WO2024031719A1 - 支持8Tx的基于码本的PUSCH传输的预编码指示方法及装置 - Google Patents

支持8Tx的基于码本的PUSCH传输的预编码指示方法及装置 Download PDF

Info

Publication number
WO2024031719A1
WO2024031719A1 PCT/CN2022/112320 CN2022112320W WO2024031719A1 WO 2024031719 A1 WO2024031719 A1 WO 2024031719A1 CN 2022112320 W CN2022112320 W CN 2022112320W WO 2024031719 A1 WO2024031719 A1 WO 2024031719A1
Authority
WO
WIPO (PCT)
Prior art keywords
srs resource
srs
sri
terminal device
resource set
Prior art date
Application number
PCT/CN2022/112320
Other languages
English (en)
French (fr)
Inventor
高雪媛
Original Assignee
北京小米移动软件有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京小米移动软件有限公司 filed Critical 北京小米移动软件有限公司
Priority to PCT/CN2022/112320 priority Critical patent/WO2024031719A1/zh
Priority to CN202280002737.XA priority patent/CN117882463A/zh
Publication of WO2024031719A1 publication Critical patent/WO2024031719A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation

Definitions

  • the present application relates to the field of communication technology, and in particular, to a precoding indication method and device for supporting 8Tx non-codebook-based physical uplink shared channel PUSCH transmission.
  • the non-codebook uplink transmission scheme is a spatial multiplexing technology.
  • the difference between it and codebook-based uplink transmission is that its precoding is obtained based on certain criteria, rather than based on a fixed codebook among limited candidates. Determine the precoding in the value.
  • the overhead of precoding indication can be saved while obtaining better performance.
  • the more layers configured for uplink transmission for terminal equipment the faster the uplink transmission speed.
  • Current protocols support fewer layers of non-codebook uplink transmission, making it difficult to obtain higher uplink transmission speeds.
  • the embodiments of this application provide a precoding indication method and device that support 8Tx codebook-based PUSCH transmission, which can be applied to long term evolution (long term evolution, LTE) systems and fifth generation (5th generation, 5G) mobile communications.
  • Communication systems such as systems, 5G new radio (NR) systems, or other future new mobile communication systems, determine at least one SRS resource set with the same function as "codebook" through the network side equipment, and use the SRI Instructs the terminal equipment to use an SRS resource group containing multiple SRS resources for PUSCH transmission. It is used to support codebook-based PUSCH transmission in the case of 8 SRS ports. It uses the existing SRS resource combination to implement 8-port SRS. function, avoids redefining the new 8-port SRI mapping table, reduces the difficulty and workload of standardization work, and improves the speed of uplink transmission.
  • embodiments of the present application provide a precoding indication method that supports 8Tx codebook-based PUSCH transmission.
  • the method includes:
  • each of the SRS resource sets includes multiple SRS resources, and the multiple SRS resources constitute an uplink channel
  • the detected SRS resource group corresponding to 8 SRS antenna ports
  • SRI Send an SRS resource indication SRI to the terminal device, where the SRI is used to indicate one SRS resource set among the at least one SRS resource set for spatial filtering used for PUSCH transmission.
  • Optional also includes:
  • the at least one SRS resource set is determined according to the capability information of the terminal device.
  • the capability information of the terminal device includes fully coherent, partially coherent or non-coherent.
  • the plurality of SRS resources include one or more of the following:
  • each SRS resource among the plurality of SRS resources includes a combination of SRS resources with the same number of ports, or a combination of SRS resources with different numbers of ports.
  • the multiple SRS resources include any of the following:
  • a combination of one 4-port SRS resource and two 2-port SRS resources is a combination of one 4-port SRS resource and two 2-port SRS resources
  • Optional also includes:
  • the SRI table includes a correspondence between SRI and the SRS resource set, and the number of bits in the SRI indication field of the SRI is determined by N SRS , where the N SRS is the corresponding number of SRS resource sets configured for the terminal device.
  • Optional also includes:
  • each bit in the bitmap information has a predefined correspondence relationship with each configured SRS resource set, and the SRI is used to indicate the predetermined Precoding indicates an SRS resource set selected under a defined correspondence relationship, which is used to instruct the terminal equipment to use the same spatial filtering as the SRS resource set when transmitting PUSCH.
  • the number of bits in the SRI indication field is determined by N SRS , where the N SRS is the number of SRS resource sets corresponding to the terminal device configured.
  • the multiple SRS reference signal sets are configured as any one of the following:
  • embodiments of the present application provide another precoding indication method that supports 8Tx codebook-based PUSCH transmission.
  • the method includes:
  • Optional also includes:
  • the capability information of the terminal device is sent to the network side device, where the capability information of the terminal device is used to determine the at least one SRS resource set.
  • the capability information of the terminal device includes fully coherent, partially coherent or non-coherent.
  • Optional also includes:
  • the SRI table sent by the network side device, wherein the SRI table includes the corresponding relationship between SRI and the SRS resource set, and the number of bits of the SRI indication field of the SRI is determined by N SRS , where the The N SRS is the number of SRS resource sets corresponding to the terminal device.
  • Optional also includes:
  • Receive bitmap information sent by the network side device wherein each bit in the bitmap information has a predefined correspondence relationship with each configured SRS resource set, and the SRI is used to indicate the An SRS resource set selected by the precoding indication under the above-mentioned predefined correspondence relationship is used to instruct the terminal equipment to use the same spatial filtering as the SRS resource set when transmitting PUSCH.
  • the number of bits in the SRI indication field is determined by N SRS , where the N SRS is the number of SRS resource sets corresponding to the terminal device configured.
  • the multiple SRS reference signal sets are configured as any one of the following:
  • embodiments of the present application provide a communication device that has some or all of the functions of the terminal device in implementing the method described in the first aspect.
  • the functions of the communication device may have some or all of the functions in this application.
  • the functions in the embodiments may also be used to independently implement any of the embodiments in this application.
  • the functions described can be implemented by hardware, or can be implemented by hardware executing corresponding software.
  • the hardware or software includes one or more units or modules corresponding to the above functions.
  • the structure of the communication device may include a transceiver module and a processing module, and the processing module is configured to support the communication device to perform corresponding functions in the above method.
  • the transceiver module is used to support communication between the communication device and other devices.
  • the communication device may further include a storage module coupled to the transceiver module and the processing module, which stores necessary computer programs and data for the communication device.
  • the processing module may be a processor
  • the transceiver module may be a transceiver or a communication interface
  • the storage module may be a memory.
  • the communication device includes:
  • a processing module configured to determine a sounding reference signal SRS resource set for at least one function of the terminal device that is the same as "codebook", wherein each of the SRS resource sets includes multiple SRS resources, and the multiple SRS resources Constitute an SRS resource group corresponding to 8 SRS antenna ports for uplink channel detection;
  • the first transceiver module is configured to send an SRS resource indication SRI to the terminal device, where the SRI is used to indicate that one SRS resource set among the at least one SRS resource set is used for spatial filtering used for PUSCH transmission.
  • embodiments of the present application provide another communication device that has some or all of the functions of the network device in the method example described in the second aspect.
  • the functions of the communication device may have some of the functions in this application.
  • the functions in all embodiments may also be used to implement any one embodiment of the present application independently.
  • the functions described can be implemented by hardware, or can be implemented by hardware executing corresponding software.
  • the hardware or software includes one or more units or modules corresponding to the above functions.
  • the structure of the communication device may include a transceiver module and a processing module, and the processing module is configured to support the communication device to perform corresponding functions in the above method.
  • the transceiver module is used to support communication between the communication device and other devices.
  • the communication device may further include a storage module coupled to the transceiver module and the processing module, which stores necessary computer programs and data for the communication device.
  • the processing module may be a processor
  • the transceiver module may be a transceiver or a communication interface
  • the storage module may be a memory.
  • the communication device includes:
  • the second transceiver module receives an SRS resource indication SRI sent by the network side device, where the SRI is used to indicate that one SRS resource set among the at least one SRS resource set is used for spatial filtering used for PUSCH transmission.
  • inventions of the present application provide a communication device.
  • the communication device includes a processor.
  • the processor calls a computer program in a memory, it executes the method described in the first aspect.
  • inventions of the present application provide a communication device.
  • the communication device includes a processor.
  • the processor calls a computer program in a memory, it executes the method described in the second aspect.
  • inventions of the present application provide a communication device.
  • the communication device includes a processor and a memory, and a computer program is stored in the memory; the processor executes the computer program stored in the memory, so that the communication device executes The method described in the first aspect above.
  • inventions of the present application provide a communication device.
  • the communication device includes a processor and a memory, and a computer program is stored in the memory; the processor executes the computer program stored in the memory, so that the communication device executes The method described in the second aspect above.
  • inventions of the present application provide a communication device.
  • the device includes a processor and an interface circuit.
  • the interface circuit is used to receive code instructions and transmit them to the processor.
  • the processor is used to run the code instructions to cause the The device executes the method described in the first aspect.
  • inventions of the present application provide a communication device.
  • the device includes a processor and an interface circuit.
  • the interface circuit is used to receive code instructions and transmit them to the processor.
  • the processor is used to run the code instructions to cause the The device performs the method described in the second aspect above.
  • embodiments of the present application provide a precoding indication system that supports 8Tx codebook-based physical uplink shared channel PUSCH transmission.
  • the system includes the communication device described in the third aspect and the communication device described in the fourth aspect. device, or the system includes the communication device described in the fifth aspect and the communication device described in the sixth aspect, or the system includes the communication device described in the seventh aspect and the communication device described in the eighth aspect, or, The system includes the communication device described in the ninth aspect and the communication device described in the tenth aspect.
  • embodiments of the present invention provide a computer-readable storage medium for storing instructions used by the above-mentioned terminal equipment. When the instructions are executed, the terminal equipment is caused to execute the above-mentioned first aspect. method.
  • embodiments of the present invention provide a readable storage medium for storing instructions used by the above-mentioned network device. When the instructions are executed, the network device is caused to perform the method described in the second aspect. .
  • the present application also provides a computer program product including a computer program, which when run on a computer causes the computer to execute the method described in the first aspect.
  • the present application also provides a computer program product including a computer program, which when run on a computer causes the computer to execute the method described in the second aspect.
  • the present application provides a chip system, which includes at least one processor and an interface for supporting the terminal device to implement the functions involved in the first aspect, for example, determining or processing the data involved in the above method. and information.
  • the chip system further includes a memory, and the memory is used to store necessary computer programs and data for the terminal device.
  • the chip system may be composed of chips, or may include chips and other discrete devices.
  • this application provides a chip system, which includes at least one processor and an interface for supporting network equipment to implement the functions involved in the second aspect, for example, determining or processing the data involved in the above method. and information.
  • the chip system further includes a memory, and the memory is used to store necessary computer programs and data for the network device.
  • the chip system may be composed of chips, or may include chips and other discrete devices.
  • the present application provides a computer program that, when run on a computer, causes the computer to execute the method described in the first aspect.
  • this application provides a computer program that, when run on a computer, causes the computer to execute the method described in the second aspect.
  • Figure 1 is a schematic architectural diagram of a communication system provided by an embodiment of the present application.
  • Figure 2 is a schematic flowchart of a precoding indication method for codebook-based PUSCH transmission that supports 8Tx provided by an embodiment of the present application;
  • Figure 3 is a schematic flowchart of a precoding indication method that supports 8Tx codebook-based PUSCH transmission provided by an embodiment of the present application;
  • Figure 4 is a schematic flowchart of a precoding indication method that supports 8Tx codebook-based PUSCH transmission provided by an embodiment of the present application
  • Figure 5 is a schematic flowchart of a precoding indication method that supports 8Tx codebook-based PUSCH transmission provided by an embodiment of the present application
  • Figure 6 is a schematic flowchart of a precoding indication method that supports 8Tx codebook-based PUSCH transmission provided by an embodiment of the present application
  • Figure 7 is a schematic flowchart of a precoding indication method that supports 8Tx codebook-based PUSCH transmission provided by an embodiment of the present application
  • Figure 8 is a schematic flowchart of a precoding indication method for codebook-based PUSCH transmission that supports 8Tx provided by an embodiment of the present application
  • Figure 9 is a schematic flowchart of a precoding indication method that supports 8Tx codebook-based PUSCH transmission provided by an embodiment of the present application.
  • Figure 10 is a schematic structural diagram of a communication device provided by an embodiment of the present application.
  • Figure 11 is a schematic structural diagram of another communication device provided by an embodiment of the present application.
  • Figure 12 is a schematic structural diagram of a chip provided by an embodiment of the present application.
  • SRS Sounding reference signal
  • the reference signal includes channel state information reference signal (CSI-RS), sounding reference signal (sounding reference signal, SRS), positioning reference signal (positioning reference signal, PRS), and phase reference Signal (tracking reference signal, TRS), etc.
  • SRS includes SRS with the function of "codebook” or “non-codebook” SRS or SRS with the function of "antenna switching".
