息;
所述第三波束关联信息是第二设备对第五波束关联信息进行变换处理后所得,所述第五波束关联信息是所述第一参考信号发送端的波束关联信息。
所述通信接口用于在所述处理器的控制下收发数据。
该通信设备实施例与上述第一设备执行的方法实施例对应,上述方法实施例的各个实施过程和实现方式均可适用于该通信设备实施例中,且能达到相同的技术效果。具体地,图7为实现本申请实施例的通信设备为终端的情况下,终端的硬件结构示意图。
该终端700包括但不限于:射频单元701、网络模块702、音频输出单元703、输入单元704、传感器705、显示单元706、用户输入单元707、接口单元708、存储器709以及处理器710等中的至少部分部件。
本领域技术人员可以理解,终端700还可以包括给各个部件供电的电源(比如电池),电源可以通过电源管理系统与处理器710逻辑相连,从而通过电源管理系统实现管理充电、放电、以及功耗管理等功能。图7中示出的终端结构并不构成对终端的限定,终端可以包括比图示更多或更少的部件,或者组合某些部件,或者不同的部件布置,在此不再赘述。
应理解的是,本申请实施例中,输入单元704可以包括图形处理单元(Graphics Processing Unit,GPU)7041和麦克风7042,图形处理器7041对在视频捕获模式或图像捕获模式中由图像捕获装置(如摄像头)获得的静态图片或视频的图像数据进行处理。显示单元706可包括显示面板7061,可以采用液晶显示器、有机发光二极管等形式来配置显示面板7061。用户输入单元707包括触控面板7071以及其他输入设备7072中的至少一种。触控面板7071,也称为触摸屏。触控面板7071可包括触摸检测装置和触摸控制器两个部分。其他输入设备7072可以包括但不限于物理键盘、功能键(比如音量控制按键、开关按键等)、轨迹球、鼠标、操作杆,在此不再赘述。
本申请实施例中,射频单元701接收来自网络侧设备的下行数据后,可以传输给处理器710进行处理;另外,射频单元701可以向网络侧设备发送上行数据。通常,射频单元701包括但不限于天线、放大器、收发信机、耦合器、低噪声放大器、双工器等。
存储器709可用于存储软件程序或指令以及各种数据。存储器709可主要包括存储程序或指令的第一存储区和存储数据的第二存储区,其中,第一存储区可存储操作系统、至少一个功能所需的应用程序或指令(比如声音播放功能、图像播放功能等)等。此外,存储器709可以包括易失性存储器或非易失性存储器,或者,存储器709可以包括易失性和非易失性存储器两者。其中,非易失性存储器可以是只读存储器(Read-Only Memory,ROM)、可编程只读存储器(Programmable ROM,PROM)、可擦除可编程只读存储器(Erasable PROM,EPROM)、电可擦除可编程只读存储器(Electrically EPROM,EEPROM)或闪存。易失性存储器可以是随机存取存储器(Random Access Memory,RAM),静态随机存取存储器(Static RAM,SRAM)、动态随机存取存储器(Dynamic RAM,DRAM)、同步动态随机存 取存储器(Synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(Double Data Rate SDRAM,DDRSDRAM)、增强型同步动态随机存取存储器(Enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(Synch link DRAM,SLDRAM)和直接内存总线随机存取存储器(Direct Rambus RAM,DRRAM)。本申请实施例中的存储器709包括但不限于这些和任意其它适合类型的存储器。
处理器710可包括一个或多个处理单元;可选的,处理器710集成应用处理器和调制解调处理器,其中,应用处理器主要处理涉及操作系统、用户界面和应用程序等的操作,调制解调处理器主要处理无线通信信号,如基带处理器。可以理解的是,上述调制解调处理器也可以不集成到处理器710中。
