WO2024093713A1 - 资源配置方法、装置、通信设备及可读存储介质 - Google Patents

资源配置方法、装置、通信设备及可读存储介质 Download PDF

Info

Publication number
WO2024093713A1
WO2024093713A1 PCT/CN2023/126100 CN2023126100W WO2024093713A1 WO 2024093713 A1 WO2024093713 A1 WO 2024093713A1 CN 2023126100 W CN2023126100 W CN 2023126100W WO 2024093713 A1 WO2024093713 A1 WO 2024093713A1
Authority
WO
WIPO (PCT)
Prior art keywords
resource group
beam scanning
configuration information
scanning resource
resource
Prior art date
Application number
PCT/CN2023/126100
Other languages
English (en)
French (fr)
Inventor
施源
Original Assignee
维沃移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 维沃移动通信有限公司 filed Critical 维沃移动通信有限公司
Publication of WO2024093713A1 publication Critical patent/WO2024093713A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B17/00Monitoring; Testing
    • H04B17/30Monitoring; Testing of propagation channels
    • H04B17/309Measuring or estimating channel quality parameters
    • H04B17/336Signal-to-interference ratio [SIR] or carrier-to-interference ratio [CIR]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B17/00Monitoring; Testing
    • H04B17/30Monitoring; Testing of propagation channels
    • H04B17/391Modelling the propagation channel
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/08Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the receiving station
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/10Scheduling measurement reports ; Arrangements for measurement reports
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation

Definitions

  • the present application belongs to the field of communication technology, and specifically relates to a resource configuration method, device, communication equipment and readable storage medium.
  • AI artificial intelligence
  • the embodiments of the present application provide a resource configuration method, apparatus, communication device, and readable storage medium to solve the problem of how to ensure that a terminal uses correct beam information.
  • a resource configuration method comprising:
  • the terminal receives first beam report configuration information, where the first beam report configuration information corresponds to a first beam scanning resource group and a second beam scanning resource group;
  • the terminal measures the second beam scanning resource group according to the first beam report configuration information to determine the first beam information
  • the terminal measures the first beam scanning resource group through the first beam information
  • the first beam scanning resource group is a beam resource group and/or SSB resource group with different beam assumptions
  • the second beam scanning resource group is a beam resource group with the same beam assumption.
  • a resource configuration method comprising:
  • the network side device sends first beam report configuration information, where the first beam report configuration information corresponds to a first beam scanning resource group and a second beam scanning resource group;
  • the first beam scanning resource group is a beam resource group and/or SSB resource group with different beam assumptions
  • the second beam scanning resource group is a beam resource group with the same beam assumption.
  • a resource configuration device which is applied to a terminal, including:
  • a first receiving module configured to receive first beam report configuration information, where the first beam report configuration information corresponds to a first beam scanning resource group and a second beam scanning resource group;
  • a first measurement module configured to measure the second beam scanning resource group according to the first beam report configuration information, and determine first beam information
  • a second measurement module configured to measure the first beam scanning resource group according to the first beam information
  • the first beam scanning resource group is a beam resource group and/or SSB resource group with different beam assumptions
  • the second beam scanning resource group is a beam resource group with the same beam assumption.
  • a resource configuration device which is applied to a network side device, including:
  • a first sending module configured to send first beam report configuration information, where the first beam report configuration information corresponds to a first beam scanning resource group and a second beam scanning resource group;
  • the first beam scanning resource group is a beam resource group and/or SSB resource group with different beam assumptions
  • the second beam scanning resource group is a beam resource group with the same beam assumption.
  • a communication device comprising: a processor, a memory, and a program or instruction stored in the memory and executable on the processor, wherein the program or instruction, when executed by the processor, implements the steps of the method described in the first aspect or the second aspect.
  • a readable storage medium on which a program or instruction is stored.
  • the program or instruction is executed by a processor, the steps of the method described in the first aspect or the second aspect are implemented.
  • a chip comprising a processor and a communication interface, wherein the communication interface is coupled to the processor, and the processor is used to run a program or instruction to implement the steps of the method described in the first aspect or the second aspect.
  • a computer program/program product is provided, wherein the computer program/program product is stored in a non-volatile storage medium, and the program/program product is executed by at least one processor to implement the steps of the method described in the first aspect or the second aspect.
  • a communication system comprising a terminal and a network side device, the terminal being used to execute the steps of the method described in the first aspect, and the network side device being used to execute the steps of the method described in the second aspect.
  • the terminal receives first beam report configuration information sent by a network side device, and the first beam report configuration information simultaneously includes or is associated with a first beam scanning resource group and a second beam scanning resource group, wherein the first beam scanning resource group is a beam resource group and/or SSB resource group with different transmission beam assumptions, and the second beam scanning resource group is a beam resource group with the same transmission beam assumption.
  • the terminal measures the second beam scanning resource group according to the first beam report configuration information to determine the first beam information; the terminal measures the first beam scanning resource group through the first beam information, so that the terminal can perform a receiving beam scan before obtaining the transmission beam quality information, so as to determine the receiving beam of the terminal, which can ensure that the terminal uses the correct receiving beam, thereby improving the accuracy of the AI model prediction.
  • Figure 1 is a schematic diagram of a neural network
  • Figure 2 is a schematic diagram of a neuron
  • FIG3 is one of the schematic diagrams of beam prediction based on the AI model
  • FIG4 is a second schematic diagram of beam prediction based on an AI model
  • FIG5 is a third schematic diagram of beam prediction based on an AI model
  • FIG6 is a schematic diagram of the architecture of a wireless communication system according to an embodiment of the present application.
  • FIG7 is a flow chart of a transmission method according to an embodiment of the present application.
  • FIG8 is a second flow chart of the transmission method provided in an embodiment of the present application.
  • FIG9 is a schematic diagram of a transmission device according to an embodiment of the present application.
  • FIG10 is a second schematic diagram of a transmission device provided in an embodiment of the present application.
  • FIG11 is a schematic diagram of a terminal provided in an embodiment of the present application.
  • FIG12 is a schematic diagram of a network side device provided in an embodiment of the present application.
  • FIG. 13 is a schematic diagram of a communication device provided in an embodiment of the present application.
  • first, second, etc. in the specification and claims of the present application are used to distinguish similar objects, and are not used to describe a specific order or sequence. It should be understood that the terms used in this way are interchangeable under appropriate circumstances, so that the embodiments of the present application can be implemented in an order other than those illustrated or described here, and the objects distinguished by “first” and “second” are generally of the same type, and the number of objects is not limited.
  • the first object can be one or more.
  • “and/or” in the specification and claims represents at least one of the connected objects, and the character “/" generally represents that the objects associated with each other are in an "or” relationship.
  • LTE Long Term Evolution
  • LTE-A Long Term Evolution
  • CDMA Code Division Multiple Access
  • TDMA Time Division Multiple Access
  • FDMA Frequency Division Multiple Access
  • OFDMA Orthogonal Frequency Division Multiple Access
  • SC-FDMA Single-carrier Frequency Division Multiple Access
  • NR New Radio
  • AI modules such as neural networks, decision trees, support vector machines, Bayesian classifiers, etc.
  • This application uses a neural network as an example for illustration, but does not limit the specific type of AI module.
  • the structure of the neural network is shown in FIG1 .
  • the neural network is composed of neurons, and a schematic diagram of neurons is shown in Figure 2.
  • a 1 , a 2 , ... a K are inputs
  • w is the weight (multiplicative coefficient)
  • b is the bias (additive coefficient)
  • ⁇ (.) is the activation function
  • z a 1 w 1 + ... + a k w k + ... + a K w K + b.
  • Common activation functions include Sigmoid function, tanh function, Rectified Linear Unit (ReLU), etc.
  • the parameters of a neural network can be optimized using an optimization algorithm.
  • An optimization algorithm is a type of algorithm that can minimize or maximize an objective function (sometimes called a loss function).
  • the objective function is often a mathematical combination of model parameters and data. For example, given data X and its corresponding label Y, a neural network model f(.) is constructed. With the model, the predicted output f(x) can be obtained based on the input x, and the difference between the predicted value and the true value (f(x)-Y) can be calculated. This is the loss function. If the appropriate W, b is found to minimize the value of the above loss function, the smaller the loss value, the closer the model is to the actual situation.
  • the common optimization algorithms are basically based on the error back propagation (BP) algorithm.
  • BP error back propagation
  • the basic idea of the BP algorithm is that the learning process consists of two processes: the forward propagation of the signal and the back propagation of the error.
  • the input sample is transmitted from the input layer, processed by each hidden layer layer by layer, and then transmitted to the output layer. If the actual output of the output layer does not match the expected output, it will enter the error back propagation stage.
  • Error back propagation is to propagate the output error layer by layer through the hidden layer to the input layer in some form, and distribute the error to all units in each layer, so as to obtain the error signal of each layer unit, and this error signal is used as the basis for correcting the weights of each unit.
  • This process of adjusting the weights of each layer of the signal forward propagation and error back propagation is repeated.
  • the process of continuous adjustment of weights is the learning and training process of the network. This process continues until the error of the network output is reduced to an acceptable level, or until the pre-set number of learning times is reached.
  • the network can make beam indications for the downlink and uplink channels or reference signals to establish beam links between the network and terminals (for example, user equipment (UE)) to achieve channel or reference signal transmission.
  • UE user equipment
  • the network uses radio resource management (RRC) signaling to configure K transmission configuration indication (TCI) states for each control resource set (CORESET).
  • RRC radio resource management
  • TCI transmission configuration indication
  • the medium access control (MAC) control element (CE) indicates or activates 1 TCI state.
  • the terminal monitors PDCCH, it uses the same quasi-colocation (QCL), that is, the same TCI state, for all search spaces in CORESET to monitor PDCCH.
  • QCL quasi-colocation
  • the reference signal (RS) in the TCI state (such as periodic channel state information reference signal resource (CSI-RS resource), semi-persistent CSI-RS resource, synchronization signal block (Synchronization Signal and PBCH block, SSB), etc.) and the terminal-specific (UE-specific) PDCCH demodulation reference signal (DMRS) port are spatially QCL.
  • the terminal can know which receive beam to use to receive PDCCH based on the TCI state.
  • the network For the beam indication of the physical downlink shared channel (PDSCH), the network configures X TCI states through RRC signaling, and then uses the MAC CE command to activate 2Y TCI states, and then notifies the TCI state through the Y-bit TCI field of the downlink control information (DCI).
  • the reference signal in the TCI state is QCL with the DMRS port of the PDSCH to be scheduled.
  • the UE can know which receive beam to use to receive the PDSCH based on the TCI state.
  • the network configures QCL information for the CSI-RS resource through RRC signaling.
  • the network indicates its QCL information when activating a CSI-RS resource from the CSI-RS resource set configured by RRC through the MAC CE command.
  • the CSI-RS type is aperiodic CSI-RS
  • the network configures QCL for the CSI-RS resource through RRC signaling and uses DCI to trigger the CSI-RS.
  • the network uses RRC signaling to configure spatial relation information for each PUCCH resource through the parameter PUCCH-Spatial Relation information.
  • the spatial relation information configured for the PUCCH resource contains multiple spatial relation information
  • MAC CE is used to indicate or activate one of the spatial relation information.
  • the spatial relation information configured for the PUCCH resource contains only one, no additional MAC CE command is required.
  • the spatial relation information of PUSCH is that when the DCI carried by PDCCH schedules PUSCH, each SRI code point in the Sounding Reference Signal resource indicator (SRI) field in the DCI indicates an SRI, which is used to indicate the spatial relation information of PUSCH.
  • SRI Sounding Reference Signal resource indicator
  • the network configures spatial relation information for SRS resource through RRC signaling.
  • the SRS type is semi-persistent SRS
  • the network activates one from a set of spatial relation information configured by RRC through MAC CE command.
  • the SRS type is aperiodic SRS
  • the network configures spatial relation information for SRS resource through RRC signaling.
  • TCI Transmission Configuration Indicator
  • downlink beam information can usually be represented by TCI state information and QCL information
  • uplink beam information can usually be represented by spatial relation information
  • Analog beamforming is full-bandwidth transmission, and each polarization direction array element on the panel of each high-frequency antenna array can only send analog beams in a time-division multiplexing manner.
  • the shaping weight of the analog beam is achieved by adjusting the parameters of the RF front-end phase shifter and other devices.
  • polling is usually used to train simulated beamforming vectors, that is, the array elements of each polarization direction of each antenna panel send training signals (i.e. candidate beamforming vectors) in turn at the agreed time in a time-division multiplexing manner.
  • the terminal feeds back a beam report for the network side to use the training signal to implement simulated beam transmission in the next transmission service.
  • the content of the beam report usually includes the optimal number of transmit beam identifiers and the measured receive power of each transmit beam.
  • the number of beam reports is determined by the parameters configured by the network to the terminal.
  • the RRC configuration parameters are used to configure the number of RS and reference signal received power (RSRP) that should be included in the terminal's beam report.
  • RSRP reference signal received power
  • the values of the number configuration are 1, 2, 3, and 4, and the default value is 1.
  • the number limit is based on the terminal's capabilities, and the terminal will first report the maximum number it can support.
  • the quantization step is 1dB, and the quantization range is -140dBm to -44dBm.
  • L1-RSRP Layer 1 reference signal received power
  • the output of the AI model is the RSRP result of all beam pairs.
  • a beam pair consists of a transmit beam and a receive beam.
  • the number of inputs to the AI model is the number of selected beam pairs, and the number of outputs is the number of all beam pairs.
  • the associated information is added on the input side.
  • the associated information is generally the angle-related information corresponding to the selected beam pairs for input, beam identification (ID) information, etc. Therefore, the number of inputs of this model is still related to the number of selected beam pairs, and the number of outputs is still equal to the number of all beam pairs.
  • the input type of the AI model includes at least one of the following:
  • End B receives beam information
  • the beam quality information herein includes but is not limited to at least one of the following types: Layer 1 signal-to-noise and interference ratio (L1-SINR), Layer 1 reference signal received power (L1-RSRP), Layer 1 reference signal received quality (L1-RSRQ), Layer 3 signal-to-noise and interference ratio (L3-SINR), Layer 3 reference signal received power (L3-RSRP), Layer 3 reference signal received quality (L3-RSRQ), etc.
  • L1-SINR Layer 1 signal-to-noise and interference ratio
  • L1-RSRP Layer 1 reference signal received power
  • L1-RSRQ Layer 1 reference signal received quality
  • L3-SINR Layer 3 signal-to-noise and interference ratio
  • L3-RSRP Layer 3 reference signal received power
  • L3-RSRQ Layer 3 reference signal received quality
  • the beam information in this article refers to the associated information corresponding to the beam quality information contained in the beam report.
  • the associated information includes but is not limited to at least one of the following: beam ID information, beam angle information, beam gain information, beam width information, expected information, etc.
  • the beam ID information is used to characterize the relevant information of the identity identification of the beam, including but not limited to at least one of the following: transmitting beam ID, receiving beam ID, beam ID, reference signal set (set) ID corresponding to the beam, reference signal resource ID corresponding to the beam, uniquely identified random ID, coding value after additional AI network processing, beam angle information, resource index information, channel state information reference signal resource indicator (CSI-RS Resource Indicator, CRI), synchronization signal block resource indication (SS/PBCH Block Resource Indicator, SSBRI), etc.
  • CSI-RS Resource Indicator CRI
  • SS/PBCH Block Resource Indicator synchronization signal block resource indication
  • the beam angle information is used to characterize the angle information corresponding to the beam, including but not limited to at least one of the following: angle-related information, sending angle-related information, and receiving angle-related information.
  • the angle information is related information used to characterize the angle or identity, for example, angle, radian, index encoding value, ID value, encoding value after additional AI network processing, etc.
  • the association relationships are as follows: beam report configuration is associated with resource configuration, resource configuration is associated with beam resource set configuration, and beam resource set configuration is associated with beam resource configuration.
  • CSI report configuration (CSI-ReportConfig) is associated with CSI resource configuration (CSI-ResourceConfig), and CSI-ResourceConfig is associated with resource set (Resource Set) and time domain behavior.
  • the corresponding one is the non-zero power (Non-Zero Power, NZP)-CSI-RS-Resource Set, in which the NZP-CSI-RS-Resource is associated, and the time domain behavior is used to indicate the time domain periodic attribute associated with the CSI-RS resource set.
  • NZP Non-Zero Power
  • the corresponding one is the CSI-SSB-Resource Set, in which the SSB index is associated. In this case, the time domain behavior is invalid.
  • a CSI-ReportConfig (e.g., beam report configuration) contains up to three CSI-ResoureConfig (e.g., beam resource configuration), and the specific relationship is as follows:
  • Aperiodic CSI-ReportConfig can be associated with periodic, semi-persistent, and semi-persistent CSI-ResourceConfig, and up to three beam resource configurations can be configured.
  • CM channel measurement
  • CSI-ResourceConfigs Three CSI-ResourceConfigs are configured, the first one is used for CM, the second one is used for IM, for example, the second one is used for interference measurement of zero power resources, and the third one is used for interference measurement, for example, the third one is used for interference measurement of non-zero power resources.
  • Semi-persistent CSI-ReportConifg can be associated with periodic, semi-persistent CSI-ResourceConfig, and can configure up to 2 beam resource configurations.
  • the first one is for CM and the second one is for IM, for example, the second one is used for interference measurement of zero power resources.
  • Periodic CSI-ReportConfig can be associated with periodic and semi-continuous CSI-ResourceConfig, and can configure up to 2 beam resource configurations
  • the first one is for CM and the second one is for IM, for example, the second one is used for interference measurement of zero power resources.
  • the time domain behaviors of one or more CSI-ResourceConfigs associated with CSI-ReportConfig are consistent.
  • non-periodic CSI resourceConfig there is no limit of 1 set and up to 16 sets can be configured.
  • a maximum of 64 NZP CSI-RS reousrces are supported in one CSI-RS resource set.
  • reportQuantity 'none', 'cri-RI-CQI', 'cri-RSRP' or 'ssb-Index-RSRP', a maximum of 128 resources are supported in all CSI-RS resource sets.
  • the repetition information associated with the CSI-RS resource set if configured to be on, the UE will assume that all CSI-RS resources in the CSI-RS resource set use the same transmit beam information when they are sent. If configured to be off, the UE will not assume that these resources use the same transmit beam information. That is, the repetition parameter in the CSI-RS resource set will control the beam information attributes of all resources associated with the resource set.
  • FIG6 shows a block diagram of a wireless communication system applicable to an embodiment of the present application.
  • the wireless communication system includes a terminal 61 and a network side device 62.
  • the wireless communication system may be a communication system with wireless AI functions such as 5G-Advanced or 6G.
  • the terminal 61 can be a mobile phone, a tablet computer (Tablet Personal Computer), a laptop computer (Laptop Computer) or a notebook computer, a personal digital assistant (Personal Digital Assistant, PDA), a handheld computer, a netbook, an ultra-mobile personal computer (ultra-mobile personal computer, UMPC), a mobile Internet device (Mobile Internet Device, MID), an augmented reality (augmented reality, AR)/virtual reality (virtual reality, VR) device , robots, wearable devices (Wearable Device), vehicle user equipment (VUE), pedestrian user equipment (PUE), smart home (home appliances with wireless communication functions, such as refrigerators, televisions, washing machines or furniture, etc.), game consoles, personal computers (personal computers, PCs), teller machines or self-service machines and other terminal-side devices, wearable devices include: smart watches, smart bracelets, smart headphones, smart glasses, smart jewelry (smart bracelets, smart bracelets, smart rings, smart necklaces, smart anklets, smart anklets, etc.), smart