  • an evolved base station In a wireless communication network, an evolved base station (Evolved Node B, eNodeB) usually allocates a part of the system bandwidth to a specific user equipment UE. That is, specific frequency region resources are allocated to the UE at a specific time. The eNodeB learns about areas with higher quality in specific frequency areas through the SRS, and allocates them to the UE first, so that the service quality of the UE is more guaranteed.
  • the SRS is used to provide a reference for the eNodeB's scheduling resources.
  • Figure 1 is a schematic architectural diagram of a communication system provided by an embodiment of the present application.
  • the communication system may include but is not limited to one network device and one terminal device.
  • the number and form of devices shown in Figure 1 are only for examples and do not constitute a limitation on the embodiments of the present application. In actual applications, two or more devices may be included.
  • the communication system shown in Figure 1 includes a network device 101 and a terminal device 102 as an example.
  • LTE long term evolution
  • 5th generation 5th generation
  • NR 5th generation new radio
  • side link in the embodiment of the present application may also be called a side link or a through link.
  • the network device 101 in the embodiment of this application is an entity on the network side that is used to transmit or receive signals.
  • the network device 101 can be an evolved base station (evolved NodeB, eNB), a transmission point (transmission reception point, TRP), a next generation base station (next generation NodeB, gNB) in an NR system, or other base stations in future mobile communication systems. Or access nodes in wireless fidelity (WiFi) systems, etc.
  • the embodiments of this application do not limit the specific technology and specific equipment form used by the network equipment.
  • the network equipment provided by the embodiments of this application may be composed of a centralized unit (central unit, CU) and a distributed unit (DU).
  • the CU may also be called a control unit (control unit).
  • the structure can separate the protocol layers of network equipment, such as base stations, and place some protocol layer functions under centralized control on the CU. The remaining part or all protocol layer functions are distributed in the DU, and the CU centrally controls the DU.
  • the terminal device 102 in the embodiment of this application is an entity on the user side that is used to receive or transmit signals, such as a mobile phone.
  • Terminal equipment can also be called terminal equipment (terminal), user equipment (user equipment, UE), mobile station (mobile station, MS), mobile terminal equipment (mobile terminal, MT), etc.
  • the terminal device can be a car with communication functions, a smart car, a mobile phone, a wearable device, a tablet computer (Pad), a computer with wireless transceiver functions, a virtual reality (VR) terminal device, an augmented reality (augmented reality (AR) terminal equipment, wireless terminal equipment in industrial control, wireless terminal equipment in self-driving, wireless terminal equipment in remote medical surgery, smart grid ( Wireless terminal equipment in smart grid, wireless terminal equipment in transportation safety, wireless terminal equipment in smart city, wireless terminal equipment in smart home, etc.
  • the embodiments of this application do not limit the specific technology and specific equipment form used by the terminal equipment.
  • the multi-antenna precoding of the Physical Uplink Shared Channel supports two different mode configurations, one is codebook-based transmission, and the other is non-codebook-based transmission.
  • the terminal needs to configure at most one SRS resource set for codebook-based uplink transmission.
  • the SRS resource set can be configured with multiple SRS resources.
  • the network side will instruct the terminal to use the SRS resources corresponding to the SRS resource set.
  • the indication signal SRI Sounding Resource Indicator, SRI
  • SRI Sounding Resource Indicator
  • the base station measures the uplink CSI and finally the network determines the precoding matrix TPMI and the number of transmission layers RI used by the terminal for actual transmission and notifies the terminal.
  • the terminal's data in the next uplink transmission needs to be precoded using the PMI and RI specified by the network side.
  • the precoded data is mapped to the corresponding antenna port according to the spatial filter SpatialRelationInfo corresponding to the SRS resource indicated by the SRI.
  • Different SRS correspond to different spatial filters, so the precoded data of the terminal needs to be filtered by the spatial filter used by the SRS indicated by the SRI. In this way, the transmission of uplink data from single layer to full rank can be supported.
  • the uplink data transmission can be supported up to 4 layers.
  • the SRI table includes the correspondence between the SRI index and the SRS resources in the SRS resource set, and the number of bits in the SRI indication field of the SRI is given by N SRS decision.
  • N SRS is the corresponding number of SRS resources configured for the terminal device.
  • Table 4 takes a 4-antenna port as an example to provide the signaling indication methods of the Transmitted Precoding Matrix Indicator (TPMI) and the number of transmission layers RI for single-layer transmission, respectively, indicating different terminal equipment capabilities.
  • TPMI Transmitted Precoding Matrix Indicator
  • the terminal equipment capabilities are divided into three types: fully relevant, partially relevant and uncorrelated, which represent the correlation capability of the antenna port.
  • Table 5 shows the codewords, precoding information TPMI and transmission layer number (rankindication, RI) used for single-layer transmission using 4 antenna ports.
  • This table is for the case of using CP-OFDM waveform. DFTs-OFDM precoding is not enabled and The case where the number of transmission layers RI is 1 layer.
  • W is a matrix, sorted from left to right in the increasing order of TPMI index. j in the matrix is a negative number, and 1/2 of the premultiplication of each matrix is the normalization coefficient of the matrix.
  • the number of transmission layers is equal to the rank of the channel matrix, that is, the data streams that can be transmitted independently in parallel.
  • the number of layers is indicated by rank through RI, and the terminal device informs the network side device of the maximum number of uplink PUSCH transmission layers that the network side device can support.
  • the supported RIs are limited by the number of transmit antennas. If the transmit antennas are at most two antennas, the maximum rank value is 2.
  • Figure 2 is a schematic flowchart of a precoding indication method that supports 8Tx codebook-based PUSCH transmission provided by an embodiment of the present application. The method is executed by network side equipment. As shown in Figure 2, the method may include but is not limited to the following steps:
  • Step S201 Determine a sounding reference signal SRS resource set with at least one function of the terminal device being a "codebook", wherein each of the SRS resource sets includes multiple SRS resources, and the multiple SRS resources constitute a SRS resource group corresponding to 8 SRS antenna ports for uplink channel detection.
  • the PUSCH transmission performed by the terminal device is uplink transmission based on the codebook, and the network side device can configure multiple SRS resources for the terminal device for selection by the terminal device.
  • the terminal sends the corresponding SRS according to the configuration information of the SRS resource sent by the network side device.
  • the network side device sends SRI, TPMI and Transmitted Rank Indication (TRI) information to the terminal device based on the received SRS.
  • the terminal can determine the SRS resource selected by the base station, thereby determining that the uplink transmission uses the same antenna and antenna port as the SRS transmission corresponding to the SRS resource, that is, the corresponding spatial filtering (analog beam).
  • the terminal can further determine the number of precoding and transmission layers for uplink PUSCH transmission.
  • the network side device determines at least one sounding reference signal SRS resource set with the same function as "codebook" for the terminal device.
  • the terminal device selects the resources used to transmit PUSCH.
  • Different SR resource groups can be configured with different resource types.
  • An SRS resource group corresponds to an SRS resource set, and the SRS resource types contained in it should be the same. Specifically, they can be periodic SRS resources, semi-persistent SRS resources, or aperiodic SRS. Resources, are used to adapt to different base station scheduling requirements.
  • Step S202 Send an SRS resource indication SRI to the terminal device, where the SRI is used to indicate that one SRS resource set among the at least one SRS resource set is used for spatial filtering used for PUSCH transmission.
  • the network side device needs to configure multiple SRS resource sets for codebook-based uplink transmission, and each SRS resource set can be configured with multiple SRS resources. Then the network side device will feed back the SRI to the terminal device, indicating the selected SRS resource set through the SRI.
  • the terminal's data in the next uplink transmission needs to be precoded using the PMI and RI specified by the network side.
  • the precoded data is mapped to the corresponding antenna port according to the spatial filter SpatialRelationInfo corresponding to the SRS resource set indicated by the SRI. .
  • Different SRS resource sets will use different spatial filters for transmission, so the precoded data of the terminal needs to be filtered by the spatial filter used by the SRS resource set indicated by the SRI.
  • the network side device can determine at least one sounding reference signal SRS resource set that has the same function as "codebook”, and instruct the terminal device through SRI to use the SRS resource group containing multiple SRS resources for PUSCH transmission. , used to support codebook-based PUSCH transmission in the case of 8 SRS ports.
  • SRS resource set that has the same function as "codebook”
  • codebook-based PUSCH transmission in the case of 8 SRS ports.
  • Figure 3 is a schematic flowchart of a precoding indication method that supports 8Tx codebook-based PUSCH transmission provided by an embodiment of the present application.
  • the method is executed by network side equipment.
  • the method may include but is not limited to the following steps:
  • Step S301 Obtain the capability information of the terminal device sent by the terminal device, wherein the at least one SRS resource set is determined according to the capability information of the terminal device.
  • the terminal device reports the capability information of the terminal device to the network side device for reference by the network side device, so as to configure the SRS resource set for the terminal device that conforms to the capability information of the terminal device.
  • the capability information of the terminal device is the capability of the antenna in the terminal device to perform coherent transmission, including full coherence, partial coherence or non-coherence.
  • the antenna coherent transmission capabilities of three terminal devices are defined:
  • Partial coherent Antennas within the same coherent transmission pair of terminals can transmit coherently, but coherent transmission pairs cannot transmit coherently.
  • Non-coherent The terminal has no antenna for coherent transmission.
  • the plurality of SRS resources include one or more of the following:
  • the existing SRS resource definition includes the above three port numbers. SRS resources containing different port numbers are combined to form an 8-port SRS resource to support codebook-based PUSCH transmission of the terminal 8Tx. It avoids redefining 8-port SRS and can configure SRS resources more flexibly.
  • the multiple SRS resources include any of the following:
  • a combination of one 4-port SRS resource and two 2-port SRS resources is a combination of one 4-port SRS resource and two 2-port SRS resources
  • possible SRS resource combinations that constitute an 8-port SRS include:
  • Combination 1 1 4-port SRS resource + 1 4-port SRS resource;
  • Combination 2 1 4-port SRS resource + 1 2-port SRS resource + 1 2-port SRS resource;
  • Combination 3 1 2-port SRS resource + 1 2-port SRS resource + 1 2-port SRS resource + 1 2-port SRS resource;
  • Combination 4 8 single-port SRS resource combinations.
  • the antenna in the terminal device is fully coherent, so any combination of SRS resources can be configured.
  • not all antennas in the terminal device are fully coherent, including two situations:
  • the corresponding priority can be configured as two 4-port SRS resources to form an 8-port SRS resource group;
  • the corresponding partially related antenna configuration can be configured as 4
  • the 2-port SRS resources are used to form an 8-port SRS resource group.
  • Figure 4 is a schematic flowchart of a precoding indication method that supports 8Tx codebook-based PUSCH transmission provided by an embodiment of the present application. The method is executed by network side equipment. As shown in Figure 4, the method may include but is not limited to the following steps:
  • Step S401 Send an SRI table to the terminal device, where the SRI table includes a correspondence between SRI and the SRS resource set, and the number of bits in the SRI indication field of the SRI is determined by N SRS , where, The N SRS is the number of SRS resource sets corresponding to the terminal device.
  • the network side device when the network side device indicates through SRI, it can directly indicate the index in the SRI table under the corresponding configuration, and the terminal obtains which SRS resource set is correspondingly indicated by looking up the table.
  • the type of SRS resource combination in the first SRS resource set is combination 1, which contains two 4-port SRS resources; the type of SRS resource combination in the second SRS resource set is combination 2, which includes one 4-port SRS resource and two 2-port SRS resources.
  • the network side device needs to configure these two SRS resource sets for the terminal device through two SRIs. Since the number of bits in the SRI indication field corresponding to the SRI is determined by N SRS , the terminal device can search for N based on these two SRIs.
  • SRI table - is a predefined table, which includes the corresponding relationship between the SRI index and the SRS resources in the SRS resource set. In this embodiment, when the SRI index is 0, it corresponds to the SRS resource group configured in the first SRS resource set. , when the SRI index is 1, it corresponds to the SRS resource group configured in the second SRS resource set.
  • Figure 5 is a schematic flowchart of a precoding indication method that supports 8Tx codebook-based PUSCH transmission provided by an embodiment of the present application. The method is executed by network side equipment. As shown in Figure 5, the method may include but is not limited to the following steps:
  • Step S501 Send bitmap information to the terminal device, where each bit in the bitmap information has a predefined correspondence relationship with each configured SRS resource set, and the SRI is used to indicate Precoding indicates an SRS resource set selected under the predefined correspondence relationship, which is used to instruct the terminal equipment to use the same spatial filtering as the SRS resource set when transmitting PUSCH.
  • the number of bits in the SRI indication field is determined by N SRS , where the N SRS is the corresponding number of SRS resource sets configured for the terminal device.
  • the multiple SRS reference signal sets are configured as any one of the following:
  • the type of SRS resource combination in the first SRS resource set is combination 1, which includes two 4-port SRS resources; the type of SRS resource combination in the second SRS resource set is combination 2, which includes one 4-port SRS resource and two 2-port SRS resources; the type of SRS resource combination in the third SRS resource set is combination 3 , which contains four 2-port SRS resources.
  • the network side device needs to configure these two SRS resource sets for the terminal device through three SRIs. Since the number of bits in the SRI indication field corresponding to the SRI is determined by N SRS , the terminal device can search for N based on these three SRIs.
  • the SRI table is a predefined table, which includes the corresponding relationship between the SRI index and the SRS resources in the SRS resource set. In this embodiment, when the SRI index is 0, it corresponds to the SRS resource group configured in the first SRS resource set. When the SRI index is 1, it corresponds to the SRS resource group configured in the second SRS resource set, and when the SRI index is 2, it corresponds to the SRS resource group configured in the third SRS resource set.
  • the type of SRS resource combination in the first SRS resource set is combination 3, which includes four 2-port SRS resources; the type of SRS resource combination in the second SRS resource set is combination 4, which contains 8 single-port SRS resources.
  • the network side device needs to configure the two SRS resource sets for the terminal device through two SRIs.
  • the network side device numbers the first SRS resource set and the second SRS resource set respectively, and the numbers are the bitmap information. .
