WO2024120444A1 - 模型监督方法、装置、终端、网络侧设备及可读存储介质 - Google Patents
模型监督方法、装置、终端、网络侧设备及可读存储介质 Download PDFInfo
- Publication number
- WO2024120444A1 WO2024120444A1 PCT/CN2023/136801 CN2023136801W WO2024120444A1 WO 2024120444 A1 WO2024120444 A1 WO 2024120444A1 CN 2023136801 W CN2023136801 W CN 2023136801W WO 2024120444 A1 WO2024120444 A1 WO 2024120444A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- terminal
- distance information
- information
- distance
- target model
- Prior art date
Links
- 238000000034 method Methods 0.000 title claims abstract description 166
- 238000005259 measurement Methods 0.000 claims abstract description 126
- 230000015654 memory Effects 0.000 claims description 34
- 238000004891 communication Methods 0.000 abstract description 29
- 230000008569 process Effects 0.000 description 19
- 238000010586 diagram Methods 0.000 description 14
- 230000000694 effects Effects 0.000 description 13
- 230000006870 function Effects 0.000 description 13
- 238000012806 monitoring device Methods 0.000 description 8
- 238000003062 neural network model Methods 0.000 description 8
- 238000005516 engineering process Methods 0.000 description 7
- 238000004590 computer program Methods 0.000 description 5
- 238000013528 artificial neural network Methods 0.000 description 4
- 238000012790 confirmation Methods 0.000 description 4
- 210000002569 neuron Anatomy 0.000 description 4
- 238000012545 processing Methods 0.000 description 4
- 230000001360 synchronised effect Effects 0.000 description 4
- 238000005457 optimization Methods 0.000 description 3
- 101001121408 Homo sapiens L-amino-acid oxidase Proteins 0.000 description 2
- 102100026388 L-amino-acid oxidase Human genes 0.000 description 2
- 230000003044 adaptive effect Effects 0.000 description 2
- 230000003190 augmentative effect Effects 0.000 description 2
- 238000012544 monitoring process Methods 0.000 description 2
- 230000003287 optical effect Effects 0.000 description 2
- 230000004044 response Effects 0.000 description 2
- 230000003068 static effect Effects 0.000 description 2
- 101000827703 Homo sapiens Polyphosphoinositide phosphatase Proteins 0.000 description 1
- 102100023591 Polyphosphoinositide phosphatase Human genes 0.000 description 1
- 101100012902 Saccharomyces cerevisiae (strain ATCC 204508 / S288c) FIG2 gene Proteins 0.000 description 1
- 101100233916 Saccharomyces cerevisiae (strain ATCC 204508 / S288c) KAR5 gene Proteins 0.000 description 1
- 230000004913 activation Effects 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 238000007599 discharging Methods 0.000 description 1
- 239000004973 liquid crystal related substance Substances 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 230000002441 reversible effect Effects 0.000 description 1
- 239000004984 smart glass Substances 0.000 description 1
- 238000001228 spectrum Methods 0.000 description 1
- 238000012549 training Methods 0.000 description 1
- 238000005406 washing Methods 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W4/00—Services specially adapted for wireless communication networks; Facilities therefor
- H04W4/02—Services making use of location information
- H04W4/023—Services making use of location information using mutual or relative location information between multiple location based services [LBS] targets or of distance thresholds
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W16/00—Network planning, e.g. coverage or traffic planning tools; Network deployment, e.g. resource partitioning or cells structures
- H04W16/22—Traffic simulation tools or models
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W4/00—Services specially adapted for wireless communication networks; Facilities therefor
- H04W4/02—Services making use of location information
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W4/00—Services specially adapted for wireless communication networks; Facilities therefor
- H04W4/02—Services making use of location information
- H04W4/025—Services making use of location information using location based information parameters
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W64/00—Locating users or terminals or network equipment for network management purposes, e.g. mobility management
Definitions
- the present application belongs to the field of communication technology, and specifically relates to a model supervision method, apparatus, terminal, network-side equipment and readable storage medium.
- a trained neural network model can be deployed in the network side device.
- the network side device can input the network parameters between the network side device and the terminal into the neural network model, so that the neural network model can output the location information of the terminal, thereby realizing terminal positioning.
- the trained neural network model may fail due to some reasons, the location information of the terminal output by the neural network model may be inaccurate when performing terminal positioning, which may result in poor accuracy in terminal positioning.
- the embodiments of the present application provide a model supervision method, apparatus, terminal, network-side equipment and readable storage medium, which can solve the problem of poor accuracy in terminal positioning.
- a model supervision method which is applied to a first terminal, and the method includes: the first terminal receives first distance information from a network side device; the first distance information is: distance information between the first terminal and a second terminal determined by using a target model; the first terminal determines whether the target model is valid based on the first distance information and the second distance information.
- the second distance information is: distance information between the first terminal and the second terminal obtained by performing a distance measurement operation.
- a model supervision device which includes: a receiving module and a determining module.
- the receiving module is used to receive first distance information from a network side device; the first distance information is: distance information between the model supervision device and the second terminal determined by using the target model.
- the determining module is used to determine whether the target model is valid based on the first distance information and the second distance information received by the receiving module.
- the second distance information is: distance information between the model supervision device and the second terminal obtained by performing a distance measurement operation.
- a model supervision method which is applied to a first terminal, and the method includes: the first terminal sends second distance information to a network side device; the second distance information is: distance information between the first terminal and the second terminal obtained by performing a distance measurement operation.
- the above-mentioned target model is valid is determined by the network side device based on the first distance information and the second distance information, and the above-mentioned first distance information is: distance information between the first terminal and the second terminal determined using the target model.
- a model supervision device comprising: a sending module.
- the sending module is used to send second distance information to a network side device; the second distance information is the distance information between the model supervision device and the second terminal obtained by performing a distance measurement operation. Whether the target model is valid is determined by the network side device based on the first distance information and the second distance information, and the first distance information is the distance information between the model supervision device and the second terminal determined using the target model.
- a model supervision method which is applied to a network side device, and the method includes: the network side device determines the first distance information according to the first location information and the second location information; the first location information is the location information of the first terminal determined by the target model, the second location information is the location information of the second terminal determined by the target model, and the first distance information is the distance information between the first terminal and the second terminal; the network side device sends the first distance information to the first terminal.
- whether the above-mentioned target model is valid is determined by the first terminal according to the first distance information and the second distance information, and the above-mentioned second distance information is the distance information between the first terminal and the second terminal obtained by performing a distance measurement operation.
- a model supervision device which includes: a determination module and a sending module.
- the determination module is used to determine the first distance information based on the first position information and the second position information; the first position information is: the position information of the first terminal determined by the target model, the second position information is: the position information of the second terminal determined by the target model, and the first distance information is: the distance information between the first terminal and the second terminal.
- the sending module is used to send the first distance information determined by the determination module to the first terminal.
- the above-mentioned target model is valid is determined by the first terminal based on the first distance information and the second distance information, and the above-mentioned second distance information is: the distance information between the first terminal and the second terminal obtained by performing a distance measurement operation.
- a model supervision method is provided, which is applied to a network side device, and the method includes: the network side device receives second distance information from a first terminal; the second distance information is: the distance information between the first terminal and the second terminal obtained by performing a distance measurement operation; the network side device determines the first distance information based on the first position information and the second position information; the first position information is: the position information of the first terminal determined by using the target model; the second position information is: the position information of the second terminal determined by using the target model; the first distance information is the distance information between the first terminal and the second terminal; the network side device determines whether the target model is valid based on the first distance information and the second distance information.
- a model supervision device which includes: a receiving module and a determining module.
- the receiving module is used to receive second distance information from a first terminal; the second distance information is the distance information between the first terminal and the second terminal obtained by performing a distance measurement operation.
- the determining module is used to determine the first distance information according to the first position information and the second position information; the first position information is the position information of the first terminal determined by using the target model; the second position information is the position information of the second terminal determined by using the target model; the first distance information is the distance information between the first terminal and the second terminal; and determine whether the target model is valid according to the first distance information and the second distance information.
- a terminal which includes a processor and a memory, wherein the memory stores a program or instruction that can be run on the processor, and when the program or instruction is executed by the processor, the steps of the method described in the first aspect are implemented, or the steps of the method described in the third aspect are implemented.
- a terminal comprising a processor and a communication interface, wherein the communication interface is used to receive first distance information from a network side device; the first distance information is: the distance information between the first terminal and the second terminal determined by using a target model; the processor is used to determine whether the target model is valid based on the first distance information and the second distance information.
- the second distance information is: the distance information between the first terminal and the second terminal obtained by performing a distance measurement operation; or, the communication interface is used to send the second distance information to the network side device; the second distance information is: the distance information between the first terminal and the second terminal obtained by performing a distance measurement operation.
- Whether the target model is valid is determined by the network side device based on the first distance information and the second distance information, and the first distance information is: the distance information between the first terminal and the second terminal determined by using the target model.
- a network side device which includes a processor and a memory, wherein the memory stores programs or instructions that can be run on the processor, and when the program or instructions are executed by the processor, the steps of the method described in the fifth aspect are implemented, or the steps of the method described in the seventh aspect are implemented.
- a network side device including a processor and a communication interface, wherein the processor is used to determine the first distance information according to the first location information and the second location information; the first location information is: the location information of the first terminal determined by the target model; the second location information is: the location information of the second terminal determined by the target model; the first distance information is: the distance information between the first terminal and the second terminal; the communication interface is used to send the first distance information to the first terminal.
- the above-mentioned target model is valid is determined by the first terminal according to the first distance information and the second distance information
- the above-mentioned second distance information is: the distance information between the first terminal and the second terminal obtained by performing a distance measurement operation; or, the communication interface is used to receive the second distance information from the first terminal; the second distance information is: the distance information between the first terminal and the second terminal obtained by performing a distance measurement operation; the processor is used to determine the first distance information according to the first location information and the second location information; the first location information is: the location information of the first terminal determined by the target model; the second location information is: the location information of the second terminal determined by the target model; the first distance information is the distance information between the first terminal and the second terminal; and determine whether the target model is valid according to the first distance information and the second distance information.
- a model supervision system including: a terminal and a network side device, wherein the terminal can be used to execute the steps of the method described in the first aspect, or execute the steps of the method described in the third aspect; the network side device can be used to execute the steps of the method described in the fifth aspect, or execute the steps of the method described in the seventh aspect.
- a readable storage medium wherein a program or instruction is stored on the readable storage medium.
- the steps of the method described in the first aspect are implemented, or the steps of the method described in the third aspect are implemented, or the steps of the method described in the fifth aspect are implemented, or the steps of the method described in the seventh aspect are implemented.
- a chip comprising a processor and a communication interface, wherein the communication interface is coupled to the processor, and the processor is used to run a program or instructions to implement the steps of the method described in the first aspect, or the steps of the method described in the third aspect, or the steps of the method described in the fifth aspect, or the steps of the method described in the seventh aspect.
- a computer program/program product is provided, wherein the computer program/program product is stored in a storage medium, and the computer program/program product is executed by at least one processor to implement the steps of the method described in the first aspect, or the steps of the method described in the third aspect, or the steps of the method described in the fifth aspect, or the steps of the method described in the seventh aspect.
- the network side device can determine the first distance information (i.e., the distance information between the first terminal and the second terminal determined by the target model) based on the first position information of the first terminal and the second position information of the second terminal determined by the target model, and send the first distance information to the first terminal, so that the first terminal can receive the first distance information, and determine whether the target model is valid based on the first distance information and the second distance information between the first terminal and the second terminal obtained by performing the distance measurement operation.
- the network side device determines the first distance information based on the first position information and the second position information
- the first distance information can be sent to the first terminal, so that the first terminal can determine whether the target model is valid based on the first distance information and the accurate second distance information. In this way, when it is determined that the target model is invalid, the target model can be used instead of being used directly for terminal positioning. Therefore, the situation where the terminal location information output by the target model is inaccurate can be reduced, and thus, the accuracy of terminal positioning can be improved.
- the first terminal may send the second distance information between the first terminal and the second terminal obtained by performing a distance measurement operation to the network side device, so that the network side device may receive the second distance information, and determine the first distance information between the first terminal and the second terminal according to the first position information of the first terminal and the second position information of the second terminal determined by the target model, and determine whether the target model is valid according to the first distance information and the second distance information.
- the network side device can determine the first distance information according to the first position information and the second position information, and determine whether the target model is valid according to the first distance information and the accurate second distance information received from the first terminal, in the case of determining that the target model is invalid, the target model may not be used for terminal positioning, instead of directly using the target model for terminal positioning, thereby reducing the situation where the terminal position information output by the target model is inaccurate, and thus, the accuracy of terminal positioning can be improved.
- FIG1 is a block diagram of a wireless communication system provided in an embodiment of the present application.
- FIG2 is one of the flow charts of the model supervision method provided in the embodiment of the present application.
- FIG3 is a second flow chart of the model supervision method provided in an embodiment of the present application.
- FIG4 is a third flow chart of the model supervision method provided in an embodiment of the present application.
- FIG5 is a fourth flow chart of the model supervision method provided in an embodiment of the present application.
- FIG6 is a fifth flow chart of the model supervision method provided in an embodiment of the present application.
- FIG7 is a sixth flow chart of the model supervision method provided in an embodiment of the present application.
- FIG8 is one of the structural schematic diagrams of the model supervision device provided in the embodiment of the present application.
- FIG9 is a second schematic diagram of the structure of the model monitoring device provided in an embodiment of the present application.
- FIG10 is a third schematic diagram of the structure of the model monitoring device provided in an embodiment of the present application.
- FIG11 is a fourth structural diagram of the model monitoring device provided in an embodiment of the present application.
- FIG12 is a schematic diagram of the structure of a communication device provided in an embodiment of the present application.
- FIG. 13 is a schematic diagram of the hardware structure of a terminal provided in an embodiment of the present application.
- FIG. 14 is a schematic diagram of the hardware structure of the network side device provided in an embodiment of the present application.
- a neural network is composed of a plurality of neurons, wherein each of the plurality of neurons includes a weight parameter.
- each neuron can receive input information, and after being processed by the activation function, it outputs the processed information. Therefore, the loss function can be determined according to the degree of deviation between the processed information and the real information, and then the weight parameters of each neuron can be corrected through the optimization algorithm. This process is repeated to obtain a trained neural network.
- the optimization algorithm is an algorithm that minimizes or maximizes the loss function.
- the optimization algorithm may include any of the following: gradient descent algorithm, stochastic gradient descent algorithm, mini-batch gradient descent algorithm, momentum method, stochastic gradient descent algorithm with momentum, adaptive gradient descent algorithm, root mean square error speed reduction algorithm, adaptive momentum estimation algorithm, etc.
- first, second, etc. in the specification and claims of the present application are used to distinguish similar objects, and are not used to describe a specific order or sequence. It should be understood that the terms used in this way are interchangeable under appropriate circumstances, so that the embodiments of the present application can be implemented in an order other than those illustrated or described here, and the objects distinguished by “first” and “second” are generally of the same type, and the number of objects is not limited.
- the first object can be one or more.
- “and/or” in the specification and claims represents at least one of the connected objects, and the character “/" generally represents that the objects associated with each other are in an "or” relationship.
- LTE Long Term Evolution
- LTE-A Long Term Evolution
- CDMA Code Division Multiple Access
- TDMA Time Division Multiple Access
- FDMA Frequency Division Multiple Access
- OFDMA Orthogonal Frequency Division Multiple Access
- SC-FDMA Single-carrier Frequency Division Multiple Access
- NR new radio
- FIG1 shows a block diagram of a wireless communication system applicable to an embodiment of the present application.
- the wireless communication system includes a terminal 11 and a network side device 12 .
- the terminal 11 can be a mobile phone, a tablet computer (Tablet Personal Computer), a laptop computer (Laptop Computer) or a notebook computer, a personal digital assistant (Personal Digital Assistant, PDA), a handheld computer, a netbook, an ultra-mobile personal computer (ultra-mobile personal computer, UMPC), a mobile Internet device (Mobile Internet Device, MID), augmented reality (augmented reality, AR)/virtual reality (virtual reality, VR) equipment, a robot, a wearable device (Wearable Device), a vehicle-mounted device (VUE), a pedestrian terminal (PUE), a smart home (home appliances with wireless communication functions, such as refrigerators, televisions, washing machines or furniture, etc.), a game console, a personal computer (personal computer, PC), an ATM or a self-service machine and other terminal side devices, and the wear
- the network side device 12 may include an access network device or a core network device, wherein the access network device 12 may also be referred to as a radio access network device, a radio access network (RAN), a radio access network function or a radio access network unit.
- the access network device 12 may include a base station, a WLAN access point or a WiFi node, etc.
- the base station may be referred to as a node B, an evolved node B (eNB), an access point, a base transceiver station (BTS), a radio base station, a radio transceiver, a basic service set (BSS), an extended service set (ESS), a home B node, a home evolved B node, a transmitting and receiving point (TRP) or other appropriate terms in the field, as long as the same technical effect is achieved, the base station is not limited to a specific technical vocabulary, it should be noted that in the embodiment of the present application, only the base station in the NR system is used as an example for introduction, and the specific type of the base station is not limited.
- model supervision method, apparatus, terminal, network-side device and readable storage medium provided in the embodiments of the present application are described in detail below in combination with the accompanying drawings through some embodiments and their application scenarios.
- Fig. 2 shows a flow chart of a model supervision method provided in an embodiment of the present application.
- the model supervision method provided in an embodiment of the present application may include the following steps 101 to 104.
- Step 101 A network-side device determines first distance information according to first location information and second location information.
- the first location information is: location information of the first terminal determined by using the target model
- the second location information is: location information of the second terminal determined by using the target model
- the target model may be a neural network model.
- the target model may be a pre-trained neural network model, or a neural network model downloaded from another device.
- the target model may be deployed on a network side device, or may be deployed on the first terminal and the second terminal.
- the first terminal and the second terminal may be located in the same terminal group of the network side device.
- the first terminal may be a primary terminal
- the second terminal may be a secondary terminal.
- the second terminal may include one terminal or multiple terminals.
- the first position information may be coordinate information of the first terminal in an X-dimensional space; the second position information may be coordinate information of the second terminal in an X-dimensional space; and X is a positive integer.
- coordinate information can be understood as: coordinate information of relative position, or coordinate information of absolute position.
- the second location information may include multiple location information, each piece of location information corresponds to one terminal.
- the network side device may input the first network parameter into the target model so that the target model can output the first location information, and input the second network parameter into the target model so that the target model can output the second location information; or, the network side device may receive the first location information from the first terminal and receive the second location information from the second terminal, so that the network side device can determine the first distance information.
- the first network parameter may include at least one of the following: reference signal received power (Reference Signal Received Power, RSRP), channel state information (Channel State Information, CSI).
- RSRP Reference Signal Received Power
- CSI Channel State Information
- CSI may include at least one of the following: time domain channel impulse response, frequency domain channel impulse response, delay power spectrum, etc.
- the first terminal can measure the downlink reference signal to obtain the first network parameter and report it to the network side device; or, the network side device can measure the uplink reference signal to obtain the first network parameter; thereby, the network side device can input the first network parameter into the target model.
- the second network parameter may include at least one of the following: RSRP, CSI.
- the second terminal can measure the downlink reference signal to obtain the second network parameter and report it to the network side device; or, the network side device can measure the uplink reference signal to obtain the second network parameter; thereby, the network side device can input the second network parameter into the target model.
- the model supervision method provided in the embodiment of the present application may also include the following steps 1011 to 1013.
- Step 1011 The first terminal uses a target model to determine first location information.
- the first location information is: location information of the first terminal.
- the first distance information is determined by the network side device according to the first location information and the second location information
- the second location information is: location information of the second terminal determined by the second terminal using the target model.
- the first terminal may measure a downlink reference signal to obtain a first network parameter, and input the first network parameter into a target model, thereby obtaining the first location information.
- the second terminal may measure the downlink reference signal to obtain a second network parameter, and input the second network parameter into the target model, thereby obtaining the second location information.
- Step 1012 The first terminal sends first location information to the network side device.
- the second terminal may send the second location information to the network side device.
- Step 1013 The network side device receives first location information from the first terminal and receives second location information from the second terminal.
- the first location information is determined by the first terminal using the target model
- the second location information is determined by the second terminal using the target model
- the first distance information is: distance information between the first terminal and the second terminal.
- the first distance information when the second terminal includes multiple terminals, the first distance information includes multiple distance information, and each distance information corresponds to one terminal.
- the first distance information may be: distance information between the first terminal and the second terminal in a Y-dimensional space; Y is a positive integer, where Y may be equal to X, or may not be equal to X.
- the network side device may adopt a first preset algorithm to calculate the first distance information according to the first location information and the second location information.
- the network side device can use a first preset algorithm to calculate the first distance information according to the first location information and the second location information.
- the first preset algorithm can be: Wherein, d is the first distance information.
- the network side device may use each coordinate value of the first location information and each coordinate value of the second location information to calculate the first distance information.
- the network side device may adopt a second preset algorithm to calculate the first distance information according to the first location information and the second location information.
- the network side device may use a second preset algorithm to calculate the first distance information according to the first location information and the second location information.