其中,射频单元701,用于接收第一波束关联信息;其中,所述第一波束关联信息包括第二波束关联信息和/或第三波束关联信息,且所述第一波束关联信息作为人工智能模型的输入信息,所述人工智能模型用于波束相关功能;
所述第二波束关联信息是第二设备对第四波束关联信息进行变换处理后所得,所述第四波束关联信息是第一参考信号接收端的波束关联信息;
所述第三波束关联信息是第二设备对第五波束关联信息进行变换处理后所得,所述第五波束关联信息是所述第一参考信号发送端的波束关联信息。
该终端接收到的第一波束关联信息,包括第二波束关联信息和/或第三波束关联信息,而由于第二波束关联信息、第三波束关联信息均是经第二设备对原信息进行变换处理后所得的,故,接收该第一波束关联信息的过程中,不会直接暴露原信息,保障了通信的安全性。
可选的,射频单元701,还用于向所述第二设备发送所述第四波束关联信息。
可选的,所述第四波束关联信息包括以下至少一项:
发送波束关联信息;
接收波束关联信息;
期望的波束关联信息。
可选的,所述第五波束关联信息包括以下至少一项:
发送波束关联信息;
接收波束关联信息;
期望的波束关联信息。
可选的,所述变换处理包括以下至少一种方式:
预设模型的变换;
基于随机数的变换;
哈希变换。
可选的,所述第二波束关联信息和所述第三波束关联信息采用相同的变换处理。
可选的,所述第四波束关联信息需要进行变换处理,且所述第四波束关联信息包括多 个波束关联信息的情况下,所述多个波束关联信息中的至少一个波束关联信息为所述变换处理的对象。
可选的,所述第五波束关联信息需要进行变换处理,且所述第五波束关联信息包括多个波束关联信息的情况下,所述多个波束关联信息中的至少一个波束关联信息为所述变换处理的对象。
可选的,所述第四波束关联信息的类型与所述第五波束关联信息的类型不同。
可选的,所述第四波束关联信息和所述第五波束关联信息数量大于或等于所述人工智能模型的输入信息的数量。
可选的,射频单元701,还用于发送包括所述第四波束关联信息的能力信息。
可选的,所述第四波束关联信息和所述第五波束关联信息是采用量化编码后的信息表征的;其中,所述量化编码后的信息是基于量化区间获得的。
可选的,所述第四波束关联信息和所述第五波束关联信息未与同步信号块SSB关联的情况下,具有相同标识、且频域位置相同的SSB的准共址信息保持不变。
可选的,所述第四波束关联信息和所述第五波束关联信息是基于第一参考信号对应的配置信息确定的;或者
所述第四波束关联信息和所述第五波束关联信息是基于与所述第一参考信号准共址的第二参考信号的配置信息确定的。
可选的,所述第二参考信号包括在所述第一参考信号准共址关系链上的以下至少一个信号:
第一个配置了波束关联信息的参考信号;
最后一个配置了波束关联信息的参考信号;
SSB;
配置了波束关联信息的SSB。
本申请实施例还提供一种通信设备,包括处理器和通信接口,其中,所述通信接口用于发送第一波束关联信息;其中,所述第一波束关联信息包括第二波束关联信息和/或第三波束关联信息,且所述第一波束关联信息作为人工智能模型的输入信息,所述人工智能模型用于波束相关功能;
所述第二波束关联信息是所述第二设备对第四波束关联信息进行变换处理后所得,所述第四波束关联信息是第一参考信号接收端的波束关联信息;
所述第三波束关联信息是所述第二设备对第五波束关联信息进行变换处理后所得,所述第五波束关联信息是所述第一参考信号发送端的波束关联信息。
所述通信接口用于在所述处理器的控制下收发数据。
该通信实施例与上述第二设备执行的方法实施例对应,上述方法实施例的各个实施过程和实现方式均可适用于该通信设备实施例中,且能达到相同的技术效果。具体地,图8为实现本申请实施例的通信设备为网络侧设备的情况下,网络侧设备的硬件结果示意图。
该网络侧设备800包括:天线81、射频装置82、基带装置83、处理器84和存储器85。天线81与射频装置82连接。在上行方向上,射频装置82通过天线81接收信息,将接收的信息发送给基带装置83进行处理。在下行方向上,基带装置83对要发送的信息进行处理,并发送给射频装置82,射频装置82对收到的信息进行处理后经过天线81发送出去。