  • the terminal device After receiving the bitmap information, the terminal device searches for the corresponding TPMI and RI in the preconfigured table based on the coherent transmission capability of its own antenna and the bitmap information.
  • Figure 6 is a schematic flowchart of a precoding indication method that supports 8Tx codebook-based PUSCH transmission provided by an embodiment of the present application. The method is executed by the terminal device. As shown in Figure 6, the method may include but is not limited to the following steps:
  • Step S601 Receive an SRS resource indication SRI sent by the network side device, where the SRI is used to indicate that one SRS resource set among the at least one SRS resource set is used for spatial filtering used for PUSCH transmission.
  • the network side device needs to configure multiple SRS resource sets for codebook-based uplink transmission, and each SRS resource set can be configured with multiple SRS resources. Then the network side device will feed back the SRI to the terminal device, indicating the selected SRS resource set through the SRI. The data in the next uplink transmission of the terminal needs to be precoded using the PMI and RI specified by the network side. At the same time, the precoded data is mapped to the corresponding antenna port according to the spatial filter corresponding to the SRS resource set indicated by the SRI. superior. Different SRS resource sets will use different spatial filters for transmission, so the precoded data of the terminal needs to be filtered by the spatial filter used by the SRS resource set indicated by the SRI.
  • the network side device can determine at least one sounding reference signal SRS resource set that has the same function as "codebook”, and instruct the terminal device through SRI to use the SRS resource group containing multiple SRS resources for PUSCH transmission. , used to support codebook-based PUSCH transmission in the case of 8 SRS ports.
  • SRS resource set that has the same function as "codebook”
  • codebook-based PUSCH transmission in the case of 8 SRS ports.
  • Figure 7 is a schematic flowchart of a precoding indication method that supports 8Tx codebook-based PUSCH transmission provided by an embodiment of the present application. The method is executed by the terminal device. As shown in Figure 7, the method may include but is not limited to the following steps:
  • Step S701 Send the capability information of the terminal device to the network side device, where the capability information of the terminal device is used to determine the at least one SRS resource set.
  • the terminal device reports the capability information of the terminal device to the network side device for reference by the network side device, so as to configure the SRS resource set for the terminal device that conforms to the capability information of the terminal device.
  • the capability information of the terminal device includes fully coherent, partially coherent or non-coherent.
  • Figure 8 is a schematic flowchart of a precoding indication method that supports 8Tx codebook-based PUSCH transmission provided by an embodiment of the present application. The method is executed by the terminal device. As shown in Figure 3, the method may include but is not limited to the following steps:
  • Step S801 Receive the SRI table sent by the network side device, wherein the SRI table includes the corresponding relationship between SRI and the SRS resource set, and the number of bits in the SRI indication field of the SRI is determined by N SRS , Wherein, the N SRS is the number of SRS resource sets corresponding to the terminal device.
  • the network side device when the network side device indicates through SRI, it can directly indicate the index in the SRI table under the corresponding configuration, and the terminal device obtains which SRS resource set is correspondingly indicated by looking up the table.
  • Figure 9 is a schematic flowchart of a precoding indication method that supports 8Tx codebook-based PUSCH transmission provided by an embodiment of the present application. The method is executed by the terminal device. As shown in Figure 9, the method may include but is not limited to the following steps:
  • Receive bitmap information sent by the network side device wherein each bit in the bitmap information has a predefined correspondence relationship with each configured SRS resource set, and the SRI is used to indicate the An SRS resource set selected by the precoding indication under the above-mentioned predefined correspondence relationship is used to instruct the terminal equipment to use the same spatial filtering as the SRS resource set when transmitting PUSCH.
  • the number of bits in the SRI indication field is determined by N SRS , where the N SRS is the number of SRS resource sets corresponding to the terminal device configured.
  • the multiple SRS reference signal sets are configured as any one of the following:
  • FIG. 10 is a schematic structural diagram of a communication device 100 provided by an embodiment of the present application.
  • the communication device 100 shown in FIG. 10 may include a transceiver module 1001 and a processing module 1002.
  • the transceiving module 1001 may include a sending module and/or a receiving module.
  • the sending module is used to implement the sending function
  • the receiving module is used to implement the receiving function.
  • the transceiving module 1001 may implement the sending function and/or the receiving function.
  • the communication device 100 may be a terminal device (such as the terminal device in the foregoing method embodiment), a device in the terminal device, or a device that can be used in conjunction with the terminal device.
  • the communication device 100 may be a network device, a device in a network device, or a device that can be used in conjunction with the network device.
  • the communication device 100 is a network device:
  • the first configuration module is used to configure N single-port sounding reference signal SRS resources corresponding to non-codebook-based PUSCH transmission for a maximum of 4 layers or more for the terminal equipment, where N is greater than 4 and less than or equal to 8 a positive integer;
  • the second configuration module is used to configure the N SRS resources into at least two SRS resource sets, and each SRS resource set includes a maximum of 4 SRS resources;
  • a transceiver module configured to send an SRS resource indication SRI to the terminal device, wherein the SRI is used to indicate at least one SRS resource among the configured N SRS resources, and the at least one SRS indicated by the SRI is used in the PUSCH.
  • the resource is sent using the same precoding.
  • the communication device 110 may be a network device, a terminal device (such as the terminal device in the foregoing method embodiment), a chip, a chip system, a processor, etc. that supports the network device to implement the above method, or a terminal device that supports A chip, chip system, or processor that implements the above method.
  • the device can be used to implement the method described in the above method embodiment. For details, please refer to the description in the above method embodiment.
  • Communication device 110 may include one or more processors 1101.
  • the processor 1101 may be a general-purpose processor or a special-purpose processor, or the like. For example, it can be a baseband processor or a central processing unit.
  • the baseband processor can be used to process communication protocols and communication data.
  • the central processor can be used to control communication devices (such as base stations, baseband chips, terminal equipment, terminal equipment chips, DU or CU, etc.) and execute computer programs. , processing data for computer programs.
  • the communication device 110 may also include one or more memories 1102, on which a computer program 1103 may be stored.
  • the processor 1101 executes the computer program 1103, so that the communication device 110 performs the steps described in the above method embodiments. method.
  • the memory 1102 may also store data.
  • the communication device 110 and the memory 1102 can be provided separately or integrated together.
  • the communication device 110 may also include a transceiver 1104 and an antenna 11010.
  • the transceiver 1104 may be called a transceiver unit, a transceiver, a transceiver circuit, etc., and is used to implement transceiver functions.
  • the transceiver 1104 may include a receiver and a transmitter.
  • the receiver may be called a receiver or a receiving circuit, etc., used to implement the receiving function;
  • the transmitter may be called a transmitter, a transmitting circuit, etc., used to implement the transmitting function.
  • the communication device 110 may also include one or more interface circuits 11011.
  • the interface circuit 11011 is used to receive code instructions and transmit them to the processor 1101 .
  • the processor 1101 executes the code instructions to cause the communication device 110 to perform the method described in the above method embodiment.
  • the communication device 110 is a terminal device (such as the terminal device in the aforementioned method embodiment): the processor 1101 is used to execute step S202 in Figure 2; execute step S302 in Figure 3a; step S402 in Figure 4; step S402 in Figure 10 Step S1002; or step S1104 in Figure 11.
  • the transceiver 1104 is used to perform step S1101 in FIG. 11 .
  • the communication device 110 is a network device: the transceiver 1104 is used to perform step S201 in Figure 2; perform step S301 in Figure 3a; step S401 in Figure 4; step S1001 in Figure 10; or step S1103 in Figure 11.
  • the processor 1101 is used to execute step S1102 in FIG. 11 .
  • the processor 1101 may include a transceiver for implementing receiving and transmitting functions.
  • the transceiver may be a transceiver circuit, an interface, or an interface circuit.
  • the transceiver circuits, interfaces or interface circuits used to implement the receiving and transmitting functions can be separate or integrated together.
  • the above-mentioned transceiver circuit, interface or interface circuit can be used for reading and writing codes/data, or the above-mentioned transceiver circuit, interface or interface circuit can be used for signal transmission or transfer.
  • the processor 1101 may store a computer program 1103, and the computer program 1103 runs on the processor 1101, causing the communication device 110 to perform the method described in the above method embodiment.
  • the computer program 1103 may be solidified in the processor 1101, in which case the processor 1101 may be implemented by hardware.
  • the communication device 110 may include a circuit, and the circuit may implement the functions of sending or receiving or communicating in the foregoing method embodiments.
  • the processor and transceiver described in this application can be implemented in integrated circuits (ICs), analog ICs, radio frequency integrated circuits RFICs, mixed signal ICs, application specific integrated circuits (ASICs), printed circuit boards ( printed circuit board (PCB), electronic equipment, etc.
  • the processor and transceiver can also be manufactured using various IC process technologies, such as complementary metal oxide semiconductor (CMOS), n-type metal oxide-semiconductor (NMOS), P-type Metal oxide semiconductor (positive channel metal oxide semiconductor, PMOS), bipolar junction transistor (BJT), bipolar CMOS (BiCMOS), silicon germanium (SiGe), gallium arsenide (GaAs), etc.
  • CMOS complementary metal oxide semiconductor
  • NMOS n-type metal oxide-semiconductor
  • PMOS P-type Metal oxide semiconductor
  • BJT bipolar junction transistor
  • BiCMOS bipolar CMOS
  • SiGe silicon germanium
  • GaAs gallium arsenide
  • the communication device described in the above embodiments may be a network device or a terminal device (such as the terminal device in the foregoing method embodiment), but the scope of the communication device described in this application is not limited thereto, and the structure of the communication device may not be limited to Limitations of Figure 11.
  • the communication device may be a stand-alone device or may be part of a larger device.
  • the communication device may be:
  • the IC collection may also include storage components for storing data and computer programs;
  • the communication device may be a chip or a chip system
  • the schematic structural diagram of the chip shown in FIG. 12 refer to the schematic structural diagram of the chip shown in FIG. 12 .
  • the chip shown in Figure 12 includes a processor 1201 and an interface 1202.
  • the number of processors 1201 may be one or more, and the number of interfaces 1202 may be multiple.
  • the chip is used to implement the functions of the terminal device in the embodiment of the present application (such as the terminal device in the aforementioned method embodiment):
  • the chip also includes a memory 1203, which is used to store necessary computer programs and data.
  • the embodiment of the present application also provides a precoding indication system that supports 8Tx codebook-based PUSCH transmission.
  • the system includes the communication device as the terminal equipment (such as the terminal equipment in the aforementioned method embodiment) in the aforementioned embodiment of Figure 10 and The communication device as a network device, or the system includes the communication device as a terminal device (such as the terminal device in the foregoing method embodiment) in the embodiment of FIG. 11 and the communication device as a network device.
  • This application also provides a readable storage medium on which instructions are stored. When the instructions are executed by a computer, the functions of any of the above method embodiments are implemented.
  • This application also provides a computer program product, which, when executed by a computer, implements the functions of any of the above method embodiments.
  • the above embodiments it may be implemented in whole or in part by software, hardware, firmware, or any combination thereof.
  • software it may be implemented in whole or in part in the form of a computer program product.
  • the computer program product includes one or more computer programs.
  • the computer program When the computer program is loaded and executed on a computer, the processes or functions described in the embodiments of the present application are generated in whole or in part.
  • the computer may be a general-purpose computer, a special-purpose computer, a computer network, or other programmable device.
  • the computer program may be stored in or transferred from one computer-readable storage medium to another, for example, the computer program may be transferred from a website, computer, server, or data center Transmission to another website, computer, server or data center through wired (such as coaxial cable, optical fiber, digital subscriber line (DSL)) or wireless (such as infrared, wireless, microwave, etc.) means.
  • the computer-readable storage medium may be any available medium that can be accessed by a computer or a data storage device such as a server, data center, etc. that contains one or more available media integrated.
  • the usable media may be magnetic media (e.g., floppy disks, hard disks, magnetic tapes), optical media (e.g., high-density digital video discs (DVD)), or semiconductor media (e.g., solid state disks, SSD)) etc.
  • magnetic media e.g., floppy disks, hard disks, magnetic tapes
  • optical media e.g., high-density digital video discs (DVD)
  • DVD digital video discs
  • semiconductor media e.g., solid state disks, SSD
  • At least one in this application can also be described as one or more, and the plurality can be two, three, four or more, which is not limited by this application.
  • the technical feature is distinguished by “first”, “second”, “third”, “A”, “B”, “C” and “D”, etc.
  • the technical features described in “first”, “second”, “third”, “A”, “B”, “C” and “D” are in no particular order or order.
  • the corresponding relationships shown in each table in this application can be configured or predefined.
  • the values of the information in each table are only examples and can be configured as other values, which are not limited by this application.
  • the corresponding relationships shown in some rows may not be configured.
  • appropriate deformation adjustments can be made based on the above table, such as splitting, merging, etc.
  • the names of the parameters shown in the titles of the above tables may also be other names understandable by the communication device, and the values or expressions of the parameters may also be other values or expressions understandable by the communication device.
  • other data structures can also be used, such as arrays, queues, containers, stacks, linear lists, pointers, linked lists, trees, graphs, structures, classes, heaps, hash tables or hash tables. wait.
  • Predefinition in this application can be understood as definition, pre-definition, storage, pre-storage, pre-negotiation, pre-configuration, solidification, or pre-burning.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请实施例公开了一种支持8Tx的基于码本的PUSCH传输的预编码指示方法及其装置,可以应用于5G新空口(new radio,NR)系统,或者其他未来的新型移动通信系统等通信系统,该方法包括:确定用于终端设备的至少一个功能同为"码本"的SRS资源集合,所述多个SRS资源构成用于上行信道探测的对应8个SRS天线端口的SRS资源组;向所述终端设备发送SRS资源指示SRI。通过实施本申请实施例,通过网络侧设备确定至少一个功能同为"码本"的探测参考信号SRS资源集合,并通过SRI指示终端设备进行PUSCH发送使用的对应8个SRS天线端口的SRS资源组,用于实现8个SRS端口情况下对基于码本的PUSCH发送的支持,利用现有协议定义的SRS资源支持了8Tx基于码本的传输,避免了重新定义8端口SRS资源,更为灵活实现了SRS的资源利用。

