WO2023240654A1 - 一种部分天线相干传输码字的确定方法及其装置 - Google Patents

一种部分天线相干传输码字的确定方法及其装置 Download PDF

Info

Publication number
WO2023240654A1
WO2023240654A1 PCT/CN2022/099627 CN2022099627W WO2023240654A1 WO 2023240654 A1 WO2023240654 A1 WO 2023240654A1 CN 2022099627 W CN2022099627 W CN 2022099627W WO 2023240654 A1 WO2023240654 A1 WO 2023240654A1
Authority
WO
WIPO (PCT)
Prior art keywords
codeword
antenna port
antenna
layer
matrix
Prior art date
Application number
PCT/CN2022/099627
Other languages
English (en)
French (fr)
Inventor
张振宇
高雪媛
李媛媛
李俊丽
Original Assignee
北京小米移动软件有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京小米移动软件有限公司 filed Critical 北京小米移动软件有限公司
Priority to PCT/CN2022/099627 priority Critical patent/WO2023240654A1/zh
Priority to CN202280002109.1A priority patent/CN117616698A/zh
Publication of WO2023240654A1 publication Critical patent/WO2023240654A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W8/00Network data management
    • H04W8/22Processing or transfer of terminal data, e.g. status or physical capabilities
    • H04W8/24Transfer of terminal data

Definitions

  • the present application relates to the field of communication technology, and in particular to a method and device for determining partial antenna coherent transmission codewords.
  • Precoding technology in Multiple Input Multiple Output (MIMO) systems can effectively reduce interference and system overhead, and improve system capacity. It is an extremely important key technology in MIMO systems.
  • MIMO uplink systems based on codebook transmission Codebook design is also an important part of precoding technology.
  • the maximum number of antenna ports supported by the existing MIMO uplink transmission part antenna coherent transmission codeword is 4, that is, the existing MIMO uplink part antenna coherent transmission codeword only supports transmission of a maximum of 4 antenna ports and a maximum of 4 layers.
  • the transmission requirements of the enhanced antenna port cannot be met.
  • Embodiments of the present application provide a method and device for determining partial antenna coherent transmission codewords.
  • Partial antenna coherent transmission codewords are designed through all antennas fully coherent transmission codewords, which can be applied to MIMO uplink transmission from layer 1 to layer 8 of 8 antenna ports. Partial antenna coherent transmission codeword design.
  • embodiments of the present application provide a method for determining partial antenna coherent transmission codewords.
  • the method includes:
  • the L is a positive integer, and the L is less than or equal to the N;
  • a second codeword for partial antenna coherent transmission of the N antenna port L layer is determined.
  • the first codeword of the fully coherent antenna transmission of the N antenna port corresponding to the MIMO uplink transmission is determined. Based on the first codeword of the N antenna port and the sparse matrix corresponding to the first codeword, the N antenna port can be determined The second codeword transmitted coherently by some antennas of the L layer.
  • some antenna coherent transmission codewords can be designed based on the antenna fully coherent transmission codeword, which can enable MIMO uplink to support the transmission requirements of layer 1 to layer 8 of 8 antenna ports, thereby further enhancing the uplink MIMO technology.
  • embodiments of the present application provide a communication device that has some or all of the functions of the terminal device in implementing the method described in the first aspect.
  • the functions of the communication device may have some or all of the functions in this application.
  • the functions in the embodiments may also be used to independently implement any of the embodiments in this application.
  • the functions described can be implemented by hardware, or can be implemented by hardware executing corresponding software.
  • the hardware or software includes one or more units or modules corresponding to the above functions.
  • the structure of the communication device may include a transceiver module and a processing module, and the processing module is configured to support the communication device to perform corresponding functions in the above method.
  • the transceiver module is used to support communication between the communication device and other devices.
  • the communication device may further include a storage module coupled to the transceiver module and the processing module, which stores necessary computer programs and data for the communication device.
  • the processing module may be a processor
  • the transceiver module may be a transceiver or a communication interface
  • the storage module may be a memory
  • the structure of the communication device may include a transceiver module and a processing module, and the processing module is configured to support the communication device to perform corresponding functions in the above method.
  • the transceiver module is used to support communication between the communication device and other devices.
  • the communication device may also include a storage module coupled to the transceiver module and the processing module, which stores computer programs and data necessary for the communication device.
  • inventions of the present application provide a communication device.
  • the communication device includes a processor.
  • the processor calls a computer program in a memory, it executes the method described in the first aspect.
