WO2023134650A1 - 信息交互方法、装置及通信设备 - Google Patents

信息交互方法、装置及通信设备 Download PDF

Info

Publication number
WO2023134650A1
WO2023134650A1 PCT/CN2023/071475 CN2023071475W WO2023134650A1 WO 2023134650 A1 WO2023134650 A1 WO 2023134650A1 CN 2023071475 W CN2023071475 W CN 2023071475W WO 2023134650 A1 WO2023134650 A1 WO 2023134650A1
Authority
WO
WIPO (PCT)
Prior art keywords
information
reference signal
parameter
sequence
parameter information
Prior art date
Application number
PCT/CN2023/071475
Other languages
English (en)
French (fr)
Inventor
施源
孙鹏
Original Assignee
维沃移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 维沃移动通信有限公司 filed Critical 维沃移动通信有限公司
Publication of WO2023134650A1 publication Critical patent/WO2023134650A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B17/00Monitoring; Testing
    • H04B17/30Monitoring; Testing of propagation channels
    • H04B17/309Measuring or estimating channel quality parameters
    • H04B17/318Received signal strength
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B17/00Monitoring; Testing
    • H04B17/30Monitoring; Testing of propagation channels
    • H04B17/309Measuring or estimating channel quality parameters
    • H04B17/336Signal-to-interference ratio [SIR] or carrier-to-interference ratio [CIR]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B17/00Monitoring; Testing
    • H04B17/30Monitoring; Testing of propagation channels
    • H04B17/373Predicting channel quality or other radio frequency [RF] parameters
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B17/00Monitoring; Testing
    • H04B17/30Monitoring; Testing of propagation channels
    • H04B17/391Modelling the propagation channel
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/046Wireless resource allocation based on the type of the allocated resource the resource being in the space domain, e.g. beams