  • the terminal involved in this application can also be a chip in the terminal, such as a modem chip, a system-on-chip (SoC). It should be noted that the specific type of terminal 61 is not limited in the embodiment of this application.
  • the network side equipment 62 may include access network equipment or core network equipment, wherein the access network equipment may also be called wireless access network equipment, wireless access network (Radio Access Network, RAN), wireless access network function or wireless access network unit.
  • the access network equipment may include base stations, wireless local area networks (WLAN) access points or wireless fidelity (WiFi) nodes, etc.
  • the base station may be called Node B, evolved Node B (eNB), access point, base transceiver station (BTS), radio base station, radio transceiver, Basic Service Set (BSS), Extended Service Set (ESS), home Node B, home evolved Node B, Transmitting Receiving Point (TRP) or some other suitable term in the field.
  • the base station is not limited to specific technical vocabulary. It should be noted that in the embodiments of the present application, only the base station in the NR system is taken as an example for introduction, and the specific type of the base station is not limited.
  • the core network equipment may include but is not limited to at least one of the following: core network nodes, core network functions, mobility management entity (Mobility Management Entity, MME), access and mobility management function (Access and Mobility Management Function, AMF), session management function (Session Management Function, SMF), user plane function (User Plane Function, UPF), policy control function (Policy Control Function, PCF), policy and charging rules function unit (Policy and Charging Rules Function, PCRF), edge application service discovery function (Edge Application Server Discovery ...
  • MME mobility management entity
  • AMF Access and Mobility Management Function
  • SMF Session Management Function
  • SMF Session Management Function
  • UPF User Plane Function
  • Policy Control Function Policy Control Function
  • PCRF Policy and Charging Rules Function
  • edge application service discovery function Edge Application Server Discovery ...
  • an embodiment of the present application provides a resource configuration method, which is applied to a terminal, and the specific steps include: step 701 , step 702 , and step 703 .
  • Step 701 The terminal receives first beam report configuration information, where the first beam report configuration information corresponds to a first beam scanning resource group and a second beam scanning resource group;
  • the first beam report configuration information may include or be associated with a first beam scanning resource group and a second beam scanning resource group.
  • Step 702 The terminal measures the second beam scanning resource group according to the first beam report configuration information to determine the first beam information
  • the first beam information in this article may also be referred to as a receiving beam.
  • Step 703 The terminal measures the first beam scanning resource group according to the first beam information
  • the first beam scanning resource group is a beam resource group and/or SSB resource group with different beam assumptions
  • the second beam scanning resource group is a beam resource group with the same beam assumption.
  • the beam assumption in this article can also be called a transmit beam assumption, that is, the first beam scanning resource group can be a beam resource group with different transmit beam assumptions, the first beam scanning resource group can also be an SSB resource group with different transmit beam assumptions, and the second beam scanning resource group can be a beam resource group with the same transmit beam assumption.
  • the resource group or resource set in this article may include one or more resources. If the resource group or resource set includes one resource, the resource group or resource set is equivalent to the resource.
  • the beam resource group or resource set may include one or more beam resources. If there is only one beam resource in the beam resource group or resource set, the beam resource group or resource set is equivalent to the beam resource.
  • step 703 it may also include: the terminal reports the measurement result of the first beam scanning resource group to the base station according to the first beam report configuration information.
  • the beam resource group with different beam assumptions is equivalent to a CSI-RS resource group within a CSI-RS resource set in which a repetition attribute is configured to be off.
  • the beam resource group having the same beam assumption is equivalent to a resource group within a CSI-RS resource set with a repetition attribute configured to be on.
  • the first beam scanning resource group includes N beam scanning resources and/or beam scanning resource sets, wherein the beam scanning resource set may include one or more beam scanning resources;
  • the second beam scanning resource group includes M beam scanning resources and/or beam scanning resource sets, wherein the beam scanning resource set may include one or more beam scanning resources; wherein, N is greater than or equal to 1, and M is greater than or equal to 1.
  • the first beam scanning resource group is equivalent to the first beam scanning resource or the beam scanning resource set
  • the second beam scanning resource group is equivalent to the second beam scanning resource or the beam scanning resource set
  • the first beam scanning resource group includes a first beam scanning resource, a third beam scanning resource, a fifth beam scanning resource, etc., or the first beam scanning resource group includes multiple beam scanning resource sets.
  • M is greater than 1
  • the second beam scanning resource group includes a second beam scanning resource, a fourth beam scanning resource, a sixth beam scanning resource, etc., or the second beam scanning resource group includes multiple beam scanning resource sets.
  • the second beam scanning resource group is a beam resource group having the same transmission beam assumption, which can be understood as:
  • the second beam scanning resource group includes multiple beam scanning resource sets (for example, M beam scanning resource sets), and the transmission beam assumptions of all beam resources in each of the beam scanning resource sets are the same. For different beam scanning resource sets, their beam resources may have the same transmission beam assumption, or may have different transmission beam assumptions.
  • the first beam report configuration information includes or is associated with first beam resource configuration information and second beam resource configuration information.
  • the first beam resource configuration information and the second beam resource configuration information are used for channel measurement or beam quality information measurement.
  • the first beam resource configuration information corresponds to the first beam scanning resource group
  • the second beam resource configuration information corresponds to the second beam scanning resource group.
  • the first beam report configuration information corresponds to one beam resource configuration information.
  • the configuration information for channel measurement or beam quality information measurement in the first beam report configuration information includes or is associated with one beam resource configuration information, wherein one beam resource configuration information satisfies one of the following:
  • the one beam resource configuration information associates the first beam scanning resource group with the second beam scanning resource group
  • the one beam resource configuration information is associated with the first beam scanning resource group, and the first beam scanning resource group is associated with the second beam scanning resource group;
  • the one beam resource configuration information is associated with a non-zero power reference signal state information reference signal NZP-CSI-RS resource set and an SSB resource set
  • the SSB resource set corresponds to the first beam scanning resource group
  • the NZP-CSI-RS resource set corresponds to the second beam scanning resource group
  • a repetition attribute of the second beam scanning resource group is configured to be on
  • the one beam resource configuration information is associated with the first beam scanning resource group, and the first beam report configuration information is associated with the second beam report configuration information;
  • the second beam report configuration information satisfies one or more of the following:
  • the second beam report configuration information is associated with the second beam scanning resource group, and the repetition attribute of the second beam scanning resource group is configured to be turned on;
  • the first beam report configuration information and the second beam report configuration information are associated with the same first attribute, and the first attribute includes at least one of the following: time domain type, serving cell index, beam report time slot offset, beam report time slot period, trigger status, and group-based beam reporting (groupBasedBeamReporting).
  • the first beam scanning resource group is used to determine the beam quality information in the beam report indicated by the first beam report configuration information
  • the second beam scanning resource group is used to determine the The first beam information is used by the terminal to receive the first beam scanning resource group.
  • the beam quality information in the beam report indicated by the first beam report configuration information is determined according to the first beam scanning resource group
  • the position indication information is used to indicate the beam position of the target beam quality information contained in the beam report, and the target beam quality information is determined based on the first beam scanning resource group, that is, the position indication information does not take into account the beam scanning resources contained in the second beam scanning resource group, that is, the overhead of the position indication information is irrelevant to the second beam scanning resource group.
  • the first beam scanning resource group contains 32 resources
  • the second beam scanning resource group contains 8 resources.
  • the position indication information is used to indicate the beam position of the target beam quality information contained in the beam report.
  • the target beam quality information corresponds to 32 resources. Since the beam quality information corresponding to the second beam scanning resource group is not fed back, the overhead of the position indication information is not related to the second beam scanning resource group.
  • the resources indicated by the position indication information are indicated from the 32 resources.
  • the overhead of not feeding back the beam quality information obtained by receiving the beam scanning and the position indication information in the beam report does not need to consider the receiving beam scanning resources, thereby reducing the feedback overhead of the beam report.
  • the beam position includes at least one of the following: a beam resource identifier; a beam index; a beam resource index; a beam resource time domain position; a beam time domain position; and a beam angle.
  • the time domain type of the first beam scanning resource group is a periodic type or a semi-persistent type.
  • the first beam scanning resource group and the second beam scanning resource group satisfy at least one of the following:
  • the time domain type of the first beam scanning resource group is the same as the time domain type of the second beam scanning resource group;
  • the time slot period of the first beam scanning resource group is the same as the time slot period of the second beam scanning resource group;
  • the triggering state of the first beam scanning resource group is the same as the triggering state of the second beam scanning resource group.
  • the time domain position of the beam resources of the second beam scanning resource group is before the time domain position of the beam resources of the first beam scanning resource group.
  • the first beam scanning resource group and the second beam scanning resource group meet the following conditions: At least one of the following:
  • the time slot offsets associated with all resources in the second beam scanning resource group are less than or equal to the time slot offsets associated with all resources in the first beam scanning resource group;
  • the time slot period associated with all resources in the second beam scanning resource group is less than or equal to the time slot period associated with all resources in the first beam scanning resource group;
  • the time interval between the sending time domain position of the latest sending resource in the second beam scanning resource group and the sending time domain position of the earliest sending resource in the first beam scanning resource group is greater than or equal to the minimum time interval requirement
  • the time interval between the sending time domain position of the earliest sending resource in the second beam scanning resource group and the sending time domain position of the latest sending resource in the first beam scanning resource group is less than or equal to the maximum time interval requirement.
  • the minimum time interval requirement and/or the maximum time interval requirement is determined by at least one of protocol agreement, network configuration, terminal reporting, etc.
  • the first beam report configuration information can be used for at least one of the following functions related to the AI model: AI model training, AI model reasoning, AI model fine-tuning, AI model update, AI model data acquisition, and AI model performance monitoring.
  • the terminal receives first beam report configuration information sent by a network side device, and the first beam report configuration information corresponds to a first beam scanning resource group and a second beam scanning resource group.
  • the first beam scanning resource group is a beam resource group and/or SSB resource group with different transmission beam assumptions
  • the second beam scanning resource group is a beam resource group with the same transmission beam assumption.
  • the terminal measures the second beam scanning resource group according to the first beam report configuration information to determine the first beam information; the terminal measures the first beam scanning resource group through the first beam information, so that the terminal can perform a receiving beam scan before obtaining the transmission beam quality information to determine the receiving beam of the terminal, which can ensure that the terminal uses the correct receiving beam, thereby improving the accuracy of the AI model prediction.
  • an embodiment of the present application provides a resource configuration method, which is applied to a network side device, and the specific steps include: Step 801 .
  • Step 801 A network-side device sends first beam report configuration information, where the first beam report configuration information corresponds to a first beam scanning resource group and a second beam scanning resource group;
  • the first beam scanning resource group is a beam resource group and/or SSB resource group with different beam assumptions
  • the second beam scanning resource group is a beam resource group with the same beam assumption.
  • the first beam report configuration information is used to assist the terminal in measuring the second beam scanning resource group to determine the first beam information, and the first beam information is used to measure the second beam scanning resource group.
  • the first beam scanning resource group includes N beam scanning resources and/or beam scanning resource collection;
  • the second beam scanning resource group includes M beam scanning resources and/or a beam scanning resource set
  • N is greater than or equal to 1
  • M is greater than or equal to 1.
  • the second beam scanning resource group is a beam resource group having the same transmission beam assumption, which can be understood as:
  • the second beam scanning resource group includes multiple beam scanning resource sets (for example, M beam scanning resource sets), and the transmission beam assumptions of all beam resources in each of the beam scanning resource sets are the same. For different beam scanning resource sets, their beam resources may have the same transmission beam assumption, or may have different transmission beam assumptions.
  • the first beam report configuration information includes or is associated with first beam resource configuration information and second beam resource configuration information.
  • the first beam resource configuration information and the second beam resource configuration information are used for channel measurement or beam quality information measurement.
  • the first beam resource configuration information corresponds to the first beam scanning resource group
  • the second beam resource configuration information corresponds to the second beam scanning resource group.
  • the first beam report configuration information corresponds to one beam resource configuration information.
  • the configuration information for channel measurement or beam quality information measurement in the first beam report configuration information includes or is associated with one beam resource configuration information, wherein one beam resource configuration information satisfies one of the following:
  • the one beam resource configuration information associates the first beam scanning resource group with the second beam scanning resource group
  • the one beam resource configuration information is associated with the first beam scanning resource group, and the first beam scanning resource group is associated with the second beam scanning resource group;
  • the one beam resource configuration information is associated with a non-zero power reference signal state information reference signal NZP-CSI-RS resource set and an SSB resource set
  • the SSB resource set corresponds to the first beam scanning resource group
  • the NZP-CSI-RS resource set corresponds to the second beam scanning resource group
  • the repetition attribute of the second beam scanning resource group is configured to be turned on
  • the one beam resource configuration information is associated with the first beam scanning resource group, and the first beam report configuration information is associated with the second beam report configuration information;
  • the second beam report configuration information satisfies one or more of the following:
  • the second beam report configuration information is associated with the second beam scanning resource group, and the repetition attribute of the second beam scanning resource group is configured to be turned on;
  • the first beam report configuration information and the second beam report configuration information are associated with the same first attribute, and the first attribute includes at least one of the following: time domain type, serving cell index, beam report time slot offset, beam report time slot period, trigger status, and group-based beam report.
  • the first beam scanning resource group is used to determine the first beam report configuration.
  • the second beam scanning resource group is used to determine the first beam information of the terminal, and the first beam information is used by the terminal to receive the first beam scanning resource group.
  • the beam quality information in the beam report indicated by the first beam report configuration information is determined according to the first beam scanning resource group
  • the position indication information is used to indicate the beam position of the target beam quality information contained in the beam report, and the target beam quality information is determined based on the first beam scanning resource group.
  • the time domain type of the first beam scanning resource group is a periodic type or a semi-persistent type.
  • the first beam scanning resource group and the second beam scanning resource group satisfy at least one of the following:
  • the time domain type of the first beam scanning resource group is the same as the time domain type of the second beam scanning resource group;
  • the time slot period of the first beam scanning resource group is the same as the time slot period of the second beam scanning resource group;
  • the triggering state of the first beam scanning resource group is the same as the triggering state of the second beam scanning resource group.
  • the time domain position of the beam resources of the second beam scanning resource group is before the time domain position of the beam resources of the first beam scanning resource group.
  • the first beam scanning resource group and the second beam scanning resource group satisfy at least one of the following:
  • the time slot offsets associated with all resources in the second beam scanning resource group are less than or equal to the time slot offsets associated with all resources in the first beam scanning resource group;
  • the time slot period associated with all resources in the second beam scanning resource group is less than or equal to the time slot period associated with all resources in the first beam scanning resource group;
  • the time interval between the sending time domain position of the latest sending resource in the second beam scanning resource group and the sending time domain position of the earliest sending resource in the first beam scanning resource group is greater than or equal to the minimum time interval required beg;
  • the time interval between the sending time domain position of the earliest sending resource in the second beam scanning resource group and the sending time domain position of the latest sending resource in the first beam scanning resource group is less than or equal to the maximum time interval requirement.
  • a network side device sends first beam report configuration information, and the first beam report configuration information corresponds to a first beam scanning resource group and a second beam scanning resource group.
  • the first beam scanning resource group is a beam resource group and/or SSB resource group with the same transmission beam assumption
  • the second beam scanning resource group is a beam resource group with the same transmission beam assumption.
  • an embodiment of the present application provides a resource configuration device, which is applied to a terminal.
  • the device 900 includes:
  • a first receiving module 901 is configured to receive first beam report configuration information, where the first beam report configuration information corresponds to a first beam scanning resource group and a second beam scanning resource group;