Description

支持8Tx的基于码本的PUSCH传输的预编码指示方法及装置 技术领域
本申请涉及通信技术领域,尤其涉及一种支持8Tx的基于非码本的物理上行共享信道PUSCH传输的预编码指示方法及其装置。
背景技术
无线通信中,非码本上行传输方案是一种空间复用技术,它与基于码本的上行传输的区别在于它的预编码基于一定的准则获得,而非基于固定的码本在有限的候选值中确定预编码。相对于基于码本的传输方案,可以节省预编码指示的开销,同时获得更好的性能。
为终端设备配置的用于上行传输的层数越多,上行传输的速度越快,目前协议支持的非码本上行传输的层数较少,难以获得较高的上行传输速度。
发明内容
本申请实施例提供一种支持8Tx的基于码本的PUSCH传输的预编码指示方法及其装置,可以应用于长期演进(long term evolution,LTE)系统、第五代(5th generation,5G)移动通信系统、5G新空口(new radio,NR)系统,或者其他未来的新型移动通信系统等通信系统,通过网络侧设备确定至少一个功能同为“码本”的探测参考信号SRS资源集合,并通过SRI指示终端设备进行PUSCH发送使用的包含多个SRS资源的SRS资源组,用于实现8个SRS端口情况下对基于码本的PUSCH发送的支持,通过使用现有的SRS资源组合来实现8端口SRS功能,避免了重新定义新的8端口SRI映射表,降低了标准化工作的难度和工作量,提高了上行传输的速度。
第一方面,本申请实施例提供一种支持8Tx的基于码本的PUSCH传输的预编码指示方法,该方法包括:
确定用于终端设备的至少一个功能同为“码本”的探测参考信号SRS资源集合,其中,每个所述SRS资源集合包括多个SRS资源,且所述多个SRS资源构成用于上行信道探测的对应8个SRS天线端口的SRS资源组;
向所述终端设备发送SRS资源指示SRI,其中,所述SRI用于指示所述至少一个SRS资源集合之中的一个SRS资源集合用于PUSCH发送所使用的空间滤波。
可选的,还包括:
获取所述终端设备发送的所述终端设备的能力信息,其中,根据所述终端设备的能力信息确定所述至少一个SRS资源集合。
可选的,所述终端设备的能力信息包括全相干、部分相干或非相干。
可选的,所述多个SRS资源之中包括以下之中的一项或多项:
单端口SRS资源;
2端口SRS资源;
4端口SRS资源。
可选的,所述多个SRS资源之中的每个SRS资源包括相同端口数目的SRS资源的组合,或包括不同端口数目的SRS资源组合。
可选的,所述多个SRS资源包括以下之中的任一项:
两个4端口SRS资源构成的组合;
一个4端口SRS资源和两个2端口SRS资源构成的组合;
四个2端口SRS资源构成的组合;
八个单端口SRS资源构成的组合。
可选的,还包括:
向所述终端设备发送SRI表格,其中,所述SRI表格之中包括SRI与所述SRS资源集合的对应关系,且所述SRI的SRI指示域的比特数由N SRS决定,其中,所述N SRS为对应配置给所述终端设备的 SRS资源集合数目。
可选的,还包括:
向所述终端设备发送位图信息,其中,所述位图信息之中每个比特位与每个配置的所述SRS资源集合为预定义的对应关系,且所述SRI用于指示所述预定义的对应关系下预编码指示选择的一个SRS资源集合,其中,用于指示所述终端设备发送PUSCH时使用与所述SRS资源集合相同的空间滤波。
可选的,所述SRI指示域的比特数由N SRS决定,其中,所述N SRS为对应配置给所述终端设备的SRS资源集合数目。
可选的,所述多个SRS参考信号集合配置为以下之中的任意一种:
周期的SRS资源集合;
半持续的SRS资源集合;
非周期的SRS资源集合。
第二方面,本申请实施例提供另一种支持8Tx的基于码本的PUSCH传输的预编码指示方法,该方法包括:
接收网络侧设备发送的SRS资源指示SRI,其中,所述SRI用于指示所述至少一个SRS资源集合之中的一个SRS资源集合用于PUSCH发送所使用的空间滤波。
可选的,还包括:
向所述网络侧设备发送所述终端设备的能力信息,其中,根据所述终端设备的能力信息用于确定所述至少一个SRS资源集合。
可选的,所述终端设备的能力信息包括全相干、部分相干或非相干。
可选的,还包括:
接收所述网络侧设备发送的SRI表格,其中,所述SRI表格之中包括SRI与所述SRS资源集合的对应关系,且所述SRI的SRI指示域的比特数由N SRS决定,其中,所述N SRS为对应配置给所述终端设备的SRS资源集合数目。
可选的,还包括:
接收所述网络侧设备发送的位图信息,其中,所述位图信息之中每个比特位与每个配置的所述SRS资源集合为预定义的对应关系,且所述SRI用于指示所述预定义的对应关系下预编码指示选择的一个SRS资源集合,其中,用于指示所述终端设备发送PUSCH时使用与所述SRS资源集合相同的空间滤波。
可选的,所述SRI指示域的比特数由N SRS决定,其中,所述N SRS为对应配置给所述终端设备的SRS资源集合数目。
可选的,所述多个SRS参考信号集合配置为以下之中的任意一种:
周期的SRS资源集合;
半持续的SRS资源集合;
非周期的SRS资源集合。
第三方面,本申请实施例提供一种通信装置,该通信装置具有实现上述第一方面所述的方法中终端设备的部分或全部功能,比如通信装置的功能可具备本申请中的部分或全部实施例中的功能,也可以具备单独实施本申请中的任一个实施例的功能。所述功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。所述硬件或软件包括一个或多个与上述功能相对应的单元或模块。
在一种实现方式中,该通信装置的结构中可包括收发模块和处理模块,所述处理模块被配置为支持通信装置执行上述方法中相应的功能。所述收发模块用于支持通信装置与其他设备之间的通信。所述通信装置还可以包括存储模块,所述存储模块用于与收发模块和处理模块耦合,其保存通信装置必要的计算机程序和数据。
作为示例,处理模块可以为处理器,收发模块可以为收发器或通信接口,存储模块可以为存储器。在一种实现方式中,所述通信装置包括:
处理模块,用于确定用于终端设备的至少一个功能同为“码本”的探测参考信号SRS资源集合,其中,每个所述SRS资源集合包括多个SRS资源,且所述多个SRS资源构成用于上行信道探测的对应8个SRS天线端口的SRS资源组;
第一收发模块,用于向所述终端设备发送SRS资源指示SRI,其中,所述SRI用于指示所述至少一个SRS资源集合之中的一个SRS资源集合用于PUSCH发送所使用的空间滤波。
第四方面,本申请实施例提供另一种通信装置,该通信装置具有实现上述第二方面所述的方法示例中网络设备的部分或全部功能,比如通信装置的功能可具备本申请中的部分或全部实施例中的功能,也 可以具备单独实施本申请中的任一个实施例的功能。所述功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。所述硬件或软件包括一个或多个与上述功能相对应的单元或模块。
在一种实现方式中,该通信装置的结构中可包括收发模块和处理模块,该处理模块被配置为支持通信装置执行上述方法中相应的功能。收发模块用于支持通信装置与其他设备之间的通信。所述通信装置还可以包括存储模块,所述存储模块用于与收发模块和处理模块耦合,其保存通信装置必要的计算机程序和数据。
作为示例,处理模块可以为处理器,收发模块可以为收发器或通信接口,存储模块可以为存储器。在一种实现方式中,所述通信装置包括:
第二收发模块,接收网络侧设备发送的SRS资源指示SRI,其中,所述SRI用于指示所述至少一个SRS资源集合之中的一个SRS资源集合用于PUSCH发送所使用的空间滤波。
第五方面,本申请实施例提供一种通信装置,该通信装置包括处理器,当该处理器调用存储器中的计算机程序时,执行上述第一方面所述的方法。
第六方面,本申请实施例提供一种通信装置,该通信装置包括处理器,当该处理器调用存储器中的计算机程序时,执行上述第二方面所述的方法。
第七方面,本申请实施例提供一种通信装置,该通信装置包括处理器和存储器,该存储器中存储有计算机程序;所述处理器执行该存储器所存储的计算机程序,以使该通信装置执行上述第一方面所述的方法。
第八方面,本申请实施例提供一种通信装置,该通信装置包括处理器和存储器,该存储器中存储有计算机程序;所述处理器执行该存储器所存储的计算机程序,以使该通信装置执行上述第二方面所述的方法。
第九方面,本申请实施例提供一种通信装置,该装置包括处理器和接口电路,该接口电路用于接收代码指令并传输至该处理器,该处理器用于运行所述代码指令以使该装置执行上述第一方面所述的方法。
第十方面,本申请实施例提供一种通信装置,该装置包括处理器和接口电路,该接口电路用于接收代码指令并传输至该处理器,该处理器用于运行所述代码指令以使该装置执行上述第二方面所述的方法。
第十一方面,本申请实施例提供一种支持8Tx的基于码本的物理上行共享信道PUSCH传输的预编码指示系统,该系统包括第三方面所述的通信装置以及第四方面所述的通信装置,或者,该系统包括第五方面所述的通信装置以及第六方面所述的通信装置,或者,该系统包括第七方面所述的通信装置以及第八方面所述的通信装置,或者,该系统包括第九方面所述的通信装置以及第十方面所述的通信装置。
第十二方面,本发明实施例提供一种计算机可读存储介质,用于储存为上述终端设备所用的指令,当所述指令被执行时,使所述终端设备执行上述第一方面所述的方法。
第十三方面,本发明实施例提供一种可读存储介质,用于储存为上述网络设备所用的指令,当所述指令被执行时,使所述网络设备执行上述第二方面所述的方法。
第十四方面,本申请还提供一种包括计算机程序的计算机程序产品,当其在计算机上运行时,使得计算机执行上述第一方面所述的方法。
第十五方面,本申请还提供一种包括计算机程序的计算机程序产品,当其在计算机上运行时,使得计算机执行上述第二方面所述的方法。
第十六方面,本申请提供一种芯片系统,该芯片系统包括至少一个处理器和接口,用于支持终端设备实现第一方面所涉及的功能,例如,确定或处理上述方法中所涉及的数据和信息中的至少一种。在一种可能的设计中,所述芯片系统还包括存储器,所述存储器,用于保存终端设备必要的计算机程序和数据。该芯片系统,可以由芯片构成,也可以包括芯片和其他分立器件。
第十七方面,本申请提供一种芯片系统,该芯片系统包括至少一个处理器和接口,用于支持网络设备实现第二方面所涉及的功能,例如,确定或处理上述方法中所涉及的数据和信息中的至少一种。在一种可能的设计中,所述芯片系统还包括存储器,所述存储器,用于保存网络设备必要的计算机程序和数据。该芯片系统,可以由芯片构成,也可以包括芯片和其他分立器件。
第十八方面,本申请提供一种计算机程序,当其在计算机上运行时,使得计算机执行上述第一方面所述的方法。
第十九方面,本申请提供一种计算机程序,当其在计算机上运行时,使得计算机执行上述第二方面所述的方法。
附图说明