- the network side device can use any coordinate value in the first location information and the corresponding coordinate value of the second location information to calculate the first distance information.
- Step 102 The network side device sends first distance information to the first terminal.
- whether the above-mentioned target model is valid is determined by the first terminal according to the first distance information and the second distance information, and the second distance information is: the distance information between the first terminal and the second terminal obtained by performing a distance measurement operation.
- the second distance information may be: distance information between the first terminal and the second terminal in a Y-dimensional space.
- the second distance information may be any one of the following: distance information obtained by the first terminal performing a distance measurement operation on the second terminal, and distance information obtained by the second terminal performing a distance measurement operation on the first terminal.
- the model supervision method provided in the embodiment of the present application may also include the following steps 201 and 202.
- Step 201 A network-side device sends first supervision indication information to a first terminal.
- the first supervision indication information is used to instruct the first terminal to execute a step of determining whether the target model is valid.
- the first supervision indication information includes identification information of the target model.
- the above identification information may specifically be: an identity identifier (IDentity, ID).
- Step 202 The first terminal receives first supervision indication information from a network side device.
- the first supervision indication information is used to instruct the first terminal to execute a step of determining whether the target model is valid.
- the network side device can instruct a terminal to determine whether the target model is valid, the accuracy of determining whether the target model is valid can be improved.
- Step 103 The first terminal receives first distance information from the network side device.
- the first distance information is: distance information between the first terminal and the second terminal determined by using a target model.
- Step 104 The first terminal determines whether the target model is valid according to the first distance information and the second distance information.
- the second distance information is: distance information between the first terminal and the second terminal obtained by performing a distance measurement operation.
- the first terminal may first obtain the second distance information, and then determine whether the target model is valid.
- the first terminal may determine whether the target model is valid according to the absolute value of the difference between the first distance information and the second distance information.
- the supervision result is used to determine whether to use the target model for terminal positioning.
- the supervision result is the result obtained by the first terminal executing the step of determining whether the target model is valid.
- the supervision result includes Next one: Target model valid, Target mode invalid.
- the supervision result shows that the target model is valid
- the network-side device determines to use the target model for terminal positioning; when the target model is deployed on a first terminal, the first terminal determines to use the target model for terminal positioning.
- the network side device can use the target model to locate any terminal.
- the first terminal can use the target model to locate the first terminal.
- the network side device determines not to use the target model for terminal positioning; when the target model is deployed on a first terminal, the first terminal determines not to use the target model for terminal positioning.
- the network side device cannot use the target model to perform terminal positioning on any terminal.
- the first terminal cannot use the target model to perform terminal positioning on the first terminal.
- the following is an example of how the first terminal obtains the second distance information.
- the network side device may send a distance measurement indication message to the first terminal so that the first terminal performs a distance measurement operation.
- the model supervision method provided in the embodiment of the present application may also include the following steps 301 to 303.
- Step 301 A network-side device sends first ranging indication information to a first terminal.
- the first ranging indication information is used to instruct the first terminal to perform a distance measurement operation on the second terminal.
- the first ranging indication information includes at least one of the following:
- Terminal grouping information of the first terminal
- the terminal grouping information is used to instruct the first terminal to perform a distance measurement operation on the second terminal.
- the terminal grouping information of the first terminal indicates that the first terminal is a master terminal. It can be understood that the master terminal in the terminal group is used to perform the distance measurement operation.
- the fifth indication information is used to indicate the time for performing the distance measurement operation.
- the sixth indication information is used to indicate a method for performing a distance measurement operation.
- the method of the above-mentioned distance measurement operation may include any one of the following: ultra-wideband (UWB) ranging, radar ranging, Bluetooth ranging, and sidelink ranging.
- UWB ultra-wideband
- the network side device may further send second ranging indication information to the second terminal.
- the second ranging indication information includes seventh indication information, and the seventh indication information is used to indicate a method for performing a distance measurement operation.
- Step 302 The first terminal receives first ranging indication information from a network side device.
- Step 303 The first terminal performs a distance measurement operation on the second terminal according to the first distance measurement indication information to obtain second distance information.
- the network side device can instruct the first terminal to perform a distance measurement operation on the second terminal to obtain accurate distance information between the first terminal and the second terminal (i.e., the second distance information), the first terminal can accurately determine whether the target model is valid based on the second distance information.
- steps 301 to 303 are described by taking the example that the network side device instructs the first terminal to perform a distance measurement operation on the second terminal to obtain the second distance information.
- the network side device can also instruct the second terminal to perform a distance measurement operation on the first terminal to obtain the second distance information, which will not be repeated in this embodiment of the present application.
- the network side device can determine the terminal that performs the distance measurement operation according to the ranging capability of the terminal, which will be explained below with examples.
- the model supervision method provided in the embodiment of the present application may also include the following steps 304 to 306.
- Step 304 The first terminal sends ranging capability information to the network side device.
- the above-mentioned ranging capability information is used to indicate the ranging capability of the first terminal.
- the first ranging indication information is determined by the network side device according to the ranging capability of the first terminal.
- the above-mentioned ranging capability may include at least one of the following: UWB ranging capability, radar ranging capability, Bluetooth ranging capability, and Sidelink ranging capability.
- Step 305 The network-side device receives ranging capability information from the first terminal.
- the above-mentioned ranging capability information is used to indicate the ranging capability of the first terminal.
- Step 306 The network-side device determines first ranging indication information according to the ranging capability of the first terminal.
- the network side device can determine the first ranging indication information according to the ranging capability of the first terminal, therefore, the situation where the first terminal cannot perform the distance measurement operation on the second terminal can be reduced, and the accuracy of the obtained second distance information can be improved.
- the network side device may send a distance measurement indication message to the second terminal so that the second terminal performs a distance measurement operation.
- the model supervision method provided in the embodiment of the present application may also include the following steps 401 to 403.
- Step 401 A network-side device receives second distance information from a second terminal.
- the second distance information is: distance information obtained by the second terminal performing a distance measurement operation on the first terminal.
- Step 402 The network side device sends second distance information to the first terminal.
- Step 403 The first terminal receives second distance information from the network side device.
- the second distance information is: distance information obtained by the second terminal performing a distance measurement operation on the first terminal.
- the network side device can instruct the second terminal to perform a distance measurement operation on the first terminal to obtain accurate distance information between the first terminal and the second terminal (i.e., the second distance information), the first terminal can accurately determine whether the target model is valid based on the second distance information.
- the second distance information is the distance information between the first terminal and the second terminal obtained by performing a distance measurement operation
- the second distance information can be considered accurate, so that the first terminal can determine whether the target model is valid based on the first distance information and the second distance information.
- the model supervision method provided by the embodiment of the present application is that the network side device can determine the first distance information (i.e., the distance information between the first terminal and the second terminal determined by the target model) based on the first position information of the first terminal and the second position information of the second terminal determined by the target model, and send the first distance information to the first terminal, so that the first terminal can receive the first distance information, and determine whether the target model is valid based on the first distance information and the second distance information between the first terminal and the second terminal obtained by performing the distance measurement operation.
- the first distance information i.e., the distance information between the first terminal and the second terminal determined by the target model
- the first distance information can be sent to the first terminal so that the first terminal can determine whether the target model is valid based on the first distance information and the accurate second distance information.
- the target model can be used instead of being used directly for terminal positioning. Therefore, the situation where the terminal position information output by the target model is inaccurate can be reduced, and thus the accuracy of terminal positioning can be improved.
- the following is an example of how the first terminal determines whether the target model is valid.
- step 104 can be specifically implemented by the following step 104a and step 104b (or step 104c).
- Step 104a The first terminal determines the number of failures corresponding to the target model according to the first distance information and the second distance information.
- the first terminal may increase the number of failures corresponding to the target model by one when the absolute value of the difference between the first distance information and the second distance information is greater than a preset threshold.
- absolute value of the difference between the first distance information and the second distance information can be understood as: a value obtained by subtracting the first distance information from the second distance information and taking the absolute value of the difference obtained by subtracting the first distance information from the second distance information.
- step 104a can be specifically implemented by the following steps 104a1 and 104a2.
- Step 104a1 For each piece of the N third distance information, the first terminal determines the first distance The absolute value of the difference between the distance information and the third distance information is used to obtain a first absolute value of the difference.
- the second distance information includes N third distance information, each third distance information is: distance information between the first terminal and the second terminal obtained by performing a distance measurement operation, and N is a positive integer greater than 1.
- N distance measurement operations can be performed to obtain N third distance information.
- the above-mentioned N third distance information may include at least one of the following: distance information obtained by the first terminal performing a distance measurement operation on the second terminal, and distance information obtained by the second terminal performing a distance measurement operation on the first terminal.
- Step 104a2 When the absolute value of the first difference is greater than the first preset threshold, the first terminal increases the number of failures by one.
- the first distance information is A third distance information is d 1 , then if Then the first terminal increases the number of failures corresponding to the target model by 1.
- t is the first preset threshold.
- the first terminal can add one to the number of failures corresponding to the target model, and so on, to determine the number of failures corresponding to the target model.
- the first terminal can respectively determine the first absolute value of the difference between the first distance information and each third distance information, and when each first absolute value of the difference is greater than the first preset threshold, the first terminal will increase the number of failures corresponding to the target model by one, that is, the first terminal can perform multiple confirmations to determine the number of failures corresponding to the target model, so as to accurately confirm whether the target model is valid based on the number of failures corresponding to the target model.
- step 104a can be specifically implemented by the following steps 104a3 and 104a4.
- Step 104a3 The first terminal determines the absolute value of the difference between each fourth distance information and a corresponding fifth distance information, and obtains M second difference absolute values.
- the above-mentioned second terminal includes M third terminals
- the above-mentioned first distance information includes M fourth distance information
- each fourth distance information is the distance information between the first terminal and a third terminal
- M is a positive integer greater than 1
- the above-mentioned second distance information includes P fifth distance information
- each fifth distance information is: the distance information between the first terminal and a third terminal obtained by performing a distance measurement operation once, each fourth distance information corresponds to at least one fifth distance information, and P is a positive integer greater than M.
- the fifth distance information corresponding to any third terminal may include at least one of the following: distance information obtained by the first terminal performing a distance measurement operation on any third terminal, and distance information obtained by any third terminal performing a distance measurement operation on the first terminal.
- Step 104a4 When the number of the absolute values of the third differences is greater than a preset number, the first terminal increases the number of failures by one.
- the third difference absolute value is: among the M second difference absolute values, the difference absolute value that is greater than the second preset threshold.
- the second preset threshold and the first preset threshold may be the same.
- the first terminal can add one to the number of failures corresponding to the target model, and so on, to determine the number of failures corresponding to the target model.
- the first distance information can include multiple fourth distance information
- the second distance information can include multiple fifth distance information
- each fourth distance information corresponds to at least one fifth distance information
- the first terminal can respectively determine the second difference absolute value between each fourth distance information and each corresponding fifth distance information to obtain M second difference absolute values
- the first terminal adds one to the number of failures corresponding to the target model, that is, the first terminal can perform multiple confirmations to determine the number of failures corresponding to the target model, so as to accurately confirm whether the target model is valid based on the number of failures corresponding to the target model.
- Step 104b When the number of failures is greater than or equal to a preset number, the first terminal determines that the target model is failed.
- the second distance information is: distance information obtained by performing T distance measurement operations, where T is a positive integer; wherein the preset number of times is less than or equal to T.
- Step 104c When the number of failures is less than a preset number, the first terminal determines that the target model is valid.
- the first terminal can perform multiple determinations to determine the number of failures corresponding to the target model, and determine whether the target model is valid based on the number of failures corresponding to the target model, the accuracy of the result of determining whether the target model is valid can be improved.
- the first terminal may also report to the network side device the result of determining whether the target model is valid, which will be explained with an example below.
- the model supervision method provided in the embodiment of the present application may also include the following steps 501 to 503.
- Step 501 The first terminal sends supervision result information to a network side device.
- the above-mentioned supervision result information is used to indicate whether the target model is effective.
- the above-mentioned supervision result information includes at least one of the following:
- the first indication information is used to indicate whether the target model is valid.
- the first confidence level is: the confidence level of the result of the first terminal determining whether the target model is valid.
- the first confidence level is related to at least one of the following: the number of failures corresponding to the target model, and the absolute value of the difference between the first distance information and the second distance information.
- the second indication information is used to indicate a method for determining a preset value used to determine whether a target model is valid.
- the above-mentioned preset value may include at least one of the following: the above-mentioned preset number of times, the above-mentioned first preset threshold, the above-mentioned second preset threshold, and the above-mentioned preset quantity.
- a method for determining a preset value may include at least one of the following: protocol pre-definition, pre-configuration, and first terminal default.
- the above-mentioned distance measurement result information is related to the first distance information and the second distance information.
- the second terminal includes M third terminals
- the first distance information includes M fourth distance information
- each fourth distance information is the distance information between the first terminal and a third terminal
- M is a positive integer greater than 1
- the second distance information includes P fifth distance information
- each fifth distance information is: the distance information between the first terminal and a third terminal obtained by performing a distance measurement operation, each fourth distance information corresponds to at least one fifth distance information, and P is a positive integer greater than M.
- the above-mentioned ranging result information includes at least one of the following:
- the third instruction information is the third instruction information
- each of the R fourth difference absolute values is respectively: the absolute value of the difference between a fourth distance information and a corresponding fifth distance information, and R is a positive integer greater than M.
- the above-mentioned first number is the number of the fifth difference absolute values
- the fifth difference absolute value is: the difference absolute value greater than the third preset threshold among the R fourth difference absolute values.
- the third preset threshold and the second preset threshold may be the same.
- the second confidence level is the confidence level of the M fourth distance information.
- the second confidence level is related to a method for performing a distance measurement operation.
- each first difference is respectively: a difference between an absolute value of a fourth difference and a third preset threshold
- the third indication information is used to indicate the time for performing the distance measurement operation.
- the fourth indication information is used to indicate a method for performing a distance measurement operation.
- the network side device after the network side device receives the supervision result information, it can determine whether to continue using the target model based on the supervision result information.
- the network side device no longer uses the target model to locate the terminal; if the target model is valid, the network side device continues to use the target model to locate the terminal.
- Step 502 The network side device receives supervision result information from the first terminal.
- Step 503 When the target model is deployed on the network side device, if the supervision result information indicates that the target model is invalid, the network side device does not use the target model to locate the terminal.
- the first terminal can report to the network side device whether the target model is valid, so that the network side device can determine whether to use the target model for terminal positioning, instead of directly using the target model for terminal positioning, therefore, the situation where the terminal location information output by the target model is inaccurate can be reduced, thus improving the accuracy of terminal positioning.
- the network side device when the target model is deployed on the network side device, if the supervision result information indicates that the target model is invalid, the network side device does not use the target model to perform terminal positioning.
- the network-side device does not use the target model to locate any terminal.
- the model supervision method provided in the embodiment of the present application may further include the following step 105.
- Step 105 When the target model is deployed on the first terminal, if it is determined that the target model is invalid, the first terminal does not use the target model to perform terminal positioning.
- the first terminal may not use the target model to perform terminal positioning on the first terminal.
- Fig. 7 shows a flow chart of a model supervision method provided by an embodiment of the present application.
- the model supervision method provided by an embodiment of the present application may include the following steps 601 to 604.
- Step 601 The first terminal sends second distance information to a network side device.
- the above-mentioned second distance information is: the distance information between the first terminal and the second terminal obtained by performing a distance measurement operation. Whether the target model is valid is determined by the network side device based on the first distance information and the second distance information.
- the first distance information is: the distance information between the first terminal and the second terminal determined using the target model.
- the model supervision method provided in the embodiment of the present application may also include the following steps 6011 to 6013.
- Step 6011 The first terminal uses a target model to determine first location information.
- the first location information is: location information of the first terminal.
- the first distance information is determined by the network side device according to the first location information and the second location information
- the second location information is: location information of the second terminal determined by the second terminal using the target model.
- Step 6012 The first terminal sends first location information to the network side device.
- Step 6013 The network side device receives first location information from the first terminal and receives second location information from the second terminal.
- the first location information is determined by the first terminal using a target model
- the second location information is determined by the second terminal using a target model
- Step 602 The network side device receives second distance information from the first terminal.
- the second distance information is: distance information between the first terminal and the second terminal obtained by performing a distance measurement operation.
- Step 603 The network side device determines first distance information according to the first location information and the second location information.
- the first location information is: the location information of the first terminal determined by the target model
- the second location information is: the location information of the second terminal determined by the target model
- the first distance information is: Distance information between a terminal and a second terminal.
- Step 604 The network-side device determines whether the target model is valid according to the first distance information and the second distance information.
- the supervision result is used to determine whether to use the target model for terminal positioning.
- the supervision result is the result obtained by the first terminal executing the step of determining whether the target model is valid.
- the supervision result includes any of the following: the target model is valid, the target model is invalid.
- the supervision result shows that the target model is valid
- the network-side device determines to use the target model for terminal positioning; when the target model is deployed on a first terminal, the first terminal determines to use the target model for terminal positioning.
- the network side device can use the target model to locate any terminal.
- the first terminal can use the target model to locate the first terminal.
- the network side device determines not to use the target model for terminal positioning; when the target model is deployed on a first terminal, the first terminal determines not to use the target model for terminal positioning.
- the network side device cannot use the target model to perform terminal positioning on any terminal.
- the first terminal cannot use the target model to perform terminal positioning on the first terminal.
- the network side device may also send ranging indication information to the first terminal so that the first terminal performs a distance measurement operation.
- ranging indication information may also be sent to the first terminal so that the first terminal performs a distance measurement operation.
- the first terminal can send the second distance information between the first terminal and the second terminal obtained by performing the distance measurement operation to the network side device, so that the network side device can receive the second distance information, and determine the first distance information between the first terminal and the second terminal according to the first position information of the first terminal and the second position information of the second terminal determined by the target model, and determine whether the target model is valid according to the first distance information and the second distance information.
- the network side device can determine the first distance information according to the first position information and the second position information, and determine whether the target model is valid according to the first distance information and the accurate second distance information received from the first terminal, in the case of determining that the target model is invalid, the target model can be used without using the target model for terminal positioning, instead of directly using the target model for terminal positioning, so that the situation where the terminal position information output by the target model is inaccurate can be reduced, so that the accuracy of terminal positioning can be improved.
- step 604 can be specifically implemented by the following step 604a and step 604b (or step 604c).
- Step 604a The network-side device determines the number of failures corresponding to the target model according to the first distance information and the second distance information.
- step 604a can be specifically implemented by the following steps 604a1 and 604a2.
- Step 604a1 For each piece of the N pieces of third distance information, the network side device determines an absolute value of a difference between the first distance information and one piece of the third distance information to obtain a first absolute value of the difference.
- the second distance information includes N third distance information, each third distance information is: distance information between the first terminal and the second terminal obtained by performing a distance measurement operation, and N is a positive integer greater than 1.
- Step 604a2 When the absolute value of the first difference is greater than the first preset threshold, the network side device increases the number of failures by one.
- the network side device can respectively determine the first absolute value of the difference between the first distance information and each third distance information, and when each first absolute value of the difference is greater than the first preset threshold, the network side device adds one to the number of failures corresponding to the target model, that is, the network side device can perform multiple confirmations to determine the number of failures corresponding to the target model, so as to determine the number of failures corresponding to the target model according to the number of failures corresponding to the target model. Accurately confirm whether the target model is valid.
- step 604a can be specifically implemented by the following steps 604a3 and 604a4.
- Step 604a3 The network side device determines the absolute value of the difference between each fourth distance information and a corresponding fifth distance information, and obtains M second difference absolute values.
- the above-mentioned second terminal includes M third terminals
- the above-mentioned first distance information includes M fourth distance information
- each fourth distance information is the distance information between the first terminal and a third terminal
- M is a positive integer greater than 1
- the above-mentioned second distance information includes P fifth distance information
- each fifth distance information is: the distance information between the first terminal and a third terminal obtained by performing a distance measurement operation once, each fourth distance information corresponds to at least one fifth distance information, and P is a positive integer greater than M.
- Step 604a4 When the number of the absolute values of the third differences is greater than a preset number, the network side device increases the number of failures by one.
- the third difference absolute value is: among the M second difference absolute values, the difference absolute value that is greater than the second preset threshold.
- each fourth distance information corresponds to at least one fifth distance information, so that the network side device can respectively determine the second difference absolute value between each fourth distance information and each corresponding fifth distance information to obtain M second difference absolute values, and when the M second difference absolute values are greater than a preset number, the network side device adds one to the number of failures corresponding to the target model, that is, the network side device can perform multiple confirmations to determine the number of failures corresponding to the target model, so as to accurately confirm whether the target model is valid based on the number of failures corresponding to the target model.
- Step 604b When the number of failures is greater than or equal to the preset number of times, the network side device determines that the target model fails.
- Step 604c When the number of failures is less than the preset number, the network side device determines that the target model is valid.
- the network side device can perform multiple determinations to determine the number of failures corresponding to the target model, and determine whether the target model is valid based on the number of failures corresponding to the target model, the accuracy of the result of determining whether the target model is valid can be improved.