Definitions

  • the present application belongs to the technical field of communication, and in particular relates to an information interaction method, device and communication equipment.
  • the current traditional beam alignment method is based on one side sending more reference signal resources, the other side receives and calculates the beam quality information corresponding to each reference signal resource, and feeds back the optimal beam and beam quality information.
  • the transmitted reference signal resources occupy more resources in the time domain, and secondly, the other side cannot obtain the beam quality corresponding to the untransmitted reference signal resources, which may result in the selected beam not being globally optimal.
  • artificial intelligence AI has been widely used in various fields, there is still no clear solution on how to implement beam-related functions (such as beam alignment functions) based on AI.
  • Embodiments of the present application provide an information interaction method, device, and communication device, which can solve the problem of how to implement beam-related functions based on AI.
  • an information interaction method including:
  • the first communication device indicates the first interaction information
  • the first interaction information is used to indicate at least one of the following:
  • Parameter information corresponding to the beam correlation function of the AI model where the parameter information includes at least one of input parameter information, output parameter information, and auxiliary parameter information;
  • the sequence information of the parameter information is the sequence information of the parameter information.
  • an information interaction method including:
  • the second communication device acquires first interaction information, where the first interaction information is acquired through an instruction and/or a protocol agreement of the first communication device;
  • the first interaction information is used to indicate at least one of the following:
  • Parameter information corresponding to the beam correlation function of the AI model where the parameter information includes at least one of input parameter information, output parameter information, and auxiliary parameter information;
  • the sequence information of the parameter information is the sequence information of the parameter information.
  • an information interaction device including:
  • a first interaction module configured to indicate first interaction information
  • the first interaction information is used to indicate at least one of the following:
  • Parameter information corresponding to the beam correlation function of the AI model where the parameter information includes at least one of input parameter information, output parameter information, and auxiliary parameter information;
  • the sequence information of the parameter information is the sequence information of the parameter information.
  • an information interaction device including:
  • the second interaction module is configured to acquire first interaction information, where the first interaction information is acquired through an instruction from the first communication device and/or a protocol agreement;
  • the first interaction information is used to indicate at least one of the following:
  • Parameter information corresponding to the beam correlation function of the AI model where the parameter information includes at least one of input parameter information, output parameter information, and auxiliary parameter information;
  • the sequence information of the parameter information is the sequence information of the parameter information.
  • a communication device in a fifth aspect, includes a processor and a memory, the memory stores programs or instructions that can run on the processor, and when the programs or instructions are executed by the processor, the following is implemented: The steps of the method described in the first aspect or the second aspect.
  • a communication device including a processor and a communication interface, wherein the processor or the communication interface is used to indicate the first interaction information; or, the processor and/or the communication interface is used to obtain the first interaction information.
  • Interaction information, the first interaction information is obtained through an instruction and/or protocol agreement of the first communication device;
  • the first interaction information is used to indicate at least one of the following:
  • Parameter information corresponding to the beam correlation function of the AI model where the parameter information includes at least one of input parameter information, output parameter information, and auxiliary parameter information;
  • the sequence information of the parameter information is the sequence information of the parameter information.
  • an information interaction system including: a first communication device and a second communication device, the first communication device can be used to perform the steps of the information interaction method according to the first aspect, and the second The communication device can be used to execute the steps of the information interaction method as described in the second aspect.
  • a readable storage medium is provided, and programs or instructions are stored on the readable storage medium, and when the programs or instructions are executed by a processor, the steps of the method described in the first aspect are realized, or the steps of the method described in the first aspect are realized, or The steps of the method described in the second aspect.
  • a ninth aspect provides a chip, the chip includes a processor and a communication interface, the communication interface is coupled to the processor, the processor is used to run programs or instructions, and implement the method as described in the first aspect , or implement the method described in the second aspect.
  • a computer program product is provided, the computer program product is stored in a storage medium, and the computer program product is executed by at least one processor to implement the steps of the method described in the first aspect.
  • the first communication device indicates to the second communication device the first interaction information related to the beam, so that the second communication device can determine the beam-related function of the artificial intelligence AI model and the information related to the beam according to the first interaction information.
  • the parameter information corresponding to the beam correlation function of the AI model, the quantity information related to the parameter information and/or the order information of the parameter information, and then the beam correlation function can be realized based on the AI model.
  • FIG. 1 shows a structural diagram of a communication system applicable to an embodiment of the present application
  • FIG. 2 shows one of the schematic flow diagrams of the information interaction method of the embodiment of the present application
  • FIG. 3 shows the second schematic flow diagram of the information interaction method of the embodiment of the present application
  • FIG. 4 shows one of the schematic diagrams of the modules of the information interaction device according to the embodiment of the present application
  • FIG. 5 shows the second schematic diagram of the modules of the information interaction device according to the embodiment of the present application.
  • FIG. 6 shows one of the structural block diagrams of the communication device of the embodiment of the present application.
  • FIG. 7 shows a structural block diagram of a terminal in an embodiment of the present application.
  • FIG. 8 shows one of the structural block diagrams of the network side device in the embodiment of the present application.
  • FIG. 9 shows the second structural block diagram of the network side device according to the embodiment of the present application.
  • first, second and the like in the specification and claims of the present application are used to distinguish similar objects, and are not used to describe a specific sequence or sequence. It is to be understood that the terms so used are interchangeable under appropriate circumstances such that the embodiments of the application are capable of operation in sequences other than those illustrated or described herein and that "first" and “second” distinguish objects. It is usually one category, and the number of objects is not limited. For example, there may be one or more first objects.
  • “and/or” in the description and claims means at least one of the connected objects, and the character “/” generally means that the related objects are an "or” relationship.
  • LTE Long Term Evolution
  • LTE-Advanced LTE-Advanced
  • LTE-A Long Term Evolution-Advanced
  • CDMA Code Division Multiple Access
  • TDMA Time Division Multiple Access
  • FDMA Frequency Division Multiple Access
  • OFDMA Orthogonal Frequency Division Multiple Access
  • SC-FDMA Single-carrier Frequency Division Multiple Access
  • system and “network” in the embodiments of the present application are often used interchangeably, and the described technologies can be used for the above-mentioned systems and radio technologies as well as other systems and radio technologies.
  • NR New Radio
  • the following description describes the New Radio (NR) system for illustrative purposes, and uses NR terminology in most of the following descriptions, but these techniques can also be applied to applications other than NR system applications, such as the 6th generation (6 th Generation, 6G) communication system.
  • 6G 6th Generation
  • Fig. 1 shows a block diagram of a wireless communication system to which the embodiment of the present application is applicable.
  • the wireless communication system includes a terminal 11 and a network side device 12 .
  • the terminal 11 can be a mobile phone, a tablet computer (Tablet Personal Computer), a laptop computer (Laptop Computer) or a notebook computer, a personal digital assistant (Personal Digital Assistant, PDA), a palmtop computer, a netbook, a super mobile personal computer (ultra-mobile personal computer, UMPC), mobile Internet device (Mobile Internet Device, MID), augmented reality (augmented reality, AR) / virtual reality (virtual reality, VR) equipment, robot, wearable device (Wearable Device) , Vehicle User Equipment (VUE), Pedestrian User Equipment (PUE), smart home (home equipment with wireless communication functions, such as refrigerators, TVs, washing machines or furniture, etc.), game consoles, personal computers (personal computer, PC), teller machine or self-service machine and other terminal side devices, wearable devices include: smart watches, smart bracelet
  • the network side device 12 may include an access network device or a core network device, where the access network device 12 may also be called a radio access network device, a radio access network (Radio Access Network, RAN), a radio access network function, or Wireless access network unit.
  • RAN Radio Access Network
  • RAN Radio Access Network
  • Wireless access network unit Wireless access network unit
  • the access network device 12 may include a base station, a wireless local area network (Wireless Local Area Network, WLAN) access point, a wireless fidelity (Wireless Fidelity, WiFi) node, etc., and the base station may be called a node B, an evolved node B (eNB), Access point, base transceiver station (Base Transceiver Station, BTS), radio base station, radio transceiver, basic service set (Basic Service Set, BSS), extended service set (Extended Service Set, ESS), home B node, home Evolved Node B, Transmitting Receiving Point (TRP) or some other appropriate term in the field, as long as the same technical effect is achieved, the base station is not limited to specific technical terms.
  • eNB evolved node B
  • BTS base transceiver station
  • BTS base transceiver station
  • BSS basic service set
  • Extended Service Set Extended Service Set
  • ESS Extended Service Set
  • home B node home Evolved Node B
  • TRP Trans
  • Core network equipment may include but not limited to at least one of the following: core network nodes, core network functions, mobility management entities (Mobility Management Entity, MME), access mobility management functions (Access and Mobility Management Function, AMF), session management functions (Session Management Function, SMF), User Plane Function (UPF), Policy Control Function (Policy Control Function, PCF), Policy and Charging Rules Function (PCRF), edge application service Discovery function (Edge Application Server Discovery Function, EASDF), unified data management (Unified Data Management, UDM), unified data storage (Unified Data Repository, UDR), home subscriber server (Home Subscriber Server, HSS), centralized network configuration ( Centralized network configuration, CNC), network storage function (Network Repository Function, NRF), network exposure function (Network Exposure Function, NEF), local NEF (Local NEF, or L-NEF), binding
  • MME mobility management entities
  • AMF Access and Mobility Management Function
  • SMF Session Management Function
  • UPF User Plane Function
  • Policy Control Function Policy Control Function
  • AI networks such as neural networks, decision trees, support vector machines, Bayesian classifiers, etc.
  • This application uses a neural network as an example for illustration, but does not limit the specific type of AI network.
  • the neural network is composed of neurons, which may include input a 1 , a 2 ,...a K , weight (multiplicative coefficient) w, bias (additive coefficient) b, and activation function ⁇ (.).
  • Common activation functions include Sigmoid, tanh, Rectified Linear Unit (ReLU), etc., where ReLU is a linear rectification function.
  • the parameters of the neural network are optimized by an optimization algorithm.
  • An optimization algorithm is a class of algorithms that can help us minimize or maximize an objective function (sometimes called a loss function).
  • the objective function is often a mathematical combination of model parameters and data. For example, given the data X and its corresponding label Y, we construct a neural network model f(.), based on the neural network model, the predicted output f(x) can be obtained according to the input x, and the predicted value and the real value can be calculated The gap between (f(x)-Y), this is the loss function.
  • Our purpose is to find the appropriate w, b to minimize the value of the above loss function, the smaller the loss value, the closer our model is to the real situation.
  • the current common optimization algorithms are basically based on the error (error) back propagation (Back Propagation, BP) algorithm.
  • the basic idea of the BP algorithm is that the learning process consists of two processes: the forward propagation of the signal and the back propagation of the error.
  • the input samples are passed in from the input layer, processed layer by layer by each hidden layer, and passed to the output layer. If the actual output of the output layer does not match the expected output, it will enter the error backpropagation stage.
  • Error backpropagation is to transmit the output error layer by layer through the hidden layer to the input layer in some form, and distribute the error to all the units of each layer, so as to obtain the error signal of each layer unit, and this error signal is used as the correction unit Basis for weight.
  • This weight adjustment process of each layer of signal forward propagation and error back propagation is carried out repeatedly.
  • the process of continuously adjusting the weights is also the learning and training process of the network. This process has been carried out until the error of the network output is reduced to an acceptable level, or until the preset number of learning times.
  • Common optimization algorithms include gradient descent (Gradient Descent), stochastic gradient descent (Stochastic Gradient Descent, SGD), mini-batch gradient descent (mini-batch gradient descent), momentum method (Momentum), adaptive gradient descent (Nesterov, specifically Stochastic gradient descent with momentum), root mean square error deceleration (Root Mean Square prop, RMSprop), adaptive momentum estimation (Adaptive Moment Estimation, Adam), etc.
  • optimization algorithms are based on the error/loss obtained by the loss function when the error is backpropagated, and the derivative/partial derivative of the current neuron is calculated, and the learning rate, the previous gradient/derivative/partial derivative, etc. are added to obtain the gradient. Pass the gradient to the previous layer.
  • the analog beamforming is transmitted in full bandwidth, and each polarization element on the panel of each high-frequency antenna array can only transmit analog beams in a time-division multiplexed manner.
  • the shaping weight of the analog beam is realized by adjusting the parameters of the RF front-end phase shifter and other equipment.
  • the training of analog beamforming vectors is usually carried out in a polling manner, that is, the array elements in each polarization direction of each antenna panel transmit training signals (i.e., candidate beamforming vectors ), the terminal feeds back the beam report after the measurement, and the network side uses the training signal to realize the simulated beam transmission in the next service transmission.
  • the content of the beam report usually includes several optimal transmit beam identities and the measured received power of each transmit beam.
  • RS resource set which includes at least one reference signal resource, such as a synchronization signal/physical broadcast channel signal block (or synchronization signal block) (Synchronization Signal and PBCH block, SSB ) resource or channel state information reference signal (Channel State Information Reference Signal, CSI-RS) resource.
  • a reference signal resource such as a synchronization signal/physical broadcast channel signal block (or synchronization signal block) (Synchronization Signal and PBCH block, SSB ) resource or channel state information reference signal (Channel State Information Reference Signal, CSI-RS) resource.
  • CSI-RS Channel State Information Reference Signal
  • the user equipment measures the Layer 1 reference signal received power (Layer 1reference signal received power, L1-RSRP)/layer 1 signal to interference plus noise ratio (Layer 1Signal to Interference plus Noise Ratio, L1-RSRP) of each RS resource -SINR), and report at least one optimal measurement result to the network, the report content includes SSB Resource Indicator (SSB Resource Indicator, SSBRI) or CSI-RS Resource Indicator (CSI-RS Resource Indicator, CRI), and L1-RSRP /L1-SINR.
  • the content of the report reflects at least one optimal beam and its quality, and is used by the network to determine the beam used to send the channel or signal to the UE.
  • the embodiment of this application provides an information interaction method, including:
  • Step 201 The first communication device indicates first interaction information
  • the first interaction information is used to indicate at least one of the following:
  • Parameter information corresponding to the beam correlation function of the AI model where the parameter information includes at least one of input parameter information, output parameter information, and auxiliary parameter information;
  • the sequence information of the parameter information is the sequence information of the parameter information.
  • the first communication device indicates to the second communication device the first interaction information related to the beam, so that the second communication device can determine the beam-related function of the artificial intelligence AI model, and the beam-related function according to the first interaction information.
  • the parameter information corresponding to the beam correlation function of the AI model, the quantity information related to the parameter information, and/or the order information of the parameter information can further implement the beam correlation function based on the AI model.
  • the first communication device in the embodiment of the present application includes at least one of the following: base station, UE, and network element corresponding to the auxiliary network central unit; the second communication device includes at least one of the following: base station, UE, and network element corresponding to the auxiliary network central unit Yuan.
  • the auxiliary network central unit is a unit for information exchange.
  • both the above-mentioned first communication device and the second communication device are base stations; or, both the first communication device and the second communication device are UEs; or, the first communication device is a base station, and the second communication device is UE; or the first communication device is UE, and the second communication device is a base station; or, the first communication device is a network element corresponding to the auxiliary network central unit, and the second communication device is a base station or UE; or, the first communication device is The base station or UE, and the second communication device are network elements corresponding to the auxiliary network central unit.
  • the beam correlation function of the AI model includes at least one of the following:
  • Fine-tune the model parameters specifically adjust the relevant parameters of the AI model
  • the spatial correlation information of the predicted beam includes at least one of the following:
  • Quality information for at least one beam is predicted.
  • the beam quality information can be determined by at least one of the following:
  • SINR Signal-to-noise ratio
  • RSRP Reference Signal Received Power
  • Reference Signal Received Quality Reference Signal Received Quality (Reference Signal Received Quality, RSRQ).
  • the aforementioned target time includes at least one of the following:
  • the beam information related to target time includes at least one of the following:
  • Beam angle information related to target time for example, predict beam angle information after 10ms;
  • the AI model can be used to predict the beam space related information of the target time, and the target time can be historical time, current time or future time.
  • the quantity information related to the parameter information includes at least one of the following:
  • the total amount of beam quality information is the total amount of beam quality information
  • the amount of beam quality information corresponding to the historical beam measurement information is the amount of beam quality information corresponding to the historical beam measurement information
  • the total input quantity of the parameter information is the total input quantity of the parameter information.
  • the above-mentioned quantity information may specifically refer to the quantity
  • the above-mentioned number information may specifically refer to the number of times
  • the above-mentioned quantity information of parameter signal sets may specifically include the number of reference signal sets
  • the above-mentioned quantity information of reference signal resources may specifically include reference signal resources
  • the total beam measurement times information may specifically include the total beam measurement times information
  • the current beam measurement times information may specifically include the current beam measurement times.
  • the beam angle in this embodiment of the present application includes at least one of a beam sending angle and a beam receiving angle.
  • the beam identifier includes at least one of a transmit beam identifier, a receive beam identifier, and a beam pair identifier, where the beam pair includes a transmit beam and a receive beam.
  • the input parameter information or output parameter information includes at least one of the following:
  • Each of the above parameters corresponds to a parameter type.
  • the input parameters include at least one of the following:
  • the AI model input includes the measured beam quality, the corresponding transmit beam angle and receive beam angle, and the expected predicted receive beam angle, then the output of the AI model corresponds to the beam-related information when receiving using the expected predicted receive beam angle.
  • the output parameters include at least one of the following:
  • the relevant information of the target parameter includes at least one of the following:
  • the first information directly indicates the value of the target parameter, for example, the first information is 60 degrees, indicating that the beam angle is 60 degrees, or the first information is 01, indicating the beam identification is 01;
  • the target parameters include at least one of the following:
  • the beam identification associated with the reference signal is the beam identification associated with the reference signal
  • the second information includes at least one of the following:
  • a quantization value corresponding to the target parameter may be an index value corresponding to a quantization interval, or a normalized value; optionally, the quantization accuracy may be determined through protocol agreement, UE reporting, or network configuration.
  • the value processed by the AI model is the value processed by the AI model.
  • the aforementioned predetermined value may be a maximum value, a minimum value, such as a maximum angle, a maximum radian, and the like.
  • the foregoing predetermined value may also be stipulated in the protocol, reported by the UE, or configured by the network.
  • the foregoing predetermined value may also be a specific value associated with a specific target parameter agreed in the protocol, a specific value associated with a specific target parameter reported by the UE, or a specific value associated with a specific target parameter configured by the network.
  • different target parameters correspond to different predetermined values.
  • the above-mentioned AI model processing may be the processing of the input parameters by the AI model, or it may be the preprocessing of the interaction information during the information interaction process.
  • the value corresponding to the above-mentioned target parameter is obtained through corresponding calculation and processing based on the above-mentioned second information.
  • information related to input parameters or output parameters can be indicated in different ways, for example, information related to input parameters is indirectly indicated through second information, and information related to output parameters is directly indicated through first information .
  • the information related to the beam angle or the information related to the beam identifier is represented by two-dimensional component information.
  • beam angles are represented by horizontal and vertical angles.
  • the related information of the beam angle or the related information of the beam identifier may also be represented by higher-dimensional component information.
  • the beam angle may be determined based on a global coordinate system (Global Coordinate System, GLS) or a local coordinate system (Local Coordinate System, LCS).
  • GLS Global Coordinate System
  • LCS Local Coordinate System
  • the origin of the local coordinate system is the position information corresponding to the first communication device or the position information corresponding to the second communication device.
  • the origin of the local coordinate system is determined through network configuration, through protocol agreement, or through communication device reporting.
  • a reference signal configured for beam measurement and pre-activated
  • a reference signal configured for beam measurement and activated
  • a reference signal configured for beam measurement and sent
  • sequence information of the parameter information includes at least one of the following:
  • First sequence information where the first sequence information is used to indicate the sequence among multiple parameter information of the same type
  • the second sequence information is used to indicate the sequence between at least one parameter information group and the sequence between different types of parameter information in the parameter information group;
  • the third sequence information is at least used to indicate the sequence between the parameter information of at least two periods.
  • sequence information among at least one parameter information group is related to the first sequence information. That is, the order information among the parameter information groups can be determined according to the order information of a certain type of parameter information.
  • At least one parameter information group includes at least two different types of parameter information.
  • the above first sequence information may be specifically used to indicate the sequence among multiple beam IDs, for example, the first sequence information is beam ID1, beam ID2, and beam ID3.
  • the above first order information can be specifically used to indicate the order among multiple beam qualities, such as the beam quality of beam ID1, the beam quality of beam ID2, and the beam quality of beam ID3 .
  • the parameter information types included in the parameter information group include beam ID and beam quality.
  • the second order information may indicate that the order information of the parameter information in the parameter information group is beam ID and beam quality.
  • the order information among multiple parameter information groups may be sorted according to the order of a certain parameter information, for example, sorted according to the beam ID.
  • the first parameter information group includes beam ID 1, and the corresponding beam quality of beam ID 1
  • the second parameter information group includes beam ID 2, and the corresponding beam quality of beam ID 2.
  • the second order information may specifically be: beam ID 1, beam quality corresponding to beam ID 1, beam ID 2, beam quality corresponding to beam ID 2.
  • the second sequence information can be specifically beam ID 1, Corresponding to the beam quality of beam ID 1, the second parameter information group includes beam ID 2, the corresponding beam quality of beam ID 2, beam ID3, and beam ID4.
  • the time corresponding to at least two periods may be historical time or future time.
  • the input side of the AI model may be beam related information corresponding to historical time
  • the output side may be beam related information of future time.
  • the first sequence information includes at least one of the following:
  • the beam ID order associated with the reference signal is the beam ID order associated with the reference signal.
  • the sequence information in this embodiment of the present application includes the sequence from largest to smallest, from smallest to largest, priority, priority, configured parameter type pattern sequence, protocol agreed pattern sequence, and the like.
  • the auxiliary parameter information includes at least one of the following:
  • Implicit indication information determined according to configuration or exchanged information; for example, when the reference signal is configured to be repeatedly transmitted (repetition on), at this time, the receiving end needs to report the beam quality information on each receiving beam.
  • the reporting mode may not be configured as none or configured as full reporting mode at this time;
  • the antenna information includes at least one of the following:
  • the vertical coverage corresponding to the beam scan is the vertical coverage corresponding to the beam scan.
  • the antenna gain related information includes at least one of the following:
  • EIRP Equivalent Isotropic Radiated Power
  • Beam angle gain spectrum that is, the gain of a beam relative to different angles, including complete or partial gain spectrum information
  • the number of parameter signals in the number limit information of reference signals may be the number of input reference signals of the AI model.
  • the limit value such as the upper limit value
  • the other side reports the beam-related information in a non-AI model way, and can only select the reported information from the configured or pre-activated or activated or sent reference signals.
  • auxiliary parameter information may also be included in the output parameters and/or input parameters.
  • the method of the embodiment of the present application further includes:
  • the first communication device instructs switching information of the beam correlation function of the AI model in an interactive manner.
  • the switching information may be specifically used to instruct the AI module to switch the beam correlation function, for example, switch from predicting the spatial correlation information of the beams to indicating the beam relationship.
  • the foregoing interaction manner includes at least one of protocol agreement, network configuration manner, and communication device reporting manner.
  • the network configuration method includes indicating the handover information through signaling
  • the protocol agreement includes indicating the handover information through special parameter configuration or special signaling format, or indicating the handover information when a preset condition is met, for example, configuring reference signals exceeding the upper limit.
  • the first communication device indicates to the second communication device the first interaction information related to the beam, so that the second communication device can determine the beam-related function of the artificial intelligence AI model and the information related to the beam according to the first interaction information.
  • the parameter information corresponding to the beam correlation function of the AI model, the quantity information related to the parameter information, and/or the order information of the parameter information can further realize the beam correlation function based on the AI model.
  • the embodiment of the present application also provides an information interaction method, including:
  • Step 301 The second communication device obtains first interaction information, and the first interaction information is obtained through an instruction and/or a protocol agreement of the first communication device;
  • the first interaction information is used to indicate at least one of the following:
  • Parameter information corresponding to the beam correlation function of the AI model where the parameter information includes at least one of input parameter information, output parameter information, and auxiliary parameter information;
  • the sequence information of the parameter information is the sequence information of the parameter information.
  • the second communication device can determine the beam correlation function of the artificial intelligence AI model, the parameter information corresponding to the beam correlation function of the AI model, and the quantity information related to the parameter information according to the first interaction information And/or the sequence information of the parameter information, and then the beam correlation function can be realized based on the AI model.
  • the beam correlation function of the AI model includes at least one of the following:
  • the spatial correlation information of the predicted beam includes at least one of the following:
  • Quality information for at least one beam is predicted.
  • the quantity information related to the parameter information includes at least one of the following:
  • the total amount of beam quality information is the total amount of beam quality information
  • the amount of beam quality information corresponding to the historical beam measurement information is the amount of beam quality information corresponding to the historical beam measurement information
  • the total input quantity of the parameter information is the total input quantity of the parameter information.
  • the input parameter information or output parameter information includes at least one of the following:
  • SINR Signal-to-noise ratio
  • the relevant information of the target parameter includes at least one of the following:
  • first information where the first information directly indicates the value of the target parameter
  • the target parameters include at least one of the following:
  • the beam identification associated with the reference signal is the beam identification associated with the reference signal
  • the second information includes at least one of the following:
  • the value processed by the AI model is the value processed by the AI model.
  • the information related to the beam angle or the information related to the beam identifier is represented by two-dimensional component information.
  • the beam angle is determined based on a global coordinate system or a local coordinate system.
  • the origin of the local coordinate system is the position information corresponding to the first communication device or the position information corresponding to the second communication device.
  • the origin of the local coordinate system is determined through network configuration, through protocol agreement, or through communication device reporting.
  • sequence information of the parameter information includes at least one of the following:
  • First sequence information where the first sequence information is used to indicate the sequence among multiple parameter information of the same type
  • the second sequence information is used to indicate the sequence between at least one parameter information group and the sequence between different types of parameter information in the parameter information group;
  • the third sequence information is at least used to indicate sequence information between parameter information of at least two periods.
  • the first sequence information includes at least one of the following:
  • the beam ID order associated with the reference signal is the beam ID order associated with the reference signal.
  • sequence information among at least one parameter information group is related to the first sequence information.
  • the auxiliary parameter information includes at least one of the following:
  • Implicit indications determined from configured or interacted information are Implicit indications determined from configured or interacted information
  • the antenna information includes at least one of the following:
  • the vertical coverage corresponding to the beam scan is the vertical coverage corresponding to the beam scan.
  • the second communication device determines switching information of the beam correlation function of the AI model in an interactive manner.
  • the information interaction method on the second communication device side is an interaction manner corresponding to the information interaction method on the first communication device side, which will not be repeated here.
  • the second communication device can determine the beam correlation function of the artificial intelligence AI model, the parameter information corresponding to the beam correlation function of the AI model, and the quantity related to the parameter information according to the first interaction information information and/or sequence information of the parameter information, and then the beam correlation function can be realized based on the AI model.
  • the information interaction method provided in the embodiment of the present application may be executed by an information interaction device.
  • an information interaction method executed by an information interaction device is taken as an example to describe the information interaction device provided in the embodiment of the present application.
  • an information interaction device 400 including:
  • a first interaction module 401 configured to indicate first interaction information
  • the first interaction information is used to indicate at least one of the following:
  • Parameter information corresponding to the beam correlation function of the AI model where the parameter information includes at least one of input parameter information, output parameter information, and auxiliary parameter information;
  • the sequence information of the parameter information is the sequence information of the parameter information.
  • the device in this embodiment of the present application further includes: a determining module, configured to determine the first interaction information.
  • the beam correlation function of the AI model includes at least one of the following:
  • the spatial correlation information of the predicted beam includes at least one of the following:
  • Quality information for at least one beam is predicted.
  • the quantity information related to the parameter information includes at least one of the following:
  • the total amount of beam quality information is the total amount of beam quality information
  • the amount of beam quality information corresponding to the historical beam measurement information is the amount of beam quality information corresponding to the historical beam measurement information
  • the total input quantity of the parameter information is the total input quantity of the parameter information.
  • the input parameter information or output parameter information includes at least one of the following:
  • SINR Signal-to-noise ratio
  • the relevant information of the target parameter includes at least one of the following:
  • first information where the first information directly indicates the value of the target parameter
  • the target parameters include at least one of the following:
  • the beam identification associated with the reference signal is the beam identification associated with the reference signal
  • the second information includes at least one of the following:
  • the value processed by the AI model is the value processed by the AI model.
  • the information related to the beam angle or the information related to the beam identity is represented by two-dimensional component information.
  • the beam angle is determined based on a global coordinate system or a local coordinate system.
  • the origin of the local coordinate system is the position information corresponding to the first communication device or the position information corresponding to the second communication device.
  • the origin of the local coordinate system is determined through network configuration, through protocol agreement, or through communication device reporting.
  • sequence information of the parameter information includes at least one of the following:
  • First sequence information where the first sequence information is used to indicate the sequence among multiple parameter information of the same type
  • the second sequence information is used to indicate the sequence between at least one parameter information group and the sequence between different types of parameter information in the parameter information group;
  • the third sequence information is at least used to indicate sequence information between parameter information of at least two periods.
  • the first sequence information includes at least one of the following:
  • the beam ID order associated with the reference signal is the beam ID order associated with the reference signal.
  • sequence information among at least one parameter information group is related to the first sequence information.
  • the auxiliary parameter information includes at least one of the following:
  • Implicit indications determined from configured or interacted information are Implicit indications determined from configured or interacted information
  • the antenna information includes at least one of the following:
  • the vertical coverage corresponding to the beam scan is the vertical coverage corresponding to the beam scan.
  • the device of the embodiment of the present application further includes:
  • the third interaction module is configured to indicate the switching information of the beam correlation function of the AI model in an interactive manner.
  • the first communication device indicates to the second communication device the first interaction information related to the beam, so that the second communication device can determine the beam-related function of the artificial intelligence AI model, and the beam-related function according to the first interaction information.
  • the parameter information corresponding to the beam correlation function of the AI model, the quantity information related to the parameter information, and/or the order information of the parameter information can further implement the beam correlation function based on the AI model.
  • an information interaction device 500 including:
  • the second interaction module 501 is configured to acquire first interaction information, where the first interaction information is acquired through an instruction from the first communication device and/or a protocol agreement;
  • the first interaction information is used to indicate at least one of the following:
  • Parameter information corresponding to the beam correlation function of the AI model where the parameter information includes at least one of input parameter information, output parameter information, and auxiliary parameter information;
  • the sequence information of the parameter information is the sequence information of the parameter information.
  • the device in this embodiment of the present application further includes: a processing module, configured to process the first interaction information based on an AI model.
  • the beam correlation function of the AI model includes at least one of the following:
  • the spatial correlation information of the predicted beam includes at least one of the following:
  • Quality information for at least one beam is predicted.
  • the quantity information related to the parameter information includes at least one of the following:
  • the total amount of beam quality information is the total amount of beam quality information
  • the amount of beam quality information corresponding to the historical beam measurement information is the amount of beam quality information corresponding to the historical beam measurement information
  • the total input quantity of the parameter information is the total input quantity of the parameter information.
  • the input parameter information or output parameter information includes at least one of the following: signal-to-noise ratio SINR;
  • the relevant information of the target parameter includes at least one of the following:
  • first information where the first information directly indicates the value of the target parameter
  • the target parameters include at least one of the following:
  • the beam identification associated with the reference signal is the beam identification associated with the reference signal
  • the second information includes at least one of the following:
  • the value processed by the AI model is the value processed by the AI model.
  • the information related to the beam angle or the information related to the beam identifier is represented by two-dimensional component information.
  • the beam angle is determined based on a global coordinate system or a local coordinate system.
  • the origin of the local coordinate system is the position information corresponding to the first communication device or the position information corresponding to the second communication device.
  • the origin of the local coordinate system is determined through network configuration, through protocol agreement, or through communication device reporting.
  • sequence information of the parameter information includes at least one of the following:
  • First sequence information where the first sequence information is used to indicate the sequence among multiple parameter information of the same type
  • the second order information is used to indicate the order between at least one parameter information group and the order between different types of parameter information in the parameter information group;
  • the third sequence information is at least used to indicate sequence information between parameter information of at least two periods.
  • the first sequence information includes at least one of the following:
  • the beam ID order associated with the reference signal is the beam ID order associated with the reference signal.
  • sequence information among at least one parameter information group is related to the first sequence information.
  • the auxiliary parameter information includes at least one of the following:
  • Implicit indications determined from configured or interacted information are Implicit indications determined from configured or interacted information
  • the antenna information includes at least one of the following:
  • the vertical coverage corresponding to the beam scan is the vertical coverage corresponding to the beam scan.
  • the device of the embodiment of the present application further includes:
  • the fourth determining module is configured to determine switching information of the beam correlation function of the AI model in an interactive manner.
  • the device in the embodiment of the present application can determine the beam correlation function of the artificial intelligence AI model, the parameter information corresponding to the beam correlation function of the AI model, the quantity information related to the parameter information, and/or according to the first interaction information Or the sequence information of the parameter information, and then the beam correlation function can be realized based on the AI model.
  • the information interaction apparatus in the embodiment of the present application may be an electronic device, such as an electronic device with an operating system, or a component in the electronic device, such as an integrated circuit or a chip.
  • the electronic device may be a terminal, or other devices other than the terminal.
  • the terminal may include, but not limited to, the types of terminal 11 listed above, and other devices may be servers, Network Attached Storage (NAS), etc., which are not specifically limited in this embodiment of the present application.
  • NAS Network Attached Storage
  • the information interaction device provided by the embodiment of the present application can realize each process realized by the method embodiment in FIG. 2 or FIG. 3 , and achieve the same technical effect. To avoid repetition, details are not repeated here.
  • the embodiment of the present application also provides a communication device 600, including a processor 601 and a memory 602, and the memory 602 stores programs or instructions that can run on the processor 601, such as
  • the communication device 600 is the first communication device, when the program or instruction is executed by the processor 601, each step of the above embodiment of the information interaction method on the side of the first communication device can be realized, and the same technical effect can be achieved.
  • the communication device 600 is the second communication device, when the program or instruction is executed by the processor 601, each step of the above-mentioned embodiment of the information interaction method on the second communication device side can be achieved, and the same technical effect can be achieved. In order to avoid repetition, I won't go into details here.
  • An embodiment of the present application further provides a communication device, including a processor and a communication interface, where the communication interface is used to indicate the first interaction information.
  • the first interaction information is used to indicate at least one of the following:
  • Parameter information corresponding to the beam correlation function of the AI model where the parameter information includes at least one of input parameter information, output parameter information, and auxiliary parameter information;
  • the sequence information of the parameter information is the sequence information of the parameter information.
  • This communication device embodiment corresponds to the above-mentioned first communication device-side method embodiment, and each implementation process and implementation mode of the above-mentioned method embodiment can be applied to this communication device embodiment, and can achieve the same technical effect.
  • the embodiment of the present application also provides a communication device, including a processor and a communication interface, and the communication interface or the processor is used to obtain the first interaction information, and the first interaction information is an indication and/or a protocol agreed by the first communication device obtained;
  • the first interaction information is used to indicate at least one of the following:
  • Parameter information corresponding to the beam correlation function of the AI model where the parameter information includes at least one of input parameter information, output parameter information, and auxiliary parameter information;
  • the sequence information of the parameter information is the sequence information of the parameter information.
  • This communication device embodiment corresponds to the above-mentioned second communication device-side method embodiment, and each implementation process and implementation mode of the above-mentioned method embodiment can be applied to this communication device embodiment, and can achieve the same technical effect.
  • the first communication device or the second communication device may be specifically a terminal
  • FIG. 7 is a schematic diagram of a hardware structure of a terminal implementing an embodiment of the present application.
  • the terminal 700 includes, but is not limited to: a radio frequency unit 701, a network module 702, an audio output unit 703, an input unit 704, a sensor 705, a display unit 706, a user input unit 707, an interface unit 708, a memory 709, and a processor 710. At least some parts.
  • the terminal 700 may also include a power supply (such as a battery) for supplying power to various components, and the power supply may be logically connected to the processor 710 through the power management system, so as to manage charging, discharging, and power consumption through the power management system. Management and other functions.
  • a power supply such as a battery
  • the terminal structure shown in FIG. 7 does not constitute a limitation on the terminal, and the terminal may include more or fewer components than shown in the figure, or combine some components, or arrange different components, which will not be repeated here.
  • the input unit 704 may include a graphics processing unit (Graphics Processing Unit, GPU) 7041 and a microphone 7042, and the graphics processor 7041 is used by the image capture device (such as the image data of the still picture or video obtained by the camera) for processing.
  • the display unit 706 may include a display panel 7061, and the display panel 7061 may be configured in the form of a liquid crystal display, an organic light emitting diode, or the like.
  • the user input unit 707 includes at least one of a touch panel 7071 and other input devices 7072 .
  • the touch panel 7071 is also called a touch screen.
  • the touch panel 7071 may include two parts, a touch detection device and a touch controller.
  • Other input devices 7072 may include, but are not limited to, physical keyboards, function keys (such as volume control buttons, switch buttons, etc.), trackballs, mice, and joysticks, which will not be described in detail here.
  • the radio frequency unit 701 may transmit the downlink data from the network side device to the processor 710 for processing after receiving the downlink data; in addition, the radio frequency unit 701 may send uplink data to the network side device.
  • the radio frequency unit 701 includes, but is not limited to, an antenna, an amplifier, a transceiver, a coupler, a low noise amplifier, a duplexer, and the like.
  • the memory 709 can be used to store software programs or instructions as well as various data.
  • the memory 709 may mainly include a first storage area for storing programs or instructions and a second storage area for storing data, wherein the first storage area may store an operating system, an application program or instructions required by at least one function (such as a sound playing function, image playback function, etc.), etc.
  • memory 709 may include volatile memory or nonvolatile memory, or, memory 709 may include both volatile and nonvolatile memory.
  • the non-volatile memory can be read-only memory (Read-Only Memory, ROM), programmable read-only memory (Programmable ROM, PROM), erasable programmable read-only memory (Erasable PROM, EPROM), electronically programmable Erase Programmable Read-Only Memory (Electrically EPROM, EEPROM) or Flash.
  • ROM Read-Only Memory
  • PROM programmable read-only memory
  • Erasable PROM Erasable PROM
  • EPROM erasable programmable read-only memory
  • Electrical EPROM Electrical EPROM
  • EEPROM electronically programmable Erase Programmable Read-Only Memory
  • Volatile memory can be random access memory (Random Access Memory, RAM), static random access memory (Static RAM, SRAM), dynamic random access memory (Dynamic RAM, DRAM), synchronous dynamic random access memory (Synchronous DRAM, SDRAM), double data rate synchronous dynamic random access memory (Double Data Rate SDRAM, DDRSDRAM), enhanced synchronous dynamic random access memory (Enhanced SDRAM, ESDRAM), synchronous connection dynamic random access memory (Synch link DRAM , SLDRAM) and Direct Memory Bus Random Access Memory (Direct Rambus RAM, DRRAM).
  • RAM Random Access Memory
  • SRAM static random access memory
  • DRAM dynamic random access memory
  • DRAM synchronous dynamic random access memory
  • SDRAM double data rate synchronous dynamic random access memory
  • Double Data Rate SDRAM Double Data Rate SDRAM
  • DDRSDRAM double data rate synchronous dynamic random access memory
  • Enhanced SDRAM, ESDRAM enhanced synchronous dynamic random access memory
  • Synch link DRAM , SLDRAM
  • Direct Memory Bus Random Access Memory Direct Rambus
  • the processor 710 may include one or more processing units; optionally, the processor 710 integrates an application processor and a modem processor, wherein the application processor mainly handles operations related to the operating system, user interface, and application programs, etc., Modem processors mainly process wireless communication signals, such as baseband processors. It can be understood that the foregoing modem processor may not be integrated into the processor 710 .
  • the radio frequency unit 701 is used to indicate the first interaction information
  • the processor 710 and/or the radio frequency unit 701 are configured to acquire first interaction information, where the first interaction information is acquired through an instruction and/or a protocol agreement of the first communication device.
  • the first interaction information is used to indicate at least one of the following:
  • Parameter information corresponding to the beam correlation function of the AI model where the parameter information includes at least one of input parameter information, output parameter information, and auxiliary parameter information;
  • the sequence information of the parameter information is the sequence information of the parameter information.
  • the beam correlation function of the AI model includes at least one of the following:
  • the spatial correlation information of the predicted beam includes at least one of the following:
  • Quality information for at least one beam is predicted.
  • the quantity information related to the parameter information includes at least one of the following:
  • the total amount of beam quality information is the total amount of beam quality information
  • the amount of beam quality information corresponding to the historical beam measurement information is the amount of beam quality information corresponding to the historical beam measurement information
  • the total input quantity of the parameter information is the total input quantity of the parameter information.
  • the input parameter information or output parameter information includes at least one of the following:
  • SINR Signal-to-noise ratio
  • the relevant information of the target parameter includes at least one of the following:
  • first information where the first information directly indicates the value of the target parameter
  • the target parameters include at least one of the following:
  • the beam identification associated with the reference signal is the beam identification associated with the reference signal
  • the second information includes at least one of the following:
  • the value processed by the AI model is the value processed by the AI model.
  • the information related to the beam angle or the information related to the beam identifier is represented by two-dimensional component information.
  • the beam angle is determined based on a global coordinate system or a local coordinate system.
  • the origin of the local coordinate system is the position information corresponding to the first communication device or the position information corresponding to the second communication device.
  • the origin of the local coordinate system is determined through network configuration, through protocol agreement, or through communication device reporting.
  • sequence information of the parameter information includes at least one of the following:
  • First sequence information where the first sequence information is used to indicate the sequence among multiple parameter information of the same type
  • the second sequence information is used to indicate the sequence between at least one parameter information group and the sequence between different types of parameter information in the parameter information group;
  • the third sequence information is at least used to indicate sequence information between parameter information of at least two periods.
  • the first sequence information includes at least one of the following:
  • the beam ID order associated with the reference signal is the beam ID order associated with the reference signal.
  • sequence information among at least one parameter information group is related to the first sequence information.
  • the auxiliary parameter information includes at least one of the following:
  • Implicit indications determined from configured or interacted information are Implicit indications determined from configured or interacted information
  • the antenna information includes at least one of the following:
  • the vertical coverage corresponding to the beam scan is the vertical coverage corresponding to the beam scan.
  • the radio frequency unit 701 is configured to: indicate switching information of the beam correlation function of the AI model in an interactive manner.
  • the processor 710 and/or the radio frequency unit 701 are configured to: determine switching information of the beam correlation function of the AI model in an interactive manner.
  • the first interaction information it is possible to determine the beam correlation function of the artificial intelligence AI model, the parameter information corresponding to the beam correlation function of the AI model, the quantity information related to the parameter information, and/or all
  • the sequence information of the above parameter information can be used to realize the beam correlation function based on the AI model.
  • the first communication device or the second communication device in the embodiment of the present application may also specifically be a network side device.
  • the embodiment of the present application further provides a network side device.
  • the network side device 800 includes: an antenna 81 , a radio frequency device 82 , a baseband device 83 , a processor 84 and a memory 85 .
  • the antenna 81 is connected to a radio frequency device 82 .
  • the radio frequency device 82 receives information through the antenna 81, and sends the received information to the baseband device 83 for processing.
  • the baseband device 83 processes the information to be sent and sends it to the radio frequency device 82
  • the radio frequency device 82 processes the received information and sends it out through the antenna 81 .
  • the method performed by the network side device in the above embodiments may be implemented in the baseband device 83, where the baseband device 83 includes a baseband processor.
  • the baseband device 83 can include at least one baseband board, for example, a plurality of chips are arranged on the baseband board, as shown in FIG.
  • the program executes the network device operations shown in the above method embodiments.
  • the network side device may also include a network interface 86, such as a common public radio interface (common public radio interface, CPRI).
  • a network interface 86 such as a common public radio interface (common public radio interface, CPRI).
  • the network-side device 800 in this embodiment of the present invention further includes: instructions or programs stored in the memory 85 and operable on the processor 84, and the processor 84 calls the instructions or programs in the memory 85 to execute FIG. 4 or FIG. 5
  • the methods executed by each module shown in the figure achieve the same technical effect, so in order to avoid repetition, they are not repeated here.
  • the first communication device or the second communication device in the embodiment of the present application may also specifically be a network side device.
  • the embodiment of the present application further provides a network side device.
  • the network side device 900 includes: a processor 901 , a network interface 902 and a memory 903 .
  • the network interface 902 is, for example, a common public radio interface (common public radio interface, CPRI).
  • the network-side device 900 in this embodiment of the present invention further includes: instructions or programs stored in the memory 903 and operable on the processor 901, and the processor 901 calls the instructions or programs in the memory 903 to execute FIG. 4 or FIG. 5
  • the methods executed by each module shown in the figure achieve the same technical effect, so in order to avoid repetition, they are not repeated here.
  • the embodiment of the present application also provides a readable storage medium.
  • the readable storage medium stores programs or instructions.
  • the program or instructions are executed by the processor, the various processes of the above-mentioned information interaction method embodiments can be achieved, and the same To avoid repetition, the technical effects will not be repeated here.
  • the processor is the processor in the terminal described in the foregoing embodiments.
  • the readable storage medium includes a computer-readable storage medium, such as a computer read-only memory ROM, a random access memory RAM, a magnetic disk or an optical disk, and the like.
  • the embodiment of the present application further provides a chip, the chip includes a processor and a communication interface, the communication interface is coupled to the processor, and the processor is used to run programs or instructions to implement the above information interaction method embodiment
  • the chip includes a processor and a communication interface
  • the communication interface is coupled to the processor
  • the processor is used to run programs or instructions to implement the above information interaction method embodiment
  • the chip mentioned in the embodiment of the present application may also be called a system-on-chip, a system-on-chip, a system-on-a-chip, or a system-on-a-chip.
  • the embodiment of the present application further provides a computer program/program product, the computer program/program product is stored in a storage medium, and the computer program/program product is executed by at least one processor to implement the above information interaction method embodiment
  • a computer program/program product is stored in a storage medium
  • the computer program/program product is executed by at least one processor to implement the above information interaction method embodiment
  • An embodiment of the present application also provides an information interaction system, including: a first communication device and a second communication device, and the communication device can be used to perform the steps of the above-mentioned information interaction method applied to the first communication device, so The second communication device may be used to execute the above-mentioned steps of the information interaction method applied to the second communication device.
  • the term “comprising”, “comprising” or any other variation thereof is intended to cover a non-exclusive inclusion such that a process, method, article or apparatus comprising a set of elements includes not only those elements, It also includes other elements not expressly listed, or elements inherent in the process, method, article, or device. Without further limitations, an element defined by the phrase “comprising a " does not preclude the presence of additional identical elements in the process, method, article, or apparatus comprising that element.
  • the scope of the methods and devices in the embodiments of the present application is not limited to performing functions in the order shown or discussed, and may also include performing functions in a substantially simultaneous manner or in reverse order according to the functions involved. Functions are performed, for example, the described methods may be performed in an order different from that described, and various steps may also be added, omitted, or combined. Additionally, features described with reference to certain examples may be combined in other examples.
  • the methods of the above embodiments can be implemented by means of software plus a necessary general-purpose hardware platform, and of course also by hardware, but in many cases the former is better implementation.
  • the technical solution of the present application can be embodied in the form of computer software products, which are stored in a storage medium (such as ROM/RAM, magnetic disk, etc.) , CD-ROM), including several instructions to make a terminal (which may be a mobile phone, a computer, a server, an air conditioner, or a network device, etc.) execute the methods described in the various embodiments of the present application.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Quality & Reliability (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请公开了一种信息交互方法、装置及通信设备,属于通信技术领域,本申请实施例的方法包括:第一通信设备指示第一交互信息;其中,所述第一交互信息用于指示以下至少一项:人工智能AI模型的波束相关功能;与所述AI模型的波束相关功能对应的参数信息,所述参数信息包括输入参数信息、输出参数信息和辅助参数信息中的至少一项;与所述参数信息相关的数量信息;所述参数信息的顺序信息。

