WO2023184448A1 - 一种基于非码本的pusch发送/接收信息的方法及其装置 - Google Patents

一种基于非码本的pusch发送/接收信息的方法及其装置 Download PDF

Info

Publication number
WO2023184448A1
WO2023184448A1 PCT/CN2022/084683 CN2022084683W WO2023184448A1 WO 2023184448 A1 WO2023184448 A1 WO 2023184448A1 CN 2022084683 W CN2022084683 W CN 2022084683W WO 2023184448 A1 WO2023184448 A1 WO 2023184448A1
Authority
WO
WIPO (PCT)
Prior art keywords
sri
mapping table
srs resource
data transmission
uplink data
Prior art date
Application number
PCT/CN2022/084683
Other languages
English (en)
French (fr)
Inventor
高雪媛
Original Assignee
北京小米移动软件有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京小米移动软件有限公司 filed Critical 北京小米移动软件有限公司
Priority to PCT/CN2022/084683 priority Critical patent/WO2023184448A1/zh
Priority to CN202280000730.4A priority patent/CN117158088A/zh
Publication of WO2023184448A1 publication Critical patent/WO2023184448A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation

Definitions

  • the present application relates to the field of communication technology, and in particular, to a method and apparatus for transmitting/receiving information based on non-codebook PUSCH.
  • the number of uplink data transmission layers of the terminal device can be increased to 8 layers to support a higher uplink transmission rate that is comparable to that of the downlink.
  • the uplink of terminal equipment is enhanced to Layer 8
  • how to implement non-codebook Physical Uplink Share Channel (PUSCH) transmission becomes a problem that needs to be solved.
  • PUSCH Physical Uplink Share Channel
  • Embodiments of the present application provide a method and device for transmitting/receiving information based on non-codebook PUSCH, which can increase the number of uplink data transmission layers to 8 layers in the terminal equipment to realize non-codebook-based PUSCH transmission.
  • embodiments of the present application provide a method for transmitting information based on non-codebook PUSCH, which is executed by a network device.
  • the method includes:
  • the maximum number of physical uplink shared channel PUSCH transmission layers supported by the terminal equipment is increased to 8 layers, and based on the maximum number of uplink data transmission layers L max supported by the terminal equipment, the existing first sounding reference signal resource indication information SRI is mapped
  • the table is expanded to obtain the second SRI mapping table;
  • the terminal device Based on the second SRI mapping table, indicate to the terminal device a first SRS resource combination measured from the SRS resource set for indicating the precoding matrix used for PUSCH transmission, where the first SRS resource combination includes at least one single Port SRS resource.
  • the existing first SRI mapping table is expanded, so that the expanded second SRI mapping table is filled with the newly added number of uplink data transmission layers and the newly added
  • the blank SRI mapping relationship corresponding to N SRS provides a basic basis for enhancing the uplink transmission capability. Moreover, it can indicate to the terminal equipment the precoding matrix required for actual PUSCH transmission based on the configured second SRI mapping table, which is conducive to providing the security, reliability and accuracy of PUSCH transmission and selecting a precoding matrix that meets the PUSCH transmission requirements. , which can avoid resource conflicts with other terminal devices.
  • embodiments of the present application provide another method for receiving information based on non-codebook PUSCH, which is executed by a terminal device.
  • the method includes:
  • the terminal equipment supports the maximum number of physical uplink shared channel PUSCH transmission layers to 8, and obtains a second SRI mapping table, wherein the second SRI mapping table is obtained by extending the existing first SRI mapping table;
  • a combination of resources including at least one single-port SRS resource;
  • a precoding matrix used for PUSCH transmission is determined.
  • the expanded second SRI mapping table can be filled with the newly added number of uplink data transmission layers and the newly added N SRS by extending the SRI mapping table.
  • the corresponding blank SRI mapping relationship provides a basic basis for enhancing the uplink transmission capability.
  • it can indicate to the terminal equipment the precoding matrix required for actual PUSCH transmission based on the configured second SRI mapping table, which is conducive to providing the security, reliability and accuracy of PUSCH transmission and selecting a precoding matrix that meets the PUSCH transmission requirements. , which can avoid resource conflicts with other terminal devices.
  • embodiments of the present application provide a communication device that has some or all of the functions of the network device in implementing the method described in the first aspect.
  • the functions of the communication device may include some or all of the functions in this application.
  • the functions in the embodiments may also be used to independently implement any of the embodiments in this application.
  • the functions described can be implemented by hardware, or can be implemented by hardware executing corresponding software.
  • the hardware or software includes one or more units or modules corresponding to the above functions.
  • the structure of the communication device may include a transceiver module and a processing module, and the processing module is configured to support the communication device to perform corresponding functions in the above method.
  • the transceiver module is used to support communication between the communication device and other devices.
  • the communication device may further include a storage module coupled to the transceiver module and the processing module, which stores necessary computer programs and data for the communication device.
  • the processing module may be a processor
  • the transceiver module may be a transceiver or a communication interface
  • the storage module may be a memory
  • embodiments of the present application provide another communication device that has some or all of the functions of the network device in the method example described in the second aspect.
  • the functions of the communication device may have some of the functions in this application.
  • the functions in all embodiments may also be used to implement any one embodiment of the present application independently.
  • the functions described can be implemented by hardware, or can be implemented by hardware executing corresponding software.
  • the hardware or software includes one or more units or modules corresponding to the above functions.
  • the structure of the communication device may include a transceiver module and a processing module, and the processing module is configured to support the communication device to perform corresponding functions in the above method.
  • the transceiver module is used to support communication between the communication device and other devices.
  • the communication device may further include a storage module coupled to the transceiver module and the processing module, which stores necessary computer programs and data for the communication device.
  • inventions of the present application provide a communication device.
  • the communication device includes a processor.
  • the processor calls a computer program in a memory, it executes the method described in the first aspect.
  • inventions of the present application provide a communication device.
  • the communication device includes a processor.
  • the processor calls a computer program in a memory, it executes the method described in the second aspect.
  • inventions of the present application provide a communication device.
  • the communication device includes a processor and a memory, and a computer program is stored in the memory; the processor executes the computer program stored in the memory, so that the communication device executes The method described in the first aspect above.
  • inventions of the present application provide a communication device.
  • the communication device includes a processor and a memory, and a computer program is stored in the memory; the processor executes the computer program stored in the memory, so that the communication device executes The method described in the second aspect above.
  • inventions of the present application provide a communication device.
  • the device includes a processor and an interface circuit.
  • the interface circuit is used to receive code instructions and transmit them to the processor.
  • the processor is used to run the code instructions to cause the The device executes the method described in the first aspect.
  • inventions of the present application provide a communication device.
  • the device includes a processor and an interface circuit.
  • the interface circuit is used to receive code instructions and transmit them to the processor.
  • the processor is used to run the code instructions to cause the The device performs the method described in the second aspect above.
  • embodiments of the present application provide a communication system, which includes the communication device described in the third aspect and the communication device described in the fourth aspect, or the system includes the communication device described in the fifth aspect and The communication device according to the sixth aspect, or the system includes the communication device according to the seventh aspect and the communication device according to the eighth aspect, or the system includes the communication device according to the ninth aspect and the communication device according to the tenth aspect. the above-mentioned communication device.
  • embodiments of the present invention provide a computer-readable storage medium for storing instructions used by the above-mentioned terminal equipment. When the instructions are executed, the terminal equipment is caused to execute the above-mentioned first aspect. method.
  • embodiments of the present invention provide a readable storage medium for storing instructions used by the above-mentioned network device. When the instructions are executed, the network device is caused to perform the method described in the second aspect. .
  • the present application also provides a computer program product including a computer program, which when run on a computer causes the computer to execute the method described in the first aspect.
  • the present application also provides a computer program product including a computer program, which when run on a computer causes the computer to execute the method described in the second aspect.
  • the present application provides a chip system, which includes at least one processor and an interface for supporting the terminal device to implement the functions involved in the first aspect, for example, determining or processing the data involved in the above method. and information.
  • the chip system further includes a memory, and the memory is used to store necessary computer programs and data for the terminal device.
  • the chip system may be composed of chips, or may include chips and other discrete devices.
  • this application provides a chip system, which includes at least one processor and an interface for supporting network equipment to implement the functions involved in the second aspect, for example, determining or processing the data involved in the above method. and information.
  • the chip system further includes a memory, and the memory is used to store necessary computer programs and data for the network device.
  • the chip system may be composed of chips, or may include chips and other discrete devices.
  • the present application provides a computer program that, when run on a computer, causes the computer to execute the method described in the first aspect.
  • this application provides a computer program that, when run on a computer, causes the computer to execute the method described in the second aspect.
  • Figure 1 is a schematic architectural diagram of a communication system provided by an embodiment of the present application.
  • Figure 2 is a schematic flowchart of a method for transmitting information based on non-codebook PUSCH provided by an embodiment of the present application
  • Figure 3 is a schematic flowchart of a method for transmitting information based on non-codebook PUSCH provided by an embodiment of the present application
  • Figure 4 is a schematic flowchart of a method for transmitting information based on non-codebook PUSCH provided by an embodiment of the present application
  • Figure 5 is a schematic flowchart of a method for transmitting information based on non-codebook PUSCH provided by an embodiment of the present application
  • Figure 6 is a schematic flowchart of a method for receiving information on non-codebook-based PUSCH provided by an embodiment of the present application
  • Figure 7 is a schematic flowchart of a method for receiving information on non-codebook-based PUSCH provided by an embodiment of the present application
  • Figure 8 is a schematic flowchart of a method for receiving information on non-codebook-based PUSCH provided by an embodiment of the present application
  • Figure 9 is a schematic flowchart of a method for receiving information on non-codebook-based PUSCH provided by an embodiment of the present application.
  • Figure 10 is a schematic structural diagram of a communication device provided by an embodiment of the present application.
  • Figure 11 is a schematic structural diagram of a communication device provided by an embodiment of the present application.
  • Figure 12 is a schematic structural diagram of a chip provided by an embodiment of the present application.
  • first, second, third, etc. may be used to describe various information in the embodiments of the present disclosure, the information should not be limited to these terms. These terms are only used to distinguish information of the same type from each other.
  • first information may also be called second information, and similarly, the second information may also be called first information.
  • word “if” as used herein may be interpreted as "when” or “when” or “in response to determining”
  • the terms used in this article are “greater than” or “less than”, “higher than” or “lower than” when characterizing size relationships. But for those skilled in the art, it can be understood that: the term “greater than” also covers the meaning of “greater than or equal to”, and “less than” also covers the meaning of “less than or equal to”; the term “higher than” covers the meaning of “higher than or equal to”. “The meaning of “less than” also covers the meaning of "less than or equal to”.
  • the sounding reference signal SRS (Sounding Reference Signal,) is used to estimate the frequency domain information of the uplink channel and perform frequency selective scheduling. It is also used to estimate the uplink channel and perform downlink beamforming.
  • SRS Resource Indicator is used to instruct the UE which SRS resource to use for uplink data transmission.
  • Data transmission rank indicator (Transmission Rank Indicator, TRI), used to indicate the number of data transmission layers corresponding to the precoding matrix used for actual transmission of PUSCH.
  • the embodiment of the present application provides a communication system, which may include but is not limited to a sending device and a receiving device.
  • the sending device can be a terminal device
  • the receiving device can be a network device.
  • Figure 1 is a schematic architectural diagram of a communication system provided by an embodiment of the present application.
  • the communication system may include but is not limited to one network device and one terminal device.
  • the number and form of devices shown in Figure 1 are only for examples and do not constitute a limitation on the embodiments of the present application. In actual applications, two or more devices may be included.
  • the communication system shown in Figure 1 includes a network device 11 and a terminal device 12 as an example.
  • LTE long term evolution
  • 5th generation fifth generation
  • 5G new radio (NR) system 5th generation new radio
  • the network device 11 in the embodiment of this application is an entity on the network side that is used to transmit or receive signals.
  • the network device 11 may be an evolved base station (evolved NodeB, eNB), a transmission point (transmission reception point, TRP), a next generation base station (next generation NodeB, gNB) in an NR system, or other base stations in future mobile communication systems. Or access nodes in wireless fidelity (WiFi) systems, etc.
  • the embodiments of this application do not limit the specific technology and specific equipment form used by the network equipment.
  • the network equipment provided by the embodiments of this application may be composed of a centralized unit (central unit, CU) and a distributed unit (DU).
  • the CU may also be called a control unit (control unit).
  • the structure can separate the protocol layers of network equipment, such as base stations, and place some protocol layer functions under centralized control on the CU. The remaining part or all protocol layer functions are distributed in the DU, and the CU centrally controls the DU.
  • the terminal device 12 in the embodiment of this application is an entity on the user side that is used to receive or transmit signals, such as a mobile phone.
  • Terminal equipment can also be called terminal equipment (terminal), user equipment (user equipment, UE), mobile station (mobile station, MS), mobile terminal equipment (mobile terminal, MT), etc.
  • Terminal devices can be cars with communication functions, smart cars, mobile phones, Internet of Things devices such as NB-IoT or (e)MTC, wearable devices, tablets (Pad), computers with wireless transceiver functions, virtual Reality (VR) terminal equipment, augmented reality (AR) terminal equipment, wireless terminal equipment in industrial control (industrial control), wireless terminal equipment in self-driving (self-driving), remote surgery ( Wireless terminal equipment in remote medical surgery, wireless terminal equipment in smart grid, wireless terminal equipment in transportation safety, wireless terminal equipment in smart city, smart home wireless terminal equipment in home), etc.
  • the embodiments of this application do not limit the specific technology and specific equipment form used by the terminal equipment.
  • Figure 2 is a schematic flowchart of a method for transmitting information based on non-codebook PUSCH provided by an embodiment of the present application. As shown in Figure 2, the method is executed by the network device and may include but is not limited to the following steps:
  • Step S21 in response to the terminal equipment supporting the maximum number of physical uplink shared channel PUSCH transmission layers increasing to 8 layers, based on the maximum number of uplink data transmission layers L max supported by the terminal equipment, the existing first sounding reference signal resource indication information is
  • the SRI mapping table is expanded to obtain a second SRI mapping table.
  • the number of uplink data transmission layers of the terminal equipment is increased to 8 layers, that is, the maximum PUSCH transmission that the terminal equipment can support can be increased to 8 layers, which can be used to support a higher uplink transmission rate that is comparable to downlink.
  • the first uplink data transmission layer is the uplink data transmission layer corresponding to the PUSCH shared channel transmission originally supported by a single terminal.
  • the second uplink data transmission layer is a newly added one based on the original first uplink data transmission layer.
  • the uplink data transmission layer For example, the uplink data transmission layers corresponding to the original PUSCH are layers 1-4, and layers 1-4 are the first uplink data transmission.
  • layer 8 is newly added, and the second uplink data transmission layer is layer 5 to layer 8. This definition applies to all embodiments of the present disclosure.
  • the network device configures an SRS resource set with a non-codebook function to the terminal device through high-level signaling.
  • the network device can configure the non-codebook SRS resource set to the terminal device through Radio Resource Control (Radio Resource Control, RRC) signaling or Media Access Control-Control Element (MAC-CE).
  • RRC Radio Resource Control
  • MAC-CE Media Access Control-Control Element
  • the SRS resource set may be a periodic SRS resource set, a semi-persistent SRS resource set, or an aperiodic SRS resource set.
  • one or more single-port SRS resources are included in the SRS resource set.
  • Each first uplink data transmission layer corresponds to a first SRI mapping table.
  • the SRI mapping table includes the correspondence between the SRI index value and the SRS resource combination, that is, the SRI index value can be indexed to the corresponding SRS resource combination, where,
  • the SRS resource combination includes one or more SRS resources in the SRS resource set configured by the network device to the terminal device.
  • the existing first SRI mapping table needs to be expanded to cover uplink data transmission layers 5 to 8. Supports up to 8 layers of upload data transmission.
  • the network device determines the number of newly added second uplink data transmission layers and the detection reference signal configured to the terminal device based on the maximum number of uplink data transmission layers L max and the existing number of first uplink data transmission layers.
  • a configuration quantity set corresponding to the SRS resource set where the configuration quantity set includes the number N SRS of SRS resources configured in the SRS resource set.
  • the maximum number of physical uplink shared channel PUSCH transmission layers increases to 8 layers
  • the number of SRSs that can be configured in the SRS resource set, N SRS increases from the configurable 4 SRS resources to the 8 configurable SRS resources.
  • the network device extends the first SRI mapping table based on the second uplink data transmission layer number and configuration quantity set to obtain a second SRI mapping table that can cover uplink data transmission layer 1 to layer 8.
  • the first SRI mapping table can be extended to an SRI mapping table corresponding to each uplink data transmission layer number.
  • the expanded SRI mapping table corresponding to each uplink data transmission layer is a second SRI mapping table.
  • the first SRI mapping table is expanded based on the maximum number of uplink data transmission layers L max and the configuration quantity set
  • the second SRI mapping table is expanded to include partial SRI mapping relationships.
  • the second SRI mapping table may include part of all SRI mapping relationships corresponding to each uplink data transmission layer number. For example, parts of the expanded SRI mapping table corresponding to each uplink data transmission layer may be selected to form a restricted second SRI mapping table.
  • the second SRI mapping table may include part of all SRI mapping relationships corresponding to one of the uplink data transmission layers, that is, the second SRI mapping table is a part corresponding to one of the uplink data transmission layers.
  • An SRI mapping sub-table composed of mapping relationships, which can save the signaling overhead of SRI indication.
  • Step S22 Based on the second SRI mapping table, indicate to the terminal device the first SRS resource combination measured from the SRS resource set, which is used to indicate the precoding matrix used for PUSCH transmission.
  • the first SRS resource combination includes at least one single port. SRS resources.
  • the terminal device can precode the SRS resources configured in the SRS resource set based on the initial precoding matrix, and send the precoded SRS resources to the network device.
  • Precoded SRS resources can be used to obtain channel state information (CSI), and then obtain channel estimation information.
  • the channel estimation information can reflect channel conditions, multi-user interference and/or channel noise and other scheduling information.
  • the non-codebook uplink transmission scheme is also a spatial multiplexing technology.
  • the difference from the codebook-based uplink transmission is that its precoding is based on certain criteria, rather than based on a fixed codebook. Determine the precoding among the candidate values. If the reciprocity of the uplink and downlink channels exists, the terminal can calculate the downlink channel information based on the channel reciprocity, thereby obtaining the uplink precoding matrix. If the channel reciprocity is good enough, the terminal can obtain more accurate precoding through the downlink channel. Compared with the codebook-based transmission scheme, it can save the cost of precoding indication and obtain better performance at the same time.
  • the network device configures the associated downlink Channel State Information-Reference Signal (CSI-RS) resource to the terminal device and sends it to the terminal device.
  • the terminal device can configure the downlink CSI-RS resource based on the downlink channel state information reference signal. Determine the initial precoding matrix. It should be noted that the precoding matrix used for actual transmission of PUSCH in this application is selected from the initial precoding matrix.
  • CSI-RS Channel State Information-Reference Signal
  • the network device can receive the precoded SRS resources for channel estimation and obtain channel estimation information. Since the channel estimation information can reflect channel conditions, multi-user interference and/or channel noise, from the SRS configured for the terminal device
  • the first SRS resource combination used for actual transmission of PUSCH is determined in the resource set. Further, the network device can determine the precoding matrix used for PUSCH transmission based on the first SRS resource combination, and determine the TRI corresponding to the precoding matrix based on the number of resources in the first SRS resource combination, that is, the network device is based on the precoding SRS resources.
  • the TRI can indicate the third uplink data transmission used for PUSCH transmission. Number of layers.
  • the network device may determine an SRI mapping relationship corresponding to the third uplink data transmission layer number from the second SRI mapping table based on the third uplink data transmission layer number, and determine the SRI mapping relationship corresponding to the first SRS resource combination from the SRI mapping relationship.
  • SRI index value The network device indicates the first SRS resource combination to the terminal device through the SRI index value, so as to instruct the terminal device to determine the precoding matrix used for actual transmission of the PUSCH based on the first SRS resource combination.
  • the existing first SRI mapping table is expanded, so that the expanded second SRI mapping table is filled with the newly added number of uplink data transmission layers and the newly added
  • the blank SRI mapping relationship corresponding to N SRS provides a basic basis for enhancing the uplink transmission capability. Moreover, it can indicate to the terminal equipment the precoding matrix required for actual PUSCH transmission based on the configured second SRI mapping table, which is conducive to providing the security, reliability and accuracy of PUSCH transmission and selecting a precoding matrix that meets the PUSCH transmission requirements. , which can avoid resource conflicts with other terminal devices.
  • Figure 3 is a schematic flowchart of a method for transmitting information based on non-codebook PUSCH provided by an embodiment of the present application. As shown in Figure 3, the method is executed by the network device and may include but is not limited to the following steps:
  • Step S31 in response to the terminal device supporting the maximum number of physical uplink shared channel PUSCH transmission layers increasing to 8 layers, based on the maximum number of uplink data transmission layers L max supported by the terminal device and the existing first uplink data transmission layer number, determine The number of newly added second uplink data transmission layers and the configured quantity set corresponding to the SRS resource set configured for the terminal device.
  • the configuration quantity set includes the number N SRS of SRS resources configured in the SRS resource set.
  • the SRS resource set can The number of configured SRS N SRS increases from 4 SRS resources that can be configured to 8 SRS resources that can be configured. That is, the configuration quantity set includes an existing first candidate quantity and a newly added second candidate quantity, where the first candidate quantity includes 1 to 4, and the newly added second candidate quantity includes 5 to 8.
  • Step S32 Expand the first SRI mapping table based on the second uplink data transmission layer number and configuration quantity set to obtain a second SRI mapping table.
  • the second candidate number is expanded
  • each element in Table 1 exists independently, and these elements are exemplarily listed in the same table, but it does not mean that all elements in the table must exist at the same time as shown in the table.
  • the value of each element does not depend on the value of any other element in Table 1. Therefore, those skilled in the art can understand that the value of each element in Table 1 is an independent embodiment.
  • the first SRI mapping table is expanded based on the first mapping relationship to obtain a third SRI mapping table for each first uplink data transmission layer, that is, layer 1 to layer 4 each have their own third SRI mapping table. , that is to say, the newly added first mapping relationship is combined with the mapping relationship in the existing first SRI mapping table to obtain the third SRI mapping table.
  • the existing first SRI mapping table of the first uplink data transmission layer is reused.
  • the second mapping relationship between the SRI index value and the SRS resource combination under each candidate quantity in the configuration quantity set, and obtain the fourth SRI mapping based on the second mapping relationship surface. That is to say, for uplink data transmission layer 5 to uplink data transmission layer 8, there is no existing first SRI mapping table. It is necessary to extend the configuration of the SRI index value and SRS for each candidate number for layers 5 to 8.
  • the first SRI mapping table is expanded based on the second mapping relationship to obtain a fourth SRI mapping table for each second uplink data transmission layer, that is, the 5th to 8th layers each have their own fourth SRI mapping table. .