为了更清楚地说明本申请实施例或背景技术中的技术方案,下面将对本申请实施例或背景技术中所需要使用的附图进行说明。
图1是本申请实施例提供的一种通信系统的架构示意图;
图2是本申请实施例提供的一种支持8Tx的基于码本的PUSCH传输的预编码指示方法的流程示意图;
图3是本申请实施例提供的一种支持8Tx的基于码本的PUSCH传输的预编码指示方法的流程示意图;
图4是本申请实施例提供的一种支持8Tx的基于码本的PUSCH传输的预编码指示方法的流程示意图;
图5是本申请实施例提供的一种支持8Tx的基于码本的PUSCH传输的预编码指示方法的流程示意图;
图6是本申请实施例提供的一种支持8Tx的基于码本的PUSCH传输的预编码指示方法的流程示意图;
图7是本申请实施例提供的一种支持8Tx的基于码本的PUSCH传输的预编码指示方法的流程示意图;
图8是本申请实施例提供的一种支持8Tx的基于码本的PUSCH传输的预编码指示方法的流程示意图;
图9是本申请实施例提供的一种支持8Tx的基于码本的PUSCH传输的预编码指示方法的流程示意图;
图10是本申请实施例提供的一种通信装置的结构示意图;
图11是本申请实施例提供的另一种通信装置的结构示意图;
图12是本申请实施例提供的一种芯片的结构示意图。
具体实施方式
为了便于理解,首先介绍本申请涉及的术语。
探测参考信号(sounding reference signal,SRS)
参考信号(reference signal,RS)包括信道状态信息参考信号(channel state information reference signal,CSI-RS),探测参考信号(sounding reference signal,SRS),定位参考信号(positioning reference signal,PRS),相位参考信号(tracking reference signal,TRS)等,SRS包括功能为“码本codebook”或“非码本non-codebook”SRS或功能为“天线切换”的SRS。
在无线通信网络中,演进型基站(Evolved Node B,eNodeB)通常是分配系统带宽的一部分区域给特定的用户设备UE。即在一个特定时间、给UE分配特定的频率区域资源。eNodeB通过所述SRS了解特定频率区域质量较高的区域,将其优先分配给UE,以使UE的业务质量更有保障,SRS用于为eNodeB的调度资源提供参考。
为了更好的理解本申请实施例公开的一种支持8Tx的基于码本的PUSCH传输的预编码指示方法,下面首先对本申请实施例适用的通信系统进行描述。
请参见图1,图1为本申请实施例提供的一种通信系统的架构示意图。该通信系统可包括但不限于一个网络设备和一个终端设备,图1所示的设备数量和形态仅用于举例并不构成对本申请实施例的限定,实际应用中可以包括两个或两个以上的网络设备,两个或两个以上的终端设备。图1所示的通信系统以包括一个网络设备101和一个终端设备102为例。
需要说明的是,本申请实施例的技术方案可以应用于各种通信系统。例如:长期演进(long term evolution,LTE)系统、第五代(5th generation,5G)移动通信系统、5G新空口(new radio,NR)系统,或者其他未来的新型移动通信系统等。还需要说明的是,本申请实施例中的侧链路还可以称为侧行链路或直通链路。
本申请实施例中的网络设备101是网络侧的一种用于发射或接收信号的实体。例如,网络设备101可以为演进型基站(evolved NodeB,eNB)、传输点(transmission reception point,TRP)、NR系统中的下一代基站(next generation NodeB,gNB)、其他未来移动通信系统中的基站或无线保真(wireless fidelity,WiFi)系统中的接入节点等。本申请的实施例对网络设备所采用的具体技术和具体设备形态不做限定。本申请实施例提供的网络设备可以是由集中单元(central unit,CU)与分布式单元(distributed  unit,DU)组成的,其中,CU也可以称为控制单元(control unit),采用CU-DU的结构可以将网络设备,例如基站的协议层拆分开,部分协议层的功能放在CU集中控制,剩下部分或全部协议层的功能分布在DU中,由CU集中控制DU。
本申请实施例中的终端设备102是用户侧的一种用于接收或发射信号的实体,如手机。终端设备也可以称为终端设备(terminal)、用户设备(user equipment,UE)、移动台(mobile station,MS)、移动终端设备(mobile terminal,MT)等。终端设备可以是具备通信功能的汽车、智能汽车、手机(mobile phone)、穿戴式设备、平板电脑(Pad)、带无线收发功能的电脑、虚拟现实(virtual reality,VR)终端设备、增强现实(augmented reality,AR)终端设备、工业控制(industrial control)中的无线终端设备、无人驾驶(self-driving)中的无线终端设备、远程手术(remote medical surgery)中的无线终端设备、智能电网(smart grid)中的无线终端设备、运输安全(transportation safety)中的无线终端设备、智慧城市(smart city)中的无线终端设备、智慧家庭(smart home)中的无线终端设备等等。本申请的实施例对终端设备所采用的具体技术和具体设备形态不做限定。
在无线通信中,物理上行共享信道(Physical Uplink Shared Channel,PUSCH)的多天线预编码支持两种不同的模式配置,一种是基于码本的传输,一种是基于非码本的传输。NR中基于码本的PUSCH传输中,终端需要配置最多一个SRS资源集合用于基于码本的上行传输,SRS资源集可配置多个SRS资源,网络侧会指示终端对应该SRS资源集合的SRS资源指示信号SRI(Sounding Resource Indicator,SRI),通过SRI指示选择SRS资源,同样基站基于上行CSI的测量最后由网络决定终端实际传输使用的预编码矩阵TPMI和传输层数RI并通知终端。终端在接下来的上行传输中的数据需要使用网络侧指定的PMI和RI进行预编码,同时对于预编码后的数据按照SRI指示的SRS资源对应的空间滤波器SpatialRelationInfo映射到相应的天线端口上。不同的SRS对应不同的空间滤波器,因此终端经过预编码的数据需要经过SRI指示的SRS所使用的空间滤波器进行滤波。通过这种方式可以支持上行数据从单层到满秩的传输,在目前版本的NR系统中,上行最大支持到4层的数据传输。
SRI索引 SRI(s),N SRS=2
0 0
1 1
表1
SRI索引 SRI(s),N SRS=3
0 0
1 1
2 2
3 Reserved
表2
SRI索引 SRI(s),N SRS=4
0 0
1 1
2 2
3 3
表3
以表1、表2和表3为例给出了SRI表格,SRI表格之中包括SRI索引与所述SRS资源集合中的SRS资源的对应关系,且所述SRI的SRI指示域的比特数由N SRS决定。N SRS为对应配置给所述终端设备的SRS资源数目。
Figure PCTCN2022112320-appb-000001
表4
表4以4天线端口为例分别给出了单层传输的传输预编码矩阵指示(Transmitted Precoding Matrix Indicator,TPMI)和传输层数RI的信令指示方式,分别针对不同的终端设备能力进行指示。这里终端设备能力分为全相关,部分相关和不相关三种类型,表征了天线端口的相关性的能力。
Figure PCTCN2022112320-appb-000002
表5
表5为采用4天线端口单层传输所使用的码字,预编码信息TPMI和传输层数(rankindication,RI),本表格针对使用CP-OFDM波形的情况,不使能DFTs-OFDM预编码且传输层数RI为1层的情况。本表格中W为矩阵,按TPMI指数的递增顺序从左到右排序,矩阵中j为负数,每个矩阵前乘的1/2为 矩阵的归一化系数。
传输层数等于信道矩阵的秩,即能够独立并行传输的数据流。层数是通过RI来进行秩指示,由终端设备告知网络侧设备能够支持的最大上行PUSCH传输层数。支持的RI受限于发送天线数,如果发送天线最多为两天线,那么秩的最大值为2。
不是所有的终端都可以将各天线端口校准至可以相干传输,因此上行传输的码本设计需要考虑终端的天线相干传输能力。
可以理解的是,本申请实施例描述的通信系统是为了更加清楚的说明本申请实施例的技术方案,并不构成对于本申请实施例提供的技术方案的限定,本领域普通技术人员可知,随着系统架构的演变和新业务场景的出现,本申请实施例提供的技术方案对于类似的技术问题,同样适用。
下面结合附图对本申请所提供的支持8Tx的基于码本的PUSCH传输的预编码指示方法及其装置进行详细地介绍。
请参见图2,图2是本申请实施例提供的一种支持8Tx的基于码本的PUSCH传输的预编码指示方法的流程示意图。所述方法由网络侧设备执行。如图2所示,该方法可以包括但不限于如下步骤:
步骤S201:确定用于终端设备的至少一个功能同为“码本”的探测参考信号SRS资源集合,其中,每个所述SRS资源集合包括多个SRS资源,且所述多个SRS资源构成用于上行信道探测的对应8个SRS天线端口的SRS资源组。
本申请实施例中,终端设备进行的PUSCH传输为基于码本的上行传输,网络侧设备可以为终端配置多个SRS资源供终端设备选择。终端根据网络侧设备发送的SRS资源的配置信息,进行相应的SRS的发送。网络侧设备根据接收到的SRS,向终端设备发送SRI、TPMI和传输秩指示(Transmitted Rank Indication,TRI)信息。根据SRI,终端可以确定基站选择的SRS资源,从而确定上行传输使用与该SRS资源对应的SRS传输相同的天线和天线端口,即对应的空间滤波(模拟波束)。通过对应于该SRI的SRS资源的TPMI和TRI信息,终端可以进一步确定出上行PUSCH传输的预编码和传输层数。
为了支持基于码本的8层PUSCH传输,网络侧设备为终端设备确定至少一个功能同为“码本”的探测参考信号SRS资源集合,在这种配置下,终端设备在选取传输PUSCH所用的资源时,可以选择从多个对应8端口的SRS资源组中进行选择,并且不同的SRS资源组对应终端发送的不同的空间滤波。不同的SR资源组可以配置不同资源类型,一个SRS资源组对应一个SRS资源集合,其中所包含的SRS资源类型应该相同,具体可以是周期的SRS资源,半持续的SRS资源,或者非周期的SRS资源,,用于适配不同的基站调度需求。
步骤S202:向所述终端设备发送SRS资源指示SRI,其中,所述SRI用于指示所述至少一个SRS资源集合之中的一个SRS资源集合用于PUSCH发送所使用的空间滤波。