Description

信息交互方法、装置及通信设备
相关申请的交叉引用
本申请主张在2022年01月14日在中国提交的中国专利申请No.202210041900.5的优先权,其全部内容通过引用包含于此。
技术领域
本申请属于通信技术领域,具体涉及一种信息交互方法、装置及通信设备。
背景技术
目前传统的波束对齐方法都是基于一侧发送较多的参考信号资源,另一侧接收并计算每个参考信号资源对应的波束质量信息,并反馈最优波束以及波束质量信息。首先发送的参考信号资源占用较多的时域上的资源,其次,另一侧无法获得没有发送的参考信号资源对应的波束质量,从而可能会导致选择的波束不是全局最优。而人工智能(Artificial Intelligence,AI)在各个领域获得了广泛的应用,如何基于AI来实现波束相关功能(如波束对齐功能)还没有明确方案。
发明内容
本申请实施例提供一种信息交互方法、装置及通信设备,能够解决如何基于AI来实现波束相关功能的问题。
第一方面,提供了一种信息交互方法,包括:
第一通信设备指示第一交互信息;
其中,所述第一交互信息用于指示以下至少一项:
人工智能AI模型的波束相关功能;
与所述AI模型的波束相关功能对应的参数信息,所述参数信息包括输入参数信息、输出参数信息和辅助参数信息中的至少一项;
与所述参数信息相关的数量信息;
所述参数信息的顺序信息。
第二方面,提供了一种信息交互方法,包括:
第二通信设备获取第一交互信息,所述第一交互信息是通过第一通信设备的指示和/或协议约定获取的;
其中,所述第一交互信息用于指示以下至少一项:
人工智能AI模型的波束相关功能;
与所述AI模型的波束相关功能对应的参数信息,所述参数信息包括输入参数信息、输出参数信息和辅助参数信息中的至少一项;
与所述参数信息相关的数量信息;
所述参数信息的顺序信息。
第三方面,提供了一种信息交互装置,包括:
第一交互模块,用于指示第一交互信息;
其中,所述第一交互信息用于指示以下至少一项:
人工智能AI模型的波束相关功能;
与所述AI模型的波束相关功能对应的参数信息,所述参数信息包括输入参数信息、输出参数信息和辅助参数信息中的至少一项;
与所述参数信息相关的数量信息;
所述参数信息的顺序信息。
第四方面,提供了一种信息交互装置,包括:
第二交互模块,用于获取第一交互信息,所述第一交互信息是通过第一通信设备的指示和/或协议约定获取的;
其中,所述第一交互信息用于指示以下至少一项:
人工智能AI模型的波束相关功能;
与所述AI模型的波束相关功能对应的参数信息,所述参数信息包括输入参数信息、输出参数信息和辅助参数信息中的至少一项;
与所述参数信息相关的数量信息;
所述参数信息的顺序信息。
第五方面,提供了一种通信设备,该终端包括处理器和存储器,所述存储器存储可在所述处理器上运行的程序或指令,所述程序或指令被所述处理 器执行时实现如第一方面或第二方面所述的方法的步骤。
第六方面,提供了一种通信设备,包括处理器及通信接口,其中,所述处理器或通信接口用于指示第一交互信息;或者,所述处理器和/或通信接口用于获取第一交互信息,所述第一交互信息是通过第一通信设备的指示和/或协议约定获取的;
其中,所述第一交互信息用于指示以下至少一项:
人工智能AI模型的波束相关功能;
与所述AI模型的波束相关功能对应的参数信息,所述参数信息包括输入参数信息、输出参数信息和辅助参数信息中的至少一项;
与所述参数信息相关的数量信息;
所述参数信息的顺序信息。
第七方面,提供了一种信息交互统,包括:第一通信设备及第二通信设备,所述第一通信设备可用于执行如第一方面所述的信息交互方法的步骤,所述第二通信设备可用于执行如第二方面所述的信息交互方法的步骤。
第八方面,提供了一种可读存储介质,所述可读存储介质上存储程序或指令,所述程序或指令被处理器执行时实现如第一方面所述的方法的步骤,或者实现如第二方面所述的方法的步骤。
第九方面,提供了一种芯片,所述芯片包括处理器和通信接口,所述通信接口和所述处理器耦合,所述处理器用于运行程序或指令,实现如第一方面所述的方法,或实现如第二方面所述的方法。
第十方面,提供了一种计算机程序产品,所述计算机程序产品被存储在存储介质中,所述计算机程序产品被至少一个处理器执行以实现如第一方面所述的方法的步骤。
在本申请实施例中,第一通信设备向第二通信设备指示与波束相关的第一交互信息,使得第二通信设备根据该第一交互信息能够确定人工智能AI模型的波束相关功能、与所述AI模型的波束相关功能对应的参数信息、与所述参数信息相关的数量信息和/或所述参数信息的顺序信息,进而能够基于AI模型实现波束相关功能。
附图说明
图1表示本申请实施例可应用的一种通信系统的结构图;
图2表示本申请实施例的信息交互方法的流程示意图之一;
图3表示本申请实施例的信息交互方法的流程示意图之二;
图4表示本申请实施例的信息交互装置的模块示意图之一;
图5表示本申请实施例的信息交互装置的模块示意图之二;
图6表示本申请实施例的通信设备的结构框图之一;
图7表示本申请实施例的终端的结构框图;
图8表示本申请实施例的网络侧设备的结构框图之一;
图9表示本申请实施例的网络侧设备的结构框图之二。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚描述,显然,所描述的实施例是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员所获得的所有其他实施例,都属于本申请保护的范围。
本申请的说明书和权利要求书中的术语“第一”、“第二”等是用于区别类似的对象,而不用于描述特定的顺序或先后次序。应该理解这样使用的术语在适当情况下可以互换,以便本申请的实施例能够以除了在这里图示或描述的那些以外的顺序实施,且“第一”、“第二”所区别的对象通常为一类,并不限定对象的个数,例如第一对象可以是一个,也可以是多个。此外,说明书以及权利要求中“和/或”表示所连接对象的至少其中之一,字符“/”一般表示前后关联对象是一种“或”的关系。
值得指出的是,本申请实施例所描述的技术不限于长期演进型(Long Term Evolution,LTE)/LTE的演进(LTE-Advanced,LTE-A)系统,还可用于其他无线通信系统,诸如码分多址(Code Division Multiple Access,CDMA)、时分多址(Time Division Multiple Access,TDMA)、频分多址(Frequency  Division Multiple Access,FDMA)、正交频分多址(Orthogonal Frequency Division Multiple Access,OFDMA)、单载波频分多址(Single-carrier Frequency Division Multiple Access,SC-FDMA)和其他系统。本申请实施例中的术语“系统”和“网络”常被可互换地使用,所描述的技术既可用于以上提及的系统和无线电技术,也可用于其他系统和无线电技术。以下描述出于示例目的描述了新空口(New Radio,NR)系统,并且在以下大部分描述中使用NR术语,但是这些技术也可应用于NR系统应用以外的应用,如第6代(6 th Generation,6G)通信系统。
图1示出本申请实施例可应用的一种无线通信系统的框图。无线通信系统包括终端11和网络侧设备12。其中,终端11可以是手机、平板电脑(Tablet Personal Computer)、膝上型电脑(Laptop Computer)或称为笔记本电脑、个人数字助理(Personal Digital Assistant,PDA)、掌上电脑、上网本、超级移动个人计算机(ultra-mobile personal computer,UMPC)、移动上网装置(Mobile Internet Device,MID)、增强现实(augmented reality,AR)/虚拟现实(virtual reality,VR)设备、机器人、可穿戴式设备(Wearable Device)、车载设备(Vehicle User Equipment,VUE)、行人终端(Pedestrian User Equipment,PUE)、智能家居(具有无线通信功能的家居设备,如冰箱、电视、洗衣机或者家具等)、游戏机、个人计算机(personal computer,PC)、柜员机或者自助机等终端侧设备,可穿戴式设备包括:智能手表、智能手环、智能耳机、智能眼镜、智能首饰(智能手镯、智能手链、智能戒指、智能项链、智能脚镯、智能脚链等)、智能腕带、智能服装等。需要说明的是,在本申请实施例并不限定终端11的具体类型。网络侧设备12可以包括接入网设备或核心网设备,其中,接入网设备12也可以称为无线接入网设备、无线接入网(Radio Access Network,RAN)、无线接入网功能或无线接入网单元。接入网设备12可以包括基站、无线局域网(Wireless Local Area Network,WLAN)接入点、无线保真(Wireless Fidelity,WiFi)节点等,基站可被称为节点B、演进节点B(eNB)、接入点、基收发机站(Base Transceiver Station,BTS)、无线电基站、无线电 收发机、基本服务集(Basic Service Set,BSS)、扩展服务集(Extended Service Set,ESS)、家用B节点、家用演进型B节点、发送接收点(Transmitting Receiving Point,TRP)或所述领域中其他某个合适的术语,只要达到相同的技术效果,所述基站不限于特定技术词汇,需要说明的是,在本申请实施例中仅以NR系统中的基站为例进行介绍,并不限定基站的具体类型。核心网设备可以包含但不限于如下至少一项:核心网节点、核心网功能、移动管理实体(Mobility Management Entity,MME)、接入移动管理功能(Access and Mobility Management Function,AMF)、会话管理功能(Session Management Function,SMF)、用户平面功能(User Plane Function,UPF)、策略控制功能(Policy Control Function,PCF)、策略与计费规则功能单元(Policy and Charging Rules Function,PCRF)、边缘应用服务发现功能(Edge Application Server Discovery Function,EASDF)、统一数据管理(Unified Data Management,UDM)、统一数据仓储(Unified Data Repository,UDR)、归属用户服务器(Home Subscriber Server,HSS)、集中式网络配置(Centralized network configuration,CNC)、网络存储功能(Network Repository Function,NRF)、网络开放功能(Network Exposure Function,NEF)、本地NEF(Local NEF,或L-NEF)、绑定支持功能(Binding Support Function,BSF)、应用功能(Application Function,AF)等。需要说明的是,在本申请实施例中仅以NR系统中的核心网设备为例进行介绍,并不限定核心网设备的具体类型。
为使本领域技术人员能够更好地理解本申请实施例,先进行如下说明。
1、人工智能。
人工智能目前在各个领域获得了广泛的应用。AI网络有多种实现方式,例如神经网络、决策树、支持向量机、贝叶斯分类器等。本申请以神经网络为例进行说明,但是并不限定AI网络的具体类型。
神经网络由神经元组成,神经元可包括输入a 1,a 2,…a K,权值(乘性系数)w,偏置(加性系数)b,激活函数σ(.)。常见的激活函数包括Sigmoid、tanh、修正线性单元(Rectified Linear Unit,ReLU)等等,其中,ReLU为一种线性 整流函数。该神经网络可表示为z=a 1*w 1+……+a k*w k+……a K*w K+b。
神经网络的参数通过优化算法进行优化。优化算法就是一种能够帮我们最小化或者最大化目标函数(有时候也叫损失函数)的一类算法。而目标函数往往是模型参数和数据的数学组合。例如给定数据X和其对应的标签Y,我们构建一个神经网络模型f(.),基于神经网络模型,根据输入x就可以得到预测输出f(x),并且可以计算出预测值和真实值之间的差距(f(x)-Y),这个就是损失函数。我们的目的是找到合适的w,b使上述的损失函数的值达到最小,损失值越小,则说明我们的模型越接近于真实情况。
目前常见的优化算法,基本都是基于误差(error)反向传播(Back Propagation,BP)算法。BP算法的基本思想是,学习过程由信号的正向传播与误差的反向传播两个过程组成。正向传播时,输入样本从输入层传入,经各隐层逐层处理后,传向输出层。若输出层的实际输出与期望的输出不符,则转入误差的反向传播阶段。误差反传是将输出误差以某种形式通过隐层向输入层逐层反传,并将误差分摊给各层的所有单元,从而获得各层单元的误差信号,此误差信号即作为修正各单元权值的依据。这种信号正向传播与误差反向传播的各层权值调整过程,是周而复始地进行的。权值不断调整的过程,也就是网络的学习训练过程。此过程一直进行到网络输出的误差减少到可接受的程度,或进行到预先设定的学习次数为止。
常见的优化算法有梯度下降(Gradient Descent)、随机梯度下降(Stochastic Gradient Descent,SGD)、小批量梯度下降(mini-batch gradient descent)、动量法(Momentum)、自适应梯度下降(Nesterov,具体为带动量的随机梯度下降)、均方根误差降速(Root Mean Square prop,RMSprop)、自适应动量估计(Adaptive Moment Estimation,Adam)等。
这些优化算法在误差反向传播时,都是根据损失函数得到的误差/损失,对当前神经元求导数/偏导,加上学习速率、之前的梯度/导数/偏导等影响,得到梯度,将梯度传给上一层。
2、波束测量和报告(beam measurement and beam reporting)。
模拟波束赋形是全带宽发射的,并且每个高频天线阵列的面板上每个极化方向阵元仅能以时分复用的方式发送模拟波束。模拟波束的赋形权值是通过调整射频前端移相器等设备的参数来实现。
目前,通常是使用轮询的方式进行模拟波束赋形向量的训练,即每个天线面板每个极化方向的阵元以时分复用方式依次在约定时间发送训练信号(即候选的赋形向量),终端经过测量后反馈波束报告,供网络侧在下一次传输业务时采用该训练信号来实现模拟波束发射。波束报告的内容通常包括最优的若干个发射波束标识以及测量出的每个发射波束的接收功率。
在做波束测量时,网络会配置参考信号资源集合(RS resource set),其中包括至少一个参考信号资源,例如同步信号/物理广播信道信号块(或同步信号块)(Synchronization Signal and PBCH block,SSB)resource或信道状态信息参考信号(Channel State Information Reference Signal,CSI-RS)resource。用户设备(User Equipment,UE)测量每个RS resource的层1参考信号接收功率(Layer 1reference signal received power,L1-RSRP)/层1信号与干扰加噪声比(Layer 1Signal to Interference plus Noise Ratio,L1-SINR),并将最优的至少一个测量结果上报给网络,上报内容包括SSB资源指示(SSB Resource Indicator,SSBRI)或CSI-RS资源指示(CSI-RS Resource Indicator,CRI)、及L1-RSRP/L1-SINR。该报告内容反映了至少一个最优的波束及其质量,供网络确定用来向UE发送信道或信号的波束。
下面结合附图,通过一些实施例及其应用场景对本申请实施例提供的信息交互方法进行详细地说明。
如图2所示,本申请实施例提供了一种信息交互方法,包括:
步骤201:第一通信设备指示第一交互信息;
其中,所述第一交互信息用于指示以下至少一项:
人工智能AI模型的波束相关功能;
与所述AI模型的波束相关功能对应的参数信息,所述参数信息包括输入参数信息、输出参数信息和辅助参数信息中的至少一项;
与所述参数信息相关的数量信息;
所述参数信息的顺序信息。
本申请实施例中,第一通信设备向第二通信设备指示与波束相关的第一交互信息,使得第二通信设备根据该第一交互信息能够确定人工智能AI模型的波束相关功能、与所述AI模型的波束相关功能对应的参数信息、与所述参数信息相关的数量信息和/或所述参数信息的顺序信息,进而能够基于AI模型实现波束相关功能。
本申请实施例中的第一通信设备包括以下至少一项:基站、UE和辅助网络中心单元对应网元;所述第二通信设备包括以下至少一项:基站、UE和辅助网络中心单元对应网元。该辅助网络中心单元是用于进行信息交互的单元。
例如,本申请实施例中,上述第一通信设备和第二通信设备均为基站;或者,第一通信设备和第二通信设备均为UE;或,第一通信设备为基站,第二通信设备为UE;或者第一通信设备为UE,第二通信设备为基站;或者,第一通信设备为辅助网络中心单元对应的网元,第二通信设备为基站或UE;或者,第一通信设备为基站或UE,第二通信设备为辅助网络中心单元对应的网元。
可选地,所述AI模型的波束相关功能包括以下至少一项:
预测波束的空间相关信息;
预测与目标时间相关的波束信息;
微调模型参数,具体的对AI模型的相关参数进行调整;
指示波束关系或指示准共址(Quasi co-location,QCL)关系。
可选地,所述预测波束的空间相关信息包括以下至少一项:
预测至少一个波束;
预测至少一个参考信号标识,所述参考信号标识关联波束信息;
预测至少一个波束的角度信息;
预测至少一个波束的质量信息。
本申请实施例中,波束质量信息可通过以下至少一项确定:
信噪比(Signal to Interference plus Noise Ratio,SINR);
参考信号接收功率(Reference Signal Received Power,RSRP);
参考信号接收质量(Reference Signal Received Quality,RSRQ)。
可选地,上述目标时间包括以下至少一项:
未来时间;
历史时间;
当前时间。
可选地,所述与目标时间相关的波束信息包括以下至少一项:
与目标时间相关的波束角度信息,例如,预测10ms后的波束角度信息;
与目标时间相关的波束质量信息。
也就是说,本申请实施例中,通过AI模型可以实现预测目标时间的波束空间相关信息,该目标时间可以是历史时间、当前时间或未来时间。
可选地,与所述参数信息相关的数量信息包括以下至少一项:
参考信号集合的数量信息;
参考信号资源的数量信息;
总的波束测量次数信息;
总的波束数量;
总的波束质量信息数量;
总的波束角度数量;
波束测量周期的数量;
当前波束测量次数信息;
历史波束测量次数信息;
历史波束测量次数信息对应的波束数量;
历史波束测量次数信息对应的波束角度数量;
历史波束测量信息对应的波束质量信息数量;
当前波束测量次数对应的波束数量;
当前波束测量次数对应的波束角度数量;
当前波束测量次数对应的波束质量信息数量;
所述参数信息的总的输入数量。
其中,上述数量信息可具体是指数量,上述次数信息可具体是指次数,即上述参数信号集合的数量信息可具体包括参考信号集合的数量,上述参考信号资源的数量信息可具体包括参考信号资源的数量,总的波束测量次数信息可具体包括总的波束测量次数,当前波束测量次数信息可具体包括当前波束测量的次数。
需要说明的是,本申请实施例中的波束角度包括波束发送角度和波束接收角度中的至少一项。波束标识包括发送波束标识、接收波束标识和波束对标识中的至少一项,其中,所述波束对包括发送波束和接收波束。
可选地,所述输入参数信息或输出参数信息包括以下至少一项:
SINR;
RSRP;
RSRQ;
发送参考信号的时间;
非周期参考信号的触发时间;
参考信号对应的集合ID;
参考信号对应的资源ID;
参考信号关联的波束角度的相关信息;
参考信号关联的波束标识的相关信息;
参考信号关联的波束对应的波束增益的相关信息;
参考信号关联的波束对应的波束宽度的相关信息;
天线增益的相关信息;
波束质量的相关信息;
波束角度的相关信息;
指示AI模型输出的波束接收角度的相关信息;
指示AI模型输出的波束接收标识的相关信息。