  • the network device determines the third SRI mapping table and the fourth SRI mapping table as the second SRI mapping table, that is, the second SRI mapping table is a set including the expanded second SRI mapping table for each first uplink data transmission layer. , and also includes a fourth SRI mapping table after each second uplink data transmission layer is expanded.
  • the total number of second SRI mapping tables is 8, which is the same value as the maximum number of uplink data transmission layers supported by the terminal device.
  • Step S33 Receive precoded SRS resources in the SRS resource set sent by the terminal device, and determine a first SRS resource combination from the SRS resource set based on the precoded SRS resources.
  • Step S34 Determine the precoding matrix and the corresponding number of third uplink data transmission layers based on the first SRS resource combination.
  • steps S33 to S34 please refer to the relevant records in the above embodiments, and will not be described again here.
  • Step S35 Determine the SRI mapping table corresponding to the third uplink data transmission layer number from the third SRI mapping table and the fourth SRI mapping table.
  • the third SRI mapping table and the fourth SRI mapping table respectively correspond to different numbers of uplink data transmission layers.
  • an SRI mapping table corresponding to the third uplink data transmission layer number may be determined based on the third SRI mapping table and the fourth SRI mapping table. For example, if the third uplink data transmission layer number is 1, then the second SRI mapping table corresponding to the first layer can be used as the SRI mapping table corresponding to the third uplink data transmission layer number.
  • Step S36 Determine the SRI index value corresponding to the first SRS resource combination from the SRI mapping table corresponding to the third uplink data transmission layer number, and indicate the SRI index value to the terminal device.
  • the SRI mapping table corresponding to the third uplink data transmission layer includes mapping relationships between different SRS resource combinations and different SRI index values.
  • the SRI mapping table can be based on the first SRS resource combination, that is, the first SRS resource.
  • the SRS resource number in the combination and the N SRS corresponding to the SRS resource set determine the SRI index value corresponding to the first SRS resource combination from the SRI mapping table corresponding to the third uplink data transmission layer number, and indicate the SRI index value to Terminal Equipment.
  • the SRI index value is indicated to the terminal device through the SRI indication field.
  • the existing first SRI mapping table is expanded, so that the expanded second SRI mapping table is filled with the newly added number of uplink data transmission layers and the newly added
  • the blank SRI mapping relationship corresponding to N SRS provides a basic basis for enhancing the uplink transmission capability. Moreover, it can indicate to the terminal equipment the precoding matrix required for actual PUSCH transmission based on the configured second SRI mapping table, which is conducive to providing the security, reliability and accuracy of PUSCH transmission and selecting a precoding matrix that meets the PUSCH transmission requirements. , which can avoid resource conflicts with other terminal devices.
  • Figure 4 is a schematic flowchart of a method for transmitting information based on non-codebook PUSCH provided by an embodiment of the present application. As shown in Figure 4, the method is executed by the network device and may include but is not limited to the following steps:
  • Step S41 in response to the terminal device supporting the maximum number of physical uplink shared channel PUSCH transmission layers increasing to 8 layers, based on the maximum number of uplink data transmission layers L max supported by the terminal device and the existing first uplink data transmission layer number, determine The number of newly added second uplink data transmission layers and the configured quantity set corresponding to the SRS resource set configured for the terminal device.
  • step S41 please refer to the relevant content in the above-mentioned embodiments, and will not be described again here.
  • Step S42 Expand the first SRI mapping table based on the second uplink data transmission layer number and configuration quantity set to obtain a third RI mapping table and a fourth SRI mapping table.
  • step S42 please refer to the relevant content recorded in the above embodiments, and will not be described again here.
  • Step S43 Obtain a restricted SRI mapping table as a second SRI mapping table based on the third SRI mapping table and the fourth SRI mapping table.
  • the third mapping relationship between part of the SRI index value and the SRS resource combination is selected from the second SRI mapping table corresponding to the first uplink data transmission layer number, and from each second uplink data transmission layer From the fourth SRI mapping table corresponding to the number, select the fourth mapping relationship between part of the SRI index value and the SRS resource combination, and the network device generates a restricted SRI mapping table based on the selected third mapping relationship and the fourth mapping relationship,
  • the restricted SRI mapping table is determined as the expanded second SRI mapping table.
  • mapping relationships can be selected from each third SRI mapping table and each fourth SRI mapping table under each N SRS to form a restricted SRI table, and the selection rules can be based on protocol agreements or high-level instructions.
  • the mapping relationship between 32 SRI index values and SRS resource combinations can be selected from each third SRI mapping table and each fourth SRI mapping table, so that a maximum of 5 bits are required to indicate the SRI.
  • each N SRS may be taken into consideration, or part of the N SRS may be taken into consideration, or each uplink data transmission layer may be taken into consideration, or some uplink data transmission layers may be taken into consideration.
  • Table 2 below provides a schematic table of a restricted SRI mapping table.
  • each element in Table 1 exists independently, and these elements are exemplarily listed in the same table, but it does not mean that all elements in the table must exist at the same time as shown in the table.
  • the value of each element does not depend on the value of any other element in Table 2. Therefore, those skilled in the art can understand that the value of each element in Table 2 is an independent embodiment.
  • Step S44 Receive the precoded SRS resources in the SRS resource set sent by the terminal device, and determine the first SRS resource combination from the SRS resource set based on the precoded SRS resources.
  • the network device selects a first SRS resource combination from the SRS resource set based on the precoded SRS resources.
  • the network device selects a first SRS resource combination from the restricted SRI mapping table.
  • the combination is determined as the first SRS resource combination. That is to say, the network device is based on precoded SRS resources, and the first SRS resource combination selected needs to be an SRS resource combination that exists in the restricted SRI mapping table.
  • Step S45 Determine the SRI index value corresponding to the first SRS resource combination from the restricted SRI mapping table, and indicate the SRI index value to the terminal device.
  • the restricted SRI mapping table includes mapping relationships between different SRS resource combinations and different SRI index values. In the embodiment of the present application, it can be based on the first SRS resource combination, that is, the number and sum of the SRS resources in the first SRS resource combination.
  • N SRS corresponding to the SRS resource set determines the SRI index value corresponding to the first SRS resource combination from the restricted SRI mapping table, and indicates the SRI index value to the terminal device.
  • the SRI index value is indicated to the terminal device through the SRI indication field.
  • the SRI index value can also be used to indicate to the terminal device the TRI corresponding to the precoding matrix used for actual transmission of PUSCH, and the TRI is used to indicate the number of third uplink data transmission layers used for actual transmission of PUSCH.
  • the network device may send the restricted SRI mapping table to the terminal device through first higher layer signaling.
  • the network device may also instruct the terminal device to update the restricted SRI mapping table based on the second higher layer signaling.
  • all or part of the mapping relationships in the restricted SRI mapping table may be updated.
  • the first high-level signaling and the second high-level signaling may include RRC signaling and/or Media access control-Control Element (MAC-CE) signaling.
  • MAC-CE Media access control-Control Element
  • RRC signaling may be used to The restricted SRI mapping table is sent to the terminal device.
  • all or part of the mapping relationships of the restricted SRI mapping table are configured or updated through MAC-CE signaling.
  • a new SRI mapping subtable is issued through RRC signaling to completely update the first SRI mapping subtable.
  • the MAC-CE signaling carries a mapping relationship between one or more SRS resource combinations and SRI index values, and the restricted SRI mapping table is updated based on these mapping relationships.
  • the restricted SRI mapping table can be By adding these mapping relationships, you can also use these mapping relationships to replace some of the existing mapping relationships in the restricted SRI mapping table. The replaced mapping relationship can be indicated through higher layer signaling.
  • the existing first SRI mapping table is expanded, so that the expanded second SRI mapping table is filled with the newly added number of uplink data transmission layers and the newly added
  • the blank SRI mapping relationship corresponding to N SRS provides a basic basis for enhancing the uplink transmission capability. Moreover, it can indicate to the terminal equipment the precoding matrix required for actual PUSCH transmission based on the configured second SRI mapping table, which is conducive to providing the security, reliability and accuracy of PUSCH transmission and selecting a precoding matrix that meets the PUSCH transmission requirements. , which can avoid resource conflicts with other terminal devices.
  • Figure 5 is a schematic flowchart of a method for transmitting information based on non-codebook PUSCH provided by an embodiment of the present application. As shown in Figure 5, the method is executed by the network device and may include but is not limited to the following steps:
  • Step S51 in response to the terminal device supporting the maximum number of physical uplink shared channel PUSCH transmission layers increasing to 8 layers, based on the maximum number of uplink data transmission layers L max supported by the terminal device and the existing first uplink data transmission layer number, determine The number of newly added second uplink data transmission layers and the configured quantity set corresponding to the SRS resource set configured for the terminal device.
  • Step S52 Expand the first SRI mapping table based on the second uplink data transmission layer number and configuration quantity set to obtain a third SRI mapping table and a fourth SRI mapping table.
  • Step S53 Receive the precoded SRS resources in the SRS resource set sent by the terminal device, and determine the first SRS resource combination from the SRS resource set based on the precoded SRS resources.
  • Step S54 Determine the number of third uplink data transmission layers corresponding to the first SRS resource combination.
  • steps S51 to S54 please refer to the relevant descriptions in the above embodiments, and will not be described again here.
  • Step S55 Group the SRI mapping tables corresponding to the third uplink data transmission layer number to obtain candidate SRI mapping subtables corresponding to the third uplink data transmission layer number.
  • the SRI mapping table corresponding to the third uplink data transmission layer is one of the third SRI mapping table and the fourth SRI mapping table. After determining the SRI mapping table corresponding to the third uplink data transmission layer, the SRI mapping table can be SRI mapping tables are grouped to obtain multiple candidate SRI mapping sub-tables.
  • the N SRSs may be grouped, and one or more N SRSs may be used as a group to separate multiple candidate SRS mapping subtables. Or group the SRI mapping table corresponding to the third uplink data transmission layer by rows to obtain multiple candidate SRI mapping sub-tables. For example, each candidate SRI candidate sub-table may include the same number of rows or a different number of rows. ; Or group the SRI mapping table corresponding to the third uplink data transmission layer by columns to obtain multiple candidate SRI mapping sub-tables. For example, each candidate SRI candidate sub-table may include the same number of columns or different columns. number. In this application, the specific grouping method is not limited.
  • Step S56 Determine the first SRI mapping sub-table where the first SRS resource combination is located from the candidate SRI mapping sub-table.
  • the first SRI mapping subtable in which the first SRS resource combination is located can be determined from multiple candidate SRI mapping subtables. For example, from multiple candidate SRI mapping subtables, a first candidate SRS mapping subtable corresponding to the N SRS corresponding to the SRS resource set can be determined, and then based on the SRS resource number included in the first SRS resource combination, the first candidate SRS mapping subtable can be determined from the first candidate SRS mapping subtable. In the SRS mapping sub-table, a first SRS mapping sub-table including the first SRS resource combination is determined.
  • a second candidate SRS mapping subtable including the first SRS resource combination may be determined from a plurality of candidate SRI mapping subtables, and then based on the SRS resource Set the corresponding N SRS and determine the first SRS mapping subtable from the second candidate SRS mapping subtable.
  • Step S57 Determine the first SRI index value corresponding to the first SRS resource combination from the first SRI mapping subtable, and send it to the terminal device.
  • the first SRI mapping sub-table includes mapping relationships between different SRS resource combinations and different SRI index values.
  • the first SRS resource combination may be based on the number of the SRS resource in the first SRS resource combination. , determine the SRI index value corresponding to the first SRS resource combination from the first SRI mapping sub-table, and indicate the SRI index value to the terminal device.
  • the SRI index value is indicated to the terminal device through the SRI indication field.
  • the SRI index value can also be used to indicate to the terminal device the number of the third uplink data transmission layer corresponding to the precoding matrix actually used for PUSCH transmission.
  • the network device may send the first SRI mapping subtable to the terminal device through third high-layer signaling.
  • the network device may instruct the terminal device to update the first SRI mapping subtable based on the fourth higher layer signaling. For example, all or part of the mapping relationships in the first SRI mapping subtable may be updated.
  • the third high-level signaling and the fourth high-level signaling may include RRC signaling and/or MAC-CE signaling.
  • the first SRI mapping subtable may be sent to the terminal device through RRC signaling.
  • RRC signaling radio resource control
  • a new SRI mapping subtable is issued through RRC signaling to completely update the first SRI mapping subtable.
  • the MAC-CE signaling carries mapping relationships between one or more SRS resource combinations and SRI index values, and the first SRI mapping subtable is updated based on these mapping relationships.
  • the first SRI mapping subtable can be updated in the first SRI mapping subtable.
  • These mapping relationships are added to the table, and these mapping relationships can also be used to replace some of the existing mapping relationships in the first SRI mapping sub-table. The replaced mapping relationship can be indicated through higher layer signaling.
  • the existing first SRI mapping table is expanded, so that the expanded second SRI mapping table is filled with the newly added number of uplink data transmission layers and the newly added
  • the blank SRI mapping relationship corresponding to N SRS provides a basic basis for enhancing the uplink transmission capability. Moreover, it can indicate to the terminal equipment the precoding matrix required for actual PUSCH transmission based on the configured second SRI mapping table, which is conducive to providing the security, reliability and accuracy of PUSCH transmission and selecting a precoding matrix that meets the PUSCH transmission requirements. , which can avoid resource conflicts with other terminal devices.
  • Figure 6 is a schematic flowchart of a method for transmitting information based on non-codebook PUSCH provided by an embodiment of the present application. As shown in Figure 6, the method is executed by the terminal device and may include but is not limited to the following steps:
  • Step S61 In response to the terminal device supporting the maximum number of PUSCH transmission layers of the physical uplink shared channel being increased to 8, a second SRI mapping table is obtained, where the second SRI mapping table is obtained by extending the existing first SRI mapping table.
  • the number of uplink data transmission layers of the terminal equipment is increased to 8 layers, that is, the maximum PUSCH transmission that the terminal equipment can support can be increased to 8 layers, which can be used to support a higher uplink transmission rate that is comparable to downlink.
  • the first uplink data transmission layer is the uplink data transmission layer corresponding to the PUSCH shared channel transmission originally supported by a single terminal.
  • the second uplink data transmission layer is a newly added one based on the original first uplink data transmission layer.
  • the uplink data transmission layer For example, the uplink data transmission layers corresponding to the original PUSCH are layers 1-4, and layers 1-4 are the first uplink data transmission. In this disclosure, layer 8 is newly added, and the second uplink data transmission layer is layer 5 to layer 8.
  • Each first uplink data transmission layer corresponds to a first SRI mapping table.
  • the SRI mapping table includes the correspondence between the SRI index value and the SRS resource combination, that is, the SRI index value can be indexed to the corresponding SRS resource combination, where,
  • the SRS resource combination includes one or more SRS resources in the SRS resource set configured by the network device to the terminal device.
  • the existing first SRI mapping table needs to be expanded to cover uplink data transmission layers 5 to 8. Supports up to 8 layers of upload data transmission.
  • the network device determines the number of newly added second uplink data transmission layers and the detection reference signal configured to the terminal device based on the maximum number of uplink data transmission layers L max and the existing number of first uplink data transmission layers.
  • a configuration quantity set corresponding to the SRS resource set where the configuration quantity set includes the number N SRS of SRS resources configured in the SRS resource set.
  • the maximum number of physical uplink shared channel PUSCH transmission layers increases to 8 layers
  • the number of SRSs that can be configured in the SRS resource set, N SRS increases from the configurable 4 SRS resources to the 8 configurable SRS resources.
  • the network device extends the first SRI mapping table based on the second uplink data transmission layer number and configuration quantity set to obtain a second SRI mapping table that can cover uplink data transmission layer 1 to layer 8.
  • the first SRI mapping table can be extended to an SRI mapping table corresponding to each uplink data transmission layer number.
  • the expanded SRI mapping table corresponding to each uplink data transmission layer is a second SRI mapping table.
  • a second SRI mapping table including partial SRI mapping relationships determined by the network device may be received.
  • the second SRI mapping table may include part of all SRI mapping relationships corresponding to each uplink data transmission layer number.
  • parts of the expanded SRI mapping table corresponding to each uplink data transmission layer may be selected to form a restricted second SRI mapping table.
  • the second SRI mapping table may include part of the mapping relationships of all SRI mapping relationships corresponding to one of the uplink data transmission layers, that is, the second SRI mapping table is composed of part of the mapping relationships corresponding to one of the uplink data transmission layers. SRI mapping subtable.
  • the terminal device may extend the first SRI mapping table based on the maximum number of uplink data transmission layers L max and the configuration quantity set, and extend the second SRI mapping table including partial SRI mapping relationships.
  • the second SRI mapping table may include part of all SRI mapping relationships corresponding to each uplink data transmission layer number. For example, parts of the expanded SRI mapping table corresponding to each uplink data transmission layer may be selected to form a restricted second SRI mapping table.
  • Step S62 Receive the SRI index value sent by the network device, and determine the first SRS resource combination from the second SRI mapping table based on the SRI index value.
  • the first SRS resource combination is a combination of SRS resources selected from the SRS resource set, including at least one single-port SRS resource.
  • the terminal device obtains an SRS resource set with a non-codebook function from the network device through high-level signaling.
  • the terminal device can receive RRC signaling or MAC-CE signaling, and obtain the network from RRC signaling or MAC-CE signaling.
  • the set of SRS resources configured for the device can be configured or reconfigured through RRC, or part or all of the configuration can be updated through MAC-CE.
  • the time domain characteristics of the SRS resource set are periodic, semi-persistent or aperiodic. That is to say, the SRS resource set can be a periodic SRS resource set, a semi-persistent SRS resource set, or a non-periodic SRS resource set. Periodic SRS resource collection. In this embodiment of the present application, one or more single-port SRS resources are included in the SRS resource set.
  • the terminal device can precode the SRS resources configured in the SRS resource set based on the initial precoding matrix, and send the precoded SRS resources to the network device.
  • the precoded SRS resources can be used to obtain CSI, and then channel estimation information can be obtained.
  • the channel estimation information can reflect scheduling information such as channel conditions, multi-user interference and/or channel noise.
  • the precoding matrix and the corresponding number of third uplink data transmission layers from the SRS resource set based on the precoded SRS resources please refer to the relevant content in the above embodiments. Here No further details will be given.
  • the network device may determine the SRI mapping relationship corresponding to the third uplink data transmission layer from the second SRI mapping table based on the third uplink data transmission layer, and determine the SRI mapping relationship corresponding to the third uplink data transmission layer from the mapping table. In the relationship, the SRI index value corresponding to the first SRS resource combination is determined. The network device indicates the first SRS resource combination to the terminal device through the SRI index value.
  • the terminal device receives the SRI issued by the network device through high-layer signaling, and indicates the SRI index value to the terminal device through the SRI indication field.
  • Step S63 Determine the precoding matrix used for PUSCH transmission based on the first SRS resource combination.
  • the terminal equipment filters the initial precoding matrix based on the first SRS resource combination to obtain the precoding matrix actually used for USCH transmission.
  • the first SRS resource combination includes one or more single-port SRS resources, and the one or more single-port SRS are SRS resources selected by the network device in the SRS resource set and suitable for PUSCH transmission.
  • the terminal equipment determines the precoding vector corresponding to the selected single-port SRS resource, and determines the precoding matrix used for actual transmission of the PUSCH based on the precoding vector corresponding to the selected single-port SRS resource.
  • the precoding vector is a vector of the initial precoding matrix.
  • the precoding vectors used by the SRS resources in the first SRS resource combination are combined according to the number sequence of the SRS resources to obtain the precoding matrix used for actual transmission of the PUSCH.
  • SRS resource #0 corresponds to V 0
  • SRS resource #1 corresponds to V 1
  • SRS resource #2 corresponds to V 2
  • SRS resource #3 corresponds to V 3
  • SRS resource # 7 corresponds to V 7 .
  • the V corresponding to these SRS resources will be 0 , V 1 , V 4 and V 5 are combined to obtain the precoding matrix used for actual transmission of PUSCH.
  • the expanded second SRI mapping table can be filled with the newly added number of uplink data transmission layers and the newly added N SRS by extending the SRI mapping table.
  • the corresponding blank SRI mapping relationship provides a basic basis for enhancing the uplink transmission capability.
  • it can indicate to the terminal equipment the precoding matrix required for actual PUSCH transmission based on the configured second SRI mapping table, which is conducive to providing the security, reliability and accuracy of PUSCH transmission and selecting a precoding matrix that meets the PUSCH transmission requirements. , which can avoid resource conflicts with other terminal devices.
  • FIG. 7 is a schematic flowchart of a method for receiving information on a non-codebook-based PUSCH provided by an embodiment of the present application. As shown in Figure 7, this method is executed by the terminal device and may include but is not limited to the following steps:
  • Step S71 in response to the terminal device supporting the maximum number of physical uplink shared channel PUSCH transmission layers increasing to 8 layers, based on the maximum number of uplink data transmission layers L max supported by the terminal device and the existing first uplink data transmission layer number, determine The number of newly added second uplink data transmission layers and the configured quantity set corresponding to the SRS resource set configured for the terminal device.
  • the configuration quantity set includes the number N SRS of SRS resources configured in the SRS resource set.
  • the SRS resource set can The number of configured SRS N SRS increases from 4 SRS resources that can be configured to 8 SRS resources that can be configured. That is, the configuration quantity set includes an existing first candidate quantity and a newly added second candidate quantity, where the first candidate quantity includes 1 to 4, and the newly added second candidate quantity includes 5 to 8.
  • Step S72 Expand the first SRI mapping table based on the second uplink data transmission layer number and configuration quantity set to obtain a second SRI mapping table.
  • the second candidate number is expanded
  • the first SRI mapping table is expanded based on the first mapping relationship to obtain a third SRI mapping table for each first uplink data transmission layer, that is, layer 1 to layer 4 each have their own third SRI mapping table. , that is to say, the newly added first mapping relationship is combined with the mapping relationship in the existing first SRI mapping table to obtain the third SRI mapping table.
  • the existing first SRI mapping table of the first uplink data transmission layer is reused.
  • the second mapping relationship between the SRI index value and the SRS resource combination under each candidate quantity in the configuration quantity set, and obtain the fourth SRI mapping based on the second mapping relationship surface. That is to say, for uplink data transmission layer 5 to uplink data transmission layer 8, there is no existing first SRI mapping table. It is necessary to extend the configuration of the SRI index value and SRS for each candidate number for layers 5 to 8.
  • the first SRI mapping table is expanded based on the second mapping relationship to obtain a fourth SRI mapping table for each second uplink data transmission layer, that is, the 5th to 8th layers each have their own fourth SRI mapping table. .
  • the terminal device determines the third SRI mapping table and the fourth SRI mapping table as the second SRI mapping table, that is, the second SRI mapping table is a set including the expanded second SRI mapping table for each first uplink data transmission layer. , and also includes a fourth SRI mapping table after each second uplink data transmission layer is expanded.
  • the total number of second SRI mapping tables is 8, which is the same value as the maximum number of uplink data transmission layers supported by the terminal device.
  • Step S73 Receive the SRI index value sent by the network device.
  • the terminal device receives the SRS resource set configured by the network device, precodes the SRS resources in the SRS resource set based on the initial precoding matrix, and sends the precoded SRS resources to the network device.
  • the SRS resource set configured by the network device
  • precodes the SRS resources in the SRS resource set based on the initial precoding matrix and sends the precoded SRS resources to the network device.
  • the network device may indicate the SRI index value determined based on the first SRS resource combination to the terminal device through the SRI.
  • Step S74 Determine the number of third uplink data transmission layers corresponding to the precoding matrix.
  • the SRI index value may indicate the number of the third uplink data transmission layer corresponding to the precoding matrix. For example, a correspondence relationship between each SRI index value and the number of each uplink data transmission layer is set. Based on the correspondence relationship, the SRI The index value determines the corresponding third uplink data transmission layer number.
