WO2024021129A1 - 上行mimo传输8天线端口多天线面板的码字确定方法及其装置 - Google Patents
上行mimo传输8天线端口多天线面板的码字确定方法及其装置 Download PDFInfo
- Publication number
- WO2024021129A1 WO2024021129A1 PCT/CN2022/109258 CN2022109258W WO2024021129A1 WO 2024021129 A1 WO2024021129 A1 WO 2024021129A1 CN 2022109258 W CN2022109258 W CN 2022109258W WO 2024021129 A1 WO2024021129 A1 WO 2024021129A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- codeword
- antenna
- antenna port
- layer
- candidate codebook
- Prior art date
Links
- 230000005540 biological transmission Effects 0.000 title claims abstract description 283
- 238000000034 method Methods 0.000 title claims abstract description 121
- 238000004891 communication Methods 0.000 claims abstract description 79
- 239000011159 matrix material Substances 0.000 claims description 149
- 230000001427 coherent effect Effects 0.000 claims description 144
- 238000012545 processing Methods 0.000 claims description 35
- 238000004590 computer program Methods 0.000 claims description 27
- 239000013598 vector Substances 0.000 claims description 22
- 230000015654 memory Effects 0.000 claims description 14
- 238000010606 normalization Methods 0.000 claims description 9
- 238000005516 engineering process Methods 0.000 abstract description 25
- 230000002708 enhancing effect Effects 0.000 abstract description 2
- 239000010410 layer Substances 0.000 description 234
- 230000006870 function Effects 0.000 description 33
- 238000010586 diagram Methods 0.000 description 8
- 239000004065 semiconductor Substances 0.000 description 7
- 238000013461 design Methods 0.000 description 5
- 229910044991 metal oxide Inorganic materials 0.000 description 5
- 150000004706 metal oxides Chemical class 0.000 description 5
- 238000010295 mobile communication Methods 0.000 description 3
- 229910000577 Silicon-germanium Inorganic materials 0.000 description 2
- 230000003190 augmentative effect Effects 0.000 description 2
- 230000000295 complement effect Effects 0.000 description 2
- 230000014509 gene expression Effects 0.000 description 2
- 238000013468 resource allocation Methods 0.000 description 2
- 239000007787 solid Substances 0.000 description 2
- 238000001356 surgical procedure Methods 0.000 description 2
- JBRZTFJDHDCESZ-UHFFFAOYSA-N AsGa Chemical compound [As]#[Ga] JBRZTFJDHDCESZ-UHFFFAOYSA-N 0.000 description 1
- LEVVHYCKPQWKOP-UHFFFAOYSA-N [Si].[Ge] Chemical compound [Si].[Ge] LEVVHYCKPQWKOP-UHFFFAOYSA-N 0.000 description 1
- 238000003491 array Methods 0.000 description 1
- 238000013473 artificial intelligence Methods 0.000 description 1
- 230000001413 cellular effect Effects 0.000 description 1
- 238000013500 data storage Methods 0.000 description 1
- 239000011229 interlayer Substances 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 238000013507 mapping Methods 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 239000013307 optical fiber Substances 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 230000008054 signal transmission Effects 0.000 description 1
- 238000007711 solidification Methods 0.000 description 1
- 230000008023 solidification Effects 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B7/00—Radio transmission systems, i.e. using radiation field
- H04B7/02—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
- H04B7/04—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
- H04B7/0413—MIMO systems
- H04B7/0452—Multi-user MIMO systems
Definitions
- the present application relates to the field of communication technology, and in particular to a code word determination method and device for an 8-antenna port multi-antenna panel for uplink multiple input multiple output (Multiple Input Multiple Output, MIMO) transmission.
- MIMO Multiple Input Multiple Output
- Precoding technology in MIMO systems can effectively reduce interference and system overhead, and improve system capacity. It is an extremely important key technology in MIMO systems. In MIMO systems based on codebook transmission, codebook design is also an important part of precoding technology. .
- the maximum number of antenna ports supported by the fully coherent transmission codeword of the existing uplink MIMO transmission antenna is 4. That is, the fully coherent transmission codeword of the existing uplink MIMO antenna only supports the transmission of a maximum of 4 antenna ports and a maximum of 4 layers. In the uplink MIMO transmission When the antenna ports are enhanced, for example, to 8 antenna ports, the transmission requirements of the enhanced antenna ports cannot be met at this time.
- Embodiments of the present application provide a code word determination method and device for an 8-antenna port multi-antenna panel for uplink MIMO transmission. Based on low-dimensional transmission code words, a high-dimensional 8-antenna port multi-panel code word is constructed, which can enable uplink MIMO Supports the requirements for layer 1 to layer 8 transmission of 8 antenna ports, further enhancing the uplink MIMO technology.
- embodiments of the present application provide a codeword determination method for an 8-antenna port multi-antenna panel for uplink MIMO transmission.
- the method includes:
- the codeword of the L layer of the 8-antenna port multi-antenna panel is determined, and the L is less than or equal to 8.
- candidate codebooks for 4-antenna ports and/or 2-antenna ports for uplink MIMO transmission are determined, and panel configuration information for an 8-antenna port multi-antenna panel for uplink MIMO transmission is determined based on the candidate codebooks and panel configuration information. , determine the codeword of the L layer of the 8-antenna port multi-antenna panel.
- high-dimensional 8-antenna port multi-panel transmission codewords can be constructed based on low-dimensional transmission codewords, which can enable uplink MIMO to support the transmission requirements of layer 1 to layer 8 of 8 antenna ports, thereby improving the uplink MIMO technology. further enhanced.
- embodiments of the present application provide a communication device that has some or all of the functions of the terminal device in implementing the method described in the first aspect.
- the functions of the communication device may have some or all of the functions in this application.
- the functions in the embodiments may also be used to independently implement any of the embodiments in this application.
- the functions described can be implemented by hardware, or can be implemented by hardware executing corresponding software.
- the hardware or software includes one or more units or modules corresponding to the above functions.
- the structure of the communication device may include a transceiver module and a processing module, and the processing module is configured to support the communication device to perform corresponding functions in the above method.
- the transceiver module is used to support communication between the communication device and other devices.
- the communication device may further include a storage module coupled to the transceiver module and the processing module, which stores necessary computer programs and data for the communication device.
- the processing module may be a processor
- the transceiver module may be a transceiver or a communication interface
- the storage module may be a memory
- the structure of the communication device may include a transceiver module and a processing module, and the processing module is configured to support the communication device to perform corresponding functions in the above method.
- the transceiver module is used to support communication between the communication device and other devices.
- the communication device may further include a storage module coupled to the transceiver module and the processing module, which stores necessary computer programs and data for the communication device.
- inventions of the present application provide a communication device.
- the communication device includes a processor.
- the processor calls a computer program in a memory, it executes the method described in the first aspect.
- inventions of the present application provide a communication device.
- the communication device includes a processor and a memory, and a computer program is stored in the memory; the processor executes the computer program stored in the memory, so that the communication device executes The method described in the first aspect above.
- inventions of the present application provide a communication device.
- the device includes a processor and an interface circuit.
- the interface circuit is used to receive code instructions and transmit them to the processor.
- the processor is used to run the code instructions to cause the The device executes the method described in the first aspect.
- embodiments of the present invention provide a computer-readable storage medium for storing instructions used by the above-mentioned terminal device. When the instructions are executed, the terminal device is caused to perform the method described in the first aspect. .
- the present application also provides a computer program product including a computer program, which when run on a computer causes the computer to execute the method described in the first aspect.
- the present application provides a chip system, which includes at least one processor and an interface for supporting the terminal device to implement the functions involved in the first aspect, for example, determining or processing the data involved in the above method and at least one of the information.
- the chip system further includes a memory, and the memory is used to store necessary computer programs and data for the terminal device.
- the chip system may be composed of chips, or may include chips and other discrete devices.
- the present application provides a computer program that, when run on a computer, causes the computer to execute the method described in the first aspect.
- Figure 1 is a schematic architectural diagram of a communication system provided by an embodiment of the present application.
- Figure 2 is a schematic flow chart of a code word determination method for an 8-antenna port multi-antenna panel for uplink MIMO transmission provided by an embodiment of the present application;
- Figure 3 is a schematic flowchart of another codeword determination method for an 8-antenna port multi-antenna panel for uplink MIMO transmission provided by an embodiment of the present application;
- Figure 4 is a schematic flow chart of another codeword determination method for an 8-antenna port multi-antenna panel for uplink MIMO transmission provided by an embodiment of the present application;
- Figure 5 is a schematic flowchart of another codeword determination method for an 8-antenna port multi-antenna panel for uplink MIMO transmission provided by an embodiment of the present application;
- Figure 6 is a schematic flow chart of another codeword determination method for an 8-antenna port multi-antenna panel for uplink MIMO transmission provided by an embodiment of the present application;
- Figure 7 is a schematic flow chart of another codeword determination method for an 8-antenna port multi-antenna panel for uplink MIMO transmission provided by an embodiment of the present application;
- Figure 8 is a schematic flowchart of another codeword determination method for an 8-antenna port multi-antenna panel for uplink MIMO transmission provided by an embodiment of the present application;
- Figure 9 is a schematic flowchart of another codeword determination method for an 8-antenna port multi-antenna panel for uplink MIMO transmission provided by an embodiment of the present application;
- Figure 10 is a schematic flowchart of a codebook-based uplink transmission method provided by an embodiment of the present application.
- Figure 11 is a schematic flowchart of another codebook-based uplink transmission method provided by an embodiment of the present application.
- Figure 12 is a schematic structural diagram of a communication device provided by an embodiment of the present application.
- Figure 13 is a schematic structural diagram of a communication device provided by an embodiment of the present application.
- Figure 14 is a schematic structural diagram of a chip provided by an embodiment of the present application.
- first, second, third, etc. may be used to describe various information in the embodiments of the present disclosure, the information should not be limited to these terms. These terms are only used to distinguish information of the same type from each other.
- first information may also be called second information, and similarly, the second information may also be called first information.
- word “if” as used herein may be interpreted as “when” or “when” or “in response to determining”. For the purposes of brevity and ease of understanding, this article is characterizing When referring to a size relationship, the terms used are “greater than” or “less than”, “higher than” or “lower than”.
- the Physical Uplink Shared Channel (PUSCH) is used to carry data from the transmission channel PUSCH.
- Coherent transmission is defined as a UE capability.
- the UE's coherent transmission capabilities include:
- Partial Coherence transmission Antenna ports in the same coherent transmission group can transmit coherently, while antenna ports in different coherent transmission groups cannot transmit coherently.
- Each coherent transmission group includes at least two antenna ports.
- Non-Coherence transmission No antenna port can transmit coherently.
- the fully coherent transmission codeword of the antennas applicable to the communication system is determined.
- the communication system applicable to the embodiment of the present application is as follows. describe.
- Figure 1 is a schematic architectural diagram of a communication system provided by an embodiment of the present application.
- the communication system may include but is not limited to one network device and one terminal device.
- the number and form of devices shown in Figure 1 are only for examples and do not constitute a limitation on the embodiments of the present application. In actual applications, two or more devices may be included.
- the communication system shown in Figure 1 includes a network device 101 and a terminal device 102 as an example.
- LTE Long Term Evolution
- 5G fifth generation
- NR 5th Generation
- the side link in the embodiment of this application may also be called a side link or a through link.
- the network device 101 in the embodiment of this application is an entity on the network side that is used to transmit or receive signals.
- the network device 101 may be an evolved base station (evolved NodeB, eNB), a transmission point (Transmission Reception Point, TRP), a next generation base station (next generation NodeB, gNB) in an NR system, or other base stations in future mobile communication systems. Or access nodes in wireless fidelity (Wireless Fidelity, WiFi) systems, etc.
- the embodiments of this application do not limit the specific technology and specific equipment form used by the network equipment.
- the network equipment provided by the embodiments of this application may be composed of a centralized unit (Central Unit, CU) and a distributed unit (Distributed Unit, DU).
- the CU may also be called a control unit (Control Unit), using CU-DU.
- Control Unit Control Unit
- the structure can separate the protocol layers of network equipment, such as base stations, and place some protocol layer functions under centralized control on the CU. The remaining part or all protocol layer functions are distributed in the DU, and the CU centrally controls the DU.
- the terminal device 102 in the embodiment of this application is an entity on the user side that is used to receive or transmit signals, such as a mobile phone.
- Terminal equipment can also be called terminal equipment (Terminal), user equipment (User Equipment, UE), mobile station (Mobile Station, MS), mobile terminal equipment (Mobile Terminal, MT), etc.
- Terminal devices can be cars with communication functions, smart cars, mobile phones, wearable devices, tablets (Pad), computers with wireless transceiver functions, virtual reality (Virtual Reality, VR) terminal devices, augmented reality ( Augmented Reality (AR) terminal equipment, wireless terminal equipment in industrial control (Industrial Control), wireless terminal equipment in self-driving (Self-driving), wireless terminal equipment in remote surgery (Remote Medical Surgery), smart grid ( Wireless terminal equipment in Smart Grid, wireless terminal equipment in Transportation Safety, wireless terminal equipment in Smart City, wireless terminal equipment in Smart Home, etc.
- the embodiments of this application do not limit the specific technology and specific equipment form used by the terminal equipment.
- side-link transmission mode 1 and side link transmission mode 2 are used for terminal device direct (Device-To-Device, D2D) communication.
- Side-link transmission mode 3 and side-link transmission mode 4 are used for V2X communications.
- side-link transmission mode 3 is adopted, resource allocation is scheduled by the network device 101. Specifically, the network device 101 can send resource allocation information to the terminal device 102, and then the terminal device 102 allocates resources to another terminal device, so that the other terminal device can send information to the network device 101 through the allocated resources.
- a terminal device with better signal or higher reliability can be used as the terminal device 102 .
- the first terminal device mentioned in the embodiment of this application may refer to the terminal device 102, and the second terminal device may refer to the other terminal device.
- codeword determination method for the 8-antenna port multi-antenna panel for uplink MIMO transmission provided in any embodiment of this application can be executed alone or in combination with possible implementation methods in other embodiments. It can be implemented in conjunction with any technical solution in related technologies.
- Figure 2 is a schematic flow chart of a code word determination method for an 8-antenna port multi-antenna panel for uplink MIMO transmission provided by an embodiment of the present application. As shown in Figure 2, the method may include but is not limited to the following steps:
- S201 Determine candidate codebooks for 4-antenna ports and/or 2-antenna ports for uplink MIMO transmission.
- uplink transmission can support an increase in the number of antenna ports and uplink transmission layers. That is, the number of antenna ports can be increased from 4 antenna ports to a maximum of 8 antenna ports. Correspondingly, the number of uplink transmission layers can be increased from 4 to 8 antenna ports. Change to layer L. For example, the value of L can be from 1 to 8.
- the number of antenna ports for uplink transmission and the number of uplink transmission layers L may be equal or unequal.
- the method of determining the candidate codebooks for 4-antenna ports and 2-antenna ports is not limited and can be determined according to actual conditions.
- the candidate codebook for the 4-antenna port can be the uplink precoding codebook for the 4-antenna port for uplink MIIMO transmission agreed in the 3GPP communication protocol; the candidate codebook for the 2-antenna port can be the uplink MIIMO agreed upon in the 3GPP communication protocol.
- the codebook may be a downlink precoding codebook for the 2-antenna ports of downlink MIIMO transmission agreed in the 3GPP communication protocol.
- the candidate codebook for the 4-antenna port can be a 4-dimensional orthogonal codebook such as the Kerdock codebook to determine the candidate codebook for the 4-antenna port; optionally, the candidate codebook for the 2-antenna port
- the word can be based on a 2-dimensional orthogonal codebook such as the Kerdock codebook to determine the candidate codebook for the 2-antenna port.
- the Kerdock codebook is an orthogonal codebook used in communication system design and can be used to construct mutually unbiased basis sequences.
- the Kerdock codebook has orthogonality, that is, any two column vectors in each Kerdock codeword are orthogonal to each other.
- it may be preconfigured candidate codebook words for 4-antenna ports and 2-antenna ports.
- S202 Determine the panel configuration information of the 8-antenna port multi-antenna panel for uplink MIMO transmission.
- the panel configuration information of the 8-antenna port multi-antenna panel may include the number of antenna panels and transmission coherence between antenna panels.
- the number of antenna panels can be used to determine a candidate codebook for constructing a codebook for an 8-antenna port multi-antenna panel from the 4-antenna port candidate codebook and the 2-antenna port candidate codebook.
- a candidate codebook used to construct a codebook for an 8-antenna port multi-antenna panel may be called a first candidate codebook.
- the number of antenna panels can be 2 or 4, as shown in Figure 3.
- Figure 3 shows different antenna arrangements for a given number of panels, and the code words corresponding to the number of panels are applicable.
- the transmission coherence between antenna panels can be used to determine the codewords used to construct a codebook for an 8-antenna port multi-antenna panel from the first candidate codebook.
- the transmission coherence between antenna panels can be one of fully coherent transmission between antenna panels, incoherent transmission between antenna panels, partially coherent transmission between antenna panels, or partially coherent transmission between antenna ports in different antenna panels.
- the panel configuration information of the 8-antenna port multi-antenna panel can be determined by the antenna structure of the terminal device.
- L is used to represent the maximum number of uplink MIMO transmission transmission layers supported by the terminal device.
- the value of L is a positive integer, and L is less than or equal to 8.
- the codewords for the L layer of the 8-antenna port multi-antenna panel can be spliced based on the specified type of codewords or any codeword in the first candidate codebook.
- the codeword determined for splicing from the first candidate codebook may be any codeword, or may be a fully coherent codeword.
- one or two codewords can be selected from the first candidate codebook and spliced to splice the codewords of the L layer of the 8-antenna port multi-antenna panel.
- a fully coherent codeword can be selected from the first candidate codebook, and the codewords of the L layer of the 8-antenna port multi-antenna panel can be spliced based on the selected fully coherent codeword.
- any one can be selected from the first candidate codebook.
- the codeword is spliced based on the selected arbitrary codeword, and the codeword of the L layer of the 8-antenna port multi-antenna panel is spliced.
- the candidate codebook for 4-antenna ports or 2-antenna ports for uplink MIMO transmission is determined.
- an 8-antenna port multi-antenna panel can be determined The transmission codeword of the L layer.
- a high-dimensional 8-antenna port multi-antenna panel codeword can be constructed based on a low-dimensional antenna fully coherent transmission codeword, which can meet the requirement of uplink MIMO to support layer 1 to layer 8 transmission of 8 antenna ports, thereby further improving the Uplink MIMO technology is further enhanced.
- Figure 4 is a schematic flowchart of a code word determination method for an 8-antenna port multi-antenna panel for uplink MIMO transmission provided by an embodiment of the present application. As shown in Figure 4, the method may include but is not limited to the following steps:
- S401 Determine a candidate codebook for 4-antenna ports and/or a candidate codebook for 2-antenna ports for uplink MIMO transmission.