- the network side device may also send target indication information to the first terminal and the second terminal, and the target indication information is used to indicate that the target model is not used for terminal positioning.
- the model supervision method provided in the embodiment of the present application can be executed by a model supervision device.
- the execution of the model supervision method by a model supervision device is taken as an example to illustrate the model supervision device provided in the embodiment of the present application.
- Fig. 8 shows a possible structural diagram of a model supervision device involved in an embodiment of the present application.
- the model supervision device 50 may include: a receiving module 51 and a determining module 52 .
- the receiving module 51 is used to receive first distance information from a network side device; the first distance information is: the distance information between the model supervision device 50 and the second terminal determined by the target model.
- the determining module 52 is used to determine whether the target model is valid according to the first distance information and the second distance information received by the receiving module 51.
- the second distance information is: the distance information between the model supervision device 50 and the second terminal obtained by performing a distance measurement operation.
- the above-mentioned determination module 52 is specifically used to determine the number of failures corresponding to the target model based on the first distance information and the second distance information; when the number of failures is greater than or equal to the preset number of times, determine that the target model is failed; or, when the number of failures is less than the preset number of times, determine that the target model is valid.
- the determination module 51 is specifically used to determine, for each of the N third distance information, the absolute value of the difference between the first distance information and a third distance information, to obtain a first absolute value of the difference;
- the second distance information includes N third distance information, each of which is: the distance information between the model supervision device 50 and the second terminal obtained by performing a distance measurement operation, where N is a positive integer greater than 1; and when the absolute value of the first difference is greater than a first preset threshold, the number of failures is increased by one.
- the determination module 51 is specifically used to determine the absolute value of the difference between each fourth distance information and a corresponding fifth distance information, respectively, to obtain M second difference absolute values;
- the second terminal includes M third terminals, the first distance information includes M fourth distance information, each fourth distance information is the distance information between the model supervision device 50 and a third terminal, and M is a positive integer greater than 1;
- the second distance information includes P fifth distance information, each fifth distance information is: the distance information between the model supervision device 50 and a third terminal obtained by performing a distance measurement operation, each fourth distance information corresponds to at least one fifth distance information, and P is greater than M is a positive integer; and when the number of the third difference absolute values is greater than the preset number, the number of failures is increased by 1.
- the third difference absolute value is: the difference absolute value greater than the second preset threshold among the M second difference absolute values.
- the second distance information is: distance information obtained by performing T distance measurement operations, where T is a positive integer.
- the preset number of times is less than or equal to T.
- the model supervision device 50 provided in the embodiment of the present application may further include: a sending module.
- the sending module is further used to send supervision result information to the network side device, and the supervision result information is used to indicate whether the target model is valid.
- the supervision result information includes at least one of the following: identification information of the target model; first indication information; first confidence; second indication information; and distance measurement result information.
- the first indication information is used to indicate whether the target model is valid; the first confidence is the confidence of the result of the model supervision device 50 determining whether the target model is valid; the second indication information is used to indicate the method for determining the preset value used to determine whether the target model is valid; and the distance measurement result information is related to the first distance information and the second distance information.
- the second terminal includes M third terminals
- the first distance information includes M fourth distance information
- each fourth distance information is the distance information between the model supervision device 50 and a third terminal
- M is a positive integer greater than 1
- the second distance information includes P fifth distance information
- each fifth distance information is: the distance information between the model supervision device 50 and a third terminal obtained by performing a distance measurement operation, each fourth distance information corresponds to at least one fifth distance information, and P is a positive integer greater than M
- the distance measurement result information includes at least one of the following: the number M of third terminals in the second terminal; identification information of the M third terminals; R fourth difference absolute values; the first quantity; M fourth distance information; the second confidence; M first differences; the third indication information; the fourth indication information.
- each of the R fourth difference absolute values is respectively: the absolute value of the difference between a fourth distance information and a corresponding fifth distance information, and R is a positive integer greater than M; the first number is the number of fifth difference absolute values, and the fifth difference absolute value is: the absolute value of the difference greater than the third preset threshold among the R fourth difference absolute values; the second confidence level is the confidence level of the M fourth distance information; each first difference is respectively: the difference between a fourth difference absolute value and the third preset threshold; the third indication information is used to indicate the time to perform the distance measurement operation; the fourth indication information is used to indicate the method of performing the distance measurement operation.
- the network-side device when the target model is deployed on a network-side device, if the supervision result information indicates that the target model is invalid, the network-side device does not use the target model to perform terminal positioning.
- the determination module 52 is further configured to, when the target model is deployed in the model monitoring device 50, not use the target model for terminal positioning if it is determined that the target model is invalid.
- the model supervision device 50 provided in the embodiment of the present application may further include: an execution module.
- the receiving module 51 is further configured to receive the first distance measurement indication information from the network side device.
- the execution module is configured to perform a distance measurement operation on the second terminal according to the first distance measurement indication information received by the receiving module 51 to obtain the second distance information.
- the first distance measurement indication information includes at least one of the following: terminal grouping information of the model supervision device 50; fifth indication information; and sixth indication information.
- the terminal grouping information is used to instruct the model supervision device 50 to perform a distance measurement operation on the second terminal; the fifth indication information is used to indicate the time to perform the distance measurement operation; and the sixth indication information is used to indicate the method of performing the distance measurement operation.
- the model supervision device 50 provided in the embodiment of the present application may further include: a sending module.
- the sending module is used to send ranging capability information to the network side device, and the ranging capability information is used to indicate the ranging capability of the model supervision device 50.
- the first ranging indication information is determined by the network side device according to the ranging capability of the model supervision device 50.
- the receiving module 51 is further configured to receive first supervision indication information from a network-side device, where the first supervision indication information is used to instruct the model supervision device 50 to execute a step of determining whether the target model is valid.
- the first supervision indication information includes identification information of the target model.
- the receiving module 51 is further configured to receive second distance information from a network-side device; the second distance information is distance information obtained by the second terminal performing a distance measurement operation on the model supervision device 50 .
- the target model is deployed in the model monitoring device 50 and the second terminal.
- the determination module 52 is also used to determine the first location information using the target model; the first location information is: the location information of the model monitoring device 50.
- the model monitoring device 50 provided in the embodiment of the present application may also include: a sending module.
- the sending module is used to send the first location information to the network side device.
- the first distance information is determined by the network side device based on the first location information and the second location information
- the second location information is: the first distance information determined by the second terminal using the target model.
- the location information of the second terminal is a sending module.
- the model supervision device provided in the embodiment of the present application can send the first distance information to the model supervision device after the network side device determines the first distance information based on the first position information and the second position information, so that the model supervision device can determine whether the target model is valid based on the first distance information and the accurate second distance information.
- the target model can be used instead of being used for terminal positioning, instead of directly using the target model for terminal positioning. Therefore, the situation where the terminal location information output by the target model is inaccurate can be reduced, thereby improving the accuracy of terminal positioning.
- the model supervision device in the embodiment of the present application can be an electronic device, such as an electronic device with an operating system, or a component in an electronic device, such as an integrated circuit or a chip.
- the electronic device can be a terminal, or it can be other devices other than a terminal.
- the terminal can include but is not limited to the types of terminal 11 listed above, and other devices can be servers, network attached storage (NAS), etc., which are not specifically limited in the embodiment of the present application.
- the model supervision device provided in the embodiment of the present application can implement the various processes implemented by the method embodiments of Figures 1 to 6 and achieve the same technical effects. To avoid repetition, they will not be described here.
- Fig. 9 shows a possible structural diagram of a model supervision device involved in an embodiment of the present application.
- the model supervision device 60 may include: a sending module 61 .
- the sending module 61 is used to send the second distance information to the network side device; the second distance information is the distance information between the model supervision device 60 and the second terminal obtained by performing the distance measurement operation. Whether the target model is valid is determined by the network side device according to the first distance information and the second distance information, and the first distance information is the distance information between the model supervision device 60 and the second terminal determined by using the target model.
- the target model is deployed in a model supervision device and a second terminal.
- the model supervision device 60 provided in the embodiment of the present application may also include: a determination module.
- the determination module is used to determine the first location information using the target model; the first location information is: the location information of the model supervision device 60.
- the sending module is also used to send the first location information to the network side device.
- the first distance information is determined by the network side device based on the first location information and the second location information
- the second location information is: the location information of the second terminal determined by the second terminal using the target model.
- the model supervision device provided in the embodiment of the present application can determine the first distance information based on the first position information and the second position information, and determine whether the target model is valid based on the first distance information and the accurate second distance information received from the model supervision device. In this way, when it is determined that the target model is invalid, the target model can be used instead of being used to locate the terminal directly, thereby reducing the situation where the terminal location information output by the target model is inaccurate, thereby improving the accuracy of terminal positioning.
- the model supervision device in the embodiment of the present application can be an electronic device, such as an electronic device with an operating system, or a component in an electronic device, such as an integrated circuit or a chip.
- the electronic device can be a terminal, or it can be other devices other than a terminal.
- the terminal can include but is not limited to the types of terminal 11 listed above, and other devices can be servers, network attached storage (NAS), etc., which are not specifically limited in the embodiment of the present application.
- the model supervision device provided in the embodiment of the present application can implement each process implemented by the method embodiment of Figure 7 and achieve the same technical effect. To avoid repetition, it will not be repeated here.
- Fig. 10 shows a possible structural diagram of a model supervision device involved in an embodiment of the present application.
- the model supervision device 70 may include: a determination module 71 and a sending module 72 .
- the determining module 71 is used to determine the first distance information according to the first location information and the second location information; the first location information is the location information of the first terminal determined by the target model, the second location information is the location information of the second terminal determined by the target model, and the first distance information is the distance information between the first terminal and the second terminal.
- the sending module 72 is used to send the first distance information determined by the determining module 71 to the first terminal. Whether the above-mentioned target model is valid is determined by the first terminal according to the first distance information and the second distance information, and the second distance information is the distance information between the first terminal and the second terminal obtained by performing a distance measurement operation.
- the sending module 72 is further configured to send first ranging indication information to the first terminal, where the first ranging indication information is used to instruct the first terminal to perform a distance measurement operation on the second terminal.
- the model supervision device 70 provided in the embodiment of the present application may further include: a receiving module.
- the receiving module is used to receive ranging capability information from the first terminal, and the ranging capability information is used to indicate the ranging capability of the first terminal.
- the above-mentioned determination module 71 is also used to determine the first ranging indication according to the ranging capability of the first terminal. information.
- the sending module 72 is further configured to send first supervision instruction information to the first terminal, where the first supervision instruction information is configured to instruct the first terminal to execute a step of determining whether the target model is valid.
- the model supervision device 70 provided in the embodiment of the present application may further include: a receiving module.
- the receiving module is used to receive second distance information from the second terminal; the second distance information is: the distance information obtained by the second terminal performing a distance measurement operation on the first terminal.
- the sending module 72 is also used to send the second distance information received by the receiving module to the first terminal.
- the target model is deployed on a first terminal and a second terminal.
- the model supervision device 70 provided in the embodiment of the present application may also include: a receiving module.
- the receiving module is used to receive first location information from the first terminal and receive second location information from the second terminal.
- the first location information is determined by the first terminal using the target model, and the second location information is determined by the second terminal using the target model.
- the model monitoring device 70 provided in the embodiment of the present application may further include: a receiving module.
- the receiving module is used to receive monitoring result information from the first terminal.
- the above-mentioned determination module 71 is also used for, when the target model is deployed on the network side device, if the monitoring result information indicates that the target model is invalid, the network side device does not use the target model for terminal positioning.
- the model supervision device provided in the embodiment of the present application can send the first distance information to the first terminal after the model supervision device determines the first distance information based on the first position information and the second position information, so that the first terminal can determine whether the target model is valid based on the first distance information and the accurate second distance information.
- the target model can be used instead of being used to locate the terminal, instead of being used directly to locate the terminal. Therefore, the situation where the terminal position information output by the target model is inaccurate can be reduced, thereby improving the accuracy of terminal positioning.
- the model supervision device in the embodiment of the present application can be an electronic device, such as an electronic device with an operating system, or a component in an electronic device, such as an integrated circuit or a chip.
- the electronic device can be a network-side device, or can be a device other than a network-side device.
- the network-side device can include but is not limited to the types of network-side devices 12 listed above, and other devices can be servers, network attached storage (NAS), etc., which are not specifically limited in the embodiment of the present application.
- the model supervision device provided in the embodiment of the present application can implement the various processes implemented by the method embodiments of Figures 1 to 6 and achieve the same technical effects. To avoid repetition, they will not be described here.
- Fig. 11 shows a possible structural diagram of a model supervision device involved in an embodiment of the present application.
- the model supervision device 80 may include: a receiving module 81 and a determining module 82 .
- the receiving module 81 is used to receive the second distance information from the first terminal; the second distance information is the distance information between the first terminal and the second terminal obtained by performing the distance measurement operation.
- the determining module 82 is used to determine the first distance information according to the first position information and the second position information; the first position information is the position information of the first terminal determined by using the target model, the second position information is the position information of the second terminal determined by using the target model, and the first distance information is the distance information between the first terminal and the second terminal; and determine whether the target model is valid according to the first distance information and the second distance information.
- the above-mentioned determination module 82 is specifically used to determine the number of failures corresponding to the target model based on the first distance information and the second distance information; and determine that the target model is failed when the number of failures is greater than or equal to the preset number of times; or, determine that the target model is valid when the number of failures is less than the preset number of times.
- the determination module 82 is specifically used to determine, for each of the N third distance information, the absolute value of the difference between the first distance information and one of the third distance information, to obtain a first absolute value of the difference;
- the second distance information includes N third distance information, each of which is: the distance information between the first terminal and the second terminal obtained by performing a distance measurement operation, where N is a positive integer greater than 1; and when the absolute value of the first difference is greater than a first preset threshold, the number of failures is increased by one.
- the determination module 82 is specifically used to determine the absolute value of the difference between each fourth distance information and a corresponding fifth distance information, respectively, to obtain M second difference absolute values;
- the second terminal includes M third terminals, the first distance information includes M fourth distance information, each fourth distance information is the distance information between the first terminal and a third terminal, and M is a positive integer greater than 1;
- the second distance information includes P fifth distance information, each fifth distance information is: the distance information between the first terminal and a third terminal obtained by performing a distance measurement operation, each fourth distance information corresponds to at least one fifth distance information, and P is a positive integer greater than M; and when the number of the third difference absolute values is greater than the preset number, the number of failures is increased by one.
- the third difference The absolute value of the second difference is: the absolute value of the difference that is greater than the second preset threshold among the M second difference absolute values.
- the target model is deployed on the first terminal and the second terminal.
- the receiving module 81 is further configured to receive first location information from the first terminal and second location information from the second terminal.
- the first location information is determined by the first terminal using the target model
- the second location information is determined by the second terminal using the target model.
- the model supervision device provided in the embodiment of the present application can determine the first distance information based on the first position information and the second position information, and determine whether the target model is valid based on the first distance information and the accurate second distance information received from the first terminal. In this way, when it is determined that the target model is invalid, the target model can be used instead of being used to locate the terminal, instead of being used directly to locate the terminal. Therefore, the situation where the terminal position information output by the target model is inaccurate can be reduced, thereby improving the accuracy of terminal positioning.
- the model supervision device in the embodiment of the present application can be an electronic device, such as an electronic device with an operating system, or a component in an electronic device, such as an integrated circuit or a chip.
- the electronic device can be a network-side device, or can be a device other than a network-side device.
- the network-side device can include but is not limited to the types of network-side devices 12 listed above, and other devices can be servers, network attached storage (NAS), etc., which are not specifically limited in the embodiment of the present application.
- the model supervision device provided in the embodiment of the present application can implement each process implemented by the method embodiment of Figure 7 and achieve the same technical effect. To avoid repetition, it will not be repeated here.
- an embodiment of the present application further provides a communication device 90, including a processor 91 and a memory 92, the memory 92 storing a program or instruction that can be run on the processor 91, for example, when the communication device 90 is a terminal, the program or instruction is executed by the processor 91 to implement the various steps of the above-mentioned model supervision method embodiment, and can achieve the same technical effect.
- the communication device 90 is a network side device, the program or instruction is executed by the processor 91 to implement the various steps of the above-mentioned model supervision method embodiment, and can achieve the same technical effect. To avoid repetition, it will not be repeated here.
- the embodiment of the present application also provides a terminal, which is a first terminal, and the first terminal includes a processor and a communication interface, and the communication interface is used to receive first distance information from a network side device; the first distance information is: the distance information between the first terminal and the second terminal determined by the target model; the processor is used to determine whether the target model is valid according to the first distance information and the second distance information; wherein the second distance information is: the distance information between the first terminal and the second terminal obtained by performing the distance measurement operation.
- the communication interface is used to send the second distance information to the network side device;
- the second distance information is: the distance information between the first terminal and the second terminal obtained by performing the distance measurement operation; wherein whether the target model is valid is determined by the network side device according to the first distance information and the second distance information, and the first distance information is: the distance information between the first terminal and the second terminal determined by the target model.
- the terminal embodiment corresponds to the above-mentioned terminal side method embodiment, and each implementation process and implementation method of the above-mentioned method embodiment can be applied to the terminal embodiment, and can achieve the same technical effect.
- Figure 13 is a schematic diagram of the hardware structure of a terminal implementing the embodiment of the present application.
- the terminal 100 includes but is not limited to: a radio frequency unit 101, a network module 102, an audio output unit 103, an input unit 104, a sensor 105, a display unit 106, a user input unit 107, an interface unit 108, a memory 109 and at least some of the components of a processor 110.
- the terminal 100 may also include a power source (such as a battery) for supplying power to each component, and the power source may be logically connected to the processor 110 through a power management system, so as to implement functions such as charging, discharging, and power consumption management through the power management system.
- a power source such as a battery
- the terminal structure shown in FIG13 does not constitute a limitation on the terminal, and the terminal may include more or fewer components than shown in the figure, or combine certain components, or arrange components differently, which will not be described in detail here.
- the input unit 104 may include a graphics processing unit (GPU) 1041 and a microphone 1042, and the graphics processor 1041 processes the image data of a static picture or video obtained by an image capture device (such as a camera) in a video capture mode or an image capture mode.
- the display unit 106 may include a display panel 1061, and the display panel 1061 may be configured in the form of a liquid crystal display, an organic light emitting diode, etc.
- the user input unit 107 includes a touch panel 1071 and at least one of other input devices 1072.
- the touch panel 1071 is also called a touch screen.
- the touch panel 1071 may include two parts: a touch detection device and a touch controller.
- Other input devices 1072 may include, but are not limited to, a physical keyboard, function keys (such as a volume control key, a switch key, etc.), a trackball, a mouse, and a joystick, which will not be repeated here.
- the RF unit 101 can transmit the downlink data to the processor 110 for processing; in addition, the RF unit 101 can send uplink data to the network side device.
- 101 includes but is not limited to antennas, amplifiers, transceivers, couplers, low noise amplifiers, duplexers, etc.
- the memory 109 can be used to store software programs or instructions and various data.
- the memory 109 may mainly include a first storage area for storing programs or instructions and a second storage area for storing data, wherein the first storage area may store an operating system, an application program or instruction required for at least one function (such as a sound playback function, an image playback function, etc.), etc.
- the memory 109 may include a volatile memory or a non-volatile memory, or the memory 109 may include both volatile and non-volatile memories.
- the non-volatile memory may be a read-only memory (ROM), a programmable read-only memory (PROM), an erasable programmable read-only memory (EPROM), an electrically erasable programmable read-only memory (EEPROM), or a flash memory.
- the volatile memory may be a random access memory (RAM), a static random access memory (SRAM), a dynamic random access memory (DRAM), a synchronous dynamic random access memory (SDRAM), a double data rate synchronous dynamic random access memory (DDRSDRAM), an enhanced synchronous dynamic random access memory (ESDRAM), a synchronous link dynamic random access memory (SLDRAM) and a direct memory bus random access memory (DRRAM).
- the memory 109 in the embodiment of the present application includes but is not limited to these and any other suitable types of memory.
- the processor 110 may include one or more processing units; optionally, the processor 110 integrates an application processor and a modem processor, wherein the application processor mainly processes operations related to an operating system, a user interface, and application programs, and the modem processor mainly processes wireless communication signals, such as a baseband processor. It is understandable that the modem processor may not be integrated into the processor 110.
- the radio frequency unit 101 is used to receive first distance information from a network side device; the first distance information is: distance information between a first terminal and a second terminal determined by using a target model.
- the processor 110 is configured to determine whether the target model is valid according to the first distance information and the second distance information.
- the second distance information is: distance information between the first terminal and the second terminal obtained by performing a distance measurement operation.
- the terminal provided in the embodiment of the present application can send the first distance information to the first terminal after the network side device determines the first distance information based on the first location information and the second location information, so that the first terminal can determine whether the target model is valid based on the first distance information and the accurate second distance information.
- the target model can be used instead of being used to locate the terminal, instead of directly using the target model to locate the terminal. Therefore, the situation where the terminal location information output by the target model is inaccurate can be reduced, thereby improving the accuracy of terminal positioning.