  • the indication information TRI indicating the number of data transmission layers indicated by the network device is received, and the third uplink data transmission layer number is determined based on the TRI.
  • Step S75 Determine the SRI mapping table corresponding to the third uplink data transmission layer number from the third SRI mapping table and the fourth SRI mapping table.
  • the third SRI mapping table and the fourth SRI mapping table respectively correspond to different numbers of uplink data transmission layers.
  • an SRI mapping table corresponding to the third uplink data transmission layer number may be determined based on the third SRI mapping table and the fourth SRI mapping table. For example, if the third uplink data transmission layer number is 1, then the second SRI mapping table corresponding to the first layer can be used as the SRI mapping table corresponding to the third uplink data transmission layer number.
  • Step S76 Determine the SRS resource combination indexed based on the SRI index value from the SRI mapping table corresponding to the third uplink data transmission layer number, and determine the first SRS resource combination.
  • the first SRS resource combination is a combination of SRS resources selected from the SRS resource set, including at least one single-port SRS resource.
  • the SRI mapping table corresponding to the third uplink data transmission layer includes mapping relationships between different SRS resource combinations and different SRI index values.
  • the N SRS corresponding to the SRI index value and the SRS resource set can be , determine the first SRS resource combination corresponding to the SRI index value from the SRI mapping table corresponding to the third uplink data transmission layer number.
  • Step S77 Based on the first SRS resource combination, determine the precoding matrix used for actual transmission of PUSCH.
  • step S76 please refer to the relevant content recorded in the above embodiments, and will not be described again here.
  • the expanded second SRI mapping table can be filled with the newly added number of uplink data transmission layers and the newly added N SRS by extending the SRI mapping table.
  • the corresponding blank SRI mapping relationship provides a basic basis for enhancing the uplink transmission capability.
  • it can indicate to the terminal equipment the precoding matrix required for actual PUSCH transmission based on the configured second SRI mapping table, which is conducive to providing the security, reliability and accuracy of PUSCH transmission and selecting a precoding matrix that meets the PUSCH transmission requirements. , which can avoid resource conflicts with other terminal devices.
  • Figure 8 is a schematic flowchart of a method for receiving information on a non-codebook-based PUSCH provided by an embodiment of the present application. As shown in Figure 8, the method is executed by the terminal device and may include but is not limited to the following steps:
  • Step S81 In response to the terminal device supporting the maximum number of PUSCH transmission layers of the physical uplink shared channel being increased to 8, a restricted SRI mapping table is obtained, where the restricted SRI mapping table is the second SRI mapping table.
  • the restricted SRI mapping table includes part of the third mapping relations selected from the third SRI mapping table, and part of the fourth mapping relations selected from the fourth SRI mapping table.
  • the second SRI mapping table is an existing one.
  • the mapping table for the first uplink data transmission layer, and the fourth SRI mapping table is the newly added mapping table for the second uplink data transmission layer.
  • first uplink data transmission layer number and the second uplink data transmission layer number please refer to the relevant content records in the above embodiments, and will not be described again here.
  • the terminal device may select part of the third SRI mapping relationship from the third SRI mapping table based on the agreement, and select part of the fourth SRI mapping relationship from the fourth SRI mapping table, and based on the selected third SRI mapping relationship,
  • the third SRI mapping relationship and the fourth SRI mapping relationship determine the restricted SRI mapping table.
  • the terminal device may receive the restricted SRI mapping table sent by the network through first higher layer signaling.
  • the first high-layer signaling and the second high-layer signaling may include RRC signaling and/or MAC-CE signaling.
  • the terminal device can also update all or part of the content of the restricted SRI mapping table through the second higher layer signaling, and optionally, can update all or part of the mapping relationships in the restricted SRI mapping table.
  • the first high-level signaling and the second high-level signaling may include RRC signaling and/or MAC-CE signaling.
  • the restricted SRI mapping table may be sent to the terminal device through RRC signaling.
  • the restricted SRI mapping table may be sent to the terminal device.
  • the mapping table is updated, all or part of the mapping relationships of the restricted SRI mapping table are configured or updated through MAC-CE signaling.
  • a new SRI mapping subtable is issued through RRC signaling to completely update the first SRI mapping subtable.
  • the MAC-CE signaling carries a mapping relationship between one or more SRS resource combinations and SRI index values, and the restricted SRI mapping table is updated based on these mapping relationships.
  • the restricted SRI mapping table can be By adding these mapping relationships, you can also use these mapping relationships to replace some of the existing mapping relationships in the restricted SRI mapping table. The replaced mapping relationship can be indicated through higher layer signaling.
  • Step S82 Receive the SRI index value sent by the network device.
  • step S82 please refer to the relevant content recorded in the above embodiments, and will not be described again here.
  • Step S83 Determine the SRS resource combination indicated by the SRI index value from the restricted SRI mapping table, and determine the first SRS resource combination.
  • the first SRS resource combination is a combination of SRS resources selected from the SRS resource set, including at least one single-port SRS resource.
  • the SRI index value may indicate the number of the third uplink data transmission layer corresponding to the precoding matrix. For example, a correspondence relationship between each SRI index value and the number of each uplink data transmission layer is set. Based on the correspondence relationship, the SRI The index value determines the corresponding third uplink data transmission layer number.
  • the indication information TRI indicating the number of data transmission layers indicated by the network device is received, and the third uplink data transmission layer number is determined based on the TRI.
  • the third SRI mapping table and the fourth SRI mapping table respectively correspond to different numbers of uplink data transmission layers.
  • an SRI mapping table corresponding to the third uplink data transmission layer number may be determined based on the third SRI mapping table and the fourth SRI mapping table. For example, if the third uplink data transmission layer number is 1, then the second SRI mapping table corresponding to the first layer can be used as the SRI mapping table corresponding to the third uplink data transmission layer number.
  • the SRI mapping table corresponding to the third uplink data transmission layer includes mapping relationships between different SRS resource combinations and different SRI index values.
  • the N SRS corresponding to the SRI index value and the SRS resource set can be , determine the first SRS resource combination corresponding to the SRI index value from the SRI mapping table corresponding to the third uplink data transmission layer number.
  • Step S84 Determine the precoding matrix used for PUSCH transmission based on the first SRS resource combination.
  • step S85 please refer to the relevant content recorded in the above embodiments, and will not be described again here.
  • the expanded second SRI mapping table can be filled with the newly added number of uplink data transmission layers and the newly added N SRS by extending the SRI mapping table.
  • the corresponding blank SRI mapping relationship provides a basic basis for enhancing the uplink transmission capability.
  • it can indicate to the terminal equipment the precoding matrix required for actual PUSCH transmission based on the configured second SRI mapping table, which is conducive to providing the security, reliability and accuracy of PUSCH transmission and selecting a precoding matrix that meets the PUSCH transmission requirements. , which can avoid resource conflicts with other terminal devices.
  • Figure 9 is a schematic flowchart of a method for receiving information on a non-codebook-based PUSCH provided by an embodiment of the present application. As shown in Figure 9, the method is executed by the terminal device and may include but is not limited to the following steps:
  • Step S91 in response to the terminal device supporting the maximum number of physical uplink shared channel PUSCH transmission layers increasing to 8, receiving the first SRI mapping subtable sent by the network device through the third higher layer signaling, where the first SRI mapping subtable is the third
  • the second SRI mapping table is a sub-table of the SRI mapping table corresponding to the third uplink data transmission layer number indicated by the first SRS resource combination.
  • the terminal device may receive the first SRI mapping subtable sent by the network through the third higher layer signaling.
  • the third higher layer signaling may include RRC signaling and/or MCE-CE signaling.
  • the terminal device may also update all or part of the contents of the restricted SRI mapping table through fourth higher layer signaling, and optionally may update all or part of the mapping relationships in the restricted SRI mapping table.
  • the first high-level signaling and the second high-level signaling may include RRC signaling and/or MAC-CE signaling.
  • the restricted SRI mapping table may be sent to the terminal device through RRC signaling.
  • the restricted SRI mapping table may be sent to the terminal device.
  • the mapping table is updated, all or part of the mapping relationships of the restricted SRI mapping table are configured or updated through MAC-CE signaling.
  • a new SRI mapping subtable is issued through RRC signaling to completely update the first SRI mapping subtable.
  • the MAC-CE signaling carries a mapping relationship between one or more SRS resource combinations and SRI index values, and the restricted SRI mapping table is updated based on these mapping relationships.
  • the restricted SRI mapping table can be By adding these mapping relationships, you can also use these mapping relationships to replace some of the existing mapping relationships in the restricted SRI mapping table. The replaced mapping relationship can be indicated through higher layer signaling.
  • Step S92 Receive the SRI index value sent by the network device.
  • step S92 please refer to the relevant content recorded in the above embodiments, and will not be described again here.
  • Step S93 Determine the SRS resource combination indicated by the SRI index value from the first SRI mapping subtable, and determine the first SRS resource combination.
  • the first SRS resource combination is a combination of SRS resources selected from the SRS resource set, including at least one single-port SRS resource.
  • the first SRI mapping sub-table includes mapping relationships between different SRS resource combinations and different SRI index values.
  • the SRS resource combination indexed by the SRI index value is determined from the first SRI mapping sub-table. , and determined as the first SRS resource combination.
  • Step S94 Based on the first SRS resource combination, determine the precoding matrix used for PUSCH transmission.
  • step S84 please refer to the relevant content recorded in the above embodiments, and will not be described again here.
  • the expanded second SRI mapping table can be filled with the newly added number of uplink data transmission layers and the newly added N SRS by extending the SRI mapping table.
  • the corresponding blank SRI mapping relationship provides a basic basis for enhancing the uplink transmission capability.
  • it can indicate to the terminal equipment the precoding matrix required for actual PUSCH transmission based on the configured second SRI mapping table, which is conducive to providing the security, reliability and accuracy of PUSCH transmission and selecting a precoding matrix that meets the PUSCH transmission requirements. , which can avoid resource conflicts with other terminal devices.
  • the methods provided by the embodiments of the present application are introduced from the perspectives of terminal equipment and network equipment respectively.
  • the terminal device and the network device may include a hardware structure and a software module to implement the above functions in the form of a hardware structure, a software module, or a hardware structure plus a software module.
  • a certain function among the above functions can be executed by a hardware structure, a software module, or a hardware structure plus a software module.
  • FIG. 10 is a schematic structural diagram of a communication device 100 provided by an embodiment of the present application.
  • the communication device 100 shown in FIG. 10 may include a processing module 101 and a transceiver module 102.
  • the transceiving module 102 may include a sending module and/or a receiving module.
  • the sending module is used to implement the sending function
  • the receiving module is used to implement the receiving function.
  • the transceiving module 102 may implement the sending function and/or the receiving function.
  • the communication device 100 may be a terminal device, a device in the terminal device, or a device that can be used in conjunction with the terminal device.
  • the communication device 100 may be a network device, a device in a network device, or a device that can be used in conjunction with the network device.
  • the communication device 100 is a network device, including:
  • the processing module 101 is configured to support the maximum number of physical uplink shared channel PUSCH transmission layers in the terminal equipment to 8 layers. Based on the maximum number of uplink data transmission layers L max supported by the terminal equipment, the existing first detection reference The signal resource indication information SRI mapping table is expanded to obtain a second SRI mapping table;
  • the transceiver module 102 is configured to indicate to the terminal device the first SRS resource combination measured from the SRS resource set based on the second SRI mapping table, and is used to indicate the precoding matrix used for PUSCH transmission, the first SRS
  • the resource combination includes at least one single-port SRS resource.
  • processing module 101 is also used to:
  • the configured quantity set includes the number N SRS of SRS resources configured in the SRS resource set;
  • the first SRI mapping table is expanded to obtain the second SRI mapping table.
  • processing module 101 is also used to:
  • a fourth SRI mapping table determine the third SRI mapping table and the fourth SRI mapping table as the second SRI mapping table.
  • the transceiver module 102 is also used to:
  • processing module 101 is also used to:
  • a restricted SRI mapping table is generated, and the restricted SRI mapping table is the second SRI mapping table.
  • the transceiver module 102 is further configured to: determine that the first SRS resource combination exists in the restricted SRI mapping table, and then obtain the SRS resource combination corresponding to the first SRS resource combination from the restricted SRI mapping table. SRI index value, and indicate the SRI index value to the terminal device.
  • the transceiver module 102 is also used to:
  • the transceiver module 102 is also used to:
  • the restricted SRI mapping table is sent to the terminal device through first high-layer signaling, and/or all or part of the restricted SRI mapping table is updated through second high-layer signaling.
  • processing module 101 is also used to:
  • the second SRI mapping table includes the third SRI mapping table and the fourth SRI mapping table, determine the number of third uplink data transmission layers used for PUSCH transmission corresponding to the first SRS resource combination;
  • the transceiver module 101 is also used to:
  • the first SRI index value corresponding to the first SRS resource combination is determined from the first SRI mapping sub-table and sent to the terminal device.
  • the transceiver module 102 is further configured to: send the first SRI mapping subtable to the terminal device through third high-layer signaling, and/or update all or part of the third SRI mapping sub-table through fourth high-layer signaling. 2. SRI mapping table.
  • the high-level signaling includes radio control resource RRC signaling and/or media access control-control unit MAC-CE, wherein the MAC-CE signaling can be used to update the restricted SRI mapping table or the third An SRI mapping subtable.
  • the communication device 100 is a terminal device, including:
  • the processing module 101 is used to increase the number of PUSCH transmission layers of the terminal equipment to support the maximum physical uplink shared channel PUSCH to 8 layers, and obtain the second SRI mapping table, wherein the second SRI mapping table is obtained by modifying the existing first SRI mapping table.
  • the expansion is obtained, and based on the first SRS resource combination, the precoding matrix used for PUSCH transmission is determined;
  • the first SRS resource combination is a combination of SRS resources selected from the SRS resource set, including at least one single-port SRS resource. ;
  • the transceiving module 102 is configured to receive an SRI index value sent by a network device, and determine the first SRS resource combination from the third SRI mapping table based on the SRI index value.
  • processing module 101 is also used to:
  • the existing first sounding reference signal resource indication information SRI mapping table is expanded to obtain a second SRI mapping table.
  • processing module 101 is also used to:
  • the configuration quantity set includes the number N SRS of SRS resources configured in the SRS resource set;
  • the first SRI mapping table is expanded to obtain the second SRI mapping table.
  • the configuration quantity set includes the existing first candidate quantity and the newly added second candidate quantity.
  • the processing module 101 is also used to:
  • the third SRI mapping table and the fourth SRI mapping table are determined as the second SRI mapping table.
  • processing module 101 is also used to:
  • the SRS resource combination indicated by the SRI index value is determined from the SRI mapping table corresponding to the third uplink data transmission layer number, and is determined as the first SRS resource combination.
  • processing module 101 is also used to:
  • the restricted SRI mapping table sent by the network device is received through the first higher layer signaling, wherein the restricted SRI mapping table is the second SRI mapping table and includes a part of the third SRI mapping table selected from the third SRI mapping table.
  • processing module 102 is also used to:
  • the restricted SRI mapping table is updated in whole or in part through second higher layer signaling.
  • processing module 101 is also used to:
  • the SRS resource combination indicated by the SRI index value is determined and determined as the first SRS resource combination.
  • processing module 101 is also used to:
  • the first SRI mapping sub-table sent by the network device is received through the third higher layer signaling, wherein the first SRI mapping sub-table is the second SRI mapping table and is the third SRI mapping sub-table indicated by the first SRS resource combination.
  • a subtable in the SRI mapping table corresponding to the number of uplink data transmission layers.
  • processing module 101 is also used to:
  • processing module 101 is also used to:
  • the SRS resource combination indicated by the SRI index value is determined and determined as the first SRS resource combination.
  • processing module 101 is also used to:
  • the initial precoding matrix is screened to obtain the precoding matrix.
  • FIG 11 is a schematic structural diagram of another communication device 110 provided by an embodiment of the present application.
  • the communication device 110 may be a terminal device, a network device, a chip, a chip system, or a processor that supports a terminal device to implement the above method, or a chip, a chip system, or a processor that supports a network device to implement the above method. Processor etc.
  • the device can be used to implement the method described in the above method embodiment. For details, please refer to the description in the above method embodiment.
  • Communication device 110 may include one or more processors 111.
  • the processor 111 may be a general-purpose processor or a special-purpose processor, or the like. For example, it can be a baseband processor or a central processing unit.
  • the baseband processor can be used to process communication protocols and communication data.
  • the central processor can be used to control communication devices (such as base stations, baseband chips, terminal equipment, terminal equipment chips, DU or CU, etc.) and execute computer programs. , processing data for computer programs.
  • the communication device 110 may also include one or more memories 112, on which a computer program 114 may be stored.
  • the processor 111 executes the computer program 114, so that the communication device 110 performs the steps described in the above method embodiments. method.
  • the memory 112 may also store data.
  • the communication device 110 and the memory 112 can be provided separately or integrated together.
  • the communication device 110 may also include a transceiver 115 and an antenna 116.
  • the transceiver 115 may be called a transceiver unit, a transceiver, a transceiver circuit, etc., and is used to implement transceiver functions.
  • the transceiver 115 may include a receiver and a transmitter.
  • the receiver may be called a receiver or a receiving circuit, etc., used to implement the receiving function;
  • the transmitter may be called a transmitter, a transmitting circuit, etc., used to implement the transmitting function.
  • the communication device 110 may also include one or more interface circuits 117.
  • the interface circuit 117 is used to receive code instructions and transmit them to the processor 111 .
  • the processor 111 executes the code instructions to cause the communication device 110 to perform the method described in the above method embodiment.
  • the processor 111 may include a transceiver for implementing receiving and transmitting functions.
  • the transceiver may be a transceiver circuit, an interface, or an interface circuit.
  • the transceiver circuits, interfaces or interface circuits used to implement the receiving and transmitting functions can be separate or integrated together.
  • the above-mentioned transceiver circuit, interface or interface circuit can be used for reading and writing codes/data, or the above-mentioned transceiver circuit, interface or interface circuit can be used for signal transmission or transfer.
  • the processor 111 may store a computer program 113, and the computer program 113 runs on the processor 111, causing the communication device 110 to perform the method described in the above method embodiment.
  • the computer program 113 may be solidified in the processor 111, in which case the processor 111 may be implemented by hardware.
  • the communication device 110 may include a circuit, and the circuit may implement the functions of sending or receiving or communicating in the foregoing method embodiments.
  • the processor and transceiver described in this application can be implemented in integrated circuits (ICs), analog ICs, radio frequency integrated circuits RFICs, mixed signal ICs, application specific integrated circuits (ASICs), printed circuit boards ( printed circuit board (PCB), electronic equipment, etc.
  • the processor and transceiver can also be manufactured using various IC process technologies, such as complementary metal oxide semiconductor (CMOS), n-type metal oxide-semiconductor (NMOS), P-type Metal oxide semiconductor (positive channel metal oxide semiconductor, PMOS), bipolar junction transistor (BJT), bipolar CMOS (BiCMOS), silicon germanium (SiGe), gallium arsenide (GaAs), etc.
  • CMOS complementary metal oxide semiconductor
  • NMOS n-type metal oxide-semiconductor
  • PMOS P-type Metal oxide semiconductor
  • BJT bipolar junction transistor
  • BiCMOS bipolar CMOS
  • SiGe silicon germanium
  • GaAs gallium arsenide
  • the communication device described in the above embodiments may be a sending device or a receiving device (such as the receiving device in the foregoing method embodiment), but the scope of the communication device described in this application is not limited thereto, and the structure of the communication device may not be limited to Limitations of Figure 11.
  • the communication device may be a stand-alone device or may be part of a larger device.
  • the communication device may be:
  • the IC collection may also include storage components for storing data and computer programs;
  • the communication device may be a chip or a chip system
  • the chip shown in FIG. 12 includes a processor 121 and an interface 122.
  • the number of processors 121 may be one or more, and the number of interfaces 122 may be multiple.
  • the chip also includes a memory 123, which is used to store necessary computer programs and data.
  • the chip is used to implement the functions of any of the above method embodiments when executed.
  • Embodiments of the present application also provide a DMRS port indication system, which system includes a communication device as a terminal device (such as the terminal device in the foregoing method embodiment) and a communication device as a network device in the embodiment of FIG. 12, or the The system includes a communication device as a terminal device (such as the terminal device in the foregoing method embodiment) in the aforementioned embodiment of FIG. 13 and a communication device as a network device.
  • a DMRS port indication system which system includes a communication device as a terminal device (such as the terminal device in the foregoing method embodiment) and a communication device as a network device in the embodiment of FIG. 12, or the The system includes a communication device as a terminal device (such as the terminal device in the foregoing method embodiment) in the aforementioned embodiment of FIG. 13 and a communication device as a network device.
  • This application also provides a readable storage medium on which instructions are stored. When the instructions are executed by a computer, the functions of any of the above method embodiments are implemented.
  • This application also provides a computer program product, which, when executed by a computer, implements the functions of any of the above method embodiments.
  • the above embodiments it may be implemented in whole or in part by software, hardware, firmware, or any combination thereof.
  • software it may be implemented in whole or in part in the form of a computer program product.
  • the computer program product includes one or more computer programs.
  • the computer program When the computer program is loaded and executed on a computer, the processes or functions described in the embodiments of the present application are generated in whole or in part.
  • the computer may be a general-purpose computer, a special-purpose computer, a computer network, or other programmable device.
  • the computer program may be stored in or transferred from one computer-readable storage medium to another, for example, the computer program may be transferred from a website, computer, server, or data center Transmission to another website, computer, server or data center through wired (such as coaxial cable, optical fiber, digital subscriber line (DSL)) or wireless (such as infrared, wireless, microwave, etc.) means.
  • the computer-readable storage medium may be any available medium that can be accessed by a computer or a data storage device such as a server, data center, etc. that contains one or more available media integrated.
  • the usable media may be magnetic media (e.g., floppy disks, hard disks, magnetic tapes), optical media (e.g., high-density digital video discs (DVD)), or semiconductor media (e.g., solid state disks, SSD)) etc.
  • magnetic media e.g., floppy disks, hard disks, magnetic tapes
  • optical media e.g., high-density digital video discs (DVD)
  • DVD digital video discs
  • semiconductor media e.g., solid state disks, SSD
  • At least one in this application can also be described as one or more, and the plurality can be two, three, four or more, which is not limited by this application.
  • the technical feature is distinguished by “first”, “second”, “third”, “A”, “B”, “C” and “D”, etc.
  • the technical features described in “first”, “second”, “third”, “A”, “B”, “C” and “D” are in no particular order or order.
  • the corresponding relationships shown in each table in this application can be configured or predefined.
  • the values of the information in each table are only examples and can be configured as other values, which are not limited by this application.
  • the corresponding relationships shown in some rows may not be configured.
  • appropriate deformation adjustments can be made based on the above table, such as splitting, merging, etc.
  • the names of the parameters shown in the titles of the above tables may also be other names understandable by the communication device, and the values or expressions of the parameters may also be other values or expressions understandable by the communication device.
  • other data structures can also be used, such as arrays, queues, containers, stacks, linear lists, pointers, linked lists, trees, graphs, structures, classes, heaps, hash tables or hash tables. wait.
  • Predefinition in this application can be understood as definition, pre-definition, storage, pre-storage, pre-negotiation, pre-configuration, solidification, or pre-burning.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请实施例公开了一种基于非码本的PUSCH发送/接收信息的方法及其装置,该方法包括:在终端设备支持最大的PUSCH传输层数增加至8层,基于终端设备所支持的最大上行数据传输层数Lmax,对已有的第一探测参考信号资源指示信息SRI映射表进行扩展,得到第二SRI映射表,基于第二SRI映射表,向终端设备指示从SRS资源集合中测量得到的第一SRS资源组合,用于指示PUSCH传输所使用的预编码矩阵,第一SRS资源组合包括至少一个单端口SRS资源。本申请实施例中,扩展了现有的第一SRI映射表,使得扩展后的第二SRI映射表,填充了新增的上行数据传输层数和新增的NSRS对应的SRI映射关系的空白,为增强上行发送能力提供了基础依据。