- S402 Determine the panel configuration information of the 8-antenna port multi-antenna panel for uplink MIMO transmission.
- the panel configuration information of the 8-antenna port multi-antenna panel may include the number of antenna panels and transmission coherence between antenna panels.
- the number of antenna panels can be used to select the first candidate codebook from the 4-antenna port candidate codebook and the 2-antenna port candidate codebook.
- the number of antenna panels can be 2 or 4.
- the first candidate codebook is a candidate codebook with 4 antenna ports; when the number of antenna panels is 4, the first candidate codebook is a candidate codebook with 2 antenna ports.
- transmission coherence between antenna panels can be used to determine the first codeword and/or the second codeword from the first candidate codebook.
- the first codeword and/or the second codeword are used to construct the codeword of the 8-antenna port multi-antenna panel.
- the transmission coherence between antenna panels can be one of fully coherent transmission between antenna panels, incoherent transmission between antenna panels, partially coherent transmission between antenna panels, or partially coherent transmission between antenna ports in different antenna panels.
- the panel configuration information of the 8-antenna port multi-antenna panel can be determined by the antenna structure of the terminal device.
- a first codeword can be determined from the first candidate codebook, and further, a second codeword can be determined based on the first codeword. For example, a partial column vector in the first codeword can be selected to generate the second codeword. word, for another example, directly determine the first codeword as the second codeword.
- a first codeword and a second codeword may also be determined from the first candidate codebook, that is, the first codeword and the second codeword are both codewords selected from the first candidate codebook.
- S405 Determine the common phase coefficient and the compensation factor between antenna panels, and splice the first codeword and the second codeword based on the common phase coefficient and the compensation factor to obtain the codeword of the L layer of the 8-antenna port multi-antenna panel.
- the common phase coefficient and the compensation coefficient between antenna panels are designed for the splicing process, and based on the common phase coefficient and the compensation coefficient, the second codeword and the third codeword are spliced to obtain an 8-antenna port multi-antenna panel.
- the common phase coefficient can be determined based on the common phase coefficient capability supported by the communication device, and can include a phase angle of In addition, more phase angles can be supported, for example, more phase angles can be determined according to the angle interval of 45°.
- the common phase coefficient and compensation factor of the antenna panel can be determined based on the antenna structure type of the terminal device.
- the terminal device can determine the common phase coefficient and compensation factor by itself, or can report the antenna structure type to the network device according to the antenna structure type.
- the terminal equipment delivers the common phase coefficient and compensation factor.
- a coefficient matrix for splicing can be constructed based on the common-phase coefficients and compensation factors. Further, the first codeword and the second codeword determined from the first candidate codebook are spliced to obtain the spliced codeword. After the coefficient matrix and splicing codewords are determined, the matrix dot multiplication operation can be performed on the coefficient matrix and the splicing codewords to generate the codewords for the L layer of the 8-antenna port multi-antenna panel, where the coefficients in the coefficient matrix are the same as those in the splicing codewords. Multiply the block matrices at corresponding positions.
- the first coefficient matrix can be determined based on the common phase coefficient and the compensation factor, and the first coefficient matrix can be determined in the row dimension.
- the two first codewords are spliced to generate a first spliced codeword, and the two second codewords are spliced in the row dimension to generate a second spliced codeword.
- the first splicing codeword and the second splicing codeword can be spliced in the column dimension to generate a third splicing codeword, and further, the first coefficient
- the matrix and the third splicing codeword are subjected to a matrix dot multiplication operation to generate the codeword of the L layer of the 8-antenna port multi-antenna panel, in which the coefficients in the first coefficient matrix are multiplied by the block matrix at the corresponding position in the third splicing codeword.
- the second coefficient matrix can be determined based on the co-phase coefficient and the compensation factor, in the row dimension.
- the first codeword and the second codeword are spliced to generate a fourth spliced codeword.
- a matrix dot multiplication operation is performed on the second coefficient matrix and the fourth spliced codeword to generate the L layer of the 8-antenna port multi-antenna panel. codeword, wherein the coefficients in the second coefficient matrix are multiplied by the block matrix at the corresponding position in the fourth concatenated codeword.
- the third coefficient matrix can be determined based on the common phase coefficient and the compensation factor.
- the first codeword is spliced into four first codewords in the row dimension in the form of a block matrix to generate the fifth concatenated codeword, and for the last L-8 columns in the L column, The second codeword is spliced into four second codewords in the row dimension in the form of a block matrix to generate a sixth concatenated codeword.
- the fifth splicing codeword and the sixth splicing codeword are spliced in the column dimension to generate the seventh splicing codeword, and the third coefficient matrix and the seventh splicing codeword are generated.
- the splicing codeword is subjected to a matrix dot multiplication operation to generate a codeword for the L layer of the 8-antenna port multi-antenna panel, in which the coefficients in the third coefficient matrix are multiplied by the block matrix at the corresponding position in the seventh splicing codeword.
- the fourth coefficient matrix can be determined based on the co-phase coefficient and the compensation factor. If 3 ⁇ L ⁇ 4 concatenates the four first codewords in the row dimension to generate the eighth concatenated codeword, and concatenates the four second codewords in the row dimension to generate the ninth concatenated codeword. After the eighth splicing codeword and the ninth splicing codeword are determined, the eighth splicing codeword and the ninth splicing codeword are spliced in the column dimension to generate a tenth splicing codeword.
- a matrix dot multiplication operation is performed on the fourth coefficient matrix and the tenth splicing codeword to generate the codeword of the L layer of the 8-antenna port multi-antenna panel, where the coefficients in the fourth coefficient matrix correspond to the tenth splicing codeword.
- Block matrix multiplication of positions If 1 ⁇ L ⁇ 2, two first codewords and two second codewords are spliced in the row dimension to generate an eleventh spliced codeword.
- a matrix dot multiplication operation is performed on the fourth coefficient matrix and the eleventh splicing codeword to generate the codeword of the L layer of the 8-antenna port multi-antenna panel, where the coefficients in the fourth coefficient matrix and the eleventh splicing codeword are Multiply the block matrices at corresponding positions in .
- the candidate codebook for 4-antenna ports or 2-antenna ports for uplink MIMO transmission is determined.
- an 8-antenna port multi-antenna panel can be determined The transmission codeword of the L layer.
- a high-dimensional 8-antenna port multi-antenna panel codeword can be constructed based on a low-dimensional antenna fully coherent transmission codeword, which can meet the requirement of uplink MIMO to support layer 1 to layer 8 transmission of 8 antenna ports, thereby further improving the Uplink MIMO technology is further enhanced.
- Figure 5 is a schematic flowchart of a code word determination method for an 8-antenna port multi-antenna panel for uplink MIMO transmission provided by an embodiment of the present application. As shown in Figure 5, the method may include but is not limited to the following steps:
- step S501 For a detailed introduction to step S501, please refer to the relevant content records in the above embodiments, and will not be described again here.
- S502 Determine the first candidate codebook from the candidate codebook of 4-antenna ports and the candidate codebook of 2-antenna ports according to the number of antenna panels.
- step S502 For a specific introduction to step S502, please refer to the relevant content records in the above embodiments, and will not be described again here.
- the first candidate codebook is a 4-antenna port candidate codebook and 5 ⁇ L ⁇ 8, determine the 4-antenna port
- the fully coherent codeword of the layer is the first codeword, selected from the first codeword Column vector to generate the second codeword.
- the first candidate codebook is a candidate codebook of 4-antenna ports and 5 ⁇ L ⁇ 8, determine that the fully coherent codeword of the 4-layer 4-antenna port is the first codeword.
- the first codeword is directly determined to be the second codeword.
- the first candidate codebook is a 4-antenna port candidate codebook and 5 ⁇ L ⁇ 8, determine the 4-antenna port
- the fully coherent codeword of the layer is the first codeword, which determines the 4-antenna port
- the fully coherent codeword of the layer is the second codeword.
- the first candidate codebook is a candidate codebook of 4-antenna ports and 1 ⁇ L ⁇ 4
- the first candidate codebook is a candidate codebook of 2-antenna ports
- the fully coherent codeword is the second codeword.
- S504 Determine the common phase coefficient and the compensation factor between antenna panels, and splice the first codeword and the second codeword based on the common phase coefficient and the compensation factor to obtain the codeword of the L layer of the 8-antenna port multi-antenna panel.
- step S504 For a detailed introduction to step S504, please refer to the relevant content records in the above embodiments, and will not be described again here.
- the first candidate codebook is a candidate codebook with 4 antenna ports.
- the number of transmission layers is 5 ⁇ L ⁇ 8:
- any 4-antenna port fully coherent codewords is the first code word, and will in any The vector of the column is determined as the second codeword For example, you can select the The vector of columns generates the second codeword.
- 1. -1 is the common phase coefficient
- the compensation factor between antenna panels is the compensation factor between antenna panels.
- the first coefficient matrix can be determined as: or
- the two first codewords can be spliced in the row dimension to obtain the first spliced codeword, and the two second codewords can be spliced in the row dimension. Dimensionally spliced, the second spliced codeword is obtained. Further, the first splicing codeword and the second splicing codeword are spliced in the column dimension to obtain the third splicing codeword.
- a matrix dot multiplication operation is performed on the first coefficient matrix and the third splicing codeword to generate the codeword for the L layer of the 8-antenna port multi-panel. Wherein, the coefficients in the first coefficient matrix are multiplied by the block matrix at the corresponding position in the third splicing codeword.
- the codeword W 8, L of the L layer of the 8-antenna port multi-panel can be or
- the fully coherent codeword of the antenna on the 4th layer of the 4-antenna port is the first codeword:
- W' 4,4 is the 1st, 2nd, and 3rd columns of W 4,4 , which is the second codeword corresponding to the first codeword.
- L is an odd number of layers, based on the layer number I of the first codeword, in order from the 1st layer to the Lth layer (from front to back) or from the Lth layer to the 1st layer (from back to back)
- the I layer in the L layer is selected to retain the first codeword in the order of forward), where the value of I is a positive integer less than or equal to 4.
- the codewords of the first 4 layers can be selected from front to back as the first codeword W 4,4 , and the remaining codewords can be Level 3 is determined by the second codeword, for example, the first three columns or the last three columns in W' 4,4 can be used.
- the codewords of the last four layers can also be selected from back to front as the first codeword W 4,4 , and the remaining three layers in front are determined by the second codeword.
- the first three layers in W' 4,4 can be used. column or the last three columns.
- the fully coherent transmission codeword of any 4-antenna port 4-layer antenna is determined to be the first codeword: W 4,4 , where the second codeword is W 4,4 .
- the first codeword and the second codeword can be spliced to generate the codeword for the L layer of the 8-antenna port multi-antenna panel: W 8,L , W 8,L can be a matrix composed of vectors of any L columns in W 8,8 , that is, a matrix composed of any L layers, such as the first L columns, or Select the codeword of the 8-antenna port L layer composed of any L columns from W 8,8 .
- W 8,L can be a matrix composed of vectors of any L columns in W 8,8 , that is, a matrix composed of any L layers, such as the first L columns, or Select the codeword of the 8-antenna port L layer composed of any L columns from W 8,8 .
- L 7
- the fully coherent codeword of layer 4 of 4 antenna ports is The second codeword is W 4,4 ; where, Then the codeword of the 7th layer of the 8-antenna port multi-panel is A matrix composed of any 7-column vectors can be, for example, the 1st to 7th columns.
- select the vector of column L-4 from the first codeword to generate the second codeword That is, select the vector of column L-4 from W 4,4 to generate the second codeword.
- L 6, the 1st, 2nd, and 3rd columns of W 4,4 can be selected to form the second codeword corresponding to the first codeword.
- L is an odd number of layers, based on the layer number I of the first codeword, in order from the 1st layer to the Lth layer (from front to back) or from the Lth layer to the 1st layer (from back to back)
- the I layer in the L layer is selected to retain the second codeword in the order of forward), where the value of I is a positive integer less than or equal to 4.
- the fully coherent codeword of the layer is the first codeword: And select any 4-antenna port
- the fully coherent codeword is the second codeword: Among them, 1. -1, is the common phase coefficient, is the compensation factor between antenna panels, then the first coefficient matrix is: or
- the process of splicing the first codeword and the second codeword can be found in the records of relevant content in the above embodiments, and will not be described again here. .
- the codeword of the L layer of the 8-antenna port multi-panel: W 8, L can be or
- Example: L 7, select the fully coherent codeword of the 4th layer of the 4-antenna port as the first codeword: And select the fully coherent transmission codeword of the antenna on the 3rd layer of the 4-antenna port as the second codeword: in, Then the codeword of the 7th layer of the 8-antenna port multi-panel is
- L is an odd number of layers, based on the layer number I of the second codeword, in order from the 1st layer to the Lth layer (from front to back) or from the Lth layer to the 1st layer (from back to back)
- the I layer in the L layer is selected to retain the second codeword in the order of forward), where the value of I is a positive integer less than or equal to 4.
- the first candidate codebook is a candidate codebook with 4 antenna ports.
- the number of transmission layers is 1 ⁇ L ⁇ 4:
- the fully coherent codeword of any 4-antenna port L layer is determined to be the first codeword W 4,L , and the second codeword is also W 4,L ; where, 1, -1, is the common phase coefficient, is the compensation factor between antenna panels, then the second coefficient matrix can be determined as:
- the first codeword and the second codeword are spliced in the row dimension to generate the fourth spliced codeword, that is, the two th One codeword is spliced to generate a fourth spliced codeword.
- the first codeword is directly determined as the second codeword, that is, one of the two first codewords is the second codeword.
- a matrix dot multiplication operation is performed on the second coefficient matrix and the fourth splicing codeword to generate the codeword W 8 of the L layer of the 8-antenna port multi-panel, L can be Wherein, the coefficients in the second coefficient matrix are multiplied by the block matrix at the corresponding position in the fourth splicing codeword.
- L 3
- the fully coherent codewords of layer 3 of 4 antenna ports are the first codeword and the second codeword: Then the code words for the 3rd layer of the 8-antenna port multi-panel are:
- the fully coherent codewords of the 4-antenna ports corresponding to the uplink MIMO transmission are determined. Based on the fully coherent codewords of the 4-antenna ports, the codewords of the L layer of the 8-antenna ports can be determined. In the embodiment of this application, a high-dimensional antenna fully coherent transmission codeword of 8 antenna ports can be constructed based on a low-dimensional antenna fully coherent transmission codeword, which can meet the requirement of uplink MIMO to support layer 1 to layer 8 transmission of 8 antenna ports, and thus Uplink MIMO technology is further enhanced.
- the first candidate codebook is the candidate codebook for 2 antenna ports:
- the third coefficient matrix is determined based on the common phase coefficient and the compensation factor.
- the first codeword is spliced into four first codewords in the row dimension in the form of a block matrix to generate the fifth concatenated codeword;
- the second codeword is In the form of a block matrix, four second codewords are spliced in the row dimension to generate the sixth spliced codeword, and the fifth spliced codeword and the sixth spliced codeword are spliced in the column dimension to generate the seventh spliced codeword.
- a matrix dot multiplication operation is performed on the third coefficient matrix and the seventh splicing codeword to generate codewords for the L layer of the 8-antenna port multi-antenna panel.
- the coefficients in the third coefficient matrix are multiplied by the block matrix at the corresponding position in the seventh concatenated codeword.
- the 8-antenna port multi-panel L layer codeword W 8,L is constructed as There are a total of L-4 columns of codewords in the 2nd layer, and a total of 8-L columns of codewords in the 1st layer (the basic unit is based on blocks). is the common phase coefficient, and is the compensation factor between the 2nd, 3rd and 4th antenna panels.
- the fully coherent codeword of layer 2 of 2 antenna ports is The fully coherent codeword of layer 1 of 2 antenna ports is in, Then a possible implementation of the third coefficient matrix is It should be noted that by randomly shuffling the columns of the third coefficient matrix, the resulting third coefficient matrix can still ensure the inter-layer orthogonality of codewords.
- the fully coherent codewords of the 2-antenna ports corresponding to the uplink MIMO transmission are determined. Based on the fully coherent codewords of the 2-antenna ports, the codewords of the L layer of the 8-antenna-port multi-panel can be determined.
- a high-dimensional antenna fully coherent transmission codeword of 8 antenna ports can be constructed based on a low-dimensional antenna fully coherent transmission codeword, which can meet the requirement of uplink MIMO to support layer 1 to layer 8 transmission of 8 antenna ports, and thus Uplink MIMO technology is further enhanced.
- Figure 6 is a schematic flowchart of a code word determination method for an 8-antenna port multi-antenna panel for uplink MIMO transmission provided by an embodiment of the present application. As shown in Figure 6, the method may include but is not limited to the following steps:
- S602 Determine the first candidate codebook from the candidate codebook of 4-antenna ports and the candidate codebook of 2-antenna ports according to the number of antenna panels.
- steps S601 to S602 please refer to the relevant content records in the above embodiments, and will not be described again here.
- the first candidate codebook is a 4-antenna port candidate codebook, and any codeword in the first candidate codebook can be selected from the 4-antenna port candidate codebook as the first codeword.
- any 4-antenna port is chosen layer codeword and from Choose any layer, generating the second codeword
- the first candidate codebook is a 2-antenna port candidate codebook, and any codeword in the first candidate codebook can be selected from the 2-antenna port candidate codebook as the first codeword.
- any codeword W 2,2 of layer 2 with 2 antenna ports and any codeword W 2,1 with layer 1 of 2 antenna ports are selected.
- S605 Determine the common phase coefficient and the compensation factor between antenna panels, and splice the first codeword and the second codeword based on the common phase coefficient and the compensation factor to obtain the codeword of the L layer of the 8-antenna port multi-antenna panel.
- step S605 For an introduction to step S605, please refer to the relevant content recorded in the above embodiments, and will not be described again here.
- the codewords of 2-antenna ports or 4-antenna ports corresponding to uplink MIMO transmission are determined. Based on the codewords of 2-antenna ports or 4-antenna ports, the codewords of the L layer of the 8-antenna port multi-panel can be determined.
- a high-dimensional antenna fully coherent transmission codeword of 8 antenna ports can be constructed based on a low-dimensional antenna fully coherent transmission codeword, which can meet the requirement of uplink MIMO to support layer 1 to layer 8 transmission of 8 antenna ports, and thus Uplink MIMO technology is further enhanced.
- FIG. 7 is a schematic flowchart of a codeword determination method for an 8-antenna port multi-antenna panel for uplink MIMO transmission provided by an embodiment of the present application. As shown in Figure 7, the method may include but is not limited to the following steps:
- S701 Determine transmission coherence as incoherent transmission between antenna panels.
- S703 Determine the first codeword and the second codeword corresponding to the first codeword from the candidate codebook of the 4-antenna port.
- any 4-antenna port is chosen layer codeword and from Choose any layer, generating the second codeword For example, you can select layer.
