WO2024067434A1 - Rs配置方法、装置、终端及网络侧设备 - Google Patents

Rs配置方法、装置、终端及网络侧设备 Download PDF

Info

Publication number
WO2024067434A1
WO2024067434A1 PCT/CN2023/120924 CN2023120924W WO2024067434A1 WO 2024067434 A1 WO2024067434 A1 WO 2024067434A1 CN 2023120924 W CN2023120924 W CN 2023120924W WO 2024067434 A1 WO2024067434 A1 WO 2024067434A1
Authority
WO
WIPO (PCT)
Prior art keywords
information
terminal
configuration
network side
side device
Prior art date
Application number
PCT/CN2023/120924
Other languages
English (en)
French (fr)
Inventor
贾承璐
邬华明
Original Assignee
维沃移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 维沃移动通信有限公司 filed Critical 维沃移动通信有限公司
Publication of WO2024067434A1 publication Critical patent/WO2024067434A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/02Arrangements for optimising operational condition
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W64/00Locating users or terminals or network equipment for network management purposes, e.g. mobility management

Definitions

  • the present application belongs to the field of communication technology, and specifically relates to an RS configuration method, apparatus, terminal and network side equipment.
  • the measurement quantities reported by the User Equipment mainly include: Positioning Reference Signal-Reference Signal Received Power (PRS-RSRP), Reference Signal Time Difference (RSTD) and Reception-Transmit (Rx-Tx) time difference, etc.
  • PRS-RSRP Positioning Reference Signal-Reference Signal Received Power
  • RSTD Reference Signal Time Difference
  • Rx-Tx Reception-Transmit
  • AI artificial intelligence
  • the embodiments of the present application provide an RS configuration method, apparatus, terminal, and network-side equipment, which can solve the problem of how to improve AI positioning performance.
  • a reference signal RS configuration method which is applied to a terminal, and the method includes:
  • the terminal receives RS configuration information sent by the network side device; wherein the RS configuration information is related to measurement information; and the measurement information includes at least one of the following:
  • the first indication information is used to indicate a channel state information CSI measurement error corresponding to the RS;
  • the motion status information of the terminal is the motion status information of the terminal.
  • a reference signal RS configuration device including:
  • a receiving module configured to receive RS configuration information sent by a network side device; wherein the RS configuration information is related to measurement information; and the measurement information includes at least one of the following:
  • the first indication information is used to indicate a channel state information CSI measurement error corresponding to the RS;
  • the motion status information of the terminal is the motion status information of the terminal.
  • a reference signal RS configuration method which is applied to a network side device, and the method includes:
  • the network side device obtains the measurement information
  • the network side device sends RS configuration information to the terminal
  • the RS configuration information is related to the measurement information; the measurement information includes at least one of the following:
  • the first indication information is used to indicate a channel state information CSI measurement error corresponding to the RS;
  • the motion status information of the terminal is the motion status information of the terminal.
  • a reference signal RS configuration including:
  • An acquisition module used for acquiring measurement information
  • a sending module used to send RS configuration information to the terminal
  • the RS configuration information is related to the measurement information; the measurement information includes at least one of the following:
  • the first indication information is used to indicate a channel state information CSI measurement error corresponding to the RS;
  • the motion status information of the terminal is the motion status information of the terminal.
  • a terminal comprising a processor and a memory, wherein the memory stores a program or instruction that can be run on the processor, and when the program or instruction is executed by the processor, the steps of the method described in the first aspect are implemented.
  • a terminal including a processor and a communication interface, wherein the communication interface is used to receive RS configuration information sent by a network side device; wherein the RS configuration information is related to measurement information; and the measurement information includes at least one of the following:
  • the first indication information is used to indicate a channel state information CSI measurement error corresponding to the RS;
  • the motion status information of the terminal is the motion status information of the terminal.
  • a network side device which includes a processor and a memory, wherein the memory stores programs or instructions that can be run on the processor, and when the program or instructions are executed by the processor, the steps of the method described in the third aspect are implemented.
  • a network side device including a processor and a communication interface, wherein the processor is used to obtain measurement information, and the communication interface is used to send RS configuration information to a terminal;
  • the RS configuration information is related to the measurement information; the measurement information includes at least one of the following:
  • the first indication information is used to indicate a channel state information CSI measurement error corresponding to the RS;
  • the motion status information of the terminal is the motion status information of the terminal.
  • a reference signal RS configuration system including: a terminal and a network side device, wherein the terminal can be used to execute the steps of the RS configuration method as described in the first aspect, and the network side device can be used to execute the steps of the RS configuration method as described in the third aspect.
  • a readable storage medium on which a program or instruction is stored.
  • the program or instruction is executed by a processor, the steps of the method described in the first aspect are implemented, or the steps of the method described in the third aspect are implemented.
  • a chip comprising a processor and a communication interface, wherein the communication interface is coupled to the processor, and the processor is used to run a program or instruction to implement the method described in the first aspect, or to implement the method described in the third aspect.
  • a computer program/program product is provided, wherein the computer program/program product is stored in a storage medium, and the computer program/program product is executed by at least one processor to implement the steps of the RS configuration method as described in the first aspect, or is executed to implement the steps of the RS configuration method as described in the third aspect.
  • the terminal receives RS configuration information sent by a network side device, the RS configuration information is related to the measurement information, and the measurement information includes first indication information for indicating a CSI measurement error corresponding to the RS, channel quality information corresponding to the RS, an inference error of the AI model, and at least one of the motion state information of the terminal, so that the terminal can perform AI positioning based on the RS configuration information.
  • the measurement information in the present application includes information such as the first indication information, the inference error of the AI model, and the motion state information of the terminal, this information can be used to assist the network side device in performing RS configuration to improve the accuracy of the channel estimation error, thereby improving the AI-based positioning performance.
  • FIG1 is a block diagram of a wireless communication system to which an embodiment of the present application can be applied;
  • FIG2 is a schematic diagram of a neural network of the prior art
  • FIG3 is a schematic diagram of a neuron in a neural network of the prior art
  • FIG4 is a schematic diagram of a typical PRS pattern under different Comb structures in the prior art
  • FIG5 is a flow chart of one of the RS configuration methods provided in an embodiment of the present application.
  • FIG6 is a second flow chart of the RS configuration method provided in an embodiment of the present application.
  • FIG7 is one of the signaling interaction diagrams of the RS configuration method provided in an embodiment of the present application.
  • FIG8 is a second signaling interaction diagram of the RS configuration method provided in an embodiment of the present application.
  • FIG9 is a schematic diagram of AI positioning in the RS configuration method provided in an embodiment of the present application.
  • FIG. 10 is a schematic diagram of PRS resources in the RS configuration method provided in an embodiment of the present application.
  • FIG11 is a schematic diagram of a structure of a RS configuration device according to an embodiment of the present application.
  • FIG12 is a second structural diagram of the RS configuration device provided in an embodiment of the present application.
  • FIG13 is a schematic diagram of the structure of a communication device provided in an embodiment of the present application.
  • FIG14 is a schematic diagram of the hardware structure of a terminal provided in an embodiment of the present application.
  • FIG. 15 is a schematic diagram of the hardware structure of a network-side device provided in an embodiment of the present application.
  • first, second, etc. in the specification and claims of the present application are used to distinguish similar objects, and are not used to describe a specific order or sequence. It should be understood that the terms used in this way are interchangeable under appropriate circumstances, so that the embodiments of the present application can be implemented in an order other than those illustrated or described here, and the objects distinguished by “first” and “second” are generally of the same type, and the number of objects is not limited.
  • the first object can be one or more.
  • “and/or” in the specification and claims represents at least one of the connected objects, and the character “/" generally represents that the objects associated with each other are in an "or” relationship.
  • LTE Long Term Evolution
  • LTE-A Long Term Evolution
  • CDMA Code Division Multiple Access
  • TDMA Time Division Multiple Access
  • FDMA Frequency Division Multiple Access
  • OFDMA Orthogonal Frequency Division Multiple Access
  • SC-FDMA Single-carrier Frequency Division Multiple Access
  • NR new radio
  • FIG1 is a block diagram of a wireless communication system applicable to an embodiment of the present application.
  • the wireless communication system includes a terminal 11 and a network side device 12 .
  • the terminal 11 can be a mobile phone, a tablet computer (Tablet Personal Computer), a laptop computer (Laptop Computer) or a notebook computer, a personal digital assistant (Personal Digital Assistant, PDA), a handheld computer, a netbook, an ultra-mobile personal computer (ultra-mobile personal computer, UMPC), a mobile Internet device (Mobile Internet Device, MID), augmented reality (augmented reality, AR)/virtual reality (virtual reality, VR) equipment, a robot, a wearable device (Wearable Device), a vehicle-mounted device (VUE), a pedestrian terminal (PUE), a smart home (home appliances with wireless communication functions, such as refrigerators, televisions, washing machines or furniture, etc.), a game console, a personal computer (personal computer, PC), an ATM or a self-service machine and other terminal side devices, and the wear
  • the network side device 12 may include an access network device or a core network device, wherein the access network device 12 may also be referred to as a radio access network device, a radio access network (RAN), a radio access network function or a radio access network unit.
  • the access network device 12 may include a base station, a WLAN access point or a WiFi node, etc.
  • the base station may be referred to as a node B, an evolved node B (eNB), an access point, a base transceiver station (BTS), a radio base station, a radio transceiver, a basic service set (BSS), an extended service set (ESS), a home B node, a home evolved B node, a transmitting and receiving point (TRP) or other appropriate terms in the field, as long as the same technical effect is achieved, the base station is not limited to a specific technical vocabulary, it should be noted that in the embodiment of the present application, only the base station in the NR system is used as an example for introduction, and the specific type of the base station is not limited.
  • the core network equipment may include but is not limited to at least one of the following: core network node, core network function, mobility management entity (Mobility Management Entity, MME), access mobility management function (Access and Mobility Management Function, AMF), session management function (Session Management Function, SMF), user plane function (User Plane Function, UPF), policy control function (Policy Control Function, PCF), policy and charging rules function unit (Policy and Charging Rules Function, PCRF), edge application service discovery function (Edge Application Server Discovery Function, EASDF), unified data management (Unified Data Management, UDM), unified data storage (Unified Data Repository, UDR), home user server (Home Subscriber Server, HSS), centralized network configuration (CNC), network storage function (Network Repository Function, NRF), network exposure function (Network Exposure Function, NEF), local NEF (Local NEF, or L-NEF), binding support function (Binding Support Function, BSF), application function (Application Function, AF), etc. It should be noted that in
  • the embodiments of the present application provide a solution to the problem of poor AI positioning performance.
  • some relevant technical knowledge is first introduced as follows.
  • AI is currently widely used in various fields. Integrating AI into wireless communication networks and significantly improving technical indicators such as throughput, latency, and user capacity is an important task for future wireless communication networks.
  • AI modules such as neural networks, decision trees, support vector machines, Bayesian classifiers, etc. This application uses neural networks as an example for illustration, but does not limit the specific type of AI modules.
  • FIG2 is a schematic diagram of a neural network in the prior art.
  • the neural network includes an input layer, a hidden layer and an output layer.
  • Inputs X 1 , X 2 , ..., X n can be input to the input layer of the neural network, and the output Y of the output layer of the neural network can be obtained through the hidden layer.
  • FIG3 is a schematic diagram of neurons in a neural network of the prior art.
  • a neural network is composed of neurons, wherein a 1 , a 2 , ..., a K are inputs, w 1 , w 2 , ..., w K are weights (multiplicative coefficients), b is a bias (additive coefficient), and ⁇ (.) is an activation function.
  • Common activation functions include Sigmoid, tanh, ReLU (Rectified Linear Unit), and the like.
  • the parameters of the neural network are optimized using a gradient optimization algorithm.
  • the gradient optimization algorithm is a type of algorithm that minimizes or maximizes an objective function (also called a loss function), and the objective function is often a mathematical combination of model parameters and data.
  • an objective function also called a loss function
  • the objective function is often a mathematical combination of model parameters and data.
  • f(.) Given data X and its corresponding label Y, we build a neural network model f(.). With the model, we can get the predicted output f(x) based on the input x, and we can calculate the difference between the predicted value and the true value (f(x)-Y), which is the loss function.
  • Our goal is to find the right W and b to minimize the value of the above loss function. The smaller the loss value, the closer our model is to the actual situation.
  • the common optimization algorithms are basically based on the error back propagation (BP) algorithm.
  • BP error back propagation
  • the basic idea of the BP algorithm is that the learning process consists of two processes: the forward propagation of the signal and the back propagation of the error.
  • the input sample is transmitted from the input layer, processed by each hidden layer layer by layer, and then transmitted to the output layer. If the actual output of the output layer does not match the expected output, it will enter the error back propagation stage.
  • Error back propagation is to propagate the output error layer by layer through the hidden layer to the input layer in some form, and distribute the error to all units in each layer, so as to obtain the error signal of each layer unit, and this error signal is used as the basis for correcting the weights of each unit.
  • This process of adjusting the weights of each layer of the signal forward propagation and error back propagation is repeated.
  • the process of continuous adjustment of weights is the learning and training process of the network. This process continues until the error of the network output is reduced to an acceptable level, or until the pre-set number of learning times is reached.
  • NR has redesigned the downlink positioning reference signal (New Radio Downlink Positioning Reference Signal, NR DL PRS) based on the NR system.
  • NR DL PRS New Radio Downlink Positioning Reference Signal
  • the positioning reference signal only supports a single port.
  • PRS can come from multiple transmission-reception points (TRPs), and multiple TRPs can come from serving cells or non-serving cells.
  • TRPs transmission-reception points
  • the UE measures the PRSs of multiple TRPs and then performs positioning measurement reporting or positioning calculations.
  • PRS supports transmission at a maximum of 100M in frequency range 1 (FR1) and a maximum of 400M in frequency range 2 (FR2).
  • the NR PRS bandwidth configuration is independent of the bandwidth part (Bandwidth Part, BWP) configuration.
  • BWP Bandwidth Part
  • the UE is supported to measure the PRS using the measurement gap (Measurement Gap).
  • PRS resource ID can correspond to one beam in one TRP.
  • PRS resources can form a PRS resource group (PRS resource set), or one PRS resource set can contain one or more PRS resources.
  • a TRP can contain one or more PRS resources.
  • PRS beam scanning and PRS beam repetition are supported.
  • PRS reference neighboring cell RS is supported as a spatial quasi-co-location (Quasi Co-Location, QCL) reference signal.
  • PRS supports interleaved patterns and flexible pattern configuration.
  • the comb structure of PRS resource can support ⁇ 2,4,6,12 ⁇ ; the number of symbols can support ⁇ 2,4,6,12 ⁇ .
  • the currently supported combinations of symbol number and comb size are shown in Table 1:
  • FIG4 is a schematic diagram of a typical PRS pattern under different Comb structures in the prior art. As shown in FIG4 , there are schematic diagrams of PRS patterns corresponding to Comb structures of Comb-2, Comb-4, Comb-6 and Comb-12.
  • the RS configuration method provided in the embodiment of the present application can be applied to terminals that require AI positioning.
  • FIG. 5 is a flow chart of a RS configuration method according to an embodiment of the present application. As shown in FIG. 5 , the method includes step 501; wherein:
  • Step 501 The terminal receives RS configuration information sent by a network side device; wherein the RS configuration information is related to measurement information; and the measurement information includes at least one of the following:
  • the first indication information is, for example, a normalized mean squared error (NMSE); one way to obtain it is: the CSI measurement error can be determined according to an empirical value based on the channel quality information corresponding to the RS, such as determining the relationship between the signal to interference noise ratio (Signal to Interference Noise Ratio, SINR) and the channel state information measurement error through link-level simulation, for example, the CSI measurement error can be obtained by looking up a table based on the channel quality information.
  • NMSE normalized mean squared error
  • the CSI includes: at least one of a time domain channel impulse response, a frequency domain channel impulse response, and a delay power spectrum.
  • the channel quality information may include at least one of the following:
  • SINR Signal to Interference Noise Ratio
  • the channel state information signal-to-interference-to-noise ratio is defined as the linear average of the power contribution (in [W]) of the resource elements carrying the CSI reference signal divided by the linear average of the noise and interference power contributions (in [W]). If CSI-SINR is used for L1-SINR reporting using dedicated interference measurement resources, interference and noise will be measured through the resources indicated by the higher layer. Otherwise, interference and noise are measured through the resource elements carrying the CSI reference signal within the same frequency bandwidth.
  • RSRP Reference Signal Received Power
  • the channel state information reference signal received power is defined as the linear average of the power contributions (in [W]) of the antenna port resource elements carrying the CSI reference signal configured for RSRP measurement within the considered measurement frequency bandwidth during the configured channel state information reference signal (CSI-RS) opportunities.