上述每一项参数对应一种参数类型。
在本申请一实施例中,所述输入参数包括以下至少一项:
SINR;
RSRP;
RSRQ;
发送参考信号的时间;
非周期参考信号的触发时间;
参考信号对应的集合ID;
参考信号对应的资源ID;
参考信号关联的波束角度的相关信息;
参考信号关联的波束标识的相关信息;
参考信号关联的波束对应的波束增益的相关信息;
参考信号关联的波束对应的波束宽度的相关信息;
天线增益的相关信息;
指示AI模型输出的波束接收角度的相关信息;
指示AI模型输出的波束接收标识的相关信息。
例如,AI模型输入包括测量的波束质量、对应的发送波束角度和接收波束角度以及期望预测的接收波束角度,则AI模型的输出对应于使用期望预测的接收波束角度接收时的波束相关信息。
在本申请的一实施例中,所述输出参数包括以下至少一项:
SINR;
RSRP;
RSRQ;
发送参考信号的时间;
非周期参考信号的触发时间;
参考信号对应的集合ID;
参考信号对应的资源ID;
参考信号关联的波束角度的相关信息;
参考信号关联的波束标识的相关信息;
参考信号关联的波束对应的波束增益的相关信息;
参考信号关联的波束对应的波束宽度的相关信息;
波束角度的相关信息。
可选地,目标参数的相关信息包括以下至少一项:
第一信息,所述第一信息直接指示所述目标参数的取值,例如,该第一信息为60度,即指示波束角度为60度,或者,该第一信息为01,即指示波束标识为01;
第二信息,所述第二信息间接指示所述目标参数的取值;
其中,所述目标参数包括以下至少一项:
参考信号关联的波束角度;
参考信号关联的波束标识;
参考信号关联的波束对应的波束增益;
参考信号关联的波束对应的波束宽度;
天线增益;
波束质量。
可选地,所述第二信息包括以下至少一项:
目标参数对应的量化值,该量化值可以是量化区间对应的索引值,或者为归一化值;可选地,量化精度可以通过协议约定、UE上报或网络配置等方式来确定。
目标参数与预定数值的比值、差值或相加后的值;
经过AI模型处理后的值。
其中,上述预定数值可以是最大值、最小值,如最大角度,最大弧度等。上述预定数值也可以是协议约定、UE上报或网络配置的。上述预定数值也可以是协议约定的特定目标参数关联的特定值、UE上报的特定目标参数的关联的特定值或网络配置的特定目标参数关联的特定值。
可选地,本申请实施例中,不同的目标参数对应不同的预定数值。
可选地,上述AI模型处理可以是AI模型对输入参数的处理,也可以是信息交互过程中,对交互信息的预处理。
本申请实施例中,基于上述第二信息经过相应运算处理,得到上述目标参数对应的取值。
另外,本申请实施例中,输入参数或输出参数的相关信息可采用不同的指示方式进行指示,例如,输入参数的相关信息通过第二信息间接指示,输出参的相关信息通过第一信息直接指示。
可选地,所述波束角度的相关信息或所述波束标识的相关信息是通过二维的分量信息进行表示的。例如,波束角度通过水平角度和垂直角度进行表示。当然,波束角度的相关信息或所述波束标识的相关信息也可以通过更高维度的分量信息进行表示。
可选地,本申请实施例中,波束角度可以是基于全局坐标系(Global Coordinate System,GLS),或局部坐标系(Local Coordinate System,LCS)确定的。
可选地,在所述波束角度是基于局部坐标系确定的情况下,所述局部坐标系的原点为第一通信设备对应的位置信息或第二通信设备对应的位置信息。
可选地,在所述波束角度是基于局部坐标系确定的情况下,所述局部坐标系的原点是通过网络配置方式确定的或者是通过协议约定确定的或者是通过通信设备上报方式确定的。
本申请实施例中的参考信号包括以下至少一项:
配置成波束测量的参考信号;
配置的参考信号;
配置成波束测量并且预激活的参考信号;
配置成波束测量并且激活的参考信号;
配置成波束测量并且发送的参考信号;
AI模型输出的参考信息。
可选地,所述参数信息的顺序信息包括以下至少一项:
第一顺序信息,所述第一顺序信息用于指示同一类型的多个参数信息之间的顺序;
第二顺序信息,所述第二顺序信息用于指示至少一个参数信息组之间的顺序以及所述参数信息组内不同类型的参数信息之间的顺序;
第三顺序信息,所述第三顺序信息至少用于指示至少两个周期的参数信息之间的顺序。
可选地,至少一个参数信息组之间的顺序信息与所述第一顺序信息相关。即该参数信息组之间的顺序信息可根据某一类型的参数信息的排序信息来确定。
本申请实施例中,至少一个参数信息组中包含至少两个不同类型的参数信息。
例如,上述参数信息的参数类型为波束ID,则上述第一顺序信息可具体用于指示多个波束ID之间的顺序,如第一顺序信息为波束ID1、波束ID2、波束ID3。又例如,上述参数的参数类型为波束质量,则上述第一顺序信息可具体用于指示多个波束质量之间的顺序,如波束ID1的波束质量,波束ID2的波束质量,波束ID3的波束质量。
例如,参数信息组内包含的参数信息类型包括波束ID和波束质量。则第二顺序信息可指示参信息组内的参数信息的顺序信息为波束ID、波束质量。然后多个参数信息组之间的顺序信息可按照某一参数信息的顺序进行排序,如按照波束ID进行排序。如第一参数信息组包括波束ID 1,对应的波束ID 1的波束质量,第二参数信息组包括波束ID 2,对应的波束ID 2的波束质量。则第二顺序信息可具体为:波束ID 1,对应的波束ID 1的波束质量,波束ID 2,对应的波束ID 2的波束质量。又例如,还包括第三参数信息组,第四参数信息组,该第三参数信息组包括波束ID 3,第四参数信息组包括波束ID4,则该第二顺序信息可具体为波束ID 1,对应的波束ID 1的波束质量,第二参数信息组包括波束ID 2,对应的波束ID 2的波束质量、波束ID3、波束ID4。
本申请实施例中,至少两个周期对应的时间可以是历史时间也可以是未来时间。例如,对于AI模型的输入侧可以是历史时间对应的波束相关信息,对于输出侧可以是未来时间的波束相关信息。
可选地,所述第一顺序信息包括以下至少一项:
发送参考信号的时间顺序;
参考信号的集合ID顺序;
参考信号的资源ID顺序;
非周期参考信号的触发顺序;
参考信号关联的波束角度顺序;
参考信号关联的优先级顺序;
参考信号关联的波束ID顺序。
本申请实施例中的顺序信息包括从大到小,从小到大,先后顺序,优先级高低,以及配置的参数类型pattern顺序,协议约定的pattern顺序等。
可选地,所述辅助参数信息包括以下至少一项:
上报结果的相关信息或预测结果的相关信息,例如预测结果是AI模型输出的第几个结果,或上报结果为AI模型输出的第几个结果;
上报的参数类型信息;
上报的参数信息的顺序信息;
上报的参数信息的数量信息;
根据配置或交互的信息确定的隐含指示信息;例如,参考信号被配置成重复传输(repetition on)时,此时在接收端需要在每一个接收波束上的波束质量信息都上报。可选地,此时上报模式可以不配置成none或配置成全上报模式;
波束生效时间;
波束失效时间;
波束信息;
天线信息;
参考信号的数量限制信息;
指示第一交互信息中是否包含AI模型的输出的信息;
指示第一交互信息是否是通过AI模型的处理得到的信息;
指示AI模型对应的参数信息的处理方式信息。
可选地,所述天线信息包括以下至少一项:
天线增益相关信息;
主瓣角度;
副瓣角度;
副瓣数量;
副瓣分布;
天线数量;
波束扫描对应的水平覆盖范围;
波束扫描对应的垂直覆盖范围。
可选地,所述天线增益相关信息包括以下至少一项:
天线相对增益,单位为dBi;
等效全向辐射功率(Effective Isotropic Radiated Power,EIRP);
波束功率谱;
波束角度增益;
波束角度增益谱(也就是一个波束相对于不同角度上的增益,包括完整的或部分增益谱信息);
每个波束角度对应的EIRP。
可选地,所述参考信号的数量限制信息中参数信号的数量可以是AI模型的输入参考信号的数量,当一侧配置或预激活或激活或发送的参考信号超过该数量限制信息对应的门限值(如上限值)时,则另一侧按照非AI模型的方式上报波束相关信息,且仅能从配置或预激活或激活或发送的参考信号中选择上报的信息。
本申请实施例中,上述辅助参数信息中的至少部分参数项也可以包含在 输出参数和/或输入参数中。
可选地,本申请实施例的方法,还包括:
所述第一通信设备通过交互方式指示所述AI模型的波束相关功能的切换信息。
该切换信息可具体用于指示AI模进行波束相关功能的切换,例如,从预测波束的空间相关信息切换至指示波束关系。
上述交互方式包括协议约定、网络配置方式和通信设备上报方式中的至少一项。
可选地,网络配置方式包括通过信令指示该切换信息;
可选地,协议约定包括通过特殊的参数配置或特殊的信令格式等指示该切换信息,或者,在满足预设条件的情况下,指示该切换信息,例如,配置超过数量上限的参考信号。
本申请实施例中,第一通信设备向第二通信设备指示与波束相关的第一交互信息,使得第二通信设备根据该第一交互信息能够确定人工智能AI模型的波束相关功能、与所述AI模型的波束相关功能对应的参数信息、与所述参数信息相关的数量信息和/或所述参数信息的顺序信息,进而能够基于AI模型实现波束相关功能。
如图3所示,本申请实施例还提供了一种信息交互方法,包括:
步骤301:第二通信设备获取第一交互信息,所述第一交互信息是通过第一通信设备的指示和/或协议约定获取的;
其中,所述第一交互信息用于指示以下至少一项:
人工智能AI模型的波束相关功能;
与所述AI模型的波束相关功能对应的参数信息,所述参数信息包括输入参数信息、输出参数信息和辅助参数信息中的至少一项;
与所述参数信息相关的数量信息;
所述参数信息的顺序信息。
本申请实施例中,第二通信设备根据该第一交互信息能够确定人工智能 AI模型的波束相关功能、与所述AI模型的波束相关功能对应的参数信息、与所述参数信息相关的数量信息和/或所述参数信息的顺序信息,进而能够基于AI模型实现波束相关功能。
可选地,所述AI模型的波束相关功能包括以下至少一项:
预测波束的空间相关信息;
预测与目标时间相关的波束信息;
微调模型参数;
指示波束关系或指示准共址QCL关系。
可选地,所述预测波束的空间相关信息包括以下至少一项:
预测至少一个波束;
预测至少一个参考信号标识,所述参考信号标识关联波束信息;
预测至少一个波束的角度信息;
预测至少一个波束的质量信息。
可选地,所述与所述参数信息相关的数量信息包括以下至少一项:
参考信号集合的数量信息;
参考信号资源的数量信息;
总的波束测量次数信息;
总的波束数量;
总的波束质量信息数量;
总的波束角度数量;
波束测量周期的数量;
当前波束测量次数信息;
历史波束测量次数信息;
历史波束测量次数信息对应的波束数量;
历史波束测量次数信息对应的波束角度数量;
历史波束测量信息对应的波束质量信息数量;
当前波束测量次数对应的波束数量;
当前波束测量次数对应的波束角度数量;
当前波束测量次数对应的波束质量信息数量;
所述参数信息的总的输入数量。
可选地,所述输入参数信息或输出参数信息包括以下至少一项:
信噪比SINR;
参考信号接收功率RSRP;
参考信号接收质量RSRQ;
发送参考信号的时间;
非周期参考信号的触发时间;
参考信号对应的集合ID;
参考信号对应的资源ID;
参考信号关联的波束角度的相关信息;
参考信号关联的波束标识的相关信息;
参考信号关联的波束对应的波束增益的相关信息;
参考信号关联的波束对应的波束宽度的相关信息;
天线增益的相关信息;
波束质量的相关信息;
波束角度的相关信息;
指示AI模型输出的波束接收角度的相关信息;
指示AI模型输出的波束接收标识的相关信息。
可选地,目标参数的相关信息包括以下至少一项:
第一信息,所述第一信息直接指示所述目标参数的取值;
第二信息,所述第二信息间接指示所述目标参数的取值;
其中,所述目标参数包括以下至少一项:
参考信号关联的波束角度;
参考信号关联的波束标识;
参考信号关联的波束对应的波束增益;
参考信号关联的波束对应的波束宽度;
天线增益;
波束质量。
可选地,所述第二信息包括以下至少一项:
目标参数对应的量化值;
目标参数与预定数值的比值、差值或相加后的值;
经过AI模型处理后的值。
可选地,所述波束角度的相关信息或所述波束标识的相关信息是通过二维的分量信息进行表示的。
可选地,所述波束角度是基于全局坐标系或局部坐标系确定的。
可选地,在所述波束角度是基于局部坐标系确定的情况下,所述局部坐标系的原点为第一通信设备对应的位置信息或第二通信设备对应的位置信息。
可选地,在所述波束角度是基于局部坐标系确定的情况下,所述局部坐标系的原点是通过网络配置方式确定的或者是通过协议约定确定的或者是通过通信设备上报方式确定的。
可选地,所述参数信息的顺序信息包括以下至少一项:
第一顺序信息,所述第一顺序信息用于指示同一类型的多个参数信息之间的顺序;
第二顺序信息,所述第二顺序信息用于指示至少一个参数信息组之间的顺序以及所述参数信息组内不同类型的参数信息之间的顺序;
第三顺序信息,所述第三顺序信息至少用于指示至少两个周期的参数信息之间的顺序信息。
可选地,所述第一顺序信息包括以下至少一项:
发送参考信号的时间顺序;
参考信号的集合ID顺序;
参考信号的资源ID顺序;
非周期参考信号的触发顺序;
参考信号关联的波束角度顺序;
参考信号关联的优先级顺序;
参考信号关联的波束ID顺序。
可选地,至少一个参数信息组之间的顺序信息与所述第一顺序信息相关。
可选地,所述辅助参数信息包括以下至少一项:
上报结果的相关信息或预测结果的相关信息;
上报的参数类型信息;
上报的参数信息的顺序信息;
上报的参数信息的数量信息;
根据配置或交互的信息确定的隐含指示信息;
波束生效时间;
波束失效时间;
波束信息;
天线信息;
参考信号的数量限制信息;
指示第一交互信息中是否包含AI模型的输出的信息;
指示第一交互信息是否是通过AI模型的处理得到的信息;
指示AI模型对应的参数信息的处理方式信息。
可选地,所述天线信息包括以下至少一项:
天线增益相关信息;
主瓣角度;
副瓣角度;
副瓣数量;
副瓣分布;
天线数量;
波束扫描对应的水平覆盖范围;
波束扫描对应的垂直覆盖范围。
可选地,本申请实施例中,还包括:
所述第二通信设备通过交互方式确定所述AI模型的波束相关功能的切换信息。
需要说明的是,第二通信设备侧的信息交互方法是与第一通信设备侧的信息交互方法对应的交互方式,此处不再赘述。
本申请实施例的方法,第二通信设备根据该第一交互信息能够确定人工智能AI模型的波束相关功能、与所述AI模型的波束相关功能对应的参数信息、与所述参数信息相关的数量信息和/或所述参数信息的顺序信息,进而能够基于AI模型实现波束相关功能。
本申请实施例提供的信息交互方法,执行主体可以为信息交互装置。本申请实施例中以信息交互装置执行信息交互方法为例,说明本申请实施例提供的信息交互装置。
如图4所示,本申请实施例提供了一种信息交互装置400,包括:
第一交互模块401,用于指示第一交互信息;
其中,所述第一交互信息用于指示以下至少一项:
人工智能AI模型的波束相关功能;
与所述AI模型的波束相关功能对应的参数信息,所述参数信息包括输入参数信息、输出参数信息和辅助参数信息中的至少一项;
与所述参数信息相关的数量信息;
所述参数信息的顺序信息。
可选地,本申请实施例的装置,还包括:确定模块,用于确定第一交互信息。
可选地,所述AI模型的波束相关功能包括以下至少一项:
预测波束的空间相关信息;
预测与目标时间相关的波束信息;
微调模型参数;
指示波束关系或指示准共址QCL关系。
可选地,所述预测波束的空间相关信息包括以下至少一项:
预测至少一个波束;
预测至少一个参考信号标识,所述参考信号标识关联波束信息;
预测至少一个波束的角度信息;
预测至少一个波束的质量信息。
可选地,所述与所述参数信息相关的数量信息包括以下至少一项:
参考信号集合的数量信息;
参考信号资源的数量信息;
总的波束测量次数信息;
总的波束数量;
总的波束质量信息数量;
总的波束角度数量;
波束测量周期的数量;
当前波束测量次数信息;
历史波束测量次数信息;
历史波束测量次数信息对应的波束数量;
历史波束测量次数信息对应的波束角度数量;
历史波束测量信息对应的波束质量信息数量;
当前波束测量次数对应的波束数量;
当前波束测量次数对应的波束角度数量;
当前波束测量次数对应的波束质量信息数量;
所述参数信息的总的输入数量。
可选地,所述输入参数信息或输出参数信息包括以下至少一项:
信噪比SINR;
参考信号接收功率RSRP;
参考信号接收质量RSRQ;
发送参考信号的时间;
非周期参考信号的触发时间;
参考信号对应的集合ID;
参考信号对应的资源ID;
参考信号关联的波束角度的相关信息;
参考信号关联的波束标识的相关信息;
参考信号关联的波束对应的波束增益的相关信息;
参考信号关联的波束对应的波束宽度的相关信息;
天线增益的相关信息;
波束质量的相关信息;
波束角度的相关信息;
指示AI模型输出的波束接收角度的相关信息;
指示AI模型输出的波束接收标识的相关信息。
可选地,目标参数的相关信息包括以下至少一项:
第一信息,所述第一信息直接指示所述目标参数的取值;
第二信息,所述第二信息间接指示所述目标参数的取值;
其中,所述目标参数包括以下至少一项:
参考信号关联的波束角度;
参考信号关联的波束标识;
参考信号关联的波束对应的波束增益;
参考信号关联的波束对应的波束宽度;
天线增益;
波束质量。
可选地,所述第二信息包括以下至少一项:
目标参数对应的量化值;
目标参数与预定数值的比值、差值或相加后的值;
经过AI模型处理后的值。
可选地,所述波束角度的相关信息或所述波束标识的相关信息是通过二 维的分量信息进行表示的。
可选地,所述波束角度是基于全局坐标系或局部坐标系确定的。
可选地,在所述波束角度是基于局部坐标系确定的情况下,所述局部坐标系的原点为第一通信设备对应的位置信息或第二通信设备对应的位置信息。
可选地,在所述波束角度是基于局部坐标系确定的情况下,所述局部坐标系的原点是通过网络配置方式确定的或者是通过协议约定确定的或者是通过通信设备上报方式确定的。
可选地,所述参数信息的顺序信息包括以下至少一项:
第一顺序信息,所述第一顺序信息用于指示同一类型的多个参数信息之间的顺序;
第二顺序信息,所述第二顺序信息用于指示至少一个参数信息组之间的顺序以及所述参数信息组内不同类型的参数信息之间的顺序;
第三顺序信息,所述第三顺序信息至少用于指示至少两个周期的参数信息之间的顺序信息。
可选地,所述第一顺序信息包括以下至少一项:
发送参考信号的时间顺序;
参考信号的集合ID顺序;
参考信号的资源ID顺序;
非周期参考信号的触发顺序;
参考信号关联的波束角度顺序;
参考信号关联的优先级顺序;
参考信号关联的波束ID顺序。
可选地,至少一个参数信息组之间的顺序信息与所述第一顺序信息相关。
可选地,所述辅助参数信息包括以下至少一项:
上报结果的相关信息或预测结果的相关信息;
上报的参数类型信息;
上报的参数信息的顺序信息;
上报的参数信息的数量信息;
根据配置或交互的信息确定的隐含指示信息;
波束生效时间;
波束失效时间;
波束信息;
天线信息;
参考信号的数量限制信息;
指示第一交互信息中是否包含AI模型的输出的信息;
指示第一交互信息是否是通过AI模型的处理得到的信息;
指示AI模型对应的参数信息的处理方式信息。
可选地,所述天线信息包括以下至少一项:
天线增益相关信息;
主瓣角度;
副瓣角度;
副瓣数量;
副瓣分布;
天线数量;
波束扫描对应的水平覆盖范围;
波束扫描对应的垂直覆盖范围。
可选地,本申请实施例的装置,还包括:
第三交互模块,用于通过交互方式指示所述AI模型的波束相关功能的切换信息。
本申请实施例中,第一通信设备向第二通信设备指示与波束相关的第一交互信息,使得第二通信设备根据该第一交互信息能够确定人工智能AI模型的波束相关功能、与所述AI模型的波束相关功能对应的参数信息、与所述参数信息相关的数量信息和/或所述参数信息的顺序信息,进而能够基于AI模型实现波束相关功能。
如图5所示,本申请实施例提供了一种信息交互装置500,包括:
第二交互模块501,用于获取第一交互信息,所述第一交互信息是通过第一通信设备的指示和/或协议约定获取的;
其中,所述第一交互信息用于指示以下至少一项:
人工智能AI模型的波束相关功能;
与所述AI模型的波束相关功能对应的参数信息,所述参数信息包括输入参数信息、输出参数信息和辅助参数信息中的至少一项;
与所述参数信息相关的数量信息;
所述参数信息的顺序信息。
可选地,本申请实施例的装置,还包括:处理模块,用于基于AI模型对所述第一交互信息进行处理。
可选地,所述AI模型的波束相关功能包括以下至少一项:
预测波束的空间相关信息;
预测与目标时间相关的波束信息;
微调模型参数;