- the first codeword and the codeword can be spliced to obtain a third spliced codeword.
- splicing please refer to the relevant content in the above embodiment. Herein No further details will be given.
- the first coefficient matrix is is the compensation factor between antenna panels.
- a matrix dot multiplication operation is performed on the first coefficient matrix and the third splicing codeword to generate an 8-antenna port multi-panel L layer codeword as
- S705 Determine the first codeword and the second codeword corresponding to the first codeword from the candidate codebook of the 2-antenna port.
- the seventh spliced codeword can be obtained by splicing according to the splicing method corresponding to the candidate codebook of the 2-antenna ports.
- a matrix dot multiplication operation is performed on the third coefficient matrix and the seventh splicing codeword to generate an 8-antenna port multi-panel L layer codeword as There are a total of L-4 columns of codewords in the 2nd layer, and a total of 8-L columns of codewords in the 1st layer (based on blocks). and is the compensation factor between the 2nd, 3rd and 4th antenna panels.
- the coherence and specific codewords of the codewords of the 4-antenna port and the codeword of the 2-antenna port at different locations can be the same.
- the codewords of the four antenna ports can all be non-coherent codewords, that is, corresponding to the situation of non-coherent transmission by all antennas.
- the codewords of 2-antenna ports or 4-antenna ports corresponding to uplink MIMO transmission are determined. Based on the codewords of 2-antenna ports or 4-antenna ports, the codewords of the L layer of the 8-antenna port multi-panel can be determined.
- a high-dimensional antenna fully coherent transmission codeword of 8 antenna ports can be constructed based on a low-dimensional antenna fully coherent transmission codeword, which can meet the requirement of uplink MIMO to support layer 1 to layer 8 transmission of 8 antenna ports, and thus Uplink MIMO technology is further enhanced.
- FIG. 8 is a schematic flowchart of a codeword determination method for an 8-antenna port multi-antenna panel for uplink MIMO transmission provided by an embodiment of the present application. As shown in Figure 8, the method may include but is not limited to the following steps:
- S802 Determine the first codeword and the second codeword corresponding to the first codeword from the candidate codebook of the 2-antenna port.
- S803 Splice the first codeword and the second codeword based on the common phase coefficient and the compensation factor to obtain the codeword of the L layer of the 8-antenna port multi-antenna panel.
- partially coherent transmission between antenna panels can be coherent transmission between the first antenna panel and the third antenna panel, and coherent transmission between the second antenna panel and the fourth antenna panel.
- any 2-antenna port 2-layer codeword W 2,2 and any 2-antenna port 1-layer codeword W 2,1 match the codes according to the splicing method corresponding to the 2-antenna port candidate codebook.
- Word W 2,2 and codeword W 2,1 are spliced to obtain the seventh splicing matrix.
- determine the third coefficient matrix according to the common phase coefficient and the compensation factor perform matrix dot multiplication operation on the third coefficient matrix and the seventh splicing matrix, and generate the 8-antenna port multi-panel L layer codeword as:
- the position of the codeword of the 2-antenna port in the codeword of the L layer of the 8-antenna port multi-antenna panel is determined. That is, for other coherent cases, the codewords of the 2-antenna ports are placed on the corresponding antenna panels.
- the 8-antenna port multi-panel L layer code obtained in the above embodiment can correspond to the case where antenna panel 1 and antenna panel 2 are coherent, and antenna panel 3 and antenna panel 4 are coherent.
- the coherence and specific codewords of the codewords of the two antenna ports at different positions can be the same or different.
- the codewords of the 2-antenna ports corresponding to the uplink MIMO transmission are determined. Based on the codewords of the 2-antenna ports, the codewords of the L layer of the 8-antenna-port multi-panel can be determined.
- a high-dimensional antenna fully coherent transmission codeword of 8 antenna ports can be constructed based on a low-dimensional antenna fully coherent transmission codeword, which can meet the requirement of uplink MIMO to support layer 1 to layer 8 transmission of 8 antenna ports, and thus Uplink MIMO technology is further enhanced.
- Figure 9 is a schematic flow chart of a code word determination method for an 8-antenna port multi-antenna panel for uplink MIMO transmission provided by an embodiment of the present application. As shown in Figure 9, the method may include but is not limited to the following steps:
- the partially coherent transmission of the antenna ports in different antenna panels can be coherent transmission of ports 1 and 2 of the first antenna panel and ports 1 and 2 of the second antenna panel, and coherent transmission of ports 3 and 4 of the first antenna panel and port 2 of the first antenna panel. Ports 3 and 4 of the antenna panel are coherently transmitted. It can be understood that the two antenna panels divide the 8 antenna ports into 4 port groups.
- the first candidate codebook may be determined to be a candidate codebook for 2 antenna ports.
- S902 Determine the first codeword and the second codeword corresponding to the first codeword from the candidate codebook of the 2-antenna port.
- S903 Based on the common phase coefficient and the compensation factor, splice the first codeword and the second codeword to obtain the codeword of the L layer of the 8-antenna port multi-antenna panel.
- any 2-antenna port 2-layer codeword W 2,2 and any 2-antenna port 1-layer codeword W 2,1 match the codeword W according to the splicing method corresponding to the 2-antenna port candidate codebook.
- 2,2 and codeword W 2,1 are concatenated to obtain the seventh concatenation matrix.
- the third coefficient matrix is determined based on the common phase coefficient and the compensation factor, and the matrix dot multiplication operation is performed on the third coefficient matrix and the seventh splicing matrix to generate the 8-antenna port multi-panel L layer codeword as:
- the codewords of the 2-antenna ports are determined to be the codewords of the L layer of the 8-antenna-port multi-antenna panel. location in. That is, for other coherent cases, the codewords of the 2-antenna ports are placed on the corresponding antenna ports.
- the 8-antenna port multi-panel L layer code obtained in the above embodiment can correspond to the coherent transmission of the 1st and 2nd ports of the first antenna panel and the 1st and 2nd ports of the second antenna panel, while the 3rd and 2nd ports of the first antenna panel In the case of coherent transmission between 4-port and 3rd and 4th ports of the 2nd antenna panel.
- the coherence and specific codewords of the codewords of the two antenna ports at different positions can be the same or different.
- the codewords of the 2-antenna ports corresponding to the uplink MIMO transmission are determined. Based on the codewords of the 2-antenna ports, the codewords of the L layer of the 8-antenna-port multi-panel can be determined.
- a high-dimensional antenna fully coherent transmission codeword of 8 antenna ports can be constructed based on a low-dimensional antenna fully coherent transmission codeword, which can meet the requirement of uplink MIMO to support layer 1 to layer 8 transmission of 8 antenna ports, and thus Uplink MIMO technology is further enhanced.
- each of the foregoing embodiments can be executed individually or in any combination. And each of the foregoing embodiments can be executed by a network side device (such as a base station). In one implementation, the foregoing embodiments are executed by a network side device (eg, a base station), and the network side device (eg, a base station) sends the final determined second codeword to the UE.
- a network side device eg, a base station
- the network side device eg, a base station
- the foregoing embodiments may also be executed by user equipment UE. Further, the UE sends the finally determined second codeword to the network side device (for example, the base station).
- the network side device for example, the base station.
- the foregoing embodiments may also be executed by each of the network side equipment (such as a base station) and the user equipment UE.
- the network side equipment such as a base station
- the user equipment UE may also be executed by each of the network side equipment (such as a base station) and the user equipment UE.
- the method for determining the fully coherent antenna transmission codeword provided by the above embodiment can be applied to terminal equipment and network equipment, and after determining the first codeword for the antenna fully coherent transmission, the precoding codebook can be determined based on the first codeword. , the terminal equipment and the network equipment can perform PUSCH transmission based on the precoding codebook.
- codebook-based uplink transmission (such as PUSCH transmission) is explained below:
- Figure 10 is a schematic flowchart of an uplink transmission method provided by an embodiment of the present application. Executed by the terminal device, as shown in Figure 10, the method may include but is not limited to the following steps:
- the network device can send a Transmit Precoding Matrix Indicator (TPMI) to the terminal device, and accordingly, the terminal device can receive the TPMI sent by the network device.
- TPMI is used to indicate a target precoding matrix in the precoding codebook of the 8-antenna port multi-panel L layer.
- the precoding codebook corresponding to the uplink MIMO transmission includes the first codeword that determines the fully coherent transmission of the antenna in the above embodiment.
- the process of determining the codeword of the L layer of the 8-antenna port multi-panel please refer to the relevant content in the above embodiments, and will not be described again here.
- S1002 Based on TPMI, determine the target precoding matrix corresponding to the uplink transmission from the precoding codebook of the 8-antenna port multi-panel L layer corresponding to the uplink MIMO transmission.
- the terminal equipment can determine the target precoding matrix corresponding to the uplink transmission from the precoding codebook of the 8-antenna port multi-panel L layer corresponding to the uplink MIMO transmission based on TPMI.
- the terminal device can determine a target precoding matrix from the precoding codebook based on TPMI.
- the mapping relationship between the precoding matrix and the index can be set in advance, and the target precoding matrix for uplink transmission is determined from the precoding codebook according to the index.
- the PUSCH After obtaining the target precoding matrix, the PUSCH can be precoded based on the target precoding matrix, and the precoded PUSCH can be sent to the network device.
- the TPMI sent by the network device is received.
- the target precoding matrix corresponding to the uplink transmission is determined from the precoding codebook of the L layer of 8 antenna ports corresponding to the uplink MIMO transmission.
- the target precoding matrix Precode the PUSCH and send it to the network device.
- a high-dimensional 8-antenna port antenna fully coherent transmission codeword is constructed, which can meet the requirements of uplink MIMO to support layer 1 to layer 8 transmission of 8 antenna ports, and further improve the uplink MIMO Technology is further enhanced.
- Figure 11 is a schematic flowchart of an uplink transmission method provided by an embodiment of the present application. Executed by the network device, as shown in Figure 11, the method may include but is not limited to the following steps:
- the network device can receive the Sounding Reference Signals (SRS) sent by the terminal device, perform channel estimation based on the SRS, determine the TPMI based on the estimated channel conditions, and send the TPMI to the terminal device.
- SRS Sounding Reference Signals
- the TPMI is used to indicate a precoding matrix in the precoding codebook, and may be the index of the precoding matrix.
- the precoding codebook corresponding to the uplink MIMO transmission includes the first codeword of the antenna fully coherent transmission based on 8 antenna ports in the above embodiment.
- the process of determining the first codeword for fully coherent transmission by antennas at the L layer of 8 antenna ports please refer to the relevant content in the above embodiments and will not be described again here.
- S1102. Receive the PUSCH transmission sent by the terminal device, where the PUSCH transmission is obtained by precoding the terminal device based on the target precoding matrix.
- the terminal device After receiving the TPMI, the terminal device can obtain the determined target precoding matrix for uplink transmission, precode the PUSCH based on the target precoding matrix, and send the precoded PUSCH to the network device. Accordingly, the network device can receive the PUSCH transmission sent by the terminal device.
- the precoding matrix indication information is determined and the precoding matrix indication information is sent to the terminal device to instruct the terminal device to determine the uplink transmission corresponding to the precoding codebook of the L layer of 8 antenna ports corresponding to the uplink MIMO transmission
- the target precoding matrix receives the PUSCH transmission sent by the terminal device, where the PUSCH transmission is obtained by precoding the terminal device based on the target precoding matrix.
- the precoding matrix indication information sent by the network device is received, and based on the precoding matrix indication information, the target precoding corresponding to the uplink transmission is determined from the precoding codebook of the L layer of 8 antenna ports corresponding to the uplink MIMO transmission.
- Matrix precode the PUSCH based on the target precoding matrix and send it to the network device.
- a high-dimensional 8-antenna port antenna fully coherent transmission codeword is constructed, which can meet the requirements of uplink MIMO to support layer 1 to layer 8 transmission of 8 antenna ports, and further improve the uplink MIMO Technology is further enhanced.
- the methods provided by the embodiments of the present application are introduced from the perspectives of network equipment and terminal equipment respectively.
- the network device and the first terminal device may include a hardware structure and a software module to implement the above functions in the form of a hardware structure, a software module, or a hardware structure plus a software module.
- a certain function among the above functions can be executed by a hardware structure, a software module, or a hardware structure plus a software module.
- FIG. 12 is a schematic structural diagram of a communication device 120 provided by an embodiment of the present application.
- the communication device 120 shown in FIG. 7 may include a transceiver module 1201 and a processing module 1202.
- the transceiving module 1201 may include a sending module and/or a receiving module.
- the sending module is used to implement the sending function
- the receiving module is used to implement the receiving function.
- the transceiving module 1201 may implement the sending function and/or the receiving function.
- the communication device 120 may be a terminal device, a device in the terminal device, or a device that can be used in conjunction with the terminal device.
- the communication device 120 may be a network device, a device in a network device, or a device that can be used in conjunction with the network device.
- the processing module 1202 is configured to: determine a candidate codebook for 4-antenna ports and/or a candidate codebook for 2-antenna ports for uplink MIMO transmission; determine panel configuration information of an 8-antenna port multi-antenna panel for uplink MIMO transmission; based on the candidates The codebook and the panel configuration information determine the codeword of the L layer of the 8-antenna port multi-antenna panel, and the L is less than or equal to 8.
- the processing module 1202 is further configured to: determine a first candidate codebook from the candidate codebook of the 4-antenna port and the candidate codebook of the 2-antenna port according to the panel configuration information, and determine the first candidate codebook from the candidate codebook. Determine the first codeword in the first candidate codebook; determine the second codeword corresponding to the first codeword; determine the common phase coefficient and the compensation factor between the antenna panels, and determine the common phase coefficient and the compensation factor based on the common phase coefficient and the compensation factor. factor, the first codeword and the second codeword are spliced to obtain the codeword of the L layer of the 8-antenna port multi-antenna panel.
- the processing module 1202 is also configured to: when the first candidate codebook is the candidate codebook of the 4-antenna port and 4 ⁇ L ⁇ 8, determine according to the co-phase coefficient and the compensation factor.
- the first coefficient matrix splicing the two first codewords in the row dimension to generate a first spliced codeword; splicing the two second codewords in the row dimension to generate a second spliced codeword ; Splicing the first splicing codeword and the second splicing codeword in the column dimension to generate a third splicing codeword; performing matrix dot multiplication on the first coefficient matrix and the third splicing codeword Operation is performed to generate a codeword for the L layer of the 8-antenna port multi-antenna panel, wherein the coefficients in the first coefficient matrix are multiplied by the block matrix at the corresponding position in the third splicing codeword.
- the processing module 1202 is also configured to: when the first candidate codebook is the candidate codebook of the 4-antenna ports and 1 ⁇ L ⁇ 4, determine according to the co-phase coefficient and the compensation factor. a second coefficient matrix; concatenate the first codeword and the second codeword in the row dimension to generate a fourth concatenated codeword; perform a matrix process on the second coefficient matrix and the fourth concatenated codeword Dot multiplication operation is performed to generate codewords for the L layer of the 8-antenna port multi-antenna panel, wherein the coefficients in the second coefficient matrix are multiplied by the block matrix at the corresponding position in the fourth splicing codeword.
- the processing module 1202 is also configured to: when the first candidate codebook is a candidate codebook for 2 antenna ports and 4 ⁇ L ⁇ 8, determine a third codebook based on the co-phase coefficient and the compensation factor.
- Coefficient matrix for the first 2*(L-4) columns in the L columns, splice four of the first codewords in the row dimension in the form of a block matrix to generate a fifth splicing code word; for the last 8-L columns in the L column, the second codeword is spliced into four second codewords in the row dimension in the form of a block matrix to generate a sixth spliced codeword; in the column dimension
- the fifth splicing codeword and the sixth splicing codeword are spliced to generate a seventh splicing codeword; a matrix dot multiplication operation is performed on the third coefficient matrix and the seventh splicing codeword to generate the The codeword of the L layer of the 8-antenna port multi-antenna panel, wherein the
- the processing module 1202 is further configured to: determine the first candidate codebook from the candidate codebook of the 4-antenna port and the candidate codebook of the 2-antenna port according to the number of antenna panels; The transmission coherence determines the first codeword from the first candidate codebook.
- the processing module 1202 is also configured to: select a fully coherent codeword in the first candidate codebook as the first codeword when the transmission coherence is fully coherent transmission between antenna panels.
- the processing module 1202 is also configured to: when the first candidate codebook is the candidate codebook of the 4-antenna port and the number of transmission layers is 5 ⁇ L ⁇ 8, determine the 4-antenna port
- the fully coherent codeword of the layer is the first codeword; selected from the first codeword Column vector that generates the second codeword.
- the processing module 1202 is also configured to: when the first candidate codebook is the candidate codebook of the 4-antenna port and the number of transmission layers is 5 ⁇ L ⁇ 8, determine the fully coherent transmission layer of the 4-antenna port 4-layer The codeword is the first codeword; it is determined that the first codeword is the second codeword.
- the processing module 1202 is also configured to: splice the first codeword and the second codeword to obtain an 8-antenna port 8-layer codeword, and select L from the 8-antenna port 8-layer codeword. Column vector to generate codewords for the L layer of the 8-antenna port multi-antenna panel.
- the processing module 1202 is further configured to: the first candidate codebook is the candidate codebook of the 4-antenna ports, and determine that the fully coherent codeword of the 4-layer 4-antenna port is the first codeword; When the number of transmission layers is 4 ⁇ L ⁇ 8, according to the L layer, a vector of columns L-4 is selected from the first codeword to generate the second codeword.
- the processing module 1202 is also configured to: when the first candidate codebook is the candidate codebook of the 4-antenna port and the number of transmission layers is 5 ⁇ L ⁇ 8, determine the 4-antenna port The fully coherent codeword of the layer is the first codeword; determine the 4-antenna port The fully coherent codeword of the layer is the second codeword.
- the processing module 1202 is also configured to: determine the fully coherent code of the L layer of the 4-antenna port when the first candidate codebook is the candidate codebook of the 4-antenna port and the number of transmission layers 1 ⁇ L ⁇ 4 The word is the first codeword; it is determined that the first codeword is the second codeword.
- the processing module 1202 is also configured to: when the first candidate codebook is the candidate codebook of the 2-antenna port, determine that the fully coherent codeword of the 2-antenna port layer 2 is the first codeword. ; Determine the fully coherent codeword of layer 1 of the 2-antenna port as the second codeword.
- the processing module 1202 is also configured to: when the transmission coherence is one of incoherent transmission between antenna panels, partially coherent transmission between antenna panels, or partially coherent transmission at antenna ports in different antenna panels, select Any codeword in the first candidate codebook is used as the first codeword.
- the processing module 1202 is also configured to: the first candidate codebook is the candidate codebook of the 4-antenna port and the transmission coherence is non-coherent transmission between the antenna panels, and determine the 4-antenna port
- the codeword of the layer is the first codeword; selected from the first codeword Column vector that generates the second codeword.