  • the channel state information reference signal received quality is defined as the ratio of N ⁇ CSI-RSRP to the channel state information received signal strength indication (Channel State Information-Received Signal Strength Indication, CSI-RSSI), where N is the number of resource blocks in the CSI-RSSI measurement bandwidth.
  • CSI-RSRQ channel state information reference signal received quality
  • N is the number of resource blocks in the CSI-RSSI measurement bandwidth. The measurement of the numerator and denominator should be performed on the same set of resource blocks.
  • CSI-RSSI comprises the linear average (in [W]) of the total received power observed only in the Orthogonal Frequency Division Multiplexing (OFDM) symbols of the measurement time resource, over N resource blocks from all sources in the measurement bandwidth, including co-channel serving and non-serving cells, adjacent channel interference, thermal noise, etc.
  • the measurement time resource of CSI-RSSI corresponds to the OFDM symbol containing the configured CSI-RS opportunity.
  • the input of the AI model can be the time domain channel impulse response (CIR), and the output can be location information, or an intermediate feature quantity related to the location, based on which the location can be further inferred.
  • CIR time domain channel impulse response
  • the ideal CIR may not be obtained in actual situations. This is the channel estimation error in a more general sense.
  • the source of this error may be: the deviation caused by the model itself and the deviation caused by the model input (CIR). Therefore, it is believed that the inference error of the model can also provide a reference for RS configuration.
  • the reasoning error of the AI model can be obtained by comparing the position output by the model with the actual position.
  • the actual position can be obtained by the PRU or approximately obtained by some other positioning methods.
  • the motion state information of the terminal may include the motion speed in the past N time units, the current motion speed, and the predicted motion speed in the future N time units.
  • the traditional NR positioning method in the related technology does not require complete channel state information
  • the measurement quantities reported by the UE mainly include: PRS-RSRP, RSTD and Rx-Tx time difference, etc.
  • AI positioning requires relatively complete channel state information, such as time domain channel impulse response, because the time domain channel contains richer features, such as first-path delay, first-path power and delay spread, etc., and the channel estimation error will have a significant impact on the positioning performance.
  • the terminal side may report the performance related to the channel estimation error and assist the network side in configuring a reasonable RS, such as a PRS, to alleviate the impact of the channel estimation error.
  • a reasonable RS such as a PRS
  • the network side device can obtain RS configuration information.
  • the network side device can determine the RS configuration information based on the measurement information reported by the terminal, wherein the measurement information includes the first indication information for indicating the CSI measurement error corresponding to the RS, the channel quality information corresponding to the RS, the inference error of the AI model, and the terminal. At least one item of the motion state information, the network side device can reasonably determine the RS configuration information based on the measurement information characterizing the channel estimation error related performance, that is, based on relatively complete channel state information;
  • the network side device then sends RS configuration information to the terminal, and the terminal receives the RS configuration information. Subsequently, AI positioning can be performed based on the RS configuration information to alleviate the impact of channel estimation errors on terminal AI positioning, thereby improving AI positioning performance, for example, improving AI positioning accuracy.
  • the terminal receives RS configuration information sent by a network side device, the RS configuration information is related to the measurement information, and the measurement information includes first indication information for indicating a CSI measurement error corresponding to the RS, channel quality information corresponding to the RS, an inference error of the AI model, and at least one of the motion state information of the terminal, so that the terminal can perform AI positioning based on the RS configuration information.
  • the measurement information in the present application includes information such as the first indication information, the inference error of the AI model, and the motion state information of the terminal, this information can be used to assist the network side device in performing RS configuration to improve the accuracy of the channel estimation error, thereby improving the AI-based positioning performance.
  • the RS may include at least one of the following:
  • CSI-RS Channel State Information Reference Signal
  • SRS Sounding Reference Signal
  • RS Downlink Reference Signal
  • SRS For SRS, it is an uplink RS sent by the terminal to the network side device, so that the network side device measures the uplink RS to obtain channel state information; subsequently, based on the measured channel state information, the channel state information measurement error corresponding to the RS can be obtained, and then the first indication information in the measurement information used to indicate the channel state information measurement error corresponding to the RS can be obtained.
  • the method further includes: the terminal performs RS transmission based on RS configuration to achieve positioning.
  • the terminal can receive second indication information sent by the network side device; the second indication information is used to instruct the terminal to feedback the measurement information; the terminal measures the RS to obtain the channel quality information corresponding to the RS, and infers the CSI measurement error corresponding to the RS through the channel quality information, and the terminal obtains the motion state information through its own sensor; the terminal sends the measurement information and/or the RS to the network side device.
  • the terminal may determine recommended RS configuration information based on the measurement information; the terminal sends the recommended RS configuration information to the network side device; and the RS configuration information is related to the measurement information and/or the recommended RS configuration information.
  • the terminal can determine the recommended RS configuration information based on the measurement information, and then send the determined recommended RS configuration information to the network side device, so that the recommended RS configuration information can assist the network side device in determining the RS configuration information.
  • the RS configuration information can be determined based on the measurement information and/or the recommended RS configuration information.
  • the implementation manner in which the terminal determines the recommended RS configuration information based on the measurement information may include:
  • the terminal determines the recommended RS configuration information based on the measurement information and a second mapping relationship; the second mapping relationship includes a correspondence between the measurement information and the RS configuration information.
  • the terminal may determine the recommended RS configuration information based on the measurement information and the second mapping relationship including the measurement information and the RS configuration information.
  • the terminal receives quasi co-location (QCL) information of different antenna ports sent by the network side device; the QCL information of different antenna ports is used to assist the terminal in determining the measurement information;
  • QCL quasi co-location
  • the terminal determines the measurement information based on the QCL information of the different antenna ports and the measurement information of the antenna port with the RS port QCL.
  • the terminal can receive QCL information of different antenna ports sent by the network side device; the QCL information of different antenna ports is used to assist the terminal in determining the measurement information, and then the terminal determines the measurement information based on the QCL information of other antenna ports and the measurement information of the antenna port with the QCL of the target RS port.
  • the target RS port may be an RS port selected by the network side device.
  • the network side device sends the QCL information of different antenna ports to the terminal, including the QCL of port A and port B on the base station side.
  • the terminal can determine the measurement information of port A based on the measurement information of port B, or determine the measurement information based on the information of port A and port B together.
  • the terminal may receive third indication information sent by the network side device; the third indication information is used to instruct the terminal to measure the RS.
  • the terminal may receive third indication information sent by the network side device, and the terminal performs RS measurement based on the third indication information.
  • the RS configuration information may include at least one of the following:
  • the RS resource set ID for example, includes at least one of an ID associated with a PRS resource set configuration and an ID associated with an SRS resource set configuration;
  • the RS resource repetition factor may be determined by a channel estimation error.
  • the larger the channel estimation error the more times the same PRS/SRS resource needs to be repeatedly transmitted.
  • the terminal may reduce the channel estimation error based on the results of multiple channel estimations.
  • the RS resource time interval may be determined by the movement state of the terminal. For example, the faster the movement speed of the terminal is, the smaller the value is.
  • the RS Comb structure can be determined by the channel estimation error and the motion state of the terminal, and a compromise can be made. For example, the larger the Comb value, the higher the RS signal strength can be, thereby improving the channel estimation performance, but it will also extend the duration of an RS resource, which may be disadvantageous for terminals with faster movement speeds.
  • the RS time domain structure may include an RS period: a period for configuring the RS and a time slot offset within the period.
  • the RS time domain structure may include:
  • Periodicity configure the SRS period and the time slot offset within the period
  • MAC-CE Medium Access Control-Control Element
  • Non-periodic The network side device triggers the sending of SRS through downlink control information (DCI).
  • DCI downlink control information
  • RS can be configured for periodic transmission, semi-continuous transmission, and aperiodic transmission
  • Periodic transmission It is repeated every N time slots. It is necessary to know the transmission period and the time slot offset within the period.
  • a transmission period and a time slot offset within the period are also configured, but the RS transmission needs to be activated or deactivated through MAC-CE;
  • Non-periodic transmission The network-side device does not configure the transmission period and time slot offset, and notifies the terminal of each RS transmission through DCI signaling.
  • SRS and CSI-RS are the same overall.
  • the RS configuration method provided in the embodiment of the present application can be applied to a network side device that needs to perform RS configuration on a terminal.
  • FIG. 6 is a second flow chart of the RS configuration method provided in an embodiment of the present application. As shown in FIG. 6 , the method includes step 601 and step 602; wherein:
  • Step 601 The network side device obtains measurement information
  • Step 602 The network side device sends RS configuration information to the terminal; wherein the RS configuration information is related to the measurement information; and the measurement information includes at least one of the following:
  • the network side device may obtain measurement information, and obtain RS configuration information based on the measurement information.
  • the network side device may determine the RS configuration information based on the measurement information reported by the terminal, wherein the measurement information includes at least one of the first indication information indicating the CSI measurement error corresponding to the RS, the channel quality information corresponding to the RS, the inference error of the AI model, and the motion state information of the terminal.
  • the network side device may reasonably determine the RS configuration information based on the measurement information characterizing the relevant performance of the channel estimation error, and the network side device sends the RS configuration information to the terminal;
  • the terminal receives RS configuration information sent by the network side device, and assists in AI positioning based on the RS configuration information, thereby alleviating the impact of channel estimation error on terminal AI positioning, thereby improving AI positioning performance, for example, improving AI positioning accuracy.
  • the network side device obtains and sends RS configuration information determined based on measurement information to the terminal, and the measurement information includes first indication information for indicating a CSI measurement error corresponding to the RS, channel quality information corresponding to the RS, an inference error of the AI model, and at least one of the motion state information of the terminal.
  • the terminal can perform AI positioning based on the RS configuration information. Since the measurement information in the present application includes information such as the first indication information, the inference error of the AI model, and the motion state information of the terminal, this information can be used to assist the network side device in performing RS configuration to improve the accuracy of the channel estimation error, thereby improving the AI-based positioning performance.
  • the channel quality information may include at least one of the following:
  • the RS may include at least one of the following:
  • the network side device may send second indication information to the terminal; the second indication information is used to instruct the terminal to feed back the measurement information.
  • the RS is a downlink RS
  • the RS is a PRS, a CSI-RS, and an SSB
  • the RS is sent by the network side device, and the terminal performs RS measurement;
  • the network side device may send a second indication message to the terminal to instruct the terminal to feed back the measurement information.
  • the second indication message may instruct the terminal to perform RS measurement, obtain the measurement information, and feed back the measurement information to the network side device.
  • the network side device receives recommended RS configuration information from the terminal; the RS configuration information is related to the measurement information and/or the recommended RS configuration information.
  • the network side device may receive recommended RS configuration information from the terminal, where the RS configuration information is related to the measurement information and/or the recommended RS configuration information, and the network side device may subsequently determine the RS configuration information based on the measurement information and/or the recommended RS configuration information;
  • the network side device may receive at least one of the measurement information, the RS and the recommended RS configuration information sent by the terminal, and determine the RS configuration information based on the measurement information, the RS and the recommended RS configuration information.
  • the network side device can receive the measurement information fed back by the terminal, the RS corresponding to the measurement information, and at least one of the recommended RS configuration information recommended by the terminal, and determine the RS configuration information based on the measurement information, RS and at least one of the recommended RS configuration information fed back by the terminal, and send the RS configuration information to the terminal, so that the terminal can perform AI positioning based on the RS configuration information.
  • the measurement information in this application includes the first indication information, the inference error of the AI model, and the motion state information of the terminal, this information can be used to assist the network side device in performing RS configuration to improve the accuracy of the channel estimation error, thereby improving the AI-based positioning performance.
  • the network side device may determine the RS configuration information based on the measurement information, at least one of the RS and recommended RS configuration information, and a first mapping relationship; the first mapping relationship includes a correspondence between the measurement information and the RS configuration information.
  • the network side device can determine the RS configuration information based on the measurement information, the RS corresponding to the measurement information, and one of the recommended RS configuration information recommended by the terminal, in combination with a first mapping relationship including a correspondence between the measurement information and the RS configuration information.
  • the network side device may send quasi co-location (QCL) information of different antenna ports to the terminal; the QCL information of different antenna ports is used to assist the terminal in determining the measurement information.
  • QCL quasi co-location
  • the network side may send QCL information of different antenna interfaces to the terminal to assist the terminal in determining the measurement information, and specifically may assist the terminal in determining the measurement information of which antenna interface to use as the measurement information.
  • the terminal may determine the measurement information based on the QCL information of other antenna ports and the measurement information of the antenna port with the QCL of the target RS port.
  • the base station side can tell the terminal this information as QCL information, and the terminal can determine the measurement information of port A based on the measurement information of port B, or determine the measurement information based on the information of port A and port B together.
  • the network side device may send third indication information to the terminal; the third indication information is used to instruct the terminal to measure the RS.
  • the network side device may send third indication information to the terminal to instruct the terminal to measure the RS to obtain measurement information.
  • the network side device may acquire the measurement information in the following manner:
  • the network side device measures the RS to obtain the measurement information.
  • the terminal sends the RS, and the network side device performs RS measurement;
  • the network side device does not need to send indication information to the terminal to instruct the terminal to perform measurement. Instead, the network side device directly measures the RS to obtain measurement information. Subsequently, the RS configuration information can be determined based on the measurement information and then sent to the terminal.
  • the network side device may determine the RS configuration information based on the measurement information and a first mapping relationship; the first mapping relationship includes a correspondence between the measurement information and the RS configuration information.
  • the network side device since the network side device directly measures and obtains the measurement information, the network side device can determine the RS configuration information based on the measured measurement information and the first mapping relationship including the correspondence between the measurement information and the RS configuration information, and send the RS configuration information to the terminal.
  • the first mapping relationship may be predefined by network configuration or protocol.
  • the RS configuration information may include at least one of the following:
  • FIG. 7 is one of the signaling interaction diagrams of the RS configuration method provided in an embodiment of the present application. As shown in FIG. 7 , the method includes step 701 and step 702; wherein:
  • Step 701 The network side device obtains measurement information
  • Step 702 The network side device sends RS configuration information to the terminal;
  • the network side device sends RS configuration information to the terminal, that is, the terminal receives the RS configuration information sent by the network side device.
  • the following example illustrates the RS configuration method provided in the embodiment of the present application.
  • FIG. 8 is a second signaling interaction diagram of the RS configuration method provided in an embodiment of the present application. As shown in FIG. 8 , the method includes steps 801 to 805; wherein:
  • Step 801 The network side device sends second indication information to the terminal;
  • the network side device sends second indication information to the terminal to instruct the terminal to perform PRS measurement and feed back measurement information.
  • Step 802 The terminal performs PRS measurement to obtain measurement information.
  • Step 803 The terminal reports measurement information to the network side device
  • Step 804 The network side device determines PRS configuration information based on the measurement information
  • Step 805 The network side device sends PRS configuration information to the terminal.
  • Figure 9 is a schematic diagram of AI positioning in the RS configuration method provided in an embodiment of the present application.