  • a first measurement module 902 is configured to measure the second beam scanning resource group according to the first beam report configuration information to determine first beam information
  • a second measurement module 903 is used to measure the first beam scanning resource group according to the first beam information
  • the first beam scanning resource group is a beam resource group and/or SSB resource group with different beam assumptions
  • the second beam scanning resource group is a beam resource group with the same beam assumption.
  • the first beam scanning resource group includes N beam scanning resources and/or a beam scanning resource set
  • the second beam scanning resource group includes M beam scanning resources and/or a beam scanning resource set
  • the N is greater than or equal to 1
  • the M is greater than or equal to 1.
  • the second beam scanning resource group is a beam resource group having the same transmission beam assumption, which can be understood as:
  • the second beam scanning resource group includes multiple beam scanning resource sets (for example, M beam scanning resource sets), and the transmission beam assumptions of all beam resources in each of the beam scanning resource sets are the same.
  • the beam resources can have the same transmission beam assumption, or can also have different transmission beam assumptions.
  • the first beam report configuration information includes or is associated with first beam resource configuration information and second beam resource configuration information, the first beam resource configuration information corresponds to the first beam scanning resource group, and the second beam resource configuration information corresponds to the second beam scanning resource group.
  • the first beam report configuration information includes or is associated with a beam resource configuration information, wherein the beam resource configuration information satisfies one of the following:
  • the one beam resource configuration information associates the first beam scanning resource group with the second beam scanning resource group.
  • Resource Group
  • the one beam resource configuration information is associated with the first beam scanning resource group, and the first beam scanning resource group is associated with the second beam scanning resource group;
  • the SSB resource set corresponds to the first beam scanning resource group
  • the NZP-CSI-RS resource set corresponds to the second beam scanning resource group
  • the repetition attribute of the second beam scanning resource group is configured to be turned on
  • the one beam resource configuration information is associated with the first beam scanning resource group, and the first beam report configuration information is associated with the second beam report configuration information;
  • the second beam report configuration information satisfies one or more of the following:
  • the second beam report configuration information is associated with the second beam scanning resource group, and the repetition attribute of the second beam scanning resource group is configured to be turned on;
  • the first beam report configuration information and the second beam report configuration information are associated with the same first attribute, and the first attribute includes at least one of the following: time domain type, serving cell index, beam report time slot offset, beam report time slot period, trigger status, and group-based beam report.
  • the first beam scanning resource group is used to determine the beam quality information in the beam report indicated by the first beam report configuration information
  • the second beam scanning resource group is used to determine the first beam information of the terminal
  • the first beam information is used by the terminal to receive the first beam scanning resource group.
  • the beam quality information in the beam report indicated by the first beam report configuration information is determined according to the first beam scanning resource group
  • the position indication information is used to indicate the beam position of the target beam quality information contained in the beam report, and the target beam quality information is determined based on the first beam scanning resource group.
  • the beam position includes at least one of the following: a beam resource identifier; a beam index; a beam resource index; a beam resource time domain position; a beam time domain position; and a beam angle.
  • the time domain type of the first beam scanning resource group is a periodic type or a semi-persistent type.
  • the first beam scanning resource group and the second beam scanning resource group satisfy at least one of the following:
  • the time domain type of the first beam scanning resource group is the same as the time domain type of the second beam scanning resource group;
  • the time slot period of the first beam scanning resource group is the same as the time slot period of the second beam scanning resource group;
  • the triggering state of the first beam scanning resource group is the same as the triggering state of the second beam scanning resource group.
  • the time domain position of the beam resources of the second beam scanning resource group is before the time domain position of the beam resources of the first beam scanning resource group.
  • the first beam scanning resource group and the second beam scanning resource group satisfy at least one of the following:
  • the time slot offsets associated with all resources in the second beam scanning resource group are less than or equal to the time slot offsets associated with all resources in the first beam scanning resource group;
  • the time slot period associated with all resources in the second beam scanning resource group is less than or equal to the time slot period associated with all resources in the first beam scanning resource group;
  • the time interval between the sending time domain position of the latest sending resource in the second beam scanning resource group and the sending time domain position of the earliest sending resource in the first beam scanning resource group is greater than or equal to the minimum time interval requirement
  • the time interval between the sending time domain position of the earliest sending resource in the second beam scanning resource group and the sending time domain position of the latest sending resource in the first beam scanning resource group is less than or equal to the maximum time interval requirement.
  • the device provided in the embodiment of the present application can implement each process implemented by the method embodiment of Figure 7 and achieve the same technical effect. To avoid repetition, it will not be repeated here.
  • an embodiment of the present application provides a resource configuration device, which is applied to a network side device.
  • the device 1000 includes:
  • a first sending module 1001 is configured to send first beam report configuration information, where the first beam report configuration information corresponds to a first beam scanning resource group and a second beam scanning resource group;
  • the first beam scanning resource group is a beam resource group and/or SSB resource group with different beam assumptions
  • the second beam scanning resource group is a beam resource group with the same beam assumption.
  • the first beam report configuration information is used to assist the terminal in measuring the second beam scanning resource group to determine the first beam information, and the first beam information is used to measure the second beam scanning resource group.
  • the first beam scanning resource group includes N beam scanning resources and/or a beam scanning resource set
  • the second beam scanning resource group includes M beam scanning resources and/or a beam scanning resource set
  • N is greater than or equal to 1
  • M is greater than or equal to 1.
  • the second beam scanning resource group is a beam resource group having the same transmission beam assumption, which can be understood as:
  • the second beam scanning resource group includes multiple beam scanning resource sets (for example, M beam scanning resource sets), and the transmission beam assumptions of all beam resources in each of the beam scanning resource sets are the same.
  • the beam resources can have the same transmission beam assumption, or can also have different transmission beam assumptions.
  • the first beam report configuration information includes or is associated with first beam resource configuration information and second beam resource configuration information, the first beam resource configuration information corresponds to the first beam scanning resource group, and the second beam resource configuration information corresponds to the second beam scanning resource group.
  • the first beam report configuration information includes or is associated with a beam resource configuration information, wherein the beam resource configuration information satisfies one of the following:
  • the one beam resource configuration information associates the first beam scanning resource group with the second beam scanning resource group
  • the one beam resource configuration information is associated with the first beam scanning resource group, and the first beam scanning resource group is associated with the second beam scanning resource group;
  • the SSB resource set corresponds to the first beam scanning resource group
  • the NZP-CSI-RS resource set corresponds to the second beam scanning resource group
  • the repetition attribute of the second beam scanning resource group is configured to be turned on
  • the one beam resource configuration information is associated with the first beam scanning resource group, and the first beam report configuration information is associated with the second beam report configuration information;
  • the second beam report configuration information satisfies one or more of the following:
  • the second beam report configuration information is associated with the second beam scanning resource group, and the repetition attribute of the second beam scanning resource group is configured to be turned on;
  • the first beam report configuration information and the second beam report configuration information are associated with the same first attribute, and the first attribute includes at least one of the following: time domain type, serving cell index, beam report time slot offset, beam report time slot period, trigger status, and group-based beam report.
  • the first beam scanning resource group is used to determine the beam quality information in the beam report indicated by the first beam report configuration information
  • the second beam scanning resource group is used to determine the first beam information of the terminal
  • the first beam information is used by the terminal to receive the first beam scanning resource group.
  • the beam quality information in the beam report indicated by the first beam report configuration information is determined according to the first beam scanning resource group
  • the position indication information is used to indicate the beam position of the target beam quality information contained in the beam report, and the target beam quality information is determined based on the first beam scanning resource group.
  • the time domain type of the first beam scanning resource group is a periodic type or a semi-persistent type.
  • the first beam scanning resource group and the second beam scanning resource group satisfy at least one of the following:
  • the time domain type of the first beam scanning resource group is the same as the time domain type of the second beam scanning resource group;
  • the time slot period of the first beam scanning resource group is the same as the time slot period of the second beam scanning resource group;
  • the triggering state of the first beam scanning resource group is the same as the triggering state of the second beam scanning resource group.
  • the time domain position of the beam resources of the second beam scanning resource group is before the time domain position of the beam resources of the first beam scanning resource group.
  • the first beam scanning resource group and the second beam scanning resource group satisfy at least one of the following:
  • the time slot offsets associated with all resources in the second beam scanning resource group are less than or equal to the time slot offsets associated with all resources in the first beam scanning resource group;
  • the time slot period associated with all resources in the second beam scanning resource group is less than or equal to the time slot period associated with all resources in the first beam scanning resource group;
  • the time interval between the sending time domain position of the latest sending resource in the second beam scanning resource group and the sending time domain position of the earliest sending resource in the first beam scanning resource group is greater than or equal to the minimum time interval requirement
  • the time interval between the sending time domain position of the earliest sending resource in the second beam scanning resource group and the sending time domain position of the latest sending resource in the first beam scanning resource group is less than or equal to the maximum time interval requirement.
  • the device provided in the embodiment of the present application can implement each process implemented by the method embodiment of Figure 8 and achieve the same technical effect. To avoid repetition, it will not be repeated here.
  • Fig. 11 is a schematic diagram of the hardware structure of a terminal implementing an embodiment of the present application.
  • the terminal 1100 includes but is not limited to: a radio frequency unit 1101, a network module 1102, an audio output unit 1103, an input unit 1104, a sensor 1105, a display unit 1106, a user input unit 1107, an interface unit 1108, a memory 1109, and at least some of the components in the processor 1110.
  • the terminal 1100 may also include a power source (such as a battery) for supplying power to each component, and the power source may be logically connected to the processor 1110 through a power management system, so as to implement functions such as charging, discharging, and power consumption management through the power management system.
  • a power source such as a battery
  • the terminal structure shown in FIG11 does not constitute a limitation on the terminal, and the terminal may include more or fewer components than shown in the figure, or combine certain components, or arrange components differently, which will not be described in detail here.
  • the input unit 1104 may include a graphics processing unit (GPU) 11041 and a microphone 11042, and the graphics processor 11041 processes the image data of the static picture or video obtained by the image capture device (such as a camera) in the video capture mode or the image capture mode.
  • the display unit 1106 may include a display panel 11061, and the display panel 11061 may be configured in the form of a liquid crystal display, an organic light emitting diode, etc.
  • the user input unit 1107 includes a touch panel 11071 and at least one of other input devices 11072.
  • the touch panel 11071 is also called a touch screen.
  • the touch panel 11071 may include two parts: a touch detection device and a touch controller.
  • Other input devices 11072 may include, but are not limited to, a physical keyboard, function keys (such as a volume control key, a switch key, etc.), a trackball, a mouse, and a joystick, which will not be repeated here.
  • the RF unit 1101 can transmit the data to the processor 1110 for processing; in addition, the RF unit 1101 can send uplink data to the network side device.
  • the RF unit 1101 includes but is not limited to an antenna, an amplifier, a transceiver, a coupler, a low noise amplifier, a duplexer, etc.
  • the memory 1109 can be used to store software programs or instructions and various data.
  • the memory 1109 may mainly include a first storage area for storing programs or instructions and a second storage area for storing data, wherein the first storage area may store an operating system, an application program or instruction required for at least one function (such as a sound playback function, an image playback function, etc.), etc.
  • the memory 1109 may include a volatile memory or a non-volatile memory, or the memory 1109 may include both volatile and non-volatile memories.
  • the non-volatile memory may be a read-only memory (ROM), a programmable read-only memory (PROM), an erasable programmable read-only memory (EPROM), an electrically erasable programmable read-only memory (EEPROM), or a flash memory.
  • the volatile memory may be a random access memory (RAM), a static random access memory (SRAM), a dynamic random access memory (DRAM), a synchronous dynamic random access memory (SDRAM), a double data rate synchronous dynamic random access memory (DDRSDRAM), an enhanced synchronous dynamic random access memory (ESDRAM), a synchronous link dynamic random access memory (SLDRAM) and a direct memory bus random access memory (DRRAM).
  • the memory 1109 in the embodiment of the present application includes but is not limited to these and any other suitable types of memory.
  • the processor 1110 may include one or more processing units; optionally, the processor 1110 integrates an application processor and a debugger.
  • the modem processor includes a baseband processor, a modem processor, and a control processor.
  • the application processor mainly processes operations related to the operating system, the user interface, and the application program, and the modem processor mainly processes wireless communication signals. It is understandable that the modem processor may not be integrated into the processor 1110.
  • the terminal provided in the embodiment of the present application can implement each process implemented in the method embodiment of Figure 7 and achieve the same technical effect. To avoid repetition, it will not be repeated here.
  • a communication device 1200 includes: a processor 1201, a transceiver 1202, a memory 1203, and a bus interface, wherein the processor 1201 may be responsible for managing the bus architecture and general processing.
  • the memory 1203 may store data used by the processor 1201 when performing operations.
  • the communication device 1200 further includes: a program stored in the memory 1203 and executable on the processor 1201 , and when the program is executed by the processor 1201 , the steps in the method shown in FIG. 8 above are implemented.
  • the bus architecture may include any number of interconnected buses and bridges, specifically linking together various circuits of one or more processors represented by processor 1201 and memory represented by memory 1203.
  • the bus architecture may also link together various other circuits such as peripherals, voltage regulators, and power management circuits, which are well known in the art and are therefore not further described herein.
  • the bus interface provides an interface.
  • the transceiver 1202 may be a plurality of components, namely, a transmitter and a receiver, providing a unit for communicating with various other devices over a transmission medium.
  • an embodiment of the present application also provides a communication device 1300, including a processor 1301 and a memory 1302, and the memory 1302 stores programs or instructions that can be run on the processor 1301.
  • the communication device 1300 is a terminal
  • the program or instruction is executed by the processor 1301 to implement the various steps of the method embodiment of Figure 7 above.
  • the communication device 1300 is a network side device
  • the program or instruction is executed by the processor 1301 to implement the various steps of the method embodiment of Figure 8 above and can achieve the same technical effect. To avoid repetition, it will not be repeated here.
  • An embodiment of the present application also provides a readable storage medium, on which a program or instruction is stored.
  • a program or instruction is stored.
  • the method of Figure 7 or Figure 8 and the various processes of the above-mentioned embodiments are implemented, and the same technical effect can be achieved. To avoid repetition, it will not be repeated here.
  • the processor is the processor in the terminal described in the above embodiment.
  • the readable storage medium includes a computer readable storage medium, such as a computer read-only memory ROM, a random access memory RAM, a magnetic disk or an optical disk.
  • An embodiment of the present application further provides a chip, which includes a processor and a communication interface, wherein the communication interface is coupled to the processor, and the processor is used to run programs or instructions to implement the various processes shown in Figure 7 or Figure 8 and the various method embodiments mentioned above, and can achieve the same technical effect. To avoid repetition, it will not be repeated here.
  • the chip mentioned in the embodiments of the present application can also be called a system-level chip, a system chip, a chip system or a system-on-chip chip, etc.
  • the embodiment of the present application further provides a computer program/program product, which is stored in a storage medium and is executed by at least one processor to implement the method shown in FIG. 7 or FIG. 8.
  • a computer program/program product which is stored in a storage medium and is executed by at least one processor to implement the method shown in FIG. 7 or FIG. 8.
  • the various processes of the above-mentioned method embodiments can achieve the same technical effect. To avoid repetition, they will not be repeated here.
  • An embodiment of the present application also provides a communication system, which includes a terminal and a network side device.
  • the terminal is used to execute the various processes as shown in Figure 7 and the various method embodiments described above
  • the network side device is used to execute the various processes as shown in Figure 8 and the various method embodiments described above, and can achieve the same technical effect. In order to avoid repetition, it will not be repeated here.
  • the technical solution of the present application can be embodied in the form of a computer software product, which is stored in a storage medium (such as ROM/RAM, a magnetic disk, or an optical disk), and includes a number of instructions for enabling a terminal (which can be a mobile phone, a computer, a server, an air conditioner, or a network device, etc.) to execute the methods described in each embodiment of the present application.
  • a storage medium such as ROM/RAM, a magnetic disk, or an optical disk
  • a terminal which can be a mobile phone, a computer, a server, an air conditioner, or a network device, etc.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Quality & Reliability (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请公开了一种资源配置方法、装置、通信设备及可读存储介质,属于通信技术领域,该方法包括:终端接收第一波束报告配置信息,所述第一波束报告配置信息对应第一波束扫描资源组和第二波束扫描资源组;所述终端根据所述第一波束报告配置信息,对所述第二波束扫描资源组进行测量,确定第一波束信息;所述终端通过所述第一波束信息,对所述第一波束扫描资源组进行测量;其中,所述第一波束扫描资源组是具有不同波束假设的波束资源组和/或SSB资源组,所述第二波束扫描资源组是具有相同波束假设的波束资源组。