- the processor 110 is specifically used to determine the number of failures corresponding to the target model based on the first distance information and the second distance information; when the number of failures is greater than or equal to a preset number of times, determine that the target model is failed; or, when the number of failures is less than a preset number of times, determine that the target model is valid.
- the processor 110 is specifically used to determine, for each of the N third distance information, the absolute value of the difference between the first distance information and one of the third distance information, to obtain a first absolute value of the difference;
- the above-mentioned second distance information includes N third distance information, each of which is: the distance information between the first terminal and the second terminal obtained by performing a distance measurement operation, N is a positive integer greater than 1; and when the absolute value of the first difference is greater than the first preset threshold, the number of failures is increased by one.
- the processor 110 is specifically used to determine the absolute value of the difference between each fourth distance information and a corresponding fifth distance information, respectively, to obtain M second difference absolute values;
- the above-mentioned second terminal includes M third terminals, the above-mentioned first distance information includes M fourth distance information, each fourth distance information is the distance information between the first terminal and a third terminal, and M is a positive integer greater than 1;
- the above-mentioned second distance information includes P fifth distance information, each fifth distance information is: the distance information between the first terminal and a third terminal obtained by performing a distance measurement operation, each fourth distance information corresponds to at least one fifth distance information, and P is a positive integer greater than M; and when the number of the third difference absolute values is greater than the preset number, the number of failures is increased by one.
- the third difference absolute value is: a difference absolute value greater than a second preset threshold value among the M second difference absolute values.
- the radio frequency unit 101 is further used to send supervision result information to a network side device, where the supervision result information is used to indicate whether the target model is valid.
- the radio frequency unit 101 is further configured to receive first ranging indication information from a network side device.
- the processor 110 is further configured to perform a distance measurement operation on the second terminal according to the first ranging indication information to obtain a second Distance information.
- the radio frequency unit 101 is further used to send ranging capability information to the network side device, where the ranging capability information is used to indicate the ranging capability of the first terminal.
- the first ranging indication information is determined by the network side device according to the ranging capability of the first terminal.
- the radio frequency unit 101 is further used to receive first supervision indication information from a network side device, where the first supervision indication information is used to instruct the first terminal to execute a step of determining whether the target model is valid.
- the radio frequency unit 101 is further used to receive second distance information from a network side device; the second distance information is: distance information obtained by the second terminal performing a distance measurement operation on the first terminal.
- the radio frequency unit 101 is used to send second distance information to the network side device; the second distance information is: distance information between the first terminal and the second terminal obtained by performing a distance measurement operation.
- Whether the target model is valid is determined by the network side device according to the first distance information and the second distance information, where the first distance information is: the distance information between the first terminal and the second terminal determined by using the target model.
- the terminal provided in the embodiment of the present application has a network side device that can determine the first distance information based on the first location information and the second location information, and determine whether the target model is valid based on the first distance information and the accurate second distance information received from the first terminal. In this way, when it is determined that the target model is invalid, the target model can be used to locate the terminal instead of directly using the target model. Therefore, the situation where the terminal location information output by the target model is inaccurate can be reduced, thereby improving the accuracy of terminal positioning.
- the embodiment of the present application also provides a network side device, including a processor and a communication interface, the processor is used to determine the first distance information according to the first location information and the second location information; the first location information is: the location information of the first terminal determined by the target model, the second location information is: the location information of the second terminal determined by the target model, and the first distance information is: the distance information between the first terminal and the second terminal; the communication interface is used to send the first distance information to the first terminal; wherein, whether the above-mentioned target model is valid is determined by the first terminal according to the first distance information and the second distance information, and the above-mentioned second distance information is: the distance information between the first terminal and the second terminal obtained by performing a distance measurement operation.
- the processor is used to determine the first distance information according to the first location information and the second location information
- the first location information is: the location information of the first terminal determined by the target model
- the second location information is: the location information of the second terminal determined by the target model
- the first distance information
- the communication interface is used to receive the second distance information from the first terminal; the second distance information is: the distance information between the first terminal and the second terminal obtained by performing a distance measurement operation; the processor is used to determine the first distance information according to the first location information and the second location information; the first location information is: the location information of the first terminal determined by the target model, the second location information is: the location information of the second terminal determined by the target model, and the first distance information is the distance information between the first terminal and the second terminal; and determine whether the target model is valid according to the first distance information and the second distance information.
- This network side device embodiment corresponds to the above-mentioned network side device method embodiment. Each implementation process and implementation method of the above-mentioned method embodiment can be applied to this network side device embodiment and can achieve the same technical effect.
- the embodiment of the present application also provides a network side device.
- the network side device 200 includes: an antenna 201, a radio frequency device 202, a baseband device 203, a processor 204 and a memory 205.
- the antenna 201 is connected to the radio frequency device 202.
- the radio frequency device 202 receives information through the antenna 201 and sends the received information to the baseband device 203 for processing.
- the baseband device 203 processes the information to be sent and sends it to the radio frequency device 202.
- the radio frequency device 202 processes the received information and sends it out through the antenna 201.
- the method executed by the network-side device in the above embodiment may be implemented in the baseband device 203, which includes a baseband processor.
- the baseband device 203 may include, for example, at least one baseband board, on which multiple chips are arranged, as shown in Figure 14, one of which is, for example, a baseband processor, which is connected to the memory 205 through a bus interface to call the program in the memory 205 and execute the network device operations shown in the above method embodiment.
- the network side device may also include a network interface 206, which is, for example, a common public radio interface (CPRI).
- a network interface 206 which is, for example, a common public radio interface (CPRI).
- CPRI common public radio interface
- the network side device 200 of the embodiment of the present application also includes: instructions or programs stored in the memory 205 and executable on the processor 204.
- the processor 204 calls the instructions or programs in the memory 205 to execute the method executed by each module shown in Figure 10 or Figure 11, and achieves the same technical effect. To avoid repetition, it will not be repeated here.
- An embodiment of the present application also provides a readable storage medium, on which a program or instruction is stored.
- a program or instruction is stored.
- the various processes of the above-mentioned model supervision method embodiment are implemented and the same technical effect can be achieved. To avoid repetition, it will not be repeated here.
- the processor is the processor in the terminal described in the above embodiment.
- the readable storage medium includes a computer readable storage medium, such as a computer read-only memory ROM, a random access memory RAM, a magnetic disk or an optical disk. wait.
- An embodiment of the present application further provides a chip, which includes a processor and a communication interface, wherein the communication interface is coupled to the processor, and the processor is used to run programs or instructions to implement the various processes of the above-mentioned model supervision method embodiment, and can achieve the same technical effect. To avoid repetition, it will not be repeated here.
- the chip mentioned in the embodiments of the present application can also be called a system-level chip, a system chip, a chip system or a system-on-chip chip, etc.