  • the terminal can input the channel impulse response (CIR) into the AI model, so that the AI model performs AI positioning based on the CIR to obtain the location information output by the AI model.
  • CIR channel impulse response
  • the terminal measures and reports the SNR and the movement speed.
  • the network side device can determine or update the PRS configuration based on the above information (only some items are updated on the basis of the original PRS configuration).
  • Table 2 is a correlation table between the channel estimation error and the PRS configuration;
  • Table 2 A correlation table between channel estimation error and PRS configuration
  • the PRS resource repetition factor is configured to be large and the PRS resource time interval is small;
  • a large PRS resource repetition factor and a large PRS resource time interval are configured
  • the PRS resource repetition factor is configured to be small and the PRS resource time interval is small;
  • the PRS resource repetition factor is configured to be small and the PRS resource time interval is configured to be large.
  • the first threshold, the second threshold and the third threshold may be the same or different.
  • a small PRS resource repetition factor can save PRS resources; a large PRS resource time interval can be separated as much as possible in time to improve time diversity gain.
  • FIG10 is a schematic diagram of PRS resources in the RS configuration method provided in an embodiment of the present application.
  • the oblique shaded area in the figure is a PRS resource
  • the dotted shaded area is another PRS resource.
  • a PRS resource is repeatedly sent 4 times in time, and it can be understood that the PRS resource repetition factor is 4;
  • the PRS resource time interval refers to the relative The number of time slots between two adjacent transmissions of PRS resources.
  • the minimum value of the PRS resource time interval is 1, indicating that the PRS resources are adjacent. It can be understood that the PRS resource time interval in the figure is 1.
  • the terminal Based on the measurement information of N PRSs, the terminal estimates the channels as h 1 ,h 2 ,...,h N respectively.
  • the final channel estimation result can be obtained by linear averaging:
  • Table 3 below shows the AI positioning performance under different SNRs.
  • 60%, 67%, 80% and 90% represent the probability density distribution of positioning error.
  • the present invention proposes the following solutions from the perspective of PRS configuration:
  • the UE reports additional information to assist the network in configuring PRS to improve AI-based positioning performance:
  • the UE reports channel estimation measurement error indication information
  • UE reports channel quality information, including SNR, SINR, RSRP, RSRQ, etc.;
  • UE reports motion status information, such as motion speed
  • the UE recommends PRS configuration information to the network side device according to 1-4.
  • the embodiment of the present invention can reduce the positioning performance loss of the AI model caused by channel estimation error by configuring a special PRS, and specifically reduce the channel estimation error based on PRS, such as the time domain channel impulse response, thereby improving the performance of AI positioning.
  • the RS configuration method provided in the embodiment of the present application can be executed by an RS configuration device.
  • the RS configuration device performing the RS configuration method is taken as an example to illustrate the RS configuration device provided in the embodiment of the present application.
  • FIG. 11 is one of the structural diagrams of the RS configuration device provided in an embodiment of the present application.
  • the RS configuration device 1100 applied to a terminal, includes:
  • the receiving module 1101 is configured to receive RS configuration information sent by a network side device; wherein the RS configuration information is related to measurement information; and the measurement information includes at least one of the following:
  • RS configuration information sent by a network side device is received, where the RS configuration information is related to measurement information, and the measurement information includes first indication information for indicating a CSI measurement error corresponding to the RS, channel quality information corresponding to the RS, an inference error of the AI model, and at least one of the motion state information of the terminal.
  • the terminal can perform AI positioning based on the RS configuration information. Since the measurement information in the present application includes information such as the first indication information, the inference error of the AI model, and the motion state information of the terminal, this information can be used to assist the network side device in performing RS configuration, so as to improve the accuracy of the channel estimation error, thereby improving the AI-based positioning performance.
  • the receiving module 1101 is further used for:
  • the second indication information is used to instruct the terminal to feed back the measurement information
  • the RS configuration device 1100 further includes a processing module, and the processing module is used to:
  • the recommended RS configuration information is sent to the network side device; the RS configuration information is related to the measurement information and/or the recommended RS configuration information.
  • the processing module is specifically used to: determine the recommended RS configuration information based on the measurement information and a second mapping relationship; the second mapping relationship includes a correspondence between the measurement information and the RS configuration information.
  • the receiving module 1101 is further used for:
  • the QCL information of different antenna ports is used to assist the terminal in determining the measurement information
  • the measurement information is determined based on the quasi co-located QCL information of the different antenna ports and the measurement information of the antenna port with the target RS port QCL.
  • the receiving module 1101 is further used to: receive third indication information sent by the network side device; the third indication information is used to instruct the terminal to measure the RS.
  • the RS configuration information may include at least one of the following:
  • the RS may include at least one of the following:
  • the channel quality information may include at least one of the following:
  • FIG. 12 is a second structural diagram of an RS configuration device provided in an embodiment of the present application. As shown in FIG. 12 , the RS configuration device 1200 is applied to a network side device, including:
  • An acquisition module 1201 is used to acquire measurement information
  • a sending module 1202 is used to send the RS configuration information to the terminal;
  • the RS configuration information is related to the measurement information; the measurement information includes at least one of the following:
  • RS configuration information determined based on measurement information is obtained and sent to the terminal, and the measurement information includes first indication information for indicating a CSI measurement error corresponding to the RS, channel quality information corresponding to the RS, an inference error of the AI model, and at least one of the motion state information of the terminal.
  • the terminal can perform AI positioning based on the RS configuration information. Since the measurement information in the present application includes information such as the first indication information, the inference error of the AI model, and the motion state information of the terminal, this information can be used to assist the network side device in performing RS configuration to improve the accuracy of the channel estimation error, thereby improving the AI-based positioning performance.
  • the acquisition module 1201 is further used to: send second indication information to the terminal; the second indication information is used to instruct the terminal to feed back the measurement information.
  • the acquisition module 1201 is further used to: receive recommended RS configuration information from the terminal; the RS configuration information is related to the measurement information and/or the recommended RS configuration information.
  • the acquisition module 1201 is specifically used to: determine the RS configuration information based on the measurement information, at least one of the RS and recommended RS configuration information, and a first mapping relationship; the first mapping relationship includes a correspondence between the measurement information and the RS configuration information.
  • the sending module 1202 is further used to: send quasi-co-site QCL information of different antenna ports to the terminal; the QCL information of different antenna ports is used to assist the terminal in determining the measurement information.
  • the sending module 1202 is further used to: send third indication information to the terminal; the third indication information is used to instruct the terminal to measure the RS.
  • the acquisition module 1201 is further specifically used to: measure the RS to obtain the measurement information.
  • the acquisition module 1201 is further used to: determine the RS configuration information based on the measurement information and a first mapping relationship; the first mapping relationship includes a correspondence between the measurement information and the RS configuration information.
  • the first mapping relationship is predefined by network configuration or protocol.
  • the RS configuration information may include at least one of the following:
  • the RS may include at least one of the following:
  • the channel quality information may include at least one of the following:
  • the RS configuration device in the embodiment of the present application can be an electronic device, such as an electronic device with an operating system, or a component in an electronic device, such as an integrated circuit or a chip.
  • the electronic device can be a terminal, or it can be other devices other than a terminal.
  • the terminal can include but is not limited to the types of terminals 11 listed above, and other devices can be servers, network attached storage (NAS), etc., which are not specifically limited in the embodiment of the present application.
  • the RS configuration device provided in the embodiment of the present application can implement the various processes implemented by the method embodiments of Figures 5 to 10 and achieve the same technical effect. To avoid repetition, it will not be repeated here.
  • FIG. 13 is a schematic diagram of the structure of a communication device provided in an embodiment of the present application.
  • an embodiment of the present application further provides a communication device 1300, including a processor 1301 and a memory 1302, wherein the memory 1302 stores a program or instruction that can be run on the processor 1301.
  • the communication device 1300 is a terminal.
  • the program or instruction is executed by the processor 1301
  • each step of the RS configuration method embodiment of the terminal side is implemented, and the same technical effect can be achieved.
  • the communication device 1300 is a network side device
  • each step of the RS configuration method embodiment of the network side device is implemented when the program or instruction is executed by the processor 1301, and the same technical effect can be achieved. To avoid repetition, it will not be repeated here.
  • the embodiment of the present application further provides a terminal, including a processor and a communication interface, the communication interface being used to receive RS configuration information sent by a network side device; wherein the RS configuration information is related to measurement information; and the measurement information includes at least one of the following:
  • the terminal embodiment corresponds to the above-mentioned terminal side method embodiment, and each implementation process and implementation method of the above-mentioned method embodiment can be applied to the terminal embodiment and can achieve the same technical effect.
  • Figure 14 is a schematic diagram of the hardware structure of a terminal provided in an embodiment of the present application.
  • the terminal 1400 includes but is not limited to: a radio frequency unit 1401, a network module 1402, an audio output unit 1403, an input unit 1404, a sensor 1405, a display unit 1406, a user input unit 1407, an interface unit 1408, a memory 1409 and at least some of the components of the processor 1410.
  • the terminal 1400 may also include a power source (such as a battery) for supplying power to each component, and the power source may be logically connected to the processor 1410 through a power management system, so as to manage charging, discharging, and power consumption management through the power management system.
  • a power source such as a battery
  • the terminal structure shown in FIG14 does not constitute a limitation on the terminal, and the terminal may include more or fewer components than shown in the figure, or combine certain components, or arrange components differently, which will not be described in detail here.
  • the input unit 1404 may include a graphics processing unit (GPU) 14041 and a microphone 14042, and the graphics processor 14041 processes the image data of the static picture or video obtained by the image capture device (such as a camera) in the video capture mode or the image capture mode.
  • the display unit 1406 may include a display panel 14061, and the display panel 14061 may be configured in the form of a liquid crystal display, an organic light emitting diode, etc.
  • the user input unit 1407 includes a touch panel 14071 and at least one of other input devices 14072.
  • the touch panel 14071 is also called a touch screen.
  • the touch panel 14071 may include two parts: a touch detection device and a touch controller.
  • Other input devices 14072 may include, but are not limited to, a physical keyboard, function keys (such as a volume control key, a switch key, etc.), a trackball, a mouse, and a joystick, which will not be repeated here.
  • the RF unit 1401 may transmit the data to the processor 1410 for processing; in addition, the RF unit 1401 may send uplink data to the network side device.
  • the radio frequency unit 1401 includes but is not limited to an antenna, an amplifier, a transceiver, a coupler, a low noise amplifier, a duplexer, and the like.
  • the memory 1409 can be used to store software programs or instructions and various data.
  • the memory 1409 may mainly include a first storage area for storing programs or instructions and a second storage area for storing data, wherein the first storage area may store an operating system, an application program or instruction required for at least one function (such as a sound playback function, an image playback function, etc.), etc.
  • the memory 1409 may include a volatile memory or a non-volatile memory, or the memory 1409 may include both volatile and non-volatile memories.
  • the non-volatile memory may be a read-only memory (ROM), a programmable read-only memory (PROM), an erasable programmable read-only memory (EPROM), an electrically erasable programmable read-only memory (EEPROM), or a flash memory.
  • the volatile memory may be a random access memory (RAM), a static random access memory (SRAM), a dynamic random access memory (DRAM), a synchronous dynamic random access memory (SDRAM), a double data rate synchronous dynamic random access memory (DDRSDRAM), an enhanced synchronous dynamic random access memory (ESDRAM), a synchronous link dynamic random access memory (SLDRAM) and a direct memory bus random access memory (DRRAM).
  • the memory 1409 in the embodiment of the present application includes but is not limited to these and any other suitable types of memory.
  • the processor 1410 may include one or more processing units; optionally, the processor 1410 integrates an application processor and a modem processor, wherein the application processor mainly processes operations related to an operating system, a user interface, and application programs, and the modem processor mainly processes wireless communication signals, such as a baseband processor. It is understandable that the modem processor may not be integrated into the processor 1410.
  • the embodiment of the present application further provides a network side device, including a processor and a communication interface, the processor is used to obtain measurement information, and the communication interface is used to send the RS configuration information to the terminal;
  • the RS configuration information is related to the measurement information; the measurement information includes at least one of the following:
  • This network side device embodiment corresponds to the above-mentioned network side device method embodiment.
  • Each implementation process and implementation method of the above-mentioned method embodiment can be applied to this network side device embodiment and can achieve the same technical effect.
  • FIG15 is a schematic diagram of the hardware structure of a network side device provided by the embodiment of the present application.
  • the network side device 1500 includes: an antenna 1501, a radio frequency device 1502, a baseband device 1503, a processor 1504, and a memory 1505.
  • the antenna 1501 is connected to the radio frequency device 1502.
  • the radio frequency device 1502 receives information through the antenna 1501 and transmits the received information to the baseband device 1503.
  • the information is sent to the baseband device 1503 for processing.
  • the baseband device 1503 processes the information to be sent and sends it to the radio frequency device 1502.
  • the radio frequency device 1502 processes the received information and sends it out through the antenna 1501.
  • the method executed by the network-side device in the above embodiment may be implemented in the baseband device 1503, which includes a baseband processor.
  • the baseband device 1503 may include, for example, at least one baseband board, on which multiple chips are arranged, as shown in Figure 15, one of which is, for example, a baseband processor, which is connected to the memory 1505 through a bus interface to call the program in the memory 1505 and execute the network device operations shown in the above method embodiment.
  • the network side device may also include a network interface 1506, which is, for example, a common public radio interface (CPRI).
  • a network interface 1506 which is, for example, a common public radio interface (CPRI).
  • CPRI common public radio interface
  • the network side device 1500 of the embodiment of the present invention also includes: instructions or programs stored in the memory 1505 and executable on the processor 1504.
  • the processor 1504 calls the instructions or programs in the memory 1505 to execute the method executed by each module shown in Figure 12 and achieve the same technical effect. To avoid repetition, it will not be repeated here.
  • An embodiment of the present application also provides a readable storage medium, on which a program or instruction is stored.
  • a program or instruction is stored.
  • the various processes of the above-mentioned RS configuration method embodiment are implemented, and the same technical effect can be achieved. To avoid repetition, it will not be repeated here.
  • the processor is the processor in the terminal described in the above embodiment.
  • the readable storage medium includes a computer readable storage medium, such as a computer read-only memory ROM, a random access memory RAM, a magnetic disk or an optical disk.
  • An embodiment of the present application further provides a chip, which includes a processor and a communication interface, wherein the communication interface is coupled to the processor, and the processor is used to run programs or instructions to implement the various processes of the above-mentioned RS configuration method embodiment, and can achieve the same technical effect. To avoid repetition, it will not be repeated here.
  • the chip mentioned in the embodiments of the present application can also be called a system-level chip, a system chip, a chip system or a system-on-chip chip, etc.
  • the embodiment of the present application further provides a computer program/program product, which is stored in a storage medium, and is executed by at least one processor to implement the various processes of the above-mentioned RS configuration method embodiment, and can achieve the same technical effect. To avoid repetition, it will not be repeated here.
  • An embodiment of the present application also provides an RS configuration system, including: a terminal and a network side device, wherein the terminal can be used to execute the steps of the RS configuration method on the terminal side as described above, and the network side device can be used to execute the steps of the RS configuration method on the network side device as described above.
  • the technical solution of the present application can be embodied in the form of a computer software product, which is stored in a storage medium (such as ROM/RAM, a magnetic disk, or an optical disk), and includes a number of instructions for enabling a terminal (which can be a mobile phone, a computer, a server, an air conditioner, or a network device, etc.) to execute the methods described in each embodiment of the present application.
  • a storage medium such as ROM/RAM, a magnetic disk, or an optical disk
  • a terminal which can be a mobile phone, a computer, a server, an air conditioner, or a network device, etc.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请公开了一种RS配置方法、装置、终端及网络侧设备,属于通信技术领域,本申请实施例的RS配置方法包括:终端接收网络侧设备发送的RS配置信息;其中,所述RS配置信息与测量信息相关;所述测量信息包括以下至少一项:第一指示信息,用于指示RS对应的信道状态信息CSI测量误差;RS对应的信道质量信息;AI模型的推理误差;终端的运动状态信息。