Description

资源配置方法、装置、通信设备及可读存储介质
相关申请的交叉引用
本申请主张在2022年10月31日提交的中国专利申请No.202211352336.5的优先权,其全部内容通过引用包含于此。
技术领域
本申请属于通信技术领域,具体涉及一种资源配置方法、装置、通信设备及可读存储介质。
背景技术
使用人工智能(Artificial Intelligence,AI)模型进行波束预测时,需要先通过一个或多个波束信息,接收并测量基站的发送波束资源的波束质量信息。然而若使用多个波束信息接收,波束预测的性能会有所下降,若终端使用的不是最强的波束信息进行接收,会导致AI模型预测性能急剧下降。
发明内容
本申请实施例提供一种资源配置方法、装置、通信设备及可读存储介质,解决如何确保终端使用正确的波束信息的问题。
第一方面,提供一种资源配置方法,包括:
终端接收第一波束报告配置信息,所述第一波束报告配置信息对应第一波束扫描资源组和第二波束扫描资源组;
所述终端根据所述第一波束报告配置信息,对所述第二波束扫描资源组进行测量,确定第一波束信息;
所述终端通过所述第一波束信息,对所述第一波束扫描资源组进行测量;
其中,所述第一波束扫描资源组是具有不同波束假设的波束资源组和/或SSB资源组,所述第二波束扫描资源组是具有相同波束假设的波束资源组。
第二方面,提供一种资源配置方法,包括:
网络侧设备发送第一波束报告配置信息,所述第一波束报告配置信息对应第一波束扫描资源组和第二波束扫描资源组;
其中,所述第一波束扫描资源组是具有不同波束假设的波束资源组和/或SSB资源组,所述第二波束扫描资源组是具有相同波束假设的波束资源组。
第三方面,提供一种资源配置装置,应用于终端,包括:
第一接收模块,用于接收第一波束报告配置信息,所述第一波束报告配置信息对应第一波束扫描资源组和第二波束扫描资源组;
第一测量模块,用于根据所述第一波束报告配置信息,对所述第二波束扫描资源组进行测量,确定第一波束信息;
第二测量模块,用于通过所述第一波束信息,对所述第一波束扫描资源组进行测量;
其中,所述第一波束扫描资源组是具有不同波束假设的波束资源组和/或SSB资源组,所述第二波束扫描资源组是具有相同波束假设的波束资源组。
第四方面,提供一种资源配置装置,应用于网络侧设备,包括:
第一发送模块,用于发送第一波束报告配置信息,所述第一波束报告配置信息对应第一波束扫描资源组和第二波束扫描资源组;
其中,所述第一波束扫描资源组是具有不同波束假设的波束资源组和/或SSB资源组,所述第二波束扫描资源组是具有相同波束假设的波束资源组。
第五方面,提供了一种通信设备,包括:处理器,存储器及存储在所述存储器上并可在所述处理器上运行的程序或指令,所述程序或指令被所述处理器执行时实现如第一方面或第二方面所述的方法的步骤。
第六方面,提供了一种可读存储介质,所述可读存储介质上存储程序或指令,所述程序或指令被处理器执行时实现如第一方面或第二方面所述的方法的步骤。
第七方面,提供了一种芯片,所述芯片包括处理器和通信接口,所述通信接口和所述处理器耦合,所述处理器用于运行程序或指令,实现如第一方面或第二方面所述的法的步骤。
第八方面,提供了一种计算机程序/程序产品,所述计算机程序/程序产品被存储在非瞬态的存储介质中,所述程序/程序产品被至少一个处理器执行以实现如第一方面或第二方面所述的方法的步骤。
第九方面,提供一种通信系统,所述通信系统包括终端与网络侧设备,所述终端用于执行如第一方面所述的方法的步骤,所述网络侧设备用于执行如第二方面所述的方法的步骤。
在本申请实施例中,终端接收网络侧设备发送的第一波束报告配置信息,该第一波束报告配置信息同时包含或关联第一波束扫描资源组和第二波束扫描资源组,其中所述第一波束扫描资源组是具有不同发送波束假设的波束资源组和/或SSB资源组,所述第二波束扫描资源组是具有相同发送波束假设的波束资源组,所述终端根据所述第一波束报告配置信息,对所述第二波束扫描资源组进行测量,确定第一波束信息;所述终端通过所述第一波束信息,对所述第一波束扫描资源组进行测量,这样终端在获得发送波束质量信息之前,可以先进行接收波束扫描,从而确定终端的接收波束,可以确保终端使用正确的接收波束,进而提升AI模型预测的准确性。
附图说明
图1是神经网络的示意图;
图2是神经元的示意图;
图3是基于AI模型进行波束预测的示意图之一;
图4是基于AI模型进行波束预测的示意图之二;
图5是基于AI模型进行波束预测的示意图之三;
图6为本申请实施例的无线通信系统的架构示意图;
图7是本申请实施例提供的传输方法的流程图之一;
图8是本申请实施例提供的传输方法的流程图之二;
图9是本申请实施例提供的传输装置的示意图之一;
图10是本申请实施例提供的传输装置的示意图之二;
图11是本申请实施例提供的终端的示意图;
图12是本申请实施例提供的网络侧设备的示意图;
图13是本申请实施例提供的通信设备的示意图。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚描述,显然,所描述的实施例是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员所获得的所有其他实施例,都属于本申请保护的范围。
本申请的说明书和权利要求书中的术语“第一”、“第二”等是用于区别类似的对象,而不用于描述特定的顺序或先后次序。应该理解这样使用的术语在适当情况下可以互换,以便本申请的实施例能够以除了在这里图示或描述的那些以外的顺序实施,且“第一”、“第二”所区别的对象通常为一类,并不限定对象的个数,例如第一对象可以是一个,也可以是多个。此外,说明书以及权利要求中“和/或”表示所连接对象的至少其中之一,字符“/”一般表示前后关联对象是一种“或”的关系。
值得指出的是,本申请实施例所描述的技术不限于长期演进型(Long Term Evolution,LTE)/LTE的演进(LTE-Advanced,LTE-A)系统,还可用于其他无线通信系统,诸如码分多址(Code Division Multiple Access,CDMA)、时分多址(Time Division Multiple Access,TDMA)、频分多址(Frequency Division Multiple Access,FDMA)、正交频分多址(Orthogonal Frequency Division Multiple Access,OFDMA)、单载波频分多址(Single-carrier Frequency Division Multiple Access,SC-FDMA)和其他系统。本申请实施例中的术语“系统”和“网络”常被可互换地使用,所描述的技术既可用于以上提及的系统和无线电技术,也可用于其他系统和无线电技术。以下描述出于示例目的描述了新空口(New Radio,NR)系统,并且在以下大部分描述中使用NR术语,但是这些技术也可应用于NR系统应用以外的应用, 如第6代(6th Generation,6G)通信系统。
为了便于理解本申请的实施方式,下面先介绍以下技术点。
1、关于神经网络的介绍。
人工智能目前在各个领域获得了广泛的应用。AI模块有多种实现方式,例如神经网络、决策树、支持向量机、贝叶斯分类器等。
本申请以神经网络为例进行说明,但是并不限定AI模块的具体类型,神经网络的结构如图1所示。
其中,神经网络由神经元组成,神经元的示意图如图2所示。其中a1,a2,…aK为输入,w为权值(乘性系数),b为偏置(加性系数),σ(.)为激活函数,z=a1w1+…+akwk+…+aKwK+b。常见的激活函数包括Sigmoid函数、tanh函数、修正线性单元(Rectified Linear Unit,ReLU)等等。
神经网络的参数可以通过优化算法进行优化。优化算法就是一种能够最小化或者最大化目标函数(有时候也叫损失函数)的一类算法。而目标函数往往是模型参数和数据的数学组合。例如给定数据X和其对应的标签Y,构建一个神经网络模型f(.),有了模型后,根据输入x就可以得到预测输出f(x),并且可以计算出预测值和真实值之间的差距(f(x)-Y),这个就是损失函数。如果找到合适的W,b使上述的损失函数的值达到最小,损失值越小,则说明模型越接近于真实情况。
目前常见的优化算法,基本都是基于误差(error)反向传播(Back Propagation,BP)算法。BP算法的基本思想是,学习过程由信号的正向传播与误差的反向传播两个过程组成。正向传播时,输入样本从输入层传入,经各隐藏层逐层处理后,传向输出层。若输出层的实际输出与期望的输出不符,则转入误差的反向传播阶段。误差反传是将输出误差以某种形式通过隐藏层向输入层逐层反传,并将误差分摊给各层的所有单元,从而获得各层单元的误差信号,此误差信号即作为修正各单元权值的依据。这种信号正向传播与误差反向传播的各层权值调整过程,是周而复始地进行的。权值不断调整的过程,也就是网络的学习训练过程。此过程一直进行到网络输出的误差减少到可接受的程度,或进行到预先设定的学习次数为止。
2、关于波束指示(beam indication)机制。
在经过波束测量和波束报告后,网络可以对下行与上行链路的信道或参考信号做波束指示,用于网络与终端(比如,用户设备(User Equipment,UE))之间建立波束链路,实现信道或参考信号的传输。
对于物理下行控制信道(Physical downlink control channel,PDCCH)的波束指示,网络使用无线资源控制(Radio resource management,RRC)信令为每个控制资源集(Control Resource Set,CORESET)配置K个传输配置指示(Transmission Configuration Indication,TCI)状态(state),当K>1时,由媒体接入控制(Medium Access Control,MAC)控制单元(Control Element,CE)指示或激活1个TCI state,当K=1时,不需要额外的MAC CE 命令。终端在监听PDCCH时,对CORESET内全部搜索空间(search space)使用相同准共址(Quasi-colocation,QCL),即相同的TCI state来监听PDCCH。该TCI状态中的参考信号(Reference Signal,RS)(例如周期信道状态信息参考信号资源(Channel State Information Reference Signal resource,CSI-RS resource)、半持续CSI-RS resource、同步信号块(Synchronization Signal and PBCH block,SSB)等)与终端专用(UE-specific)PDCCH解调参考信号(Demodulation Reference Signal,DMRS)端口是空间QCL的。终端根据该TCI状态即可获知使用哪个接收波束来接收PDCCH。
对于物理下行共享信道(Physical downlink shared channel,PDSCH)的波束指示,网络通过RRC信令配置X个TCI state,再使用MAC CE命令激活2Y个TCI state,然后通过下行控制信息(Downlink Control Information,DCI)的Y比特(bit)TCI域(field)来通知TCI状态,该TCI状态中的参考信号与要调度的PDSCH的DMRS端口是QCL的。UE根据该TCI状态即可获知使用哪个接收波束来接收PDSCH。
对于CSI-RS的波束指示,当CSI-RS类型为周期CSI-RS时,网络通过RRC信令为CSI-RS resource配置QCL信息。当CSI-RS类型为半持续CSI-RS时,网络通过MAC CE命令来从RRC配置的CSI-RS resource集合(set)中激活一个CSI-RS resource时指示其QCL信息。当CSI-RS类型为非周期CSI-RS时,网络通过RRC信令为CSI-RS resource配置QCL,并使用DCI来触发CSI-RS。
对于物理上行控制信道(Physical Uplink Control Channel,PUCCH)的波束指示,网络使用RRC信令通过参数PUCCH-空间关系信息(Spatial Relation information)为每个PUCCH resource配置spatial relation information,当为PUCCH resource配置的spatial relation information包含多个时,使用MAC CE指示或激活其中一个spatial relation information。当为PUCCH resource配置的spatial relation information只包含1个时,不需要额外的MAC CE命令。
对于PUSCH的波束指示,PUSCH的spatial relation信息是当PDCCH承载的DCI调度PUSCH时,DCI中的探测参考信号资源指示(Sounding Reference Signal resource indicator,SRI)field的每个SRI码点(code point)指示一个SRI,该SRI用于指示PUSCH的spatial relation information。
对于SRS的波束指示,当SRS类型为周期SRS时,网络通过RRC信令为SRS resource配置spatial relation information。当SRS类型为半持续SRS时,网络通过MAC CE命令来从RRC配置的一组spatial relation information中激活一个。当SRS类型为非周期SRS时,网络通过RRC信令为SRS resource配置spatial relation information。
对于进一步的波束指示改进,提出了统一(unified)传输配置指示(Transmission Configuration Indicator,TCI)state,简单来说就是通过一个DCI中的TCI域,指示后续的各参考信号以及多个信道的波束信息。
上述波束信息、spatial relation信息、空域接收滤波器(spatial domain transmission filter) 信息、空间滤波器(spatial filter)信息、TCI state信息、QCL信息、QCL参数、波束关联关系等,是近似相同的意思。
其中,下行波束信息通常可使用TCI state信息、QCL信息表示。上行波束信息通常可使用spatial relation信息表示。
3、关于波束测量和报告(beam measurement and beam reporting)。
模拟波束赋形是全带宽发射的,并且每个高频天线阵列的面板上每个极化方向阵元仅能以时分复用的方式发送模拟波束。模拟波束的赋形权值是通过调整射频前端移相器等设备的参数来实现。
目前在学术界和工业界,通常是使用轮询的方式进行模拟波束赋形向量的训练,即每个天线面板每个极化方向的阵元以时分复用方式依次在约定时间发送训练信号(即候选的赋形向量),终端经过测量后反馈波束报告,供网络侧在下一次传输业务时采用该训练信号来实现模拟波束发射。波束报告的内容通常包括最优的若干个发射波束标识以及测量出的每个发射波束的接收功率。
波束报告数量是通过网络配置给终端的参数进行确定的,通过RRC配置参数,配置终端的波束报告中应该包含的RS以及参考信号接收功率(Reference Signal Received Power,RSRP)的数量,数量配置的取值是1,2,3,4,默认值为1,此外,该数量限制是基于终端能力的,终端会先上报能支持的最大数量。
当终端波束报告中仅包含一个L1参考信号接收功率(Layer 1 reference signal received power,L1-RSRP)时,使用7比特(bit)的量化方法,量化步进为1dB,量化范围是-140dBm到-44dBm。当终端被指示的波束报告中包含多个L1-RSRP,或使能了基于组的波束报告(group based beam report)时,最强的RSRP量化使用7bit量化,其余RSRP量化使用4bit的差分量化方法,量化步进为2dB。
4、关于使用AI方法进行波束预测。
一种可能的方式如图3所示。使用部分波束对的RSRP作为输入,AI模型的输出则是所有波束对的RSRP结果。其中波束对是由发送波束和接收波束组成的。那该AI模型的输入数量是挑选出来的部分波束对的数量,输出数量则是所有波束对的数量。
额外还有增强波束预测性能的方法如图4所示。
在输入侧增加了关联信息,关联信息一般是挑选出来用于输入的波束对对应的角度相关信息,波束标识(Identity,ID)信息等。因此这种模型的输入数量还是与挑出来的部分波束对的数量相关,输出数量还是等于所有波束对的数量。
还有一种基于以上的改进型的方法如图5所示。
主要是通过AI模型改变期望信息,来影响AI模型的输出。
其中AI模型的输入类型包括以下至少之一:
(1)波束质量相关信息;
(2)波束信息;
(3)A端发送波束信息;
(4)B端接收波束信息;
(5)B端期望的波束信息;
(6)B端期望的B端接收波束信息;
(7)B端期望的A端发送波束信息;
(8)与波束质量相关信息的时间相关信息;
(9)期望的预测时间相关信息。
本文中波束质量信息包括但不限于以下至少之一类型:层1信号与干扰加噪声比(Layer 1 signal-to-noise and interference ratio,L1-SINR),层1参考信号接收功率(Layer1reference signal received power,L1-RSRP),层1参考信号接收质量(Reference Signal Received Quality,L1-RSRQ),层3信号与干扰加噪声比(Layer 3 signal-to-noise and interference ratio,L3-SINR),层3参考信号接收功率(Layer 3 reference signal received power,L3-RSRP),层3参考信号接收质量(Reference Signal Received Quality,L3-RSRQ)等;
本文中波束信息是指与波束报告包含的波束质量信息对应的关联信息,关联信息包含但不限于以下至少之一:波束ID信息,波束角度信息,波束增益信息,波束宽度信息,期望信息等。
其中,波束ID信息用于表征所述波束的身份识别的相关信息,包含但不限于以下至少之一:发送波束ID,接收波束ID,波束ID,所述波束对应的参考信号集合(set)ID,所述波束对应的参考信号resource ID,唯一标识的随机ID,额外AI网络处理后的编码值,波束角度信息,资源索引信息,信道状态信息参考信号资源指示符(CSI-RS Resource Indicator,CRI),同步信号块资源指示(SS/PBCH Block Resource Indicator,SSBRI)等。
波束角度信息用于表征所述波束对应的角度信息,包含但不限于以下至少之一:角度相关信息,发送角度相关信息,接收角度相关信息。
角度信息是用于表征角度或身份的相关信息,例如,角度,弧度,索引编码值,ID值,额外AI网络处理后的编码值等。
5、关于波束报告与波束资源配置。
关联关系如下:波束报告配置关联资源配置,资源配置关联波束资源集合配置,波束资源集合配置关联波束资源配置。
比如,CSI报告配置(CSI-ReportConfig)关联CSI资源配置(CSI-ResourceConfig),CSI-ResourceConfig关联资源集合(Resource Set)以及时域行为。
其中,(1)若使用CSI-RS资源集合,对应的是非零功率(Non-Zero Power,NZP)-CSI-RS-Resource Set,在该Resource Set中关联NZP-CSI-RS-Resource,时域行为用于指示CSI-RS资源集合关联的时域周期属性。
(2)若使用SSB资源集合,对应的是CSI-SSB-Resource Set,在该Resource Set中关联SSB索引(Index),此时时域行为无效。
一个CSI-ReportConfig(比如,波束报告配置)包含最多三个CSI-ResoureConfig(比如,波束资源配置),具体关系如下:
(1)非周期CSI-ReportConifg可以关联周期,半持续,半持续的CSI-ResourceConfig,最多可配置3个波束资源配置。
(a)配置1个CSI-ResourceConfig时,用于信道测量(Channel Measurement,CM)比如,包括L1-RSRP测量。
(b)配置2个CSI-ResourceConfig,第一个用于CM,第二个用于干扰测量(Interference Measurement,IM),比如第二个用于零功率资源的干扰测量。