- An embodiment of the present application further provides a computer program/program product, which is stored in a storage medium.
- the computer program/program product is executed by at least one processor to implement the various processes of the above-mentioned model supervision method embodiment and can achieve the same technical effect. To avoid repetition, it will not be repeated here.
- An embodiment of the present application also provides a model supervision system, including: a terminal and a network side device, wherein the terminal can be used to execute the steps of the model supervision method as described above, and the network side device can be used to execute the steps of the model supervision method as described above.
- the technical solution of the present application can be embodied in the form of a computer software product, which is stored in a storage medium (such as ROM/RAM, a magnetic disk, or an optical disk), and includes a number of instructions for enabling a terminal (which can be a mobile phone, a computer, a server, an air conditioner, or a network device, etc.) to execute the methods described in each embodiment of the present application.
- a storage medium such as ROM/RAM, a magnetic disk, or an optical disk
- a terminal which can be a mobile phone, a computer, a server, an air conditioner, or a network device, etc.
Landscapes
- Engineering & Computer Science (AREA)
- Computer Networks & Wireless Communication (AREA)
- Signal Processing (AREA)
- Mobile Radio Communication Systems (AREA)
Abstract
本申请公开了一种模型监督方法、装置、终端、网络侧设备及可读存储介质,属于通信技术领域,本申请实施例的模型监督方法包括:第一终端从网络侧设备接收第一距离信息;该第一距离信息为:采用目标模型确定的第一终端和第二终端之间的距离信息;第一终端根据第一距离信息和第二距离信息,确定目标模型是否有效。其中,上述第二距离信息为:执行距离测量操作得到的第一终端和第二终端之间的距离信息。
Description
本申请要求于2022年12月9日提交国家知识产权局、申请号为202211585120.3、申请名称为“模型监督方法、装置、终端、网络侧设备及可读存储介质”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
本申请属于通信技术领域,具体涉及一种模型监督方法、装置、终端、网络侧设备及可读存储介质。
目前,在新空口(New Radio,NR)中,可以在网络侧设备中部署训练好的神经网络模型。这样在需要进行终端定位时,网络侧设备可以将网络侧设备与该终端之间的网络参数输入该神经网络模型中,以使得该神经网络模型可以输出该终端的位置信息,从而实现进行终端定位。
但是,由于可能会出现因某些原因而导致训练好的神经网络模型失效的情况,此时在进行终端定位时,该神经网络模型输出的该终端的位置信息可能不准确,因此,可能会导致进行终端定位的准确性较差。
发明内容
本申请实施例提供一种模型监督方法、装置、终端、网络侧设备及可读存储介质,能够解决进行终端定位的准确性较差的问题。
第一方面,提供了一种模型监督方法,应用于第一终端,该方法包括:第一终端从网络侧设备接收第一距离信息;该第一距离信息为:采用目标模型确定的第一终端和第二终端之间的距离信息;第一终端根据第一距离信息和第二距离信息,确定目标模型是否有效。其中,上述第二距离信息为:执行距离测量操作得到的第一终端和第二终端之间的距离信息。
第二方面,提供了一种模型监督装置,该模型监督装置包括:接收模块和确定模块。其中,接收模块,用于从网络侧设备接收第一距离信息;该第一距离信息为:采用目标模型确定的模型监督装置和第二终端之间的距离信息。确定模块,用于根据接收模块接收的第一距离信息和第二距离信息,确定目标模型是否有效。其中,上述第二距离信息为:执行距离测量操作得到的模型监督装置和第二终端之间的距离信息。
第三方面,提供了一种模型监督方法,应用于第一终端,该方法包括:第一终端向网络侧设备发送第二距离信息;该第二距离信息为:执行距离测量操作得到的第一终端和第二终端之间的距离信息。其中,上述目标模型是否有效是网络侧设备根据第一距离信息和第二距离信息确定的,上述第一距离信息为:采用目标模型确定的第一终端和第二终端之间的距离信息。
第四方面,提供了一种模型监督装置,该模型监督装置包括:发送模块。其中,发送模块,用于向网络侧设备发送第二距离信息;该第二距离信息为:执行距离测量操作得到的模型监督装置和第二终端之间的距离信息。其中,上述目标模型是否有效是网络侧设备根据第一距离信息和第二距离信息确定的,上述第一距离信息为:采用目标模型确定的模型监督装置和第二终端之间的距离信息。
第五方面,提供了一种模型监督方法,应用于网络侧设备,该方法包括:网络侧设备根据第一位置信息和第二位置信息,确定第一距离信息;该第一位置信息为:采用目标模型确定的第一终端的位置信息,该第二位置信息为:采用目标模型确定的第二终端的位置信息,该第一距离信息为:第一终端和第二终端之间的距离信息;网络侧设备向第一终端发送第一距离信息。其中,上述目标模型是否有效是第一终端根据第一距离信息和第二距离信息确定的,上述第二距离信息为:执行距离测量操作得到的第一终端和第二终端之间的距离信息。
第六方面,提供了一种模型监督装置,该模型监督装置包括:确定模块和发送模块。其中,确定模块,用于根据第一位置信息和第二位置信息,确定第一距离信息;该第一位置信息为:采用目标模型确定的第一终端的位置信息,该第二位置信息为:采用目标模型确定的第二终端的位置信息,该第一距离信息为:第一终端和第二终端之间的距离信息。发送模块,用于向第一终端发送确定模块确定的第一距离信息。其中,上述目标模型是否有效是第一终端根据第一距离信息和第二距离信息确定的,上述第二距离信息为:执行距离测量操作得到的第一终端和第二终端之间的距离信息。
第七方面,提供了一种模型监督方法,应用于网络侧设备,该方法包括:网络侧设备从第一终端接收第二距离信息;该第二距离信息为:执行距离测量操作得到的第一终端和第二终端之间的距离信息;网络侧设备根据第一位置信息和第二位置信息,确定第一距离信息;第一位置信息为:采用目标模型确定的第一终端的位置信息;该第二位置信息为:采用目标模型确定的第二终端的位置信息;该第一距离信息为第一终端和第二终端之间的距离信息;网络侧设备根据第一距离信息和第二距离信息,确定目标模型是否有效。
第八方面,提供了一种模型监督装置,该模型监督装置包括:接收模块和确定模块。其中,接收模块,用于从第一终端接收第二距离信息;该第二距离信息为:执行距离测量操作得到的第一终端和第二终端之间的距离信息。确定模块,用于根据第一位置信息和第二位置信息,确定第一距离信息;该第一位置信息为:采用目标模型确定的第一终端的位置信息;该第二位置信息为:采用目标模型确定的第二终端的位置信息;该第一距离信息为第一终端和第二终端之间的距离信息;并根据第一距离信息和第二距离信息,确定目标模型是否有效。
第九方面,提供了一种终端,该终端包括处理器和存储器,所述存储器存储可在所述处理器上运行的程序或指令,所述程序或指令被所述处理器执行时实现如第一方面所述的方法的步骤,或实现如第三方面所述的方法的步骤。
第十方面,提供了一种终端,包括处理器及通信接口,其中,所述通信接口用于从网络侧设备接收第一距离信息;该第一距离信息为:采用目标模型确定的第一终端和第二终端之间的距离信息;所述处理器用于根据第一距离信息和第二距离信息,确定目标模型是否有效。其中,上述第二距离信息为:执行距离测量操作得到的第一终端和第二终端之间的距离信息;或者,所述通信接口用于向网络侧设备发送第二距离信息;该第二距离信息为:执行距离测量操作得到的第一终端和第二终端之间的距离信息。其中,上述目标模型是否有效是网络侧设备根据第一距离信息和第二距离信息确定的,上述第一距离信息为:采用目标模型确定的第一终端和第二终端之间的距离信息。
第十一方面,提供了一种网络侧设备,该网络侧设备包括处理器和存储器,所述存储器存储可在所述处理器上运行的程序或指令,所述程序或指令被所述处理器执行时实现如第五方面所述的方法的步骤,或实现如第七方面所述的方法的步骤。
第十二方面,提供了一种网络侧设备,包括处理器及通信接口,其中,所述处理器用于根据第一位置信息和第二位置信息,确定第一距离信息;该第一位置信息为:采用目标模型确定的第一终端的位置信息;该第二位置信息为:采用目标模型确定的第二终端的位置信息;该第一距离信息为:第一终端和第二终端之间的距离信息;所述通信接口用于向第一终端发送第一距离信息。其中,上述目标模型是否有效是第一终端根据第一距离信息和第二距离信息确定的,上述第二距离信息为:执行距离测量操作得到的第一终端和第二终端之间的距离信息;或者,所述通信接口用于从第一终端接收第二距离信息;该第二距离信息为:执行距离测量操作得到的第一终端和第二终端之间的距离信息;所述处理器用于根据第一位置信息和第二位置信息,确定第一距离信息;第一位置信息为:采用目标模型确定的第一终端的位置信息;该第二位置信息为:采用目标模型确定的第二终端的位置信息;该第一距离信息为第一终端和第二终端之间的距离信息;并根据第一距离信息和第二距离信息,确定目标模型是否有效。
第十三方面,提供了一种模型监督系统,包括:终端及网络侧设备,所述终端可用于执行如第一方面所述的方法的步骤,或执行如第三方面所述的方法的步骤;所述网络侧设备可用于执行如第五方面所述的方法的步骤,或执行如第七方法所述的方法的步骤。
第十四方面,提供了一种可读存储介质,所述可读存储介质上存储程序或指令,所
述程序或指令被处理器执行时实现如第一方面所述的方法的步骤,或实现如第三方面所述的方法的步骤,或实现如第五方面所述的方法的步骤,或实现如第七方面所述的方法的步骤。
第十五方面,提供了一种芯片,所述芯片包括处理器和通信接口,所述通信接口和所述处理器耦合,所述处理器用于运行程序或指令,实现如第一方面所述的方法的步骤,或实现如第三方面所述的方法的步骤,或实现如第五方面所述的方法的步骤,或实现如第七方面所述的方法的步骤。
第十六方面,提供了一种计算机程序/程序产品,所述计算机程序/程序产品被存储在存储介质中,所述计算机程序/程序产品被至少一个处理器执行以实现如第一方面所述的方法的步骤,或实现如第三方面所述的方法的步骤,或实现如第五方面所述的方法的步骤,或实现如第七方面所述的方法的步骤。
在本申请实施例中,网络侧设备可以根据采用目标模型确定的第一终端的第一位置信息和第二终端的第二位置信息,确定第一距离信息(即采用目标模型确定的第一终端和第二终端之间的距离信息),并向第一终端发送该第一距离信息,这样第一终端可以接收该第一距离信息,并根据该第一距离信息和执行距离测量操作得到的第一终端和第二终端之间的第二距离信息,确定目标模型是否有效。由于在网络侧设备根据第一位置信息和第二位置信息确定第一距离信息之后,可以向第一终端发送该第一距离信息,以使得第一终端可以根据该第一距离信息和准确的第二距离信息,确定目标模型是否有效,这样在确定目标模型失效的情况下,可以不使用该目标模型进行终端定位,而不是直接使用该目标模型进行终端定位,因此,可以减少出现目标模型输出的终端的位置信息不准确的情况,如此,可以提高进行终端定位的准确性。
在本申请实施例中,第一终端可以向网络侧设备发送执行距离测量操作得到的第一终端和第二终端之间的第二距离信息,这样网络侧设备可以接收该第二距离信息,并根据采用目标模型确定的第一终端的第一位置信息和第二终端的第二位置信息,确定第一终端和第二终端之间的第一距离信息,并根据该第一距离信息和第二距离信息,确定目标模型是否有效。由于网络侧设备可以根据第一位置信息和第二位置信息确定第一距离信息,并根据该第一距离信息和从第一终端接收的准确的第二距离信息,确定目标模型是否有效,这样在确定目标模型失效的情况下,可以不使用该目标模型进行终端定位,而不是直接使用该目标模型进行终端定位,因此,可以减少出现目标模型输出的终端的位置信息不准确的情况,如此,可以提高进行终端定位的准确性。
图1是本申请实施例提供的一种无线通信系统的框图;
图2是本申请实施例提供的模型监督方法的流程示意图之一;
图3是本申请实施例提供的模型监督方法的流程示意图之二;
图4是本申请实施例提供的模型监督方法的流程示意图之三;
图5是本申请实施例提供的模型监督方法的流程示意图之四;
图6是本申请实施例提供的模型监督方法的流程示意图之五;
图7是本申请实施例提供的模型监督方法的流程示意图之六;
图8是本申请实施例提供的模型监督装置的结构示意图之一;
图9是本申请实施例提供的模型监督装置的结构示意图之二;
图10是本申请实施例提供的模型监督装置的结构示意图之三;
图11是本申请实施例提供的模型监督装置的结构示意图之四;
图12是本申请实施例提供的通信设备的结构示意图;
图13是本申请实施例提供的终端的硬件结构示意图;
图14是本申请实施例提供的网络侧设备的硬件结构示意图。
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚描述,显然,所描述的实施例是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员所获得的所有其他实施例,都属于本申请保护的范围。
以下将对本申请实施例涉及的术语进行说明。
1、神经网络
神经网络是由多个神经元组成的,其中,该多个神经元中的每个神经元包括一个权重参数。
在神经网络的训练过程中,每个神经元可以接收输入的信息,并分别经过激活函数处理后,输出处理后的信息,从而可以根据处理后的信息和真实信息间的偏差程度,确定损失函数,再通过优化算法,对每个神经元的权重参数进行修正,如此重复,以得到训练好的神经网络。
其中,优化算法为:最小化或最大化损失函数的算法。该优化算法可以包括以下任一项:梯度下降算法、随机梯度下降算法、小批量梯度下降算法,动量法、带动量的随机梯度下降算法、自适应梯度下降算法、均方根误差降速算法、自适应动量估计算法等。
二、其他术语
本申请的说明书和权利要求书中的术语“第一”、“第二”等是用于区别类似的对象,而不用于描述特定的顺序或先后次序。应该理解这样使用的术语在适当情况下可以互换,以便本申请的实施例能够以除了在这里图示或描述的那些以外的顺序实施,且“第一”、“第二”所区别的对象通常为一类,并不限定对象的个数,例如第一对象可以是一个,也可以是多个。此外,说明书以及权利要求中“和/或”表示所连接对象的至少其中之一,字符“/”一般表示前后关联对象是一种“或”的关系。
值得指出的是,本申请实施例所描述的技术不限于长期演进型(Long Term Evolution,LTE)/LTE的演进(LTE-Advanced,LTE-A)系统,还可用于其他无线通信系统,诸如码分多址(Code Division Multiple Access,CDMA)、时分多址(Time Division Multiple Access,TDMA)、频分多址(Frequency Division Multiple Access,FDMA)、正交频分多址(Orthogonal Frequency Division Multiple Access,OFDMA)、单载波频分多址(Single-carrier Frequency Division Multiple Access,SC-FDMA)和其他系统。本申请实施例中的术语“系统”和“网络”常被可互换地使用,所描述的技术既可用于以上提及的系统和无线电技术,也可用于其他系统和无线电技术。以下描述出于示例目的描述了新空口(New Radio,NR)系统,并且在以下大部分描述中使用NR术语,但是这些技术也可应用于NR系统应用以外的应用,如第6代(6th Generation,6G)通信系统。
图1示出本申请实施例可应用的一种无线通信系统的框图。无线通信系统包括终端11和网络侧设备12。其中,终端11可以是手机、平板电脑(Tablet Personal Computer)、膝上型电脑(Laptop Computer)或称为笔记本电脑、个人数字助理(Personal Digital Assistant,PDA)、掌上电脑、上网本、超级移动个人计算机(ultra-mobile personal computer,UMPC)、移动上网装置(Mobile Internet Device,MID)、增强现实(augmented reality,AR)/虚拟现实(virtual reality,VR)设备、机器人、可穿戴式设备(Wearable Device)、车载设备(VUE)、行人终端(PUE)、智能家居(具有无线通信功能的家居设备,如冰箱、电视、洗衣机或者家具等)、游戏机、个人计算机(personal computer,PC)、柜员机或者自助机等终端侧设备,可穿戴式设备包括:智能手表、智能手环、智能耳机、智能眼镜、智能首饰(智能手镯、智能手链、智能戒指、智能项链、智能脚镯、智能脚链等)、智能腕带、智能服装等。需要说明的是,在本申请实施例并不限定终端11的具体类型。网络侧设备12可以包括接入网设备或核心网设备,其中,接入网设备12也可以称为无线接入网设备、无线接入网(Radio Access Network,RAN)、无线接入网功能或无线接入网单元。接入网设备12可以包括基站、WLAN接入点或WiFi节点等,基站可被称为节点B、演进节点B(eNB)、接入点、基收发机站(Base Transceiver Station,BTS)、无线电基站、无线电收发机、基本服务集(Basic Service Set,BSS)、扩展服务集(Extended Service Set,ESS)、家用B节点、家用演进型B节点、发送接收点(Transmitting Receiving Point,TRP)或所述领域中其他某个合适的术语,只要达到相同的技术效果,所述基站不限于特定技术词汇,需要说明的是,在本申请实施例中仅以NR系统中的基站为例进行介绍,并不限定基站的具体类型。
下面结合附图,通过一些实施例及其应用场景对本申请实施例提供的模型监督方法、装置、终端、网络侧设备及可读存储介质进行详细地说明。
图2示出了本申请实施例提供的一种模型监督方法的流程图。如图2所示,本申请实施例提供的模型监督方法可以包括下述的步骤101至步骤104。
步骤101、网络侧设备根据第一位置信息和第二位置信息,确定第一距离信息。
本申请实施例中,上述第一位置信息为:采用目标模型确定的第一终端的位置信息,上述第二位置信息为:采用目标模型确定的第二终端的位置信息。
可选地,本申请实施例中,上述目标模型具体可以为神经网络模型。该目标模型可以为预先训练好的神经网络模型,或从其他设备下载的神经网络模型。该目标模型可以部署于网络侧设备,或者,可以部署于第一终端和第二终端。
可选地,本申请实施例中,第一终端和第二终端可以位于网络侧设备的同一个终端分组内。其中,该第一终端可以为主终端,该第二终端可以为辅终端。第二终端可以包括一个终端或多个终端。
可选地,本申请实施例中,上述第一位置信息可以为第一终端在X维空间下的坐标信息;上述第二位置信息可以为第二终端在X维空间下的坐标信息;X为正整数。
需要说明的是,上述“坐标信息”可以理解为:相对位置的坐标信息,或绝对位置的坐标信息。
可选地,本申请实施例中,在第二终端包括多个终端的情况下,第二位置信息可以包括多个位置信息,每个位置信息分别对应一个终端。
可选地,本申请实施例中,网络侧设备可以将第一网络参数输入至目标模型中,以使得目标模型可以输出第一位置信息,并将第二网络参数输入至目标模型中,以使得目标模型可以输出第二位置信息;或者,网络侧设备可以从第一终端接收第一位置信息,并从第二终端接收第二位置信息,从而网络侧设备可以确定第一距离信息。
进一步地,第一网络参数可以包括以下至少一项:参考信号接收功率(Reference Signal Received Power,RSRP)、信道状态信息(Channel State Information,CSI)。
其中,CSI可以包括以下至少一项:时域信道脉冲响应,频域信道脉冲响应,时延功率谱等。
进一步地,在目标模型部署于网络侧设备的情况下,第一终端可以测量下行参考信号得到第一网络参数,并上报至网络侧设备;或者,网络侧设备可以测量上行参考信号得到第一网络参数;从而网络侧设备可以将该第一网络参数输入至目标模型中。
进一步地,第二网络参数可以包括以下至少一项:RSRP、CSI。
进一步地,在目标模型部署于网络侧设备的情况下,第二终端可以测量下行参考信号得到第二网络参数,并上报至网络侧设备;或者,网络侧设备可以测量上行参考信号得到第二网络参数;从而网络侧设备可以将该第二网络参数输入至目标模型中。
进一步地,在目标模型部署于第一终端和第二终端的情况下,在上述步骤101之前,本申请实施例提供的模型监督方法还可以包括下述的步骤1011至步骤1013。
步骤1011、第一终端采用目标模型确定第一位置信息。
本申请实施例中,上述第一位置信息为:第一终端的位置信息。上述第一距离信息是网络侧设备根据该第一位置信息和第二位置信息确定的,该第二位置信息为:第二终端采用目标模型确定的第二终端的位置信息。
进一步地,第一终端可以测量下行参考信号得到第一网络参数,并将第一网络参数输入至目标模型中,从而可以得到第一位置信息。
进一步地,第二终端可以测量下行参考信号得到第二网络参数,并将第二网络参数输入至目标模型中,从而可以得到第二位置信息。
步骤1012、第一终端向网络侧设备发送第一位置信息。
进一步地,第二终端可以向网络侧设备发送第二位置信息。
步骤1013、网络侧设备从第一终端接收第一位置信息,并从第二终端接收第二位置信息。
本申请实施例中,上述第一位置信息为:第一终端采用目标模型确定的,上述第二位置信息为:第二终端采用目标模型确定的。
本申请实施例中,上述第一距离信息为:第一终端和第二终端之间的距离信息。
可选地,本申请实施例中,在第二终端包括多个终端的情况下,第一距离信息包括多个距离信息,每个距离信息分别对应一个终端。
可选地,本申请实施例中,上述第一距离信息可以为:第一终端和第二终端之间在Y维空间下的距离信息;Y为正整数。其中,Y可以等于X,或不等于X。
进一步地,在Y等于X的情况下,网络侧设备可以采用第一预设算法,根据第一位置信息和第二位置信息计算得到第一距离信息。
示例性地,假设第一位置信息为第一终端在二维空间(即X=2)下的坐标信息,例如(x0,y0),第二位置信息为第二终端在二维空间下的坐标信息,例如(x1,y1),Y等于X;则网络侧设备可以采用第一预设算法,根据第一位置信息和第二位置信息计算得到第一距离信息。该第一预设算法可以为:其中,d为第一距离信息。
可以理解,网络侧设备可以使用第一位置信息的各个坐标值和第二位置信息的各个坐标值,计算得到第一距离信息。
进一步地,在Y不等于X的情况下,网络侧设备可以采用第二预设算法,根据第一位置信息和第二位置信息计算得到第一距离信息。
又示例性地,假设第一位置信息为第一终端在二维空间(即X=2)下的坐标信息,例如(x0,y0),第二位置信息为第二终端在二维空间下的坐标信息,例如(x1,y1),Y不等于X;则网络侧设备可以采用第二预设算法,根据第一位置信息和第二位置信息计算得到第一距离信息。该第二预设算法可以为:d=x1-x0。
可以理解,网络侧设备可以使用第一位置信息中的任意一个坐标值和第二位置信息的对应的坐标值,计算得到第一距离信息。
步骤102、网络侧设备向第一终端发送第一距离信息。
本申请实施例中,上述目标模型是否有效是第一终端根据第一距离信息和第二距离信息确定的,该第二距离信息为:执行距离测量操作得到的第一终端和第二终端之间的距离信息。
可选地,本申请实施例中,上述第二距离信息可以为:第一终端和第二终端之间在Y维空间下的距离信息。