- the processing module 1202 is also configured to: the first candidate codebook is the candidate codebook of the 4-antenna port and the transmission coherence is non-coherent transmission between the antenna panels, and determine the 4-antenna port The codeword of the layer is the first codeword; determine the 4-antenna port The codeword of the layer is the second codeword.
- the processing module 1202 is also configured to: the first candidate codebook is the candidate codebook of the 2-antenna port, determine the codeword of the 2-antenna port layer 2 as the first codeword; determine the 2-antenna port The codeword of port 1 layer is the second codeword.
- the processing module 1202 is also configured to: during partial coherent transmission between the antenna panels or partial coherent transmission between the antenna ports in the different antenna panels, the antenna panel corresponding to the codeword based on the two antenna ports or The antenna port determines the position of the codeword of the 2-antenna port in the codeword of the L layer of the 8-antenna-port multi-antenna panel.
- the processing module 1202 is also configured to determine the normalization coefficient of any codeword, and perform energy normalization processing on the any codeword based on the normalization coefficient.
- candidate codebooks for 4-antenna ports and/or 2-antenna ports corresponding to uplink MIMO transmission are determined, and the panel configuration information of the 8-antenna port multi-antenna panel for uplink MIMO transmission is determined based on the candidate codebook and panel configuration.
- the codeword of the L layer of the 8-antenna port multi-panel can be determined.
- a high-dimensional antenna fully coherent transmission codeword of 8 antenna ports can be constructed based on a low-dimensional antenna fully coherent transmission codeword, which can meet the requirement of uplink MIMO to support layer 1 to layer 8 transmission of 8 antenna ports, and thus Uplink MIMO technology is further enhanced.
- FIG 13 is a schematic structural diagram of another communication device 130 provided by an embodiment of the present application.
- the communication device 130 may be a network device, a terminal device, a chip, a chip system, or a processor that supports a network device to implement the above method, or a chip, a chip system, or a processor that supports a terminal device to implement the above method. Processor etc.
- the device can be used to implement the method described in the above method embodiment. For details, please refer to the description in the above method embodiment.
- Communication device 130 may include one or more processors 1301.
- the processor 1301 may be a general-purpose processor or a special-purpose processor, or the like.
- it can be a baseband processor or a central processing unit.
- the baseband processor can be used to process communication protocols and communication data.
- the central processor can be used to control communication devices (such as base stations, baseband chips, terminal equipment, terminal equipment chips, DU or CU, etc.) and execute computer programs. , processing data for computer programs.
- the communication device 130 may also include one or more memories 1302, on which a computer program 1303 may be stored.
- the processor 1301 executes the computer program 1303, so that the communication device 130 performs the steps described in the above method embodiments. method.
- the memory 1302 may also store data.
- the communication device 130 and the memory 1302 can be provided separately or integrated together.
- the communication device 130 may also include a transceiver 1304 and an antenna 1305.
- the transceiver 1304 may be called a transceiver unit, a transceiver, a transceiver circuit, etc., and is used to implement transceiver functions.
- the transceiver 1304 may include a receiver and a transmitter.
- the receiver may be called a receiver or a receiving circuit, etc., used to implement the receiving function;
- the transmitter may be called a transmitter, a transmitting circuit, etc., used to implement the transmitting function.
- the communication device 130 may also include one or more interface circuits 1306.
- the interface circuit 1306 is used to receive code instructions and transmit them to the processor 1301 .
- the processor 1301 executes the code instructions to cause the communication device 130 to perform the method described in the above method embodiment.
- the communication device 130 is a terminal device used to implement the functions in the aforementioned embodiments.
- the processor 1301 may include a transceiver for implementing receiving and transmitting functions.
- the transceiver may be a transceiver circuit, an interface, or an interface circuit.
- the transceiver circuits, interfaces or interface circuits used to implement the receiving and transmitting functions can be separate or integrated.
- the above-mentioned transceiver circuit, interface or interface circuit can be used for reading and writing codes/data, or the above-mentioned transceiver circuit, interface or interface circuit can be used for signal transmission or transfer.
- the processor 1301 may store a computer program 1303, and the computer program 1303 runs on the processor 1301, causing the communication device 130 to perform the method described in the above method embodiment.
- the computer program 1303 may be solidified in the processor 1301, in which case the processor 1301 may be implemented by hardware.
- the communication device 130 may include a circuit, which may implement the functions of sending or receiving or communicating in the foregoing method embodiments.
- the processor and transceiver described in this application can be implemented in integrated circuits (Integrated Circuit, IC), analog IC, radio frequency integrated circuit RFIC, mixed signal IC, application specific integrated circuit (Application Specific Integrated Circuit, ASIC), printed circuit board ( Printed Circuit Board, PCB), electronic equipment, etc.
- the processor and transceiver can also be manufactured using various IC process technologies, such as complementary metal oxide semiconductor (Complementary Metal Oxide Semiconductor, CMOS), N-type metal oxide semiconductor (Negative channel Metal-Oxide-Semiconductor, NMOS), P-type metal oxide semiconductor (Positive channel Metal Oxide Semiconductor, PMOS), bipolar junction transistor (Bipolar Junction Transistor, BJT), bipolar CMOS (BiCMOS), silicon germanium (SiGe), gallium arsenide (GaAs), etc.
- CMOS complementary metal oxide semiconductor
- N-type metal oxide semiconductor Negative channel Metal-Oxide-Semiconductor
- PMOS P-type metal oxide semiconductor
- BJT bipolar junction transistor
- BiCMOS bipolar CMOS
- SiGe silicon germanium
- GaAs gallium arsenide
- the communication device described in the above embodiments may be a network device or network device, but the scope of the communication device described in this application is not limited thereto, and the structure of the communication device may not be limited by FIG. 13 .
- the communication device may be a stand-alone device or may be part of a larger device.
- the communication device may be:
- the IC collection may also include storage components for storing data and computer programs;
- the communication device may be a chip or a chip system
- the schematic structural diagram of the chip shown in FIG. 14 refer to the schematic structural diagram of the chip shown in FIG. 14 .
- the chip shown in Figure 14 includes a processor 1401 and an interface 1402.
- the number of processors 1401 may be one or more, and the number of interfaces 1402 may be multiple.
- Processor 1401 configured to: determine a candidate codebook for 4-antenna ports and/or a candidate codebook for 2-antenna ports for uplink MIMO transmission; determine panel configuration information of an 8-antenna port multi-antenna panel for uplink MIMO transmission; based on the candidates The codebook and the panel configuration information determine the codeword of the L layer of the 8-antenna port multi-antenna panel, and the L is less than or equal to 8.
- the processor 1401 is further configured to: determine a first candidate codebook from the candidate codebook of the 4-antenna port and the candidate codebook of the 2-antenna port according to the panel configuration information, and determine the first candidate codebook from the candidate codebook. Determine the first codeword in the first candidate codebook; determine the second codeword corresponding to the first codeword; determine the common phase coefficient and the compensation factor between the antenna panels, and determine the common phase coefficient and the compensation factor based on the common phase coefficient and the compensation factor. factor, the first codeword and the second codeword are spliced to obtain the codeword of the L layer of the 8-antenna port multi-antenna panel.
- the processor 1401 is further configured to: when the first candidate codebook is the candidate codebook of the 4-antenna port and 4 ⁇ L ⁇ 8, determine according to the co-phase coefficient and the compensation factor.
- the first coefficient matrix splicing the two first codewords in the row dimension to generate a first spliced codeword; splicing the two second codewords in the row dimension to generate a second spliced codeword ; Splicing the first splicing codeword and the second splicing codeword in the column dimension to generate a third splicing codeword; performing matrix dot multiplication on the first coefficient matrix and the third splicing codeword Operation is performed to generate a codeword for the L layer of the 8-antenna port multi-antenna panel, wherein the coefficients in the first coefficient matrix are multiplied by the block matrix at the corresponding position in the third splicing codeword.
- the processor 1401 is further configured to: when the first candidate codebook is the candidate codebook of the 4-antenna ports and 1 ⁇ L ⁇ 4, determine according to the co-phase coefficient and the compensation factor. a second coefficient matrix; concatenate the first codeword and the second codeword in the row dimension to generate a fourth concatenated codeword; perform a matrix process on the second coefficient matrix and the fourth concatenated codeword Dot multiplication operation is performed to generate codewords for the L layer of the 8-antenna port multi-antenna panel, wherein the coefficients in the second coefficient matrix are multiplied by the block matrix at the corresponding position in the fourth splicing codeword.
- the processor 1401 is further configured to: when the first candidate codebook is a candidate codebook for 2 antenna ports and 4 ⁇ L ⁇ 8, determine a third codebook based on the co-phase coefficient and the compensation factor.
- Coefficient matrix for the first 2*(L-4) columns in the L columns, splice four of the first codewords in the row dimension in the form of a block matrix to generate a fifth splicing code word; for the last 8-L columns in the L column, the second codeword is spliced into four second codewords in the row dimension in the form of a block matrix to generate a sixth spliced codeword; in the column dimension
- the fifth splicing codeword and the sixth splicing codeword are spliced to generate a seventh splicing codeword; a matrix dot multiplication operation is performed on the third coefficient matrix and the seventh splicing codeword to generate the The codeword of the L layer of the 8-antenna port multi-antenna panel, wherein the coefficient
- the processor 1401 is further configured to: determine the first candidate codebook from the candidate codebook of the 4-antenna port and the candidate codebook of the 2-antenna port according to the number of antenna panels; The transmission coherence determines the first codeword from the first candidate codebook.
- the processor 1401 is also configured to select a fully coherent codeword in the first candidate codebook as the first codeword when the transmission coherence is fully coherent transmission between antenna panels.
- the processor 1401 is also configured to: when the first candidate codebook is the candidate codebook of the 4-antenna port and the number of transmission layers is 5 ⁇ L ⁇ 8, determine the 4-antenna port The fully coherent codeword of the layer is the first codeword; selected from the first codeword Column vector that generates the second codeword.
- the processor 1401 is also configured to: when the first candidate codebook is the candidate codebook of the 4-antenna port and the number of transmission layers is 5 ⁇ L ⁇ 8, determine the fully coherent transmission layer of the 4-antenna port 4-layer The codeword is the first codeword; it is determined that the first codeword is the second codeword.
- the processor 1401 is further configured to splice the first codeword and the second codeword to obtain an 8-antenna port 8-layer codeword, and select L from the 8-antenna port 8-layer codeword.
- the processor 1401 is further configured to: the first candidate codebook is the candidate codebook of the 4-antenna ports, and determine that the fully coherent codeword of the 4-layer 4-antenna port is the first codeword; When the number of transmission layers is 4 ⁇ L ⁇ 8, according to the L layer, a vector of columns L-4 is selected from the first codeword to generate the second codeword.
- the processor 1401 is also configured to: when the first candidate codebook is the candidate codebook of the 4-antenna port and the number of transmission layers is 5 ⁇ L ⁇ 8, determine the 4-antenna port The fully coherent codeword of the layer is the first codeword; determine the 4-antenna port The fully coherent codeword of the layer is the second codeword.
- the processor 1401 is also configured to: determine the fully coherent code of the L layer of the 4-antenna port when the first candidate codebook is the candidate codebook of the 4-antenna port and the number of transmission layers 1 ⁇ L ⁇ 4 The word is the first codeword; it is determined that the first codeword is the second codeword.
- the processor 1401 is also configured to: when the first candidate codebook is the candidate codebook of the 2-antenna port, determine that the fully coherent codeword of the 2-antenna port layer 2 is the first codeword. ; Determine the fully coherent codeword of layer 1 of the 2-antenna port as the second codeword.
- the processor 1401 is also configured to: when the transmission coherence is one of incoherent transmission between antenna panels, partially coherent transmission between antenna panels, or partially coherent transmission at antenna ports in different antenna panels, select Any codeword in the first candidate codebook is used as the first codeword.
- the processor 1401 is further configured to: the first candidate codebook is the candidate codebook of the 4-antenna port and the transmission coherence is non-coherent transmission between the antenna panels, and determine the 4-antenna port
- the codeword of the layer is the first codeword; selected from the first codeword Column vector that generates the second codeword.
- the processor 1401 is further configured to: the first candidate codebook is the candidate codebook of the 4-antenna port and the transmission coherence is non-coherent transmission between the antenna panels, and determine the 4-antenna port The codeword of the layer is the first codeword; determine the 4-antenna port The codeword of the layer is the second codeword.
- the processor 1401 is also configured to: the first candidate codebook is the candidate codebook of the 2-antenna port, determine the codeword of the 2-antenna port layer 2 as the first codeword; determine the 2-antenna port The codeword of port 1 layer is the second codeword.
- the processor 1401 is also configured to: during partial coherent transmission between the antenna panels or partial coherent transmission at the antenna ports in the different antenna panels, based on the antenna panel corresponding to the code word of the two antenna ports or The antenna port determines the position of the codeword of the 2-antenna port in the codeword of the L layer of the 8-antenna-port multi-antenna panel.
- the processor 1401 is also configured to determine the normalization coefficient of any codeword, and perform energy normalization processing on the any codeword based on the normalization coefficient.
- the chip 140 also includes a memory 1403 for storing necessary computer programs and data.
- candidate codebooks for 4-antenna ports and/or 2-antenna ports corresponding to uplink MIMO transmission are determined, and the panel configuration information of the 8-antenna port multi-antenna panel for uplink MIMO transmission is determined based on the candidate codebook and panel configuration.
- the codeword of the L layer of the 8-antenna port multi-panel can be determined.
- a high-dimensional antenna fully coherent transmission codeword of 8 antenna ports can be constructed based on a low-dimensional antenna fully coherent transmission codeword, which can meet the requirement of uplink MIMO to support layer 1 to layer 8 transmission of 8 antenna ports, and thus Uplink MIMO technology is further enhanced.
- Embodiments of the present application also provide a communication system, which includes a communication device as a terminal device in the embodiment of FIG. 8 and a communication device as a network device, or the system includes a communication device as a terminal device in the embodiment of FIG. 9 devices and communication devices as network equipment.
- This application also provides a readable storage medium on which instructions are stored. When the instructions are executed by a computer, the functions of any of the above method embodiments are implemented.
- This application also provides a computer program product, which, when executed by a computer, implements the functions of any of the above method embodiments.
- the above embodiments it may be implemented in whole or in part by software, hardware, firmware, or any combination thereof.
- software it may be implemented in whole or in part in the form of a computer program product.
- the computer program product includes one or more computer programs.
- the computer program When the computer program is loaded and executed on a computer, the processes or functions described in the embodiments of the present application are generated in whole or in part.
- the computer may be a general-purpose computer, a special-purpose computer, a computer network, or other programmable device.
- the computer program may be stored in or transferred from one computer-readable storage medium to another, for example, the computer program may be transferred from a website, computer, server, or data center Transmission to another website, computer, server or data center through wired (such as coaxial cable, optical fiber, Digital Subscriber Line (DSL)) or wireless (such as infrared, wireless, microwave, etc.) means.
- the computer-readable storage medium may be any available medium that can be accessed by a computer or a data storage device such as a server, data center, etc. that contains one or more available media integrated.
- the available media may be magnetic media (e.g., floppy disks, hard disks, magnetic tapes), optical media (e.g., high-density digital video discs (Digital Video Disc, DVD)), or semiconductor media (e.g., solid state drives (Solid State Disk, SSD)) etc.
- magnetic media e.g., floppy disks, hard disks, magnetic tapes
- optical media e.g., high-density digital video discs (Digital Video Disc, DVD)
- semiconductor media e.g., solid state drives (Solid State Disk, SSD)
- At least one in this application can also be described as one or more, and the plurality can be two, three, four or more, which is not limited by this application.
- the technical feature is distinguished by “first”, “second”, “third”, “A”, “B”, “C” and “D”, etc.
- the technical features described in “first”, “second”, “third”, “A”, “B”, “C” and “D” are in no particular order or order.
- the corresponding relationships shown in each table in this application can be configured or predefined.
- the values of the information in each table are only examples and can be configured as other values, which are not limited by this application.
- the corresponding relationships shown in some rows may not be configured.
- appropriate deformation adjustments can be made based on the above table, such as splitting, merging, etc.
- the names of the parameters shown in the titles of the above tables may also be other names understandable by the communication device, and the values or expressions of the parameters may also be other values or expressions understandable by the communication device.
- other data structures can also be used, such as arrays, queues, containers, stacks, linear lists, pointers, linked lists, trees, graphs, structures, classes, heaps, hash tables or hash tables. wait.
- Predefinition in this application can be understood as definition, pre-definition, storage, pre-storage, pre-negotiation, pre-configuration, solidification, or pre-burning.
- Those of ordinary skill in the art will appreciate that the units and algorithm steps of each example described in conjunction with the embodiments disclosed herein can be implemented with electronic hardware, or a combination of computer software and electronic hardware. Whether these functions are performed in hardware or software depends on the specific application and design constraints of the technical solution. Skilled artisans may implement the described functionality using different methods for each specific application, but such implementations should not be considered beyond the scope of this application.