(c)配置3个CSI-ResourceConfig,第一个用于CM,第二个用于IM,比如第二个用于零功率资源的干扰测量,第三个用于干扰测量,比如第三个用于非零功率资源的干扰测量。
(2)半持续CSI-ReportConifg可以关联周期,半持续的CSI-ResourceConfig,最多可配置2个波束资源配置。
(a)1个CSI-ResourceConfig,用于CM信道测量,比如包括L1-RSRP测量。
(b)2个CSI-ResourceConfig,第一个用于CM,第二个用于IM,比如第二个用于零功率资源的干扰测量。
(3)周期CSI-ReportConifg可以关联周期,半持续的CSI-ResourceConfig,最多可配置2个波束资源配置
(a)1个CSI-ResourceConfig,用于CM信道测量,比如包括L1-RSRP测量。
(b)2个CSI-ResourceConfig,第一个用于CM,第二个用于IM,比如第二个用于零功率资源的干扰测量。
其中,CSI-ReportConfig中关联的1个或多个CSI-ResourceConfig的时域行为一致。
对于周期和半持续的CSI resourceConfig中仅支持1个Resource set.但若报告(report)中支持基于组的波束报告(groupBasedbeamReporting),可配置2个set
对于非周期的CSI resourceConfig,不限制为1个集合,最多可以配置16个集合。
一个CSI-RS资源集合中最多支持64个NZP CSI-RS reousrces,当报告数量(reportQuantity)='无(none)','cri-RI-CQI','cri-RSRP'或'ssb-Index-RSRP',所有CSI-RS资源集合一共支持最多128个资源。
CSI-RS资源集合中关联重复(repetition)的信息,若被配置成开启(on),UE会假设CSI-RS资源集合中的所有CSI-RS资源发送时使用了相同的发送波束信息。若被配置成了关闭(off),UE不会假设这些资源使用相同的发送波束信息。也就是在CSI-RS资源集合中的repetition参数会控制该资源集合关联的所有资源的波束信息属性。
图6示出本申请实施例可应用的一种无线通信系统的框图。无线通信系统包括终端61和网络侧设备62。其中,无线通信系统可以是5G演进(5G-Advanced)或6G等具备无线AI功能的通信系统。
其中,终端61可以是手机、平板电脑(Tablet Personal Computer)、膝上型电脑(Laptop Computer)或称为笔记本电脑、个人数字助理(Personal Digital Assistant,PDA)、掌上电脑、上网本、超级移动个人计算机(ultra-mobile personal computer,UMPC)、移动上网装置(Mobile Internet Device,MID)、增强现实(augmented reality,AR)/虚拟现实(virtual reality,VR)设备、机器人、可穿戴式设备(Wearable Device)、车载设备(Vehicle User Equipment,VUE)、行人终端(Pedestrian User Equipment,PUE)、智能家居(具有无线通信功能的家居设备,如冰箱、电视、洗衣机或者家具等)、游戏机、个人计算机(personal computer,PC)、柜员机或者自助机等终端侧设备,可穿戴式设备包括:智能手表、智能手环、智能耳机、智能眼镜、智能首饰(智能手镯、智能手链、智能戒指、智能项链、智能脚镯、智能脚链等)、智能腕带、智能服装等。除了上述终端设备,本申请涉及的终端也可以是终端内的芯片,例如调制解调器(Modem)芯片,系统级芯片(System on Chip,SoC)。需要说明的是,在本申请实施例并不限定终端61的具体类型。
网络侧设备62可以包括接入网设备或核心网设备,其中,接入网设备也可以称为无线接入网设备、无线接入网(Radio Access Network,RAN)、无线接入网功能或无线接入网单元。接入网设备可以包括基站、无线局域网络(Wireless Local Area Networks,WLAN)接入点或无线保真(Wireless Fidelity,WiFi)节点等,基站可被称为节点B、演进节点B(evolved Node B,eNB)、接入点、基收发机站(Base Transceiver Station,BTS)、无线电基站、无线电收发机、基本服务集(Basic Service Set,BSS)、扩展服务集(Extended Service Set,ESS)、家用B节点、家用演进型B节点、发送接收点(Transmitting Receiving Point,TRP)或所述领域中其他某个合适的术语,只要达到相同的技术效果,所述基站不限于特定技术词汇,需要说明的是,在本申请实施例中仅以NR系统中的基站为例进行介绍,并不限定基站的具体类型。
核心网设备可以包含但不限于如下至少一项:核心网节点、核心网功能、移动管理实体(Mobility Management Entity,MME)、接入和移动管理功能(Access and Mobility Management Function,AMF)、会话管理功能(Session Management Function,SMF)、用户平面功能(User Plane Function,UPF)、策略控制功能(Policy Control Function,PCF)、策略与计费规则功能单元(Policy and Charging Rules Function,PCRF)、边缘应用服务发现功能(Edge Application Server Discovery Function,EASDF)、统一数据管理(Unified Data Management,UDM),统一数据仓储(Unified Data Repository,UDR)、归属用户服务器(Home Subscriber Server,HSS)、集中式网络配置(Centralized network configuration,CNC)、网络存储功能(Network Repository Function,NRF),网络开放功能(Network Exposure Function,NEF)、本地NEF(Local NEF,或L-NEF)、绑定支持功能(Binding Support Function,BSF)、应用功能(Application Function,AF)等。需要说明的是,在本申请实施例中仅以NR系统中的核心网设备为例进行介绍,并不限定核心网设备的具体类型。
下面结合附图,通过一些实施例及其应用场景对本申请实施例提供的资源配置方法、 装置、通信设备及可读存储介质进行详细地说明。
参见图7,本申请实施例提供一种资源配置方法,应用于终端,具体步骤包括:步骤701,步骤702和步骤703。
步骤701:终端接收第一波束报告配置信息,所述第一波束报告配置信息对应第一波束扫描资源组和第二波束扫描资源组;
也就是,所述第一波束报告配置信息可以包含或关联第一波束扫描资源组和第二波束扫描资源组。
步骤702:所述终端根据所述第一波束报告配置信息,对所述第二波束扫描资源组进行测量,确定第一波束信息;
本文中的第一波束信息也可以称为接收波束。
步骤703:所述终端通过所述第一波束信息,对所述第一波束扫描资源组进行测量;
其中,所述第一波束扫描资源组是具有不同波束假设的波束资源组和/或SSB资源组,所述第二波束扫描资源组是具有相同波束假设的波束资源组。
本文中的波束假设也可以称为发送波束假设,也就是第一波束扫描资源组可以是具有不同发送波束假设的波束资源组,第一波束扫描资源组也可以是具有不同发送波束假设的SSB资源组,第二波束扫描资源组可以具有相同发送波束假设的波束资源组。
本文中的资源组或资源集合中可以包括一个或多个资源,如果资源组或资源集合中包括一个资源时,该资源组或资源集合等同于该资源,比如波束资源组或资源集合中可以包括一个或多个波束资源,若波束资源组或资源集合中只有一个波束资源时,该波束资源组或资源集合等同于该波束资源。
其中,步骤703之后还可包括:所述终端根据第一波束报告配置信息,将第一波束扫描资源组的测量结果上报给基站。
可选地,具有不同波束假设的波束资源组等同于重复(repetition)属性配置为关闭(off)的CSI-RS资源集合内的CSI-RS资源组。
可选地,具有相同波束假设的波束资源组等同于重复(repetition)属性配置为开启(on)的CSI-RS资源集合内的资源组。
在本申请的一种实施方式中,所述第一波束扫描资源组包含N个波束扫描资源和/或波束扫描资源集合,其中波束扫描资源集合可以包括一个或多个波束扫描资源;所述第二波束扫描资源组包含M个波束扫描资源和/或波束扫描资源集合,其中波束扫描资源集合可以包括一个或多个波束扫描资源;其中,所述N大于或等于1,所述M大于或等于1。
比如,当N等于1,所述第一波束扫描资源组相当于第一波束扫描资源或者波束扫描资源集合,当M等于1,所述第二波束扫描资源组相当于第二波束扫描资源或者波束扫描资源集合。
又比如,当N大于1,所述第一波束扫描资源组包含第一波束扫描资源、第三波束扫描资源、第五波束扫描资源等,或者第一波束扫描资源组包含多个波束扫描资源集合,当 M大于1,所述第二波束扫描资源组包含第二波束扫描资源、第四波束扫描资源、第六波束扫描资源等,或者第二波束扫描资源组包含多个波束扫描资源集合。
在本申请的一种实施方式中,所述第二波束扫描资源组是具有相同发送波束假设的波束资源组可以理解为:
(1)第二波束扫描资源组中所有的波束资源的发送波束假设是相同的。
(2)第二波束扫描资源组包含多个波束扫描资源集合(比如M个波束扫描资源集合),每个所述波束扫描资源集合中的所有波束资源的发送波束假设都是相同的,对于不同的波束扫描资源集合,它们的波束资源可以相同发送波束假设的,或者也可以是不同发送波束假设的。
在本申请的一种实施方式中,所述第一波束报告配置信息包含或关联第一波束资源配置信息和第二波束资源配置信息,可选地,所述第一波束资源配置信息和第二波束资源配置信息用于信道测量或波束质量信息测量,所述第一波束资源配置信息对应所述第一波束扫描资源组,所述第二波束资源配置信息对应所述第二波束扫描资源组。
在本申请的一种实施方式中,所述第一波束报告配置信息对应一个波束资源配置信息,可选地,所述第一波束报告配置信息中用于信道测量或波束质量信息测量的配置信息包含或关联一个波束资源配置信息,其中,一个波束资源配置信息满足以下之一:
(1)所述一个波束资源配置信息关联所述第一波束扫描资源组和所述第二波束扫描资源组;
(2)所述一个波束资源配置信息关联所述第一波束扫描资源组,所述第一波束扫描资源组关联所述第二波束扫描资源组;
(3)在所述一个波束资源配置信息关联非零功率参考信号状态信息参考信号NZP-CSI-RS资源集合和SSB资源集合的情况下,所述SSB资源集合对应所述第一波束扫描资源组,所述NZP-CSI-RS资源集合对应所述第二波束扫描资源组,且所述第二波束扫描资源组的重复(repetition)属性配置为开启(on);
(4)所述一个波束资源配置信息关联所述第一波束扫描资源组,所述第一波束报告配置信息关联第二波束报告配置信息;
其中,所述第二波束报告配置信息满足以下一项或多项:
(a)所述第二波束报告配置信息关联所述第二波束扫描资源组,且所述第二波束扫描资源组的重复属性配置为开启;
(b)所述第二波束报告配置信息关联的反馈类型为无(none),即不反馈;
(c)所述第一波束报告配置信息和所述第二波束报告配置信息关联相同的第一属性,所述第一属性包括以下至少之一:时域类型,服务小区索引,波束报告时隙偏移,波束报告时隙周期,触发状态,基于组的波束报告(groupBasedBeamReporting)。
在本申请的一种实施方式中,所述第一波束扫描资源组用于确定所述第一波束报告配置信息指示的波束报告中的波束质量信息,所述第二波束扫描资源组用于确定所述终端的 第一波束信息,所述第一波束信息用于所述终端接收所述第一波束扫描资源组。
在本申请的一种实施方式中,在所述第一波束报告配置信息指示需要反馈波束质量信息的情况下,满足以下至少之一:
(1)所述第一波束报告配置信息指示的波束报告中的波束质量信息是根据所述第一波束扫描资源组确定的;
(2)所述第一波束报告配置信息指示的波束报告在反馈时,反馈所述第一波束扫描资源组确定的波束质量信息;
(3)所述第二波束扫描资源组对应的波束质量信息不反馈。
在本申请的一种实施方式中,在所述第二波束扫描资源组对应的波束质量信息不反馈的情况下,若所述第一波束报告配置信息指示的波束报告中关联位置指示信息,所述位置指示信息用于指示所述波束报告中包含的目标波束质量信息的波束位置,所述目标波束质量信息是根据所述第一波束扫描资源组确定的,即位置指示信息的不考虑第二波束扫描资源组中包含的波束扫描资源,也就是位置指示信息的开销与第二波束扫描资源组无关。
比如,第一波束扫描资源组包含32个资源,第二波束扫描资源组包含8个资源,位置指示信息用于指示所述波束报告中包含的目标波束质量信息的波束位置,目标波束质量信息对应于32个资源,由于不反馈第二波束扫描资源组对应的波束质量信息,位置指示信息的开销与第二波束扫描资源组无关,位置指示信息指示的资源是从32个资源里面指示的。
在本申请实施例中,不反馈接收波束扫描获得的波束质量信息以及波束报告中的位置指示信息的开销不需要考虑接收波束扫描资源,降低波束报告的反馈开销。
可选地,所述波束位置包括以下至少一项:波束资源标识;波束索引;波束资源索引;波束资源时域位置;波束时域位置;波束角度。
在本申请的一种实施方式中,所述第一波束扫描资源组的时域类型是周期类型或半持续类型。
在本申请的一种实施方式中,所述第一波束扫描资源组和第二波束扫描资源组满足以下至少之一:
(1)所述第一波束扫描资源组的时域类型与所述第二波束扫描资源组的时域类型相同;
(2)所述第一波束扫描资源组的时隙周期与所述第二波束扫描资源组的时隙周期相同;
(3)所述第一波束扫描资源组的触发状态与所述第二波束扫描资源组的触发状态相同。
在本申请的一种实施方式中,所述第二波束扫描资源组的波束资源时域位置在所述第一波束扫描资源组的波束资源时域位置之前。
在本申请的一种实施方式中,所述第一波束扫描资源组和第二波束扫描资源组满足以 下至少之一:
(1)在所述第二波束扫描资源组和第一波束扫描资源组的时域类型都是周期类型或半持续类型或非周期类型的情况下,所述第二波束扫描资源组中所有资源关联的时隙偏移都小于或等于所述第一波束扫描资源组中的所有资源关联的时隙偏移;
(2)在所述第二波束扫描资源组和第一波束扫描资源组的时域类型都是周期类型或半持续类型的情况下,所述第二波束扫描资源组中所有资源关联的时隙周期小于或等于所述第一波束扫描资源组中的所有资源关联的时隙周期;
(3)在所述第二波束扫描资源组中的最晚发送资源的发送时域位置与所述第一波束扫描资源组中最早发送资源的发送时域位置之间的时间间隔大于或等于最小时间间隔要求;
(4)在所述第二波束扫描资源组中的最早发送资源的发送时域位置与所述第一波束扫描资源组中最晚发送资源的发送时域位置之间的时间间隔小于或等于最大时间间隔要求。
可选地,最小时间间隔要求和/或最大时间间隔要求通过协议约定,网络配置,终端上报等至少之一方式确定。
在本申请的一种实施方式中,第一波束报告配置信息可以用于与AI模型相关的以下至少之一功能:AI模型训练,AI模型推理,AI模型微调,AI模型更新,AI模型数据获取,AI模型性能监测。
在本申请实施例中,终端接收网络侧设备发送的第一波束报告配置信息,该第一波束报告配置信息对应第一波束扫描资源组和第二波束扫描资源组,所述第一波束扫描资源组是具有不同发送波束假设的波束资源组和/或SSB资源组,所述第二波束扫描资源组是具有相同发送波束假设的波束资源组,所述终端根据所述第一波束报告配置信息,对所述第二波束扫描资源组进行测量,确定第一波束信息;所述终端通过所述第一波束信息,对所述第一波束扫描资源组进行测量,这样终端在获得发送波束质量信息之前,可以先进行接收波束扫描,从而确定终端的接收波束,可以确保终端使用正确的接收波束,进而提升AI模型预测的准确性。
参见图8,本申请实施例提供一种资源配置方法,应用于网络侧设备,具体步骤包括:步骤801。
步骤801:网络侧设备发送第一波束报告配置信息,所述第一波束报告配置信息对应第一波束扫描资源组和第二波束扫描资源组;
其中,所述第一波束扫描资源组是具有不同波束假设的波束资源组和/或SSB资源组,所述第二波束扫描资源组是具有相同波束假设的波束资源组。
其中,第一波束报告配置信息用于辅助终端对所述第二波束扫描资源组进行测量确定第一波束信息,所述第一波束信息用于对所述第二波束扫描资源组进行测量。
在本申请的一种实施方式中,所述第一波束扫描资源组包含N个波束扫描资源和/或 波束扫描资源集合;
所述第二波束扫描资源组包含M个波束扫描资源和/或波束扫描资源集合;
其中,所述N大于或等于1,M是大于或等于1。
在本申请的一种实施方式中,所述第二波束扫描资源组是具有相同发送波束假设的波束资源组可以理解为:
(1)第二波束扫描资源组中所有的波束资源的发送波束假设是相同的。
(2)第二波束扫描资源组包含多个波束扫描资源集合(比如M个波束扫描资源集合),每个所述波束扫描资源集合中的所有波束资源的发送波束假设都是相同的,对于不同的波束扫描资源集合,它们的波束资源可以相同发送波束假设的,或者也可以是不同发送波束假设的。
在本申请的一种实施方式中,所述第一波束报告配置信息包含或关联第一波束资源配置信息和第二波束资源配置信息,可选地,所述第一波束资源配置信息和第二波束资源配置信息用于信道测量或波束质量信息测量,所述第一波束资源配置信息对应所述第一波束扫描资源组,所述第二波束资源配置信息对应所述第二波束扫描资源组。
在本申请的一种实施方式中,所述第一波束报告配置信息对应一个波束资源配置信息,例如,所述第一波束报告配置信息中用于信道测量或波束质量信息测量的配置信息包含或关联一个波束资源配置信息,其中,一个波束资源配置信息满足以下之一:
(1)所述一个波束资源配置信息关联所述第一波束扫描资源组和所述第二波束扫描资源组;
(2)所述一个波束资源配置信息关联所述第一波束扫描资源组,所述第一波束扫描资源组关联所述第二波束扫描资源组;
(3)在所述一个波束资源配置信息关联非零功率参考信号状态信息参考信号NZP-CSI-RS资源集合和SSB资源集合的情况下,所述SSB资源集合对应所述第一波束扫描资源组,所述NZP-CSI-RS资源集合对应所述第二波束扫描资源组,且所述第二波束扫描资源组的重复属性配置为开启;
(4)所述一个波束资源配置信息关联所述第一波束扫描资源组,所述第一波束报告配置信息关联第二波束报告配置信息;
其中,所述第二波束报告配置信息满足以下一项或多项:
(a)所述第二波束报告配置信息关联所述第二波束扫描资源组,且所述第二波束扫描资源组的重复属性配置为开启;
(b)所述第二波束报告配置信息关联的反馈类型为无;
(c)所述第一波束报告配置信息和所述第二波束报告配置信息关联相同的第一属性,所述第一属性包括以下至少之一:时域类型,服务小区索引,波束报告时隙偏移,波束报告时隙周期,触发状态,基于组的波束报告。
在本申请的一种实施方式中,所述第一波束扫描资源组用于确定所述第一波束报告配 置信息指示的波束报告中的波束质量信息,所述第二波束扫描资源组用于确定终端的第一波束信息,所述第一波束信息用于所述终端接收所述第一波束扫描资源组。
在本申请的一种实施方式中,在所述第一波束报告配置信息指示需要反馈波束质量信息的情况下,满足以下至少之一:
(1)所述第一波束报告配置信息指示的波束报告中的波束质量信息是根据所述第一波束扫描资源组确定的;
(2)所述第一波束报告配置信息指示的波束报告在反馈时,反馈所述第一波束扫描资源组确定的波束质量信息;
(3)所述第二波束扫描资源组对应的波束质量信息不反馈。
在本申请的一种实施方式中,在所述第二波束扫描资源组对应的波束质量信息不反馈的情况下,若所述第一波束报告配置信息指示的波束报告中关联位置指示信息,所述位置指示信息用于指示所述波束报告中包含的目标波束质量信息的波束位置,所述目标波束质量信息是根据所述第一波束扫描资源组确定的。
在本申请的一种实施方式中,所述第一波束扫描资源组的时域类型是周期类型或半持续类型。
在本申请的一种实施方式中,所述第一波束扫描资源组和第二波束扫描资源组满足以下至少之一:
(1)所述第一波束扫描资源组的时域类型与所述第二波束扫描资源组的时域类型相同;
(2)所述第一波束扫描资源组的时隙周期与所述第二波束扫描资源组的时隙周期相同;
(3)所述第一波束扫描资源组的触发状态与所述第二波束扫描资源组的触发状态相同。
在本申请的一种实施方式中,所述第二波束扫描资源组的波束资源时域位置在所述第一波束扫描资源组的波束资源时域位置之前。
在本申请的一种实施方式中,所述第一波束扫描资源组和第二波束扫描资源组满足以下至少之一:
(1)在所述第二波束扫描资源组和第一波束扫描资源组的时域类型都是周期类型或半持续类型或非周期类型的情况下,所述第二波束扫描资源组中所有资源关联的时隙偏移都小于或等于所述第一波束扫描资源组中的所有资源关联的时隙偏移;
(2)在所述第二波束扫描资源组和第一波束扫描资源组的时域类型都是周期类型或半持续类型的情况下,所述第二波束扫描资源组中所有资源关联的时隙周期小于或等于所述第一波束扫描资源组中的所有资源关联的时隙周期;
(3)在所述第二波束扫描资源组中的最晚发送资源的发送时域位置与所述第一波束扫描资源组中最早发送资源的发送时域位置之间的时间间隔大于或等于最小时间间隔要 求;
(4)在所述第二波束扫描资源组中的最早发送资源的发送时域位置与所述第一波束扫描资源组中最晚发送资源的发送时域位置之间的时间间隔小于或等于最大时间间隔要求。
在本申请实施例中,网络侧设备发送第一波束报告配置信息,该第一波束报告配置信息对应第一波束扫描资源组和第二波束扫描资源组,所述第一波束扫描资源组是具有同发送波束假设的波束资源组和/或SSB资源组,所述第二波束扫描资源组是具有相同发送波束假设的波束资源组,通过上述配置方式,使得终端在获得发送波束质量信息之前,可以先进行接收波束扫描,从而确定终端的接收波束,可以确保终端使用正确的接收波束,进而提升AI模型预测的准确性。
参见图9,本申请实施例提供一种资源配置装置,应用于终端,装置900包括:
第一接收模块901,用于接收第一波束报告配置信息,所述第一波束报告配置信息对应第一波束扫描资源组和第二波束扫描资源组;
第一测量模块902,用于根据所述第一波束报告配置信息,对所述第二波束扫描资源组进行测量,确定第一波束信息;
第二测量模块903,用于通过所述第一波束信息,对所述第一波束扫描资源组进行测量;
其中,所述第一波束扫描资源组是具有不同波束假设的波束资源组和/或SSB资源组,所述第二波束扫描资源组是具有相同波束假设的波束资源组。
在本申请的一种实施方式中,所述第一波束扫描资源组包含N个波束扫描资源和/或波束扫描资源集合;
所述第二波束扫描资源组包含M个波束扫描资源和/或波束扫描资源集合;
其中,所述N大于或等于1,所述M大于或等于1。
在本申请的一种实施方式中,所述第二波束扫描资源组是具有相同发送波束假设的波束资源组可以理解为:
(1)第二波束扫描资源组中所有的波束资源的发送波束假设都是的。
(2)第二波束扫描资源组包含多个波束扫描资源集合(比如M个波束扫描资源集合),每个所述波束扫描资源集合中的所有波束资源的发送波束假设都是相同的,对于不同的波束扫描资源集合,波束资源可以相同发送波束假设的,或者也可以是不同发送波束假设的。
在本申请的一种实施方式中,所述第一波束报告配置信息包含或关联第一波束资源配置信息和第二波束资源配置信息,所述第一波束资源配置信息对应所述第一波束扫描资源组,所述第二波束资源配置信息对应所述第二波束扫描资源组。
在本申请的一种实施方式中,所述第一波束报告配置信息包含或关联一个波束资源配置信息,其中,一个波束资源配置信息满足以下之一:
(1)所述一个波束资源配置信息关联所述第一波束扫描资源组和所述第二波束扫描 资源组;
(2)所述一个波束资源配置信息关联所述第一波束扫描资源组,所述第一波束扫描资源组关联所述第二波束扫描资源组;
(3)在所述一个波束资源配置信息关联NZP-CSI-RS资源集合和SSB资源集合的情况下,所述SSB资源集合对应所述第一波束扫描资源组,所述NZP-CSI-RS资源集合对应所述第二波束扫描资源组,且所述第二波束扫描资源组的重复属性配置为开启;
(4)所述一个波束资源配置信息关联所述第一波束扫描资源组,所述第一波束报告配置信息关联第二波束报告配置信息;
其中,所述第二波束报告配置信息满足以下一项或多项:
(a)所述第二波束报告配置信息关联所述第二波束扫描资源组,且所述第二波束扫描资源组的重复属性配置为开启;
(b)所述第二波束报告配置信息关联的反馈类型为无;
(c)所述第一波束报告配置信息和所述第二波束报告配置信息关联相同的第一属性,所述第一属性包括以下至少之一:时域类型,服务小区索引,波束报告时隙偏移,波束报告时隙周期,触发状态,基于组的波束报告。
在本申请的一种实施方式中,所述第一波束扫描资源组用于确定所述第一波束报告配置信息指示的波束报告中的波束质量信息,所述第二波束扫描资源组用于确定所述终端的第一波束信息,所述第一波束信息用于所述终端接收所述第一波束扫描资源组。
在本申请的一种实施方式中,在所述第一波束报告配置信息指示需要反馈波束质量信息的情况下,满足以下至少之一:
(1)所述第一波束报告配置信息指示的波束报告中的波束质量信息是根据所述第一波束扫描资源组确定的;
(2)所述第一波束报告配置信息指示的波束报告在反馈时,反馈所述第一波束扫描资源组确定的波束质量信息;
(3)所述第二波束扫描资源组对应的波束质量信息不反馈。
在本申请的一种实施方式中,在所述第二波束扫描资源组对应的波束质量信息不反馈的情况下,若所述第一波束报告配置信息指示的波束报告中关联位置指示信息,所述位置指示信息用于指示所述波束报告中包含的目标波束质量信息的波束位置,所述目标波束质量信息是根据所述第一波束扫描资源组确定的。
可选地,所述波束位置包括以下至少一项:波束资源标识;波束索引;波束资源索引;波束资源时域位置;波束时域位置;波束角度。
在本申请的一种实施方式中,所述第一波束扫描资源组的时域类型是周期类型或半持续类型。
在本申请的一种实施方式中,所述第一波束扫描资源组和第二波束扫描资源组满足以下至少之一:
(1)所述第一波束扫描资源组的时域类型与所述第二波束扫描资源组的时域类型相同;
(2)所述第一波束扫描资源组的时隙周期与所述第二波束扫描资源组的时隙周期相同;
(3)所述第一波束扫描资源组的触发状态与所述第二波束扫描资源组的触发状态相同。
在本申请的一种实施方式中,所述第二波束扫描资源组的波束资源时域位置在所述第一波束扫描资源组的波束资源时域位置之前。
在本申请的一种实施方式中,所述第一波束扫描资源组和第二波束扫描资源组满足以下至少之一:
(1)在所述第二波束扫描资源组和第一波束扫描资源组的时域类型都是周期类型或半持续类型或非周期类型的情况下,所述第二波束扫描资源组中所有资源关联的时隙偏移都小于或等于所述第一波束扫描资源组中的所有资源关联的时隙偏移;
(2)在所述第二波束扫描资源组和第一波束扫描资源组的时域类型都是周期类型或半持续类型的情况下,所述第二波束扫描资源组中所有资源关联的时隙周期小于或等于所述第一波束扫描资源组中的所有资源关联的时隙周期;
(3)在所述第二波束扫描资源组中的最晚发送资源的发送时域位置与所述第一波束扫描资源组中最早发送资源的发送时域位置之间的时间间隔大于或等于最小时间间隔要求;
(4)在所述第二波束扫描资源组中的最早发送资源的发送时域位置与所述第一波束扫描资源组中最晚发送资源的发送时域位置之间的时间间隔小于或等于最大时间间隔要求。
本申请实施例提供的装置能够实现图7的方法实施例实现的各个过程,并达到相同的技术效果,为避免重复,这里不再赘述。
参见图10,本申请实施例提供一种资源配置装置,应用于网络侧设备,装置1000包括:
第一发送模块1001,用于发送第一波束报告配置信息,所述第一波束报告配置信息对应第一波束扫描资源组和第二波束扫描资源组;
其中,所述第一波束扫描资源组是具有不同波束假设的波束资源组和/或SSB资源组,所述第二波束扫描资源组是具有相同波束假设的波束资源组。
其中,第一波束报告配置信息用于辅助终端对所述第二波束扫描资源组进行测量确定第一波束信息,所述第一波束信息用于对所述第二波束扫描资源组进行测量。
在本申请的一种实施方式中,所述第一波束扫描资源组包含N个波束扫描资源和/或波束扫描资源集合;
所述第二波束扫描资源组包含M个波束扫描资源和/或波束扫描资源集合;
其中,所述N大于或等于1,M是大于或等于1。
在本申请的一种实施方式中,所述第二波束扫描资源组是具有相同发送波束假设的波束资源组可以理解为:
(1)第二波束扫描资源组中所有的波束资源的发送波束假设都是相同的。
(2)第二波束扫描资源组包含多个波束扫描资源集合(比如M个波束扫描资源集合),每个所述波束扫描资源集合中的所有波束资源的发送波束假设都是相同的,对于不同的波束扫描资源集合,波束资源可以相同发送波束假设的,或者也可以是不同发送波束假设的。
在本申请的一种实施方式中,所述第一波束报告配置信息包含或关联第一波束资源配置信息和第二波束资源配置信息,所述第一波束资源配置信息对应所述第一波束扫描资源组,所述第二波束资源配置信息对应所述第二波束扫描资源组。
在本申请的一种实施方式中,所述第一波束报告配置信息包含或关联一个波束资源配置信息,其中,一个波束资源配置信息满足以下之一:
(1)所述一个波束资源配置信息关联所述第一波束扫描资源组和所述第二波束扫描资源组;
(2)所述一个波束资源配置信息关联所述第一波束扫描资源组,所述第一波束扫描资源组关联所述第二波束扫描资源组;
(3)在所述一个波束资源配置信息关联NZP-CSI-RS资源集合和SSB资源集合的情况下,所述SSB资源集合对应所述第一波束扫描资源组,所述NZP-CSI-RS资源集合对应所述第二波束扫描资源组,且所述第二波束扫描资源组的重复属性配置为开启;
(4)所述一个波束资源配置信息关联所述第一波束扫描资源组,所述第一波束报告配置信息关联第二波束报告配置信息;
其中,所述第二波束报告配置信息满足以下一项或多项:
(a)所述第二波束报告配置信息关联所述第二波束扫描资源组,且所述第二波束扫描资源组的重复属性配置为开启;
(b)所述第二波束报告配置信息关联的反馈类型为无;
(c)所述第一波束报告配置信息和所述第二波束报告配置信息关联相同的第一属性,所述第一属性包括以下至少之一:时域类型,服务小区索引,波束报告时隙偏移,波束报告时隙周期,触发状态,基于组的波束报告。
在本申请的一种实施方式中,所述第一波束扫描资源组用于确定所述第一波束报告配置信息指示的波束报告中的波束质量信息,所述第二波束扫描资源组用于确定终端的第一波束信息,所述第一波束信息用于所述终端接收所述第一波束扫描资源组。
在本申请的一种实施方式中,在所述第一波束报告配置信息指示需要反馈波束质量信息的情况下,满足以下至少之一:
(1)所述第一波束报告配置信息指示的波束报告中的波束质量信息是根据所述第一波束扫描资源组确定的;
(2)所述第一波束报告配置信息指示的波束报告在反馈时,反馈所述第一波束扫描资源组确定的波束质量信息;
(3)所述第二波束扫描资源组对应的波束质量信息不反馈。
在本申请的一种实施方式中,在所述第二波束扫描资源组对应的波束质量信息不反馈的情况下,若所述第一波束报告配置信息指示的波束报告中关联位置指示信息,所述位置指示信息用于指示所述波束报告中包含的目标波束质量信息的波束位置,所述目标波束质量信息是根据所述第一波束扫描资源组确定的。
在本申请的一种实施方式中,所述第一波束扫描资源组的时域类型是周期类型或半持续类型。
在本申请的一种实施方式中,所述第一波束扫描资源组和第二波束扫描资源组满足以下至少之一:
(1)所述第一波束扫描资源组的时域类型与所述第二波束扫描资源组的时域类型相同;
(2)所述第一波束扫描资源组的时隙周期与所述第二波束扫描资源组的时隙周期相同;
(3)所述第一波束扫描资源组的触发状态与所述第二波束扫描资源组的触发状态相同。
在本申请的一种实施方式中,所述第二波束扫描资源组的波束资源时域位置在所述第一波束扫描资源组的波束资源时域位置之前。
在本申请的一种实施方式中,所述第一波束扫描资源组和第二波束扫描资源组满足以下至少之一:
(1)在所述第二波束扫描资源组和第一波束扫描资源组的时域类型都是周期类型或半持续类型或非周期类型的情况下,所述第二波束扫描资源组中所有资源关联的时隙偏移都小于或等于所述第一波束扫描资源组中的所有资源关联的时隙偏移;
(2)在所述第二波束扫描资源组和第一波束扫描资源组的时域类型都是周期类型或半持续类型的情况下,所述第二波束扫描资源组中所有资源关联的时隙周期小于或等于所述第一波束扫描资源组中的所有资源关联的时隙周期;
(3)在所述第二波束扫描资源组中的最晚发送资源的发送时域位置与所述第一波束扫描资源组中最早发送资源的发送时域位置之间的时间间隔大于或等于最小时间间隔要求;
(4)在所述第二波束扫描资源组中的最早发送资源的发送时域位置与所述第一波束扫描资源组中最晚发送资源的发送时域位置之间的时间间隔小于或等于最大时间间隔要求。
本申请实施例提供的装置能够实现图8的方法实施例实现的各个过程,并达到相同的技术效果,为避免重复,这里不再赘述。
图11为实现本申请实施例的一种终端的硬件结构示意图。该终端1100包括但不限于:射频单元1101、网络模块1102、音频输出单元1103、输入单元1104、传感器1105、显示单元1106、用户输入单元1107、接口单元1108、存储器1109以及处理器1110等中的至少部分部件。
本领域技术人员可以理解,终端1100还可以包括给各个部件供电的电源(比如电池),电源可以通过电源管理系统与处理器1110逻辑相连,从而通过电源管理系统实现管理充电、放电、以及功耗管理等功能。图11中示出的终端结构并不构成对终端的限定,终端可以包括比图示更多或更少的部件,或者组合某些部件,或者不同的部件布置,在此不再赘述。
应理解的是,本申请实施例中,输入单元1104可以包括图形处理单元(Graphics Processing Unit,GPU)11041和麦克风11042,图形处理器11041对在视频捕获模式或图像捕获模式中由图像捕获装置(如摄像头)获得的静态图片或视频的图像数据进行处理。显示单元1106可包括显示面板11061,可以采用液晶显示器、有机发光二极管等形式来配置显示面板11061。用户输入单元1107包括触控面板11071以及其他输入设备11072中的至少一种。触控面板11071,也称为触摸屏。触控面板11071可包括触摸检测装置和触摸控制器两个部分。其他输入设备11072可以包括但不限于物理键盘、功能键(比如音量控制按键、开关按键等)、轨迹球、鼠标、操作杆,在此不再赘述。
本申请实施例中,射频单元1101接收来自网络侧设备的下行数据后,可以传输给处理器1110进行处理;另外,射频单元1101可以向网络侧设备发送上行数据。通常,射频单元1101包括但不限于天线、放大器、收发信机、耦合器、低噪声放大器、双工器等。
存储器1109可用于存储软件程序或指令以及各种数据。存储器1109可主要包括存储程序或指令的第一存储区和存储数据的第二存储区,其中,第一存储区可存储操作系统、至少一个功能所需的应用程序或指令(比如声音播放功能、图像播放功能等)等。此外,存储器1109可以包括易失性存储器或非易失性存储器,或者,存储器1109可以包括易失性和非易失性存储器两者。其中,非易失性存储器可以是只读存储器(Read-Only Memory,ROM)、可编程只读存储器(Programmable ROM,PROM)、可擦除可编程只读存储器(Erasable PROM,EPROM)、电可擦除可编程只读存储器(Electrically EPROM,EEPROM)或闪存。易失性存储器可以是随机存取存储器(Random Access Memory,RAM),静态随机存取存储器(Static RAM,SRAM)、动态随机存取存储器(Dynamic RAM,DRAM)、同步动态随机存取存储器(Synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(Double Data Rate SDRAM,DDRSDRAM)、增强型同步动态随机存取存储器(Enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(Synch link DRAM,SLDRAM)和直接内存总线随机存取存储器(Direct Rambus RAM,DRRAM)。本申请实施例中的存储器1109包括但不限于这些和任意其它适合类型的存储器。
处理器1110可包括一个或多个处理单元;可选地,处理器1110集成应用处理器和调 制解调处理器,其中,应用处理器主要处理涉及操作系统、用户界面和应用程序等的操作,调制解调处理器主要处理无线通信信号,如基带处理器。可以理解的是,上述调制解调处理器也可以不集成到处理器1110中。
本申请实施例提供的终端能够实现图7的方法实施例实现的各个过程,并达到相同的技术效果,为避免重复,这里不再赘述。
请参阅图12,图12是本申请实施例应用的网络侧设备的结构图,如图12所示,通信设备1200包括:处理器1201、收发机1202、存储器1203和总线接口,其中,处理器1201可以负责管理总线架构和通常的处理。存储器1203可以存储处理器1201在执行操作时所使用的数据。
在本申请的一个实施例中,通信设备1200还包括:存储在存储器1203并可在处理器1201上运行的程序,程序被处理器1201执行时实现以上图8所示方法中的步骤。
在图12中,总线架构可以包括任意数量的互联的总线和桥,具体由处理器1201代表的一个或多个处理器和存储器1203代表的存储器的各种电路链接在一起。总线架构还可以将诸如外围设备、稳压器和功率管理电路等之类的各种其他电路链接在一起,这些都是本领域所公知的,因此,本文不再对其进行进一步描述。总线接口提供接口。收发机1202可以是多个元件,即包括发送机和接收机,提供用于在传输介质上与各种其他装置通信的单元。
如图13所示,本申请实施例还提供一种通信设备1300,包括处理器1301和存储器1302,存储器1302上存储有可在所述处理器1301上运行的程序或指令,例如,该通信设备1300为终端时,该程序或指令被处理器1301执行时实现上述图7方法实施例的各个步骤,该通信设备1300为网络侧设备时,该程序或指令被处理器1301执行时实现上述图8方法实施例的各个步骤且能达到相同的技术效果,为避免重复,这里不再赘述。
本申请实施例还提供一种可读存储介质,所述可读存储介质上存储有程序或指令,该程序或指令被处理器执行时实现图7或图8方法及上述各个实施例的各个过程,且能达到相同的技术效果,为避免重复,这里不再赘述。
其中,所述处理器为上述实施例中所述的终端中的处理器。所述可读存储介质,包括计算机可读存储介质,如计算机只读存储器ROM、随机存取存储器RAM、磁碟或者光盘等。
本申请实施例另提供了一种芯片,所述芯片包括处理器和通信接口,所述通信接口和所述处理器耦合,所述处理器用于运行程序或指令,实现图7或图8所示及上述各个方法实施例的各个过程,且能达到相同的技术效果,为避免重复,这里不再赘述。
应理解,本申请实施例提到的芯片还可以称为系统级芯片,系统芯片,芯片系统或片上系统芯片等。
本申请实施例另提供了一种计算机程序/程序产品,所述计算机程序/程序产品被存储在存储介质中,所述计算机程序/程序产品被至少一个处理器执行以实现图7或图8所示 及上述各个方法实施例的各个过程,且能达到相同的技术效果,为避免重复,这里不再赘述。
本申请实施例还提供一种通信系统,所述通信系统包括终端与网络侧设备,所述终端用于执行如图7及上述各个方法实施例的各个过程,所述网络侧设备用于执行如图8及上述各个方法实施例的各个过程,且能达到相同的技术效果,为避免重复,这里不再赘述。
需要说明的是,在本文中,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者装置不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者装置所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括该要素的过程、方法、物品或者装置中还存在另外的相同要素。此外,需要指出的是,本申请实施方式中的方法和装置的范围不限按示出或讨论的顺序来执行功能,还可包括根据所涉及的功能按基本同时的方式或按相反的顺序来执行功能,例如,可以按不同于所描述的次序来执行所描述的方法,并且还可以添加、省去、或组合各种步骤。另外,参照某些示例所描述的特征可在其他示例中被组合。
通过以上的实施方式的描述,本领域的技术人员可以清楚地了解到上述实施例方法可借助软件加必需的通用硬件平台的方式来实现,当然也可以通过硬件,但很多情况下前者是更佳的实施方式。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分可以以计算机软件产品的形式体现出来,该计算机软件产品存储在一个存储介质(如ROM/RAM、磁碟、光盘)中,包括若干指令用以使得一台终端(可以是手机,计算机,服务器,空调器,或者网络设备等)执行本申请各个实施例所述的方法。
上面结合附图对本申请的实施例进行了描述,但是本申请并不局限于上述的具体实施方式,上述的具体实施方式仅仅是示意性的,而不是限制性的,本领域的普通技术人员在本申请的启示下,在不脱离本申请宗旨和权利要求所保护的范围情况下,还可做出很多形式,均属于本申请的保护之内。