Description

RS配置方法、装置、终端及网络侧设备
相关申请的交叉引用
本申请要求享有于2022年9月28日提交的名称为“RS配置方法、装置、终端及网络侧设备”的中国专利申请202211194407.3的优先权,该申请的全部内容通过引用并入本文中。
技术领域
本申请属于通信技术领域,具体涉及一种RS配置方法、装置、终端及网络侧设备。
背景技术
对于新空口(New Radio,NR)定位方法,用户设备(User Equipment,UE)上报的测量量主要包括:定位参考信号参考信号接收功率(Positioning Reference Signal-Reference Signal Received Power,PRS-RSRP)、参考信号时差(ReferenceSignal Time Difference,RSTD)和接收-发射(Reception-Transmit,Rx-Tx)时间差等。
但是,对于人工智能(Artificial Intelligence,AI)定位,当信道条件不好或信道估计误差较大的时候,基于AI的定位性能会严重下降。
发明内容
本申请实施例提供一种RS配置方法、装置、终端及网络侧设备,能够解决如何提高AI定位性能的问题。
第一方面,提供了一种参考信号RS配置方法,应用于终端,该方法包括:
终端接收网络侧设备发送的RS配置信息;其中,所述RS配置信息与测量信息相关;所述测量信息包括以下至少一项:
第一指示信息,用于指示RS对应的信道状态信息CSI测量误差;
RS对应的信道质量信息;
AI模型的推理误差;
终端的运动状态信息。
第二方面,提供了一种参考信号RS配置装置,包括:
接收模块,用于接收网络侧设备发送的RS配置信息;其中,所述RS配置信息与测量信息相关;所述测量信息包括以下至少一项:
第一指示信息,用于指示RS对应的信道状态信息CSI测量误差;
RS对应的信道质量信息;
AI模型的推理误差;
终端的运动状态信息。
第三方面,提供了一种参考信号RS配置方法,应用于网络侧设备,该方法包括:
网络侧设备获取测量信息;
所述网络侧设备向终端发送RS配置信息;
其中,所述RS配置信息与所述测量信息相关;所述测量信息包括以下至少一项:
第一指示信息,用于指示RS对应的信道状态信息CSI测量误差;
RS对应的信道质量信息;
AI模型的推理误差;
终端的运动状态信息。
第四方面,提供了一种参考信号RS配置,包括:
获取模块,用于获取测量信息;
发送模块,用于向终端发送RS配置信息;
其中,所述RS配置信息与所述测量信息相关;所述测量信息包括以下至少一项:
第一指示信息,用于指示RS对应的信道状态信息CSI测量误差;
RS对应的信道质量信息;
AI模型的推理误差;
终端的运动状态信息。
第五方面,提供了一种终端,该终端包括处理器和存储器,所述存储器存储可在所述处理器上运行的程序或指令,所述程序或指令被所述处理器执行时实现如第一方面所述的方法的步骤。
第六方面,提供了一种终端,包括处理器及通信接口,其中,所述通信接口用于接收网络侧设备发送的RS配置信息;其中,所述RS配置信息与测量信息相关;所述测量信息包括以下至少一项:
第一指示信息,用于指示RS对应的信道状态信息CSI测量误差;
RS对应的信道质量信息;
AI模型的推理误差;
终端的运动状态信息。
第七方面,提供了一种网络侧设备,该网络侧设备包括处理器和存储器,所述存储器存储可在所述处理器上运行的程序或指令,所述程序或指令被所述处理器执行时实现如第三方面所述的方法的步骤。
第八方面,提供了一种网络侧设备,包括处理器及通信接口,其中,所述处理器用于获取测量信息,所述通信接口用于向终端发送RS配置信息;
其中,所述RS配置信息与所述测量信息相关;所述测量信息包括以下至少一项:
第一指示信息,用于指示RS对应的信道状态信息CSI测量误差;
RS对应的信道质量信息;
AI模型的推理误差;
终端的运动状态信息。
第九方面,提供了一种参考信号RS配置系统,包括:终端及网络侧设备,所述终端可用于执行如第一方面所述的RS配置方法的步骤,所述网络侧设备可用于执行如第三方面所述的RS配置方法的步骤。
第十方面,提供了一种可读存储介质,所述可读存储介质上存储程序或指令,所述程序或指令被处理器执行时实现如第一方面所述的方法的步骤,或者实现如第三方面所述的方法的步骤。
第十一方面,提供了一种芯片,所述芯片包括处理器和通信接口,所述通信接口和所述处理器耦合,所述处理器用于运行程序或指令,实现如第一方面所述的方法,或实现如第三方面所述的方法。
第十二方面,提供了一种计算机程序/程序产品,所述计算机程序/程序产品被存储在存储介质中,所述计算机程序/程序产品被至少一个处理器执行以实现如第一方面所述的RS配置方法的步骤,或执行以实现如第三方面所述的RS配置方法的步骤。
在本申请实施例中,终端接收网络侧设备发送的RS配置信息,RS配置信息与测量信息相关,测量信息包括用于指示RS对应的CSI测量误差的第一指示信息、RS对应的信道质量信息、AI模型的推理误差及终端的运动状态信息中的至少一项,进而终端可以基于RS配置信息进行AI定位,由于本申请中测量信息包括第一指示信息、AI模型的推理误差及终端的运动状态信息等信息,这些信息可以用于辅助网络侧设备进行RS配置,以提升信道估计误差的准确性,进而提升基于AI的定位性能。
附图说明
图1是本申请实施例可应用的一种无线通信系统的框图;
图2是现有技术的神经网络的示意图;
图3是现有技术的神经网络中神经元的示意图;
图4是现有技术的不同Comb结构下典型的PRS pattern的示意图;
图5是本申请实施例提供的RS配置方法的流程示意图之一;
图6是本申请实施例提供的RS配置方法的流程示意图之二;
图7是本申请实施例提供的RS配置方法的信令交互图之一;
图8是本申请实施例提供的RS配置方法的信令交互图之二;
图9是本申请实施例提供的RS配置方法中AI定位的示意图;
图10是本申请实施例提供的RS配置方法中PRS资源的示意图;
图11是本申请实施例提供的RS配置装置的结构示意图之一;
图12是本申请实施例提供的RS配置装置的结构示意图之二;
图13是本申请实施例提供的通信设备的结构示意图;
图14是本申请实施例提供的一种终端的硬件结构示意图;
图15是本申请实施例提供的一种网络侧设备的硬件结构示意图。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚描述,显然,所描述的实施例是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员所获得的所有其他实施例,都属于本申请保护的范围。
本申请的说明书和权利要求书中的术语“第一”、“第二”等是用于区别类似的对象,而不用于描述特定的顺序或先后次序。应该理解这样使用的术语在适当情况下可以互换,以便本申请的实施例能够以除了在这里图示或描述的那些以外的顺序实施,且“第一”、“第二”所区别的对象通常为一类,并不限定对象的个数,例如第一对象可以是一个,也可以是多个。此外,说明书以及权利要求中“和/或”表示所连接对象的至少其中之一,字符“/”一般表示前后关联对象是一种“或”的关系。
值得指出的是,本申请实施例所描述的技术不限于长期演进型(Long Term Evolution,LTE)/LTE的演进(LTE-Advanced,LTE-A)系统,还可用于其他无线通信系统,诸如码分多址(Code Division Multiple Access,CDMA)、时分多址(Time Division Multiple Access,TDMA)、频分多址(Frequency Division Multiple Access,FDMA)、正交频分多址(Orthogonal Frequency Division Multiple Access,OFDMA)、单载波频分多址(Single-carrier Frequency Division Multiple Access,SC-FDMA)和其他系统。本申请实施例中的术语“系统”和“网络”常被可互换地使用,所描述的技术既可用于以上提及的系统和无线电技术,也可用于其他系统和无线电技术。以下描述出于示例目的描述了新空口(New Radio,NR)系统,并且在以下大部分描述中使用NR术语,但是这些技术也可应用于NR系统应用以外的应用,如第6代(6th Generation,6G)通信系统。
图1是本申请实施例可应用的一种无线通信系统的框图。无线通信系统包括终端11和网络侧设备12。其中,终端11可以是手机、平板电脑(Tablet Personal Computer)、膝上型电脑(Laptop Computer)或称为笔记本电脑、个人数字助理(Personal Digital Assistant,PDA)、掌上电脑、上网本、超级移动个人计算机(ultra-mobile personal computer,UMPC)、移动上网装置(Mobile Internet Device,MID)、增强现实(augmented reality,AR)/虚拟现实(virtual reality,VR)设备、机器人、可穿戴式设备(Wearable Device)、车载设备(VUE)、行人终端(PUE)、智能家居(具有无线通信功能的家居设备,如冰箱、电视、洗衣机或者家具等)、游戏机、个人计算机(personal computer,PC)、柜员机或者自助机等终端侧设备,可穿戴式设备包括:智能手表、智能手环、智能耳机、智能眼镜、智能首饰(智能手镯、智能手链、智能戒指、智能项链、智能脚镯、智能脚链等)、智能腕带、智能服装等。
需要说明的是,在本申请实施例并不限定终端11的具体类型。网络侧设备12可以包括接入网设备或核心网设备,其中,接入网设备12也可以称为无线接入网设备、无线接入网(Radio Access Network,RAN)、无线接入网功能或无线接入网单元。接入网设备12可以包括基站、WLAN接入点或WiFi节点等,基站可被称为节点B、演进节点B(eNB)、接入点、基收发机站(Base Transceiver Station,BTS)、无线电基站、无线电收发机、基本服务集(Basic Service Set,BSS)、扩展服务集(Extended Service Set,ESS)、家用B节点、家用演进型B节点、发送接收点(Transmitting Receiving Point,TRP)或所述领域中其他某个合适的术语,只要达到相同的技术效果,所述基站不限于特定技术词汇,需要说明的是,在本申请实施例中仅以NR系统中的基站为例进行介绍,并不限定基站的具体类型。
核心网设备可以包含但不限于如下至少一项:核心网节点、核心网功能、移动管理实体(Mobility Management Entity,MME)、接入移动管理功能(Access and Mobility Management Function,AMF)、会话管理功能(Session Management Function,SMF)、用户平面功能(User Plane Function,UPF)、策略控制功能(Policy Control Function,PCF)、策略与计费规则功能单元(Policy and Charging Rules Function,PCRF)、边缘应用服务发现功能(Edge Application Server Discovery Function,EASDF)、统一数据管理(Unified Data Management,UDM),统一数据仓储(Unified Data Repository,UDR)、归属用户服务器(Home Subscriber Server,HSS)、集中式网络配置(Centralized network configuration,CNC)、网络存储功能(Network Repository Function,NRF),网络开放功能(Network Exposure Function,NEF)、本地NEF(Local NEF,或L-NEF)、绑定支持功能(Binding Support Function,BSF)、应用功能(Application Function,AF)等。需要说明的是,在本申 请实施例中仅以NR系统中的核心网设备为例进行介绍,并不限定核心网设备的具体类型。
下面结合附图,通过一些实施例及其应用场景对本申请实施例提供的RS配置方法、装置、终端及网络侧设备进行详细地说明。
本申请各实施例针对AI定位性能差的问题,提供一种解决方案。为了便于更加清晰地理解本申请各实施例,首先对一些相关的技术知识进行如下介绍。
一、关于AI
AI目前在各个领域获得了广泛的应用,将AI融入无线通信网络,显著提升吞吐量、时延以及用户容量等技术指标,是未来的无线通信网络的重要任务。AI模块有多种实现方式,例如神经网络、决策树、支持向量机、贝叶斯分类器等。本申请以神经网络为例进行说明,但是并不限定AI模块的具体类型。
图2是现有技术的神经网络的示意图,如图2所示,神经网络包括输入层、隐层和输出层,可以将输入X1,X2,…,Xn输入至神经网络的输入层,经过隐层,得到神经网络的输出层的输出Y。
图3是现有技术的神经网络中神经元的示意图,如图3所示,神经网络由神经元组成,其中a1,a2,…,aK为输入,w1,w2,…,wK为权值(乘性系数),b为偏置(加性系数),σ(.)为激活函数。常见的激活函数包括Sigmoid、tanh、ReLU(Rectified Linear Unit,线性整流函数,修正线性单元)等等。