本申请实施例中,基于码本的PUSCH传输中,网络侧设备需要配置多个SRS资源集合用于基于码本的上行传输,每个SRS资源集合可配置多个SRS资源。然后网络侧设备会向终端设备反馈SRI,通过SRI指示选择的SRS资源集合。终端在接下来的上行传输中的数据需要使用网络侧指定的PMI和RI进行预编码,同时对于预编码后的数据按照SRI指示的SRS资源集合对应的空间滤波器SpatialRelationInfo映射到相应的天线端口上。不同的SRS资源集合会使用不同的空间滤波器传输,因此终端经过预编码的数据需要经过SRI指示的SRS资源集合所使用的空间滤波器进行滤波。
通过实施本申请实施例,可以通过网络侧设备确定至少一个功能同为“码本”的探测参考信号SRS资源集合,并通过SRI指示终端设备进行PUSCH发送使用的包含多个SRS资源的SRS资源组,用于实现8个SRS端口情况下对基于码本的PUSCH发送的支持,通过使用现有的SRS资源组合来实现8端口SRS功能,避免了重新定义新的8端口SRI映射表,降低了标准化工作的难度和工作量。
请参见图3,图3是本申请实施例提供的一种支持8Tx的基于码本的PUSCH传输的预编码指示方法的流程示意图。所述方法由网络侧设备执行。如图3所示,该方法可以包括但不限于如下步骤:
步骤S301:获取所述终端设备发送的所述终端设备的能力信息,其中,根据所述终端设备的能力信息确定所述至少一个SRS资源集合。
本申请实施例中,终端设备通过向网络侧设备上报所述终端设备的能力信息,来供网络侧设备参考,以为终端设备配置符合终端设备能力信息的SRS资源集合。
可选的,所述终端设备的能力信息为终端设备中天线进行相干传输的能力,包括全相干、部分相干或非相干。
本申请实施例中,定义了三种终端设备的天线相干传输能力:
全相干(Full Coherent):终端所有的天线都可以相干传输;
部分相干(Partial coherent):终端同一相干传输对内的天线可以相干传输,相干传输对之间不能相干传输。
非相干(Non-coherent):终端没有天线可以进行相干传输。
可选的,所述多个SRS资源之中包括以下之中的一项或多项:
单端口SRS资源;
2端口SRS资源;
4端口SRS资源。
本申请实施例中,现有的SRS资源定义包括以上三种端口数量,通过对包含不同端口数量的SRS资源进行组合,以组成8端口的SRS资源来支持终端8Tx基于码本的PUSCH传输。避免了重新定义8端口SRS,可以更为灵活的配置SRS资源。
可选的,所述多个SRS资源包括以下之中的任一项:
两个4端口SRS资源构成的组合;
一个4端口SRS资源和两个2端口SRS资源构成的组合;
四个2端口SRS资源构成的组合;
八个单端口SRS资源构成的组合。
本申请实施例中,对于构成8端口SRS的可能SRS资源组合,包括:
组合1:1个4端口SRS资源+1个4端口SRS资源;
组合2:1个4端口SRS资源+1个2端口SRS资源+1个2端口SRS资源;
组合3:1个2端口SRS资源+1个2端口SRS资源+1个2端口SRS资源+1个2端口SRS资源;
组合4:8个单端口的SRS资源组合。
通过以上组合可以利用现有的SRS资源类型组合以构成8端口的SRS。
在一种可能的实施例中,终端设备中的天线为全相干的,那么可以配置任意SRS资源组合。
在一种可能的实施例中,终端设备中的天线不是都为全相干的包括2几种情况:
如果8天线中每4个天线为相干天线分组,2组天线之间为非相干的情况,则对应部分相关的天线配置,则可以对应优先配置为2个4端口SRS资源用于构成一个8端口SRS资源组;
同理,如果每2个天线为相关天线分组,且4个天线组之间为非相干的情况,每个天线组内是相干的,则同样对应部分相关的天线配置,则可以配置为4个2端口的SRS资源用于构成一个8端口SRS资源组。
请参见图4,图4是本申请实施例提供的一种支持8Tx的基于码本的PUSCH传输的预编码指示方法的流程示意图。所述方法由网络侧设备执行。如图4所示,该方法可以包括但不限于如下步骤:
步骤S401:向所述终端设备发送SRI表格,其中,所述SRI表格之中包括SRI与所述SRS资源集合的对应关系,且所述SRI的SRI指示域的比特数由N SRS决定,其中,所述N SRS为对应配置给所述终端设备的SRS资源集合数目。
本申请实施例中网络侧设备通过SRI指示的时候可以直接指示对应配置下的SRI表格里的索引,终端通过查表得到对应指示的是哪一个SRS资源集合。
在一种可能的实施例中,网络侧设备为终端设备配置了两个SRS资源集合,即N SRS=2,其中的第一SRS资源集合中SRS资源组合的类型为组合1,其中包含两个4端口SRS资源;第二SRS资源集合中SRS资源组合的类型为组合2,其中包含1个4端口SRS资源和两个2端口SRS资源。那么网络侧设备需要通过两个SRI来为终端设备配置这两个SRS资源集合,由于对应到所述SRI的SRI指示域的比特数由N SRS决定,所以终端设备可以根据这两个SRI查找N SRS=2对应的SRI表格,即上述表1。SRI表格-为预定义的表格,其中包括SRI索引与所述SRS资源集合中的SRS资源的对应关系,在本实施例中,SRI索引为0时对应第一SRS资源集合中配置的SRS资源组,SRI索引为1时对应第二SRS资源集合中配置的SRS资源组。
请参见图5,图5是本申请实施例提供的一种支持8Tx的基于码本的PUSCH传输的预编码指示方法的流程示意图。所述方法由网络侧设备执行。如图5所示,该方法可以包括但不限于如下步骤:
步骤S501:向所述终端设备发送位图信息,其中,所述位图信息之中每个比特位与每个配置的所述SRS资源集合为预定义的对应关系,且所述SRI用于指示所述预定义的对应关系下预编码指示选择的一个SRS资源集合,其中,用于指示所述终端设备发送PUSCH时使用与所述SRS资源集合相同的空间滤波。
可选的,所述SRI指示域的比特数由N SRS决定,其中,所述N SRS为对应配置给所述终端设备的SRS 资源集合数目。
可选的,所述多个SRS参考信号集合配置为以下之中的任意一种:
周期的SRS资源集合;
半持续的SRS资源集合;
非周期的SRS资源集合。
在一种可能的实施例中,网络侧设备为终端设备配置了三个SRS资源集合,即N SRS=3,其中的第一SRS资源集合中SRS资源组合的类型为组合1,其中包含两个4端口SRS资源;第二SRS资源集合中SRS资源组合的类型为组合2,其中包含1个4端口SRS资源和两个2端口SRS资源;第三SRS资源集合中SRS资源组合的类型为组合3,其中包含4个2端口SRS资源。那么网络侧设备需要通过三个SRI来为终端设备配置这两个SRS资源集合,由于对应到所述SRI的SRI指示域的比特数由N SRS决定,所以终端设备可以根据这三个SRI查找N SRS=3对应的SRI表格,即上述表2。SRI表格为预定义的表格,其中包括SRI索引与所述SRS资源集合中的SRS资源的对应关系,在本实施例中,SRI索引为0时对应第一SRS资源集合中配置的SRS资源组,SRI索引为1时对应第二SRS资源集合中配置的SRS资源组,SRI索引为2时对应第三SRS资源集合中配置的SRS资源组。
在一种可能的实施例中,网络侧设备为终端设备配置了两个SRS资源集合,即N SRS=2,其中的第一SRS资源集合中SRS资源组合的类型为组合3,其中包含四个2端口SRS资源;第二SRS资源集合中SRS资源组合的类型为组合4,其中包含8个单端口SRS资源。那么网络侧设备需要通过两个SRI来为终端设备配置这两个SRS资源集合,网络侧设备对第一SRS资源集合和第二SRS资源集合分别进行编号,所述编号即为所述位图信息。终端设备在接收到所述位图信息后,根据自身天线的相干传输能力和位图信息在预先配置好的表格中查找对应的TPMI和RI,如果所述终端设备有4天线端口,且传输层数为1,所述表格即为上述表4,表4为4天线端口的终端设备对应的TPMI和RI,如果为终端设备中的天线都可以相干传输,即天线全相干,且针对第一SRS资源集合分配给终端设备的位图信息为0,则在表4中对应的TPMI=0,然后在对应的4天线单层传输的码本(也即上述表5)中查询TPMI=0对应的SRS资源,即可获取网络侧设备为终端设备配置的第一SRS资源集合中的各个SRS资源。
请参见图6,图6是本申请实施例提供的一种支持8Tx的基于码本的PUSCH传输的预编码指示方法的流程示意图。所述方法由终端设备执行。如图6所示,该方法可以包括但不限于如下步骤:
步骤S601:接收网络侧设备发送的SRS资源指示SRI,其中,所述SRI用于指示所述至少一个SRS资源集合之中的一个SRS资源集合用于PUSCH发送所使用的空间滤波。
本申请实施例中,基于码本的PUSCH传输中,网络侧设备需要配置多个SRS资源集合用于基于码本的上行传输,每个SRS资源集合可配置多个SRS资源。然后网络侧设备会向终端设备反馈SRI,通过SRI指示选择的SRS资源集合。终端在接下来的上行传输中的数据需要使用网络侧指定的PMI和RI进行预编码,同时对于预编码后的数据按照SRI指示的SRS资源集合对应的空间滤波器Spatial Filter映射到相应的天线端口上。不同的SRS资源集合会使用不同的空间滤波器传输,因此终端经过预编码的数据需要经过SRI指示的SRS资源集合所使用的空间滤波器进行滤波。
通过实施本申请实施例,可以通过网络侧设备确定至少一个功能同为“码本”的探测参考信号SRS资源集合,并通过SRI指示终端设备进行PUSCH发送使用的包含多个SRS资源的SRS资源组,用于实现8个SRS端口情况下对基于码本的PUSCH发送的支持,通过使用现有的SRS资源组合来实现8端口SRS功能,避免了重新定义新的8端口SRI映射表,降低了标准化工作的难度和工作量。
请参见图7,图7是本申请实施例提供的一种支持8Tx的基于码本的PUSCH传输的预编码指示方法的流程示意图。所述方法由终端设备执行。如图7所示,该方法可以包括但不限于如下步骤:
步骤S701:向所述网络侧设备发送所述终端设备的能力信息,其中,根据所述终端设备的能力信息用于确定所述至少一个SRS资源集合。
本申请实施例中,终端设备通过向网络侧设备上报所述终端设备的能力信息,来供网络侧设备参考,以为终端设备配置符合终端设备能力信息的SRS资源集合。
可选的,所述终端设备的能力信息包括全相干、部分相干或非相干。
请参见图8,图8是本申请实施例提供的一种支持8Tx的基于码本的PUSCH传输的预编码指示方法的流程示意图。所述方法由终端设备执行。如图3所示,该方法可以包括但不限于如下步骤:
步骤S801:接收所述网络侧设备发送的SRI表格,其中,所述SRI表格之中包括SRI与所述SRS资源集合的对应关系,且所述SRI的SRI指示域的比特数由N SRS决定,其中,所述N SRS为对应配置给所述终端设备的SRS资源集合数目。
本申请实施例中网络侧设备通过SRI指示的时候可以直接指示对应配置下的SRI表格里的索引,终端设备通过查表得到对应指示的是哪一个SRS资源集合。
请参见图9,图9是本申请实施例提供的一种支持8Tx的基于码本的PUSCH传输的预编码指示方法的流程示意图。所述方法由终端设备执行。如图9所示,该方法可以包括但不限于如下步骤:
接收所述网络侧设备发送的位图信息,其中,所述位图信息之中每个比特位与每个配置的所述SRS资源集合为预定义的对应关系,且所述SRI用于指示所述预定义的对应关系下预编码指示选择的一个SRS资源集合,其中,用于指示所述终端设备发送PUSCH时使用与所述SRS资源集合相同的空间滤波。
可选的,所述SRI指示域的比特数由N SRS决定,其中,所述N SRS为对应配置给所述终端设备的SRS资源集合数目。
可选的,所述多个SRS参考信号集合配置为以下之中的任意一种:
周期的SRS资源集合;
半持续的SRS资源集合;
非周期的SRS资源集合。
请参见图10,为本申请实施例提供的一种通信装置100的结构示意图。图10所示的通信装置100可包括收发模块1001和处理模块1002。收发模块1001可包括发送模块和/或接收模块,发送模块用于实现发送功能,接收模块用于实现接收功能,收发模块1001可以实现发送功能和/或接收功能。
通信装置100可以是终端设备(如前述方法实施例中的终端设备),也可以是终端设备中的装置,还可以是能够与终端设备匹配使用的装置。或者,通信装置100可以是网络设备,也可以是网络设备中的装置,还可以是能够与网络设备匹配使用的装置。
通信装置100为网络设备:
第一配置模块,用于为终端设备配置用于支持最大4层以上的基于非码本的PUSCH传输对应的的N个单端口探测参考信号SRS资源,其中,N为大于4且小于或等于8的正整数;
第二配置模块,用于将所述N个SRS资源分别配置到至少两个SRS资源集合之中,且每个SRS资源集合中最大包括4个SRS资源;
收发模块,用于向所述终端设备发送SRS资源指示SRI,其中,所述SRI用于指示配置的N个SRS资源中至少一个SRS资源,且所述在所述PUSCH使用SRI指示的至少一个SRS资源所使用的相同的预编码进行发送。
请参见图11,图11是本申请实施例提供的另一种通信装置110的结构示意图。通信装置110可以是网络设备,也可以是终端设备(如前述方法实施例中的终端设备),也可以是支持网络设备实现上述方法的芯片、芯片系统、或处理器等,还可以是支持终端设备实现上述方法的芯片、芯片系统、或处理器等。该装置可用于实现上述方法实施例中描述的方法,具体可以参见上述方法实施例中的说明。
通信装置110可以包括一个或多个处理器1101。处理器1101可以是通用处理器或者专用处理器等。例如可以是基带处理器或中央处理器。基带处理器可以用于对通信协议以及通信数据进行处理,中央处理器可以用于对通信装置(如,基站、基带芯片,终端设备、终端设备芯片,DU或CU等)进行控制,执行计算机程序,处理计算机程序的数据。
可选的,通信装置110中还可以包括一个或多个存储器1102,其上可以存有计算机程序1103,处理器1101执行所述计算机程序1103,以使得通信装置110执行上述方法实施例中描述的方法。可选的,所述存储器1102中还可以存储有数据。通信装置110和存储器1102可以单独设置,也可以集成在一起。
可选的,通信装置110还可以包括收发器1104、天线11010。收发器1104可以称为收发单元、收发机、或收发电路等,用于实现收发功能。收发器1104可以包括接收器和发送器,接收器可以称为接收机或接收电路等,用于实现接收功能;发送器可以称为发送机或发送电路等,用于实现发送功能。
可选的,通信装置110中还可以包括一个或多个接口电路11011。接口电路11011用于接收代码指令并传输至处理器1101。处理器1101运行所述代码指令以使通信装置110执行上述方法实施例中描述的方法。
通信装置110为终端设备(如前述方法实施例中的终端设备):处理器1101用于执行图2中的步骤S202;执行图3a中的步骤S302;图4中的步骤S402;图10中的步骤S1002;或图11中的步骤S1104。收发器1104用于执行图11中的步骤S1101。
通信装置110为网络设备:收发器1104用于执行图2中的步骤S201;执行图3a中的步骤S301;图4中的步骤S401;图10中的步骤S1001;或图11中的步骤S1103。处理器1101用于执行图11中的步骤S1102。
在一种实现方式中,处理器1101中可以包括用于实现接收和发送功能的收发器。例如该收发器可以是收发电路,或者是接口,或者是接口电路。用于实现接收和发送功能的收发电路、接口或接口电路可以是分开的,也可以集成在一起。上述收发电路、接口或接口电路可以用于代码/数据的读写,或者,上述收发电路、接口或接口电路可以用于信号的传输或传递。
在一种实现方式中,处理器1101可以存有计算机程序1103,计算机程序1103在处理器1101上运行,可使得通信装置110执行上述方法实施例中描述的方法。计算机程序1103可能固化在处理器1101中,该种情况下,处理器1101可能由硬件实现。
在一种实现方式中,通信装置110可以包括电路,所述电路可以实现前述方法实施例中发送或接收或者通信的功能。本申请中描述的处理器和收发器可实现在集成电路(integrated circuit,IC)、模拟IC、射频集成电路RFIC、混合信号IC、专用集成电路(application specific integrated circuit,ASIC)、印刷电路板(printed circuit board,PCB)、电子设备等上。该处理器和收发器也可以用各种IC工艺技术来制造,例如互补金属氧化物半导体(complementary metal oxide semiconductor,CMOS)、N型金属氧化物半导体(nMetal-oxide-semiconductor,NMOS)、P型金属氧化物半导体(positive channel metal oxide semiconductor,PMOS)、双极结型晶体管(bipolar junction transistor,BJT)、双极CMOS(BiCMOS)、硅锗(SiGe)、砷化镓(GaAs)等。
以上实施例描述中的通信装置可以是网络设备或者终端设备(如前述方法实施例中的终端设备),但本申请中描述的通信装置的范围并不限于此,而且通信装置的结构可以不受图11的限制。通信装置可以是独立的设备或者可以是较大设备的一部分。例如所述通信装置可以是:
(1)独立的集成电路IC,或芯片,或,芯片系统或子系统;
(2)具有一个或多个IC的集合,可选的,该IC集合也可以包括用于存储数据,计算机程序的存储部件;
(3)ASIC,例如调制解调器(Modem);
(4)可嵌入在其他设备内的模块;
(5)接收机、终端设备、智能终端设备、蜂窝电话、无线设备、手持机、移动单元、车载设备、网络设备、云设备、人工智能设备等等;
(6)其他等等。
对于通信装置可以是芯片或芯片系统的情况,可参见图12所示的芯片的结构示意图。图12所示的芯片包括处理器1201和接口1202。其中,处理器1201的数量可以是一个或多个,接口1202的数量可以是多个。
对于芯片用于实现本申请实施例中终端设备(如前述方法实施例中的终端设备)的功能的情况:
可选的,芯片还包括存储器1203,存储器1203用于存储必要的计算机程序和数据。
本领域技术人员还可以了解到本申请实施例列出的各种说明性逻辑块(illustrative logical block)和步骤(step)可以通过电子硬件、电脑软件,或两者的结合进行实现。这样的功能是通过硬件还是软件来实现取决于特定的应用和整个系统的设计要求。本领域技术人员可以对于每种特定的应用,可以使用各种方法实现所述的功能,但这种实现不应被理解为超出本申请实施例保护的范围。
本申请实施例还提供一种支持8Tx的基于码本的PUSCH传输的预编码指示系统,该系统包括前述图10实施例中作为终端设备(如前述方法实施例中的终端设备)的通信装置和作为网络设备的通信装置,或者,该系统包括前述图11实施例中作为终端设备(如前述方法实施例中的终端设备)的通信装置和作为网络设备的通信装置。
本申请还提供一种可读存储介质,其上存储有指令,该指令被计算机执行时实现上述任一方法实施例的功能。
本申请还提供一种计算机程序产品,该计算机程序产品被计算机执行时实现上述任一方法实施例的功能。
在上述实施例中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。所述计算机程序产品包括一个或多个计算机程序。在计算机上加载和执行所述计算机程序时,全部或部分地产生按照本申请实施例所述的流程或功能。所述计算机可以是通用计算机、专用计算机、计算机网络、或者其他可编程装置。所述计算机程序可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,所述计算机程序可以从一个网站站点、计算机、服务器或数据中心通过有线(例如同轴电缆、光纤、数字用户线(digital subscriber line,DSL))或无线(例如红外、无线、微波等)方式向另一个网站站 点、计算机、服务器或数据中心进行传输。所述计算机可读存储介质可以是计算机能够存取的任何可用介质或者是包含一个或多个可用介质集成的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质(例如,软盘、硬盘、磁带)、光介质(例如,高密度数字视频光盘(digital video disc,DVD))、或者半导体介质(例如,固态硬盘(solid state disk,SSD))等。
本领域普通技术人员可以理解:本申请中涉及的第一、第二等各种数字编号仅为描述方便进行的区分,并不用来限制本申请实施例的范围,也表示先后顺序。
本申请中的至少一个还可以描述为一个或多个,多个可以是两个、三个、四个或者更多个,本申请不做限制。在本申请实施例中,对于一种技术特征,通过“第一”、“第二”、“第三”、“A”、“B”、“C”和“D”等区分该种技术特征中的技术特征,该“第一”、“第二”、“第三”、“A”、“B”、“C”和“D”描述的技术特征间无先后顺序或者大小顺序。
本申请中各表所示的对应关系可以被配置,也可以是预定义的。各表中的信息的取值仅仅是举例,可以配置为其他值,本申请并不限定。在配置信息与各参数的对应关系时,并不一定要求必须配置各表中示意出的所有对应关系。例如,本申请中的表格中,某些行示出的对应关系也可以不配置。又例如,可以基于上述表格做适当的变形调整,例如,拆分,合并等等。上述各表中标题示出参数的名称也可以采用通信装置可理解的其他名称,其参数的取值或表示方式也可以通信装置可理解的其他取值或表示方式。上述各表在实现时,也可以采用其他的数据结构,例如可以采用数组、队列、容器、栈、线性表、指针、链表、树、图、结构体、类、堆、散列表或哈希表等。
本申请中的预定义可以理解为定义、预先定义、存储、预存储、预协商、预配置、固化、或预烧制。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以所述权利要求的保护范围为准。