Landscapes
- Engineering & Computer Science (AREA)
- Computer Networks & Wireless Communication (AREA)
- Signal Processing (AREA)
- Radio Transmission System (AREA)
- Mobile Radio Communication Systems (AREA)
Abstract
本申请实施例公开了一种上行MIMO传输的8天线端口多天线面板的码字确定方法及其装置,可以应用于通信系统中,该方法包括:确定上行MIMO传输对应的4天线端口和/或2天线端口的候选码本,并确定上行MIMO传输的8天线端口多天线面板的面板配置信息,基于候选码本和面板配置信息,可以确定8天线端口多面板L层的码字。本申请实施例中可以基于低维度的天线全相干传输码字,构建高维度8天线端口的天线全相干传输码字,能够满足上行MIMO支持8天线端口的1层至8层传输的需求,进而对上行MIMO技术进一步增强。
Description
本申请涉及通信技术领域,尤其涉及一种上行多输入多输出(Multiple Input Multiple Output,MIMO)传输的8天线端口多天线面板的码字确定方法及其装置。
MIMO系统中的预编码技术可有效降低干扰及系统开销,提升系统容量,是MIMO系统中极其重要的关键技术,在基于码本传输的MIMO系统中,码本设计也是预编码技术中重要的一部分。现有上行MIMO传输天线全相干传输码字所支持的最大天线端口数量为4,即现有上行MIMO的天线全相干传输码字仅支持最大4天线端口最大4层的传输,在上行MIMO传输的天线端口增强时,例如增加到8天线端口,此时无法满足增强后天线端口的传输需求。
发明内容
本申请实施例提供一种上行MIMO传输的8天线端口多天线面板的码字确定方法及其装置,基于低维度的传输码字,构建高维度8天线端口多面板的码字,能够使得上行MIMO支持8天线端口的1层至8层传输的需求,进而对上行MIMO技术进一步增强。
第一方面,本申请实施例提供一种上行MIMO传输的8天线端口多天线面板的码字确定方法,该方法包括:
确定上行MIMO传输的4天线端口的候选码本和/或2天线端口的候选码本;
确定上行MIMO传输的8天线端口多天线面板的面板配置信息;
基于所述候选码本和所述面板配置信息,确定所述8天线端口多天线面板L层的码字,所述L小于或者等于8。
本申请实施例中,确定上行MIMO传输的4天线端口和/或2天线端口的候选码本,并确定上行MIMO传输的8天线端口多天线面板的面板配置信息,基于候选码本和面板配置信息,确定8天线端口多天线面板L层的码字。本申请实施例中可以基于低维度的传输码字,构建高维度8天线端口多面板的传输码字,能够使得上行MIMO支持8天线端口的1层至8层传输的需求,进而对上行MIMO技术进一步增强。
第二方面,本申请实施例提供一种通信装置,该通信装置具有实现上述第一方面所述的方法中终端设备的部分或全部功能,比如通信装置的功能可具备本申请中的部分或全部实施例中的功能,也可以具备单独实施本申请中的任一个实施例的功能。所述功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。所述硬件或软件包括一个或多个与上述功能相对应的单元或模块。
在一种实现方式中,该通信装置的结构中可包括收发模块和处理模块,所述处理模块被配置为支持通信装置执行上述方法中相应的功能。所述收发模块用于支持通信装置与其他设备之间的通信。所述通信装置还可以包括存储模块,所述存储模块用于与收发模块和处理模块耦合,其保存通信装置必要的计算机程序和数据。
作为示例,处理模块可以为处理器,收发模块可以为收发器或通信接口,存储模块可以为存储器。
在一种实现方式中,该通信装置的结构中可包括收发模块和处理模块,该处理模块被配置为支持通 信装置执行上述方法中相应的功能。收发模块用于支持通信装置与其他设备之间的通信。所述通信装置还可以包括存储模块,所述存储模块用于与收发模块和处理模块耦合,其保存通信装置必要的计算机程序和数据。
第三方面,本申请实施例提供一种通信装置,该通信装置包括处理器,当该处理器调用存储器中的计算机程序时,执行上述第一方面所述的方法。
第四方面,本申请实施例提供一种通信装置,该通信装置包括处理器和存储器,该存储器中存储有计算机程序;所述处理器执行该存储器所存储的计算机程序,以使该通信装置执行上述第一方面所述的方法。
第五方面,本申请实施例提供一种通信装置,该装置包括处理器和接口电路,该接口电路用于接收代码指令并传输至该处理器,该处理器用于运行所述代码指令以使该装置执行上述第一方面所述的方法。
第六方面,本发明实施例提供一种计算机可读存储介质,用于储存为上述终端设备所用的指令,当所述指令被执行时,使所述终端设备执行上述第一方面所述的方法。
第七方面,本申请还提供一种包括计算机程序的计算机程序产品,当其在计算机上运行时,使得计算机执行上述第一方面所述的方法。
第八方面,本申请提供一种芯片系统,该芯片系统包括至少一个处理器和接口,用于支持终端设备实现第一方面所涉及的功能,例如,确定或处理上述方法中所涉及的数据和信息中的至少一种。在一种可能的设计中,所述芯片系统还包括存储器,所述存储器,用于保存终端设备必要的计算机程序和数据。该芯片系统,可以由芯片构成,也可以包括芯片和其他分立器件。
第九方面,本申请提供一种计算机程序,当其在计算机上运行时,使得计算机执行上述第一方面所述的方法。
为了更清楚地说明本申请实施例或背景技术中的技术方案,下面将对本申请实施例或背景技术中所需要使用的附图进行说明。
图1是本申请实施例提供的一种通信系统的架构示意图;
图2是本申请实施例提供的一种上行MIMO传输的8天线端口多天线面板的码字确定方法的流程示意图;
图3是本申请实施例提供的另一种上行MIMO传输的8天线端口多天线面板的码字确定方法的流程示意图;
图4是本申请实施例提供的另一种上行MIMO传输的8天线端口多天线面板的码字确定方法的流程示意图;
图5是本申请实施例提供的另一种上行MIMO传输的8天线端口多天线面板的码字确定方法的流程示意图;
图6是本申请实施例提供的另一种上行MIMO传输的8天线端口多天线面板的码字确定方法的流程示意图;
图7是本申请实施例提供的另一种上行MIMO传输的8天线端口多天线面板的码字确定方法的流程示意图;
图8是本申请实施例提供的另一种上行MIMO传输的8天线端口多天线面板的码字确定方法的流程示意图;
图9是本申请实施例提供的另一种上行MIMO传输的8天线端口多天线面板的码字确定方法的流程示意图;
图10是本申请实施例提供的一种基于码本的上行传输方法的流程示意图;
图11是本申请实施例提供的另一种基于码本的上行传输方法的流程示意图;
图12是本申请实施例提供的一种通信装置的结构示意图;
图13是本申请实施例提供的一种通信装置的结构示意图;
图14是本申请实施例提供的一种芯片的结构示意图。
这里将详细地对示例性实施例进行说明,其示例表示在附图中。下面的描述涉及附图时,除非另有表示,不同附图中的相同数字表示相同或相似的要素。以下示例性实施例中所描述的实施方式并不代表与本公开相一致的所有实施方式。相反,它们仅是与如所附权利要求书中所详述的、本公开的一些方面相一致的装置和方法的例子。
在本公开实施例使用的术语是仅仅出于描述特定实施例的目的,而非旨在限制本公开实施例。在本公开实施例和所附权利要求书中所使用的单数形式的“一种”和“该”也旨在包括多数形式,除非上下文清楚地表示其他含义。还应当理解,本文中使用的术语“和/或”是指并包含一个或多个相关联的列出项目的任何或所有可能组合。
应当理解,尽管在本公开实施例可能采用术语第一、第二、第三等来描述各种信息,但这些信息不应限于这些术语。这些术语仅用来将同一类型的信息彼此区分开。例如,在不脱离本公开实施例范围的情况下,第一信息也可以被称为第二信息,类似地,第二信息也可以被称为第一信息。取决于语境,如在此所使用的词语“如果”可以被解释成为“在……时”或“当……时”或“响应于确定”出于简洁和便于理解的目的,本文在表征大小关系时,所使用的术语为“大于”或“小于”、“高于”或“低于”。但对于本领域技术人员来说,可以理解:术语“大于”也涵盖了“大于等于”的含义,“小于”也涵盖了“小于等于”的含义;术语“高于”涵盖了“高于等于”的含义,“低于”也涵盖了“低于等于”的含义。
为了便于理解,首先介绍本申请涉及的术语。
物理上行共享信道(Physical Uplink Shared Channel,PUSCH)用于承载来自传输信道PUSCH的数据。
相干传输被定义为一种UE的能力,UE的相干传输能力包括:
全相干(Full Coherence)传输:所有的天线端口都可以相干传输。
部分相干(Partial Coherence)传输:同一相干传输组内的天线端口可以相干传输,不同相干传输组内的天线端口不能相干传输,每个相干传输组包括至少两个天线端口。
非相干(Non Coherence)传输:没有天线端口可以相干传输。
通过本申请实施例公开的上行MIMO传输的8天线端口多天线面板的码字确定方法,确定出可适用于通信系统中的天线全相干传输码字,下面首先对本申请实施例适用的通信系统进行描述。
请参见图1,图1为本申请实施例提供的一种通信系统的架构示意图。该通信系统可包括但不限于一个网络设备和一个终端设备,图1所示的设备数量和形态仅用于举例并不构成对本申请实施例的限定,实际应用中可以包括两个或两个以上的网络设备,两个或两个以上的终端设备。图1所示的通信系统以包括一个网络设备101和一个终端设备102为例。
需要说明的是,本申请实施例的技术方案可以应用于各种通信系统。例如:长期演进(Long Term Evolution,LTE)系统、第五代(5th Generation,5G)移动通信系统、5G新空口(New Radio,NR)系统,或者其他未来的新型移动通信系统等。还需要说明的是,本申请实施例中的侧链路还可以称为侧行链路或直通链路。
本申请实施例中的网络设备101是网络侧的一种用于发射或接收信号的实体。例如,网络设备101可以为演进型基站(evolved NodeB,eNB)、传输点(Transmission Reception Point,TRP)、NR系统中的下一代基站(next generation NodeB,gNB)、其他未来移动通信系统中的基站或无线保真(Wireless Fidelity,WiFi)系统中的接入节点等。本申请的实施例对网络设备所采用的具体技术和具体设备形态不做限定。本申请实施例提供的网络设备可以是由集中单元(Central Unit,CU)与分布式单元(Distributed Unit,DU)组成的,其中,CU也可以称为控制单元(Control Unit),采用CU-DU的结构可以将网络设备,例如基站的协议层拆分开,部分协议层的功能放在CU集中控制,剩下部分或全部协议层的功能分布在DU中,由CU集中控制DU。
本申请实施例中的终端设备102是用户侧的一种用于接收或发射信号的实体,如手机。终端设备也可以称为终端设备(Terminal)、用户设备(User Equipment,UE)、移动台(Mobile Station,MS)、移动终端设备(Mobile Terminal,MT)等。终端设备可以是具备通信功能的汽车、智能汽车、手机(Mobile Phone)、穿戴式设备、平板电脑(Pad)、带无线收发功能的电脑、虚拟现实(Virtual Reality,VR)终端设备、增强现实(Augmented Reality,AR)终端设备、工业控制(Industrial Control)中的无线终端设备、无人驾驶(Self-driving)中的无线终端设备、远程手术(Remote Medical Surgery)中的无线终端设备、智能电网(Smart Grid)中的无线终端设备、运输安全(Transportation Safety)中的无线终端设备、智慧城市(Smart City)中的无线终端设备、智慧家庭(Smart Home)中的无线终端设备等等。本申请的实施例对终端设备所采用的具体技术和具体设备形态不做限定。
在侧链路通信中,存在4种侧链路传输模式。侧链路传输模式1和侧链路传输模式2用于终端设备直通(Device-To-Device,D2D)通信。侧链路传输模式3和侧链路传输模式4用于V2X通信。当采用侧链路传输模式3时,资源分配由网络设备101调度。具体的,网络设备101可以将资源分配信息发送给终端设备102,然后由该终端设备102向另一终端设备分配资源,以使得该另一终端设备可以通过分配到的资源向网络设备101发送信息。在V2X通信中,可以将信号较好或者可靠性较高的终端设备作为终端设备102。本申请实施例中提及的第一终端设备可以指该终端设备102,第二终端设备可以指该另一终端设备。
可以理解的是,本申请实施例描述的通信系统是为了更加清楚的说明本申请实施例的技术方案,并不构成对于本申请实施例提供的技术方案的限定,本领域普通技术人员可知,随着系统架构的演变和新业务场景的出现,本申请实施例提供的技术方案对于类似的技术问题,同样适用。
需要说明的是,本申请中任一个实施例提供的上行MIMO传输的8天线端口多天线面板的码字确定方法可以单独执行,或是结合其他实施例中的可能的实现方法一起被执行,还可以结合相关技术中的任一种技术方案一起被执行。
下面结合附图对本申请所提供的上行MIMO传输的8天线端口多天线面板的码字确定方法及其装置进行详细地介绍。
请参见图2,图2是本申请实施例提供的一种上行MIMO传输的8天线端口多天线面板的码字确 定方法的流程示意图。如图2所示,该方法可以包括但不限于如下步骤:
S201,确定上行MIMO传输的4天线端口和/或2天线端口的候选码本。
随着传输需求和传输场景的增强,上行传输可以支持增多的天线端口和上行传输层数即天线端口数量可以从4天线端口增多到最大8天线端口,相应的,上行传输层数可以从4层变为到L层,例如L的取值可以为1至8。
可选地,上行传输的天线端口数量以及上行传输层数L可以相等,也可以不相等。
本申请中对于4天线端口和2天线端口的候选码本的确定方式不作限定,可以根据实际情况确定。
可选地,4天线端口的候选码本可以为3GPP通信协议中约定的上行MIIMO传输的4天线端口的上行预编码码本;2天线端口的候选码本可以为3GPP通信协议中约定的上行MIIMO传输的2天线端口的上行预编码码本;可选地,4天线端口的候选码本可以为3GPP通信协议中约定的下行MIIMO传输的4天线端口的下行预编码码本;2天线端口的候选码本可以为3GPP通信协议中约定的下行MIIMO传输的2天线端口的下行预编码码本。
可选地,4天线端口的候选码本,可以为基于4维的正交码本例如克尔杜克Kerdock码本,确定4天线端口的候选码本;可选地,2天线端口的候选码字,可以为基于2维的正交码本例如克尔杜克Kerdock码本,确定2天线端口的候选码本。需要说明的是,Kerdock码本是一种在通信系统设计中的正交码本,可用于构建相互无偏基序列。Kerdock码本具有正交性,即每个Kerdock码字中任意两列向量均互相正交。
可选地,可以为预先配置的4天线端口和2天线端口的候选码本字。
S202,确定上行MIMO传输的8天线端口多天线面板的面板配置信息。
S203,基于候选码本和面板配置信息,确定上行MIMO传输的8天线端口L层的码字。
可选地,8天线端口多天线面板的面板配置信息可以包括天线面板的数量和天线面板间的传输相干性。
需要说明的是,天线面板数量可以用于从4天线端口的候选码本和2天线端口候选码本中,确定出用于构建8天线端口多天线面板的码本的候选码本,本申请实施例中,可以将用于构建8天线端口多天线面板的码本的候选码本称为第一候选码本。该定义适用于本申请中各实施例,后续不再说明。可选地,天线面板的数量可以为2个或者4个,如图3所示,图3为给定面板数的不同天线排布,对应面板数的码字均适用。
其中,天线面板间的传输相干性可以用于从第一候选码本中确定出用于构建8天线端口多天线面板的码本的码字。可选地,天线面板间的传输相干性可以为天线面板间全相干传输、天线面板间非相干传输、天线面板间部分相干传输或者不同天线面板内的天线端口部分相干传输中的一种。
可选地,8天线端口多天线面板的面板配置信息可以由终端设备的天线结构进行确定。
需要说明的是,L用于表示终端设备所支持的最大上行MIMO传输的传输层数,L的取值为正整数,且L小于或者等于8。
本申请实施例中,在确定出第一候选码本后,可以基于第一候选码本中的指定类型的码字或任一码字,拼接出8天线端口多天线面板L层的码字。可选地,从第一候选码本中确定出用于拼接的码字可以为任一码字,也可以为全相干码字。可选地,从第一候选码本中可以选取一个或两个码字并进行拼接,以拼接出8天线端口多天线面板L层的码字。
例如,在天线面板传输相干性为天线面板间全相干传输时,可以从第一候选码本中选取全相干码字,基于选取的全相干码字拼接8天线端口多天线面板L层的码字。
再例如,在天线面板传输相干性为天线面板间非相干传输、天线面板间部分相干传输或者不同天线面板内的天线端口部分相干传输中的一种时,可以从第一候选码本中选取任意的码字,基于选取的任意的码字拼接8天线端口多天线面板L层的码字。
本申请实施例中,确定上行MIMO传输的4天线端口或2天线端口的候选码本,基于4天线端口或2天线端口候选码本和天线面板的配置信息,可以确定出8天线端口多天线面板L层的传输码字。本申请实施例中可以基于低维度的天线全相干传输码字,构建高维度8天线端口多天线面板的码字,能够满足上行MIMO支持8天线端口的1层至8层传输的需求,进而对上行MIMO技术进一步增强。
请参见图4,图4是本申请实施例提供的一种上行MIMO传输的8天线端口多天线面板的码字确定方法的流程示意图。如图4所示,该方法可以包括但不限于如下步骤:
S401,确定上行MIMO传输的4天线端口的候选码本和/或2天线端口的候选码本。
S402,确定上行MIMO传输的8天线端口多天线面板的面板配置信息。
关于步骤S401~S402的具体介绍可参见上述实施例中相关内容的记载,此处不再赘述。
S403,根据面板配置信息,从4天线端口的候选码本和2天线端口的候选码本中确定第一候选码本,并从第一候选码本中确定第一码字。
S404,确定第一码字对应的第二码字。
可选地,8天线端口多天线面板的面板配置信息可以包括天线面板的数量和天线面板间的传输相干性。
需要说明的是,天线面板数量可以用于从4天线端口的候选码本和2天线端口候选码本中,选取第一候选码本,例如,天线面板数量可以为2个或者4个,在天线面板数量为2时,第一候选码本为4天线端口的候选码本;在天线面板数量为4时,第一候选码本为2天线端口的候选码本。
其中,天线面板间的传输相干性可以用于从第一候选码本中确定出第一码字和/或第二码字。其中,第一码字和/或第二码字用于构建8天线端口多天线面板的码字。可选地,天线面板间的传输相干性可以为天线面板间全相干传输、天线面板间非相干传输、天线面板间部分相干传输或者不同天线面板内的天线端口部分相干传输中的一种。
可选地,8天线端口多天线面板的面板配置信息可以由终端设备的天线结构进行确定。
可选地,可以从第一候选码本中确定一个第一码字,进一步地,基于第一码字确定第二码字,例如可以选取第一码字中的部分列向量,生成第二码字,再例如,直接将第一码字确定为第二码字。可选地,也可以从第一候选码本中确定一个第一码字和第二码字,即第一码字和第二码字均为第一候选码本中选取出的码字。
S405,确定共相位系数和天线面板间的补偿因子,并基于共相位系数和补偿因子,对第一码字和第二码字进行拼接,得到8天线端口多天线面板L层的码字。
本申请实施例中,为拼接过程设计共相位系数和天线面板间的补偿系数,并基于共相位系数和补偿系数,对第二码字和第三码字进行拼接,得到8天线端口多天线面板L层的码字。共相位系数可以基于通信设备所支持的共相位系数能力确定,可以包括相位角度为