神经网络的参数通过梯度优化算法进行优化。梯度优化算法是一类最小化或者最大化目标函数(也称损失函数)的算法,而目标函数往往是模型参数和数据的数学组合。例如给定数据X和其对应的标签Y,我们构建一个神经网络模型f(.),有了模型后,根据输入x就可以得到预测输出f(x),并且可以计算出预测值和真实值之间的差距(f(x)-Y),这个就是损失函数。我们的目的是找到合适的W和b,使上述的损失函数的值达到最小,损失值越小,则说明我们的模型越接近于真实情况。
目前常见的优化算法,基本都是基于误差反向传播(error Back Propagation,BP)算法。BP算法的基本思想是,学习过程由信号的正向传播与误差的反向传播两个过程组成。正向传播时,输入样本从输入层传入,经各隐层逐层处理后,传向输出层。若输出层的实际输出与期望的输出不符,则转入误差的反向传播阶段。误差反传是将输出误差以某种形式通过隐层向输入层逐层反传,并将误差分摊给各层的所有单元,从而获得各层单元的误差信号,此误差信号即作为修正各单元权值的依据。这种信号正向传播与误差反向传播的各层权值调整过程,是周而复始地进行的。权值不断调整的过程,也就是网络的学习训练过程。此过程一直进行到网络输出的误差减少到可接受的程度,或进行到预先设定的学习次数为止。
常见的优化算法有梯度下降(Gradient Descent)、随机梯度下降(Stochastic Gradient Descent,SGD)、mini-batch gradient descent(小批量梯度下降)、动量法(Momentum)、Nesterov(可以理解为带动量的随机梯度下降)、自适应梯度下降(ADAptive GRADient descent,Adagrad)、Adadelta、均方根误差降速(root mean square prop,RMSprop)、自适应动量估计(Adaptive Moment Estimation,Adam)等。
这些优化算法在误差反向传播时,都是根据损失函数得到的误差/损失,对当前神经元求导数/偏导,加上学习速率、之前的梯度/导数/偏导等影响,得到梯度,将梯度传给上一层。
二、关于定位参考信号(Positioning Reference Signal,PRS)
NR重新设计了基于NR系统的下行定位参考信号(New Radio Downlink Positioning Reference Signal,NR DL PRS)。
目前协议中,定位参考信号仅支持单端口。
1)PRS可以来自多个传输接收节点(transmission-reception point,TRP),多个TRP可以来自服务小区或非服务小区。UE对多个TRP的PRS进行测量,随后进行定位测量上报或进行定位计算。
2)PRS支持在频率范围1(FR1)最大100M,以及频率范围2(FR2)最大400M传输。NR PRS带宽配置与带宽部分(Bandwidth Part,BWP)配置无关,当PRS带宽大于BWP带宽时,支持UE使用测量间隙(Measurement Gap)对PRS进行测量。
3)PRS支持波束赋形,因此引入了PRS资源(resource)的概念。PRS资源标识(PRS resource ID)可以对应1个TRP中的1个波束。1个或多个PRS resource可以组成1个PRS资源组(PRS resource set),或者说1个PRS resource set内可以包含1个或多个PRS resource。一个TRP可以包含1个或多个PRS resource。同时,为了增加UE的可听性,支持PRS波束扫描以及PRS波束重复。另外,支持PRS参考邻小区RS作为空间准共址(Quasi Co-Location,QCL)参考信号。
4)PRS支持交错的模式(pattern),并且支持灵活的pattern配置。PRS resource的梳状(Comb)结构可以支持{2,4,6,12};符号(symbol)数可以支持{2,4,6,12}。目前支持的symbol数与梳状大小(Comb size)的组合如下表1:
表1目前支持的symbol数与comb size的组合
图4是现有技术的不同Comb结构下典型的PRS pattern的示意图,如图4所示,具体有Comb结构为Comb-2、Comb-4、Comb-6和Comb-12对应的PRS pattern的示意图。
在实际应用中,由于干扰、噪声以及其他非理想因素的存在,无法获得理想的信道状态信息。但是,AI定位技术中,训练集数据和测试集数据的不一致会破坏模型从训练集中学到的空间一致性特征,因此基于AI的定位性能容易受到信道估计误差的影响。
本申请实施例提供的RS配置方法,可应用于需要进行AI定位的终端。
图5是本申请实施例提供的RS配置方法的流程示意图之一,如图5所示,该方法包括步骤501;其中:
步骤501、终端接收网络侧设备发送的RS配置信息;其中,所述RS配置信息与测量信息相关;所述测量信息包括以下至少一项:
1)第一指示信息,用于指示RS对应的信道状态信息(Channel State Information,CSI)测量误差;
具体地,第一指示信息例如为归一化均方误差(normalized mean squared error,NMSE);一种获取方式是:CSI测量误差可根据RS对应的信道质量信息根据经验值确定,比如通过链路级仿真确定信干噪比(Signal to Interference Noise Ratio,SINR)与信道状态信息测量误差之间的关系,例如可以根据信道质量信息,通过查表获得CSI测量误差。
可选地,CSI包括:时域信道脉冲响应、频域信道脉冲响应和时延功率谱中的至少一项。
2)RS对应的信道质量信息;
具体地,所述信道质量信息可以包括以下至少一项:
a.SNR;
b.信干噪比(Signal to Interference Noise Ratio,SINR);
具体地,信道状态信息信干噪比(CSI-SINR)定义为携带CSI参考信号的资源元素的功率贡献(单位[W])的线性平均值除以噪声和干扰功率贡献的线性平均数(单位[W])。如果使用专用干扰测量资源将CSI-SINR用于L1-SINR报告,则干扰和噪声将通过更高层指示的资源进行测量。否则,干扰和噪声在相同频率带宽内通过携带CSI参考信号的资源元素进行测量。
c.参考信号接收功率(Reference Signal Received Power,RSRP);
具体地,信道状态信息参考信号接收功率(CSI-RSRP),定义为在配置的信道状态信息参考信号(CSI-RS)时机中,在考虑的测量频率带宽内,携带配置用于RSRP测量的CSI参考信号的天线端口资源元素的功率贡献(单位[W])的线性平均值。
d.参考信号接收质量(Reference Signal Received Quality,RSRQ);
具体地,信道状态信息参考信号接收质量(CSI-RSRQ),定义为N×CSI-RSRP与信道状态信息接收信号强度指示(Channel State Information-Received Signal Strength Indication,CSI-RSSI)的比率,其中N是CSI-RSSI测量带宽中的资源块数。分子和分母的测量应在同一组资源块上进行。
其中,CSI-RSSI包括仅在测量时间资源的正交频分复用(Orthogonal Frequency Division Multiplexing,OFDM)符号中观察到的总接收功率的线性平均值(单位为[W]),在测量带宽中,在所有源的N个资源块上,包括共信道服务和非服务小区、相邻信道干扰、热噪声等。CSI-RSSI的测量时间资源对应于包含配置的CSI-RS时机的OFDM符号。
3)AI模型的推理误差;
具体地,AI模型的输入可以是时域信道脉冲响应(channel impulse response,CIR),输出可以是位置信息,或者是与位置相关的中间特征量,根据该中间特征量可以进一步推断位置。
需要说明的是,理想CIR实际情况下可能没法获取,这里就是比较一般意义上的信道估计误差,当环境没有发生变化的情况下,这个误差的来源可能是:由模型本身引起的偏差和由模型输入(CIR)引起的偏差,因此这里认为模型的推理误差也能为RS配置提供参考。
可选地,通过对比模型输出的位置与真实位置可以获取AI模型的推理误差,真实位置可由PRU获取、或者通过一些其他的定位方法近似获取。
4)终端的运动状态信息。
具体地,终端的运动状态信息,可以包括过去N个时间单位的运动速度、当前的运动速度、预测未来N个时间单位的运动速度。
具体地,相关技术中传统的NR定位方法,由于不需要完整的信道状态信息,UE上报的测量量主要包括:PRS-RSRP、RSTD和Rx-Tx时间差等;而AI定位需要相对完整的信道状态信息,比如时域信道脉冲响应,因为时域信道中包含了更丰富的特征,例如首径时延、首径功率及时延拓展等,信道估计误差会对定位性能产生显著影响。
本申请实施例中,终端侧可以上报信道估计误差相关性能的以及辅助网络侧配置合理的RS,例如为PRS,以缓解信道估计误差的影响。
具体地,网络侧设备可以获取RS配置信息,在一个实施例中,网络侧设备可以基于终端上报的测量信息确定RS配置信息,其中,测量信息包括用于指示RS对应的CSI测量误差的第一指示信息、RS对应的信道质量信息、AI模型的推理误差及终端的 运动状态信息中的至少一项,网络侧设备基于上述表征信道估计误差相关性能的测量信息,即基于相对完整的信道状态信息,可以合理地确定RS配置信息;
再由网络侧设备向终端发送RS配置信息,终端接收RS配置信息,后续可以基于RS配置信息进行AI定位,缓解信道估计误差的影响对终端AI定位的影响,进而提高AI定位性能,例如可以提高AI定位精度。
本申请实施例提供的RS配置方法中,终端接收网络侧设备发送的RS配置信息,RS配置信息与测量信息相关,测量信息包括用于指示RS对应的CSI测量误差的第一指示信息、RS对应的信道质量信息、AI模型的推理误差及终端的运动状态信息中的至少一项,进而终端可以基于RS配置信息进行AI定位,由于本申请中测量信息包括第一指示信息、AI模型的推理误差及终端的运动状态信息等信息,这些信息可以用于辅助网络侧设备进行RS配置,以提升信道估计误差的准确性,进而提升基于AI的定位性能。
可选地,所述RS可以包括以下至少一项:
1、PRS;
2、信道状态信息参考信号(Channel State Information Reference Signal,CSI-RS);
3、同步信号/物理广播信道块(Synchronization Signal/PBCH block,SSB);
4、探测参考信号(Sounding Reference Signal,SRS)。
需要说明的是,对于PRS、CSI-RS和SSB这三类RS,均是网络侧设备向终端发送的下行RS,以由终端测量下行RS,得到信道质量信息。
对于SRS来说,是终端向网络侧设备发送的上行RS,以由网络侧设备测量上行RS,得到信道状态信息;后续可以基于测量得到的信道状态信息,得到RS对应的信道状态信息测量误差,进而得到测量信息中用于指示RS对应的信道状态信息测量误差的第一指示信息。
可选地,步骤501之后还包括:终端基于RS配置进行RS传输,以实现定位。
可选地,所述终端可以接收所述网络侧设备发送的第二指示信息;所述第二指示信息用于指示所述终端反馈所述测量信息;所述终端对所述RS进行测量得到RS对应的信道质量信息,通过信道质量信息推测得到RS对应的CSI测量误差,终端通过自身的传感器获取运动状态信息;所述终端向所述网络侧设备发送所述测量信息和/或所述RS。
可选地,所述终端可以基于所述测量信息,确定推荐RS配置信息;所述终端向所述网络侧设备发送所述推荐RS配置信息;所述RS配置信息与所述测量信息和/或所述推荐RS配置信息相关。
具体地,终端可以基于测量信息,确定推荐RS配置信息,再将确定的推荐RS配置信息发送至网络侧设备,以由推荐RS配置信息辅助网络侧设备确定RS配置信息,对于网络侧设备,可以基于测量信息和/或推荐RS配置信息,确定RS配置信息。
可选地,所述终端基于所述测量信息,确定推荐RS配置信息的实现方式可以包括:
所述终端基于所述测量信息和第二映射关系,确定所述推荐RS配置信息;所述第二映射关系包括测量信息和RS配置信息的对应关系。
具体地,终端可以基于测量信息和包括测量信息和RS配置信息的第二映射关系,确定推荐RS配置信息。
可选地,所述终端接收所述网络侧设备发送的不同天线端口的准共址(QCL)信息;所述不同天线端口的QCL信息用于辅助所述终端确定所述测量信息;
所述终端基于所述不同天线端口的QCL信息,以及与RS端口QCL的天线端口的测量信息,确定所述测量信息。
具体地,终端可以接收网络侧设备发送的不同天线端口的QCL信息;不同天线端口的QCL信息用以辅助终端确定测量信息,再由终端基于其他天线端口的QCL信息,以及与目标RS端口QCL的天线端口的测量信息,确定测量信息。
其中,目标RS端口可以是由网络侧设备选定的RS端口。
举例来说,网络侧设备向终端发送的不同天线端口的QCL信息,包括基站侧A端口和B端口QCL,则终端可以根据对B端口的测量信息确定A端口的测量信息,或者根据A端口和B端口的信息一起确定测量信息。
可选地,所述终端可以接收所述网络侧设备发送的第三指示信息;所述第三指示信息用于指示所述终端对所述RS进行测量。
具体地,终端可以接收网络侧设备发送的第三指示信息,终端基于第三指示信息进行RS测量。
可选地,所述RS配置信息可以包括以下至少一项:
1)RS资源集标识(ID);
具体地,RS资源集ID例如包括与PRS资源集配置关联的ID和与SRS资源集配置关联的ID中的至少一项;
2)RS资源重复因子;
具体地,RS资源重复因子可以由信道估计误差确定,信道估计误差越大,则同一个PRS/SRS资源所需要重复发送的次数越多;终端可以根据多次信道估计的结果降低信道估计的误差。