Claims (22)

  1. 一种支持8Tx的基于码本的物理上行共享信道PUSCH传输的预编码指示方法,其特征在于,所述方法由网络侧设备执行,所述方法包括:
    确定用于终端设备的至少一个功能同为码本的探测参考信号SRS资源集合,其中,每个所述SRS资源集合包括多个SRS资源,且所述多个SRS资源构成用于上行信道探测的对应8个SRS天线端口的SRS资源组;
    向所述终端设备发送SRS资源指示SRI,其中,所述SRI用于指示所述至少一个SRS资源集合之中的一个SRS资源集合用于PUSCH发送所使用的空间滤波。
  2. 如权利要求1所述的方法,其特征在于,还包括:
    获取所述终端设备发送的所述终端设备的能力信息,其中,根据所述终端设备的能力信息确定所述至少一个SRS资源集合。
  3. 如权利要求2所述的方法,其特征在于,所述终端设备的能力信息包括全相干、部分相干或非相干。
  4. 如权利要求1所述的方法,其特征在于,所述多个SRS资源之中包括以下之中的一项或多项:
    单端口SRS资源;
    2端口SRS资源;
    4端口SRS资源。
  5. 如权利要求4所述的方法,其特征在于,所述多个SRS资源之中的每个SRS资源包括相同端口数目的SRS资源的组合,或包括不同端口数目的SRS资源组合。
  6. 如权利要求4所述的方法,其特征在于,所述多个SRS资源包括以下之中的任一项:
    两个4端口SRS资源构成的组合;
    一个4端口SRS资源和两个2端口SRS资源构成的组合;
    四个2端口SRS资源构成的组合;
    八个单端口SRS资源构成的组合。
  7. 如权利要求1所述的方法,其特征在于,还包括:
    向所述终端设备发送SRI表格,其中,所述SRI表格之中包括SRI与所述SRS资源集合的对应关系,且所述SRI的SRI指示域的比特数由NSRS决定,其中,所述NSRS为对应配置给所述终端设备的SRS资源集合数目。
  8. 如权利要求1所述的方法,其特征在于,还包括:
    向所述终端设备发送位图信息,其中,所述位图信息之中每个比特位与每个配置的所述SRS资源集合为预定义的对应关系,且所述SRI用于指示所述预定义的对应关系下预编码指示选择的一个SRS资源集合,其中,用于指示所述终端设备发送PUSCH时使用与所述SRS资源集合相同的空间滤波。
  9. 如权利要求8所述的方法,其特征在于,所述SRI指示域的比特数由NSRS决定,其中,所述NSRS为对应配置给所述终端设备的SRS资源集合数目。
  10. 如权利要求8所述的方法,其特征在于,所述多个SRS参考信号集合配置为以下之中的任意一种:
    周期的SRS资源集合;
    半持续的SRS资源集合;
    非周期的SRS资源集合。
  11. 一种支持8Tx的基于码本的物理上行共享信道PUSCH传输的预编码指示方法,其特征在于,所述方法由终端设备执行,所述方法包括:
    接收网络侧设备发送的SRS资源指示SRI,其中,所述SRI用于指示所述至少一个SRS资源集合之中的一个SRS资源集合用于PUSCH发送所使用的空间滤波。
  12. 如权利要求11所述的方法,其特征在于,还包括:
    向所述网络侧设备发送所述终端设备的能力信息,其中,根据所述终端设备的能力信息用于确定所述至少一个SRS资源集合。
  13. 如权利要求12所述的方法,其特征在于,所述终端设备的能力信息包括全相干、部分相干或非相干。
  14. 如权利要求11所述的方法,其特征在于,还包括:
    接收所述网络侧设备发送的SRI表格,其中,所述SRI表格之中包括SRI与所述SRS资源集合的对应关系,且所述SRI的SRI指示域的比特数由NSRS决定,其中,所述NSRS为对应配置给所述终端设备的SRS资源集合数目。
  15. 如权利要求11所述的方法,其特征在于,还包括:
    接收所述网络侧设备发送的位图信息,其中,所述位图信息之中每个比特位与每个配置的所述SRS资源集合为预定义的对应关系,且所述SRI用于指示所述预定义的对应关系下预编码指示选择的一个SRS资源集合,其中,用于指示所述终端设备发送PUSCH时使用与所述SRS资源集合相同的空间滤波。
  16. 如权利要求15所述的方法,其特征在于,所述SRI指示域的比特数由NSRS决定,其中,所述NSRS为对应配置给所述终端设备的SRS资源集合数目。
  17. 如权利要求15所述的方法,其特征在于,所述多个SRS参考信号集合配置为以下之中的任意一种:
    周期的SRS资源集合;
    半持续的SRS资源集合;
    非周期的SRS资源集合。
  18. 一种支持8Tx的基于码本的物理上行共享信道PUSCH传输的预编码指示装置,其特征在于,所述装置应用于网络侧设备,所述装置包括:
    处理模块,用于确定用于终端设备的至少一个功能同为码本的探测参考信号SRS资源集合,其中,每个所述SRS资源集合包括多个SRS资源,且所述多个SRS资源构成用于上行信道探测的对应8个SRS天线端口的SRS资源组;
    第一收发模块,用于向所述终端设备发送SRS资源指示SRI,其中,所述SRI用于指示所述至少一个SRS资源集合之中的一个SRS资源集合用于PUSCH发送所使用的空间滤波。
  19. 一种支持8Tx的基于码本的物理上行共享信道PUSCH传输的预编码指示装置,其特征在于,所述装置应用于终端设备,所述装置包括:
    第二收发模块,接收网络侧设备发送的SRS资源指示SRI,其中,所述SRI用于指示所述至少一个SRS资源集合之中的一个SRS资源集合用于PUSCH发送所使用的空间滤波。
  20. 一种通信装置,其特征在于,所述装置包括处理器和存储器,所述存储器中存储有计算机程序,所述处理器执行所述存储器中存储的计算机程序,以使所述装置执行如权利要求1至10或11至17中任一项所述的方法。
  21. 一种通信装置,其特征在于,包括:处理器和接口电路;
    所述接口电路,用于接收代码指令并传输至所述处理器;
    所述处理器,用于运行所述代码指令以执行如权利要求1至10或11至17中任一项所述的方法。
  22. 一种计算机可读存储介质,用于存储有指令,当所述指令被执行时,使如权利要求1至10或11至17中任一项所述的方法被实现。
PCT/CN2022/112320 2022-08-12 2022-08-12 支持8Tx的基于码本的PUSCH传输的预编码指示方法及装置 WO2024031719A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2022/112320 WO2024031719A1 (zh) 2022-08-12 2022-08-12 支持8Tx的基于码本的PUSCH传输的预编码指示方法及装置
CN202280002737.XA CN117882463A (zh) 2022-08-12 2022-08-12 支持8Tx的基于码本的PUSCH传输的预编码指示方法及装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/112320 WO2024031719A1 (zh) 2022-08-12 2022-08-12 支持8Tx的基于码本的PUSCH传输的预编码指示方法及装置

Publications (1)

Publication Number Publication Date
WO2024031719A1 true WO2024031719A1 (zh) 2024-02-15

Family

ID=89850323

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/112320 WO2024031719A1 (zh) 2022-08-12 2022-08-12 支持8Tx的基于码本的PUSCH传输的预编码指示方法及装置

Country Status (2)

Country Link
CN (1) CN117882463A (zh)
WO (1) WO2024031719A1 (zh)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108093480A (zh) * 2017-09-30 2018-05-29 中兴通讯股份有限公司 一种信号传输的方法及装置
CN110800353A (zh) * 2017-12-28 2020-02-14 Oppo广东移动通信有限公司 用于上行数据传输的方法、终端设备和网络设备

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108093480A (zh) * 2017-09-30 2018-05-29 中兴通讯股份有限公司 一种信号传输的方法及装置
CN110800353A (zh) * 2017-12-28 2020-02-14 Oppo广东移动通信有限公司 用于上行数据传输的方法、终端设备和网络设备

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
CATT: "On SRI/TPMI enhancement for UL 8 TX", 3GPP DRAFT; R1-2203447, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, no. e-Meeting; 20220509 - 20220520, 29 April 2022 (2022-04-29), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France, XP052152979 *
HUAWEI, HISILICON: "Discussion on SRI/TPMI enhancement for enabling 8 TX UL transmission", 3GPP DRAFT; R1-2203155, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, no. e-Meeting; 20220509 - 20220520, 29 April 2022 (2022-04-29), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France, XP052143973 *

Also Published As

Publication number Publication date
CN117882463A (zh) 2024-04-12

Similar Documents

Publication Publication Date Title
WO2023236223A1 (zh) 一种传输配置指示状态的指示方法及装置
WO2024050776A1 (zh) 一种信息确定方法/装置/设备及存储介质
WO2023184372A1 (zh) 上行信道的发送和接收的方法及装置
WO2023236222A1 (zh) 一种传输配置指示状态的指示方法及装置
WO2023050234A1 (zh) 一种探测参考信号srs资源的调整方法及其装置
WO2024031719A1 (zh) 支持8Tx的基于码本的PUSCH传输的预编码指示方法及装置
WO2024026796A1 (zh) 上行mimo传输的预编码矩阵确定方法及其装置
WO2023184450A1 (zh) 一种基于非码本的pusch接收/发送信息的方法及其装置
WO2023184451A1 (zh) 一种基于非码本的pusch发送、接收信息的方法及其装置
WO2024031718A1 (zh) 支持8Tx的基于非码本的PUSCH传输的预编码指示方法及装置
WO2023168575A1 (zh) 一种天线切换能力上报方法及其装置
WO2023184449A1 (zh) 一种发送tri的方法及其装置、接收tri的方法及其装置
WO2024026797A1 (zh) 上行mimo传输的预编码矩阵确定方法及其装置
WO2023168574A1 (zh) 一种天线切换能力上报方法及其装置
WO2023184448A1 (zh) 一种基于非码本的pusch发送/接收信息的方法及其装置
WO2023050154A1 (zh) 面向多传输接收点trp的传输配置方法及装置
WO2024065333A1 (zh) 上行mimo传输8天线端口的全相干传输码本的确定方法及其装置
WO2024026798A1 (zh) 上行mimo传输的预编码矩阵确定方法及其装置
WO2024000179A1 (zh) 一种上行mimo传输的天线全相干传输码字的确定方法及其装置
WO2023216166A1 (zh) 相干带宽的测量方法和装置
WO2023201500A1 (zh) 基于码本的pusch传输方法及其装置
WO2024000202A1 (zh) 一种信道状态信息csi反馈的确定方法及其装置
WO2023245683A1 (zh) 基向量类型的指示方法和装置
WO2024021129A1 (zh) 上行mimo传输8天线端口多天线面板的码字确定方法及其装置
WO2023184434A1 (zh) 基于码本的上行信道发送方法及装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 202280002737.X

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22954669

Country of ref document: EP

Kind code of ref document: A1