此外,可以支持更多的相位角度,例如,按照角度间隔为45°,确定更多的相位角度。
可选地,天线面板的共相位系数和补偿因子可以基于终端设备的天线结构类型确定,终端设备可以自己确定共相位系数和补偿因子,也可以上报天线结构类型,由网络设备根据天线结构类型向终端设备下发共相位系数和补偿因子。
在确定共相位系数和补偿因子后,可以基于共相位系数和补偿因子,构建用于拼接的系数矩阵。进一步地,对从第一候选码本中确定出第一码字和第二码字进行拼接,得到拼接码字。在确定出系数矩阵和拼接码字后,可以对系数矩阵和拼接码字进行矩阵点乘运算,生成8天线端口多天线面板L层的码字,其中,系数矩阵中的系数与拼接码字中对应位置的块矩阵相乘。
作为一种可能的实现方式,在第一候选码本为4天线端口的候选码本且4<L≤8时,可以根据共相位系数和补偿因子,确定第一系数矩阵,在行维度上对两个第一码字进行拼接,生成第一拼接码字,并在行维度对两个第二码字进行拼接,生成第二拼接码字。在确定了第一拼接码字和第二拼接码字后,可以在列维度上对第一拼接码字与第二拼接码字进行拼接,生成第三拼接码字,进一步地,对第一系数矩阵和第三拼接码字进行矩阵点乘运算,生成8天线端口多天线面板L层的码字,其中,第一系数矩阵中的系数与第三拼接码字中对应位置的块矩阵相乘。
作为另一种可能的实现方式,在第一候选码本为4天线端口的候选码本且1≤L≤4时,可以根据共相位系数和补偿因子,确定第二系数矩阵,在行维度上对第一码字和第二码字进行拼接,生成第四拼接码字,进一步地,对第二系数矩阵和第四拼接码字进行矩阵点乘运算,生成8天线端口多天线面板L层的码字,其中,第二系数矩阵中的系数与第四拼接码字中对应位置的块矩阵相乘。
作为又一种可能的实现方式,在第一候选码本为2天线端口的候选码本且4<L≤8时,可以根据共相位系数和补偿因子,确定第三系数矩阵,针对L列中前2*(L-4)列,将第一码字以块矩阵的方式在行维度上拼接四个第一码字,生成第五拼接码字,并针对L列中后L-8列,将第二码字以块矩阵的形式在行维度上拼接四个第二码字,生成第六拼接码字。在确定第五拼接码字和第六拼接码字后,在列维度上对第五拼接码字与第六拼接码字进行拼接,生成第七拼接码字,并对第三系数矩阵和第七拼接码字进行矩阵点乘运算,生成8天线端口多天线面板L层的码字,其中,第三系数矩阵中的系数与第七拼接码字中对应位置的块矩阵相乘。
作为又一种可能的实现方式,在第一候选码本为2天线端口的候选码本且1≤L≤4时,可以根据共相位系数和补偿因子,确定第四系数矩阵,若3≤L≤4在行维度上对四个第一码字进行拼接,生成第八拼接码字,并在行维度上对四个第二码字进行拼接,生成第九拼接码字。在确定了第八拼接码字和第九拼接码字后,在列维度上对第八拼接码字和第九拼接码字进行拼接,生成第十拼接码字。进一步地,对第四系数矩阵和第十拼接码字进行矩阵点乘运算,生成8天线端口多天线面板L层的码字,其中,第四系数矩阵中的系数与第十拼接码字中对应位置的块矩阵相乘。若1≤L≤2在行维度上对两个第一码字和两个第二码字进行拼接,生成第十一拼接码字。进一步地,对第四系数矩阵和第十一拼接码字进行矩阵点乘运算,生成8天线端口多天线面板L层的码字,其中,第四系数矩阵中的系数与第十一拼接码字中对应位置的块矩阵相乘。
本申请实施例中,确定上行MIMO传输的4天线端口或2天线端口的候选码本,基于4天线端口或2天线端口候选码本和天线面板的配置信息,可以确定出8天线端口多天线面板L层的传输码字。本申请实施例中可以基于低维度的天线全相干传输码字,构建高维度8天线端口多天线面板的码字,能够满足上行MIMO支持8天线端口的1层至8层传输的需求,进而对上行MIMO技术进一步增强。
请参见图5,图5是本申请实施例提供的一种上行MIMO传输的8天线端口多天线面板的码字确定方法的流程示意图。如图5所示,该方法可以包括但不限于如下步骤:
S501,确定上行MIMO传输的4天线端口的候选码本和2天线端口的候选码本。
关于步骤S501的具体介绍可参见上述实施例中相关内容的记载,此处不再赘述。
S502,根据天线面板数量,从4天线端口的候选码本和2天线端口的候选码本中确定第一候选码本。
关于步骤S502的具体介绍,可参见上述实施例中相关内容的记载,此处不再赘述。
S503,在传输相干性为天线面板间全相干传输时,选取第一候选码本中的全相干码字作为第一码字,并确定第一码字的第二码字。
作为另一种可能的实现方式二,在第一候选码本为4天线端口的候选码本且5≤L≤8时,确定4天线端口4层的全相干码字为第一码字,可选地,直接确定第一码字为第二码字。可选地,根据L层从第一码字中选取L-4列的向量,生成第二码字。
作为另一种可能的实现方式四,第一候选码本为4天线端口的候选码本且1≤L≤4时,确定4天线端口L层的全相干码字为第一码字,并确定第一码字为第二码字。
作为另一种可能的实现方式五,在第一候选码本为2天线端口的候选码本时,确定2天线端口2层的全相干码字为第一码字,并确定2天线端口1层的全相干码字为第二码字。
S504,确定共相位系数和天线面板间的补偿因子,并基于共相位系数和补偿因子,对第一码字和第二码字进行拼接,得到8天线端口多天线面板L层的码字。
关于步骤S504的具体介绍,可参见上述实施例中相关内容的记载,此处不再赘述。
针对天线面板数量为2,第一候选码本为4天线端口的候选码本。在传输层数5≤L≤8的情况下:
本申请实施例中,在确定第一码字和第二码字后,可以对两个第一码字在行维度上拼接,得到第一拼接码字,并且对两个第二码字在行维度上拼接,得到第二拼接码字。进一步地,对第一拼接码字和第二拼接码字进行列维度上的拼接,得到第三拼接码字。本申请实施例中,对第一系数矩阵与第三拼接码字进行矩阵点乘运算,生成8天线端口多面板L层的码字。其中,第一系数矩阵中的系数与第三拼接码字中对应位置的块矩阵相乘。
需要说明的是,在L为奇数层时,基于第一码字的层数I,按照从第1层至第L层(从前向后的顺序)或者从第L层至第1层(从后向前)的顺序选择L层中I层保留第一码字,其中,I的取值为小于或者等于4的正整数。例如,在L为奇数层时,第一码字为4天线端口4层的候选码字时,可以从前向后选取前4层的码字为第一码字W
4,4,而后面剩余的3层由第二码字确定,例如可以采用W’
4,4中的前三列或后三列。或者,也可以从后向前选取后4层的码字为第一码字W
4,4,而前面剩余的3层由第二码字确定,例如可以采用W’
4,4中的前三列或后三列。
在上述实现方式二中,可选地,确定任意一个4天线端口4层的天线全相干传输码字为第一码字:W
4,4,其中,第二码字为W
4,4。
其中,1、
-1、
为共相位系数,
是天线面板间补偿因子,则第一系数矩阵为:
或
本申请实施例中,在确定第一码字和第二码字后,可以对第一码字和第二码字进行拼接,生成8天线端口多天线面板L层的码字:W
8,L,W
8,L可以为W
8,8中的任意L列的向量构成的矩阵,即任意L层构成的矩阵,例如前L列,
或
从W
8,8中选取任意L列构成的8天线端口L层的码字。其中,对第一码字和第二码字的拼接过程,可参见上述实施例中相关内容的记载,此处不再赘述。
可选地,根据L层,从第一码字中选取L-4列的向量,生成第二码字。即从W
4,4中选取L-4列的向量,生成第二码字。例如,L=6,可以选取W
4,4的第1,2,3列,构成第一码字对应的第二码字。对第一码字和第二码字的拼接过程,可参见上述实施例中相关内容的记载,此处不再赘述。
需要说明的是,在L为奇数层时,基于第一码字的层数I,按照从第1层至第L层(从前向后的顺序)或者从第L层至第1层(从后向前)的顺序选择L层中I层保留第二码字,其中,I的取值为小于或者等于4的正整数。
在上述实现方式三中,可选地,选取任意一个4天线端口
层的全相干码字为第一码字:
并且选取任意一个4天线端口
的全相干码字为第二码字:
其中,1、
-1、
为共相位系数,
是天线面板间补偿因子,则第一系数矩阵为:
或
本申请实施例中,在确定第一码字和第二码字后,对第一码字和第二码字进行拼接的过程,可参见上述实施例中相关内容的记载,此处不再赘述。8天线端口多面板L层的码字:W
8,L可以为
或
需要说明的是,在L为奇数层时,基于第二码字的层数I,按照从第1层至第L层(从前向后的顺序)或者从第L层至第1层(从后向前)的顺序选择L层中I层保留第二码字,其中,I的取值为小于或者等于4的正整数。
针对天线面板数量为2,第一候选码本为4天线端口的候选码本。在传输层数1≤L≤4的情况下:
本申请实施例中,在1≤L≤4时,确定第二系数矩阵后,在行维度上对第一码字和第二码字进行拼接,生成第四拼接码字,即对两个第一码字进行拼接,生成第四拼接码字。在1≤L≤4的情况下,直接将第一码字确定为第二码字,即两个第一码字中有一个为第二码字。进一步地,对第二系数矩阵和第四拼接码字进行矩阵点乘运算,生成8天线端口多面板L层的码字W
8,L可以为
其中,第 二系数矩阵中的系数与第四拼接码字中对应位置的块矩阵相乘。
本申请实施例中,确定上行MIMO传输对应的4天线端口的全相干码字,基于4天线端口的全相干码字,可以确定8天线端口L层的码字。本申请实施例中可以基于低维度的天线全相干传输码字,构建高维度8天线端口的天线全相干传输码字,能够满足上行MIMO支持8天线端口的1层至8层传输的需求,进而对上行MIMO技术进一步增强。
针对天线面板数量为4,第一候选码本为2天线端口的候选码本的情况:
在上述实现方式五中,可选地,对于任意一个2天线端口2层全相干码字W
2,2和任意一个2天线端口1层全相干码字W
2,1。
本申请实施例中,第一候选码本为2天线端口的候选码本且4<L≤8时,根据共相位系数和补偿因子,确定第三系数矩阵,针对L列中前2*(L-4)列,将第一码字以块矩阵的方式在行维度上拼接四个第一码字,生成第五拼接码字;针对L列中后8-L列,将第二码字以块矩阵的形式在行维度上拼接四个第二码字,生成第六拼接码字,并在列维度上对第五拼接码字与第六拼接码字进行拼接,生成第七拼接码字。进一步地,对第三系数矩阵和第七拼接码字进行矩阵点乘运算,生成8天线端口多天线面板L层的码字。其中,第三系数矩阵中的系数与第七拼接码字中对应位置的块矩阵相乘。
示例性说明,L=7,2天线端口2层的全相干码字为
2天线端口1层全相干码字为
其中,
则第三系数矩阵的一种可能的实现方式为
需要说明的是将该第三系数矩阵的列随机打乱顺序,得到的第三系数矩阵仍然可以保证码字的层间正交性。
基于第三系数矩阵对W
2,2和W
2,1进行拼接,得到8天线端口多面板7层码字为:
本申请实施例中,确定上行MIMO传输对应的2天线端口的全相干码字,基于2天线端口的全相干码字,可以确定8天线端口多面板L层的码字。本申请实施例中可以基于低维度的天线全相干传输码字,构建高维度8天线端口的天线全相干传输码字,能够满足上行MIMO支持8天线端口的1层至8层传输的需求,进而对上行MIMO技术进一步增强。
请参见图6,图6是本申请实施例提供的一种上行MIMO传输的8天线端口多天线面板的码字确定方法的流程示意图。如图6所示,该方法可以包括但不限于如下步骤:
S601,确定上行MIMO传输的4天线端口的候选码本和2天线端口的候选码本。
S602,根据天线面板数量,从4天线端口的候选码本和2天线端口的候选码本中确定第一候选码本。
关于步骤S601~S602的具体介绍,可参见上述实施例中相关内容的记载,此处不再赘述。
S603,在传输相干性为天线面板间非相干传输、天线面板间部分相干传输或者不同天线面板内的天线端口部分相干传输中的一种时,选取第一候选码本中的任一码字,作为第一码字。
S604,确定第一码字对应的第二码字。
可选地,第一候选码本为4天线端口的候选码本,可以从4天线端口的候选码本选取第一候选码本中的任一码字,作为第一码字。
可选地,第一候选码本为2天线端口的候选码本,可以从2天线端口的候选码本选取第一候选码本中的任一码字,作为第一码字。
在一些实现中,选取任意一个2天线端口2层的码字W
2,2和任意一个2天线端口1层的码字W
2,1。
S605,确定共相位系数和天线面板间的补偿因子,并基于共相位系数和补偿因子,对第一码字和第二码字进行拼接,得到8天线端口多天线面板L层的码字。
关于步骤S605的介绍可以参见上述实施例中相关内容的记载,此处不再赘述。
本申请实施例中,确定上行MIMO传输对应的2天线端口或4天线端口的码字,基于2天线端口或4天线端口的码字,可以确定8天线端口多面板L层的码字。本申请实施例中可以基于低维度的天 线全相干传输码字,构建高维度8天线端口的天线全相干传输码字,能够满足上行MIMO支持8天线端口的1层至8层传输的需求,进而对上行MIMO技术进一步增强。
下面分别对多天线面板间的传输相干性为天线面板间非相干传输、天线面板间部分相干传输或者不同天线面板内的天线端口部分相干传输的情况进行说明:
请参见图7,图7是本申请实施例提供的一种上行MIMO传输的8天线端口多天线面板的码字确定方法的流程示意图。如图7所示,该方法可以包括但不限于如下步骤:
S701,确定传输相干性为天线面板间非相干传输。
S702,在天线面板数量为2时,确定第一候选码本为4天线端口的候选码本。
S703,从4天线端口的候选码本中,确定第一码字和第一码字对应的第二码字。
在确定第一码字和第二码字之后,可以对第一码字和码字进行拼接,得到第三拼接码字,关于拼接的具体过程,可参见上述实施例中相关内容的记载,此处不再赘述。
S704,在天线面板数量为2时,确定第一候选码本为2天线端口的候选码本。
S705,从2天线端口的候选码本中,确定第一码字和第一码字对应的第二码字。
可选地,选取任意一个2天线端口2层的码字W
2,2和任意一个2天线端口1层的码字W
2,1。在确定第一码字和第二码字后,可以按照2天线端口的候选码本对应的拼接方式拼接得到第七拼接码字。
需要说明的是,在天线面板间的传输相干性为天线面板间非相干传输的情况下,不同位置的4天线端口的码字和2天线端口的码字,其相干性和具体码字可相同或不同,例如4天线端口的码字可以均为非相干码字,即对应所有天线非相干传输的情况。
本申请实施例中,确定上行MIMO传输对应的2天线端口或4天线端口的码字,基于2天线端口或4天线端口的码字,可以确定8天线端口多面板L层的码字。本申请实施例中可以基于低维度的天线全相干传输码字,构建高维度8天线端口的天线全相干传输码字,能够满足上行MIMO支持8天线端口的1层至8层传输的需求,进而对上行MIMO技术进一步增强。
请参见图8,图8是本申请实施例提供的一种上行MIMO传输的8天线端口多天线面板的码字确定方法的流程示意图。如图8所示,该方法可以包括但不限于如下步骤:
S801,在传输相干性为天线面板间部分相干传输且天线面板为4时,确定第一候选码本为2天线端口的候选码本。
S802,从2天线端口的候选码本中,确定第一码字和第一码字对应的第二码字。
S803,基于共相位系数和补偿因子,对第一码字和第二码字进行拼接,得到8天线端口多天线面板L层的码字。
如图3所示,天线面板间部分相干传输可以为第1天线面板和3天线面板相干传输,且第2天线面板和第4天线面板相干传输。
可选地,选取任意一个2天线端口2层的码字W
2,2和任意一个2天线端口1层的码字W
2,1,按照2天线端口的候选码本对应的拼接方式,对码字W
2,2和码字W
2,1进行拼接,得到第七拼接矩阵。进一步地,根据共相位系数和补偿因子确定第三系数矩阵,对第三系数矩阵和第七拼接矩阵进行矩阵点乘运算,生成8天线端口多面板L层码字为:
需要说明的是,天线面板间部分相干传输时,基于2天线端口的码字对应的天线面板,确定该2天线端口的码字在8天线端口多天线面板L层的码字中的位置。也就是说,对于其他相干情况,将2天线端口的码字放置在对应的天线面板上。例如上述实施例得到的8天线端口多面板L层码字可以对应天线面板1和天线面板2相干、天线面板3和天线面板4相干的情况下。此外不同位置的2天线端口的码字,其相干性和具体码字可相同或不同。
本申请实施例中,确定上行MIMO传输对应的2天线端口的码字,基于2天线端口的码字,可以确定8天线端口多面板L层的码字。本申请实施例中可以基于低维度的天线全相干传输码字,构建高维度8天线端口的天线全相干传输码字,能够满足上行MIMO支持8天线端口的1层至8层传输的需求,进而对上行MIMO技术进一步增强。
请参见图9,图9是本申请实施例提供的一种上行MIMO传输的8天线端口多天线面板的码字确 定方法的流程示意图。如图9所示,该方法可以包括但不限于如下步骤:
S901,在传输相干性为不同天线面板内的天线端口部分相干传输且天线面板为2时,确定第一候选码本为2天线端口的候选码本。
不同天线面板内的天线端口部分相干传输,可以为第1天线面板的第1、2端口和第2天线面板的第1、2端口相干传输,第1天线面板的第3、4端口和第2天线面板的第3、4端口相干传输。可以理解为两个天线面板将8个天线端口划分为4个端口组。本申请实施例中可以确定第一候选码本为2天线端口的候选码本。
S902,从2天线端口的候选码本中,确定第一码字和第一码字对应的第二码字。
S903,基于共相位系数和补偿因子,对第一码字和第二码字进行拼接,得到8天线端口多天线面板L层的码字。
可选地,选取任意一个2天线端口2层码字W
2,2和任意一个2天线端口1层码字W
2,1,按照2天线端口的候选码本对应的拼接方式,对码字W
2,2和码字W
2,1进行拼接,得到第七拼接矩阵。进一步地,根据共相位系数和补偿因子确定第三系数矩阵,对第三系数矩阵和第七拼接矩阵进行进行矩阵点乘运算,生成8天线端口多面板L层码字为:
需要说明的是,在不同天线面板内的天线端口部分相干传输时,基于2天线端口的码字对应的天线端口,确定该2天线端口的码字在8天线端口多天线面板L层的码字中的位置。也就是说,对于其他相干情况,将2天线端口的码字放置在对应的天线端口上。例如上述实施例得到的8天线端口多面板L层码字可以对应第1天线面板的第1、2端口和第2天线面板的第1、2端口相干传输,而第1天线面板的第3、4端口和第2天线面板的第3、4端口相干传输的情下。此外不同位置的2天线端口的码字,其相干性和具体码字可相同或不同。
本申请实施例中,确定上行MIMO传输对应的2天线端口的码字,基于2天线端口的码字,可以确定8天线端口多面板L层的码字。本申请实施例中可以基于低维度的天线全相干传输码字,构建高维度8天线端口的天线全相干传输码字,能够满足上行MIMO支持8天线端口的1层至8层传输的需求,进而对上行MIMO技术进一步增强。
需要说明的是,前述的各个实施例可以单独被执行,也可以任意组合在一起被执行。且前述的各个实施例可以由网络侧设备(例如基站)执行。在一种实现方式中,前述的各个实施例由网络侧设备(例如基站)执行,且网络侧设备(例如基站)将最终确定的第二码字,发送给UE。
在一些可能的实现方式中,前述的各个实施例还可以由用户设备UE执行。进一步的,UE将最终确定的第二码字,发送给网络侧设备(例如基站)。
在另一些可能的实现方式中,前述的各个实施例还可以由网络侧设备(例如基站)和用户设备UE各自执行。
上述实施例提供的天线全相干传输码字的确定方法,可适用于终端设备和网络设备,并且在确定了天线全相干传输的第一码字后,可以基于第一码字确定预编码码本,终端设备和网络设备可以基于该预编码码本进行PUSCH的传输。
下面对基于码本的上行传输(例如PUSCH传输)的过程进行解释:
请参见图10,图10是本申请实施例提供的一种上行传输方法的流程示意图。由终端设备执行,如图10所示,该方法可以包括但不限于如下步骤:
S1001,接收网络设备发送的预编码矩阵指示信息。
需要说明的是,在基于码本的PUSCH传输过程中,网络设备可以发送预编码矩阵指示(Transmit Precoding Matrix Indicator,TPMI)给终端设备,相应地,终端设备可以接收网络设备发送的TPMI。其中,TPMI用于指示8天线端口多面板L层的预编码码本中的一个目标预编码矩阵。