Description

一种基于非码本的PUSCH发送/接收信息的方法及其装置 技术领域
本申请涉及通信技术领域,尤其涉及一种基于非码本的PUSCH发送/接收信息的方法及其装置。
背景技术
为了适用当前业务或者场景,可以将终端设备的上行数据传输层数增多至8层,以用于支持与下行可比的更高的上行传输速率。在终端设备的上行增强至8层时,如何实现非码本的物理上行共享信道(Physical Uplink Share Channel,PUSCH)传输成为需要解决的问题。
发明内容
本申请实施例提供一种基于非码本的PUSCH发送/接收信息的方法及其装置,可以在终端设备将上行数据传输层数增多至8层,实现基于非码本的PUSCH传输。
第一方面,本申请实施例提供一种基于非码本的PUSCH发送信息的方法,由网络设备执行,该方法包括:
确定终端设备支持最大的物理上行共享信道PUSCH传输层数增加至8层,基于所述终端设备所支持的最大上行数据传输层数L max,对已有的第一探测参考信号资源指示信息SRI映射表进行扩展,得到第二SRI映射表;
基于所述第二SRI映射表,向终端设备指示从SRS资源集合中测量得到的第一SRS资源组合,用于指示PUSCH传输所使用的预编码矩阵,所述第一SRS资源组合包括至少一个单端口SRS资源。
本申请实施例中,基于最大上行数据传输层数L max,扩展现有的第一SRI映射表,使得扩展后的第二SRI映射表,填充了新增的上行数据传输层数和新增的N SRS对应的SRI映射关系的空白,为增强上行发送能力提供了基础依据。而且能基于配置的第二SRI映射表,向终端设备指示PUSCH实际传输所需的预编码矩阵,有利于提供PUSCH的传输的安全性、可靠性和准确性,选取满足PUSCH传输要求的预编码矩阵,可以避免与其他被终端设备之间的资源冲突。
第二方面,本申请实施例提供另一种基于非码本的PUSCH接收信息的方法,由终端设备执行,该方法包括:
所述终端设备支持最大的物理上行共享信道PUSCH传输层数增加至8层,获取第二SRI映射表,其中所述第二SRI映射表通过对已有第一SRI映射表进行扩展得到;
接收网络设备发送的SRI索引值,并基于所述SRI索引值,从所述第二SRI映射表中确定第一SRS资源组合,所述第一SRS资源组合为从SRS资源集合中选出的SRS资源形成的组合,包括至少一个单端口的SRS资源;
基于所述第一SRS资源组合,确定PUSCH传输使用的预编码矩阵。
本申请实施例中,对现有的第一SRI映射表进行扩展后,使得扩展后的第二SRI映射表,通过扩展SRI映射表可以填充新增的上行数据传输层数和新增的N SRS对应的SRI映射关系的空白,为增强上行发送能力提供了基础依据。而且能基于配置的第二SRI映射表,向终端设备指示PUSCH实际传输所需的预编码矩阵,有利于提供PUSCH的传输的安全性、可靠性和准确性,选取满足PUSCH传输要求的预编码矩阵,可以避免与其他被终端设备之间的资源冲突。
第三方面,本申请实施例提供一种通信装置,该通信装置具有实现上述第一方面所述的方法中网络设备的部分或全部功能,比如通信装置的功能可具备本申请中的部分或全部实施例中的功能,也可 以具备单独实施本申请中的任一个实施例的功能。所述功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。所述硬件或软件包括一个或多个与上述功能相对应的单元或模块。
在一种实现方式中,该通信装置的结构中可包括收发模块和处理模块,所述处理模块被配置为支持通信装置执行上述方法中相应的功能。所述收发模块用于支持通信装置与其他设备之间的通信。所述通信装置还可以包括存储模块,所述存储模块用于与收发模块和处理模块耦合,其保存通信装置必要的计算机程序和数据。
作为示例,处理模块可以为处理器,收发模块可以为收发器或通信接口,存储模块可以为存储器。
第四方面,本申请实施例提供另一种通信装置,该通信装置具有实现上述第二方面所述的方法示例中网络设备的部分或全部功能,比如通信装置的功能可具备本申请中的部分或全部实施例中的功能,也可以具备单独实施本申请中的任一个实施例的功能。所述功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。所述硬件或软件包括一个或多个与上述功能相对应的单元或模块。
在一种实现方式中,该通信装置的结构中可包括收发模块和处理模块,该处理模块被配置为支持通信装置执行上述方法中相应的功能。收发模块用于支持通信装置与其他设备之间的通信。所述通信装置还可以包括存储模块,所述存储模块用于与收发模块和处理模块耦合,其保存通信装置必要的计算机程序和数据。
第五方面,本申请实施例提供一种通信装置,该通信装置包括处理器,当该处理器调用存储器中的计算机程序时,执行上述第一方面所述的方法。
第六方面,本申请实施例提供一种通信装置,该通信装置包括处理器,当该处理器调用存储器中的计算机程序时,执行上述第二方面所述的方法。
第七方面,本申请实施例提供一种通信装置,该通信装置包括处理器和存储器,该存储器中存储有计算机程序;所述处理器执行该存储器所存储的计算机程序,以使该通信装置执行上述第一方面所述的方法。
第八方面,本申请实施例提供一种通信装置,该通信装置包括处理器和存储器,该存储器中存储有计算机程序;所述处理器执行该存储器所存储的计算机程序,以使该通信装置执行上述第二方面所述的方法。
第九方面,本申请实施例提供一种通信装置,该装置包括处理器和接口电路,该接口电路用于接收代码指令并传输至该处理器,该处理器用于运行所述代码指令以使该装置执行上述第一方面所述的方法。
第十方面,本申请实施例提供一种通信装置,该装置包括处理器和接口电路,该接口电路用于接收代码指令并传输至该处理器,该处理器用于运行所述代码指令以使该装置执行上述第二方面所述的方法。
第十一方面,本申请实施例提供一种通信系统,该系统包括第三方面所述的通信装置以及第四方面所述的通信装置,或者,该系统包括第五方面所述的通信装置以及第六方面所述的通信装置,或者,该系统包括第七方面所述的通信装置以及第八方面所述的通信装置,或者,该系统包括第九方面所述的通信装置以及第十方面所述的通信装置。
第十二方面,本发明实施例提供一种计算机可读存储介质,用于储存为上述终端设备所用的指令,当所述指令被执行时,使所述终端设备执行上述第一方面所述的方法。
第十三方面,本发明实施例提供一种可读存储介质,用于储存为上述网络设备所用的指令,当所述指令被执行时,使所述网络设备执行上述第二方面所述的方法。
第十四方面,本申请还提供一种包括计算机程序的计算机程序产品,当其在计算机上运行时,使 得计算机执行上述第一方面所述的方法。
第十五方面,本申请还提供一种包括计算机程序的计算机程序产品,当其在计算机上运行时,使得计算机执行上述第二方面所述的方法。
第十六方面,本申请提供一种芯片系统,该芯片系统包括至少一个处理器和接口,用于支持终端设备实现第一方面所涉及的功能,例如,确定或处理上述方法中所涉及的数据和信息中的至少一种。在一种可能的设计中,所述芯片系统还包括存储器,所述存储器,用于保存终端设备必要的计算机程序和数据。该芯片系统,可以由芯片构成,也可以包括芯片和其他分立器件。
第十七方面,本申请提供一种芯片系统,该芯片系统包括至少一个处理器和接口,用于支持网络设备实现第二方面所涉及的功能,例如,确定或处理上述方法中所涉及的数据和信息中的至少一种。在一种可能的设计中,所述芯片系统还包括存储器,所述存储器,用于保存网络设备必要的计算机程序和数据。该芯片系统,可以由芯片构成,也可以包括芯片和其他分立器件。
第十八方面,本申请提供一种计算机程序,当其在计算机上运行时,使得计算机执行上述第一方面所述的方法。
第十九方面,本申请提供一种计算机程序,当其在计算机上运行时,使得计算机执行上述第二方面所述的方法。
附图说明
为了更清楚地说明本申请实施例或背景技术中的技术方案,下面将对本申请实施例或背景技术中所需要使用的附图进行说明。
图1是本申请实施例提供的一种通信系统的架构示意图;
图2是本申请实施例提供的一种基于非码本的PUSCH发送信息的方法的流程示意图;
图3是本申请实施例提供的一种基于非码本的PUSCH发送信息的方法的流程示意图;
图4是本申请实施例提供的一种基于非码本的PUSCH发送信息的方法的流程示意图;
图5是本申请实施例提供的一种基于非码本的PUSCH发送信息的方法的流程示意图;
图6是本申请实施例提供的一种基于非码本的PUSCH接收信息的方法的流程示意图;
图7是本申请实施例提供的一种基于非码本的PUSCH接收信息的方法的流程示意图;
图8是本申请实施例提供的一种基于非码本的PUSCH接收信息的方法的流程示意图;
图9是本申请实施例提供的一种基于非码本的PUSCH接收信息的方法的流程示意图;
图10是本申请实施例提供的一种通信装置的结构示意图;
图11是本申请实施例提供的一种通信装置的结构示意图;
图12是本申请实施例提供的一种芯片的结构示意图。
具体实施方式
这里将详细地对示例性实施例进行说明,其示例表示在附图中。下面的描述涉及附图时,除非另有表示,不同附图中的相同数字表示相同或相似的要素。以下示例性实施例中所描述的实施方式并不代表与本公开相一致的所有实施方式。相反,它们仅是与如所附权利要求书中所详述的、本公开的一些方面相一致的装置和方法的例子。
在本公开实施例使用的术语是仅仅出于描述特定实施例的目的,而非旨在限制本公开实施例。在本公开实施例和所附权利要求书中所使用的单数形式的“一种”和“该”也旨在包括多数形式,除非上下文清楚地表示其他含义。还应当理解,本文中使用的术语“和/或”是指并包含一个或多个相关联的列出项 目的任何或所有可能组合。
应当理解,尽管在本公开实施例可能采用术语第一、第二、第三等来描述各种信息,但这些信息不应限于这些术语。这些术语仅用来将同一类型的信息彼此区分开。例如,在不脱离本公开实施例范围的情况下,第一信息也可以被称为第二信息,类似地,第二信息也可以被称为第一信息。取决于语境,如在此所使用的词语“如果”可以被解释成为“在……时”或“当……时”或“响应于确定”
出于简洁和便于理解的目的,本文在表征大小关系时,所使用的术语为“大于”或“小于”、“高于”或“低于”。但对于本领域技术人员来说,可以理解:术语“大于”也涵盖了“大于等于”的含义,“小于”也涵盖了“小于等于”的含义;术语“高于”涵盖了“高于等于”的含义,“低于”也涵盖了“低于等于”的含义。
为了便于理解,首先介绍本申请涉及的术语。
探测参考信号SRS(Sounding Reference Signal,),用于估计上行信道频域信息,做频率选择性调度,也用于估计上行信道,做下行波束赋形。
SRS资源指示(SRS Resource Indicator,SRI),用于指示UE使用哪个SRS资源进行上行数据传输。
数据传输秩指示(Transmission Rank Indicator,TRI),用于指示PUSCH实际传输使用的预编码矩阵对应的数据传输层数。
为了更好的理解本申请实施例公开的一种基于非码本的PUSCH发送/接收信息的方法,下面首先对本申请实施例适用的通信系统进行描述。
本申请实施例提供的一种通信系统,该通信系统可包括但不限于一个发送设备和一个接收设备。可选地,发送设备可以为终端设备,接收设备可以为网络设备。
请参见图1,图1为本申请实施例提供的一种通信系统的架构示意图。该通信系统可包括但不限于一个网络设备和一个终端设备,图1所示的设备数量和形态仅用于举例并不构成对本申请实施例的限定,实际应用中可以包括两个或两个以上的网络设备,两个或两个以上的终端设备。图1所示的通信系统以包括一个网络设备11和一个终端设备12为例。
需要说明的是,本申请实施例的技术方案可以应用于各种通信系统。例如:长期演进(long term evolution,LTE)系统、第五代(5th generation,5G)移动通信系统、5G新空口(new radio,NR)系统,或者其他未来的新型移动通信系统等。
本申请实施例中的网络设备11是网络侧的一种用于发射或接收信号的实体。例如,网络设备11可以为演进型基站(evolved NodeB,eNB)、传输点(transmission reception point,TRP)、NR系统中的下一代基站(next generation NodeB,gNB)、其他未来移动通信系统中的基站或无线保真(wireless fidelity,WiFi)系统中的接入节点等。本申请的实施例对网络设备所采用的具体技术和具体设备形态不做限定。本申请实施例提供的网络设备可以是由集中单元(central unit,CU)与分布式单元(distributed unit,DU)组成的,其中,CU也可以称为控制单元(control unit),采用CU-DU的结构可以将网络设备,例如基站的协议层拆分开,部分协议层的功能放在CU集中控制,剩下部分或全部协议层的功能分布在DU中,由CU集中控制DU。
本申请实施例中的终端设备12是用户侧的一种用于接收或发射信号的实体,如手机。终端设备也可以称为终端设备(terminal)、用户设备(user equipment,UE)、移动台(mobile station,MS)、移动终端设备(mobile terminal,MT)等。终端设备可以是具备通信功能的汽车、智能汽车、手机(mobile phone)、物联网设备如NB-IoT或(e)MTC、穿戴式设备、平板电脑(Pad)、带无线收发功能的电脑、虚拟现实(virtual reality,VR)终端设备、增强现实(augmented reality,AR)终端设备、工业控制(industrial control)中的无线终端设备、无人驾驶(self-driving)中的无线终端设备、远程手术 (remote medical surgery)中的无线终端设备、智能电网(smart grid)中的无线终端设备、运输安全(transportation safety)中的无线终端设备、智慧城市(smart city)中的无线终端设备、智慧家庭(smart home)中的无线终端设备等等。本申请的实施例对终端设备所采用的具体技术和具体设备形态不做限定。
可以理解的是,本申请实施例描述的通信系统是为了更加清楚的说明本申请实施例的技术方案,并不构成对于本申请实施例提供的技术方案的限定,本领域普通技术人员可知,随着系统架构的演变和新业务场景的出现,本申请实施例提供的技术方案对于类似的技术问题,同样适用。
下面结合附图对本申请所提供的一种基于非码本的PUSCH发送/接收信息的方法及其装置进行详细地介绍。
请参见图2,图2是本申请实施例提供的一种基于非码本的PUSCH发送信息的方法的流程示意图。如图2所示,该方法由网络设备执行,可以包括但不限于如下步骤:
步骤S21,响应于终端设备支持最大的物理上行共享信道PUSCH传输层数增加至8层,基于终端设备所支持的最大上行数据传输层数L max,对已有的第一探测参考信号资源指示信息SRI映射表进行扩展,得到第二SRI映射表。
本申请实施例中,将终端设备的上行数据传输层数增加至8层,也就是终端设备可以支持最大PUSCH传输可以增加至8层,进而可以用于支持与下行可比的更高的上行传输速率。本申请实施例中第一上行数据传输层为单终端原有支持的PUSCH共享信道传输对应的上行数据传输层,第二上行数据传输层为在原有的第一上行数据传输层基础上,新增加的上行数据传输层。比如,原有的PUSCH对应的上行数据传输层为1-4层,1-4层为第一上行数据传输。本公开中新增加到了8层,则第二上行数据传输层为5层到8层。该定义适用于本公开全部实施例。
网络设备通过高层信令向终端设备配置一个功能为非码本的SRS资源集合。例如,网络设备可以通过无线资源控制(Radio Resource Control,RRC)信令或者媒体接入控制-控制单元(Media access control-Control Element,MAC-CE)向终端设备配置该非码本的SRS资源集合。可选地,可以通过RRC配置或重配置,也可以通过MAC-CE更新部分或全部配置。
可选地,SRS资源集合可以为一个周期性SRS资源集合,或者为一个半持续SRS资源集合,或者为一个非周期性SRS资源集合。本申请实施例中,SRS资源集合中一个或多个单端口的SRS资源。
每一个第一上行数据传输层对应有第一SRI映射表,该SRI映射表中包括SRI索引值与SRS资源组合之间的对应关系,即SRI索引值可以索引到对应的SRS资源组合,其中,SRS资源组合中包括网络设备配置给终端设备的SRS资源集合中的一个或多个SRS资源。
本申请实施例中,最大的物理上行共享信道PUSCH传输层数增加至8层,则终端设备所支持的最大上行数据传输层数L max=8,现有的第一SRI映射表并未覆盖上行数据传输第5层至第8层,为了能够支持最大8层的上传数据传输,需要对现有的第一SRI映射表进行扩展,以得到能够覆盖上行数据传输第5层至第8层,以支持最大8层的上传数据传输。
可选地,网络设备基于最大上行数据传输层数L max和已有的第一上行数据传输层数,确定新增的第二上行数据传输层数,以及向所述终端设备配置的探测参考信号SRS资源集合对应的配置数量集合,其中,配置数量集合包括SRS资源集合内配置的SRS资源的数量N SRS,本申请实施例中,当最大的物理上行共享信道PUSCH传输层数增加至8层时,SRS资源集合中可以配置的SRS数量N SRS,从可配置4个SRS资源增加到可以配置8个SRS资源。
进一步地,网络设备基于第二上行数据传输层数和配置数量集合,对所述第一SRI映射表进行扩展,得到可以覆盖上行数据传输第1层至第8层的第二SRI映射表。
作为一种可能的实现方式,基于最大上行数据传输层数L max和配置数量集合,可以对第一SRI映射表进行扩展,扩展出每个上行数据传输层数对应的一个SRI映射表,该扩展后的SRI映射表中包括配置数量集合中每个N SRS对应的SRS资源组合,以及SRS资源组合对应的索引值。也就是说,配置有8个SRI映射表,每个SRI映射表中包括N SRS=1/2/3/4/5/6/7/8的情况下对应的SRS资源组合,及其对应的SRI索引值。需要说明的是,每个上行数据传输层数对应的扩展后的SRI映射表,即为一个第二SRI映射表。
作为另一种可能的实现方式,基于最大上行数据传输层数L max和配置数量集合,对第一SRI映射表进行扩展,扩展包括部分SRI映射关系的第二SRI映射表。在一些实现中,该第二SRI映射表中可以包括每个上行数据传输层数对应的全部SRI映射关系中部分内容。例如,可以从每个上行数据传输层数对应的扩展后的SRI映射表中选取部分,组成一个受限的第二SRI映射表。在另一些实现中,该第二SRI映射表中可以包括为其中一个上行数据传输层数对应的全部SRI映射关系中部分映射关系,即第二SRI映射表为其中一个上行数据传输层数对应部分映射关系组成的一个SRI映射子表,这样可以节约SRI指示的信令开销。
步骤S22,基于第二SRI映射表,向终端设备指示从SRS资源集合中测量得到的第一SRS资源组合,用于指示PUSCH传输所使用的预编码矩阵,第一SRS资源组合包括至少一个单端口SRS资源。