以上实施例中网络侧设备执行的方法可以在基带装置83中实现,该基带装置83包括基带处理器。
基带装置83例如可以包括至少一个基带板,该基带板上设置有多个芯片,如图8所示,其中一个芯片例如为基带处理器,通过总线接口与存储器85连接,以调用存储器85中的程序,执行以上方法实施例中所示的网络设备操作。
该网络侧设备还可以包括网络接口86,该接口例如为通用公共无线接口(common public radio interface,CPRI)。
具体地,本发明实施例的网络侧设备800还包括:存储在存储器85上并可在处理器84上运行的指令或程序,处理器84调用存储器85中的指令或程序执行图5所示各模块执行的方法,并达到相同的技术效果,为避免重复,故不在此赘述。
本申请实施例还提供一种可读存储介质,所述可读存储介质上存储有程序或指令,该程序或指令被处理器执行时实现上述由第一设备执行的波束处理方法,或者上述由第二设备执行的波束处理方法实施例的各个过程,且能达到相同的技术效果,为避免重复,这里不再赘述。
其中,所述处理器为上述实施例中所述的通信设备中的处理器。所述可读存储介质,包括计算机可读存储介质,如计算机只读存储器ROM、随机存取存储器RAM、磁碟或者光盘等。
本申请实施例另提供了一种芯片,所述芯片包括处理器和通信接口,所述通信接口和所述处理器耦合,所述处理器用于运行程序或指令,实现上述由第一设备执行的波束处理方法,或者上述由第二设备执行的波束处理方法实施例的各个过程,且能达到相同的技术效果,为避免重复,这里不再赘述。
应理解,本申请实施例提到的芯片还可以称为系统级芯片,系统芯片,芯片系统或片上系统芯片等。
本申请实施例另提供了一种计算机程序/程序产品,所述计算机程序/程序产品被存储在存储介质中,所述计算机程序/程序产品被至少一个处理器执行以实现上述由第一设备执行的波束处理方法,或者上述由第二设备执行的波束处理方法实施例的各个过程,且能达到相同的技术效果,为避免重复,这里不再赘述。
本申请实施例还提供了一种波束处理系统,包括:第一设备及第二设备,所述第一设备可用于执行由上述第一设备执行的波束处理方法的步骤,所述第二设备可用于执行由上述第二设备执行的波束处理方法的步骤。
需要说明的是,在本文中,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者装置不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者装置所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括该要素的过程、方法、物品或者装置中还存在另外的相同要素。此外,需要指出的是,本申请实施方式中的方法和装置的范围不限按示出或讨论的顺序来执行功能,还可包括根据所涉及的功能按基本同时的方式或按相反的顺序来执行功能,例如,可以按不同于所描述的次序来执行所描述的方法,并且还可以添加、省去、或组合各种步骤。另外,参照某些示例所描述的特征可在其他示例中被组合。
通过以上的实施方式的描述,本领域的技术人员可以清楚地了解到上述实施例方法可借助软件加必需的通用硬件平台的方式来实现,当然也可以通过硬件,但很多情况下前者是更佳的实施方式。基于这样的理解,本申请的技术方案本质上或者说对相关技术做出贡献的部分可以以计算机软件产品的形式体现出来,该计算机软件产品存储在一个存储介质(如ROM/RAM、磁碟、光盘)中,包括若干指令用以使得一台终端(可以是手机,计算机,服务器,空调器,或者网络设备等)执行本申请各个实施例所述的方法。
上面结合附图对本申请的实施例进行了描述,但是本申请并不局限于上述的具体实施方式,上述的具体实施方式仅仅是示意性的,而不是限制性的,本领域的普通技术人员在本申请的启示下,在不脱离本申请宗旨和权利要求所保护的范围情况下,还可做出很多形式,均属于本申请的保护之内。