需要说明的是,上行MIMO传输对应的预编码码本中,包括上述实施例中确定天线全相干传输的第一码字。关于根据确定8天线端口多面板L层的码字的过程,可参见上述实施例中相关内容的记载,此处不再赘述。
S1002,基于TPMI,从上行MIMO传输对应的8天线端口多面板L层的预编码码本中,确定上行传输对应的目标预编码矩阵。
需要说明的是,终端设备可以基于TPMI,从上行MIMO传输对应的8天线端口多面板L层的预编码码本中,确定上行传输对应的目标预编码矩阵。终端设备可以基于TPMI,从预编码码本中确定一个目标预编码矩阵。可选地,可以预先设置预编码矩阵与索引之间的映射关系,并根据索引,从预编码码本中确定上行传输的目标预编码矩阵。
S1003,基于目标预编码矩阵对PUSCH进行预编码并发送给网络设备。
在获取到目标预编码矩阵后,可以基于目标预编码矩阵对PUSCH进行预编码,将预编码后的PUSCH发送给网络设备。
本申请实施例中,接收网络设备发送的TPMI,基于该TPMI,从上行MIMO传输对应的8天线端口L层的预编码码本中,确定上行传输对应的目标预编码矩阵,基于目标预编码矩阵对PUSCH进行预编码并发送给网络设备。本申请中基于低维度的天线全相干传输码字,构建高维度8天线端口的天线全相干传输码字,能够满足上行MIMO支持8天线端口的1层至8层传输的需求,进而对上行MIMO技术进一步增强。
请参见图11,图11是本申请实施例提供的一种上行传输方法的流程示意图。由网络设备执行,如图11所示,该方法可以包括但不限于如下步骤:
S1101,确定TPMI,并向终端设备发送TPMI,以指示终端设备从上行MIMO传输对应的8天线端口L层的预编码码本中,确定上行传输对应的目标预编码矩阵。
本申请实施例中,网络设备可以接收终端设备发送的探测参考信号(Sounding Reference Signals,SRS),基于该SRS进行信道估计,基于估计的信道情况,确定TPMI,并将向终端设备发送TPMI。该TPMI用于指示预编码码本中的一个预编码矩阵,可以为该预编码矩阵的索引。
需要说明的是,上行MIMO传输对应的预编码码本中,包括上述实施例中基于8天线端口的天线全相干传输的第一码字。关于根据确定8天线端口L层的天线全相干传输的第一码字的过程,可参见上述实施例中相关内容的记载,此处不再赘述。
S1102,接收终端设备发送的PUSCH传输,其中PUSCH传输由终端设备基于目标预编码矩阵进行预编码得到。
终端设备接收到TPMI后,可以获取到确定出用于上行传输的目标预编码矩阵,并基于目标预编码矩阵对PUSCH进行预编码,并将预编码后的PUSCH发送给网络设备。相应地,网络设备可以接收终端设备发送的PUSCH传输。
本申请实施例中,确定预编码矩阵指示信息,并向终端设备发送预编码矩阵指示信息,以指示终端设备从上行MIMO传输对应的8天线端口L层的预编码码本中,确定上行传输对应的目标预编码矩阵,接收终端设备发送的PUSCH传输,其中PUSCH传输由终端设备基于目标预编码矩阵进行预编码得到。本申请实施例中,接收网络设备发送的预编码矩阵指示信息,基于预编码矩阵指示信息,从上行MIMO传输对应的8天线端口L层的预编码码本中,确定上行传输对应的目标预编码矩阵,基于目标预编码矩阵对PUSCH进行预编码并发送给网络设备。本申请中基于低维度的天线全相干传输码字,构建高维度8天线端口的天线全相干传输码字,能够满足上行MIMO支持8天线端口的1层至8层传输的需求,进而对上行MIMO技术进一步增强。
上述本申请提供的实施例中,分别从网络设备、终端设备的角度对本申请实施例提供的方法进行了介绍。为了实现上述本申请实施例提供的方法中的各功能,网络设备和第一终端设备可以包括硬件结构、软件模块,以硬件结构、软件模块、或硬件结构加软件模块的形式来实现上述各功能。上述各功能中的某个功能可以以硬件结构、软件模块、或者硬件结构加软件模块的方式来执行。
请参见图12,为本申请实施例提供的一种通信装置120的结构示意图。图7所示的通信装置120可包括收发模块1201和处理模块1202。收发模块1201可包括发送模块和/或接收模块,发送模块用于实现发送功能,接收模块用于实现接收功能,收发模块1201可以实现发送功能和/或接收功能。
通信装置120可以是终端设备,也可以是终端设备中的装置,还可以是能够与终端设备匹配使用的装置。或者,通信装置120可以是网络设备,也可以是网络设备中的装置,还可以是能够与网络设备匹配使用的装置。
处理模块1202,用于:确定上行MIMO传输的4天线端口的候选码本和/或2天线端口的候选码本;确定上行MIMO传输的8天线端口多天线面板的面板配置信息;基于所述候选码本和所述面板配置信息,确定所述8天线端口多天线面板L层的码字,所述L小于或者等于8。
可选地,处理模块1202,还用于:根据所述面板配置信息,从所述4天线端口的候选码本和所述2天线端口的候选码本中确定第一候选码本,并从所述第一候选码本中确定第一码字;确定所述第一码字对应的第二码字;确定共相位系数和天线面板间的补偿因子,并基于所述共相位系数和所述补偿因子,对所述第一码字和所述第二码字进行拼接,得到所述8天线端口多天线面板L层的码字。
可选地,处理模块1202,还用于:所述第一候选码本为所述4天线端口的候选码本且4<L≤8时,根据所述共相位系数和所述补偿因子,确定第一系数矩阵;在行维度上对两个所述第一码字进行拼接,生成第一拼接码字;在行维度上对两个所述第二码字进行拼接,生成第二拼接码字;在列维度上对所述第一拼接码字与所述第二拼接码字进行拼接,生成第三拼接码字;对所述第一系数矩阵和所述第三拼接码字进行矩阵点乘运算,生成所述8天线端口多天线面板L层的码字,其中,所述第一系数矩阵中的系数与所述第三拼接码字中对应位置的块矩阵相乘。
可选地,处理模块1202,还用于:所述第一候选码本为所述4天线端口的候选码本且1≤L≤4时, 根据所述共相位系数和所述补偿因子,确定第二系数矩阵;在行维度上对所述第一码字和所述第二码字进行拼接,生成第四拼接码字;对所述第二系数矩阵和所述第四拼接码字进行矩阵点乘运算,生成所述8天线端口多天线面板L层的码字,其中,所述第二系数矩阵中的系数与所述第四拼接码字中对应位置的块矩阵相乘。
可选地,处理模块1202,还用于:所述第一候选码本为2天线端口的候选码本且4<L≤8时,根据所述共相位系数和所述补偿因子,确定第三系数矩阵;针对所述L列中前2*(L-4)列,将所述第一码字以块矩阵的方式在行维度上拼接四个所述第一码字,生成第五拼接码字;针对所述L列中后8-L列,将所述第二码字以块矩阵的形式在行维度上拼接四个所述第二码字,生成第六拼接码字;在列维度上对所述第五拼接码字与所述第六拼接码字进行拼接,生成第七拼接码字;对所述第三系数矩阵和所述第七拼接码字进行矩阵点乘运算,生成所述8天线端口多天线面板L层的码字,其中,所述第三系数矩阵中的系数与所述第七拼接码字中对应位置的块矩阵相乘。
可选地,处理模块1202,还用于:根据所述天线面板数量,从所述4天线端口的候选码本和所述2天线端口的候选码本中确定所述第一候选码本;根据所述传输相干性,从所述第一候选码本中确定所述第一码字。
可选地,处理模块1202,还用于:在所述传输相干性为天线面板间全相干传输时,选取所述第一候选码本中的全相干码字,作为所述第一码字。
可选地,处理模块1202,还用于:在所述第一候选码本为所述4天线端口的候选码本且传输层数5≤L≤8时,确定4天线端口4层的全相干码字为所述第一码字;确定所述第一码字为所述第二码字。
可选地,处理模块1202,还用于:所述第一码字和所述第二码字拼接得到8天线端口8层的码字,从所述8天线端口8层的码字中选取L列的向量,生成所述8天线端口多天线面板L层的码字。
可选地,处理模块1202,还用于:所述第一候选码本为所述4天线端口的候选码本,确定4天线端口4层的全相干码字为所述第一码字;在传输层数4≤L≤8时,根据所述L层,从所述第一码字中选取L-4列的向量,生成所述第二码字。
可选地,处理模块1202,还用于:所述第一候选码本为所述4天线端口的候选码本且传输层数1≤L≤4时,确定4天线端口L层的全相干码字为所述第一码字;确定所述第一码字为所述第二码字。
可选地,处理模块1202,还用于:在所述第一候选码本为所述2天线端口的候选码本时,确定2天线端口2层的全相干码字为所述第一码字;确定2天线端口1层的全相干码字为所述第二码字。
可选地,处理模块1202,还用于:在所述传输相干性为天线面板间非相干传输、天线面板间部分相干传输或者不同天线面板内的天线端口部分相干传输中的一种时,选取所述第一候选码本中的任一码字,作为所述第一码字。
可选地,处理模块1202,还用于:所述第一候选码本为所述4天线端口的候选码本且所述传输相 干性为所述天线面板间非相干传输,确定4天线端口
层的码字为所述第一码字;从所述第一码字中选取
列的向量,生成所述第二码字。
可选地,处理模块1202,还用于:所述第一候选码本为所述4天线端口的候选码本且所述传输相干性为所述天线面板间非相干传输,确定4天线端口
层的码字为所述第一码字;确定4天线端口
层的码字为所述第二码字。
可选地,处理模块1202,还用于:所述第一候选码本为所述2天线端口的候选码本,确定2天线端口2层的码字为所述第一码字;确定2天线端口1层的码字为所述第二码字。
可选地,处理模块1202,还用于:在所述天线面板间部分相干传输或所述不同天线面板内的天线端口部分相干传输时,基于所述2天线端口的码字对应的天线面板或天线端口,确定所述2天线端口的码字在所述8天线端口多天线面板L层的码字中的位置。
可选地,处理模块1202,还用于:确定任一码字的归一化系数,并基于所述归一化系数对所述任一码字进行能量归一化处理。
本申请实施例中,确定上行MIMO传输对应的4天线端口和/或2天线端口的候选码本,并确定上行MIMO传输的8天线端口多天线面板的面板配置信息,基于候选码本和面板配置信息,可以确定8天线端口多面板L层的码字。本申请实施例中可以基于低维度的天线全相干传输码字,构建高维度8天线端口的天线全相干传输码字,能够满足上行MIMO支持8天线端口的1层至8层传输的需求,进而对上行MIMO技术进一步增强。
请参见图13,图13是本申请实施例提供的另一种通信装置130的结构示意图。通信装置130可以是网络设备,也可以是终端设备,也可以是支持网络设备实现上述方法的芯片、芯片系统、或处理器等,还可以是支持终端设备实现上述方法的芯片、芯片系统、或处理器等。该装置可用于实现上述方法实施例中描述的方法,具体可以参见上述方法实施例中的说明。
通信装置130可以包括一个或多个处理器1301。处理器1301可以是通用处理器或者专用处理器等。例如可以是基带处理器或中央处理器。基带处理器可以用于对通信协议以及通信数据进行处理,中央处理器可以用于对通信装置(如,基站、基带芯片,终端设备、终端设备芯片,DU或CU等)进行控制,执行计算机程序,处理计算机程序的数据。
可选的,通信装置130中还可以包括一个或多个存储器1302,其上可以存有计算机程序1303,处理器1301执行所述计算机程序1303,以使得通信装置130执行上述方法实施例中描述的方法。可选的,所述存储器1302中还可以存储有数据。通信装置130和存储器1302可以单独设置,也可以集成在一起。
可选的,通信装置130还可以包括收发器1304、天线1305。收发器1304可以称为收发单元、收发机、或收发电路等,用于实现收发功能。收发器1304可以包括接收器和发送器,接收器可以称为接收机或接收电路等,用于实现接收功能;发送器可以称为发送机或发送电路等,用于实现发送功能。
可选的,通信装置130中还可以包括一个或多个接口电路1306。接口电路1306用于接收代码指令并传输至处理器1301。处理器1301运行所述代码指令以使通信装置130执行上述方法实施例中描述的方法。
通信装置130为终端设备用于实现前述实施例中的功能。
在一种实现方式中,处理器1301中可以包括用于实现接收和发送功能的收发器。例如该收发器可以是收发电路,或者是接口,或者是接口电路。用于实现接收和发送功能的收发电路、接口或接口电路 可以是分开的,也可以集成在一起。上述收发电路、接口或接口电路可以用于代码/数据的读写,或者,上述收发电路、接口或接口电路可以用于信号的传输或传递。
在一种实现方式中,处理器1301可以存有计算机程序1303,计算机程序1303在处理器1301上运行,可使得通信装置130执行上述方法实施例中描述的方法。计算机程序1303可能固化在处理器1301中,该种情况下,处理器1301可能由硬件实现。
在一种实现方式中,通信装置130可以包括电路,所述电路可以实现前述方法实施例中发送或接收或者通信的功能。本申请中描述的处理器和收发器可实现在集成电路(Integrated Circuit,IC)、模拟IC、射频集成电路RFIC、混合信号IC、专用集成电路(Application Specific Integrated Circuit,ASIC)、印刷电路板(Printed Circuit Board,PCB)、电子设备等上。该处理器和收发器也可以用各种IC工艺技术来制造,例如互补金属氧化物半导体(Complementary Metal Oxide Semiconductor,CMOS)、N型金属氧化物半导体(Negative channel Metal-Oxide-Semiconductor,NMOS)、P型金属氧化物半导体(Positive channel Metal Oxide Semiconductor,PMOS)、双极结型晶体管(Bipolar Junction Transistor,BJT)、双极CMOS(BiCMOS)、硅锗(SiGe)、砷化镓(GaAs)等。
以上实施例描述中的通信装置可以是网络设备或者,但本申请中描述的通信装置的范围并不限于此,而且通信装置的结构可以不受图13的限制。通信装置可以是独立的设备或者可以是较大设备的一部分。例如所述通信装置可以是:
(1)独立的集成电路IC,或芯片,或,芯片系统或子系统;
(2)具有一个或多个IC的集合,可选的,该IC集合也可以包括用于存储数据,计算机程序的存储部件;
(3)ASIC,例如调制解调器(Modem);
(4)可嵌入在其他设备内的模块;
(5)接收机、终端设备、智能终端设备、蜂窝电话、无线设备、手持机、移动单元、车载设备、网络设备、云设备、人工智能设备等等;
(6)其他等等。
对于通信装置可以是芯片或芯片系统的情况,可参见图14所示的芯片的结构示意图。图14所示的芯片包括处理器1401和接口1402。其中,处理器1401的数量可以是一个或多个,接口1402的数量可以是多个。
处理器1401,用于:确定上行MIMO传输的4天线端口的候选码本和/或2天线端口的候选码本;确定上行MIMO传输的8天线端口多天线面板的面板配置信息;基于所述候选码本和所述面板配置信息,确定所述8天线端口多天线面板L层的码字,所述L小于或者等于8。
可选地,处理器1401,还用于:根据所述面板配置信息,从所述4天线端口的候选码本和所述2天线端口的候选码本中确定第一候选码本,并从所述第一候选码本中确定第一码字;确定所述第一码字对应的第二码字;确定共相位系数和天线面板间的补偿因子,并基于所述共相位系数和所述补偿因子,对所述第一码字和所述第二码字进行拼接,得到所述8天线端口多天线面板L层的码字。
可选地,处理器1401,还用于:所述第一候选码本为所述4天线端口的候选码本且4<L≤8时,根据所述共相位系数和所述补偿因子,确定第一系数矩阵;在行维度上对两个所述第一码字进行拼接,生成第一拼接码字;在行维度上对两个所述第二码字进行拼接,生成第二拼接码字;在列维度上对所述第 一拼接码字与所述第二拼接码字进行拼接,生成第三拼接码字;对所述第一系数矩阵和所述第三拼接码字进行矩阵点乘运算,生成所述8天线端口多天线面板L层的码字,其中,所述第一系数矩阵中的系数与所述第三拼接码字中对应位置的块矩阵相乘。
可选地,处理器1401,还用于:所述第一候选码本为所述4天线端口的候选码本且1≤L≤4时,根据所述共相位系数和所述补偿因子,确定第二系数矩阵;在行维度上对所述第一码字和所述第二码字进行拼接,生成第四拼接码字;对所述第二系数矩阵和所述第四拼接码字进行矩阵点乘运算,生成所述8天线端口多天线面板L层的码字,其中,所述第二系数矩阵中的系数与所述第四拼接码字中对应位置的块矩阵相乘。
可选地,处理器1401,还用于:所述第一候选码本为2天线端口的候选码本且4<L≤8时,根据所述共相位系数和所述补偿因子,确定第三系数矩阵;针对所述L列中前2*(L-4)列,将所述第一码字以块矩阵的方式在行维度上拼接四个所述第一码字,生成第五拼接码字;针对所述L列中后8-L列,将所述第二码字以块矩阵的形式在行维度上拼接四个所述第二码字,生成第六拼接码字;在列维度上对所述第五拼接码字与所述第六拼接码字进行拼接,生成第七拼接码字;对所述第三系数矩阵和所述第七拼接码字进行矩阵点乘运算,生成所述8天线端口多天线面板L层的码字,其中,所述第三系数矩阵中的系数与所述第七拼接码字中对应位置的块矩阵相乘。
可选地,处理器1401,还用于:根据所述天线面板数量,从所述4天线端口的候选码本和所述2天线端口的候选码本中确定所述第一候选码本;根据所述传输相干性,从所述第一候选码本中确定所述第一码字。
可选地,处理器1401,还用于:在所述传输相干性为天线面板间全相干传输时,选取所述第一候选码本中的全相干码字,作为所述第一码字。
可选地,处理器1401,还用于:在所述第一候选码本为所述4天线端口的候选码本且传输层数5≤L≤8时,确定4天线端口4层的全相干码字为所述第一码字;确定所述第一码字为所述第二码字。
可选地,处理器1401,还用于:所述第一码字和所述第二码字拼接得到8天线端口8层的码字,从所述8天线端口8层的码字中选取L列的向量,生成所述8天线端口多天线面板L层的码字。
可选地,处理器1401,还用于:所述第一候选码本为所述4天线端口的候选码本,确定4天线端口4层的全相干码字为所述第一码字;在传输层数4≤L≤8时,根据所述L层,从所述第一码字中选取L-4列的向量,生成所述第二码字。
可选地,处理器1401,还用于:所述第一候选码本为所述4天线端口的候选码本且传输层数1≤L≤4时,确定4天线端口L层的全相干码字为所述第一码字;确定所述第一码字为所述第二码字。
可选地,处理器1401,还用于:在所述第一候选码本为所述2天线端口的候选码本时,确定2天线端口2层的全相干码字为所述第一码字;确定2天线端口1层的全相干码字为所述第二码字。
可选地,处理器1401,还用于:在所述传输相干性为天线面板间非相干传输、天线面板间部分相干传输或者不同天线面板内的天线端口部分相干传输中的一种时,选取所述第一候选码本中的任一码字,作为所述第一码字。
可选地,处理器1401,还用于:所述第一候选码本为所述4天线端口的候选码本且所述传输相干性为所述天线面板间非相干传输,确定4天线端口
层的码字为所述第一码字;从所述第一码字中选取
列的向量,生成所述第二码字。
可选地,处理器1401,还用于:所述第一候选码本为所述2天线端口的候选码本,确定2天线端口2层的码字为所述第一码字;确定2天线端口1层的码字为所述第二码字。
可选地,处理器1401,还用于:在所述天线面板间部分相干传输或所述不同天线面板内的天线端口部分相干传输时,基于所述2天线端口的码字对应的天线面板或天线端口,确定所述2天线端口的码字在所述8天线端口多天线面板L层的码字中的位置。
可选地,处理器1401,还用于:确定任一码字的归一化系数,并基于所述归一化系数对所述任一码字进行能量归一化处理。
芯片140还包括存储器1403,存储器1403用于存储必要的计算机程序和数据。