3)RS资源时间间隔;
具体地,RS资源时间间隔可以由终端的运动状态确定,如终端的运动速度越快,则该数值越小。
4)RS Comb结构;
具体地,RS Comb结构可以由信道估计误差和终端的运动状态确定,取一个折衷,如Comb数值越大,能够提升RS信号的强度,从而提升信道估计的性能,但是也会延长一个RS资源的持续时间,对于运动速度较快的终端可能是不利的。
5)RS时域结构。
具体地,对于下行RS,例如PRS、CSI-RS和SSB,RS时域结构可以包括RS周期:配置RS的周期以及周期内的时隙偏移。
对于上行RS,例如SRS,RS时域结构可以包括:
i.周期性:配置SRS的周期以及周期内的时隙偏移;
ii.半持续:配置SRS的周期以及周期内的时隙偏移,另外,网络侧设备需要配置媒质接入控制单元(Medium Access Control-Control Element,MAC-CE)信令激活或去激活半持续SRS;
iii.非周期:网络侧设备通过下行控制信息(Downlink Control Information,DCI)来触发SRS的发送。
需要说明的是,从时域上看,RS可以配置为周期性发送、半持续发送和非周期性发送;
1)周期性发送:每N个时隙就会重复一次;需要知道发送周期以及周期内的时隙偏移;
2)半持续发送:也会配置一个发送周期和周期内的时隙偏移,但需要通过MAC-CE激活或去激活RS的发送;
3)非周期发送:网络侧设备不会配置发送周期和时隙偏移,通过DCI信令将每一次RS的发送通知终端。
还需要说明的是,SRS和CSI-RS整体上是一样的。
本申请实施例提供的RS配置方法,可应用于需要对终端进行RS配置的网络侧设备。
图6是本申请实施例提供的RS配置方法的流程示意图之二,如图6所示,该方法包括步骤601和步骤602;其中:
步骤601、网络侧设备获取测量信息;
步骤602、网络侧设备向终端发送RS配置信息;其中,所述RS配置信息与所述测量信息相关;所述测量信息包括以下至少一项:
1)第一指示信息,用于指示RS对应的信道状态信息CSI测量误差;
2)RS对应的信道质量信息;
3)AI模型的推理误差;
4)终端的运动状态信息。
具体地,网络侧设备可以获取测量信息,并基于测量信息获取RS配置信息,在一个实施例中,网络侧设备可以基于终端上报的测量信息确定RS配置信息,其中,测量信息包括用于指示RS对应的CSI测量误差的第一指示信息、RS对应的信道质量信息、AI模型的推理误差及终端的运动状态信息中的至少一项,网络侧设备基于上述表征信道估计误差相关性能的测量信息,可以合理地确定RS配置信息,并由网络侧设备向终端发送RS配置信息;
终端接收网络侧设备发送的RS配置信息,基于RS配置信息辅助进行AI定位,缓解信道估计误差对终端AI定位的影响,进而提高AI定位性能,例如可以提高AI定位精度。
本申请实施例提供的RS配置方法中,网络侧设备通过获取并向终端发送基于测量信息确定的RS配置信息,测量信息包括用于指示RS对应的CSI测量误差的第一指示信息、RS对应的信道质量信息、AI模型的推理误差及终端的运动状态信息中的至少一项,进而终端可以基于RS配置信息进行AI定位,由于本申请中测量信息包括第一指示信息、AI模型的推理误差及终端的运动状态信息等信息,这些信息可以用于辅助网络侧设备进行RS配置,以提升信道估计误差的准确性,进而提升基于AI的定位性能。
可选地,所述信道质量信息可以包括以下至少一项:
a.SNR;
b.SINR;
c.RSRP;
d.RSRQ。
可选地,所述RS可以包括以下至少一项:
1、PRS;
2、CSI-RS;
3、SSB;
4、SRS。
可选地,所述网络侧设备获取测量信息之前,可以向终端发送第二指示信息;所述第二指示信息用于指示所述终端反馈所述测量信息。
具体地,在RS为下行RS的情况下,例如在RS为PRS、CSI-RS和SSB的情况下,由网络侧设备发送RS,并由终端执行RS测量;
在这种情况下,网络侧设备可以向终端发送第二指示信息,以指示终端反馈测量信息,在一个实施例中,第二指示信息可以指示终端执行RS测量,得到测量信息,并将测量信息反馈至网络侧设备。
可选地,所述网络侧设备从所述终端接收推荐RS配置信息;所述RS配置信息与所述测量信息和/或所述推荐RS配置信息相关。
具体地,网络侧设备可以从终端接收推荐RS配置信息,RS配置信息与测量信息和/或推荐RS配置信息相关,网络侧设备后续可以基于测量信息和/或推荐RS配置信息,确定RS配置信息;
在一个实施例中,所述网络侧设备可以接收所述终端发送的所述测量信息、所述RS及推荐RS配置信息中的至少一项,并基于所述测量信息、所述RS及推荐RS配置信息中的至少一项,确定所述RS配置信息。
网络侧设备可以接收终端反馈的测量信息、测量信息对应的RS、以及终端推荐的推荐RS配置信息中的至少一项,以基于终端反馈的测量信息、RS及推荐RS配置信息中的至少一项,确定RS配置信息,并将RS配置信息发送至终端,进而终端可以基于RS配置信息进行AI定位,由于本申请中测量信息包括第一指示信息、AI模型的推理误差及终端的运动状态信息等信息,这些信息可以用于辅助网络侧设备进行RS配置,以提升信道估计误差的准确性,进而提升基于AI的定位性能。
可选地,所述网络侧设备可以基于所述测量信息、所述RS及推荐RS配置信息中的至少一项,以及第一映射关系,确定所述RS配置信息;所述第一映射关系包括测量信息和RS配置信息的对应关系。
具体地,网络侧设备基于测量信息、测量信息对应的RS、终端推荐的推荐RS配置信息中的一项,结合包括测量信息和RS配置信息的对应关系的第一映射关系,可以确定RS配置信息。
可选地,所述网络侧设备可以向所述终端发送不同天线端口的准共址(QCL)信息;所述不同天线端口的QCL信息用于辅助所述终端确定所述测量信息。
具体地,网络侧可以向终端发送不同天线接口的QCL信息,以辅助终端确定测量信息,具体可以辅助终端确定以哪个天线接口的测量信息作为测量信息。
终端在接收到QCL信息后,可以基于其他天线端口的QCL信息,以及与目标RS端口QCL的天线端口的测量信息,确定测量信息。
以网络侧设备是基站为例进行说明,假设基站侧A端口和B端口QCL,则基站侧可以将这个信息作为QCL信息告诉终端,终端可以根据对B端口的测量信息确定A端口的测量信息,或者根据A端口和B端口的信息一起确定测量信息。
可选地,所述网络侧设备可以向所述终端发送第三指示信息;所述第三指示信息用于指示所述终端对所述RS进行测量。
具体地,网络侧设备可以向终端发送第三指示信息,以指示终端对RS进行测量,得到测量信息。
可选地,所述网络侧设备获取测量信息的实现方式可以包括:
所述网络侧设备对所述RS进行测量,得到所述测量信息。
具体地,在RS为下行RS的情况下,例如在RS为SRS的情况下,由终端发送RS,并由网络侧设备执行RS测量;
在这种情况下,网络侧设备无需向终端发送指示信息,以指示终端进行测量,而是直接由网络侧设备对RS进行测量,得到测量信息,后续可以基于测量信息,确定RS配置信息,再将RS配置信息发送至终端。
可选地,所述网络侧设备可以基于所述测量信息及第一映射关系,确定所述RS配置信息;所述第一映射关系包括测量信息和RS配置信息的对应关系。
具体地,由于网络侧设备直接测量得到测量信息,故网络侧设备可以基于测量得到的测量信息及包括测量信息和RS配置信息的对应关系的第一映射关系,确定RS配置信息,并将RS配置信息发送至终端。
可选地,所述第一映射关系可以由网络配置或协议预定义。
可选地,所述RS配置信息可以包括以下至少一项:
1)RS资源集ID;
2)RS资源重复因子;
3)RS资源时间间隔;
4)RS Comb结构;
5)RS时域结构。
图7是本申请实施例提供的RS配置方法的信令交互图之一,如图7所示,该方法包括步骤701和步骤702;其中:
步骤701、网络侧设备获取测量信息;
步骤702、网络侧设备向终端发送RS配置信息;
具体地,网络侧设备向终端发送RS配置信息,也即终端接收来自网络侧设备发送的RS配置信息。
下面举例说明本申请实施例提供的RS配置方法。
一、图8是本申请实施例提供的RS配置方法的信令交互图之二,如图8所示,该方法包括步骤801至步骤805;其中:
步骤801、网络侧设备向终端发送第二指示信息;
具体地,网络侧设备向终端发送第二指示信息,以指示终端执行PRS测量,并反馈测量信息。
步骤802、终端执行PRS测量,得到测量信息;
步骤803、终端向网络侧设备上报测量信息;
步骤804、网络侧设备基于测量信息,确定PRS配置信息;
步骤805、网络侧设备向终端发送PRS配置信息。
二、图9是本申请实施例提供的RS配置方法中AI定位的示意图,如图9所示,终端可以将信道脉冲响应(CIR)输入至AI模型中,以由AI模型基于CIR进行AI定位,得到AI模型输出的位置信息。
三、以信道估计误差为例,终端测量并上报SNR和运动速度,网络侧设备可以根据上述信息确定或更新PRS配置(在原来PRS配置的基础上只更新某几项),表2为一种信道估计误差与PRS配置之间的关联表;
表2一种信道估计误差与PRS配置之间的关联表
PRS参数配置的四种情况:
1、信道质量小于第一阈值或信道估计误差大于或等于第二阈值,运动速度大于或等于第三阈值,则配置PRS资源重复因子大,PRS资源时间间隔小;
2、信道质量小于第一阈值或信道估计误差大于或等于第二阈值,运动速度小于第三阈值,则配置PRS资源重复因子大,PRS资源时间间隔大;
3、信道质量大于第一阈值或信道估计误差小于第二阈值,运动速度大于或等于第三阈值,则配置PRS资源重复因子小,PRS资源时间间隔小;
4、信道质量大于第一阈值或信道估计误差小于第二阈值,运动速度小于第三阈值,则配置PRS资源重复因子小,PRS资源时间间隔大。
可选地,第一阈值、第二阈值和第三阈值可以相同或不同。
需要说明的是,PRS资源重复因子小,可以节省PRS资源;PRS资源时间间隔大,可以尽可能在时间上分开,提升时间分集增益。
图10是本申请实施例提供的RS配置方法中PRS资源的示意图,如图10所示,图中斜阴影区域为一个PRS资源,点状阴影区域为另一个PRS资源,一个PRS资源在时间上重复发送4次,可以理解PRS资源重复因子为4;PRS资源时间间隔是指,相 邻两次发送PRS资源所间隔的时隙数,PRS资源时间间隔的最小值为1,表征PRS资源相邻,可以理解图中PRS资源时间间隔为1。
终端根据N次PRS的测量信息,估计的信道分别为h1,h2,...,hN,可通过线性平均获得最终的信道估计结果:
下表3为不同SNR下的AI定位性能,下表中,60%、67%、80%和90%表征定位误差概率密度分布。
表3不同SNR下的AI定位性能
在实际应用中,由于干扰、噪声以及其他非理想因素的存在,无法获得理想的信道状态信息,而训练集数据和测试集数据的不一致会破坏模型从训练集中学到的空间一致性特征,因此基于AI的定位性能容易受到信道估计误差的影响。为了提升基于AI的定位性能,本发明从PRS配置的角度提出以下解决方案:
在NR定位的基础上,UE上报额外的信息辅助网络侧进行PRS配置以提升基于AI的定位性能:
1、UE上报信道估计测量误差指示信息;
2、UE上报信道质量信息,包括SNR、SINR、RSRP、RSRQ等;
3、UE上报AI模型的定位误差;
4、UE上报运动状态信息,如运动速度;
5、UE根据1-4,向网络侧设备推荐PRS配置信息。
本发明实施例通过配置特殊的PRS,可以降低由信道估计误差引起的AI模型的定位性能损失,具体降低根据PRS的信道估计误差,如时域信道脉冲响应,从而提升AI定位的性能。
本申请实施例提供的RS配置方法,执行主体可以为RS配置装置。本申请实施例中以RS配置装置执行RS配置方法为例,说明本申请实施例提供的RS配置装置。
图11是本申请实施例提供的RS配置装置的结构示意图之一,如图11所示,该RS配置装置1100,应用于终端,包括:
接收模块1101,用于接收网络侧设备发送的RS配置信息;其中,所述RS配置信息与测量信息相关;所述测量信息包括以下至少一项:
1)第一指示信息,用于指示RS对应的信道状态信息CSI测量误差;
2)RS对应的信道质量信息;
3)AI模型的推理误差;
4)终端的运动状态信息。
本申请实施例提供的RS配置装置中,通过接收网络侧设备发送的RS配置信息,RS配置信息与测量信息相关,测量信息包括用于指示RS对应的CSI测量误差的第一指示信息、RS对应的信道质量信息、AI模型的推理误差及终端的运动状态信息中的至少一项,进而终端可以基于RS配置信息进行AI定位,由于本申请中测量信息包括第一指示信息、AI模型的推理误差及终端的运动状态信息等信息,这些信息可以用于辅助网络侧设备进行RS配置,以提升信道估计误差的准确性,进而提升基于AI的定位性能。
可选地,接收模块1101还用于:
接收所述网络侧设备发送的第二指示信息;所述第二指示信息用于指示所述终端反馈所述测量信息;
对所述RS进行测量,得到所述测量信息;
向所述网络侧设备发送所述测量信息和/或所述RS。
可选地,RS配置装置1100还包括处理模块,处理模块用于:
基于所述测量信息,确定推荐RS配置信息;
向所述网络侧设备发送所述推荐RS配置信息;所述RS配置信息与所述测量信息和/或所述推荐RS配置信息相关。
可选地,处理模块具体用于:基于所述测量信息和第二映射关系,确定所述推荐RS配置信息;所述第二映射关系包括测量信息和RS配置信息的对应关系。
可选地,接收模块1101还用于:
接收所述网络侧设备发送的不同天线端口的准共址QCL信息;所述不同天线端口的QCL信息用于辅助所述终端确定所述测量信息;
基于所述不同天线端口的准共址QCL信息,以及与目标RS端口QCL的天线端口的测量信息,确定所述测量信息。