  • inventions of the present application provide a communication device.
  • the communication device includes a processor and a memory, and a computer program is stored in the memory; the processor executes the computer program stored in the memory, so that the communication device executes The method described in the first aspect above.
  • inventions of the present application provide a communication device.
  • the device includes a processor and an interface circuit.
  • the interface circuit is used to receive code instructions and transmit them to the processor.
  • the processor is used to run the code instructions to cause the The device performs the method described in the first aspect.
  • embodiments of the present invention provide a computer-readable storage medium for storing instructions used by the above-mentioned terminal device. When the instructions are executed, the terminal device is caused to perform the method described in the first aspect. .
  • the present application also provides a computer program product including a computer program, which when run on a computer causes the computer to execute the method described in the first aspect.
  • the present application provides a chip system, which includes at least one processor and an interface for supporting the terminal device to implement the functions involved in the first aspect, for example, determining or processing the data involved in the above method and at least one of the information.
  • the chip system further includes a memory, and the memory is used to store necessary computer programs and data for the terminal device.
  • the chip system may be composed of chips, or may include chips and other discrete devices.
  • the present application provides a computer program that, when run on a computer, causes the computer to execute the method described in the first aspect.
  • Figure 1 is a schematic architectural diagram of a communication system provided by an embodiment of the present application.
  • Figure 2 is a schematic flowchart of a method for determining partial antenna coherent transmission codewords provided by an embodiment of the present application
  • Figure 3 is a schematic flowchart of another method for determining partial antenna coherent transmission codewords provided by an embodiment of the present application.
  • Figure 4 is a schematic flowchart of a codeword-based uplink transmission method provided by an embodiment of the present application.
  • FIG. 5 is a schematic flowchart of another codeword-based uplink transmission method provided by an embodiment of the present application.
  • Figure 6 is a schematic structural diagram of a communication device provided by an embodiment of the present application.
  • Figure 7 is a schematic structural diagram of a communication device provided by an embodiment of the present application.
  • FIG. 8 is a schematic structural diagram of a chip provided by an embodiment of the present application.
  • first, second, third, etc. may be used to describe various information in the embodiments of the present disclosure, the information should not be limited to these terms. These terms are only used to distinguish information of the same type from each other.
  • first information may also be called second information, and similarly, the second information may also be called first information.
  • word “if” as used herein may be interpreted as “when” or “when” or “in response to determining”. For the purposes of brevity and ease of understanding, this article is characterizing When referring to a size relationship, the terms used are “greater than” or “less than”, “higher than” or “lower than”.
  • the Physical Uplink Shared Channel (PUSCH) is used to carry data from the transmission channel PUSCH.
  • Coherent transmission is defined as a UE capability.
  • the UE's coherent transmission capabilities include:
  • Partial Coherence transmission Antenna ports in the same coherent transmission group can transmit coherently, while antenna ports in different coherent transmission groups cannot transmit coherently.
  • Each coherent transmission group includes at least two antenna ports.
  • Non-coherence transmission No antenna port can transmit coherently.
  • the partial antenna coherent transmission codewords are applicable to communication systems.
  • the communication systems applicable to the embodiments of the present application are first described below.
  • Figure 1 is a schematic architectural diagram of a communication system provided by an embodiment of the present application.
  • the communication system may include but is not limited to one network device and one terminal device.
  • the number and form of devices shown in Figure 1 are only for examples and do not constitute a limitation on the embodiments of the present application. In actual applications, two or more devices may be included.
  • the communication system shown in Figure 1 includes a network device 101 and a terminal device 102 as an example.
  • LTE long term evolution
  • 5th generation 5th generation
  • NR 5th generation new radio
  • side link in the embodiment of the present application may also be called a side link or a through link.
  • the network device 101 in the embodiment of this application is an entity on the network side that is used to transmit or receive signals.
  • the network device 101 can be an evolved base station (evolved NodeB, eNB), a transmission point (transmission reception point, TRP), a next generation base station (next generation NodeB, gNB) in an NR system, or other base stations in future mobile communication systems. Or access nodes in wireless fidelity (WiFi) systems, etc.
  • the embodiments of this application do not limit the specific technology and specific equipment form used by the network equipment.
  • the network equipment provided by the embodiments of this application may be composed of a centralized unit (central unit, CU) and a distributed unit (DU).
  • the CU may also be called a control unit (control unit).
  • the structure can separate the protocol layers of network equipment, such as base stations, and place some protocol layer functions under centralized control on the CU. The remaining part or all protocol layer functions are distributed in the DU, and the CU centrally controls the DU.