可选地,本申请实施例中,第二距离信息可以为以下任一项:第一终端对第二终端执行距离测量操作得到的距离信息、第二终端对第一终端执行距离测量操作得到的距离信息。
可选地,本申请实施例中,结合图2,如图3所示,在上述步骤102之前,本申请实施例提供的模型监督方法还可以包括下述的步骤201和步骤202。
步骤201、网络侧设备向第一终端发送第一监督指示信息。
本申请实施例中,上述第一监督指示信息用于指示第一终端执行确定目标模型是否有效的步骤。
可选地,本申请实施例中,上述第一监督指示信息包括目标模型的标识信息。
可选地,本申请实施例中,上述标识信息具体可以为:身份标识(IDentity,ID)。
步骤202、第一终端从网络侧设备接收第一监督指示信息。
本申请实施例中,上述第一监督指示信息用于指示第一终端执行确定目标模型是否有效的步骤。
如此可知,由于网络侧设备可以指示某个终端确定目标模型是否有效,因此,可以提高确定目标模型是否有效的准确性。
步骤103、第一终端从网络侧设备接收第一距离信息。
本申请实施例中,上述第一距离信息为:采用目标模型确定的第一终端和第二终端之间的距离信息。
步骤104、第一终端根据第一距离信息和第二距离信息,确定目标模型是否有效。
本申请实施例中,上述第二距离信息为:执行距离测量操作得到的第一终端和第二终端之间的距离信息。
可选地,本申请实施例中,第一终端可以先获取第二距离信息,然后再确定目标模型是否有效。
可选地,本申请实施例中,第一终端可以根据第一距离信息和第二距离信息之间的差值绝对值,确定目标模型是否有效。
可选地,本申请实施例中,监督结果用于确定是否使用目标模型进行终端定位。其中,该监督结果为第一终端执行确定目标模型是否有效的步骤得到的结果。该监督结果包括以
下任一项:目标模型有效、目标模式失效。
进一步地,在监督结果为目标模型有效的情况下,确定使用目标模型进行终端定位。
示例性地,在目标模型部署于网络侧设备的情况下,网络侧设备确定使用目标模型进行终端定位;在目标模型部署于第一终端的情况下,第一终端确定使用目标模型进行终端定位。
可以理解,网络侧设备可以使用目标模型对任何终端进行终端定位。第一终端可以使用目标模型对第一终端进行终端定位。
进一步地,在监督结果为目标模型失效的情况下,确定不使用目标模型进行终端定位。
示例性地,在目标模型部署于网络侧设备的情况下,网络侧设备确定不使用目标模型进行终端定位;在目标模型部署于第一终端的情况下,第一终端确定不使用目标模型进行终端定位。
可以理解,网络侧设备不可以使用目标模型对任何终端进行终端定位。第一终端不可以使用目标模型对第一终端进行终端定位。
下面将针对第一终端如何获取第二距离信息进行举例说明。
可选地,在本申请实施例的一种可能的实现方式中,网络侧设备可以向第一终端发送测距指示信息,以使得第一终端执行距离测量操作。具体地,结合图2,如图4所示,在上述步骤104之前,本申请实施例提供的模型监督方法还可以包括下述的步骤301至步骤303。
步骤301、网络侧设备向第一终端发送第一测距指示信息。
本申请实施例中,上述第一测距指示信息用于指示第一终端对第二终端执行距离测量操作。
可选地,本申请实施例中,上述第一测距指示信息包括以下至少一项:
第一终端的终端分组信息;
第五指示信息;
第六指示信息;
本申请实施例中,上述终端分组信息用于指示第一终端对第二终端执行距离测量操作。
可选地,本申请实施例中,第一终端的终端分组信息指示第一终端为主终端。可以理解,终端分组内的主终端用于执行距离测量操作。
本申请实施例中,上述第五指示信息用于指示执行距离测量操作的时间。
本申请实施例中,上述第六指示信息用于指示执行距离测量操作的方法。
可选地,本申请实施例中,上述距离测量操作的方法可以包括以下任一项:超宽带(Ultra Wide Band,UWB)测距、雷达测距、蓝牙测距、旁链路(Sidelink)测距。
需要说明的是,针对上述UWB测距、雷达测距、蓝牙测距、Sidelink测距的方法的说明,可以参考相关技术中的具体描述,本申请实施例在此不再赘述。
可选地,本申请实施例中,网络侧设备还可以向第二终端发送第二测距指示信息。该第二测距指示信息包括第七指示信息,该第七指示信息用于指示执行距离测量操作的方法。
步骤302、第一终端从网络侧设备接收第一测距指示信息。
步骤303、第一终端根据第一测距指示信息,对第二终端执行距离测量操作,得到第二距离信息。
如此可知,由于网络侧设备可以指示第一终端对第二终端执行距离测量操作,以得到第一终端和第二终端之间准确的距离信息(即第二距离信息),因此,第一终端可以根据第二距离信息,准确地确定目标模型是否有效。
需要说明的是,上述步骤301至步骤303是以网络侧设备指示第一终端对第二终端执行距离测量操作得到第二距离信息为例进行说明的,当然网络侧设备也可以指示第二终端对第一终端执行距离测量操作得到第二距离信息,对此本申请实施例不再赘述。
当然,网络侧设备可以根据终端的测距能力,确定执行距离测量操作的终端,以下将举例说明。
可选地,本申请实施例中,在上述步骤301之前,本申请实施例提供的模型监督方法还可以包括下述的步骤304至步骤306。
步骤304、第一终端向网络侧设备发送测距能力信息。
本申请实施例中,上述测距能力信息用于指示第一终端的测距能力。第一测距指示信息是网络侧设备根据第一终端的测距能力确定的。
可选地,本申请实施例中,上述测距能力可以包括以下至少一项:UWB测距能力、雷达测距能力、蓝牙测距能力、Sidelink测距能力。
步骤305、网络侧设备从第一终端接收测距能力信息。
本申请实施例中,上述测距能力信息用于指示第一终端的测距能力。
步骤306、网络侧设备根据第一终端的测距能力,确定第一测距指示信息。
如此可知,由于第一终端可以上报第一终端的测距能力,以使得网络侧设备可以根据第一终端的测距能力,确定第一测距指示信息,因此,可以减少出现第一终端无法对第二终端执行距离测量操作的情况,且可以提高得到的第二距离信息的准确性。
可选地,在本申请实施例的另一种可能的实现方式中,网络侧设备可以向第二终端发送测距指示信息,以使得第二终端执行距离测量操作。具体地,结合图2,如图5所示,在上述步骤104之前,本申请实施例提供的模型监督方法还可以包括下述的步骤401至步骤403。
步骤401、网络侧设备从第二终端接收第二距离信息。
本申请实施例中,上述第二距离信息为:第二终端对第一终端执行距离测量操作得到的距离信息。
需要说明的是,针对第二终端对第一终端执行距离测量操作得到第二距离信息的说明,可以参考上述步骤301至步骤303中第一终端对第二终端执行距离测量操作得到第二距离信息的具体描述,本申请实施例在此不再赘述。
步骤402、网络侧设备向第一终端发送第二距离信息。
步骤403、第一终端从网络侧设备接收第二距离信息。
本申请实施例中,上述第二距离信息为:第二终端对第一终端执行距离测量操作得到的距离信息。
如此可知,由于网络侧设备可以指示第二终端对第一终端执行距离测量操作,以得到第一终端和第二终端之间准确的距离信息(即第二距离信息),因此,第一终端可以根据第二距离信息,准确地确定目标模型是否有效。
本申请实施例中,由于第二距离信息是执行距离测量操作得到的第一终端和第二终端之间的距离信息,因此,该第二距离信息可以被认为是准确的,从而第一终端可以根据第一距离信息和第二距离信息,确定目标模型是否有效。
本申请实施例提供的模型监督方法,网络侧设备可以根据采用目标模型确定的第一终端的第一位置信息和第二终端的第二位置信息,确定第一距离信息(即采用目标模型确定的第一终端和第二终端之间的距离信息),并向第一终端发送该第一距离信息,这样第一终端可以接收该第一距离信息,并根据该第一距离信息和执行距离测量操作得到的第一终端和第二终端之间的第二距离信息,确定目标模型是否有效。由于在网络侧设备根据第一位置信息和第二位置信息确定第一距离信息之后,可以向第一终端发送该第一距离信息,以使得第一终端可以根据该第一距离信息和准确的第二距离信息,确定目标模型是否有效,这样在确定目标模型失效的情况下,可以不使用该目标模型进行终端定位,而不是直接使用该目标模型进行终端定位,因此,可以减少出现目标模型输出的终端的位置信息不准确的情况,如此,可以提高进行终端定位的准确性。
下面将针对第一终端是如何确定目标模型是否有效进行举例说明。
可选地,本申请实施例中,上述步骤104具体可以通过下述的步骤104a和步骤104b(或步骤104c)实现。
步骤104a、第一终端根据第一距离信息和第二距离信息,判断目标模型对应的失效次数。
可选地,本申请实施例中,第一终端可以在第一距离信息和第二距离信息之间的差值绝对值大于预设阈值的情况下,将目标模型对应的失效次数加一。
需要说明的是,上述“第一距离信息和第二距离信息之间的差值绝对值”可以理解为:对第一距离信息和第二距离信息求差,并对求差得到的差值取绝对值所得到的值。
示例一、
可选地,本申请实施例中,上述步骤104a具体可以通过下述的步骤104a1和步骤104a2实现。
步骤104a1、针对N个第三距离信息中的每个第三距离信息,第一终端分别确定第一距
离信息和一个第三距离信息之间的差值绝对值,得到第一差值绝对值。
本申请实施例中,上述第二距离信息包括N个第三距离信息,每个第三距离信息为:执行一次距离测量操作得到的第一终端和第二终端之间的距离信息,N为大于1的正整数。
可以理解,可以执行N次距离测量操作,以得到N个第三距离信息。
可选地,本申请实施例中,上述N个第三距离信息可以包括以下至少一项:第一终端对第二终端执行距离测量操作得到的距离信息、第二终端对第一终端执行距离测量操作得到的距离信息。
步骤104a2、在第一差值绝对值大于第一预设阈值的情况下,第一终端将失效次数加一。
示例性地,假设第一距离信息为一个第三距离信息为d1,则若则第一终端将目标模型对应的失效次数加一。其中,t为第一预设阈值。
本申请实施例中,若第一差值绝对值大于第一预设阈值,则可以认为采用目标模型确定的第一终端和第二终端之间的距离信息,和执行距离测量操作得到的第一终端和第二终端之间的距离信息之间的误差较大,因此,第一终端可以将目标模型对应的失效次数加一,以此类推,从而确定目标模型对应的失效次数。
如此可知,由于第二距离信息可以包括多个第三距离信息,这样第一终端可以分别确定第一距离信息和每个第三距离信息之间的第一差值绝对值,并在每个第一差值绝对值大于第一预设阈值的情况下,第一终端将目标模型对应的失效次数加一,即第一终端可以进行多次确认,以确定目标模型对应的失效次数,以根据该目标模型对应的失效次数,准确地确认目标模型是否有效。
示例二、
可选地,本申请实施例中,上述步骤104a具体可以通过下述的步骤104a3和步骤104a4实现。
步骤104a3、第一终端分别确定每个第四距离信息和对应的一个第五距离信息之间的差值绝对值,得到M个第二差值绝对值。
本申请实施例中,上述第二终端包括M个第三终端,上述第一距离信息包括M个第四距离信息,每个第四距离信息为第一终端和一个第三终端之间的距离信息,M为大于1的正整数;上述第二距离信息包括P个第五距离信息,每个第五距离信息为:执行一次距离测量操作得到的第一终端和一个第三终端之间的距离信息,每个第四距离信息对应至少一个第五距离信息,P为大于M的正整数。
可选地,本申请实施例中,针对M个第三终端中的任一个第三终端,该任一个第三终端对应的第五距离信息可以包括以下至少一项:第一终端对该任一个第三终端执行距离测量操作得到的距离信息、该任一个第三终端对第一终端执行距离测量操作得到的距离信息。
步骤104a4、在第三差值绝对值的数量大于预设数量的情况下,第一终端将失效次数加一。
本申请实施例中,上述第三差值绝对值为:M个第二差值绝对值中,大于第二预设阈值的差值绝对值。
可选地,本申请实施例中,上述第二预设阈值和第一预设阈值可以相同。
本申请实施例中,若M个第二差值绝对值中第三差值绝对值的数量大于预设数量,则可以认为采用目标模型确定的第一终端和第二终端之间的距离信息,和执行距离测量操作得到的第一终端和第二终端之间的距离信息之间的误差较大,因此,第一终端可以将目标模型对应的失效次数加一,以此类推,从而确定目标模型对应的失效次数。
如此可知,由于第一距离信息可以包括多个第四距离信息,且第二距离信息可以包括多个第五距离信息,每个第四距离信息对应至少一个第五距离信息,这样第一终端可以分别确定每个第四距离信息和对应的每个第五距离信息之间的第二差值绝对值,以得到M个第二差值绝对值,并在M个第二差值绝对值大于预设数量的情况下,第一终端将目标模型对应的失效次数加一,即第一终端可以进行多次确认,以确定目标模型对应的失效次数,以根据该目标模型对应的失效次数,准确地确认目标模型是否有效。
步骤104b、在失效次数大于或等于预设次数的情况下,第一终端确定目标模型失效。
可选地,本申请实施例中,上述第二距离信息为:执行T次距离测量操作得到的距离信息,T为正整数;其中,上述预设次数小于或等于T。
步骤104c、在失效次数小于预设次数的情况下,第一终端确定目标模型有效。
如此可知,由于第一终端可以进行多次确定,以确定目标模型对应的失效次数,以根据该目标模型对应的失效次数,确定目标模型是否有效,因此,可以提高确定目标模型是否有效的结果的准确性。
当然,第一终端还可以向网络侧设备上报确定目标模型是否有效的结果,以下将举例说明。
可选地,本申请实施例中,结合图2,如图6所示,在上述步骤104之后,本申请实施例提供的模型监督方法还可以包括下述的步骤501至步骤503。
步骤501、第一终端向网络侧设备发送监督结果信息。
本申请实施例中,上述监督结果信息用于指示目标模型是否有效的结果。
可选地,本申请实施例中,上述监督结果信息包括以下至少一项:
目标模型的标识信息;
第一指示信息;
第一置信度;
第二指示信息;
测距结果信息。
本申请实施例中,上述第一指示信息用于指示目标模型是否有效。
本申请实施例中,上述第一置信度为:第一终端确定目标模型是否有效的结果的置信度。
可选地,本申请实施例中,第一置信度与以下至少一项相关:目标模型对应的失效次数、第一距离信息和第二距离信息之间的差值绝对值。
本申请实施例中,上述第二指示信息用于指示确定目标模型是否有效所使用的预设数值的确定方法。
可选地,本申请实施例中,上述预设数值可以包括以下至少一项:上述预设次数、上述第一预设阈值、上述第二预设阈值、上述预设数量。
可选地,本申请实施例中,预设数值的确定方法可以包括以下至少一项:协议预定义、预配置、第一终端默认。
本申请实施例中,上述测距结果信息与第一距离信息和第二距离信息相关。
可选地,本申请实施例中,上述第二终端包括M个第三终端,上述第一距离信息包括M个第四距离信息,每个第四距离信息为第一终端和一个第三终端之间的距离信息,M为大于1的正整数;上述第二距离信息包括P个第五距离信息,每个第五距离信息为:执行一次距离测量操作得到的第一终端和一个第三终端之间的距离信息,每个第四距离信息对应至少一个第五距离信息,P为大于M的正整数。
上述测距结果信息包括以下至少一项:
第二终端中第三终端的数目M;
M个第三终端的标识信息;
R个第四差值绝对值;
第一数量;
M个第四距离信息;
第二置信度;
M个第一差值;
第三指示信息;
第四指示信息。
本申请实施例中,R个第四差值绝对值中的每个第四差值绝对值分别为:一个第四距离信息和对应的一个第五距离信息之间的差值绝对值,R为大于M的正整数。
本申请实施例中,上述第一数量为第五差值绝对值的数量,第五差值绝对值为:R个第四差值绝对值中,大于第三预设阈值的差值绝对值。
可选地,本申请实施例中,上述第三预设阈值与第二预设阈值可以相同。
本申请实施例中,上述第二置信度为M个第四距离信息的置信度。
可选地,本申请实施例中,上述第二置信度与执行距离测量操作的方法相关。
本申请实施例中,每个第一差值分别为:一个第四差值绝对值与第三预设阈值之间的差值;
本申请实施例中,上述第三指示信息用于指示执行距离测量操作的时间。
本申请实施例中,上述第四指示信息用于指示执行距离测量操作的方法。
可选地,本申请实施例中,在网络侧设备接收到监督结果信息之后,可以根据该监督结果信息,确定是否继续使用目标模型。
可以理解,若目标模型失效,则网络侧设备不再使用目标模型进行终端定位;若目标模型有效,则网络侧设备继续使用目标模型进行终端定位。
步骤502、网络侧设备从第一终端接收监督结果信息。
步骤503、在目标模型部署于网络侧设备的情况下,若监督结果信息指示目标模型失效,则网络侧设备不使用目标模型进行终端定位。
如此可知,由于第一终端可以向网络侧设备上报目标模型是否有效,以使得网络侧设备可以确定是否使用目标模型进行终端定位,而不是直接使用该目标模型进行终端定位,因此,可以减少出现目标模型输出的终端的位置信息不准确的情况,如此,可以提高进行终端定位的准确性。
可选地,本申请实施例中,在目标模型部署于所述网络侧设备的情况下,若监督结果信息指示目标模型失效,则网络侧设备不使用目标模型进行终端定位。
可以理解,网络侧设备不使用目标模型对任何终端进行终端定位。
可选地,本申请实施例中,在上述步骤104之后,本申请实施例提供的模型监督方法还可以包括下述的步骤105。
步骤105、在目标模型部署于第一终端的情况下,若确定目标模型失效,则第一终端不使用目标模型进行终端定位。
可选地,本申请实施例中,第一终端可以不使用目标模型对第一终端进行终端定位。
图7示出了本申请实施例提供的一种模型监督方法的流程图。如图7所示,本申请实施例提供的模型监督方法可以包括下述的步骤601至步骤604。
步骤601、第一终端向网络侧设备发送第二距离信息。
本申请实施例中,上述第二距离信息为:执行距离测量操作得到的第一终端和第二终端之间的距离信息,目标模型是否有效是网络侧设备根据第一距离信息和第二距离信息确定的,该第一距离信息为:采用目标模型确定的第一终端和第二终端之间的距离信息。
需要说明的是,针对第一终端获取第二距离信息的说明,可以参考上述实施例中的具体描述,本申请实施例在此不再赘述。
可选地,本申请实施例中,在目标模型部署于第一终端和第二终端的情况下,在上述步骤601之前,本申请实施例提供的模型监督方法还可以包括下述的步骤6011至步骤6013。
步骤6011、第一终端采用目标模型确定第一位置信息。
本申请实施例中,上述第一位置信息为:第一终端的位置信息。上述第一距离信息是网络侧设备根据该第一位置信息和第二位置信息确定的,该第二位置信息为:第二终端采用目标模型确定的第二终端的位置信息。
步骤6012、第一终端向网络侧设备发送第一位置信息。
需要说明的是,针对第一终端采用目标模型确定第一位置信息并发送第一位置信息的说明,可以参考上述实施例中的具体描述,本申请实施例在此不再赘述。
步骤6013、网络侧设备从第一终端接收第一位置信息,并从第二终端接收第二位置信息。
本申请实施例中,上述第一位置信息为:第一终端采用目标模型确定的,上述第二位置信息为:第二终端采用目标模型确定的。
步骤602、网络侧设备从第一终端接收第二距离信息。
本申请实施例中,上述第二距离信息为:执行距离测量操作得到的第一终端和第二终端之间的距离信息。
步骤603、网络侧设备根据第一位置信息和第二位置信息,确定第一距离信息。
本申请实施例中,上述第一位置信息为:采用目标模型确定的第一终端的位置信息,上述第二位置信息为:采用目标模型确定的第二终端的位置信息,上述第一距离信息为第
一终端和第二终端之间的距离信息。
需要说明的是,针对网络侧设备根据第一位置信息和第二位置信息确定第一距离信息的说明,可以参考上述实施例中的具体描述,本申请实施例在此不再赘述。
步骤604、网络侧设备根据第一距离信息和第二距离信息,确定目标模型是否有效。
需要说明的是,针对网络侧设备根据第一距离信息和第二距离信息,确定目标模型是否有效的说明,可以参考上述实施例中的具体描述,本申请实施例在此不再赘述。
可选地,本申请实施例中,监督结果用于确定是否使用目标模型进行终端定位。其中,该监督结果为第一终端执行确定目标模型是否有效的步骤得到的结果。该监督结果包括以下任一项:目标模型有效、目标模式失效。
进一步地,在监督结果为目标模型有效的情况下,确定使用目标模型进行终端定位。
示例性地,在目标模型部署于网络侧设备的情况下,网络侧设备确定使用目标模型进行终端定位;在目标模型部署于第一终端的情况下,第一终端确定使用目标模型进行终端定位。
可以理解,网络侧设备可以使用目标模型对任何终端进行终端定位。第一终端可以使用目标模型对第一终端进行终端定位。
进一步地,在监督结果为目标模型失效的情况下,确定不使用目标模型进行终端定位。
示例性地,在目标模型部署于网络侧设备的情况下,网络侧设备确定不使用目标模型进行终端定位;在目标模型部署于第一终端的情况下,第一终端确定不使用目标模型进行终端定位。
可以理解,网络侧设备不可以使用目标模型对任何终端进行终端定位。第一终端不可以使用目标模型对第一终端进行终端定位。
当然,网络侧设备还可以向第一终端发送测距指示信息,以使得第一终端执行距离测量操作,具体可以参照上述实施例中的具体描述,本申请实施例在此不再赘述。
本申请实施例提供的模型监督方法,第一终端可以向网络侧设备发送执行距离测量操作得到的第一终端和第二终端之间的第二距离信息,这样网络侧设备可以接收该第二距离信息,并根据采用目标模型确定的第一终端的第一位置信息和第二终端的第二位置信息,确定第一终端和第二终端之间的第一距离信息,并根据该第一距离信息和第二距离信息,确定目标模型是否有效。由于网络侧设备可以根据第一位置信息和第二位置信息确定第一距离信息,并根据该第一距离信息和从第一终端接收的准确的第二距离信息,确定目标模型是否有效,这样在确定目标模型失效的情况下,可以不使用该目标模型进行终端定位,而不是直接使用该目标模型进行终端定位,因此,可以减少出现目标模型输出的终端的位置信息不准确的情况,如此,可以提高进行终端定位的准确性。
可选地,本申请实施例中,上述步骤604具体可以通过下述的步骤604a和步骤604b(或步骤604c)实现。
步骤604a、网络侧设备根据第一距离信息和第二距离信息,判断目标模型对应的失效次数。
需要说明的是,针对网络侧设备根据第一距离信息和第二距离信息判断目标模型对应的失效次数的说明,可以参考上述实施例中的具体描述,本申请实施例在此不再赘述。
示例三、
可选地,本申请实施例中,上述步骤604a具体可以通过下述的步骤604a1和步骤604a2实现。
步骤604a1、针对N个第三距离信息中的每个第三距离信息,网络侧设备分别确定第一距离信息和一个第三距离信息之间的差值绝对值,得到第一差值绝对值。
本申请实施例中,上述第二距离信息包括N个第三距离信息,每个第三距离信息为:执行一次距离测量操作得到的第一终端和第二终端之间的距离信息,N为大于1的正整数。
步骤604a2、在第一差值绝对值大于第一预设阈值的情况下,网络侧设备将失效次数加一。
如此可知,由于第二距离信息可以包括多个第三距离信息,这样网络侧设备可以分别确定第一距离信息和每个第三距离信息之间的第一差值绝对值,并在每个第一差值绝对值大于第一预设阈值的情况下,网络侧设备将目标模型对应的失效次数加一,即网络侧设备可以进行多次确认,以确定目标模型对应的失效次数,以根据该目标模型对应的失效次数,
准确地确认目标模型是否有效。
示例四、
可选地,本申请实施例中,上述步骤604a具体可以通过下述的步骤604a3和步骤604a4实现。
步骤604a3、网络侧设备分别确定每个第四距离信息和对应的一个第五距离信息之间的差值绝对值,得到M个第二差值绝对值。
本申请实施例中,上述第二终端包括M个第三终端,上述第一距离信息包括M个第四距离信息,每个第四距离信息为第一终端和一个第三终端之间的距离信息,M为大于1的正整数;上述第二距离信息包括P个第五距离信息,每个第五距离信息为:执行一次距离测量操作得到的第一终端和一个第三终端之间的距离信息,每个第四距离信息对应至少一个第五距离信息,P为大于M的正整数。
步骤604a4、在第三差值绝对值的数量大于预设数量的情况下,网络侧设备将失效次数加一。
本申请实施例中,上述第三差值绝对值为:M个第二差值绝对值中,大于第二预设阈值的差值绝对值。
如此可知,由于第一距离信息可以包括多个第四距离信息,且第二距离信息可以包括多个第五距离信息,每个第四距离信息对应至少一个第五距离信息,这样网络侧设备可以分别确定每个第四距离信息和对应的每个第五距离信息之间的第二差值绝对值,以得到M个第二差值绝对值,并在M个第二差值绝对值大于预设数量的情况下,网络侧设备将目标模型对应的失效次数加一,即网络侧设备可以进行多次确认,以确定目标模型对应的失效次数,以根据该目标模型对应的失效次数,准确地确认目标模型是否有效。
步骤604b、在失效次数大于或等于预设次数的情况下,网络侧设备确定目标模型失效。
步骤604c、在失效次数小于预设次数的情况下,网络侧设备确定目标模型有效。
如此可知,由于网络侧设备可以进行多次确定,以确定目标模型对应的失效次数,以根据该目标模型对应的失效次数,确定目标模型是否有效,因此,可以提高确定目标模型是否有效的结果的准确性。
可选地,本申请实施例中,在目标模型部署于第一终端和第二终端的情况下,若确定目标模型失效,则网络侧设备还可以向第一终端和第二终端发送目标指示信息,该目标指示信息用于指示不使用目标模型进行终端定位。
本申请实施例提供的模型监督方法,执行主体可以为模型监督装置。本申请实施例中以模型监督装置执行模型监督方法为例,说明本申请实施例提供的模型监督装置的。
图8示出了本申请实施例中涉及的模型监督装置的一种可能的结构示意图。如图8所示,模型监督装置50可以包括:接收模块51和确定模块52。
其中,接收模块51,用于从网络侧设备接收第一距离信息;该第一距离信息为:采用目标模型确定的模型监督装置50和第二终端之间的距离信息。确定模块52,用于根据接收模块51接收的第一距离信息和第二距离信息,确定目标模型是否有效。其中,上述第二距离信息为:执行距离测量操作得到的模型监督装置50和第二终端之间的距离信息。