可选地,接收模块1101还用于:接收所述网络侧设备发送的第三指示信息;所述第三指示信息用于指示所述终端对所述RS进行测量。
可选地,所述RS配置信息可以包括以下至少一项:
1)RS资源集ID;
2)RS资源重复因子;
3)RS资源时间间隔;
4)RS Comb结构;
5)RS时域结构。
可选地,所述RS可以包括以下至少一项:
1、PRS;
2、CSI-RS;
3、SSB;
4、SRS。
可选地,所述信道质量信息可以包括以下至少一项:
a.SNR;
b.SINR;
c.RSRP;
d.RSRQ。
图12是本申请实施例提供的RS配置装置的结构示意图之二,如图12所示,该RS配置装置1200,应用于网络侧设备,包括:
获取模块1201,用于获取测量信息;
发送模块1202,用于向终端发送所述RS配置信息;
其中,所述RS配置信息与所述测量信息相关;所述测量信息包括以下至少一项:
1)第一指示信息,用于指示RS对应的信道状态信息CSI测量误差;
2)RS对应的信道质量信息;
3)AI模型的推理误差;
4)终端的运动状态信息。
本申请实施例提供的RS配置装置中,通过获取并向终端发送基于测量信息确定的RS配置信息,测量信息包括用于指示RS对应的CSI测量误差的第一指示信息、RS对应的信道质量信息、AI模型的推理误差及终端的运动状态信息中的至少一项,进而终端可以基于RS配置信息进行AI定位,由于本申请中测量信息包括第一指示信息、AI模型的推理误差及终端的运动状态信息等信息,这些信息可以用于辅助网络侧设备进行RS配置,以提升信道估计误差的准确性,进而提升基于AI的定位性能。
可选地,获取模块1201还用于:向终端发送第二指示信息;所述第二指示信息用于指示所述终端反馈所述测量信息。
可选地,获取模块1201还用于:从所述终端接收推荐RS配置信息;所述RS配置信息与所述测量信息和/或所述推荐RS配置信息相关。
可选地,获取模块1201具体用于:基于所述测量信息、所述RS及推荐RS配置信息中的至少一项,以及第一映射关系,确定所述RS配置信息;所述第一映射关系包括测量信息和RS配置信息的对应关系。
可选地,发送模块1202还用于:向所述终端发送不同天线端口的准共址QCL信息;所述不同天线端口的QCL信息用于辅助所述终端确定所述测量信息。
可选地,发送模块1202还用于:向所述终端发送第三指示信息;所述第三指示信息用于指示所述终端对所述RS进行测量。
可选地,获取模块1201还具体用于:对所述RS进行测量,得到所述测量信息。
可选地,获取模块1201还用于:基于所述测量信息及第一映射关系,确定所述RS配置信息;所述第一映射关系包括测量信息和RS配置信息的对应关系。
可选地,所述第一映射关系由网络配置或协议预定义。
可选地,所述RS配置信息可以包括以下至少一项:
1)RS资源集ID;
2)RS资源重复因子;
3)RS资源时间间隔;
4)RS Comb结构;
5)RS时域结构。
可选地,所述RS可以包括以下至少一项:
1、PRS;
2、CSI-RS;
3、SSB;
4、SRS。
可选地,所述信道质量信息可以包括以下至少一项:
a.SNR;
b.SINR;
c.RSRP;
d.RSRQ。
本申请实施例中的RS配置装置可以是电子设备,例如具有操作系统的电子设备,也可以是电子设备中的部件,例如集成电路或芯片。该电子设备可以是终端,也可以为除终端之外的其他设备。示例性的,终端可以包括但不限于上述所列举的终端11的类型,其他设备可以为服务器、网络附属存储器(Network Attached Storage,NAS)等,本申请实施例不作具体限定。
本申请实施例提供的RS配置装置能够实现图5至图10的方法实施例实现的各个过程,并达到相同的技术效果,为避免重复,这里不再赘述。
可选的,图13是本申请实施例提供的通信设备的结构示意图,如图13所示,本申请实施例还提供一种通信设备1300,包括处理器1301和存储器1302,存储器1302上存储有可在所述处理器1301上运行的程序或指令,例如,该通信设备1300为终端 时,该程序或指令被处理器1301执行时实现上述终端侧的RS配置方法实施例的各个步骤,且能达到相同的技术效果。该通信设备1300为网络侧设备时,该程序或指令被处理器1301执行时实现上述网络侧设备的RS配置方法实施例的各个步骤,且能达到相同的技术效果,为避免重复,这里不再赘述。
本申请实施例还提供一种终端,包括处理器和通信接口,通信接口用于接收网络侧设备发送的RS配置信息;其中,所述RS配置信息与测量信息相关;所述测量信息包括以下至少一项:
1)第一指示信息,用于指示RS对应的信道状态信息CSI测量误差;
2)RS对应的信道质量信息;
3)AI模型的推理误差;
4)终端的运动状态信息。
如图14所示,该终端实施例与上述终端侧方法实施例对应,上述方法实施例的各个实施过程和实现方式均可适用于该终端实施例中,且能达到相同的技术效果。具体地,图14是本申请实施例提供的一种终端的硬件结构示意图。
该终端1400包括但不限于:射频单元1401、网络模块1402、音频输出单元1403、输入单元1404、传感器1405、显示单元1406、用户输入单元1407、接口单元1408、存储器1409以及处理器1410等中的至少部分部件。
本领域技术人员可以理解,终端1400还可以包括给各个部件供电的电源(比如电池),电源可以通过电源管理系统与处理器1410逻辑相连,从而通过电源管理系统实现管理充电、放电、以及功耗管理等功能。图14中示出的终端结构并不构成对终端的限定,终端可以包括比图示更多或更少的部件,或者组合某些部件,或者不同的部件布置,在此不再赘述。
应理解的是,本申请实施例中,输入单元1404可以包括图形处理单元(Graphics Processing Unit,GPU)14041和麦克风14042,图形处理器14041对在视频捕获模式或图像捕获模式中由图像捕获装置(如摄像头)获得的静态图片或视频的图像数据进行处理。显示单元1406可包括显示面板14061,可以采用液晶显示器、有机发光二极管等形式来配置显示面板14061。用户输入单元1407包括触控面板14071以及其他输入设备14072中的至少一种。触控面板14071,也称为触摸屏。触控面板14071可包括触摸检测装置和触摸控制器两个部分。其他输入设备14072可以包括但不限于物理键盘、功能键(比如音量控制按键、开关按键等)、轨迹球、鼠标、操作杆,在此不再赘述。
本申请实施例中,射频单元1401接收来自网络侧设备的下行数据后,可以传输给处理器1410进行处理;另外,射频单元1401可以向网络侧设备发送上行数据。通 常,射频单元1401包括但不限于天线、放大器、收发信机、耦合器、低噪声放大器、双工器等。
存储器1409可用于存储软件程序或指令以及各种数据。存储器1409可主要包括存储程序或指令的第一存储区和存储数据的第二存储区,其中,第一存储区可存储操作系统、至少一个功能所需的应用程序或指令(比如声音播放功能、图像播放功能等)等。此外,存储器1409可以包括易失性存储器或非易失性存储器,或者,存储器1409可以包括易失性和非易失性存储器两者。其中,非易失性存储器可以是只读存储器(Read-Only Memory,ROM)、可编程只读存储器(Programmable ROM,PROM)、可擦除可编程只读存储器(Erasable PROM,EPROM)、电可擦除可编程只读存储器(Electrically EPROM,EEPROM)或闪存。易失性存储器可以是随机存取存储器(Random Access Memory,RAM),静态随机存取存储器(Static RAM,SRAM)、动态随机存取存储器(Dynamic RAM,DRAM)、同步动态随机存取存储器(Synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(Double Data Rate SDRAM,DDRSDRAM)、增强型同步动态随机存取存储器(Enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(Synch link DRAM,SLDRAM)和直接内存总线随机存取存储器(Direct Rambus RAM,DRRAM)。本申请实施例中的存储器1409包括但不限于这些和任意其它适合类型的存储器。
处理器1410可包括一个或多个处理单元;可选的,处理器1410集成应用处理器和调制解调处理器,其中,应用处理器主要处理涉及操作系统、用户界面和应用程序等的操作,调制解调处理器主要处理无线通信信号,如基带处理器。可以理解的是,上述调制解调处理器也可以不集成到处理器1410中。
本申请实施例还提供一种网络侧设备,包括处理器和通信接口,处理器用于获取测量信息,通信接口用于向终端发送所述RS配置信息;
其中,所述RS配置信息与所述测量信息相关;所述测量信息包括以下至少一项:
1)第一指示信息,用于指示RS对应的信道状态信息CSI测量误差;
2)RS对应的信道质量信息;
3)AI模型的推理误差;
4)终端的运动状态信息。
该网络侧设备实施例与上述网络侧设备方法实施例对应,上述方法实施例的各个实施过程和实现方式均可适用于该网络侧设备实施例中,且能达到相同的技术效果。
具体地,本申请实施例还提供了一种网络侧设备。图15是本申请实施例提供的一种网络侧设备的硬件结构示意图,如图15所示,该网络侧设备1500包括:天线1501、射频装置1502、基带装置1503、处理器1504和存储器1505。天线1501与射频装置1502连接。在上行方向上,射频装置1502通过天线1501接收信息,将接收的信 息发送给基带装置1503进行处理。在下行方向上,基带装置1503对要发送的信息进行处理,并发送给射频装置1502,射频装置1502对收到的信息进行处理后经过天线1501发送出去。
以上实施例中网络侧设备执行的方法可以在基带装置1503中实现,该基带装置1503包括基带处理器。
基带装置1503例如可以包括至少一个基带板,该基带板上设置有多个芯片,如图15所示,其中一个芯片例如为基带处理器,通过总线接口与存储器1505连接,以调用存储器1505中的程序,执行以上方法实施例中所示的网络设备操作。
该网络侧设备还可以包括网络接口1506,该接口例如为通用公共无线接口(common public radio interface,CPRI)。
具体地,本发明实施例的网络侧设备1500还包括:存储在存储器1505上并可在处理器1504上运行的指令或程序,处理器1504调用存储器1505中的指令或程序执行图12所示各模块执行的方法,并达到相同的技术效果,为避免重复,故不在此赘述。
本申请实施例还提供一种可读存储介质,所述可读存储介质上存储有程序或指令,该程序或指令被处理器执行时实现上述RS配置方法实施例的各个过程,且能达到相同的技术效果,为避免重复,这里不再赘述。
其中,所述处理器为上述实施例中所述的终端中的处理器。所述可读存储介质,包括计算机可读存储介质,如计算机只读存储器ROM、随机存取存储器RAM、磁碟或者光盘等。
本申请实施例另提供了一种芯片,所述芯片包括处理器和通信接口,所述通信接口和所述处理器耦合,所述处理器用于运行程序或指令,实现上述RS配置方法实施例的各个过程,且能达到相同的技术效果,为避免重复,这里不再赘述。
应理解,本申请实施例提到的芯片还可以称为系统级芯片,系统芯片,芯片系统或片上系统芯片等。
本申请实施例另提供了一种计算机程序/程序产品,所述计算机程序/程序产品被存储在存储介质中,所述计算机程序/程序产品被至少一个处理器执行以实现上述RS配置方法实施例的各个过程,且能达到相同的技术效果,为避免重复,这里不再赘述。
本申请实施例还提供了一种RS配置系统,包括:终端及网络侧设备,所述终端可用于执行如上所述终端侧的RS配置方法的步骤,所述网络侧设备可用于执行如上所述网络侧设备的RS配置方法的步骤。
需要说明的是,在本文中,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者装置不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者装置所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限 定的要素,并不排除在包括该要素的过程、方法、物品或者装置中还存在另外的相同要素。此外,需要指出的是,本申请实施方式中的方法和装置的范围不限按示出或讨论的顺序来执行功能,还可包括根据所涉及的功能按基本同时的方式或按相反的顺序来执行功能,例如,可以按不同于所描述的次序来执行所描述的方法,并且还可以添加、省去、或组合各种步骤。另外,参照某些示例所描述的特征可在其他示例中被组合。
通过以上的实施方式的描述,本领域的技术人员可以清楚地了解到上述实施例方法可借助软件加必需的通用硬件平台的方式来实现,当然也可以通过硬件,但很多情况下前者是更佳的实施方式。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分可以以计算机软件产品的形式体现出来,该计算机软件产品存储在一个存储介质(如ROM/RAM、磁碟、光盘)中,包括若干指令用以使得一台终端(可以是手机,计算机,服务器,空调器,或者网络设备等)执行本申请各个实施例所述的方法。
上面结合附图对本申请的实施例进行了描述,但是本申请并不局限于上述的具体实施方式,上述的具体实施方式仅仅是示意性的,而不是限制性的,本领域的普通技术人员在本申请的启示下,在不脱离本申请宗旨和权利要求所保护的范围情况下,还可做出很多形式,均属于本申请的保护之内。