  • the terminal device 102 in the embodiment of this application is an entity on the user side that is used to receive or transmit signals, such as a mobile phone.
  • Terminal equipment can also be called terminal equipment (terminal), user equipment (user equipment, UE), mobile station (mobile station, MS), mobile terminal equipment (mobile terminal, MT), etc.
  • the terminal device can be a car with communication functions, a smart car, a mobile phone, a wearable device, a tablet computer (Pad), a computer with wireless transceiver functions, a virtual reality (VR) terminal device, an augmented reality (augmented reality (AR) terminal equipment, wireless terminal equipment in industrial control, wireless terminal equipment in self-driving, wireless terminal equipment in remote medical surgery, smart grid ( Wireless terminal equipment in smart grid, wireless terminal equipment in transportation safety, wireless terminal equipment in smart city, wireless terminal equipment in smart home, etc.
  • the embodiments of this application do not limit the specific technology and specific equipment form used by the terminal equipment.
  • side-link transmission modes there are 4 side-link transmission modes.
  • Side link transmission mode 1 and side link transmission mode 2 are used for terminal device direct (device-to-device, D2D) communication.
  • Side-link transmission mode 3 and side-link transmission mode 4 are used for V2X communications.
  • resource allocation is scheduled by the network device 101.
  • the network device 101 can send resource allocation information to the terminal device 102, and then the terminal device 102 allocates resources to another terminal device, so that the other terminal device can send information to the network device 101 through the allocated resources.
  • a terminal device with better signal or higher reliability can be used as the terminal device 102 .
  • the first terminal device mentioned in the embodiment of this application may refer to the terminal device 102, and the second terminal device may refer to the other terminal device.
  • the method for determining the antenna coherent transmission codewords of the MIMO uplink transmission part provided in any embodiment of this application can be executed alone, or in combination with possible implementation methods in other embodiments, or in combination with related Any of the technical solutions are implemented together.
  • Figure 2 is a schematic flowchart of a method for determining partial antenna coherent transmission codewords provided by an embodiment of the present application.
  • the implementation of the method for determining the partial antenna coherent transmission codeword is a communication device.
  • the method may include but is not limited to the following steps:
  • L is a positive integer
  • L is less than or equal to N
  • N is a positive integer power of 2 and N is greater than 4.
  • uplink transmission can support increased antenna ports and the number of uplink transmission layers. That is, the number of antenna ports can be increased from 4 to a maximum of N. Correspondingly, the number of uplink transmission layers can be expanded from 4 layers.
  • L layer for example, the value of N can be 8, and the value of L can also be from 1 to 8.
  • the number of uplink transmission layers L is equal to the number of antenna ports N; MIMO uplink transmission can also be L layers of N antenna ports. In this case, the number of uplink transmission layers L is smaller than the number of antenna ports N.
  • the method for determining the first codeword of the N antenna port is not limited and can be determined according to actual conditions.
  • the first codeword of the N antenna port may be the first codeword that pre-configures fully coherent transmission of all antennas.
  • the first codeword of the N antenna port can be based on an N-dimensional orthogonal codebook such as the Kerdock codebook, which determines the first codeword of fully coherent transmission by all antennas of the N antenna port.
  • energy normalization is performed on the Kerdock codebook to obtain the first codeword of fully coherent transmission by all antennas of N antenna ports.
  • the Kerdock codebook is an orthogonal codebook used in communication system design and can be used to construct mutually unbiased basis sequences.
  • the Kerdock codebook has orthogonality, that is, any two column vectors in each Kerdock codeword are orthogonal to each other.
  • the N-dimensional Kerdock codebook contains a total of N codewords, each of which is an N-dimensional orthogonal matrix and contains only four elements: 1, -1, i, and -i.
  • it can be all antenna fully coherent transmission codewords in the precoding codebook of the MIIMO uplink transmission N antenna port agreed in the 3GPP communication protocol; optionally, it can be the MIIMO downlink transmission N antenna port agreed in the 3GPP communication protocol. All antennas in the precoding codebook transmit fully coherent codewords.
  • the uplink fully coherent codewords can use downlink Type I single panel (Single Panel, SP) codewords.
  • the codeword can be fully coherently transmitted for all antennas in the preconfigured N antenna port precoding codebook.
  • the first codewords transmitted fully coherently by all antennas are used to map the data transmitted by each layer to all on the antenna port.