指示波束关系或指示准共址QCL关系。
可选地,所述预测波束的空间相关信息包括以下至少一项:
预测至少一个波束;
预测至少一个参考信号标识,所述参考信号标识关联波束信息;
预测至少一个波束的角度信息;
预测至少一个波束的质量信息。
可选地,所述与所述参数信息相关的数量信息包括以下至少一项:
参考信号集合的数量信息;
参考信号资源的数量信息;
总的波束测量次数信息;
总的波束数量;
总的波束质量信息数量;
总的波束角度数量;
波束测量周期的数量;
当前波束测量次数信息;
历史波束测量次数信息;
历史波束测量次数信息对应的波束数量;
历史波束测量次数信息对应的波束角度数量;
历史波束测量信息对应的波束质量信息数量;
当前波束测量次数对应的波束数量;
当前波束测量次数对应的波束角度数量;
当前波束测量次数对应的波束质量信息数量;
所述参数信息的总的输入数量。
可选地,所述输入参数信息或输出参数信息包括以下至少一项:信噪比SINR;
参考信号接收功率RSRP;
参考信号接收质量RSRQ;
发送参考信号的时间;
非周期参考信号的触发时间;
参考信号对应的集合ID;
参考信号对应的资源ID;
参考信号关联的波束角度的相关信息;
参考信号关联的波束标识的相关信息;
参考信号关联的波束对应的波束增益的相关信息;
参考信号关联的波束对应的波束宽度的相关信息;
天线增益的相关信息;
波束质量的相关信息;
波束角度的相关信息;
指示AI模型输出的波束接收角度的相关信息;
指示AI模型输出的波束接收标识的相关信息。
可选地,目标参数的相关信息包括以下至少一项:
第一信息,所述第一信息直接指示所述目标参数的取值;
第二信息,所述第二信息间接指示所述目标参数的取值;
其中,所述目标参数包括以下至少一项:
参考信号关联的波束角度;
参考信号关联的波束标识;
参考信号关联的波束对应的波束增益;
参考信号关联的波束对应的波束宽度;
天线增益;
波束质量。
可选地,所述第二信息包括以下至少一项:
目标参数对应的量化值;
目标参数与预定数值的比值、差值或相加后的值;
经过AI模型处理后的值。
可选地,所述波束角度的相关信息或所述波束标识的相关信息是通过二维的分量信息进行表示的。
可选地,所述波束角度是基于全局坐标系或局部坐标系确定的。
可选地,在所述波束角度是基于局部坐标系确定的情况下,所述局部坐标系的原点为第一通信设备对应的位置信息或第二通信设备对应的位置信息。
可选地,在所述波束角度是基于局部坐标系确定的情况下,所述局部坐标系的原点是通过网络配置方式确定的或者是通过协议约定确定的或者是通过通信设备上报方式确定的。
可选地,所述参数信息的顺序信息包括以下至少一项:
第一顺序信息,所述第一顺序信息用于指示同一类型的多个参数信息之间的顺序;
第二顺序信息,所述第二顺序信息用于指示至少一个参数信息组之间的 顺序以及所述参数信息组内不同类型的参数信息之间的顺序;
第三顺序信息,所述第三顺序信息至少用于指示至少两个周期的参数信息之间的顺序信息。
可选地,所述第一顺序信息包括以下至少一项:
发送参考信号的时间顺序;
参考信号的集合ID顺序;
参考信号的资源ID顺序;
非周期参考信号的触发顺序;
参考信号关联的波束角度顺序;
参考信号关联的优先级顺序;
参考信号关联的波束ID顺序。
可选地,至少一个参数信息组之间的顺序信息与所述第一顺序信息相关。
可选地,所述辅助参数信息包括以下至少一项:
上报结果的相关信息或预测结果的相关信息;
上报的参数类型信息;
上报的参数信息的顺序信息;
上报的参数信息的数量信息;
根据配置或交互的信息确定的隐含指示信息;
波束生效时间;
波束失效时间;
波束信息;
天线信息;
参考信号的数量限制信息;
指示第一交互信息中是否包含AI模型的输出的信息;
指示第一交互信息是否是通过AI模型的处理得到的信息;
指示AI模型对应的参数信息的处理方式信息。
可选地,所述天线信息包括以下至少一项:
天线增益相关信息;
主瓣角度;
副瓣角度;
副瓣数量;
副瓣分布;
天线数量;
波束扫描对应的水平覆盖范围;
波束扫描对应的垂直覆盖范围。
可选地,本申请实施例的装置,还包括:
第四确定模块,用于通过交互方式确定所述AI模型的波束相关功能的切换信息。
本申请实施例的装置,能够根据该第一交互信息能够确定人工智能AI模型的波束相关功能、与所述AI模型的波束相关功能对应的参数信息、与所述参数信息相关的数量信息和/或所述参数信息的顺序信息,进而能够基于AI模型实现波束相关功能。
本申请实施例中的信息交互装置可以是电子设备,例如具有操作系统的电子设备,也可以是电子设备中的部件,例如集成电路或芯片。该电子设备可以是终端,也可以为除终端之外的其他设备。示例性的,终端可以包括但不限于上述所列举的终端11的类型,其他设备可以为服务器、网络附属存储器(Network Attached Storage,NAS)等,本申请实施例不作具体限定。
本申请实施例提供的信息交互装置能够实现图2或图3的方法实施例实现的各个过程,并达到相同的技术效果,为避免重复,这里不再赘述。
可选地,如图6所示,本申请实施例还提供一种通信设备600,包括处理器601和存储器602,存储器602上存储有可在所述处理器601上运行的程序或指令,例如,该通信设备600为第一通信设备时,该程序或指令被处理器601执行时实现上述第一通信设备侧的信息交互方法实施例的各个步骤,且能达到相同的技术效果。该通信设备600为第二通信设备时,该程序或指 令被处理器601执行时实现上述第二通信设备侧的信息交互方法实施例的各个步骤,且能达到相同的技术效果,为避免重复,这里不再赘述。
本申请实施例还提供一种通信设备,包括处理器和通信接口,通信接口用于指示第一交互信息。其中,所述第一交互信息用于指示以下至少一项:
人工智能AI模型的波束相关功能;
与所述AI模型的波束相关功能对应的参数信息,所述参数信息包括输入参数信息、输出参数信息和辅助参数信息中的至少一项;
与所述参数信息相关的数量信息;
所述参数信息的顺序信息。
该通信设备实施例与上述第一通信设备侧方法实施例对应,上述方法实施例的各个实施过程和实现方式均可适用于该通信设备实施例中,且能达到相同的技术效果。
本申请实施例还提供了一种通信设备,包括处理器和通信接口,通信接口或处理器用于获取第一交互信息,所述第一交互信息是通过第一通信设备的指示和/或协议约定获取的;
其中,所述第一交互信息用于指示以下至少一项:
人工智能AI模型的波束相关功能;
与所述AI模型的波束相关功能对应的参数信息,所述参数信息包括输入参数信息、输出参数信息和辅助参数信息中的至少一项;
与所述参数信息相关的数量信息;
所述参数信息的顺序信息。
该通信设备实施例与上述第二通信设备侧方法实施例对应,上述方法实施例的各个实施过程和实现方式均可适用于该通信设备实施例中,且能达到相同的技术效果。
具体地,上述第一通信设备或第二通信设备可具体为终端,图7为实现本申请实施例的一种终端的硬件结构示意图。
该终端700包括但不限于:射频单元701、网络模块702、音频输出单元 703、输入单元704、传感器705、显示单元706、用户输入单元707、接口单元708、存储器709以及处理器710等中的至少部分部件。
本领域技术人员可以理解,终端700还可以包括给各个部件供电的电源(比如电池),电源可以通过电源管理系统与处理器710逻辑相连,从而通过电源管理系统实现管理充电、放电、以及功耗管理等功能。图7中示出的终端结构并不构成对终端的限定,终端可以包括比图示更多或更少的部件,或者组合某些部件,或者不同的部件布置,在此不再赘述。
应理解的是,本申请实施例中,输入单元704可以包括图形处理单元(Graphics Processing Unit,GPU)7041和麦克风7042,图形处理器7041对在视频捕获模式或图像捕获模式中由图像捕获装置(如摄像头)获得的静态图片或视频的图像数据进行处理。显示单元7 06可包括显示面板7061,可以采用液晶显示器、有机发光二极管等形式来配置显示面板7061。用户输入单元707包括触控面板7071以及其他输入设备7072中的至少一种。触控面板7071,也称为触摸屏。触控面板7071可包括触摸检测装置和触摸控制器两个部分。其他输入设备7072可以包括但不限于物理键盘、功能键(比如音量控制按键、开关按键等)、轨迹球、鼠标、操作杆,在此不再赘述。
本申请实施例中,射频单元701接收来自网络侧设备的下行数据后,可以传输给处理器710进行处理;另外,射频单元701可以向网络侧设备发送上行数据。通常,射频单元701包括但不限于天线、放大器、收发信机、耦合器、低噪声放大器、双工器等。
存储器709可用于存储软件程序或指令以及各种数据。存储器709可主要包括存储程序或指令的第一存储区和存储数据的第二存储区,其中,第一存储区可存储操作系统、至少一个功能所需的应用程序或指令(比如声音播放功能、图像播放功能等)等。此外,存储器709可以包括易失性存储器或非易失性存储器,或者,存储器709可以包括易失性和非易失性存储器两者。其中,非易失性存储器可以是只读存储器(Read-Only Memory,ROM)、可编程只读存储器(Programmable ROM,PROM)、可擦除可编程只读存储器 (Erasable PROM,EPROM)、电可擦除可编程只读存储器(Electrically EPROM,EEPROM)或闪存。易失性存储器可以是随机存取存储器(Random Access Memory,RAM),静态随机存取存储器(Static RAM,SRAM)、动态随机存取存储器(Dynamic RAM,DRAM)、同步动态随机存取存储器(Synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(Double Data Rate SDRAM,DDRSDRAM)、增强型同步动态随机存取存储器(Enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(Synch link DRAM,SLDRAM)和直接内存总线随机存取存储器(Direct Rambus RAM,DRRAM)。本申请实施例中的存储器709包括但不限于这些和任意其它适合类型的存储器。
处理器710可包括一个或多个处理单元;可选地,处理器710集成应用处理器和调制解调处理器,其中,应用处理器主要处理涉及操作系统、用户界面和应用程序等的操作,调制解调处理器主要处理无线通信信号,如基带处理器。可以理解的是,上述调制解调处理器也可以不集成到处理器710中。
在本申请的一实施例中,射频单元701用于指示第一交互信息;
在本申请的另一实施例中,处理器710和/或射频单元701用于获取第一交互信息,,所述第一交互信息是通过第一通信设备的指示和/或协议约定获取的。
其中,所述第一交互信息用于指示以下至少一项:
人工智能AI模型的波束相关功能;
与所述AI模型的波束相关功能对应的参数信息,所述参数信息包括输入参数信息、输出参数信息和辅助参数信息中的至少一项;
与所述参数信息相关的数量信息;
所述参数信息的顺序信息。
可选地,所述AI模型的波束相关功能包括以下至少一项:
预测波束的空间相关信息;
预测与目标时间相关的波束信息;
微调模型参数;
指示波束关系或指示准共址QCL关系。
可选地,所述预测波束的空间相关信息包括以下至少一项:
预测至少一个波束;
预测至少一个参考信号标识,所述参考信号标识关联波束信息;
预测至少一个波束的角度信息;
预测至少一个波束的质量信息。
可选地,所述与所述参数信息相关的数量信息包括以下至少一项:
参考信号集合的数量信息;
参考信号资源的数量信息;
总的波束测量次数信息;
总的波束数量;
总的波束质量信息数量;
总的波束角度数量;
波束测量周期的数量;
当前波束测量次数信息;
历史波束测量次数信息;
历史波束测量次数信息对应的波束数量;
历史波束测量次数信息对应的波束角度数量;
历史波束测量信息对应的波束质量信息数量;
当前波束测量次数对应的波束数量;
当前波束测量次数对应的波束角度数量;
当前波束测量次数对应的波束质量信息数量;
所述参数信息的总的输入数量。
可选地,所述输入参数信息或输出参数信息包括以下至少一项:
信噪比SINR;
参考信号接收功率RSRP;
参考信号接收质量RSRQ;
发送参考信号的时间;
非周期参考信号的触发时间;
参考信号对应的集合ID;
参考信号对应的资源ID;
参考信号关联的波束角度的相关信息;
参考信号关联的波束标识的相关信息;
参考信号关联的波束对应的波束增益的相关信息;
参考信号关联的波束对应的波束宽度的相关信息;
天线增益的相关信息;
波束质量的相关信息;
波束角度的相关信息;
指示AI模型输出的波束接收角度的相关信息;
指示AI模型输出的波束接收标识的相关信息。
可选地,目标参数的相关信息包括以下至少一项:
第一信息,所述第一信息直接指示所述目标参数的取值;
第二信息,所述第二信息间接指示所述目标参数的取值;
其中,所述目标参数包括以下至少一项:
参考信号关联的波束角度;
参考信号关联的波束标识;
参考信号关联的波束对应的波束增益;
参考信号关联的波束对应的波束宽度;
天线增益;
波束质量。
可选地,所述第二信息包括以下至少一项:
目标参数对应的量化值;
目标参数与预定数值的比值、差值或相加后的值;
经过AI模型处理后的值。
可选地,所述波束角度的相关信息或所述波束标识的相关信息是通过二维的分量信息进行表示的。
可选地,所述波束角度是基于全局坐标系或局部坐标系确定的。
可选地,在所述波束角度是基于局部坐标系确定的情况下,所述局部坐标系的原点为第一通信设备对应的位置信息或第二通信设备对应的位置信息。
可选地,在所述波束角度是基于局部坐标系确定的情况下,所述局部坐标系的原点是通过网络配置方式确定的或者是通过协议约定确定的或者是通过通信设备上报方式确定的。
可选地,所述参数信息的顺序信息包括以下至少一项:
第一顺序信息,所述第一顺序信息用于指示同一类型的多个参数信息之间的顺序;
第二顺序信息,所述第二顺序信息用于指示至少一个参数信息组之间的顺序以及所述参数信息组内不同类型的参数信息之间的顺序;
第三顺序信息,所述第三顺序信息至少用于指示至少两个周期的参数信息之间的顺序信息。
可选地,所述第一顺序信息包括以下至少一项:
发送参考信号的时间顺序;
参考信号的集合ID顺序;
参考信号的资源ID顺序;
非周期参考信号的触发顺序;
参考信号关联的波束角度顺序;
参考信号关联的优先级顺序;
参考信号关联的波束ID顺序。
可选地,至少一个参数信息组之间的顺序信息与所述第一顺序信息相关。
可选地,所述辅助参数信息包括以下至少一项:
上报结果的相关信息或预测结果的相关信息;
上报的参数类型信息;
上报的参数信息的顺序信息;
上报的参数信息的数量信息;
根据配置或交互的信息确定的隐含指示信息;
波束生效时间;
波束失效时间;
波束信息;
天线信息;
参考信号的数量限制信息;
指示第一交互信息中是否包含AI模型的输出的信息;
指示第一交互信息是否是通过AI模型的处理得到的信息;
指示AI模型对应的参数信息的处理方式信息。
可选地,所述天线信息包括以下至少一项:
天线增益相关信息;
主瓣角度;
副瓣角度;
副瓣数量;
副瓣分布;
天线数量;
波束扫描对应的水平覆盖范围;
波束扫描对应的垂直覆盖范围。
可选地,在本申请的一实施例中,射频单元701用于:通过交互方式指示所述AI模型的波束相关功能的切换信息。
可选地,在本申请的一实施例中,处理器710和/或射频单元701用于:通过交互方式确定所述AI模型的波束相关功能的切换信息。
本申请实施例中,根据该第一交互信息能够确定人工智能AI模型的波束相关功能、与所述AI模型的波束相关功能对应的参数信息、与所述参数信息相关的数量信息和/或所述参数信息的顺序信息,进而能够基于AI模型实现 波束相关功能。
本申请实施例中的第一通信设备或第二通信设备还可具体为网络侧设备,具体地,本申请实施例还提供了一种网络侧设备。如图8所示,该网络侧设备800包括:天线81、射频装置82、基带装置83、处理器84和存储器85。天线81与射频装置82连接。在上行方向上,射频装置82通过天线81接收信息,将接收的信息发送给基带装置83进行处理。在下行方向上,基带装置83对要发送的信息进行处理,并发送给射频装置82,射频装置82对收到的信息进行处理后经过天线81发送出去。
以上实施例中网络侧设备执行的方法可以在基带装置83中实现,该基带装置83包括基带处理器。
基带装置83例如可以包括至少一个基带板,该基带板上设置有多个芯片,如图8所示,其中一个芯片例如为基带处理器,通过总线接口与存储器85连接,以调用存储器85中的程序,执行以上方法实施例中所示的网络设备操作。
该网络侧设备还可以包括网络接口86,该接口例如为通用公共无线接口(common public radio interface,CPRI)。
具体地,本发明实施例的网络侧设备800还包括:存储在存储器85上并可在处理器84上运行的指令或程序,处理器84调用存储器85中的指令或程序执行图4或图5所示各模块执行的方法,并达到相同的技术效果,为避免重复,故不在此赘述。
本申请实施例中的第一通信设备或第二通信设备还可具体为网络侧设备,具体地,本申请实施例还提供了一种网络侧设备。如图9所示,该网络侧设备900包括:处理器901、网络接口902和存储器903。其中,网络接口902例如为通用公共无线接口(common public radio interface,CPRI)。
具体地,本发明实施例的网络侧设备900还包括:存储在存储器903上并可在处理器901上运行的指令或程序,处理器901调用存储器903中的指令或程序执行图4或图5所示各模块执行的方法,并达到相同的技术效果,为避免重复,故不在此赘述。
本申请实施例还提供一种可读存储介质,所述可读存储介质上存储有程序或指令,该程序或指令被处理器执行时实现上述信息交互方法实施例的各个过程,且能达到相同的技术效果,为避免重复,这里不再赘述。
其中,所述处理器为上述实施例中所述的终端中的处理器。所述可读存储介质,包括计算机可读存储介质,如计算机只读存储器ROM、随机存取存储器RAM、磁碟或者光盘等。
本申请实施例另提供了一种芯片,所述芯片包括处理器和通信接口,所述通信接口和所述处理器耦合,所述处理器用于运行程序或指令,实现上述信息交互方法实施例的各个过程,且能达到相同的技术效果,为避免重复,这里不再赘述。
应理解,本申请实施例提到的芯片还可以称为系统级芯片,系统芯片,芯片系统或片上系统芯片等。
本申请实施例另提供了一种计算机程序/程序产品,所述计算机程序/程序产品被存储在存储介质中,所述计算机程序/程序产品被至少一个处理器执行以实现上述信息交互方法实施例的各个过程,且能达到相同的技术效果,为避免重复,这里不再赘述。
本申请实施例还提供了一种信息交互系统,包括:第一通信设备及第二通信设备,所述通信设备可用于执行如上所述的应用于第一通信设备的信息交互方法的步骤,所述第二通信设备可用于执行如上所述的应用于第二通信设备的信息交互方法的步骤。
需要说明的是,在本文中,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者装置不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者装置所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括该要素的过程、方法、物品或者装置中还存在另外的相同要素。此外,需要指出的是,本申请实施方式中的方法和装置的范围不限按示出或讨论的顺序来执行功能,还 可包括根据所涉及的功能按基本同时的方式或按相反的顺序来执行功能,例如,可以按不同于所描述的次序来执行所描述的方法,并且还可以添加、省去、或组合各种步骤。另外,参照某些示例所描述的特征可在其他示例中被组合。
通过以上的实施方式的描述,本领域的技术人员可以清楚地了解到上述实施例方法可借助软件加必需的通用硬件平台的方式来实现,当然也可以通过硬件,但很多情况下前者是更佳的实施方式。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分可以以计算机软件产品的形式体现出来,该计算机软件产品存储在一个存储介质(如ROM/RAM、磁碟、光盘)中,包括若干指令用以使得一台终端(可以是手机,计算机,服务器,空调器,或者网络设备等)执行本申请各个实施例所述的方法。
上面结合附图对本申请的实施例进行了描述,但是本申请并不局限于上述的具体实施方式,上述的具体实施方式仅仅是示意性的,而不是限制性的,本领域的普通技术人员在本申请的启示下,在不脱离本申请宗旨和权利要求所保护的范围情况下,还可做出很多形式,均属于本申请的保护之内。