Claims (28)

  1. 一种资源配置方法,包括:
    终端接收第一波束报告配置信息,所述第一波束报告配置信息对应第一波束扫描资源组和第二波束扫描资源组;
    所述终端根据所述第一波束报告配置信息,对所述第二波束扫描资源组进行测量,确定第一波束信息;
    所述终端通过所述第一波束信息,对所述第一波束扫描资源组进行测量;
    其中,所述第一波束扫描资源组是具有不同波束假设的波束资源组和/或同步信号块SSB资源组,所述第二波束扫描资源组是具有相同波束假设的波束资源组。
  2. 根据权利要求1所述的方法,其中,所述第一波束扫描资源组包含N个波束扫描资源和/或波束扫描资源集合;
    所述第二波束扫描资源组包含M个波束扫描资源和/或波束扫描资源集合;
    其中,所述N大于或等于1,所述M大于或等于1。
  3. 根据权利要求1所述的方法,其中,所述第二波束扫描资源组的所有波束资源的波束假设是相同的,或者,所述第二波束扫描资源组包含多个波束扫描资源集合,每个所述波束扫描资源集合中的所有波束资源的波束假设都是相同的。
  4. 根据权利要求1所述的方法,其中,所述第一波束报告配置信息包含或关联第一波束资源配置信息和第二波束资源配置信息,所述第一波束资源配置信息对应所述第一波束扫描资源组,所述第二波束资源配置信息对应所述第二波束扫描资源组。
  5. 根据权利要求1所述的方法,其中,所述第一波束报告配置信息对应一个波束资源配置信息;
    所述一个波束资源配置信息关联所述第一波束扫描资源组和所述第二波束扫描资源组;
    或者,
    所述一个波束资源配置信息关联所述第一波束扫描资源组,所述第一波束扫描资源组关联所述第二波束扫描资源组;
    或者,
    在所述一个波束资源配置信息关联非零功率参考信号状态信息参考信号NZP-CSI-RS资源集合和SSB资源集合的情况下,所述SSB资源集合对应所述第一波束扫描资源组,所述NZP-CSI-RS资源集合对应所述第二波束扫描资源组,且所述第二波束扫描资源组的重复属性配置为开启;
    或者,
    所述一个波束资源配置信息关联所述第一波束扫描资源组,所述第一波束报告配置信息关联第二波束报告配置信息;
    其中,所述第二波束报告配置信息满足以下一项或多项:
    所述第二波束报告配置信息关联所述第二波束扫描资源组,且所述第二波束扫描资源组的重复属性配置为开启;
    所述第二波束报告配置信息关联的反馈类型为无;
    所述第一波束报告配置信息和所述第二波束报告配置信息关联相同的第一属性,所述第一属性包括以下至少之一:时域类型,服务小区索引,波束报告时隙偏移,波束报告时隙周期,触发状态,基于组的波束报告。
  6. 根据权利要求1所述的方法,其中,所述第一波束扫描资源组用于确定所述第一波束报告配置信息指示的波束报告中的波束质量信息,所述第二波束扫描资源组用于确定所述终端的第一波束信息。
  7. 根据权利要求1所述的方法,其中,在所述第一波束报告配置信息指示需要反馈波束质量信息的情况下,满足以下至少之一:
    所述第一波束报告配置信息指示的波束报告中的波束质量信息是根据所述第一波束扫描资源组确定的;
    所述第一波束报告配置信息指示的波束报告在反馈时,反馈所述第一波束扫描资源组确定的波束质量信息;
    所述第二波束扫描资源组对应的波束质量信息不反馈。
  8. 根据权利要求7所述的方法,其中,
    在所述第二波束扫描资源组对应的波束质量信息不反馈的情况下,若所述第一波束报告配置信息指示的波束报告中关联位置指示信息,所述位置指示信息用于指示所述波束报告中包含的目标波束质量信息的波束位置,所述目标波束质量信息是根据所述第一波束扫描资源组确定的。
  9. 根据权利要求1所述的方法,其中,所述第一波束扫描资源组的时域类型是周期类型或半持续类型。
  10. 根据权利要求1所述的方法,其中,所述第一波束扫描资源组和第二波束扫描资源组满足以下至少之一:
    所述第一波束扫描资源组的时域类型与所述第二波束扫描资源组的时域类型相同;
    所述第一波束扫描资源组的时隙周期与所述第二波束扫描资源组的时隙周期相同;
    所述第一波束扫描资源组的触发状态与所述第二波束扫描资源组的触发状态相同。
  11. 根据权利要求1所述的方法,其中,所述第二波束扫描资源组的波束资源时域位置在所述第一波束扫描资源组的波束资源时域位置之前。
  12. 根据权利要求11所述的方法,其中,所述第一波束扫描资源组和第二波束扫描资源组满足以下至少之一:
    在所述第二波束扫描资源组和第一波束扫描资源组的时域类型都是周期类型或半持续类型或非周期类型的情况下,所述第二波束扫描资源组中所有资源关联的时隙偏移都小 于或等于所述第一波束扫描资源组中的所有资源关联的时隙偏移;
    在所述第二波束扫描资源组和第一波束扫描资源组的时域类型都是周期类型或半持续类型的情况下,所述第二波束扫描资源组中所有资源关联的时隙周期小于或等于所述第一波束扫描资源组中的所有资源关联的时隙周期;
    在所述第二波束扫描资源组中的最晚发送资源的发送时域位置与所述第一波束扫描资源组中最早发送资源的发送时域位置之间的时间间隔大于或等于最小时间间隔要求;
    在所述第二波束扫描资源组中的最早发送资源的发送时域位置与所述第一波束扫描资源组中最晚发送资源的发送时域位置之间的时间间隔小于或等于最大时间间隔要求。
  13. 一种资源配置方法,包括:
    网络侧设备发送第一波束报告配置信息,所述第一波束报告配置信息对应第一波束扫描资源组和第二波束扫描资源组;
    其中,所述第一波束扫描资源组是具有不同波束假设的波束资源组和/或SSB资源组,所述第二波束扫描资源组是具有相同波束假设的波束资源组。
  14. 根据权利要求13所述的方法,其中,所述第一波束扫描资源组包含N个波束扫描资源和/或波束扫描资源集合;
    所述第二波束扫描资源组包含M个波束扫描资源和/或波束扫描资源集合;
    其中,所述N大于或等于1,所述M大于或等于1。
  15. 根据权利要求13所述的方法,其中,所述第二波束扫描资源组的所有波束资源的波束假设是相同的,或者,所述第二波束扫描资源组包含多个波束扫描资源集合,每个所述波束扫描资源集合中的所有波束资源的波束假设都是相同的。
  16. 根据权利要求13所述的方法,其中,所述第一波束报告配置信息包含或关联第一波束资源配置信息和第二波束资源配置信息,所述第一波束资源配置信息对应所述第一波束扫描资源组,所述第二波束资源配置信息对应所述第二波束扫描资源组。
  17. 根据权利要求13所述的方法,其中,所述第一波束报告配置信息对应一个波束资源配置信息;
    所述一个波束资源配置信息关联所述第一波束扫描资源组和所述第二波束扫描资源组;
    或者,
    所述一个波束资源配置信息关联所述第一波束扫描资源组,所述第一波束扫描资源组关联所述第二波束扫描资源组;
    或者,
    在所述一个波束资源配置信息关联NZP-CSI-RS资源集合和SSB资源集合的情况下,所述SSB资源集合对应所述第一波束扫描资源组,所述NZP-CSI-RS资源集合对应所述第二波束扫描资源组,且所述第二波束扫描资源组的重复属性配置为开启;
    或者,
    所述一个波束资源配置信息关联所述第一波束扫描资源组,所述第一波束报告配置信息关联第二波束报告配置信息;
    其中,所述第二波束报告配置信息满足以下一项或多项:
    所述第二波束报告配置信息关联所述第二波束扫描资源组,且所述第二波束扫描资源组的重复属性配置为开启;
    所述第二波束报告配置信息关联的反馈类型为无;
    所述第一波束报告配置信息和所述第二波束报告配置信息关联相同的第一属性,所述第一属性包括以下至少之一:时域类型,服务小区索引,波束报告时隙偏移,波束报告时隙周期,触发状态,基于组的波束报告。
  18. 根据权利要求13所述的方法,其中,所述第一波束扫描资源组用于确定所述第一波束报告配置信息指示的波束报告中的波束质量信息,所述第二波束扫描资源组用于确定终端的第一波束信息。
  19. 根据权利要求13所述的方法,其中,在所述第一波束报告配置信息指示需要反馈波束质量信息的情况下,满足以下至少之一:
    所述第一波束报告配置信息指示的波束报告中的波束质量信息是根据所述第一波束扫描资源组确定的;
    所述第一波束报告配置信息指示的波束报告在反馈时,反馈所述第一波束扫描资源组确定的波束质量信息;
    所述第二波束扫描资源组对应的波束质量信息不反馈。
  20. 根据权利要求13所述的方法,其中,在所述第二波束扫描资源组对应的波束质量信息不反馈的情况下,若所述第一波束报告配置信息指示的波束报告中关联位置指示信息,所述位置指示信息用于指示所述波束报告中包含的目标波束质量信息的波束位置,所述目标波束质量信息是根据所述第一波束扫描资源组确定的。
  21. 根据权利要求13所述的方法,其中,所述第一波束扫描资源组的时域类型是周期类型或半持续类型。
  22. 根据权利要求13所述的方法,其中,所述第一波束扫描资源组和第二波束扫描资源组满足以下至少之一:
    所述第一波束扫描资源组的时域类型与所述第二波束扫描资源组的时域类型相同;
    所述第一波束扫描资源组的时隙周期与所述第二波束扫描资源组的时隙周期相同;
    所述第一波束扫描资源组的触发状态与所述第二波束扫描资源组的触发状态相同。
  23. 根据权利要求13所述的方法,其中,所述第二波束扫描资源组的波束资源时域位置在所述第一波束扫描资源组的波束资源时域位置之前。
  24. 根据权利要求23所述的方法,其中,所述第一波束扫描资源组和第二波束扫描资源组满足以下至少之一:
    在所述第二波束扫描资源组和第一波束扫描资源组的时域类型都是周期类型或半持 续类型或非周期类型的情况下,所述第二波束扫描资源组中所有资源关联的时隙偏移都小于或等于所述第一波束扫描资源组中的所有资源关联的时隙偏移;
    在所述第二波束扫描资源组和第一波束扫描资源组的时域类型都是周期类型或半持续类型的情况下,所述第二波束扫描资源组中所有资源关联的时隙周期小于或等于所述第一波束扫描资源组中的所有资源关联的时隙周期;
    在所述第二波束扫描资源组中的最晚发送资源的发送时域位置与所述第一波束扫描资源组中最早发送资源的发送时域位置之间的时间间隔大于或等于最小时间间隔要求;
    在所述第二波束扫描资源组中的最早发送资源的发送时域位置与所述第一波束扫描资源组中最晚发送资源的发送时域位置之间的时间间隔小于或等于最大时间间隔要求。
  25. 一种资源配置装置,应用于终端,所述装置包括:
    第一接收模块,用于接收第一波束报告配置信息,所述第一波束报告配置信息对应第一波束扫描资源组和第二波束扫描资源组;
    第一测量模块,用于根据所述第一波束报告配置信息,对所述第二波束扫描资源组进行测量,确定第一波束信息;
    第二测量模块,用于通过所述第一波束信息,对所述第一波束扫描资源组进行测量;
    其中,所述第一波束扫描资源组是具有不同波束假设的波束资源组和/或SSB资源组,所述第二波束扫描资源组是具有相同波束假设的波束资源组。
  26. 一种资源配置装置,应用于网络侧设备,所述装置包括:
    第一发送模块,用于发送第一波束报告配置信息,所述第一波束报告配置信息对应第一波束扫描资源组和第二波束扫描资源组;
    其中,所述第一波束扫描资源组是具有不同波束假设的波束资源组和/或SSB资源组,所述第二波束扫描资源组是具有相同波束假设的波束资源组。
  27. 一种通信设备,包括处理器,存储器及存储在所述存储器上并可在所述处理器上运行的程序或指令,所述程序或指令被所述处理器执行时实现如权利要求1至24中任一项所述的方法的步骤。
  28. 一种可读存储介质,所述可读存储介质上存储程序或指令,所述程序或指令被处理器执行时实现如权利要求1至24中任一项所述的方法的步骤。
PCT/CN2023/126100 2022-10-31 2023-10-24 资源配置方法、装置、通信设备及可读存储介质 WO2024093713A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202211352336.5 2022-10-31
CN202211352336.5A CN117997397A (zh) 2022-10-31 2022-10-31 资源配置方法、装置、通信设备及可读存储介质

Publications (1)

Publication Number Publication Date
WO2024093713A1 true WO2024093713A1 (zh) 2024-05-10

Family

ID=90891561

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/126100 WO2024093713A1 (zh) 2022-10-31 2023-10-24 资源配置方法、装置、通信设备及可读存储介质

Country Status (2)

Country Link
CN (1) CN117997397A (zh)
WO (1) WO2024093713A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020057383A1 (zh) * 2018-09-18 2020-03-26 华为技术有限公司 数据传输的方法和装置
CN112312455A (zh) * 2019-07-31 2021-02-02 成都华为技术有限公司 波束测量方法及装置
US20210336682A1 (en) * 2020-04-24 2021-10-28 Qualcomm Incorporated Reporting quantized user equipment (ue) orientation for beam selection
CN113783593A (zh) * 2021-07-30 2021-12-10 中国信息通信研究院 一种基于深度强化学习的波束选择方法和系统
CN114938712A (zh) * 2022-04-13 2022-08-23 北京小米移动软件有限公司 波束选择方法和装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020057383A1 (zh) * 2018-09-18 2020-03-26 华为技术有限公司 数据传输的方法和装置
CN112312455A (zh) * 2019-07-31 2021-02-02 成都华为技术有限公司 波束测量方法及装置
US20210336682A1 (en) * 2020-04-24 2021-10-28 Qualcomm Incorporated Reporting quantized user equipment (ue) orientation for beam selection
CN113783593A (zh) * 2021-07-30 2021-12-10 中国信息通信研究院 一种基于深度强化学习的波束选择方法和系统
CN114938712A (zh) * 2022-04-13 2022-08-23 北京小米移动软件有限公司 波束选择方法和装置

Also Published As

Publication number Publication date
CN117997397A (zh) 2024-05-07

Similar Documents

Publication Publication Date Title
US20230180081A1 (en) Measurement Reporting Method and Device
CN114390580A (zh) 波束上报方法、波束信息确定方法及相关设备
US20230244911A1 (en) Neural network information transmission method and apparatus, communication device, and storage medium
WO2024093713A1 (zh) 资源配置方法、装置、通信设备及可读存储介质
WO2024104070A1 (zh) 波束报告的发送方法、接收方法、装置及通信设备
WO2024078405A1 (zh) 传输方法、装置、通信设备及可读存储介质
CN116017493A (zh) 模型请求方法、模型请求处理方法及相关设备
WO2024041420A1 (zh) 测量反馈处理方法、装置、终端及网络侧设备
WO2024041421A1 (zh) 测量反馈处理方法、装置、终端及网络侧设备
WO2024032694A1 (zh) Csi预测处理方法、装置、通信设备及可读存储介质
WO2024067665A1 (zh) Csi预测处理方法、装置、通信设备及可读存储介质
WO2024046202A1 (zh) 发送方法、用户设备、网络侧设备及可读存储介质
WO2024099091A1 (zh) 波束预测方法、装置、终端、网络侧设备及存储介质
WO2024067281A1 (zh) Ai模型的处理方法、装置及通信设备
WO2024099094A1 (zh) 波束测量方法、装置、终端、网络侧设备及存储介质
WO2024041419A1 (zh) 信息传输方法、装置、终端及网络侧设备
WO2024046206A1 (zh) 接收方法、设备及可读存储介质
WO2024032695A1 (zh) Csi预测处理方法、装置、通信设备及可读存储介质
WO2024067280A1 (zh) 更新ai模型参数的方法、装置及通信设备
WO2023134628A1 (zh) 传输方法、装置和设备
WO2024093771A1 (zh) 参考信号确定方法、终端及网络侧设备
WO2023134761A1 (zh) 波束信息交互方法、装置、设备及存储介质
WO2024067434A1 (zh) Rs配置方法、装置、终端及网络侧设备
WO2023098586A1 (zh) 信息交互方法、装置及通信设备
WO2023040885A1 (zh) 参数选择方法、参数配置方法、终端及网络侧设备