Claims (22)

  1. 一种波束处理方法,包括:
    第一设备接收第一波束关联信息;其中,所述第一波束关联信息包括第二波束关联信息和/或第三波束关联信息,且所述第一波束关联信息作为人工智能模型的输入信息,所述人工智能模型用于波束相关功能;
    所述第二波束关联信息是第二设备对第四波束关联信息进行变换处理后所得,所述第四波束关联信息是第一参考信号接收端的波束关联信息;
    所述第三波束关联信息是第二设备对第五波束关联信息进行变换处理后所得,所述第五波束关联信息是所述第一参考信号发送端的波束关联信息。
  2. 根据权利要求1所述的方法,其中,所述第一设备接收所述第一波束相关的关联信息之前,还包括:
    所述第一设备向所述第二设备发送所述第四波束关联信息。
  3. 根据权利要求1所述的方法,其中,所述第四波束关联信息包括以下至少一项:
    发送波束关联信息;
    接收波束关联信息;
    期望的波束关联信息。
  4. 根据权利要求1所述的方法,其中,所述第五波束关联信息包括以下至少一项:
    发送波束关联信息;
    接收波束关联信息;
    期望的波束关联信息。
  5. 根据权利要求1所述的方法,其中,所述变换处理包括以下至少一种方式:
    预设模型的变换;
    基于随机数的变换;
    哈希变换。
  6. 根据权利要求1或4所述的方法,其中,所述第二波束关联信息和所述第三波束关联信息采用相同的变换处理。
  7. 根据权利要求1所述的方法,其中,所述第四波束关联信息需要进行变换处理,且所述第四波束关联信息包括多个波束关联信息的情况下,所述多个波束关联信息中的至少一个波束关联信息为所述变换处理的对象。
  8. 根据权利要求1所述的方法,其中,所述第五波束关联信息需要进行变换处理,且所述第五波束关联信息包括多个波束关联信息的情况下,所述多个波束关联信息中的至少一个波束关联信息为所述变换处理的对象。
  9. 根据权利要求1所述的方法,其中,所述第四波束关联信息的类型与所述第五波束关联信息的类型不同。
  10. 根据权利要求1所述的方法,其中,所述第四波束关联信息和所述第五波束关联 信息数量大于或等于所述人工智能模型的输入信息的数量。
  11. 根据权利要求2所述的方法,其中,所述第一设备发送所述第四波束关联信息,包括:
    所述第一设备发送包括所述第四波束关联信息的能力信息。
  12. 根据权利要求1所述的方法,其中,所述第四波束关联信息和所述第五波束关联信息是采用量化编码后的信息表征的;其中,所述量化编码后的信息是基于量化区间获得的。
  13. 根据权利要求1所述的方法,其中,所述第四波束关联信息和所述第五波束关联信息未与同步信号块SSB关联的情况下,具有相同标识、且频域位置相同的SSB的准共址信息保持不变。
  14. 根据权利要求1所述的方法,其中,所述第四波束关联信息和所述第五波束关联信息是基于第一参考信号对应的配置信息确定的;或者
    所述第四波束关联信息和所述第五波束关联信息是基于与所述第一参考信号准共址的第二参考信号的配置信息确定的。
  15. 根据权利要求14所述的方法,其中,所述第二参考信号包括在所述第一参考信号准共址关系链上的以下至少一个信号:
    第一个配置了波束关联信息的参考信号;
    最后一个配置了波束关联信息的参考信号;
    SSB;
    配置了波束关联信息的SSB。
  16. 一种波束处理方法,包括:
    第二设备发送第一波束关联信息;其中,所述第一波束关联信息包括第二波束关联信息和/或第三波束关联信息,且所述第一波束关联信息作为人工智能模型的输入信息,所述人工智能模型用于波束相关功能;
    所述第二波束关联信息是所述第二设备对第四波束关联信息进行变换处理后所得,所述第四波束关联信息是第一参考信号接收端的波束关联信息;
    所述第三波束关联信息是所述第二设备对第五波束关联信息进行变换处理后所得,所述第五波束关联信息是所述第一参考信号发送端的波束关联信息。
  17. 根据权利要求16所述的方法,其中,所述第二设备发送所述第二波束关联信息之前,还包括:
    所述第二设备接收所述第四波束关联信息。
  18. 根据权利要求16所述的方法,其中,所述第二设备发送所述第三波束关联信息之前,还包括:
    所述第二设备接收所述第五波束关联信息。
  19. 一种波束处理装置,包括:
    第一接收模块,用于接收第一波束关联信息;其中,所述第一波束关联信息包括第二波束关联信息和/或第三波束关联信息,且所述第一波束关联信息作为人工智能模型的输入信息,所述人工智能模型用于波束相关功能;
    所述第二波束关联信息是第二设备对第四波束关联信息进行变换处理后所得,所述第四波束关联信息是第一参考信号接收端的波束关联信息;
    所述第三波束关联信息是第二设备对第五波束关联信息进行变换处理后所得,所述第五波束关联信息是所述第一参考信号发送端的波束关联信息。
  20. 一种波束处理装置,包括:
    第一发送模块,用于发送第一波束关联信息;其中,所述第一波束关联信息包括第二波束关联信息和/或第三波束关联信息,且所述第一波束关联信息作为人工智能模型的输入信息,所述人工智能模型用于波束相关功能;
    所述第二波束关联信息是第二设备对第四波束关联信息进行变换处理后所得,所述第四波束关联信息是第一参考信号接收端的波束关联信息;
    所述第三波束关联信息是第二设备对第五波束关联信息进行变换处理后所得,所述第五波束关联信息是所述第一参考信号发送端的波束关联信息。
  21. 一种通信设备,包括处理器和存储器,所述存储器存储可在所述处理器上运行的程序或指令,所述程序或指令被所述处理器执行时实现如权利要求1至15任一项所述的波束处理方法,或者实现如权利要求16至18任一项所述的波束处理方法的步骤。
  22. 一种可读存储介质,所述可读存储介质上存储程序或指令,所述程序或指令被处理器执行时实现如权利要求1至15任一项所述的波束处理方法,或者实现如权利要求16至18任一项所述的波束处理方法的步骤。
PCT/CN2023/083048 2022-03-23 2023-03-22 波束处理方法、装置及设备 WO2023179653A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210294652.5A CN116847355A (zh) 2022-03-23 2022-03-23 波束处理方法、装置及设备
CN202210294652.5 2022-03-23