本申请实施例中,终端设备在获取到网络设备配置的SRS资源集合后,可以基于初始预编码矩阵,对SRS资源集合中配置的SRS资源进行预编码,向网络设备发送采用预编码的SRS资源。预编码的SRS资源可以用于获取信道状态信息(Channel State Information,CSI),进而获取可以获取到信道估计信息,该信道估计信息可以反映信道条件、多用户的干扰情况和/或信道噪声等调度信息。
需要说明的是,非码本上行传输方案也是一种空间复用技术,它与基于码本的上行传输的区别在于它的预编码基于一定的准则获得,而非基于固定的码本在有限的候选值中确定预编码。若上下行信道的互易性存在,则终端可以基于信道互易性进行下行信道信息的计算,从而获得上行预编码矩阵。若信道互易性足够好,终端通过下行信道可以获得更为准确的预编码,相对于基于码本的传输方案,可以节省预编码指示的开销,同时获得更好的性能。
可选地,网络设备向终端设备配置的关联的下行信道状态信息参考信号(Channel State Information-Reference Signal,CSI-RS)资源,并发给终端设备,相应地,终端设备可以基于下行CSI-RS资源确定出初始预编码矩阵。需要说明的是,本申请中PUSCH实际传输使用的预编码矩阵是从初始预编码矩阵中筛选出的。
相应地,网络设备可以接收到预编码的SRS资源进行信道估计,获取信道估计信息,由于信道估计信息可以反映出信道条件、多用户的干扰情况和/或信道噪声,从为终端设备配置的SRS资源集合中确定出PUSCH实际传输使用的第一SRS资源组合。进一步地网络设备基于第一SRS资源组合可以确定出PUSCH传输使用的预编码矩阵,以及基于第一SRS资源组合内资源的数量确定出预编码矩阵对应的TRI,即网络设备基于预编码的SRS资源,从SRS资源集合中选出第一SRS资源组合,并且确定出PUSCH传输使用的预编码矩阵,以及PUSCH传输使用的预编码矩阵对应的TRI,该TRI可以指示PUSCH传输使用的第三上行数据传输层数。
网络设备可以基于第三上行数据传输层数,从第二SRI映射表中,确定与第三上行数据传输层数对应的SRI映射关系,并从该SRI映射关系中确定第一SRS资源组合对应的SRI索引值。网络设备通过该SRI索引值向终端设备指示第一SRS资源组合,以指示终端设备根据该第一SRS资源组合,确定出PUSCH实际传输使用的预编码矩阵。
本申请实施例中,基于最大上行数据传输层数L max,扩展现有的第一SRI映射表,使得扩展后的第 二SRI映射表,填充了新增的上行数据传输层数和新增的N SRS对应的SRI映射关系的空白,为增强上行发送能力提供了基础依据。而且能基于配置的第二SRI映射表,向终端设备指示PUSCH实际传输所需的预编码矩阵,有利于提供PUSCH的传输的安全性、可靠性和准确性,选取满足PUSCH传输要求的预编码矩阵,可以避免与其他被终端设备之间的资源冲突。
请参见图3,图3是本申请实施例提供的一种基于非码本的PUSCH发送信息的方法的流程示意图。如图3所示,该方法由网络设备执行,可以包括但不限于如下步骤:
步骤S31,响应于终端设备支持最大的物理上行共享信道PUSCH传输层数增加至8层,基于终端设备所支持的最大上行数据传输层数L max和已有的第一上行数据传输层数,确定新增的第二上行数据传输层数,以及向终端设备配置的SRS资源集合对应的配置数量集合。
关于SRS资源集合发送和配置的过程,可参见上述实施例中相关内容的记载,此处不再赘述。
需要说明的是,配置数量集合包括SRS资源集合内配置的SRS资源的数量N SRS,本申请实施例中,当最大的物理上行共享信道PUSCH传输层数增加至8层时,SRS资源集合中可以配置的SRS数量N SRS,从可配置4个SRS资源增加到可以配置8个SRS资源。即配置数量集合中包括已有的第一候选数量和新增的第二候选数量,其中,第一候选数量包括1至4,新增的第二候选数量包括5至8。
步骤S32,基于第二上行数据传输层数和配置数量集合,对第一SRI映射表进行扩展,得到第二SRI映射表。
针对每个第一上行数据传输层数,扩展第二候选数量下SRI索引值与SRS资源组合之间的第一映射关系,基于第一映射关系对第一SRI映射表扩展,得到第二SRI映射表。也就是说,对于上行数据传输第1层至上行数据传输第4层,第一SRI映射表已经包括第一候选数量下SRI索引值与SRS资源组合之间的映射关系,即第一SRI映射表中已经包括N SRS=1/2/3/4时SRI索引值与SRS资源组合之间的映射关系,本申请实施例中,对每个第一上行数据传输层数,扩展第二候选数量下SRI索引值与SRS资源组合之间的第一映射关系,即扩展N SRS=5/6/7/8时SRI索引值与SRS资源组合之间的第一映射关系。如表1所示,表1中增加了第1层在N SRS=5/6/7/8时SRI索引值与SRS资源组合之间的第一映射关系。
表1
Figure PCTCN2022084683-appb-000001
可以理解的是,表1中的每一个元素都是独立存在的,这些元素被示例性的列在同一张表格中,但是并不代表表格中的所有元素必须根据表格中所示的同时存在。其中每一个元素的值,是不依赖于表1中任何其他元素值。因此本领域内技术人员可以理解,该表1中的每一个元素的取值都是一个独立的实施例。
进一步地,基于第一映射关系对第一SRI映射表扩展,得到每个第一上行数据传输层数的第三SRI映射表,即第1层至第4层分别有各自的第三SRI映射表,也就是说将新增加的第一映射关系与现有的 第一SRI映射表中的映射关系进行组合,得到第三SRI映射表。本申请实施例中第三SRI映射表中包括N SRS=1/2/3/4/5/6/7/8时对应的SRI索引值与SRS资源组合之间的映射关系。本申请实施例中实现了对已有的第一上行数据传输层数的第一SRI映射表的复用。
针对每个第二上行数据传输层数,扩展配置数量集合内每个候选数量下的SRI索引值与SRS资源组合之间的第二映射关系,并基于所述第二映射关系得到第四SRI映射表。也就是说,对于上行数据传输第5层至上行数据传输第8层,未存在已有的第一SRI映射表,需要为第5至8层,扩展配置每个候选数量下SRI索引值与SRS资源组合之间的第二映射关系,即扩展N SRS=1/2/3/4/5/6/7/8时SRI索引值与SRS资源组合之间的第二映射关系。进一步地,基于第二映射关系对第一SRI映射表扩展,得到每个第二上行数据传输层数的第四SRI映射表,即第5层至第8层分别有各自的第四SRI映射表。
网络设备将第三SRI映射表和第四SRI映射表,确定为第二SRI映射表,即第二SRI映射表为一个集合包括每个第一上行数据传输层数扩展后的第二SRI映射表,还包括每个第二上行数据传输层数扩展后的第四SRI映射表,第二SRI映射表总数量为8个,与终端设备所支持的最大上行数据传输层数的取值相同。
步骤S33,接收终端设备发送的SRS资源集合中经过预编码的SRS资源,并基于预编码的SRS资源,从SRS资源集合中确定第一SRS资源组合。
步骤S34,基于第一SRS资源组合,确定预编码矩阵以及对应的第三上行数据传输层数。
关于步骤步骤S33~S34的实现方式,可参见上述实施例中相关内容的记载,此处不再赘述。
步骤S35,从第三SRI映射表和第四SRI映射表中,确定第三上行数据传输层数对应的SRI映射表。
本申请实施例中,第三SRI映射表和第四SRI映射表,分别对应不同的上行数据传输层数。在确定出第三上行数据传输层数后,可以基于从第三SRI映射表和第四SRI映射表中,确定出第三上行数据传输层数对应的SRI映射表。例如,第三上行数据传输层数为1,则可以将第1层对应的第二SRI映射表作为第三上行数据传输层数对应的SRI映射表。
步骤S36,从第三上行数据传输层数对应的SRI映射表中,确定第一SRS资源组合对应的SRI索引值,并将SRI索引值指示给终端设备。
其中,第三上行数据传输层数对应的SRI映射表中包括不同SRS资源组合与不同SRI索引值之间的映射关系,本申请实施例中,可以基于第一SRS资源组合,即第一SRS资源组合中SRS资源的编号和SRS资源集合对应的N SRS,从第三上行数据传输层数对应的SRI映射表中,确定出第一SRS资源组合对应的SRI索引值,并将SRI索引值指示给终端设备。可选地,通过SRI指示域,将SRI索引值指示给终端设备。
本申请实施例中,基于最大上行数据传输层数L max,扩展现有的第一SRI映射表,使得扩展后的第二SRI映射表,填充了新增的上行数据传输层数和新增的N SRS对应的SRI映射关系的空白,为增强上行发送能力提供了基础依据。而且能基于配置的第二SRI映射表,向终端设备指示PUSCH实际传输所需的预编码矩阵,有利于提供PUSCH的传输的安全性、可靠性和准确性,选取满足PUSCH传输要求的预编码矩阵,可以避免与其他被终端设备之间的资源冲突。
请参见图4,图4是本申请实施例提供的一种基于非码本的PUSCH发送信息的方法的流程示意图。如图4所示,该方法由网络设备执行,可以包括但不限于如下步骤:
步骤S41,响应于终端设备支持最大的物理上行共享信道PUSCH传输层数增加至8层,基于终端设备所支持的最大上行数据传输层数L max和已有的第一上行数据传输层数,确定新增的第二上行数据传输层数,以及向终端设备配置的SRS资源集合对应的配置数量集合。
关于步骤S41的实现方式,可参见上述实施例中相关内容的记载,此处不再赘述。
步骤S42,基于第二上行数据传输层数和配置数量集合,对第一SRI映射表进行扩展,得到第三RI映射表和第四SRI映射表。
关于步骤S42的实现方式,可参见上述实施例中相关内容的记载,此处不再赘述。
步骤S43,基于第三SRI映射表和第四SRI映射表,得到受限SRI映射表,作为第二SRI映射表。
其中,每个第一上行数据传输层数对应一个第二SRI映射表,其中第二SRI映射中包括N SRS=1/2/3/4/5/6/7/8时对应的SRI索引值与SRS资源组合之间的映射关系。每个第二上行数据传输层数对应一个第四SRI映射表中,其中第四SRI映射表中包括N SRS=1/2/3/4/5/6/7/8时对应的SRI索引值与SRS资源组合之间的映射关系。
本申请实施例中,从第一上行数据传输层数对应的第二SRI映射表中,选取部分SRI索引值与SRS资源组合之间的第三映射关系,并且从每个第二上行数据传输层数对应的第四SRI映射表中,选取部分SRI索引值与SRS资源组合之间的第四映射关系,网络设备基于选取出的第三映射关系和第四映射关系,生成受限SRI映射表,本申请实施例中将受限SRI映射表确定为扩展后的第二SRI映射表。
例如,可以从每个第三SRI映射表和每个第四SRI映射表中,每个N SRS下选取出几个映射关系组成受限SRI表,选取的规则可以基于协议约定或高层指示。再例如,可以从每个第三SRI映射表和每个第四SRI映射表中选取32个SRI索引值和SRS资源组合之间的映射关系,这样需要最大5比特来指示SRI。又例如选取时可以兼顾每个N SRS,或者兼顾部分N SRS,或者兼顾每个上行数据传输层数或者兼顾部分上行数据传输层数。关于选取的规则本申请中不做限定。下表2提供了一种受限SRI映射表的示意表。
表2
Figure PCTCN2022084683-appb-000002
Figure PCTCN2022084683-appb-000003
可以理解的是,表1中的每一个元素都是独立存在的,这些元素被示例性的列在同一张表格中,但是并不代表表格中的所有元素必须根据表格中所示的同时存在。其中每一个元素的值,是不依赖于表2中任何其他元素值。因此本领域内技术人员可以理解,该表2中的每一个元素的取值都是一个独立的实施例。
步骤S44,接收终端设备发送的SRS资源集合中经过预编码的SRS资源,并基于预编码的SRS资源,从SRS资源集合中确定第一SRS资源组合。
关于终端设备向网络设备发送SRS资源集合中经过预编码的SRS资源的过程,可参见上述实施例中相关内容的记载,此处不再赘述。
本申请实施例中,网络设备基于预编码的SRS资源,从SRS资源集合中选取一个第一SRS资源组合,当确定出第一SRS资源组合存在于受限SRI映射表中,则从受限SRI映射表中获取第一SRS资源组合对应的SRI索引值。当确定出第一SRS资源组合未存在于受限SRI映射表中,需要重新选取一个存在与受限SRI映射表中的SRS资源组合,更新为第一SRS资源组合,即将该重新选取的SRS资源组合确定为第一SRS资源组合。也就是说网络设备基于预编码的SRS资源,选取的第一SRS资源组合需要为受限SRI映射表中存在的SRS资源组合。
步骤S45,从受限SRI映射表中,确定第一SRS资源组合对应的SRI索引值,并将SRI索引值指示给终端设备。
其中,受限SRI映射表中包括不同SRS资源组合与不同SRI索引值之间的映射关系,本申请实施例中,可以基于第一SRS资源组合,即第一SRS资源组合中SRS资源的编号和SRS资源集合对应的N SRS,从受限SRI映射表中确定出第一SRS资源组合对应的SRI索引值,并将SRI索引值指示给终端设备。
可选地,通过SRI指示域,将SRI索引值指示给终端设备。可选地,SRI索引值还可以用于向终端设备指示PUSCH实际传输使用的预编码矩阵对应的TRI,该TRI用于指示PUSCH实际传输使用的第三上行数据传输层数。
可选地,网络设备可以通过第一高层信令将受限SRI映射表发送给终端设备。可选地,网络设备还可以基于第二高层信令指示终端设备更新受限SRI映射表,可选地,可以更新受限SRI映射表内的全部或部分映射关系。其中第一高层信令和第二高层信令可以包括RRC信令和/或媒体接入控制-控制单元(Media access control-Control Element,MAC-CE)信令,例如,可以通过RRC信令将受限SRI映射表发送给终端设备,在需要对受限SRI映射表进行更新时,通过MAC-CE信令配置或更新受限SRI映射表的全部映射关系或部分映射关系。可选地,通过RRC信令下发一个新的SRI映射子表,以对第一SRI映射子表进行全部更新。可选地,MAC-CE信令中携带一个或多个SRS资源组合和SRI索引值之间的映射 关系,基于这些映射关系对受限SRI映射表进行更新,例如可以在受限SRI映射表中增加这些映射关系,也可以利用这些映射关系替换受限SRI映射表中部分已有的映射关系。被替换的映射关系可以通过高层信令指示。
本申请实施例中,基于最大上行数据传输层数L max,扩展现有的第一SRI映射表,使得扩展后的第二SRI映射表,填充了新增的上行数据传输层数和新增的N SRS对应的SRI映射关系的空白,为增强上行发送能力提供了基础依据。而且能基于配置的第二SRI映射表,向终端设备指示PUSCH实际传输所需的预编码矩阵,有利于提供PUSCH的传输的安全性、可靠性和准确性,选取满足PUSCH传输要求的预编码矩阵,可以避免与其他被终端设备之间的资源冲突。
请参见图5,图5是本申请实施例提供的一种基于非码本的PUSCH发送信息的方法的流程示意图。如图5所示,该方法由网络设备执行,可以包括但不限于如下步骤:
步骤S51,响应于终端设备支持最大的物理上行共享信道PUSCH传输层数增加至8层,基于终端设备所支持的最大上行数据传输层数L max和已有的第一上行数据传输层数,确定新增的第二上行数据传输层数,以及向终端设备配置的SRS资源集合对应的配置数量集合。
步骤S52,基于第二上行数据传输层数和配置数量集合,对第一SRI映射表进行扩展,得到第三SRI映射表和第四SRI映射表。
步骤S53,接收终端设备发送的SRS资源集合中经过预编码的SRS资源,并基于预编码的SRS资源,从SRS资源集合中确定第一SRS资源组合。
步骤S54,确定第一SRS资源组合对应的第三上行数据传输层数。
关于步骤S51~步骤S54的实现方式,可参见上述实施例中相关内容的记载,此处不再赘述。
步骤S55,对第三上行数据传输层数对应的SRI映射表进行分组,得到第三上行数据传输层数对应的候选SRI映射子表。
其中,第三上行数据传输层数对应的SRI映射表为第三SRI映射表和第四SRI映射表中的一个,在确定出第三上行数据传输层数对应的SRI映射表后,可以对该SRI映射表进行分组,得到多个候选SRI映射子表.
例如,可以按照N SRS进行分组,一个或多个N SRS作为一组分出多个候选SRS映射子表。或者对第三上行数据传输层数对应的SRI映射表按行进行分组,得到多个候选SRI映射子表,例如每个候选SRI候选子表可以包括相同的行数,也可以包括不同的行数;或者对第三上行数据传输层数对应的SRI映射表按列进行分组,得到多个候选SRI映射子表,例如每个候选SRI候选子表可以包括相同的列数,也可以包括不同的列数。本申请中,对具体的分组方式不做限定。
步骤S56,从候选SRI映射子表中,确定第一SRS资源组合所在的第一SRI映射子表。
基于第一SRS资源组合内包括的SRS资源编号,以及SRS资源集合对应的N SRS,从多个候选SRI映射子表中,可以确定出第一SRS资源组合所在的第一SRI映射子表。例如,从多个候选SRI映射子表中,可以确定出SRS资源集合对应的N SRS对应的第一候选SRS映射子表,再基于第一SRS资源组合内包括的SRS资源编号,从第一候选SRS映射子表中,确定出包括第一SRS资源组合的第一SRS映射子表。再例如,可以基于第一SRS资源组合内包括的SRS资源编号,从多个候选SRI映射子表中,可以确定出包括该第一SRS资源组合的第二候选SRS映射子表,再基于SRS资源集合对应的N SRS,从第二候选SRS映射子表中,确定出第一SRS映射子表。
步骤S57,从第一SRI映射子表中,确定第一SRS资源组合对应的第一SRI索引值,并发送给终端设备。
其中,第一SRI映射子表中包括不同SRS资源组合与不同SRI索引值之间的映射关系,本申请实施 例中,可以基于第一SRS资源组合,即第一SRS资源组合中SRS资源的编号,从第一SRI映射子表中确定出第一SRS资源组合对应的SRI索引值,并将SRI索引值指示给终端设备。
可选地,通过SRI指示域,将SRI索引值指示给终端设备。可选地,SRI索引值还可以用于向终端设备指示PUSCH实际传输使用的预编码矩阵对应的第三上行数据传输层数。
可选地,网络设备可以通过第三高层信令将第一SRI映射子表发送给终端设备。可选地,网络设备可以基于第四高层信令指示终端设备对第一SRI映射子表进行更新。例如,可以更新第一SRI映射子表内的全部或部分映射关系。其中第三高层信令和第四高层信令可以包括RRC信令和/或MAC-CE信令,例如,可以通过RRC信令将第一SRI映射子表发送给终端设备,在需要对第一SRI映射子表进行更新时,通过RRC信令或MAC-CE信令配置或更新第一SRI映射子表内全部或部分映射关系。可选地,通过RRC信令下发一个新的SRI映射子表,以对第一SRI映射子表进行全部更新。可选地,MAC-CE信令中携带一个或多个SRS资源组合和SRI索引值之间的映射关系,基于这些映射关系对第一SRI映射子表进行更新,例如可以在第一SRI映射子表中增加这些映射关系,也可以利用这些映射关系替换第一SRI映射子表中部分已有的映射关系。被替换的映射关系可以通过高层信令指示。