在一种可能的实现方式中,上述确定模块52,具体用于根据第一距离信息和第二距离信息,判断目标模型对应的失效次数;在失效次数大于或等于预设次数的情况下,确定目标模型失效;或者,在失效次数小于预设次数的情况下,确定目标模型有效。
在一种可能的实现方式中,上述确定模块51,具体用于针对N个第三距离信息中的每个第三距离信息,分别确定第一距离信息和一个第三距离信息之间的差值绝对值,得到第一差值绝对值;上述第二距离信息包括N个第三距离信息,每个第三距离信息为:执行一次距离测量操作得到的模型监督装置50和第二终端之间的距离信息,N为大于1的正整数;并在第一差值绝对值大于第一预设阈值的情况下,将失效次数加一。
在一种可能的实现方式中,上述确定模块51,具体用于分别确定每个第四距离信息和对应的一个第五距离信息之间的差值绝对值,得到M个第二差值绝对值;上述第二终端包括M个第三终端,上述第一距离信息包括M个第四距离信息,每个第四距离信息为模型监督装置50和一个第三终端之间的距离信息,M为大于1的正整数;上述第二距离信息包括P个第五距离信息,每个第五距离信息为:执行一次距离测量操作得到的模型监督装置50和一个第三终端之间的距离信息,每个第四距离信息对应至少一个第五距离信息,P为大于
M的正整数;并在第三差值绝对值的数量大于预设数量的情况下,将失效次数加一。其中,上述第三差值绝对值为:M个第二差值绝对值中,大于第二预设阈值的差值绝对值。
在一种可能的实现方式中,上述第二距离信息为:执行T次距离测量操作得到的距离信息,T为正整数。其中,上述预设次数小于或等于T。
在一种可能的实现方式中,本申请实施例提供的模型监督装置50还可以包括:发送模块。其中,发送模块,还用于向网络侧设备发送监督结果信息,该监督结果信息用于指示目标模型是否有效的结果。
在一种可能的实现方式中,上述监督结果信息包括以下至少一项:目标模型的标识信息;第一指示信息;第一置信度;第二指示信息;测距结果信息。其中,上述第一指示信息用于指示目标模型是否有效;上述第一置信度为:模型监督装置50确定目标模型是否有效的结果的置信度;上述第二指示信息用于指示确定目标模型是否有效所使用的预设数值的确定方法;上述测距结果信息与第一距离信息和第二距离信息相关。
在一种可能的实现方式中,上述第二终端包括M个第三终端,上述第一距离信息包括M个第四距离信息,每个第四距离信息为模型监督装置50和一个第三终端之间的距离信息,M为大于1的正整数;上述第二距离信息包括P个第五距离信息,每个第五距离信息为:执行一次距离测量操作得到的模型监督装置50和一个第三终端之间的距离信息,每个第四距离信息对应至少一个第五距离信息,P为大于M的正整数;上述测距结果信息包括以下至少一项:第二终端中第三终端的数目M;M个第三终端的标识信息;R个第四差值绝对值;第一数量;M个第四距离信息;第二置信度;M个第一差值;第三指示信息;第四指示信息。其中,上述R个第四差值绝对值中的每个第四差值绝对值分别为:一个第四距离信息和对应的一个第五距离信息之间的差值绝对值,R为大于M的正整数;上述第一数量为第五差值绝对值的数量,该第五差值绝对值为:R个第四差值绝对值中,大于第三预设阈值的差值绝对值;上述第二置信度为M个第四距离信息的置信度;每个第一差值分别为:一个第四差值绝对值与第三预设阈值之间的差值;上述第三指示信息用于指示执行距离测量操作的时间;上述第四指示信息用于指示执行距离测量操作的方法。
在一种可能的实现方式中,在目标模型部署于网络侧设备的情况下,若监督结果信息指示目标模型失效,则网络侧设备不使用目标模型进行终端定位。
在一种可能的实现方式中,上述确定模块52,还用于在目标模型部署于模型监督装置50的情况下,若确定目标模型失效,则不使用目标模型进行终端定位。
在一种可能的实现方式中,本申请实施例提供的模型监督装置50还可以包括:执行模块。其中,上述接收模块51,还用于从网络侧设备接收第一测距指示信息。执行模块,用于根据接收模块51接收的第一测距指示信息,对第二终端执行距离测量操作,得到第二距离信息。
在一种可能的实现方式中,上述第一测距指示信息包括以下至少一项:模型监督装置50的终端分组信息;第五指示信息;第六指示信息。其中,上述终端分组信息用于指示模型监督装置50对第二终端执行距离测量操作;上述第五指示信息用于指示执行距离测量操作的时间;上述第六指示信息用于指示执行距离测量操作的方法。
在一种可能的实现方式中,本申请实施例提供的模型监督装置50还可以包括:发送模块。其中,发送模块,用于向网络侧设备发送测距能力信息,该测距能力信息用于指示模型监督装置50的测距能力。其中,上述第一测距指示信息是网络侧设备根据模型监督装置50的测距能力确定的。
在一种可能的实现方式中,上述接收模块51,还用于从网络侧设备接收第一监督指示信息,该第一监督指示信息用于指示模型监督装置50执行确定目标模型是否有效的步骤。
在一种可能的实现方式中,上述第一监督指示信息包括目标模型的标识信息。
在一种可能的实现方式中,上述接收模块51,还用于从网络侧设备接收第二距离信息;该第二距离信息为:第二终端对模型监督装置50执行距离测量操作得到的距离信息。
在一种可能的实现方式中,上述目标模型部署于模型监督装置50和第二终端。上述确定模块52,还用于采用目标模型确定第一位置信息;该第一位置信息为:模型监督装置50的位置信息。本申请实施例提供的模型监督装置50还可以包括:发送模块。其中,发送模块,用于向网络侧设备发送第一位置信息。其中,上述第一距离信息是网络侧设备根据第一位置信息和第二位置信息确定的,该第二位置信息为:第二终端采用目标模型确定的第
二终端的位置信息。
本申请实施例提供的模型监督装置,由于在网络侧设备根据第一位置信息和第二位置信息确定第一距离信息之后,可以向模型监督装置发送该第一距离信息,以使得模型监督装置可以根据该第一距离信息和准确的第二距离信息,确定目标模型是否有效,这样在确定目标模型失效的情况下,可以不使用该目标模型进行终端定位,而不是直接使用该目标模型进行终端定位,因此,可以减少出现目标模型输出的终端的位置信息不准确的情况,如此,可以提高进行终端定位的准确性。
本申请实施例中的模型监督装置可以是电子设备,例如具有操作系统的电子设备,也可以是电子设备中的部件,例如集成电路或芯片。该电子设备可以是终端,也可以为除终端之外的其他设备。示例性地,终端可以包括但不限于上述所列举的终端11的类型,其他设备可以为服务器、网络附属存储器(Network Attached Storage,NAS)等,本申请实施例不作具体限定。
本申请实施例提供的模型监督装置能够实现图1至图6的方法实施例实现的各个过程,并达到相同的技术效果,为避免重复,这里不再赘述。
图9示出了本申请实施例中涉及的模型监督装置的一种可能的结构示意图。如图9所示,模型监督装置60可以包括:发送模块61。
其中,发送模块61,用于向网络侧设备发送第二距离信息;该第二距离信息为:执行距离测量操作得到的模型监督装置60和第二终端之间的距离信息。其中,目标模型是否有效是网络侧设备根据第一距离信息和第二距离信息确定的,该第一距离信息为:采用目标模型确定的模型监督装置60和第二终端之间的距离信息。
在一种可能的实现方式中,上述目标模型部署于模型监督装置和第二终端。本申请实施例提供的模型监督装置60还可以包括:确定模块。其中,确定模块,用于采用目标模型确定第一位置信息;该第一位置信息为:模型监督装置60的位置信息。上述发送模块,还用于向网络侧设备发送第一位置信息。其中,上述第一距离信息是网络侧设备根据第一位置信息和第二位置信息确定的,该第二位置信息为:第二终端采用目标模型确定的第二终端的位置信息。
本申请实施例提供的模型监督装置,由于网络侧设备可以根据第一位置信息和第二位置信息确定第一距离信息,并根据该第一距离信息和从模型监督装置接收的准确的第二距离信息,确定目标模型是否有效,这样在确定目标模型失效的情况下,可以不使用该目标模型进行终端定位,而不是直接使用该目标模型进行终端定位,因此,可以减少出现目标模型输出的终端的位置信息不准确的情况,如此,可以提高进行终端定位的准确性。
本申请实施例中的模型监督装置可以是电子设备,例如具有操作系统的电子设备,也可以是电子设备中的部件,例如集成电路或芯片。该电子设备可以是终端,也可以为除终端之外的其他设备。示例性地,终端可以包括但不限于上述所列举的终端11的类型,其他设备可以为服务器、网络附属存储器(Network Attached Storage,NAS)等,本申请实施例不作具体限定。
本申请实施例提供的模型监督装置能够实现图7的方法实施例实现的各个过程,并达到相同的技术效果,为避免重复,这里不再赘述。
图10示出了本申请实施例中涉及的模型监督装置的一种可能的结构示意图。如图10所示,模型监督装置70可以包括:确定模块71和发送模块72。
其中,确定模块71,用于根据第一位置信息和第二位置信息,确定第一距离信息;该第一位置信息为:采用目标模型确定的第一终端的位置信息,该第二位置信息为:采用目标模型确定的第二终端的位置信息,该第一距离信息为:第一终端和第二终端之间的距离信息。发送模块72,用于向第一终端发送确定模块71确定的第一距离信息。其中,上述目标模型是否有效是第一终端根据第一距离信息和第二距离信息确定的,该第二距离信息为:执行距离测量操作得到的第一终端和第二终端之间的距离信息。
在一种可能的实现方式中,上述发送模块72,还用于向第一终端发送第一测距指示信息,该第一测距指示信息用于指示第一终端对第二终端执行距离测量操作。
在一种可能的实现方式中,本申请实施例提供的模型监督装置70还可以包括:接收模块。其中,接收模块,用于从第一终端接收测距能力信息,该测距能力信息用于指示第一终端的测距能力。上述确定模块71,还用于根据第一终端的测距能力,确定第一测距指示
信息。
在一种可能的实现方式中,上述发送模块72,还用于向第一终端发送第一监督指示信息,该第一监督指示信息用于指示第一终端执行确定目标模型是否有效的步骤。
在一种可能的实现方式中,本申请实施例提供的模型监督装置70还可以包括:接收模块。其中,接收模块,用于从第二终端接收第二距离信息;该第二距离信息为:第二终端对第一终端执行距离测量操作得到的距离信息。上述发送模块72,还用于向第一终端发送接收模块接收的第二距离信息。
在一种可能的实现方式中,上述目标模型部署于第一终端和第二终端。本申请实施例提供的模型监督装置70还可以包括:接收模块。其中,接收模块,用于从第一终端接收第一位置信息,并从第二终端接收第二位置信息。其中,上述第一位置信息为:第一终端采用目标模型确定的,上述第二位置信息为:第二终端采用目标模型确定的。
在一种可能的实现方式中,本申请实施例提供的模型监督装置70还可以包括:接收模块。其中,接收模块,用于从第一终端接收监督结果信息。上述确定模块71,还用于在目标模型部署于网络侧设备的情况下,若监督结果信息指示目标模型失效,则网络侧设备不使用目标模型进行终端定位。
本申请实施例提供的模型监督装置,由于在模型监督装置根据第一位置信息和第二位置信息确定第一距离信息之后,可以向第一终端发送该第一距离信息,以使得第一终端可以根据该第一距离信息和准确的第二距离信息,确定目标模型是否有效,这样在确定目标模型失效的情况下,可以不使用该目标模型进行终端定位,而不是直接使用该目标模型进行终端定位,因此,可以减少出现目标模型输出的终端的位置信息不准确的情况,如此,可以提高进行终端定位的准确性。
本申请实施例中的模型监督装置可以是电子设备,例如具有操作系统的电子设备,也可以是电子设备中的部件,例如集成电路或芯片。该电子设备可以是网络侧设备,也可以为除网络侧设备之外的其他设备。示例性地,网络侧设备可以包括但不限于上述所列举的网络侧设备12的类型,其他设备可以为服务器、网络附属存储器(Network Attached Storage,NAS)等,本申请实施例不作具体限定。
本申请实施例提供的模型监督装置能够实现图1至图6的方法实施例实现的各个过程,并达到相同的技术效果,为避免重复,这里不再赘述。
图11示出了本申请实施例中涉及的模型监督装置的一种可能的结构示意图。如图11所示,模型监督装置80可以包括:接收模块81和确定模块82。
其中,接收模块81,用于从第一终端接收第二距离信息;该第二距离信息为:执行距离测量操作得到的第一终端和第二终端之间的距离信息。确定模块82,用于根据第一位置信息和第二位置信息,确定第一距离信息;该第一位置信息为:采用目标模型确定的第一终端的位置信息,该第二位置信息为:采用目标模型确定的第二终端的位置信息,该第一距离信息为第一终端和第二终端之间的距离信息;并根据第一距离信息和第二距离信息,确定目标模型是否有效。
在一种可能的实现方式中,上述确定模块82,具体用于根据第一距离信息和第二距离信息,判断目标模型对应的失效次数;并在失效次数大于或等于预设次数的情况下,确定目标模型失效;或者,在失效次数小于预设次数的情况下,确定目标模型有效。
在一种可能的实现方式中,上述确定模块82,具体用于针对N个第三距离信息中的每个第三距离信息,分别确定第一距离信息和一个第三距离信息之间的差值绝对值,得到第一差值绝对值;上述第二距离信息包括N个第三距离信息,每个第三距离信息为:执行一次距离测量操作得到的第一终端和第二终端之间的距离信息,N为大于1的正整数;并在第一差值绝对值大于第一预设阈值的情况下,将失效次数加一。
在一种可能的实现方式中,上述确定模块82,具体用于分别确定每个第四距离信息和对应的一个第五距离信息之间的差值绝对值,得到M个第二差值绝对值;上述第二终端包括M个第三终端,上述第一距离信息包括M个第四距离信息,每个第四距离信息为第一终端和一个第三终端之间的距离信息,M为大于1的正整数;上述第二距离信息包括P个第五距离信息,每个第五距离信息为:执行一次距离测量操作得到的第一终端和一个第三终端之间的距离信息,每个第四距离信息对应至少一个第五距离信息,P为大于M的正整数;并在第三差值绝对值的数量大于预设数量的情况下,将失效次数加一。其中,上述第三差
值绝对值为:M个第二差值绝对值中,大于第二预设阈值的差值绝对值。
在一种可能的实现方式中,上述目标模型部署于第一终端和第二终端。上述接收模块81,还用于从第一终端接收第一位置信息,并从第二终端接收第二位置信息。其中,上述第一位置信息为:第一终端采用目标模型确定的,上述第二位置信息为:第二终端采用目标模型确定的。
本申请实施例提供的模型监督装置,由于模型监督装置可以根据第一位置信息和第二位置信息确定第一距离信息,并根据该第一距离信息和从第一终端接收的准确的第二距离信息,确定目标模型是否有效,这样在确定目标模型失效的情况下,可以不使用该目标模型进行终端定位,而不是直接使用该目标模型进行终端定位,因此,可以减少出现目标模型输出的终端的位置信息不准确的情况,如此,可以提高进行终端定位的准确性。
本申请实施例中的模型监督装置可以是电子设备,例如具有操作系统的电子设备,也可以是电子设备中的部件,例如集成电路或芯片。该电子设备可以是网络侧设备,也可以为除网络侧设备之外的其他设备。示例性地,网络侧设备可以包括但不限于上述所列举的网络侧设备12的类型,其他设备可以为服务器、网络附属存储器(Network Attached Storage,NAS)等,本申请实施例不作具体限定。
本申请实施例提供的模型监督装置能够实现图7的方法实施例实现的各个过程,并达到相同的技术效果,为避免重复,这里不再赘述。
可选地,本申请实施例中,如图12所示,本申请实施例还提供一种通信设备90,包括处理器91和存储器92,存储器92上存储有可在所述处理器91上运行的程序或指令,例如,该通信设备90为终端时,该程序或指令被处理器91执行时实现上述模型监督方法实施例的各个步骤,且能达到相同的技术效果。该通信设备90为网络侧设备时,该程序或指令被处理器91执行时实现上述模型监督方法实施例的各个步骤,且能达到相同的技术效果,为避免重复,这里不再赘述。
本申请实施例还提供一种终端,该终端为第一终端,该第一终端包括处理器和通信接口,该通信接口用于从网络侧设备接收第一距离信息;该第一距离信息为:采用目标模型确定的第一终端和第二终端之间的距离信息;该处理器用于根据第一距离信息和第二距离信息,确定目标模型是否有效;其中,上述第二距离信息为:执行距离测量操作得到的第一终端和第二终端之间的距离信息。或者,该通信接口用于向网络侧设备发送第二距离信息;该第二距离信息为:执行距离测量操作得到的第一终端和第二终端之间的距离信息;其中,上述目标模型是否有效是网络侧设备根据第一距离信息和第二距离信息确定的,上述第一距离信息为:采用目标模型确定的第一终端和第二终端之间的距离信息。该终端实施例与上述终端侧方法实施例对应,上述方法实施例的各个实施过程和实现方式均可适用于该终端实施例中,且能达到相同的技术效果。具体地,图13为实现本申请实施例的一种终端的硬件结构示意图。
该终端100包括但不限于:射频单元101、网络模块102、音频输出单元103、输入单元104、传感器105、显示单元106、用户输入单元107、接口单元108、存储器109以及处理器110等中的至少部分部件。
本领域技术人员可以理解,终端100还可以包括给各个部件供电的电源(比如电池),电源可以通过电源管理系统与处理器110逻辑相连,从而通过电源管理系统实现管理充电、放电、以及功耗管理等功能。图13中示出的终端结构并不构成对终端的限定,终端可以包括比图示更多或更少的部件,或者组合某些部件,或者不同的部件布置,在此不再赘述。
应理解的是,本申请实施例中,输入单元104可以包括图形处理单元(Graphics Processing Unit,GPU)1041和麦克风1042,图形处理器1041对在视频捕获模式或图像捕获模式中由图像捕获装置(如摄像头)获得的静态图片或视频的图像数据进行处理。显示单元106可包括显示面板1061,可以采用液晶显示器、有机发光二极管等形式来配置显示面板1061。用户输入单元107包括触控面板1071以及其他输入设备1072中的至少一种。触控面板1071,也称为触摸屏。触控面板1071可包括触摸检测装置和触摸控制器两个部分。其他输入设备1072可以包括但不限于物理键盘、功能键(比如音量控制按键、开关按键等)、轨迹球、鼠标、操作杆,在此不再赘述。
本申请实施例中,射频单元101接收来自网络侧设备的下行数据后,可以传输给处理器110进行处理;另外,射频单元101可以向网络侧设备发送上行数据。通常,射频单元
101包括但不限于天线、放大器、收发信机、耦合器、低噪声放大器、双工器等。
存储器109可用于存储软件程序或指令以及各种数据。存储器109可主要包括存储程序或指令的第一存储区和存储数据的第二存储区,其中,第一存储区可存储操作系统、至少一个功能所需的应用程序或指令(比如声音播放功能、图像播放功能等)等。此外,存储器109可以包括易失性存储器或非易失性存储器,或者,存储器109可以包括易失性和非易失性存储器两者。其中,非易失性存储器可以是只读存储器(Read-Only Memory,ROM)、可编程只读存储器(Programmable ROM,PROM)、可擦除可编程只读存储器(Erasable PROM,EPROM)、电可擦除可编程只读存储器(Electrically EPROM,EEPROM)或闪存。易失性存储器可以是随机存取存储器(Random Access Memory,RAM),静态随机存取存储器(Static RAM,SRAM)、动态随机存取存储器(Dynamic RAM,DRAM)、同步动态随机存取存储器(Synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(Double Data Rate SDRAM,DDRSDRAM)、增强型同步动态随机存取存储器(Enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(Synch link DRAM,SLDRAM)和直接内存总线随机存取存储器(Direct Rambus RAM,DRRAM)。本申请实施例中的存储器109包括但不限于这些和任意其它适合类型的存储器。
处理器110可包括一个或多个处理单元;可选地,处理器110集成应用处理器和调制解调处理器,其中,应用处理器主要处理涉及操作系统、用户界面和应用程序等的操作,调制解调处理器主要处理无线通信信号,如基带处理器。可以理解的是,上述调制解调处理器也可以不集成到处理器110中。
在本申请实施例的一种可能的实现方式中,射频单元101,用于从网络侧设备接收第一距离信息;该第一距离信息为:采用目标模型确定的第一终端和第二终端之间的距离信息。
处理器110,用于根据第一距离信息和第二距离信息,确定目标模型是否有效。
其中,上述第二距离信息为:执行距离测量操作得到的第一终端和第二终端之间的距离信息。
本申请实施例提供的终端,由于在网络侧设备根据第一位置信息和第二位置信息确定第一距离信息之后,可以向第一终端发送该第一距离信息,以使得第一终端可以根据该第一距离信息和准确的第二距离信息,确定目标模型是否有效,这样在确定目标模型失效的情况下,可以不使用该目标模型进行终端定位,而不是直接使用该目标模型进行终端定位,因此,可以减少出现目标模型输出的终端的位置信息不准确的情况,如此,可以提高进行终端定位的准确性。
可选地,本申请实施例中,处理器110,具体用于根据第一距离信息和第二距离信息,判断目标模型对应的失效次数;在失效次数大于或等于预设次数的情况下,确定目标模型失效;或者,在失效次数小于预设次数的情况下,确定目标模型有效。
可选地,本申请实施例中,处理器110,具体用于针对N个第三距离信息中的每个第三距离信息,分别确定第一距离信息和一个第三距离信息之间的差值绝对值,得到第一差值绝对值;上述第二距离信息包括N个第三距离信息,每个第三距离信息为:执行一次距离测量操作得到的第一终端和第二终端之间的距离信息,N为大于1的正整数;并在第一差值绝对值大于第一预设阈值的情况下,将失效次数加一。
可选地,本申请实施例中,处理器110,具体用于分别确定每个第四距离信息和对应的一个第五距离信息之间的差值绝对值,得到M个第二差值绝对值;上述第二终端包括M个第三终端,上述第一距离信息包括M个第四距离信息,每个第四距离信息为第一终端和一个第三终端之间的距离信息,M为大于1的正整数;上述第二距离信息包括P个第五距离信息,每个第五距离信息为:执行一次距离测量操作得到的第一终端和一个第三终端之间的距离信息,每个第四距离信息对应至少一个第五距离信息,P为大于M的正整数;并在第三差值绝对值的数量大于预设数量的情况下,将失效次数加一。
其中,上述第三差值绝对值为:M个第二差值绝对值中,大于第二预设阈值的差值绝对值。
可选地,本申请实施例中,射频单元101,还用于向网络侧设备发送监督结果信息,该监督结果信息用于指示目标模型是否有效的结果。
可选地,本申请实施例中,射频单元101,还用于从网络侧设备接收第一测距指示信息。
处理器110,还用于根据第一测距指示信息,对第二终端执行距离测量操作,得到第二
距离信息。
可选地,本申请实施例中,射频单元101,还用于向网络侧设备发送测距能力信息,该测距能力信息用于指示第一终端的测距能力。其中,上述第一测距指示信息是网络侧设备根据第一终端的测距能力确定的。
可选地,本申请实施例中,射频单元101,还用于从网络侧设备接收第一监督指示信息,该第一监督指示信息用于指示第一终端执行确定目标模型是否有效的步骤。
可选地,本申请实施例中,射频单元101,还用于从网络侧设备接收第二距离信息;该第二距离信息为:第二终端对第一终端执行距离测量操作得到的距离信息。
在本申请实施例的另一种可能的实现方式中,射频单元101,用于向网络侧设备发送第二距离信息;该第二距离信息为:执行距离测量操作得到的第一终端和第二终端之间的距离信息。
其中,目标模型是否有效是网络侧设备根据第一距离信息和第二距离信息确定的,该第一距离信息为:采用目标模型确定的第一终端和第二终端之间的距离信息。
本申请实施例提供的终端,由于网络侧设备可以根据第一位置信息和第二位置信息确定第一距离信息,并根据该第一距离信息和从第一终端接收的准确的第二距离信息,确定目标模型是否有效,这样在确定目标模型失效的情况下,可以不使用该目标模型进行终端定位,而不是直接使用该目标模型进行终端定位,因此,可以减少出现目标模型输出的终端的位置信息不准确的情况,如此,可以提高进行终端定位的准确性。
本申请实施例还提供一种网络侧设备,包括处理器和通信接口,处理器用于根据第一位置信息和第二位置信息,确定第一距离信息;该第一位置信息为:采用目标模型确定的第一终端的位置信息,该第二位置信息为:采用目标模型确定的第二终端的位置信息,该第一距离信息为:第一终端和第二终端之间的距离信息;通信接口用于向第一终端发送第一距离信息;其中,上述目标模型是否有效是第一终端根据第一距离信息和第二距离信息确定的,上述第二距离信息为:执行距离测量操作得到的第一终端和第二终端之间的距离信息。或者,通信接口用于从第一终端接收第二距离信息;该第二距离信息为:执行距离测量操作得到的第一终端和第二终端之间的距离信息;处理器用于根据第一位置信息和第二位置信息,确定第一距离信息;第一位置信息为:采用目标模型确定的第一终端的位置信息,该第二位置信息为:采用目标模型确定的第二终端的位置信息,该第一距离信息为第一终端和第二终端之间的距离信息;并根据第一距离信息和第二距离信息,确定目标模型是否有效。该网络侧设备实施例与上述网络侧设备方法实施例对应,上述方法实施例的各个实施过程和实现方式均可适用于该网络侧设备实施例中,且能达到相同的技术效果。