Publications (1)

Publication Number Publication Date
WO2023179653A1 true WO2023179653A1 (zh) 2023-09-28

Family

ID=88100042

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/083048 WO2023179653A1 (zh) 2022-03-23 2023-03-22 波束处理方法、装置及设备

Country Status (2)

Country Link
CN (1) CN116847355A (zh)
WO (1) WO2023179653A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018141165A1 (zh) * 2017-09-30 2018-08-09 北京小米移动软件有限公司 数据传输方法及装置
CN109863727A (zh) * 2016-10-14 2019-06-07 高通股份有限公司 参考信号测量
US20190181922A1 (en) * 2016-08-12 2019-06-13 Lg Electronics Inc. Method for transmitting analog beam-related information in wireless communication system, and entity using method
WO2021112592A1 (ko) * 2019-12-03 2021-06-10 엘지전자 주식회사 무선 통신 시스템에서 인공 지능 기반의 빔 관리 방법 및 이에 대한 장치
WO2021232226A1 (en) * 2020-05-19 2021-11-25 Qualcomm Incorporated Modifying a beam failure threshold based upon user equipment movement information

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20190181922A1 (en) * 2016-08-12 2019-06-13 Lg Electronics Inc. Method for transmitting analog beam-related information in wireless communication system, and entity using method
CN109863727A (zh) * 2016-10-14 2019-06-07 高通股份有限公司 参考信号测量
WO2018141165A1 (zh) * 2017-09-30 2018-08-09 北京小米移动软件有限公司 数据传输方法及装置
WO2021112592A1 (ko) * 2019-12-03 2021-06-10 엘지전자 주식회사 무선 통신 시스템에서 인공 지능 기반의 빔 관리 방법 및 이에 대한 장치
WO2021232226A1 (en) * 2020-05-19 2021-11-25 Qualcomm Incorporated Modifying a beam failure threshold based upon user equipment movement information

Also Published As

Publication number Publication date
CN116847355A (zh) 2023-10-03

Similar Documents

Publication Publication Date Title
WO2023231920A1 (zh) 反向散射通信方法及设备
WO2023246757A1 (zh) 算力服务方法、装置及终端
WO2023236962A1 (zh) 资源分配方法、装置、通信设备、系统及存储介质
WO2023208042A1 (zh) 预失真处理方法、装置及设备
WO2023179653A1 (zh) 波束处理方法、装置及设备
WO2023179651A1 (zh) 波束处理方法、装置及设备
WO2023179649A1 (zh) 人工智能模型的输入处理方法、装置及设备
WO2023198093A1 (zh) 模型有效性的确定方法、装置及通信设备
WO2023186014A1 (zh) 信号发送方法、信号接收方法及通信设备
WO2024061287A1 (zh) 人工智能ai模型传输方法、装置、终端及介质
WO2023186018A1 (zh) 信息传输方法、装置、终端及可读存储介质
WO2023213270A1 (zh) 模型训练处理方法、装置、终端及网络侧设备
WO2023143442A1 (zh) 路径偏好确定方法、终端及网络侧设备
WO2024007950A1 (zh) Sl定位方法、设备及可读存储介质
WO2023151650A1 (zh) 信息激活方法、终端及网络侧设备
WO2023241448A1 (zh) 测量处理方法、终端及网络侧设备
WO2024027746A1 (zh) 信息传输方法、装置、接收端及发送端
WO2024083101A1 (zh) 信息指示方法、装置、终端、网络侧设备及可读存储介质
WO2024149103A1 (zh) 一种盘点处理方法、装置及设备
WO2023236826A1 (zh) 反向散射通信的接入方法、装置、终端及网络侧设备
WO2023241449A1 (zh) 测量处理方法、装置及设备
WO2024061110A1 (zh) 传输处理方法、装置及设备
WO2024169797A1 (zh) Ai模型指示方法及通信设备
WO2024032496A1 (zh) 通信、资源配置方法、装置、阅读器、标签和网络侧设备
WO2024120444A1 (zh) 模型监督方法、装置、终端、网络侧设备及可读存储介质

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23773900

Country of ref document: EP

Kind code of ref document: A1