本申请实施例中,确定上行MIMO传输对应的4天线端口和/或2天线端口的候选码本,并确定上行MIMO传输的8天线端口多天线面板的面板配置信息,基于候选码本和面板配置信息,可以确定8天线端口多面板L层的码字。本申请实施例中可以基于低维度的天线全相干传输码字,构建高维度8天线端口的天线全相干传输码字,能够满足上行MIMO支持8天线端口的1层至8层传输的需求,进而对上行MIMO技术进一步增强。
本领域技术人员还可以了解到本申请实施例列出的各种说明性逻辑块(Illustrative Logical Block)和步骤(Step)可以通过电子硬件、电脑软件,或两者的结合进行实现。这样的功能是通过硬件还是软件来实现取决于特定的应用和整个系统的设计要求。本领域技术人员可以对于每种特定的应用,可以使用各种方法实现所述的功能,但这种实现不应被理解为超出本申请实施例保护的范围。
本申请实施例还提供一种通信系统,该系统包括前述图8实施例中作为终端设备的通信装置和作为网络设备的通信装置,或者,该系统包括前述图9实施例中作为终端设备的通信装置和作为网络设备的通信装置。
本申请还提供一种可读存储介质,其上存储有指令,该指令被计算机执行时实现上述任一方法实施例的功能。
本申请还提供一种计算机程序产品,该计算机程序产品被计算机执行时实现上述任一方法实施例的功能。
在上述实施例中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。所述计算机程序产品包括一个或多个计算机程序。在计算机上加载和执行所述计算机程序时,全部或部分地产生按照本申请实施例所述的流程或功能。所述计算机可以是通用计算机、专用计算机、计算机网络、或者其他可编程装置。所述计算机程序可以 存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,所述计算机程序可以从一个网站站点、计算机、服务器或数据中心通过有线(例如同轴电缆、光纤、数字用户线(Digital Subscriber Line,DSL))或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。所述计算机可读存储介质可以是计算机能够存取的任何可用介质或者是包含一个或多个可用介质集成的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质(例如,软盘、硬盘、磁带)、光介质(例如,高密度数字视频光盘(Digital Video Disc,DVD))、或者半导体介质(例如,固态硬盘(Solid State Disk,SSD))等。
本领域普通技术人员可以理解:本申请中涉及的第一、第二等各种数字编号仅为描述方便进行的区分,并不用来限制本申请实施例的范围,也表示先后顺序。
本申请中的至少一个还可以描述为一个或多个,多个可以是两个、三个、四个或者更多个,本申请不做限制。在本申请实施例中,对于一种技术特征,通过“第一”、“第二”、“第三”、“A”、“B”、“C”和“D”等区分该种技术特征中的技术特征,该“第一”、“第二”、“第三”、“A”、“B”、“C”和“D”描述的技术特征间无先后顺序或者大小顺序。
本申请中各表所示的对应关系可以被配置,也可以是预定义的。各表中的信息的取值仅仅是举例,可以配置为其他值,本申请并不限定。在配置信息与各参数的对应关系时,并不一定要求必须配置各表中示意出的所有对应关系。例如,本申请中的表格中,某些行示出的对应关系也可以不配置。又例如,可以基于上述表格做适当的变形调整,例如,拆分,合并等等。上述各表中标题示出参数的名称也可以采用通信装置可理解的其他名称,其参数的取值或表示方式也可以通信装置可理解的其他取值或表示方式。上述各表在实现时,也可以采用其他的数据结构,例如可以采用数组、队列、容器、栈、线性表、指针、链表、树、图、结构体、类、堆、散列表或哈希表等。
本申请中的预定义可以理解为定义、预先定义、存储、预存储、预协商、预配置、固化、或预烧制。本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以所述权利要求的保护范围为准。
Claims (24)
- 一种上行多输入多输出MIMO传输8天线端口多天线面板的码字确定方法,其特征在于,所述方法包括:确定上行MIMO传输的4天线端口的候选码本和/或2天线端口的候选码本;确定上行MIMO传输的8天线端口多天线面板的面板配置信息;基于所述候选码本和所述面板配置信息,确定所述8天线端口多天线面板L层的码字,所述L小于或者等于8。
- 根据权利要求1所述的方法,其特征在于,所述基于所述候选码本和所述面板配置信息,确定所述8天线端口多天线面板L层的第一码字,包括:根据所述面板配置信息,从所述4天线端口的候选码本和所述2天线端口的候选码本中确定第一候选码本,并从所述第一候选码本中确定第一码字;确定所述第一码字对应的第二码字;确定共相位系数和天线面板间的补偿因子,并基于所述共相位系数和所述补偿因子,对所述第一码字和所述第二码字进行拼接,得到所述8天线端口多天线面板L层的码字。
- 根据权利要求2所述的方法,其特征在于,所述基于所述共相位系数和所述补偿因子,对所述第一码字和所述第二码字进行拼接,得到所述8天线端口多天线面板L层的码字,包括:所述第一候选码本为所述4天线端口的候选码本且4<L≤8时,根据所述共相位系数和所述补偿因子,确定第一系数矩阵;在行维度上对两个所述第一码字进行拼接,生成第一拼接码字;在行维度上对两个所述第二码字进行拼接,生成第二拼接码字;在列维度上对所述第一拼接码字与所述第二拼接码字进行拼接,生成第三拼接码字;对所述第一系数矩阵和所述第三拼接码字进行矩阵点乘运算,生成所述8天线端口多天线面板L层的码字,其中,所述第一系数矩阵中的系数与所述第三拼接码字中对应位置的块矩阵相乘。
- 根据权利要求2所述的方法,其特征在于,所述基于所述共相位系数和所述补偿因子,对所述第一码字和所述第二码字进行拼接,得到所述8天线端口多天线面板L层的码字,包括:所述第一候选码本为所述4天线端口的候选码本且1≤L≤4时,根据所述共相位系数和所述补偿因子,确定第二系数矩阵;在行维度上对所述第一码字和所述第二码字进行拼接,生成第四拼接码字;对所述第二系数矩阵和所述第四拼接码字进行矩阵点乘运算,生成所述8天线端口多天线面板L层的码字,其中,所述第二系数矩阵中的系数与所述第四拼接码字中对应位置的块矩阵相乘。
- 根据权利要求2所述的方法,其特征在于,所述基于所述共相位系数和所述补偿因子,对所述第一码字和所述第二码字进行拼接,得到所述8天线端口多天线面板L层的码字,包括:所述第一候选码本为2天线端口的候选码本且4<L≤8时,根据所述共相位系数和所述补偿因子,确定第三系数矩阵;针对所述L列中前2*(L-4)列,将所述第一码字以块矩阵的方式在行维度上拼接四个所述第一码字,生成第五拼接码字;针对所述L列中后8-L列,将所述第二码字以块矩阵的形式在行维度上拼接四个所述第二码字,生 成第六拼接码字;在列维度上对所述第五拼接码字与所述第六拼接码字进行拼接,生成第七拼接码字;对所述第三系数矩阵和所述第七拼接码字进行矩阵点乘运算,生成所述8天线端口多天线面板L层的码字,其中,所述第三系数矩阵中的系数与所述第七拼接码字中对应位置的块矩阵相乘。
- 根据权利要求2-4中任一项所述的方法,其特征在于,所述面板配置信息包括天线面板数量和天线面板间的传输相干性,其中,所述第一码字的确定过程,包括:根据所述天线面板数量,从所述4天线端口的候选码本和所述2天线端口的候选码本中确定所述第一候选码本;根据所述传输相干性,从所述第一候选码本中确定所述第一码字。
- 根据权利要求6所述的方法,其特征在于,所述方法还包括:在所述传输相干性为天线面板间全相干传输时,选取所述第一候选码本中的全相干码字,作为所述第一码字。
- 根据权利要求7所述的方法,其特征在于,所述方法还包括:在所述第一候选码本为所述4天线端口的候选码本且传输层数5≤L≤8时,确定4天线端口4层的全相干码字为所述第一码字;确定所述第一码字为所述第二码字。
- 根据权利要求9所述的方法,其特征在于,所述方法还包括:所述第一码字和所述第二码字拼接得到8天线端口8层的码字,从所述8天线端口8层的码字中选取L列的向量,生成所述8天线端口多天线面板L层的码字。
- 根据权利要求7所述的方法,其特征在于,所述方法还包括:所述第一候选码本为所述4天线端口的候选码本,确定4天线端口4层的全相干码字为所述第一码字;在传输层数4≤L≤8时,根据所述L层,从所述第一码字中选取L-4列的向量,生成所述第二码字。
- 根据权利要求7所述的方法,其特征在于,所述方法还包括:所述第一候选码本为所述4天线端口的候选码本且传输层数1≤L≤4时,确定4天线端口L层的全相干码字为所述第一码字;确定所述第一码字为所述第二码字。
- 根据权利要求7所述的方法,其特征在于,所述方法还包括:在所述第一候选码本为所述2天线端口的候选码本时,确定2天线端口2层的全相干码字为所述第 一码字;确定2天线端口1层的全相干码字为所述第二码字。
- 根据权利要求6所述的方法,其特征在于,所述方法还包括:在所述传输相干性为天线面板间非相干传输、天线面板间部分相干传输或者不同天线面板内的天线端口部分相干传输中的一种时,选取所述第一候选码本中的任一码字,作为所述第一码字。
- 根据权利要求15所述的方法,其特征在于,所述方法还包括:所述第一候选码本为所述2天线端口的候选码本,确定2天线端口2层的码字为所述第一码字;确定2天线端口1层的码字为所述第二码字。
- 根据权利要求18所述的方法,其特征在于,所述方法还包括:在所述天线面板间部分相干传输或所述不同天线面板内的天线端口部分相干传输时,基于所述2天线端口的码字对应的天线面板或天线端口,确定所述2天线端口的码字在所述8天线端口多天线面板L层的码字中的位置。
- 根据权利要求1所述的方法,其特征在于,所述方法还包括:确定任一码字的归一化系数,并基于所述归一化系数对所述任一码字进行能量归一化处理。
- 一种通信装置,其特征在于,包括:处理模块,用于确定上行MIMO传输的4天线端口的候选码本和/或2天线端口的候选码本;确定上行MIMO传输的8天线端口多天线面板的面板配置信息;基于所述候选码本和所述面板配置信息,确定所述8天线端口多天线面板L层的码字,所述L小于或者等于8。
- 一种通信装置,其特征在于,所述装置包括处理器和存储器,所述存储器中存储有计算机程序,所述处理器执行所述存储器中存储的计算机程序,以使所述装置执行如权利要求1至20中任一项所述的方法。
- 一种通信装置,其特征在于,包括:处理器和接口电路;所述接口电路,用于接收代码指令并传输至所述处理器;所述处理器,用于运行所述代码指令以执行如权利要求1至20中任一项所述的方法。
- 一种计算机可读存储介质,用于存储有指令,当所述指令被执行时,使如权利要求1至20中任一项所述的方法被实现。
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/CN2022/109258 WO2024021129A1 (zh) | 2022-07-29 | 2022-07-29 | 上行mimo传输8天线端口多天线面板的码字确定方法及其装置 |
CN202280002829.8A CN117795863A (zh) | 2022-07-29 | 2022-07-29 | 上行mimo传输8天线端口多天线面板的码字确定方法及其装置 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/CN2022/109258 WO2024021129A1 (zh) | 2022-07-29 | 2022-07-29 | 上行mimo传输8天线端口多天线面板的码字确定方法及其装置 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2024021129A1 true WO2024021129A1 (zh) | 2024-02-01 |
Family
ID=89705120
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2022/109258 WO2024021129A1 (zh) | 2022-07-29 | 2022-07-29 | 上行mimo传输8天线端口多天线面板的码字确定方法及其装置 |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN117795863A (zh) |
WO (1) | WO2024021129A1 (zh) |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2018084898A1 (en) * | 2016-11-02 | 2018-05-11 | Intel Corporation | Evolved node-b (enb), user equipment (ue) and methods for codebook generation for multi-panel antenna arrangements |
CN110036570A (zh) * | 2017-09-12 | 2019-07-19 | 联发科技股份有限公司 | 无线通信中基于码本的上行链路传输 |
CN110535499A (zh) * | 2019-01-11 | 2019-12-03 | 中兴通讯股份有限公司 | 一种功率控制的实现方法、装置和通信节点 |
US20200136692A1 (en) * | 2017-05-11 | 2020-04-30 | Zte Corporation | Codebook configuration method, port configuration method, and device |
-
2022
- 2022-07-29 WO PCT/CN2022/109258 patent/WO2024021129A1/zh active Application Filing
- 2022-07-29 CN CN202280002829.8A patent/CN117795863A/zh active Pending
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2018084898A1 (en) * | 2016-11-02 | 2018-05-11 | Intel Corporation | Evolved node-b (enb), user equipment (ue) and methods for codebook generation for multi-panel antenna arrangements |
US20200136692A1 (en) * | 2017-05-11 | 2020-04-30 | Zte Corporation | Codebook configuration method, port configuration method, and device |
CN110036570A (zh) * | 2017-09-12 | 2019-07-19 | 联发科技股份有限公司 | 无线通信中基于码本的上行链路传输 |
CN110535499A (zh) * | 2019-01-11 | 2019-12-03 | 中兴通讯股份有限公司 | 一种功率控制的实现方法、装置和通信节点 |
Non-Patent Citations (1)
Title |
---|
OPPO: "Remaining issues on uplink codebook design", 3GPP DRAFT; R1-1718024, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, no. Prague, Czech Republic; 20171009 - 20171013, 8 October 2017 (2017-10-08), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , XP051341206 * |
Also Published As
Publication number | Publication date |
---|---|
CN117795863A (zh) | 2024-03-29 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN112803975B (zh) | 确定预编码矩阵的方法、设备及系统 | |
WO2024021129A1 (zh) | 上行mimo传输8天线端口多天线面板的码字确定方法及其装置 | |
WO2024000179A1 (zh) | 一种上行mimo传输的天线全相干传输码字的确定方法及其装置 | |
WO2024000204A1 (zh) | 一种上行mimo传输码字的确定方法及其装置 | |
WO2024060142A1 (zh) | 上行mimo传输8天线端口多天线面板的码本确定方法及其装置 | |
WO2023240654A1 (zh) | 一种部分天线相干传输码字的确定方法及其装置 | |
WO2024026798A1 (zh) | 上行mimo传输的预编码矩阵确定方法及其装置 | |
WO2024026796A1 (zh) | 上行mimo传输的预编码矩阵确定方法及其装置 | |
WO2024098296A1 (zh) | 上行mimo传输8天线端口的全相干传输码本的确定方法及其装置 | |
WO2024026797A1 (zh) | 上行mimo传输的预编码矩阵确定方法及其装置 | |
WO2024065333A1 (zh) | 上行mimo传输8天线端口的全相干传输码本的确定方法及其装置 | |
WO2023201501A1 (zh) | Mimo上行传输部分天线相干传输码字的确定方法及其装置 | |
WO2023201503A1 (zh) | Mimo上行传输预编码码本的确定方法及其装置 | |
WO2023184434A1 (zh) | 基于码本的上行信道发送方法及装置 | |
WO2023184451A1 (zh) | 一种基于非码本的pusch发送、接收信息的方法及其装置 | |
WO2024031719A1 (zh) | 支持8Tx的基于码本的PUSCH传输的预编码指示方法及装置 | |
WO2023201500A1 (zh) | 基于码本的pusch传输方法及其装置 | |
WO2023184450A1 (zh) | 一种基于非码本的pusch接收/发送信息的方法及其装置 | |
WO2023050154A1 (zh) | 面向多传输接收点trp的传输配置方法及装置 | |
WO2024045143A1 (zh) | 一种轨道角动量oam的预编码矩阵确定方法及其装置 | |
WO2024113377A1 (zh) | 基于码本的上行信道通信方法及装置 | |
WO2024145752A1 (zh) | 上行8天线端口的码本确定方法及装置 | |
WO2024031713A1 (zh) | 上行8端口码本的生成方法、装置、设备及存储介质 | |
CN118120153A (zh) | 基于码本的上行信道发送方法及装置 | |
CN117813790A (zh) | 系数指示方法及其装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 202280002829.8 Country of ref document: CN |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 22952574 Country of ref document: EP Kind code of ref document: A1 |