本申请实施例中,基于最大上行数据传输层数L max,扩展现有的第一SRI映射表,使得扩展后的第二SRI映射表,填充了新增的上行数据传输层数和新增的N SRS对应的SRI映射关系的空白,为增强上行发送能力提供了基础依据。而且能基于配置的第二SRI映射表,向终端设备指示PUSCH实际传输所需的预编码矩阵,有利于提供PUSCH的传输的安全性、可靠性和准确性,选取满足PUSCH传输要求的预编码矩阵,可以避免与其他被终端设备之间的资源冲突。
请参见图6,图6是本申请实施例提供的一种基于非码本的PUSCH发送信息的方法的流程示意图。如图6所示,该方法由终端设备执行,可以包括但不限于如下步骤:
步骤S61,响应于终端设备支持最大的物理上行共享信道PUSCH传输层数增加至8层,获取第二SRI映射表,其中,第二SRI映射表通过对已有第一SRI映射表进行扩展得到。
本申请实施例中,将终端设备的上行数据传输层数增加至8层,也就是终端设备可以支持最大PUSCH传输可以增加至8层,进而可以用于支持与下行可比的更高的上行传输速率。本申请实施例中第一上行数据传输层为单终端原有支持的PUSCH共享信道传输对应的上行数据传输层,第二上行数据传输层为在原有的第一上行数据传输层基础上,新增加的上行数据传输层。比如,原有的PUSCH对应的上行数据传输层为1-4层,1-4层为第一上行数据传输。本公开中新增加到了8层,则第二上行数据传输层为5层到8层。
每一个第一上行数据传输层对应有第一SRI映射表,该SRI映射表中包括SRI索引值与SRS资源组合之间的对应关系,即SRI索引值可以索引到对应的SRS资源组合,其中,SRS资源组合中包括网络设备配置给终端设备的SRS资源集合中的一个或多个SRS资源。
本申请实施例中,最大的物理上行共享信道PUSCH传输层数增加至8层,则终端设备所支持的最大上行数据传输层数L max=8,现有的第一SRI映射表并未覆盖上行数据传输第5层至第8层,为了能够支持最大8层的上传数据传输,需要对现有的第一SRI映射表进行扩展,以得到能够覆盖上行数据传输第5层至第8层,以支持最大8层的上传数据传输。
可选地,网络设备基于最大上行数据传输层数L max和已有的第一上行数据传输层数,确定新增的第二上行数据传输层数,以及向所述终端设备配置的探测参考信号SRS资源集合对应的配置数量集合,其中,配置数量集合包括SRS资源集合内配置的SRS资源的数量N SRS,本申请实施例中,当最大的物理上行共享信道PUSCH传输层数增加至8层时,SRS资源集合中可以配置的SRS数量N SRS,从可配置4个SRS资源增加到可以配置8个SRS资源。
进一步地,网络设备基于第二上行数据传输层数和配置数量集合,对所述第一SRI映射表进行扩展,得到可以覆盖上行数据传输第1层至第8层的第二SRI映射表。
作为一种可能的实现方式,基于最大上行数据传输层数L max和配置数量集合,可以对第一SRI映射表进行扩展,扩展出每个上行数据传输层数对应的一个SRI映射表,该扩展后的SRI映射表中包括配置数量集合中每个N SRS对应的SRS资源组合,以及SRS资源组合对应的索引值。也就是说,配置有8个SRI映射表,每个SRI映射表中包括N SRS=1/2/3/4/5/6/7/8的情况下对应的SRS资源组合,及其对应的SRI索引值。需要说明的是,每个上行数据传输层数对应的扩展后的SRI映射表,即为一个第二SRI映射表。
作为另一种可能的实现方式,可以接收网络设备确定出的包括部分SRI映射关系的第二SRI映射表。其中,该第二SRI映射表中可以包括每个上行数据传输层数对应的全部SRI映射关系中部分内容。例如,可以从每个上行数据传输层数对应的扩展后的SRI映射表中选取部分,组成一个受限的第二SRI映射表。再例如,该第二SRI映射表中可以包括为其中一个上行数据传输层数对应的全部SRI映射关系中部分映射关系,即第二SRI映射表为其中一个上行数据传输层数对应部分映射关系组成的SRI映射子表。
可选地,终端设备可以基于最大上行数据传输层数L max和配置数量集合,对第一SRI映射表进行扩展,扩展包括部分SRI映射关系的第二SRI映射表。在一些实现中,该第二SRI映射表中可以包括每个上行数据传输层数对应的全部SRI映射关系中部分内容。例如,可以从每个上行数据传输层数对应的扩展后的SRI映射表中选取部分,组成一个受限的第二SRI映射表。
步骤S62,接收网络设备发送的SRI索引值,并基于SRI索引值,从第二SRI映射表中确定第一SRS资源组合。
其中,第一SRS资源组合为从SRS资源集合中选出的SRS资源形成的组合,包括至少一个单端口的SRS资源。
终端设备通过高层信令从网络设备处获取一个功能为非码本的SRS资源集合,例如,终端设备可以接收RRC信令或者MAC-CE信令,从RRC信令或者MAC-CE信令获取网络设备为其配置的SRS资源集合,可选地,可以通过RRC配置或重配置,也可以通过MAC-CE更新部分或全部配置。
可选地,SRS资源集合的时域特性为周期性、半持续或者非周期性,也就是说SRS资源集合可以为一个周期性SRS资源集合,或者为一个半持续SRS资源集合,或者为一个非周期性SRS资源集合。本申请实施例中,SRS资源集合中一个或多个单端口的SRS资源。
本申请实施例中,终端设备在获取到网络设备配置的SRS资源集合后,可以基于初始预编码矩阵,对SRS资源集合中配置的SRS资源进行预编码,向网络设备发送采用预编码的SRS资源。预编码的SRS资源可以用于获取CSI,进而获取可以获取到信道估计信息,该信道估计信息可以反映信道条件、多用户的干扰情况和/或信道噪声等调度信息。
关于终端设备获取初始预编码矩阵的过程,可参见上述实施例中相关内容的记载,此处不再赘述。
关于网络设备基于预编码的SRS资源从SRS资源集合中确定第一SRS资源组合,预编码矩阵及其对应的第三上行数据传输层数的过程,可参见上述实施例中相关内容的记载,此处不再赘述。
进一步地,网络设备可以基于第三上行数据传输层数,从第二SRI映射表中,确定与第三上行数据传输层数对应的SRI映射关系,并从第三上行数据传输层数对应的映射关系中,确定第一SRS资源组合对应的SRI索引值。网络设备通过该SRI索引值向终端设备指示第一SRS资源组合。
可选地,终端设备接收网络设备通过高层信令下发的SRI,通过SRI指示域,将SRI索引值指示给终端设备。
步骤S63,基于第一SRS资源组合,确定PUSCH传输使用的预编码矩阵。
可选地,终端设备基于第一SRS资源组合,对初始预编码矩阵进行筛选,得到USCH实际传输使用预编码矩阵。本申请实施例中,第一SRS资源组合包括的一个或多个单端口SRS资源,该一个或多个单端口SRS为SRS资源集合内由网络设备选择出的适合进行PUSCH传输的SRS资源。终端设备确定选出的单端口SRS资源对应使用的预编码向量,并基于该选出的单端口SRS资源对应使用的预编码向量,确定PUSCH实际传输使用的预编码矩阵。其中预编码向量为初始预编码矩阵的一个向量。可选地,将第一SRS资源组合内SRS资源使用的预编码向量,按照SRS资源的编号顺序进行组合,得到PUSCH实际传输使用的预编码矩阵。
示例说明,初始预编码矩阵为H=[V 0,V 1,V 2,V 3,V 4,V 5,V 6,V 7],SRS资源的编号为#0~#7,其中每个SRS资源口对应一个预编码向量,例如,SRS资源#0对应V 0,SRS资源#1对应V 1,SRS资源#2对应V 2,SRS资源#3对应V 3,以此类推,SRS资源#7对应V 7。在终端设备基于SRI索引值从第二SRI映射表中,确定出的第一SRS资源组合内包括编号为#0、#1、#4和#5的SRS资源,则将这些SRS资源对应的V 0、V 1和V 4和V 5组合得到PUSCH实际传输使用的预编码矩阵。
本申请实施例中,对现有的第一SRI映射表进行扩展后,使得扩展后的第二SRI映射表,通过扩展SRI映射表可以填充新增的上行数据传输层数和新增的N SRS对应的SRI映射关系的空白,为增强上行发送能力提供了基础依据。而且能基于配置的第二SRI映射表,向终端设备指示PUSCH实际传输所需的预编码矩阵,有利于提供PUSCH的传输的安全性、可靠性和准确性,选取满足PUSCH传输要求的预编码矩阵,可以避免与其他被终端设备之间的资源冲突。
请参见图7,图7是本申请实施例提供的一种基于非码本的PUSCH接收信息的方法的流程示意图。如图7所示,该方法由终端设备执行,可以包括但不限于如下步骤:
步骤S71,响应于终端设备支持最大的物理上行共享信道PUSCH传输层数增加至8层,基于终端设备所支持的最大上行数据传输层数L max和已有的第一上行数据传输层数,确定新增的第二上行数据传输层数,以及向终端设备配置的SRS资源集合对应的配置数量集合。
需要说明的是,配置数量集合包括SRS资源集合内配置的SRS资源的数量N SRS,本申请实施例中,当最大的物理上行共享信道PUSCH传输层数增加至8层时,SRS资源集合中可以配置的SRS数量N SRS,从可配置4个SRS资源增加到可以配置8个SRS资源。即配置数量集合中包括已有的第一候选数量和新增的第二候选数量,其中,第一候选数量包括1至4,新增的第二候选数量包括5至8。
步骤S72,基于第二上行数据传输层数和配置数量集合,对第一SRI映射表进行扩展,得到第二SRI映射表。
针对每个第一上行数据传输层数,扩展第二候选数量下SRI索引值与SRS资源组合之间的第一映射关系,基于第一映射关系对第一SRI映射表扩展,得到第二SRI映射表。也就是说,对于上行数据传输第1层至上行数据传输第4层,第一SRI映射表已经包括第一候选数量下SRI索引值与SRS资源组合之间的映射关系,即第一SRI映射表中已经包括N SRS=1/2/3/4时SRI索引值与SRS资源组合之间的映射关系,本申请实施例中,对每个第一上行数据传输层数,扩展第二候选数量下SRI索引值与SRS资源组合之间的第一映射关系,即扩展N SRS=5/6/7/8时SRI索引值与SRS资源组合之间的第一映射关系。
进一步地,基于第一映射关系对第一SRI映射表扩展,得到每个第一上行数据传输层数的第三SRI映射表,即第1层至第4层分别有各自的第三SRI映射表,也就是说将新增加的第一映射关系与现有的第一SRI映射表中的映射关系进行组合,得到第三SRI映射表。本申请实施例中第三SRI映射表中包括N SRS=1/2/3/4/5/6/7/8时对应的SRI索引值与SRS资源组合之间的映射关系。本申请实施例中实现了对已有的第一上行数据传输层数的第一SRI映射表的复用。
针对每个第二上行数据传输层数,扩展配置数量集合内每个候选数量下的SRI索引值与SRS资源组 合之间的第二映射关系,并基于所述第二映射关系得到第四SRI映射表。也就是说,对于上行数据传输第5层至上行数据传输第8层,未存在已有的第一SRI映射表,需要为第5至8层,扩展配置每个候选数量下SRI索引值与SRS资源组合之间的第二映射关系,即扩展N SRS=1/2/3/4/5/6/7/8时SRI索引值与SRS资源组合之间的第二映射关系。进一步地,基于第二映射关系对第一SRI映射表扩展,得到每个第二上行数据传输层数的第四SRI映射表,即第5层至第8层分别有各自的第四SRI映射表。
终端设备将第三SRI映射表和第四SRI映射表,确定为第二SRI映射表,即第二SRI映射表为一个集合包括每个第一上行数据传输层数扩展后的第二SRI映射表,还包括每个第二上行数据传输层数扩展后的第四SRI映射表,第二SRI映射表总数量为8个,与终端设备所支持的最大上行数据传输层数的取值相同。
步骤S73,接收网络设备发送的SRI索引值。
可选地,终端设备接收网络设备配置的SRS资源集合,并基于初始预编码矩阵,对SRS资源集合中SRS资源进行预编码,将预编码后的SRS资源发送给网络设备,具体过程,可参见上述实施例中相关内容的记载,此处不再赘述。
网络设备可以基于第一SRS资源组合确定出的SRI索引值,通过SRI指示给给终端设备。
步骤S74,确定预编码矩阵对应的第三上行数据传输层数。
可选地,SRI索引值可以指示预编码矩阵对应的第三上行数据传输层数,例如设置有各SRI索引值与各上行数据传输层数之间的对应关系,基于该对应关系,可以基于SRI索引值,确定出对应的第三上行数据传输层数。可选地,接收网络设备指示的数据传输层数的指示信息TRI,基于该TRI确定第三上行数据传输层数。
步骤S75,从第三SRI映射表和第四SRI映射表中,确定第三上行数据传输层数对应的SRI映射表。
本申请实施例中,第三SRI映射表和第四SRI映射表,分别对应不同的上行数据传输层数。在确定出第三上行数据传输层数后,可以基于从第三SRI映射表和第四SRI映射表中,确定出第三上行数据传输层数对应的SRI映射表。例如,第三上行数据传输层数为1,则可以将第1层对应的第二SRI映射表作为第三上行数据传输层数对应的SRI映射表。
步骤S76,从第三上行数据传输层数对应的SRI映射表中,确定基于SRI索引值索引的SRS资源组合,并确定第一SRS资源组合。
其中,第一SRS资源组合为从SRS资源集合中选出的SRS资源形成的组合,包括至少一个单端口的SRS资源。
其中,第三上行数据传输层数对应的SRI映射表中包括不同SRS资源组合与不同SRI索引值之间的映射关系,本申请实施例中,可以基于SRI索引值和SRS资源集合对应的N SRS,从第三上行数据传输层数对应的SRI映射表中,确定出SRI索引值对应的第一SRS资源组合。
步骤S77,基于第一SRS资源组合,确定PUSCH实际传输使用的预编码矩阵。
关于步骤S76的实现方式,可参见上述实施例中相关内容的记载,此处不再赘述。
本申请实施例中,对现有的第一SRI映射表进行扩展后,使得扩展后的第二SRI映射表,通过扩展SRI映射表可以填充新增的上行数据传输层数和新增的N SRS对应的SRI映射关系的空白,为增强上行发送能力提供了基础依据。而且能基于配置的第二SRI映射表,向终端设备指示PUSCH实际传输所需的预编码矩阵,有利于提供PUSCH的传输的安全性、可靠性和准确性,选取满足PUSCH传输要求的预编码矩阵,可以避免与其他被终端设备之间的资源冲突。
请参见图8,图8是本申请实施例提供的一种基于非码本的PUSCH接收信息的方法的流程示意图。如图8所示,该方法由终端设备执行,可以包括但不限于如下步骤:
步骤S81,响应于终端设备支持最大的物理上行共享信道PUSCH传输层数增加至8层,获取受限SRI映射表,其中,受限SRI映射表为第二SRI映射表。
其中,受限SRI映射表中包括从第三SRI映射表中选取的部分第三映射关系,以及从第四SRI映射表中选取的部分第四映射关,该第二SRI映射表为已有的第一上行数据传输层数的映射表,第四SRI映射表为新增的第二上行数据传输层数的映射表。
关于第三SRI映射表和第四SRI映射表的确定过程,可参见上述实施例中相关内容的记载,此处不再赘述。
关于第一上行数据传输层数和第二上行数据传输层数的解释说明,可参见上述实施例中相关内容的记载,此处不再赘述。
作为一种可能的实现方式,终端设备可以基于约定从第三SRI映射表中选取部分第三SRI映射关系,以及从第四SRI映射表中选取部分的第四SRI映射关系,并基于选取的第三SRI映射关系和第四SRI映射关系,确定受限SRI映射表。关于受限SRI映射表的解释说明,以及从第三SRI映射表和第四SRI映射表中选取部分映射关系的选取方式,可参见上述实施例中相关内容的记载,此处不再赘述。
作为另一种可能的实现方式,终端设备可以通过第一高层信令接收网络发送的受限SRI映射表。其中第一高层信令和第二高层信令可以包括RRC信令和/或MAC-CE信令。
可选地,终端设备还可以通过第二高层信令更新受限SRI映射表的全部或部分内容,可选地,可以更新受限SRI映射表内的全部或部分映射关系。其中第一高层信令和第二高层信令可以包括RRC信令和/或MAC-CE信令,例如,可以通过RRC信令将受限SRI映射表发送给终端设备,在需要对受限SRI映射表进行更新时,通过MAC-CE信令配置或更新受限SRI映射表的全部映射关系或部分映射关系。可选地,通过RRC信令下发一个新的SRI映射子表,以对第一SRI映射子表进行全部更新。可选地,MAC-CE信令中携带一个或多个SRS资源组合和SRI索引值之间的映射关系,基于这些映射关系对受限SRI映射表进行更新,例如可以在受限SRI映射表中增加这些映射关系,也可以利用这些映射关系替换受限SRI映射表中部分已有的映射关系。被替换的映射关系可以通过高层信令指示。
步骤S82,接收网络设备发送的SRI索引值。
关于步骤S82的实现方式,可参见上述实施例中相关内容的记载,此处不再赘述。
步骤S83,从受限SRI映射表中,确定SRI索引值所指示的SRS资源组合,并确定第一SRS资源组合。
其中,第一SRS资源组合为从SRS资源集合中选出的SRS资源形成的组合,包括至少一个单端口的SRS资源。
可选地,SRI索引值可以指示预编码矩阵对应的第三上行数据传输层数,例如设置有各SRI索引值与各上行数据传输层数之间的对应关系,基于该对应关系,可以基于SRI索引值,确定出对应的第三上行数据传输层数。可选地,接收网络设备指示的数据传输层数的指示信息TRI,基于该TRI确定第三上行数据传输层数。
本申请实施例中,第三SRI映射表和第四SRI映射表,分别对应不同的上行数据传输层数。在确定出第三上行数据传输层数后,可以基于从第三SRI映射表和第四SRI映射表中,确定出第三上行数据传输层数对应的SRI映射表。例如,第三上行数据传输层数为1,则可以将第1层对应的第二SRI映射表作为第三上行数据传输层数对应的SRI映射表。
其中,第三上行数据传输层数对应的SRI映射表中包括不同SRS资源组合与不同SRI索引值之间的映射关系,本申请实施例中,可以基于SRI索引值和SRS资源集合对应的N SRS,从第三上行数据传输层数对应的SRI映射表中,确定出SRI索引值对应的第一SRS资源组合。
步骤S84,基于第一SRS资源组合,确定PUSCH传输使用的预编码矩阵。
关于步骤S85的实现方式,可参见上述实施例中相关内容的记载,此处不再赘述。
本申请实施例中,对现有的第一SRI映射表进行扩展后,使得扩展后的第二SRI映射表,通过扩展SRI映射表可以填充新增的上行数据传输层数和新增的N SRS对应的SRI映射关系的空白,为增强上行发送能力提供了基础依据。而且能基于配置的第二SRI映射表,向终端设备指示PUSCH实际传输所需的预编码矩阵,有利于提供PUSCH的传输的安全性、可靠性和准确性,选取满足PUSCH传输要求的预编码矩阵,可以避免与其他被终端设备之间的资源冲突。
请参见图9,图9是本申请实施例提供的一种基于非码本的PUSCH接收信息的方法的流程示意图。如图9所示,该方法由终端设备执行,可以包括但不限于如下步骤:
步骤S91,响应于终端设备支持最大的物理上行共享信道PUSCH传输层数增加至8层,通过第三高层信令接收网络设备发送的第一SRI映射子表,其中第一SRI映射子表为第二SRI映射表,为第一SRS资源组合所指示第三上行数据传输层数对应的SRI映射表中的一个子表。
终端设备可以通过第三高层信令接收网络发送的第一SRI映射子表。其中,第三高层信令可以包括RRC信令和/或MCE-CE信令信令。