Claims (26)

  1. 一种参考信号RS配置方法,包括:
    终端接收网络侧设备发送的RS配置信息;其中,所述RS配置信息与测量信息相关;所述测量信息包括以下至少一项:
    第一指示信息,用于指示RS对应的信道状态信息CSI测量误差;
    RS对应的信道质量信息;
    AI模型的推理误差;
    终端的运动状态信息。
  2. 根据权利要求1所述的RS配置方法,所述方法还包括:
    所述终端接收所述网络侧设备发送的第二指示信息;所述第二指示信息用于指示所述终端反馈所述测量信息;
    所述终端对所述RS进行测量,得到所述测量信息;
    所述终端向所述网络侧设备发送所述测量信息和/或所述RS。
  3. 根据权利要求1或2所述的RS配置方法,所述方法还包括:
    所述终端基于所述测量信息,确定推荐RS配置信息;
    所述终端向所述网络侧设备发送所述推荐RS配置信息;所述RS配置信息与所述测量信息和/或所述推荐RS配置信息相关。
  4. 根据权利要求3所述的RS配置方法,其中,所述终端基于所述测量信息,确定推荐RS配置信息,包括:
    所述终端基于所述测量信息和第二映射关系,确定所述推荐RS配置信息;所述第二映射关系包括测量信息和RS配置信息的对应关系。
  5. 根据权利要求2或3所述的RS配置方法,所述方法还包括:
    所述终端接收所述网络侧设备发送的不同天线端口的准共址QCL信息;所述不同天线端口的QCL信息用于辅助所述终端确定所述测量信息;
    所述终端基于所述不同天线端口的准共址QCL信息,以及与目标RS端口QCL的天线端口的测量信息,确定所述测量信息。
  6. 根据权利要求2至5任一项所述的RS配置方法,所述方法还包括:
    所述终端接收所述网络侧设备发送的第三指示信息;所述第三指示信息用于指示所述终端对所述RS进行测量。
  7. 根据权利要求1至6任一项所述的RS配置方法,其中,所述RS配置信息包括以下至少一项:
    RS资源集标识ID;
    RS资源重复因子;
    RS资源时间间隔;
    RS梳状Comb结构;
    RS时域结构。
  8. 根据权利要求1至7任一项所述的RS配置方法,其中,所述RS包括以下至少一项:
    定位参考信号PRS;
    信道状态信息参考信号CSI-RS;
    同步信号/物理广播信道块SSB;
    探测参考信号SRS。
  9. 根据权利要求1至8任一项所述的RS配置方法,其中,所述信道质量信息包括以下至少一项:
    信噪比SNR;
    信干噪比SINR;
    参考信号接收功率RSRP;
    参考信号接收质量RSRQ。
  10. 一种参考信号RS配置方法,包括:
    网络侧设备获取测量信息;
    所述网络侧设备向终端发送RS配置信息;
    其中,所述RS配置信息与所述测量信息相关;所述测量信息包括以下至少一项:
    第一指示信息,用于指示RS对应的信道状态信息CSI测量误差;
    RS对应的信道质量信息;
    AI模型的推理误差;
    终端的运动状态信息。
  11. 根据权利要求10所述的RS配置方法,所述网络侧设备获取测量信息之前,所述方法还包括:
    所述网络侧设备向终端发送第二指示信息;所述第二指示信息用于指示所述终端反馈所述测量信息。
  12. 根据权利要求10或11所述的RS配置方法,所述方法还包括:
    所述网络侧设备从所述终端接收推荐RS配置信息;所述RS配置信息与所述测量信息和/或所述推荐RS配置信息相关。
  13. 根据权利要求12所述的RS配置方法,所述方法还包括:
    所述网络侧设备基于所述测量信息、所述RS及推荐RS配置信息中的至少一项,以及第一映射关系,确定所述RS配置信息;所述第一映射关系包括测量信息和RS配置信息的对应关系。
  14. 根据权利要求12或13所述的RS配置方法,所述方法还包括:
    所述网络侧设备向所述终端发送不同天线端口的准共址QCL信息;所述不同天线端口的QCL信息用于辅助所述终端确定所述测量信息。
  15. 根据权利要求12至14任一项所述的RS配置方法,所述方法还包括:
    所述网络侧设备向所述终端发送第三指示信息;所述第三指示信息用于指示所述终端对所述RS进行测量。
  16. 根据权利要求10所述的RS配置方法,其中,所述网络侧设备获取测量信息,包括:
    所述网络侧设备对所述RS进行测量,得到所述测量信息。
  17. 根据权利要求16所述的RS配置方法,所述方法还包括:
    所述网络侧设备基于所述测量信息及第一映射关系,确定所述RS配置信息;所述第一映射关系包括测量信息和RS配置信息的对应关系。
  18. 根据权利要求16或17所述的RS配置方法,其中,所述第一映射关系由网络配置或协议预定义。
  19. 根据权利要求10至18任一项所述的RS配置方法,其中,所述RS配置信息包括以下至少一项:
    RS资源集标识ID;
    RS资源重复因子;
    RS资源时间间隔;
    RS梳状Comb结构;
    RS时域结构。
  20. 根据权利要求10至19任一项所述的RS配置方法,其中,所述RS包括以下至少一项:
    定位参考信号PRS;
    信道状态信息参考信号CSI-RS;
    同步信号/物理广播信道块SSB;
    探测参考信号SRS。
  21. 根据权利要求10至20任一项所述的RS配置方法,其中,所述信道质量信息包括以下至少一项:
    信噪比SNR;
    信干噪比SINR;
    参考信号接收功率RSRP;
    参考信号接收质量RSRQ。
  22. 一种参考信号RS配置装置,包括:
    接收模块,用于接收网络侧设备发送的RS配置信息;其中,所述RS配置信息与测量信息相关;所述测量信息包括以下至少一项:
    第一指示信息,用于指示RS对应的信道状态信息CSI测量误差;
    RS对应的信道质量信息;
    AI模型的推理误差;
    终端的运动状态信息。
  23. 一种参考信号RS配置装置,包括:
    获取模块,用于获取测量信息;
    发送模块,用于向终端发送RS配置信息;
    其中,所述RS配置信息与所述测量信息相关;所述测量信息包括以下至少一项:
    第一指示信息,用于指示RS对应的信道状态信息CSI测量误差;
    RS对应的信道质量信息;
    AI模型的推理误差;
    终端的运动状态信息。
  24. 一种终端,包括处理器和存储器,所述存储器存储可在所述处理器上运行的程序或指令,所述程序或指令被所述处理器执行时实现如权利要求1至9任一项所述的RS配置方法的步骤。
  25. 一种网络侧设备,包括处理器和存储器,所述存储器存储可在所述处理器上运行的程序或指令,所述程序或指令被所述处理器执行时实现如权利要求10至21任一项所述的RS配置方法的步骤。
  26. 一种可读存储介质,所述可读存储介质上存储程序或指令,所述程序或指令被处理器执行时实现如权利要求1至9任一项所述的RS配置方法,或者实现如权利要求10至21任一项所述的RS配置方法的步骤。
PCT/CN2023/120924 2022-09-28 2023-09-25 Rs配置方法、装置、终端及网络侧设备 WO2024067434A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202211194407.3A CN117835267A (zh) 2022-09-28 2022-09-28 Rs配置方法、装置、终端及网络侧设备
CN202211194407.3 2022-09-28

Publications (1)

Publication Number Publication Date
WO2024067434A1 true WO2024067434A1 (zh) 2024-04-04

Family

ID=90476154

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/120924 WO2024067434A1 (zh) 2022-09-28 2023-09-25 Rs配置方法、装置、终端及网络侧设备

Country Status (2)

Country Link
CN (1) CN117835267A (zh)
WO (1) WO2024067434A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109120388A (zh) * 2017-06-23 2019-01-01 中国移动通信有限公司研究院 参考信号配置、接收方法、基站、终端、计算机可读存储介质
CN111314952A (zh) * 2018-12-11 2020-06-19 成都华为技术有限公司 一种测量上报的方法及装置
CN111756494A (zh) * 2019-03-28 2020-10-09 华为技术有限公司 用于定位的方法与装置
CN113766528A (zh) * 2020-06-01 2021-12-07 维沃移动通信有限公司 定位处理方法、终端及网络侧设备
CN114071360A (zh) * 2020-08-06 2022-02-18 大唐移动通信设备有限公司 一种定位方法和基站

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109120388A (zh) * 2017-06-23 2019-01-01 中国移动通信有限公司研究院 参考信号配置、接收方法、基站、终端、计算机可读存储介质
CN111314952A (zh) * 2018-12-11 2020-06-19 成都华为技术有限公司 一种测量上报的方法及装置
CN111756494A (zh) * 2019-03-28 2020-10-09 华为技术有限公司 用于定位的方法与装置
CN113766528A (zh) * 2020-06-01 2021-12-07 维沃移动通信有限公司 定位处理方法、终端及网络侧设备
CN114071360A (zh) * 2020-08-06 2022-02-18 大唐移动通信设备有限公司 一种定位方法和基站

Also Published As

Publication number Publication date
CN117835267A (zh) 2024-04-05

Similar Documents

Publication Publication Date Title
CN114363921A (zh) Ai网络参数的配置方法和设备
WO2023134650A1 (zh) 信息交互方法、装置及通信设备
WO2023066288A1 (zh) 模型请求方法、模型请求处理方法及相关设备
WO2024067434A1 (zh) Rs配置方法、装置、终端及网络侧设备
WO2023040887A1 (zh) 信息上报方法、装置、终端及可读存储介质
WO2024067281A1 (zh) Ai模型的处理方法、装置及通信设备
WO2024099094A1 (zh) 波束测量方法、装置、终端、网络侧设备及存储介质
WO2023125951A1 (zh) 通信模型配置方法、装置和通信设备
WO2024099091A1 (zh) 波束预测方法、装置、终端、网络侧设备及存储介质
WO2024120447A1 (zh) 模型监督触发方法、装置、ue、网络侧设备、可读存储介质及通信系统
WO2023134761A1 (zh) 波束信息交互方法、装置、设备及存储介质
WO2024093771A1 (zh) 参考信号确定方法、终端及网络侧设备
WO2024067280A1 (zh) 更新ai模型参数的方法、装置及通信设备
WO2023103911A1 (zh) 测量方法、装置、设备及存储介质
WO2024093713A1 (zh) 资源配置方法、装置、通信设备及可读存储介质
WO2024046202A1 (zh) 发送方法、用户设备、网络侧设备及可读存储介质
WO2024067665A1 (zh) Csi预测处理方法、装置、通信设备及可读存储介质
WO2024032694A1 (zh) Csi预测处理方法、装置、通信设备及可读存储介质
WO2023040888A1 (zh) 数据传输方法及装置
WO2024008111A1 (zh) 数据采集方法及装置
WO2023169544A1 (zh) 质量信息确定方法、装置、终端及存储介质
WO2024032695A1 (zh) Csi预测处理方法、装置、通信设备及可读存储介质
WO2023179540A1 (zh) 信道预测方法、装置及无线通信设备
WO2024104070A1 (zh) 波束报告的发送方法、接收方法、装置及通信设备
WO2024046206A1 (zh) 接收方法、设备及可读存储介质

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23870665

Country of ref document: EP

Kind code of ref document: A1