  • the first codeword is a non-sparse matrix.
  • the value of the matrix element in the sparse matrix can indicate whether the transmission layer indicated by the matrix element performs data transmission on the corresponding port; the value of the matrix element is "1", indicating that the transmission layer indicated by the matrix element can transmit data on the corresponding port.
  • the data of the transport layer is transmitted on the port. If the value of the matrix element is "0", it means that the data of the transport layer cannot be transmitted on the corresponding port.
  • the first codeword of fully coherent transmission by the antenna is a non-sparse matrix, but in partial coherent transmission, only the transmission layers corresponding to some antenna ports are orthogonal to each other.
  • each group only corresponds to part of the antenna ports; for example, 8 antenna ports are divided into 2 groups, each group has 4 antenna ports, corresponding to 4 uplink transmission layers; at this time, it is necessary to The four uplink transmission layers within a group must be orthogonal to each other; there is no need to require that the uplink transmission layers between different groups must be orthogonal to each other.
  • the sparse matrix corresponding to the first codeword can be directly configured based on the orthogonality between the N antenna ports based on the first codeword.
  • a correlation operation can be performed on the first codeword based on the first codeword, and the sparse matrix is determined based on the operation result.
  • the first codeword can be split to form multiple submatrices, and a sparse matrix corresponding to the first codeword can be constructed based on the orthogonality of the submatrices.
  • a Hadamard operation is performed on the first codeword and the sparse matrix corresponding to the first codeword to obtain the second codeword corresponding to the first codeword.
  • the corresponding sparse matrix can be obtained for each first codeword according to the above implementation. That is to say, each first codeword corresponds to at least one first codeword. Two code words.
  • the first codeword of the fully coherent antenna transmission of the N antenna port corresponding to the MIMO uplink transmission is determined. Based on the first codeword of the N antenna port and the sparse matrix corresponding to the first codeword, the N antenna port can be determined The second codeword transmitted coherently by some antennas of the L layer.
  • some antenna coherent transmission codewords can be designed based on the antenna fully coherent transmission codeword, which can enable MIMO uplink to support the transmission requirements of layer 1 to layer 8 of 8 antenna ports, thereby further enhancing the uplink MIMO technology.
  • Figure 3 is a schematic flowchart of another method for determining partial antenna coherent transmission codewords provided by an embodiment of the present application.
  • the implementation of the method for determining the partial antenna coherent transmission codeword is a communication device.
  • the method may include but is not limited to the following steps:
  • L is a positive integer
  • L is less than or equal to N
  • N is a positive integer power of 2 and N is greater than 4.
  • the method for determining the first codeword of the N antenna port is not limited and can be determined according to actual conditions.
  • the determination process of the first codeword of the antenna fully coherent transmission at the L layer of the N antenna port please refer to the relevant records in the above embodiments, and will not be described again here.
  • Partial antenna coherent transmission can divide all N antenna ports into multiple antenna port groups, and the antenna ports in the group are orthogonal to each other. That is to say, the data transmitted by some layers is only mapped to one antenna port group, and the data transmitted by other layers is only mapped to other antenna port groups, and each part of the transmission layer has a one-to-one correspondence with each antenna port group.
  • all antenna ports can be grouped to obtain M antenna port groups for fully coherent transmission of all antenna ports in the group, where M is a positive integer less than N.
  • the N antenna ports may be evenly distributed, or the N antenna ports may be non-uniformly distributed.
  • N antenna ports are sequentially or cyclically allocated to M antenna port groups; or the transmission coherence between the N antenna ports is determined, and based on the transmission coherence between the N antenna ports, the N The antenna ports are assigned to M antenna port groups.
  • all antenna ports on one antenna panel can be divided into one antenna port group, where the number of antenna panels is the number of antenna port groups.
  • transmission coherence between antenna panels on the terminal device is determined, and N antenna ports are allocated to M antenna port groups based on the transmission coherence between antenna panels.
  • the 8 antenna ports can be divided into 2 antenna port groups or 4 antenna port groups.
  • the first antenna port group is the 1st, 3rd, 5th, and 7th antenna ports
  • the second antenna port group is the 2nd, 4th ,6,8 antenna ports.
  • Another grouping method is: the first antenna port group is the 1st, 2nd, 3rd, and 4th antenna ports
  • the second antenna port group is the 5th, 6th, 7th, and 8th antenna ports.