具体地,本申请实施例还提供了一种网络侧设备。如图14所示,该网络侧设备200包括:天线201、射频装置202、基带装置203、处理器204和存储器205。天线201与射频装置202连接。在上行方向上,射频装置202通过天线201接收信息,将接收的信息发送给基带装置203进行处理。在下行方向上,基带装置203对要发送的信息进行处理,并发送给射频装置202,射频装置202对收到的信息进行处理后经过天线201发送出去。
以上实施例中网络侧设备执行的方法可以在基带装置203中实现,该基带装置203包括基带处理器。
基带装置203例如可以包括至少一个基带板,该基带板上设置有多个芯片,如图14所示,其中一个芯片例如为基带处理器,通过总线接口与存储器205连接,以调用存储器205中的程序,执行以上方法实施例中所示的网络设备操作。
该网络侧设备还可以包括网络接口206,该接口例如为通用公共无线接口(common public radio interface,CPRI)。
具体地,本申请实施例的网络侧设备200还包括:存储在存储器205上并可在处理器204上运行的指令或程序,处理器204调用存储器205中的指令或程序执行图10或图11所示各模块执行的方法,并达到相同的技术效果,为避免重复,故不在此赘述。
本申请实施例还提供一种可读存储介质,所述可读存储介质上存储有程序或指令,该程序或指令被处理器执行时实现上述模型监督方法实施例的各个过程,且能达到相同的技术效果,为避免重复,这里不再赘述。
其中,所述处理器为上述实施例中所述的终端中的处理器。所述可读存储介质,包括计算机可读存储介质,如计算机只读存储器ROM、随机存取存储器RAM、磁碟或者光盘
等。
本申请实施例另提供了一种芯片,所述芯片包括处理器和通信接口,所述通信接口和所述处理器耦合,所述处理器用于运行程序或指令,实现上述模型监督方法实施例的各个过程,且能达到相同的技术效果,为避免重复,这里不再赘述。
应理解,本申请实施例提到的芯片还可以称为系统级芯片,系统芯片,芯片系统或片上系统芯片等。
本申请实施例另提供了一种计算机程序/程序产品,所述计算机程序/程序产品被存储在存储介质中,所述计算机程序/程序产品被至少一个处理器执行以实现上述模型监督方法实施例的各个过程,且能达到相同的技术效果,为避免重复,这里不再赘述。
本申请实施例还提供了一种模型监督系统,包括:终端及网络侧设备,所述终端可用于执行如上所述的模型监督方法的步骤,所述网络侧设备可用于执行如上所述的模型监督方法的步骤。
需要说明的是,在本文中,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者装置不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者装置所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括该要素的过程、方法、物品或者装置中还存在另外的相同要素。此外,需要指出的是,本申请实施方式中的方法和装置的范围不限按示出或讨论的顺序来执行功能,还可包括根据所涉及的功能按基本同时的方式或按相反的顺序来执行功能,例如,可以按不同于所描述的次序来执行所描述的方法,并且还可以添加、省去、或组合各种步骤。另外,参照某些示例所描述的特征可在其他示例中被组合。
通过以上的实施方式的描述,本领域的技术人员可以清楚地了解到上述实施例方法可借助软件加必需的通用硬件平台的方式来实现,当然也可以通过硬件,但很多情况下前者是更佳的实施方式。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分可以以计算机软件产品的形式体现出来,该计算机软件产品存储在一个存储介质(如ROM/RAM、磁碟、光盘)中,包括若干指令用以使得一台终端(可以是手机,计算机,服务器,空调器,或者网络设备等)执行本申请各个实施例所述的方法。
上面结合附图对本申请的实施例进行了描述,但是本申请并不局限于上述的具体实施方式,上述的具体实施方式仅仅是示意性的,而不是限制性的,本领域的普通技术人员在本申请的启示下,在不脱离本申请宗旨和权利要求所保护的范围情况下,还可做出很多形式,均属于本申请的保护之内。
Claims (35)
- 一种模型监督方法,包括:第一终端从网络侧设备接收第一距离信息;所述第一距离信息为:采用目标模型确定的所述第一终端和第二终端之间的距离信息;所述第一终端根据所述第一距离信息和第二距离信息,确定所述目标模型是否有效;其中,所述第二距离信息为:执行距离测量操作得到的所述第一终端和所述第二终端之间的距离信息。
- 根据权利要求1所述的方法,其中,所述第一终端根据所述第一距离信息和第二距离信息,确定所述目标模型是否有效,包括:所述第一终端根据所述第一距离信息和所述第二距离信息,判断所述目标模型对应的失效次数;在所述失效次数大于或等于预设次数的情况下,所述第一终端确定所述目标模型失效;或者,在所述失效次数小于预设次数的情况下,所述第一终端确定所述目标模型有效。
- 根据权利要求2所述的方法,其中,所述第一终端根据所述第一距离信息和所述第二距离信息,判断所述目标模型对应的失效次数,包括:针对N个第三距离信息中的每个第三距离信息,所述第一终端分别确定所述第一距离信息和一个第三距离信息之间的差值绝对值,得到第一差值绝对值;所述第二距离信息包括N个第三距离信息,每个第三距离信息为:执行一次距离测量操作得到的所述第一终端和所述第二终端之间的距离信息,N为大于1的正整数;在所述第一差值绝对值大于第一预设阈值的情况下,所述第一终端将所述失效次数加一。
- 根据权利要求2所述的方法,其中,所述第一终端根据所述第一距离信息和所述第二距离信息,判断所述目标模型对应的失效次数,包括:所述第一终端分别确定每个第四距离信息和对应的一个第五距离信息之间的差值绝对值,得到M个第二差值绝对值;所述第二终端包括M个第三终端,所述第一距离信息包括M个第四距离信息,每个第四距离信息为所述第一终端和一个第三终端之间的距离信息,M为大于1的正整数;所述第二距离信息包括P个第五距离信息,每个第五距离信息为:执行一次距离测量操作得到的所述第一终端和一个第三终端之间的距离信息,所述第四距离信息对应至少一个第五距离信息,P为大于M的正整数;在第三差值绝对值的数量大于预设数量的情况下,所述第一终端将所述失效次数加一;所述第三差值绝对值为:所述M个第二差值绝对值中大于第二预设阈值的差值绝对值。
- 根据权利要求2所述的方法,其中,所述第二距离信息为:执行T次距离测量操作得到的距离信息,T为正整数;其中,所述预设次数小于或等于T。
- 根据权利要求1所述的方法,其中,所述方法还包括:所述第一终端向网络侧设备发送监督结果信息,所述监督结果信息用于指示所述目标模型是否有效。
- 根据权利要求6所述的方法,其中,所述监督结果信息包括以下至少一项:所述目标模型的标识信息;第一指示信息;第一置信度;第二指示信息;测距结果信息;其中,所述第一指示信息用于指示所述目标模型是否有效;所述第一置信度为:所述第一终端确定所述目标模型是否有效的结果的置信度;所述第二指示信息用于指示确定所述目标模型是否有效所使用的预设数值的确定方法;所述测距结果信息与所述第一距离信息和所述第二距离信息相关。
- 根据权利要求7所述的方法,其中,所述第二终端包括M个第三终端,所述第一距离信息包括M个第四距离信息,每个第四距离信息为所述第一终端和一个第三终端之间的 距离信息,M为大于1的正整数;所述第二距离信息包括P个第五距离信息,每个第五距离信息为:执行一次距离测量操作得到的所述第一终端和一个第三终端之间的距离信息,每个第四距离信息对应至少一个第五距离信息,P为大于M的正整数;所述测距结果信息包括以下至少一项:所述第二终端中所述第三终端的数目M;所述M个第三终端的标识信息;R个第四差值绝对值;第一数量;所述M个第四距离信息;第二置信度;M个第一差值;第三指示信息;第四指示信息;其中,所述R个第四差值绝对值中的每个第四差值绝对值分别为:一个第四距离信息和对应的一个第五距离信息之间的差值绝对值,R为大于M的正整数;所述第一数量为第五差值绝对值的数量,所述第五差值绝对值为:所述R个第四差值绝对值中,大于第三预设阈值的差值绝对值;所述第二置信度为所述M个第四距离信息的置信度;每个第一差值分别为:一个第四差值绝对值与所述第三预设阈值之间的差值;所述第三指示信息用于指示执行距离测量操作的时间;所述第四指示信息用于指示执行距离测量操作的方法。
- 根据权利要求6所述的方法,其中,在所述目标模型部署于所述网络侧设备的情况下,若所述监督结果信息指示所述目标模型失效,则所述网络侧设备不使用所述目标模型进行终端定位。
- 根据权利要求1所述的方法,其中,在所述第一终端根据所述第一距离信息和第二距离信息,确定所述目标模型是否有效之后,所述方法还包括:在所述目标模型部署于所述第一终端的情况下,若确定所述目标模型失效,则所述第一终端不使用所述目标模型进行终端定位。
- 根据权利要求1所述的方法,其中,所述方法还包括:所述第一终端从网络侧设备接收第一测距指示信息;所述第一终端根据所述第一测距指示信息,对所述第二终端执行距离测量操作,得到所述第二距离信息。
- 根据权利要求11所述的方法,其中,所述第一测距指示信息包括以下至少一项:所述第一终端的终端分组信息;第五指示信息;第六指示信息;其中,所述终端分组信息用于指示所述第一终端对所述第二终端执行距离测量操作;所述第五指示信息用于指示执行距离测量操作的时间;所述第六指示信息用于指示执行距离测量操作的方法。
- 根据权利要求11所述的方法,其中,所述第一终端从网络侧设备接收第一测距指示信息之前,所述方法还包括:所述第一终端向所述网络侧设备发送测距能力信息,所述测距能力信息用于指示所述第一终端的测距能力;其中,所述第一测距指示信息是所述网络侧设备根据所述第一终端的测距能力确定的。
- 根据权利要求1所述的方法,其中,所述方法还包括:所述第一终端从网络侧设备接收第一监督指示信息,所述第一监督指示信息用于指示所述第一终端执行确定所述目标模型是否有效的步骤。
- 根据权利要求14所述的方法,其中,所述第一监督指示信息包括所述目标模型的标识信息。
- 根据权利要求1所述的方法,其中,所述方法还包括:所述第一终端从所述网络侧设备接收所述第二距离信息;所述第二距离信息为:所述第二终端对所述第一终端执行距离测量操作得到的距离信息。
- 根据权利要求1所述的方法,其中,所述目标模型部署于所述第一终端和所述第二终端;所述方法还包括:所述第一终端采用所述目标模型确定第一位置信息;所述第一位置信息为:所述第一终端的位置信息;所述第一终端向所述网络侧设备发送所述第一位置信息;其中,所述第一距离信息是所述网络侧设备根据所述第一位置信息和第二位置信息确定的,所述第二位置信息为:所述第二终端采用所述目标模型确定的所述第二终端的位置信息。
- 一种模型监督方法,包括:网络侧设备根据第一位置信息和第二位置信息,确定第一距离信息;所述第一位置信息为:采用目标模型确定的第一终端的位置信息,所述第二位置信息为:采用所述目标模型确定的第二终端的位置信息,所述第一距离信息为:所述第一终端和所述第二终端之间的距离信息;所述网络侧设备向所述第一终端发送所述第一距离信息;其中,所述目标模型是否有效是所述第一终端根据所述第一距离信息和第二距离信息确定的,所述第二距离信息为:执行距离测量操作得到的所述第一终端和所述第二终端之间的距离信息。
- 根据权利要求18所述的方法,其中,所述方法还包括:所述网络侧设备向所述第一终端发送第一测距指示信息,所述第一测距指示信息用于指示所述第一终端对所述第二终端执行距离测量操作。
- 根据权利要求19所述的方法,其中,所述方法还包括:所述网络侧设备从所述第一终端接收测距能力信息,所述测距能力信息用于指示所述第一终端的测距能力;所述网络侧设备根据所述第一终端的测距能力,确定所述第一测距指示信息。
- 根据权利要求18所述的方法,所述方法还包括:所述网络侧设备向所述第一终端发送第一监督指示信息,所述第一监督指示信息用于指示所述第一终端执行确定所述目标模型是否有效的步骤。
- 根据权利要求18所述的方法,其中,所述方法还包括:所述网络侧设备从所述第二终端接收所述第二距离信息;所述第二距离信息为:所述第二终端对所述第一终端执行距离测量操作得到的距离信息;所述网络侧设备向所述第一终端发送所述第二距离信息。
- 根据权利要求18所述的方法,其中,所述目标模型部署于所述第一终端和所述第二终端;所述方法还包括:所述网络侧设备从所述第一终端接收所述第一位置信息,并从所述第二终端接收所述第二位置信息;其中,所述第一位置信息为:所述第一终端采用所述目标模型确定的,所述第二位置信息为:所述第二终端采用所述目标模型确定的。
- 一种模型监督方法,包括:网络侧设备从第一终端接收第二距离信息;所述第二距离信息为:执行距离测量操作得到的所述第一终端和第二终端之间的距离信息;所述网络侧设备根据第一位置信息和第二位置信息,确定第一距离信息;所述第一位置信息为:采用目标模型确定的所述第一终端的位置信息,所述第二位置信息为:采用所述目标模型确定的所述第二终端的位置信息,所述第一距离信息为所述第一终端和所述第二终端之间的距离信息;所述网络侧设备根据所述第一距离信息和所述第二距离信息,确定所述目标模型是否有效。
- 根据权利要求24所述的方法,其中,所述网络侧设备根据所述第一距离信息和所述第二距离信息,确定所述目标模型是否有效,包括:所述网络侧设备根据所述第一距离信息和所述第二距离信息,判断所述目标模型对应 的失效次数;在所述失效次数大于或等于预设次数的情况下,所述网络侧设备确定所述目标模型失效;或者,在所述失效次数小于预设次数的情况下,所述网络侧设备确定所述目标模型有效。
- 根据权利要求25所述的方法,其中,所述网络侧设备根据所述第一距离信息和所述第二距离信息,判断所述目标模型对应的失效次数,包括:针对N个第三距离信息中的每个第三距离信息,所述网络侧设备分别确定所述第一距离信息和一个第三距离信息之间的差值绝对值,得到第一差值绝对值;所述第二距离信息包括N个第三距离信息,每个第三距离信息为:执行一次距离测量操作得到的所述第一终端和所述第二终端之间的距离信息,N为大于1的正整数;在所述第一差值绝对值大于第一预设阈值的情况下,所述网络侧设备将所述失效次数加一。
- 根据权利要求25所述的方法,其中,所述网络侧设备根据所述第一距离信息和所述第二距离信息,判断所述目标模型对应的失效次数,包括:所述网络侧设备分别确定每个第四距离信息和对应的一个第五距离信息之间的差值绝对值,得到M个第二差值绝对值;所述第二终端包括M个第三终端,所述第一距离信息包括M个第四距离信息,每个第四距离信息为所述第一终端和一个第三终端之间的距离信息,M为大于1的正整数;所述第二距离信息包括P个第五距离信息,每个第五距离信息为:执行一次距离测量操作得到的所述第一终端和一个第三终端之间的距离信息,每个第四距离信息对应至少一个第五距离信息,P为大于M的正整数;在第三差值绝对值的数量大于预设数量的情况下,所述网络侧设备将所述失效次数加一;所述第三差值绝对值为:所述M个第二差值绝对值中,大于第二预设阈值的差值绝对值。
- 一种模型监督方法,包括:第一终端向网络侧设备发送第二距离信息;所述第二距离信息为:执行距离测量操作得到的所述第一终端和第二终端之间的距离信息;其中,目标模型是否有效是所述网络侧设备根据第一距离信息和所述第二距离信息确定的,所述第一距离信息为:采用目标模型确定的所述第一终端和所述第二终端之间的距离信息。
- 一种模型监督装置,所述模型监督装置包括:接收模块和确定模块;所述接收模块,用于从网络侧设备接收第一距离信息;所述第一距离信息为:采用目标模型确定的所述模型监督装置和第二终端之间的距离信息;所述确定模块,用于根据所述接收模块接收的所述第一距离信息和第二距离信息,确定所述目标模型是否有效;其中,所述第二距离信息为:执行距离测量操作得到的所述模型监督装置和所述第二终端之间的距离信息。
- 一种模型监督装置,所述模型监督装置包括:确定模块和发送模块;所述确定模块,用于根据第一位置信息和第二位置信息,确定第一距离信息;所述第一位置信息为:采用目标模型确定的第一终端的位置信息,所述第二位置信息为:采用所述目标模型确定的第二终端的位置信息,所述第一距离信息为:所述第一终端和所述第二终端之间的距离信息;所述发送模块,用于向所述第一终端发送所述确定模块确定的所述第一距离信息;其中,所述目标模型是否有效是所述第一终端根据所述第一距离信息和第二距离信息确定的,所述第二距离信息为:执行距离测量操作得到的所述第一终端和所述第二终端之间的距离信息。
- 一种模型监督装置,所述模型监督装置包括:接收模块和确定模块;所述接收模块,用于从第一终端接收第二距离信息;所述第二距离信息为:执行距离测量操作得到的所述第一终端和第二终端之间的距离信息;所述确定模块,用于根据第一位置信息和第二位置信息,确定第一距离信息;所述第一位置信息为:采用目标模型确定的所述第一终端的位置信息,所述第二位置信息为:采用所述目标模型确定的所述第二终端的位置信息,所述第一距离信息为所述第一终端和所 述第二终端之间的距离信息;并根据所述第一距离信息和所述第二距离信息,确定所述目标模型是否有效。
- 一种模型监督装置,所述模型监督装置包括:发送模块;所述发送模块,用于向网络侧设备发送第二距离信息;所述第二距离信息为:执行距离测量操作得到的所述模型监督装置和第二终端之间的距离信息;其中,目标模型是否有效是所述网络侧设备根据第一距离信息和所述第二距离信息确定的,所述第一距离信息为:采用目标模型确定的所述模型监督装置和所述第二终端之间的距离信息。
- 一种终端,包括处理器和存储器,所述存储器存储可在所述处理器上运行的程序或指令,所述程序或指令被所述处理器执行时实现如权利要求1至17中任一项所述的模型监督方法的步骤,或实现如权利要求28所述的模型监督方法的步骤。
- 一种网络侧设备,包括处理器和存储器,所述存储器存储可在所述处理器上运行的程序或指令,所述程序或指令被所述处理器执行时实现如权利要求18至27中任一项所述的模型监督方法的步骤。
- 一种可读存储介质,所述可读存储介质上存储程序或指令,所述程序或指令被处理器执行时实现如权利要求1至28中任一项所述的模型监督方法的步骤。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202211585120.3A CN118175503A (zh) | 2022-12-09 | 2022-12-09 | 模型监督方法、装置、终端、网络侧设备及可读存储介质 |
CN202211585120.3 | 2022-12-09 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2024120444A1 true WO2024120444A1 (zh) | 2024-06-13 |
Family
ID=91349343
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2023/136801 WO2024120444A1 (zh) | 2022-12-09 | 2023-12-06 | 模型监督方法、装置、终端、网络侧设备及可读存储介质 |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN118175503A (zh) |
WO (1) | WO2024120444A1 (zh) |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20180010690A (ko) * | 2016-07-22 | 2018-01-31 | (주)지오투정보기술 | 실내 측위 정확도를 향상시키기 위한 와이파이 신호 캘리브레이션을 수행하는 방법 및 장치 |
WO2020103908A1 (zh) * | 2018-11-23 | 2020-05-28 | 中兴通讯股份有限公司 | 确定终端位置的方法、装置及存储介质 |
WO2022141516A1 (zh) * | 2020-12-31 | 2022-07-07 | 华为技术有限公司 | 模型验证方法及设备 |
US20220391965A1 (en) * | 2021-06-03 | 2022-12-08 | Maplebear, Inc.(dba Instacart) | Training a model to predict travel distance between two geographic locations |
-
2022
- 2022-12-09 CN CN202211585120.3A patent/CN118175503A/zh active Pending
-
2023
- 2023-12-06 WO PCT/CN2023/136801 patent/WO2024120444A1/zh unknown
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20180010690A (ko) * | 2016-07-22 | 2018-01-31 | (주)지오투정보기술 | 실내 측위 정확도를 향상시키기 위한 와이파이 신호 캘리브레이션을 수행하는 방법 및 장치 |
WO2020103908A1 (zh) * | 2018-11-23 | 2020-05-28 | 中兴通讯股份有限公司 | 确定终端位置的方法、装置及存储介质 |
WO2022141516A1 (zh) * | 2020-12-31 | 2022-07-07 | 华为技术有限公司 | 模型验证方法及设备 |
US20220391965A1 (en) * | 2021-06-03 | 2022-12-08 | Maplebear, Inc.(dba Instacart) | Training a model to predict travel distance between two geographic locations |
Also Published As
Publication number | Publication date |
---|---|
CN118175503A (zh) | 2024-06-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN114521012A (zh) | 定位方法、装置、终端设备、基站及位置管理服务器 | |
WO2023134650A1 (zh) | 信息交互方法、装置及通信设备 | |
WO2023143572A1 (zh) | 基于人工智能ai模型的定位方法及通信设备 | |
EP4422248A1 (en) | Model request method, model request processing method and related device | |
WO2024120444A1 (zh) | 模型监督方法、装置、终端、网络侧设备及可读存储介质 | |
EP4404515A1 (en) | Reference signal sequence generation method and apparatus, device, medium | |
WO2024083004A1 (zh) | Ai模型配置方法、终端及网络侧设备 | |
WO2024120445A1 (zh) | 模型输入信息的确定方法、装置、设备、系统及存储介质 | |
WO2024169796A1 (zh) | 模型监督的方法、装置及通信设备 | |
WO2024067878A1 (zh) | 信道预测方法、装置及通信设备 | |
WO2023186014A1 (zh) | 信号发送方法、信号接收方法及通信设备 | |
WO2023198093A1 (zh) | 模型有效性的确定方法、装置及通信设备 | |
WO2024067438A1 (zh) | Ai模型推理方法、设备及可读存储介质 | |
WO2024169797A1 (zh) | Ai模型指示方法及通信设备 | |
US20240322971A1 (en) | Srs resource configuration method and apparatus, terminal, and network side device | |
WO2024208070A1 (zh) | 波束预测方法、装置、设备及存储介质 | |
WO2024067281A1 (zh) | Ai模型的处理方法、装置及通信设备 | |
US20240340969A1 (en) | Prach transmission method and apparatus, and terminal | |
WO2024140510A1 (zh) | 模型训练处理方法、装置及相关设备 | |
WO2024160155A1 (zh) | 辅密钥更新方法、终端及网络侧设备 | |
WO2023179649A1 (zh) | 人工智能模型的输入处理方法、装置及设备 | |
WO2024078454A1 (zh) | 路损确定方法及通信设备 | |
WO2024125526A1 (zh) | 定位方法、装置及通信设备 | |
WO2024114607A1 (zh) | 传输控制方法、装置及通信设备 | |
WO2023179651A1 (zh) | 波束处理方法、装置及设备 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 23900018 Country of ref document: EP Kind code of ref document: A1 |