可选地,终端设备还可以通过第四高层信令更新受限SRI映射表的全部或部分内容,可选地,可以更新受限SRI映射表内的全部或部分映射关系。其中第一高层信令和第二高层信令可以包括RRC信令和/或MAC-CE信令,例如,可以通过RRC信令将受限SRI映射表发送给终端设备,在需要对受限SRI映射表进行更新时,通过MAC-CE信令配置或更新受限SRI映射表的全部映射关系或部分映射关系。可选地,通过RRC信令下发一个新的SRI映射子表,以对第一SRI映射子表进行全部更新。可选地,MAC-CE信令中携带一个或多个SRS资源组合和SRI索引值之间的映射关系,基于这些映射关系对受限SRI映射表进行更新,例如可以在受限SRI映射表中增加这些映射关系,也可以利用这些映射关系替换受限SRI映射表中部分已有的映射关系。被替换的映射关系可以通过高层信令指示。
步骤S92,接收网络设备发送的SRI索引值。
关于步骤S92的实现方式,可参见上述实施例中相关内容的记载,此处不再赘述。
步骤S93,从第一SRI映射子表中,确定SRI索引值所指示的SRS资源组合,并确定第一SRS资源组合。
其中,第一SRS资源组合为从SRS资源集合中选出的SRS资源形成的组合,包括至少一个单端口的SRS资源。
其中,第一SRI映射子表中包括不同SRS资源组合与不同SRI索引值之间的映射关系,本申请实施例中,从第一SRI映射子表中,确定出SRI索引值索引的SRS资源组合,并确定为第一SRS资源组合。
步骤S94,基于第一SRS资源组合,确定PUSCH传输使用的预编码矩阵。
关于步骤S84的实现方式,可参见上述实施例中相关内容的记载,此处不再赘述。
本申请实施例中,对现有的第一SRI映射表进行扩展后,使得扩展后的第二SRI映射表,通过扩展SRI映射表可以填充新增的上行数据传输层数和新增的N SRS对应的SRI映射关系的空白,为增强上行发送能力提供了基础依据。而且能基于配置的第二SRI映射表,向终端设备指示PUSCH实际传输所需的预编码矩阵,有利于提供PUSCH的传输的安全性、可靠性和准确性,选取满足PUSCH传输要求的预编码矩阵,可以避免与其他被终端设备之间的资源冲突。
上述本申请提供的实施例中,分别从终端设备、网络设备的角度对本申请实施例提供的方法进行了介绍。为了实现上述本申请实施例提供的方法中的各功能,终端设备、网络设备可以包括硬件结构、软件模块,以硬件结构、软件模块、或硬件结构加软件模块的形式来实现上述各功能。上述各功能中 的某个功能可以以硬件结构、软件模块、或者硬件结构加软件模块的方式来执行。
请参见图10,为本申请实施例提供的一种通信装置100的结构示意图。图10所示的通信装置100可包括处理模块101和收发模块102。收发模块102可包括发送模块和/或接收模块,发送模块用于实现发送功能,接收模块用于实现接收功能,收发模块102可以实现发送功能和/或接收功能。
通信装置100可以是终端设备,也可以是终端设备中的装置,还可以是能够与终端设备匹配使用的装置。或者,通信装置100可以是网络设备,也可以是网络设备中的装置,还可以是能够与网络设备匹配使用的装置。
通信装置100为网络设备,包括:
处理模块101,用于在终端设备支持最大的物理上行共享信道PUSCH传输层数增加至8层,基于所述终端设备所支持的最大上行数据传输层数L max,对已有的第一探测参考信号资源指示信息SRI映射表进行扩展,得到第二SRI映射表;
收发模块102,用于基于所述第二SRI映射表,向终端设备指示从SRS资源集合中测量得到的第一SRS资源组合,用于指示PUSCH传输所使用的预编码矩阵,所述第一SRS资源组合包括至少一个单端口SRS资源。
可选地,处理模块101,还用于:
基于所述最大上行数据传输层数L max和已有的第一上行数据传输层数,确定新增的第二上行数据传输层数,以及向所述终端设备配置的SRS资源集合对应的配置数量集合,其中,所述配置数量集合包括所述SRS资源集合内配置的SRS资源的数量N SRS
基于所述第二上行数据传输层数和所述配置数量集合,对所述第一SRI映射表进行扩展,得到所述第二SRI映射表。
可选地,处理模块101,还用于:
针对每个所述第一上行数据传输层数,扩展所述第二候选数量下SRI索引值与SRS资源组合之间的第一映射关系,基于所述第一映射关系对所述第一SRI映射表扩展,得到所述第二SRI映射表;
针对每个所述第二上行数据传输层数,扩展所述配置数量集合内每个候选数量下的SRI索引值与SRS资源组合之间的第二映射关系,并基于所述第二映射关系得到第四SRI映射表;将所述第三SRI映射表和所述第四SRI映射表,确定为所述第二SRI映射表。
可选地,收发模块102,还用于:
基于所述第一SRS资源组合,确定所述预编码矩阵以及对应的第三上行数据传输层数TRI;
从所述第三SRI映射表和所述第四SRI映射表中,确定用于指示的所述第三上行数据传输层数对应的SRI映射表;
从所述第三上行数据传输层数对应的SRI映射表中,确定所述第一SRS资源组合对应的SRI索引值,并将所述SRI索引值指示给所述终端设备。
可选地,处理模块101,还用于:
从每个所述第一上行数据传输层数对应的第三SRI映射表中,选取部分SRI索引值与SRS资源组合之间的第三映射关系;
从每个所述第二上行数据传输层数对应的第四SRI映射表中,选取部分SRI索引值与SRS资源组合之间的第四映射关系;
基于选取出的所述第三映射关系和所述第四映射关系,生成受限SRI映射表,所述受限SRI映射表为所述第二SRI映射表。
可选地,收发模块102,还用于:确定所述受限SRI映射表中存在所述第一SRS资源组合,则从所 述受限SRI映射表中获取所述第一SRS资源组合对应的SRI索引值,并将所述SRI索引值指示给所述终端设备。
可选地,收发模块102,还用于:
确定所述受限SRI映射表中未存在所述第一SRS资源组合,则重新选取一个存在与所述受限SRI映射表中的SRS资源组合,更新为所述第一SRS资源组合;
确定更新后的所述第一SRS资源组合对应的SRI索引值,并将所述SRI索引值指示给所述终端设备。
可选地,收发模块102,还用于:
通过第一高层信令将所述受限SRI映射表发送给所述终端设备,和/或通过第二高层信令更新全部或部分所述受限SRI映射表。
可选地,处理模块101,还用于:
确定所述第二SRI映射表包括所述第三SRI映射表和所述第四SRI映射表时,确定所述第一SRS资源组合对应的PUSCH传输使用的第三上行数据传输层数;
对所述第三上行数据传输层数对应的SRI映射表进行分组,得到所述第三上行数据传输层数对应的候选SRI映射子表,并从所述候选SRI映射子表中,确定所述第一SRS资源组合所在的第一SRI映射子表;
可选地,收发模块101,还用于:
从所述第一SRI映射子表中确定所述第一SRS资源组合对应的第一SRI索引值,并发送给所述终端设备。
可选地,收发模块102,还用于:通过第三高层信令将所述第一SRI映射子表发送给所述终端设备,和/或通过第四高层信令更新全部或部分所述第二SRI映射表。
可选地,高层信令包括无线控制资源RRC信令和/或媒体接入控制-控制单元MAC-CE,其中所述MAC-CE信令可用于更新所述受限SRI映射表或所述第一SRI映射子表。
通信装置100为终端设备,包括:
处理模块101,用于在终端设备支持最大的物理上行共享信道PUSCH传输层数增加至8层,获取第二SRI映射表,其中所述第二SRI映射表通过对已有第一SRI映射表进行扩展得到,以及基于第一SRS资源组合,确定PUSCH传输使用的预编码矩阵;所述第一SRS资源组合为从SRS资源集合中选出的SRS资源形成的组合,包括至少一个单端口的SRS资源;
收发模块102,用于接收网络设备发送的SRI索引值,并基于所述SRI索引值,从所述第三SRI映射表中确定所述第一SRS资源组合。
可选地,处理模块101,还用于:
基于所述终端设备所支持的最大上行数据传输层数L max,对已有的第一探测参考信号资源指示信息SRI映射表进行扩展,得到第二SRI映射表。
可选地,处理模块101,还用于:
基于所述最大上行数据传输层数L max和已有的第一上行数据传输层数,确定新增的第二上行数据传输层数,以及向所述终端设备配置的探测参考信号SRS资源集合对应的配置数量集合,所述配置数量集合包括所述SRS资源集合内配置的SRS资源的数量N SRS
基于所述第二上行数据传输层数和所述配置数量集合,对所述第一SRI映射表进行扩展,得到所述第二SRI映射表。
可选地,配置数量集合中包括已有的第一候选数量和新增的第二候选数量,处理模块101,还用于:
针对每个所述第二上行数据传输层数,扩展所述第二候选数量下SRI索引值与SRS资源组合之间的 第一映射关系,基于所述第一映射关系对所述第一SRI映射表扩展,得到所述第三SRI映射表;
针对每个所述第二上行数据传输层数,扩展所述配置数量集合内每个候选数量下的SRI索引值与SRS资源组合之间的第二映射关系,并基于所述第二映射关系得到第四SRI映射表;
将所述第三SRI映射表和所述第四SRI映射表,确定为所述第二SRI映射表。
可选地,处理模块101,还用于:
确定所述预编码矩阵对应的第三上行数据传输层数;
从所述第三SRI映射表和所述第四SRI映射表中,确定所述第三上行数据传输层数对应的SRI映射表;
从所述第三上行数据传输层数对应的SRI映射表中,确定所述SRI索引值所指示的SRS资源组合,并确定为所述第一SRS资源组合。
可选地,处理模块101,还用于:
通过第一高层信令接收所述网络设备发送的受限SRI映射表,其中,所述受限SRI映射表为所述第二SRI映射表,且包括从第三SRI映射表中选取的部分第三映射关系,以及从第四SRI映射表中选取的部分第四映射关系;所述映射关系用于指示SRI索引值与SRS资源组合之间的关系,所述第二SRI映射表为已有的第一上行数据传输层数的映射表,所述第四SRI映射表为新增的第二上行数据传输层数的映射表。
可选地,处理模块102,还用于:
通过第二高层信令对所述受限SRI映射表进行全部或部分更新。
可选地,处理模块101,还用于:
从所述受限SRI映射表中,确定所述SRI索引值所指示的SRS资源组合,并确定为所述第一SRS资源组合。
可选地,处理模块101,还用于:
通过第三高层信令接收所述网络设备发送的第一SRI映射子表,其中所述第一SRI映射子表为所述第二SRI映射表,为所述第一SRS资源组合所指示第三上行数据传输层数对应的SRI映射表中的一个子表。
可选地,处理模块101,还用于:
通过第四高层信令对所述第一SRI映射子表进行全部或部分更新
可选地,处理模块101,还用于:
从所述第一SRI映射子表中,确定所述SRI索引值所指示的SRS资源组合,并确定为所述第一SRS资源组合。
可选地,处理模块101,还用于:
基于所述第一SRS资源组合,对初始预编码矩阵进行筛选,得到所述预编码矩阵。
请参见图11,图11是本申请实施例提供的另一种通信装置110的结构示意图。通信装置110可以是终端设备,也可以是网络设备,也可以是支持终端设备实现上述方法的芯片、芯片系统、或处理器等,还可以是支持网络设备实现上述方法的芯片、芯片系统、或处理器等。该装置可用于实现上述方法实施例中描述的方法,具体可以参见上述方法实施例中的说明。
通信装置110可以包括一个或多个处理器111。处理器111可以是通用处理器或者专用处理器等。例如可以是基带处理器或中央处理器。基带处理器可以用于对通信协议以及通信数据进行处理,中央处理器可以用于对通信装置(如,基站、基带芯片,终端设备、终端设备芯片,DU或CU等)进行控制,执行计算机程序,处理计算机程序的数据。
可选的,通信装置110中还可以包括一个或多个存储器112,其上可以存有计算机程序114,处理器111执行所述计算机程序114,以使得通信装置110执行上述方法实施例中描述的方法。可选的,所述存储器112中还可以存储有数据。通信装置110和存储器112可以单独设置,也可以集成在一起。
可选的,通信装置110还可以包括收发器115、天线116。收发器115可以称为收发单元、收发机、或收发电路等,用于实现收发功能。收发器115可以包括接收器和发送器,接收器可以称为接收机或接收电路等,用于实现接收功能;发送器可以称为发送机或发送电路等,用于实现发送功能。
可选的,通信装置110中还可以包括一个或多个接口电路117。接口电路117用于接收代码指令并传输至处理器111。处理器111运行所述代码指令以使通信装置110执行上述方法实施例中描述的方法。
在一种实现方式中,处理器111中可以包括用于实现接收和发送功能的收发器。例如该收发器可以是收发电路,或者是接口,或者是接口电路。用于实现接收和发送功能的收发电路、接口或接口电路可以是分开的,也可以集成在一起。上述收发电路、接口或接口电路可以用于代码/数据的读写,或者,上述收发电路、接口或接口电路可以用于信号的传输或传递。
在一种实现方式中,处理器111可以存有计算机程序113,计算机程序113在处理器111上运行,可使得通信装置110执行上述方法实施例中描述的方法。计算机程序113可能固化在处理器111中,该种情况下,处理器111可能由硬件实现。
在一种实现方式中,通信装置110可以包括电路,所述电路可以实现前述方法实施例中发送或接收或者通信的功能。本申请中描述的处理器和收发器可实现在集成电路(integrated circuit,IC)、模拟IC、射频集成电路RFIC、混合信号IC、专用集成电路(application specific integrated circuit,ASIC)、印刷电路板(printed circuit board,PCB)、电子设备等上。该处理器和收发器也可以用各种IC工艺技术来制造,例如互补金属氧化物半导体(complementary metal oxide semiconductor,CMOS)、N型金属氧化物半导体(nMetal-oxide-semiconductor,NMOS)、P型金属氧化物半导体(positive channel metal oxide semiconductor,PMOS)、双极结型晶体管(bipolar junction transistor,BJT)、双极CMOS(BiCMOS)、硅锗(SiGe)、砷化镓(GaAs)等。
以上实施例描述中的通信装置可以是发送设备或者接收设备(如前述方法实施例中的接收设备),但本申请中描述的通信装置的范围并不限于此,而且通信装置的结构可以不受图11的限制。通信装置可以是独立的设备或者可以是较大设备的一部分。例如所述通信装置可以是:
(1)独立的集成电路IC,或芯片,或,芯片系统或子系统;
(2)具有一个或多个IC的集合,可选的,该IC集合也可以包括用于存储数据,计算机程序的存储部件;
(3)ASIC,例如调制解调器(Modem);
(4)可嵌入在其他设备内的模块;
(5)接收机、终端设备、智能终端设备、蜂窝电话、无线设备、手持机、移动单元、车载设备、网络设备、云设备、人工智能设备等等;
(6)其他等等。
对于通信装置可以是芯片或芯片系统的情况,可参见图12所示的芯片的结构示意图。图12所示的芯片包括处理器121和接口122。其中,处理器121的数量可以是一个或多个,接口122的数量可以是多个。
可选的,芯片还包括存储器123,存储器123用于存储必要的计算机程序和数据。
该芯片用于执行时实现上述任一方法实施例的功能。
本领域技术人员还可以了解到本申请实施例列出的各种说明性逻辑块(illustrative logical block)和步骤(step)可以通过电子硬件、电脑软件,或两者的结合进行实现。这样的功能是通过硬件还是软件来实现取决于特定的应用和整个系统的设计要求。本领域技术人员可以对于每种特定的应用,可以使用各种方法实现所述的功能,但这种实现不应被理解为超出本申请实施例保护的范围。
本申请实施例还提供一种DMRS端口指示系统,该系统包括前述图12实施例中作为终端设备(如前述方法实施例中的终端设备)的通信装置和作为网络设备的通信装置,或者,该系统包括前述图13实施例中作为终端设备(如前述方法实施例中的终端设备)的通信装置和作为网络设备的通信装置。
本申请还提供一种可读存储介质,其上存储有指令,该指令被计算机执行时实现上述任一方法实施例的功能。
本申请还提供一种计算机程序产品,该计算机程序产品被计算机执行时实现上述任一方法实施例的功能。
在上述实施例中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。所述计算机程序产品包括一个或多个计算机程序。在计算机上加载和执行所述计算机程序时,全部或部分地产生按照本申请实施例所述的流程或功能。所述计算机可以是通用计算机、专用计算机、计算机网络、或者其他可编程装置。所述计算机程序可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,所述计算机程序可以从一个网站站点、计算机、服务器或数据中心通过有线(例如同轴电缆、光纤、数字用户线(digital subscriber line,DSL))或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。所述计算机可读存储介质可以是计算机能够存取的任何可用介质或者是包含一个或多个可用介质集成的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质(例如,软盘、硬盘、磁带)、光介质(例如,高密度数字视频光盘(digital video disc,DVD))、或者半导体介质(例如,固态硬盘(solid state disk,SSD))等。
本领域普通技术人员可以理解:本申请中涉及的第一、第二等各种数字编号仅为描述方便进行的区分,并不用来限制本申请实施例的范围,也表示先后顺序。
本申请中的至少一个还可以描述为一个或多个,多个可以是两个、三个、四个或者更多个,本申请不做限制。在本申请实施例中,对于一种技术特征,通过“第一”、“第二”、“第三”、“A”、“B”、“C”和“D”等区分该种技术特征中的技术特征,该“第一”、“第二”、“第三”、“A”、“B”、“C”和“D”描述的技术特征间无先后顺序或者大小顺序。
本申请中各表所示的对应关系可以被配置,也可以是预定义的。各表中的信息的取值仅仅是举例,可以配置为其他值,本申请并不限定。在配置信息与各参数的对应关系时,并不一定要求必须配置各表中示意出的所有对应关系。例如,本申请中的表格中,某些行示出的对应关系也可以不配置。又例如,可以基于上述表格做适当的变形调整,例如,拆分,合并等等。上述各表中标题示出参数的名称也可以采用通信装置可理解的其他名称,其参数的取值或表示方式也可以通信装置可理解的其他取值或表示方式。上述各表在实现时,也可以采用其他的数据结构,例如可以采用数组、队列、容器、栈、线性表、指针、链表、树、图、结构体、类、堆、散列表或哈希表等。
本申请中的预定义可以理解为定义、预先定义、存储、预存储、预协商、预配置、固化、或预烧制。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方 法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以所述权利要求的保护范围为准。