Claims (40)

  1. 一种信息交互方法,包括:
    第一通信设备指示第一交互信息;
    其中,所述第一交互信息用于指示以下至少一项:
    人工智能AI模型的波束相关功能;
    与所述AI模型的波束相关功能对应的参数信息,所述参数信息包括输入参数信息、输出参数信息和辅助参数信息中的至少一项;
    与所述参数信息相关的数量信息;
    所述参数信息的顺序信息。
  2. 根据权利要求1所述的方法,其中,所述AI模型的波束相关功能包括以下至少一项:
    预测波束的空间相关信息;
    预测与目标时间相关的波束信息;
    微调模型参数;
    指示波束关系或指示准共址QCL关系。
  3. 根据权利要求2所述的方法,其中,所述预测波束的空间相关信息包括以下至少一项:
    预测至少一个波束;
    预测至少一个参考信号标识,所述参考信号标识关联波束信息;
    预测至少一个波束的角度信息;
    预测至少一个波束的质量信息。
  4. 根据权利要求1所述的方法,其中,所述与所述参数信息相关的数量信息包括以下至少一项:
    参考信号集合的数量信息;
    参考信号资源的数量信息;
    总的波束测量次数信息;
    总的波束数量;
    总的波束质量信息数量;
    总的波束角度数量;
    波束测量周期的数量;
    当前波束测量次数信息;
    历史波束测量次数信息;
    历史波束测量次数信息对应的波束数量;
    历史波束测量次数信息对应的波束角度数量;
    历史波束测量信息对应的波束质量信息数量;
    当前波束测量次数对应的波束数量;
    当前波束测量次数对应的波束角度数量;
    当前波束测量次数对应的波束质量信息数量;
    所述参数信息的总的输入数量。
  5. 根据权利要求1所述的方法,其中,所述输入参数信息或输出参数信息包括以下至少一项:
    信噪比SINR;
    参考信号接收功率RSRP;
    参考信号接收质量RSRQ;
    发送参考信号的时间;
    非周期参考信号的触发时间;
    参考信号对应的集合ID;
    参考信号对应的资源ID;
    参考信号关联的波束角度的相关信息;
    参考信号关联的波束标识的相关信息;
    参考信号关联的波束对应的波束增益的相关信息;
    参考信号关联的波束对应的波束宽度的相关信息;
    天线增益的相关信息;
    波束质量的相关信息;
    波束角度的相关信息;
    指示AI模型输出的波束接收角度的相关信息;
    指示AI模型输出的波束接收标识的相关信息。
  6. 根据权利要求5所述的方法,其中,目标参数的相关信息包括以下至少一项:
    第一信息,所述第一信息直接指示所述目标参数的取值;
    第二信息,所述第二信息间接指示所述目标参数的取值;
    其中,所述目标参数包括以下至少一项:
    参考信号关联的波束角度;
    参考信号关联的波束标识;
    参考信号关联的波束对应的波束增益;
    参考信号关联的波束对应的波束宽度;
    天线增益;
    波束质量。
  7. 根据权利要求6所述的方法,其中,所述第二信息包括以下至少一项:
    目标参数对应的量化值;
    目标参数与预定数值的比值、差值或相加后的值;
    经过AI模型处理后的值。
  8. 根据权利要求5所述的方法,其中,所述波束角度的相关信息或所述波束标识的相关信息是通过二维的分量信息进行表示的。
  9. 根据权利要求4至6任一项所述的方法,其中,所述波束角度是基于全局坐标系或局部坐标系确定的。
  10. 根据权利要求9所述的方法,其中,在所述波束角度是基于局部坐标系确定的情况下,所述局部坐标系的原点为第一通信设备对应的位置信息或第二通信设备对应的位置信息。
  11. 根据权利要求9所述的方法,其中,在所述波束角度是基于局部坐标系确定的情况下,所述局部坐标系的原点是通过网络配置方式确定的或者 是通过协议约定确定的或者是通过通信设备上报方式确定的。
  12. 根据权利要求1所述的方法,其中,所述参数信息的顺序信息包括以下至少一项:
    第一顺序信息,所述第一顺序信息用于指示同一类型的多个参数信息之间的顺序;
    第二顺序信息,所述第二顺序信息用于指示至少一个参数信息组之间的顺序以及所述参数信息组内不同类型的参数信息之间的顺序;
    第三顺序信息,所述第三顺序信息至少用于指示至少两个周期的参数信息之间的顺序。
  13. 根据权利要求12所述的方法,其中,所述第一顺序信息包括以下至少一项:
    发送参考信号的时间顺序;
    参考信号的集合ID顺序;
    参考信号的资源ID顺序;
    非周期参考信号的触发顺序;
    参考信号关联的波束角度顺序;
    参考信号关联的优先级顺序;
    参考信号关联的波束ID顺序。
  14. 根据权利要求12所述的方法,其中,至少一个参数信息组之间的顺序信息与所述第一顺序信息相关。
  15. 根据权利要求1所述的方法,其中,所述辅助参数信息包括以下至少一项:
    上报结果的相关信息或预测结果的相关信息;
    上报的参数类型信息;
    上报的参数信息的顺序信息;
    上报的参数信息的数量信息;
    根据配置或交互的信息确定的隐含指示信息;
    波束生效时间;
    波束失效时间;
    波束信息;
    天线信息;
    参考信号的数量限制信息;
    指示第一交互信息中是否包含AI模型的输出的信息;
    指示第一交互信息是否是通过AI模型的处理得到的信息;
    指示AI模型对应的参数信息的处理方式信息。
  16. 根据权利要求15所述的方法,其中,所述天线信息包括以下至少一项:
    天线增益相关信息;
    主瓣角度;
    副瓣角度;
    副瓣数量;
    副瓣分布;
    天线数量;
    波束扫描对应的水平覆盖范围;
    波束扫描对应的垂直覆盖范围。
  17. 根据权利要求1所述的方法,还包括:
    所述第一通信设备通过交互方式指示所述AI模型的波束相关功能的切换信息。
  18. 一种信息交互方法,包括:
    第二通信设备获取第一交互信息,所述第一交互信息是通过第一通信设备的指示和/或协议约定获取的;
    其中,所述第一交互信息用于指示以下至少一项:
    人工智能AI模型的波束相关功能;
    与所述AI模型的波束相关功能对应的参数信息,所述参数信息包括输入 参数信息、输出参数信息和辅助参数信息中的至少一项;
    与所述参数信息相关的数量信息;
    所述参数信息的顺序信息。
  19. 根据权利要求18所述的方法,其中,所述AI模型的波束相关功能包括以下至少一项:
    预测波束的空间相关信息;
    预测与目标时间相关的波束信息;
    微调模型参数;
    指示波束关系或指示准共址QCL关系。
  20. 根据权利要求19所述的方法,其中,所述预测波束的空间相关信息包括以下至少一项:
    预测至少一个波束;
    预测至少一个参考信号标识,所述参考信号标识关联波束信息;
    预测至少一个波束的角度信息;
    预测至少一个波束的质量信息。
  21. 根据权利要求18所述的方法,其中,所述与所述参数信息相关的数量信息包括以下至少一项:
    参考信号集合的数量信息;
    参考信号资源的数量信息;
    总的波束测量次数信息;
    总的波束数量;
    总的波束质量信息数量;
    总的波束角度数量;
    波束测量周期的数量;
    当前波束测量次数信息;
    历史波束测量次数信息;
    历史波束测量次数信息对应的波束数量;
    历史波束测量次数信息对应的波束角度数量;
    历史波束测量信息对应的波束质量信息数量;
    当前波束测量次数对应的波束数量;
    当前波束测量次数对应的波束角度数量;
    当前波束测量次数对应的波束质量信息数量;
    所述参数信息的总的输入数量。
  22. 根据权利要求18所述的方法,其中,所述输入参数信息或输出参数信息包括以下至少一项:
    信噪比SINR;
    参考信号接收功率RSRP;
    参考信号接收质量RSRQ;
    发送参考信号的时间;
    非周期参考信号的触发时间;
    参考信号对应的集合ID;
    参考信号对应的资源ID;
    参考信号关联的波束角度的相关信息;
    参考信号关联的波束标识的相关信息;
    参考信号关联的波束对应的波束增益的相关信息;
    参考信号关联的波束对应的波束宽度的相关信息;
    天线增益的相关信息;
    波束质量的相关信息;
    波束角度的相关信息;
    指示AI模型输出的波束接收角度的相关信息;
    指示AI模型输出的波束接收标识的相关信息。
  23. 根据权利要求22所述的方法,其中,目标参数的相关信息包括以下至少一项:
    第一信息,所述第一信息直接指示所述目标参数的取值;
    第二信息,所述第二信息间接指示所述目标参数的取值;
    其中,所述目标参数包括以下至少一项:
    参考信号关联的波束角度;
    参考信号关联的波束标识;
    参考信号关联的波束对应的波束增益;
    参考信号关联的波束对应的波束宽度;
    天线增益;
    波束质量。
  24. 根据权利要求23所述的方法,其中,所述第二信息包括以下至少一项:
    目标参数对应的量化值;
    目标参数与预定数值的比值、差值或相加后的值;
    经过AI模型处理后的值。
  25. 根据权利要求22所述的方法,其中,所述波束角度的相关信息或所述波束标识的相关信息是通过二维的分量信息进行表示的。
  26. 根据权利要求21至23任一项所述的方法,其中,所述波束角度是基于全局坐标系或局部坐标系确定的。
  27. 根据权利要求26所述的方法,其中,在所述波束角度是基于局部坐标系确定的情况下,所述局部坐标系的原点为第一通信设备对应的位置信息或第二通信设备对应的位置信息。
  28. 根据权利要求26所述的方法,其中,在所述波束角度是基于局部坐标系确定的情况下,所述局部坐标系的原点是通过网络配置方式确定的或者是通过协议约定确定的或者是通过通信设备上报方式确定的。
  29. 根据权利要求18所述的方法,其中,所述参数信息的顺序信息包括以下至少一项:
    第一顺序信息,所述第一顺序信息用于指示同一类型的多个参数信息之间的顺序;
    第二顺序信息,所述第二顺序信息用于指示至少一个参数信息组之间的顺序以及所述参数信息组内不同类型的参数信息之间的顺序;
    第三顺序信息,所述第三顺序信息至少用于指示至少两个周期的参数信息之间的顺序信息。
  30. 根据权利要求29所述的方法,其中,所述第一顺序信息包括以下至少一项:
    发送参考信号的时间顺序;
    参考信号的集合ID顺序;
    参考信号的资源ID顺序;
    非周期参考信号的触发顺序;
    参考信号关联的波束角度顺序;
    参考信号关联的优先级顺序;
    参考信号关联的波束ID顺序。
  31. 根据权利要求29所述的方法,其中,至少一个参数信息组之间的顺序信息与所述第一顺序信息相关。
  32. 根据权利要求18所述的方法,其中,所述辅助参数信息包括以下至少一项:
    上报结果的相关信息或预测结果的相关信息;
    上报的参数类型信息;
    上报的参数信息的顺序信息;
    上报的参数信息的数量信息;
    根据配置或交互的信息确定的隐含指示信息;
    波束生效时间;
    波束失效时间;
    波束信息;
    天线信息;
    参考信号的数量限制信息;
    指示第一交互信息中是否包含AI模型的输出的信息;
    指示第一交互信息是否是通过AI模型的处理得到的信息;
    指示AI模型对应的参数信息的处理方式信息。
  33. 根据权利要求32所述的方法,其中,所述天线信息包括以下至少一项:
    天线增益相关信息;
    主瓣角度;
    副瓣角度;
    副瓣数量;
    副瓣分布;
    天线数量;
    波束扫描对应的水平覆盖范围;
    波束扫描对应的垂直覆盖范围。
  34. 根据权利要求18所述的方法,还包括:
    所述第二通信设备通过交互方式确定所述AI模型的波束相关功能的切换信息。
  35. 一种信息交互装置,包括:
    第一交互模块,用于指示第一交互信息;
    其中,所述第一交互信息用于指示以下至少一项:
    人工智能AI模型的波束相关功能;
    与所述AI模型的波束相关功能对应的参数信息,所述参数信息包括输入参数信息、输出参数信息和辅助参数信息中的至少一项;
    与所述参数信息相关的数量信息;
    所述参数信息的顺序信息。
  36. 根据权利要求35所述的装置,其中,所述AI模型的波束相关功能包括以下至少一项:
    预测波束的空间相关信息;
    预测与目标时间相关的波束信息;
    微调模型参数;
    指示波束关系或指示准共址QCL关系。
  37. 一种信息交互装置,包括:
    第二交互模块,用于获取第一交互信息,所述第一交互信息是通过第一通信设备的指示和/或协议约定获取的;
    其中,所述第一交互信息用于指示以下至少一项:
    人工智能AI模型的波束相关功能;
    与所述AI模型的波束相关功能对应的参数信息,所述参数信息包括输入参数信息、输出参数信息和辅助参数信息中的至少一项;
    与所述参数信息相关的数量信息;
    所述参数信息的顺序信息。
  38. 根据权利要求37所述的装置,其中,所述AI模型的波束相关功能包括以下至少一项:
    预测波束的空间相关信息;
    预测与目标时间相关的波束信息;
    微调模型参数;
    指示波束关系或指示准共址QCL关系。
  39. 一种通信设备,包括处理器和存储器,所述存储器存储可在所述处理器上运行的程序或指令,所述程序或指令被所述处理器执行时实现如权利要求1至17任一项所述的信息交互方法的步骤,或实现如权利要求18至34任一项所述的信息交互方法的步骤。
  40. 一种可读存储介质,所述可读存储介质上存储程序或指令,所述程序或指令被处理器执行时实现如权利要求1至17任一项所述的信息交互方法的步骤,或者,实现如权利要求18至34任一项所述的信息交互方法的步骤。
PCT/CN2023/071475 2022-01-14 2023-01-10 信息交互方法、装置及通信设备 WO2023134650A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210041900.5 2022-01-14
CN202210041900.5A CN116488747A (zh) 2022-01-14 2022-01-14 信息交互方法、装置及通信设备