Claims (31)

  1. 一种基于非码本的物理上行共享信道PUSCH发送信息的方法,其特征在于,由网络设备执行,所述方法包括:
    确定终端设备支持最大的物理上行共享信道PUSCH传输层数增加至8层,基于所述终端设备所支持的最大上行数据传输层数L max,对已有的第一探测参考信号资源指示信息SRI映射表进行扩展,得到第二SRI映射表;
    基于所述第二SRI映射表,向终端设备指示从非码本的SRS资源集合中测量得到的第一SRS资源组合,用于指示PUSCH传输使用的预编码矩阵,所述第一SRS资源组合包括至少一个单端口SRS资源。
  2. 根据权利要求1所述的方法,其特征在于,所述基于所述终端设备所支持的最大上行数据传输层数,对已有的第一探测参考信号资源指示信息SRI映射表进行扩展,得到第二SRI映射表,包括:
    基于所述最大上行数据传输层数L max和已有的第一上行数据传输层数,确定新增的第二上行数据传输层数,以及向所述终端设备配置的SRS资源集合对应的配置数量集合,其中,所述配置数量集合包括所述SRS资源集合内配置的SRS资源的数量N SRS
    基于所述第二上行数据传输层数和所述配置数量集合,对所述第一SRI映射表进行扩展,得到所述第二SRI映射表。
  3. 根据权利要求2所述的方法,其特征在于,所述配置数量集合中包括已有的第一候选数量和新增的第二候选数量,其中,所述基于所述第二上行数据传输层数和所述配置数量集合,对所述第一SRI映射表进行扩展,包括:
    针对每个所述第一上行数据传输层数,扩展所述第二候选数量下SRI索引值与SRS资源组合之间的第一映射关系,基于所述第一映射关系对所述第一SRI映射表扩展,得到所述第四SRI映射表;
    针对每个所述第二上行数据传输层数,扩展所述配置数量集合内每个候选数量下的SRI索引值与SRS资源组合之间的第二映射关系,并基于所述第二映射关系得到第四SRI映射表;
    将所述第三SRI映射表和所述第四SRI映射表,确定为所述第二SRI映射表。
  4. 根据权利要求3所述的方法,其特征在于,所述基于所述第二SRI映射表,向终端设备指示测量得到的第一SRS资源组合,包括:
    基于所述第一SRS资源组合,确定所述预编码矩阵以及对应的第三上行数据传输层数;
    从所述第三SRI映射表和所述第四SRI映射表中,确定用于指示的所述第三上行数据传输层数对应的SRI映射表;
    从所述第三上行数据传输层数对应的SRI映射表中,确定所述第一SRS资源组合对应的SRI索引值,并将所述SRI索引值指示给所述终端设备。
  5. 根据权利要求3所述的方法,其特征在于,得到所述第三SRI映射表和所述第四SRI映射表之后,还包括:
    从每个所述第一上行数据传输层数对应的第三SRI映射表中,选取部分SRI索引值与SRS资源组合之间的第三映射关系;
    从每个所述第二上行数据传输层数对应的第四SRI映射表中,选取部分SRI索引值与SRS资源组合之间的第四映射关系;
    基于选取出的所述第三映射关系和所述第四映射关系,生成受限SRI映射表,所述受限SRI映射表为所述第二SRI映射表。
  6. 根据权利要求5所述的方法,其特征在于,所述基于所述第二SRI映射表,向终端设备指示测量得到的第一SRS资源组合,包括:
    确定所述受限SRI映射表中存在所述第一SRS资源组合,则从所述受限SRI映射表中获取所述第一SRS资源组合对应的SRI索引值,并将所述SRI索引值指示给所述终端设备。
  7. 根据权利要求5所述的方法,其特征在于,所述基于所述第二SRI映射表,向终端设备指示测量得到的第一SRS资源组合,还包括:
    确定所述受限SRI映射表中未存在所述第一SRS资源组合,则重新选取一个存在与所述受限SRI映射表中的SRS资源组合,更新为所述第一SRS资源组合;
    确定更新后的所述第一SRS资源组合对应的SRI索引值,并将所述SRI索引值指示给所述终端设备。
  8. 根据权利要求5或6所述的方法,其特征在于,所述确定受限SRI映射表之后,还包括:
    通过第一高层信令将所述受限SRI映射表发送给所述终端设备,和/或通过第二高层信令更新全部或部分所述受限SRI映射表。
  9. 根据权利要求3所述的方法,其特征在于,所述基于所述第二SRI映射表,向终端设备指示测量得到的第一SRS资源组合,包括:
    确定所述第二SRI映射表包括所述第三SRI映射表和所述第四SRI映射表时,确定所述第一SRS资源组合对应的PUSCH传输时的第三上行数据传输层数;
    对所述第三上行数据传输层数对应的SRI映射表进行分组,得到所述第三上行数据传输层数对应的候选SRI映射子表,并从所述候选SRI映射子表中,确定所述第一SRS资源组合所在的第一SRI映射子表;
    从所述第一SRI映射子表中确定所述第一SRS资源组合对应的第一SRI索引值,并发送给所述终端设备。
  10. 根据权利要求9所述的方法,其特征在于,所述得到所述第三上行数据传输层数对应的候选SRI映射子表之后,还包括:
    通过第三高层信令将所述第一SRI映射子表发送给所述终端设备,和/或通过第四高层信令更新全部或部分所述第一SRI映射子表。
  11. 根据权利要求8或10所述的方法,其特征在于,所述高层信令包括无线控制资源RRC信令和/或媒体接入控制-控制单元MAC-CE,其中所述MAC-CE信令可用于更新所述受限SRI映射表或所述第一SRI映射子表。
  12. 一种基于非码本的PUSCH接收信息的方法,其特征在于,由终端设备执行,所述方法包括:
    所述终端设备支持最大的物理上行共享信道PUSCH传输层数增加至8层,获取第二SRI映射表,其中所述第二SRI映射表通过对已有第一SRI映射表进行扩展得到;
    接收网络设备发送的SRI索引值,并基于所述SRI索引值,从所述第三SRI映射表中确定第一SRS资源组合,所述第一SRS资源组合为从SRS资源集合中选出的SRS资源形成的组合,包括至少一个单端口的SRS资源;
    基于所述第一SRS资源组合,确定PUSCH实际传输使用的预编码矩阵。
  13. 根据权利要求12所述的方法,其特征在于,所述获取第二SRI映射表,包括:
    基于所述终端设备所支持的最大上行数据传输层数L max,对已有的第一探测参考信号资源指示信息SRI映射表进行扩展,得到第二SRI映射表。
  14. 根据权利要求13所述的方法,其特征在于,所述基于所述终端设备所支持的最大上行数据传输层数,对已有的第一探测参考信号资源指示信息SRI映射表进行扩展,得到第二SRI映射表,包括:
    基于所述最大上行数据传输层数L max和已有的第一上行数据传输层数,确定新增的第二上行数据传输层数,以及向所述终端设备配置的探测参考信号SRS资源集合对应的配置数量集合,所述配置数量集合包括所述SRS资源集合内配置的SRS资源的数量N SRS
    基于所述第二上行数据传输层数和所述配置数量集合,对所述第一SRI映射表进行扩展,得到所述第二SRI映射表。
  15. 根据权利要求14所述的方法,其特征在于,所述配置数量集合中包括已有的第一候选数量和新增的第二候选数量,其中,所述基于所述第二上行数据传输层数和所述配置数量集合,对所述第一SRI映射表进行扩展,包括:
    针对每个所述第二上行数据传输层数,扩展所述第二候选数量下SRI索引值与SRS资源组合之间的第一映射关系,基于所述第一映射关系对所述第一SRI映射表扩展,得到所述第三SRI映射表;
    针对每个所述第二上行数据传输层数,扩展所述配置数量集合内每个候选数量下的SRI索引值与SRS资源组合之间的第二映射关系,并基于所述第二映射关系得到第四SRI映射表;
    将所述第三SRI映射表和所述第四SRI映射表,确定为所述第二SRI映射表。
  16. 根据权利要求12所述的方法,其特征在于,所述基于所述SRI索引值,从所述第三SRI映射表中确定第一SRS资源组合,包括:
    确定所述预编码矩阵对应的第三上行数据传输层数;
    从所述第三SRI映射表和所述第四SRI映射表中,确定所述第三上行数据传输层数对应的SRI映射表;
    从所述第三上行数据传输层数对应的SRI映射表中,确定所述SRI索引值所指示的SRS资源组合,并确定为所述第一SRS资源组合。
  17. 根据权利要求12所述的方法,其特征在于,所述获取第二SRI映射表,包括:
    通过第一高层信令接收所述网络设备发送的受限SRI映射表,其中,所述受限SRI映射表为所述第二SRI映射表,且包括从第三SRI映射表中选取的部分第三映射关系,以及从第四SRI映射表中选取的部分第四映射关系;所述映射关系用于指示SRI索引值与SRS资源组合之间的关系,所述第二SRI映射表为已有的第一上行数据传输层数的映射表,所述第四SRI映射表为新增的第二上行数据传输层数的映射表。
  18. 根据权利要求17所述的方法,其特征在于,所述通过第一高层信令接收所述网络设备发送的受限SRI映射表之后,还包括:
    通过第二高层信令对所述受限SRI映射表进行全部或部分更新。
  19. 根据权利要求17或18所述的方法,其特征在于,所述基于所述SRI索引值,从所述第二SRI映射表中确定第一SRS资源组合,包括:
    从所述受限SRI映射表中,确定所述SRI索引值所指示的SRS资源组合,并确定为所述第一SRS资源组合。
  20. 根据权利要求12所述的方法,其特征在于,所述获取第二SRI映射表,包括:
    通过第三高层信令接收所述网络设备发送的第一SRI映射子表,其中所述第一SRI映射子表为所述第二SRI映射表,为所述第一SRS资源组合所指示第三上行数据传输层数对应的SRI映射表中的一个子表。
  21. 根据权利要求20所述的方法,其特征在于,所述通过第三高层信令接收所述网络设备发送的第一SRI映射子表之后,还包括:
    通过第四高层信令对所述第一SRI映射子表进行全部或部分更新
  22. 根据权利要求20所述的方法,其特征在于,所述基于所述SRI索引值,从所述第二SRI映射表中确定第一SRS资源组合,包括:
    从所述第一SRI映射子表中,确定所述SRI索引值所指示的SRS资源组合,并确定为所述第一SRS资源组合。
  23. 根据权利要求12-22任一项所述的方法,其特征在于,所述基于所述第一SRS资源组合,确定进行PUSCH传输所使用的预编码矩阵,包括:
    基于所述第一SRS资源组合,对初始预编码矩阵进行筛选,得到所述预编码矩阵。
  24. 一种网络设备,其特征在于,包括:
    处理模块,用于在终端设备支持最大的物理上行共享信道PUSCH传输层数增加至8层,基于所述终端设备所支持的最大上行数据传输层数L max,对已有的第一探测参考信号资源指示信息SRI映射表进行扩展,得到第二SRI映射表;
    收发模块,用于基于所述第二SRI映射表,向终端设备指示从SRS资源集合中测量得到的第一SRS资源组合,用于指示PUSCH传输所使用的预编码矩阵,所述第一SRS资源组合包括至少一个单端口SRS资源。
  25. 一种终端设备,其特征在于,包括:
    处理模块,用于在终端设备支持最大的物理上行共享信道PUSCH传输层数增加至8层,获取第二SRI映射表,其中所述第二SRI映射表通过对已有第一SRI映射表进行扩展得到,以及基于第一SRS资源组合,确定PUSCH传输使用的预编码矩阵;所述第一SRS资源组合为从SRS资源集合中选出的SRS资源形成的组合,包括至少一个单端口的SRS资源;
    收发模块,用于接收网络设备发送的SRI索引值,并基于所述SRI索引值,从所述第二SRI映射表中确定所述第一SRS资源组合。
  26. 一种通信装置,其特征在于,所述装置包括处理器和存储器,所述存储器中存储有计算机程序,所述处理器执行所述存储器中存储的计算机程序,以使所述装置执行如权利要求1至12中任一项所述的方法。
  27. 一种通信装置,其特征在于,所述装置包括处理器和存储器,所述存储器中存储有计算机程序,所述处理器执行所述存储器中存储的计算机程序,以使所述装置执行如权利要求13至23中的任一项所述的方法。
  28. 一种通信装置,其特征在于,包括:处理器和接口电路;
    所述接口电路,用于接收代码指令并传输至所述处理器;
    所述处理器,用于运行所述代码指令以执行如权利要求1至12中的任一项所述的方法。
  29. 一种通信装置,其特征在于,包括:处理器和接口电路;
    所述接口电路,用于接收代码指令并传输至所述处理器;
    所述处理器,用于运行所述代码指令以执行如权利要求13至23中的任一项所述的方法。
  30. 一种计算机可读存储介质,用于存储有指令,当所述指令被执行时,使如权利要求1至12中的任一项所述的方法被实现。
  31. 一种计算机可读存储介质,用于存储有指令,当所述指令被执行时,使如权利要求13至23中的任一项所述的方法被实现。
PCT/CN2022/084683 2022-03-31 2022-03-31 一种基于非码本的pusch发送/接收信息的方法及其装置 WO2023184448A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2022/084683 WO2023184448A1 (zh) 2022-03-31 2022-03-31 一种基于非码本的pusch发送/接收信息的方法及其装置
CN202280000730.4A CN117158088A (zh) 2022-03-31 2022-03-31 一种基于非码本的pusch发送/接收信息的方法及其装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/084683 WO2023184448A1 (zh) 2022-03-31 2022-03-31 一种基于非码本的pusch发送/接收信息的方法及其装置

Publications (1)

Publication Number Publication Date
WO2023184448A1 true WO2023184448A1 (zh) 2023-10-05

Family

ID=88198756

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/084683 WO2023184448A1 (zh) 2022-03-31 2022-03-31 一种基于非码本的pusch发送/接收信息的方法及其装置

Country Status (2)

Country Link
CN (1) CN117158088A (zh)
WO (1) WO2023184448A1 (zh)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20190103949A1 (en) * 2017-10-02 2019-04-04 Telefonaktiebolaget Lm Ericsson (Publ) Efficient srs resource indication methods
CN111164905A (zh) * 2017-10-02 2020-05-15 瑞典爱立信有限公司 高效的srs资源指示方法
CN113872647A (zh) * 2020-06-30 2021-12-31 华为技术有限公司 探测参考信号srs传输方法及通信装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20190103949A1 (en) * 2017-10-02 2019-04-04 Telefonaktiebolaget Lm Ericsson (Publ) Efficient srs resource indication methods
CN111164905A (zh) * 2017-10-02 2020-05-15 瑞典爱立信有限公司 高效的srs资源指示方法
CN113872647A (zh) * 2020-06-30 2021-12-31 华为技术有限公司 探测参考信号srs传输方法及通信装置

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
CATT: "Remaining issues on codebook based UL transmission", 3GPP DRAFT; R1-1801716, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, no. Athens, Greece; 20180226 - 20180302, 17 February 2018 (2018-02-17), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , XP051397697 *
NOKIA, NOKIA SHANGHAI BELL: "On adaptation of maximum number of MIMO layers", 3GPP DRAFT; R1-1911247, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, no. Chongqing, China; 20191014 - 20191020, 4 October 2019 (2019-10-04), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , XP051790016 *

Also Published As

Publication number Publication date
CN117158088A (zh) 2023-12-01

Similar Documents

Publication Publication Date Title
WO2023236223A1 (zh) 一种传输配置指示状态的指示方法及装置
WO2023070586A1 (zh) 物理下行共享信道pdsch配置方法及装置
WO2023184372A1 (zh) 上行信道的发送和接收的方法及装置
WO2023236222A1 (zh) 一种传输配置指示状态的指示方法及装置
WO2024050776A1 (zh) 一种信息确定方法/装置/设备及存储介质
WO2023184448A1 (zh) 一种基于非码本的pusch发送/接收信息的方法及其装置
WO2023184449A1 (zh) 一种发送tri的方法及其装置、接收tri的方法及其装置
WO2023184450A1 (zh) 一种基于非码本的pusch接收/发送信息的方法及其装置
WO2023184451A1 (zh) 一种基于非码本的pusch发送、接收信息的方法及其装置
WO2024031719A1 (zh) 支持8Tx的基于码本的PUSCH传输的预编码指示方法及装置
WO2024026797A1 (zh) 上行mimo传输的预编码矩阵确定方法及其装置
WO2024026796A1 (zh) 上行mimo传输的预编码矩阵确定方法及其装置
WO2024031718A1 (zh) 支持8Tx的基于非码本的PUSCH传输的预编码指示方法及装置
WO2023168575A1 (zh) 一种天线切换能力上报方法及其装置
WO2023201500A1 (zh) 基于码本的pusch传输方法及其装置
WO2024092833A1 (zh) 一种确定信道状态信息csi的方法及其装置
WO2023168574A1 (zh) 一种天线切换能力上报方法及其装置
WO2024011543A1 (zh) 基向量的选择指示上报方法和装置
WO2023245683A1 (zh) 基向量类型的指示方法和装置
WO2024026798A1 (zh) 上行mimo传输的预编码矩阵确定方法及其装置
WO2023050154A1 (zh) 面向多传输接收点trp的传输配置方法及装置
WO2023184434A1 (zh) 基于码本的上行信道发送方法及装置
WO2024065426A1 (zh) 一种信道质量指示cqi上报方法、装置、设备及存储介质
WO2023240654A1 (zh) 一种部分天线相干传输码字的确定方法及其装置
WO2023201501A1 (zh) Mimo上行传输部分天线相干传输码字的确定方法及其装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22934285

Country of ref document: EP

Kind code of ref document: A1