Publications (1)

Publication Number Publication Date
WO2023134650A1 true WO2023134650A1 (zh) 2023-07-20

Family

ID=87223741

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/071475 WO2023134650A1 (zh) 2022-01-14 2023-01-10 信息交互方法、装置及通信设备

Country Status (2)

Country Link
CN (1) CN116488747A (zh)
WO (1) WO2023134650A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117580073B (zh) * 2024-01-12 2024-05-07 北京小米移动软件有限公司 通信方法、设备和存储介质

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110536231A (zh) * 2019-05-27 2019-12-03 中兴通讯股份有限公司 一种信息反馈方法及装置
CN111082840A (zh) * 2019-12-23 2020-04-28 中国联合网络通信集团有限公司 一种天线广播波束的优化方法和装置
CN111865446A (zh) * 2020-07-29 2020-10-30 中南大学 利用网络环境上下文信息实现的智能波束配准方法与装置
CN111903069A (zh) * 2018-04-05 2020-11-06 三星电子株式会社 用于由用户设备进行的基于传感器的波束管理的方法和系统
US20210120434A1 (en) * 2019-10-17 2021-04-22 Samsung Electronics Co., Ltd. Method and apparatus for beam configuration in wireless communication system

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111903069A (zh) * 2018-04-05 2020-11-06 三星电子株式会社 用于由用户设备进行的基于传感器的波束管理的方法和系统
CN110536231A (zh) * 2019-05-27 2019-12-03 中兴通讯股份有限公司 一种信息反馈方法及装置
US20210120434A1 (en) * 2019-10-17 2021-04-22 Samsung Electronics Co., Ltd. Method and apparatus for beam configuration in wireless communication system
CN111082840A (zh) * 2019-12-23 2020-04-28 中国联合网络通信集团有限公司 一种天线广播波束的优化方法和装置
CN111865446A (zh) * 2020-07-29 2020-10-30 中南大学 利用网络环境上下文信息实现的智能波束配准方法与装置

Also Published As

Publication number Publication date
CN116488747A (zh) 2023-07-25

Similar Documents

Publication Publication Date Title
US20230262506A1 (en) Beam reporting method, beam information determining method, and related device
CN114363921B (zh) Ai网络参数的配置方法和设备
WO2023134650A1 (zh) 信息交互方法、装置及通信设备
WO2023143572A1 (zh) 基于人工智能ai模型的定位方法及通信设备
WO2023066288A1 (zh) 模型请求方法、模型请求处理方法及相关设备
WO2023134761A1 (zh) 波束信息交互方法、装置、设备及存储介质
WO2024067281A1 (zh) Ai模型的处理方法、装置及通信设备
WO2023134628A1 (zh) 传输方法、装置和设备
WO2023174325A1 (zh) Ai模型的处理方法及设备
WO2023125951A1 (zh) 通信模型配置方法、装置和通信设备
WO2024041420A1 (zh) 测量反馈处理方法、装置、终端及网络侧设备
WO2024046206A1 (zh) 接收方法、设备及可读存储介质
WO2024067434A1 (zh) Rs配置方法、装置、终端及网络侧设备
WO2023198093A1 (zh) 模型有效性的确定方法、装置及通信设备
WO2023098661A1 (zh) 定位方法及通信设备
WO2023103911A1 (zh) 测量方法、装置、设备及存储介质
WO2024041421A1 (zh) 测量反馈处理方法、装置、终端及网络侧设备
WO2023155839A1 (zh) Ai模型的在线学习方法、装置、通信设备及可读存储介质
WO2024041419A1 (zh) 信息传输方法、装置、终端及网络侧设备
WO2024083004A1 (zh) Ai模型配置方法、终端及网络侧设备
WO2024027536A1 (zh) 感知处理方法、装置、终端及网络侧设备
WO2023179540A1 (zh) 信道预测方法、装置及无线通信设备
WO2024008111A1 (zh) 数据采集方法及装置
WO2024067280A1 (zh) 更新ai模型参数的方法、装置及通信设备
WO2024046202A1 (zh) 发送方法、用户设备、网络侧设备及可读存储介质

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23739992

Country of ref document: EP

Kind code of ref document: A1