  • the first antenna port group is the 1st and 2nd antenna ports
  • the second antenna port group is the 3rd and 4th antenna ports
  • the 2nd antenna port group is the 3rd and 4th antenna ports
  • the three antenna port groups are the 5th and 6th antenna ports
  • the fourth antenna port group are the 7th and 8th antenna ports.
  • Another grouping method is: the first antenna port group is the 1st and 3rd antenna ports, the second antenna port group is the 2nd and 4th antenna ports, the third antenna port group is the 5th and 7th antenna ports, and the fourth antenna port The group is the 6th and 8th antenna ports.
  • the number of the antenna port is different.
  • the antenna port can be numbered in binary mode, and the number can be 00, 01, 10..., although the number of the antenna port is different, the same
  • the second codeword determination method provided by the embodiment of the present application can be used, and only the corresponding layer is mapped to the corresponding antenna port number.
  • S33 Split the first codeword into M sub-matrices according to M antenna port groups, where each antenna port group corresponds to one sub-matrix.
  • the first codeword W of fully coherent transmission is divided into M submatrices according to M antenna port groups, namely W 1 ,...,W m ,...,W M , where represents the mth antenna port
  • the submatrix corresponding to the group is W m .
  • the ports included in the antenna port group may be called target ports in the group, each row of the first codeword W corresponds to one port, and the nth row corresponds to the nth port.
  • the row corresponding to the target port in the antenna port group can be selected from the first codeword W to generate a sub-matrix of the antenna port group.
  • the antenna port group includes port 1, port 2, port 3, and port 4.
  • the 4th row corresponding to port 4 generates the sub-matrix of the antenna port group based on the 1st, 2nd, 3rd and 4th rows.
  • the first codeword of fully coherent antenna transmission is the codeword of the existing Type I SP downlink 8Tx antenna fully coherent transmission.
  • the 8 antenna ports are divided into 2 antenna port groups (1, 2, 3, 4) and (5, 6, 7, 8).
  • the first codeword W of the fully coherent antenna is divided into 2 antenna port groups. Two sub-matrices, that is, select the 1st, 2nd, 3rd, and 4th rows in the first codeword W to generate the submatrix W 1 corresponding to the antenna port group (1, 2, 3, 4); Select the 5th, 6th, 7th, and 8th rows in W to generate a submatrix W 2 corresponding to the antenna port group (5, 6, 7, 8).
  • 8 antenna ports are divided into 2 antenna port groups (1, 3, 5, 7) and (2, 4, 6, 8).
  • the first codeword W of the fully coherent antenna is divided into 2 antenna ports.
  • the group is divided into two sub-matrices, that is, the 1st, 3rd, 5th, and 7th rows in the first codeword W are selected to generate the submatrix corresponding to the antenna port group (1,3,5,7) W 1 ; select the 2nd, 4th, 6th, and 8th rows in W to generate the submatrix W 2 corresponding to the antenna port group (2, 4, 6, 8).
  • the first antenna port group is the 1st and 2nd antenna ports
  • the second antenna port group is the 3rd and 4th antenna ports
  • the third antenna port group is the 5th, 6 antenna ports
  • the fourth antenna port group is the 7th and 8th antenna ports.
  • W 1 corresponding to the first antenna port group includes the 1st and 2nd rows in W
  • W 2 corresponding to the second antenna port group includes the 3rd and 4th rows in W
  • the third antenna W 3 corresponding to the port group includes the 5th and 6th rows in W
  • W 4 corresponding to the fourth antenna port group includes the 7th and 8th rows in W.
  • N antenna ports can support uplink transmission of L layer, where the number of transmission layers L is less than or equal to N, and different antenna ports can support different transmission layers.
  • the orthogonality verification is performed on the sub-matrix corresponding to each antenna port group to determine the mutually orthogonal matrix corresponding to the antenna port group from the L layer.
  • Target layer to achieve partially coherent transmission from the antenna. It should be noted that the data of the target layer is transmitted through the target port in the antenna port group.
  • the conjugate transposed sub-matrix of the sub-matrix corresponding to the antenna port group is determined, and the conjugate transposed sub-matrix and the sub-matrix are matrix multiplied to obtain the orthogonal verification matrix corresponding to the antenna port group. For example, for any sub-matrix W m , obtain the conjugate transpose matrix of the sub-matrix W m further, to Do matrix multiplication with W m , that is An orthogonal verification matrix O is obtained, and the orthogonality of the transmission layer is verified on the orthogonal verification matrix O.
  • the submatrices W 1 and W 2 are verified for orthogonality.
  • the target layer corresponding to the antenna port group is determined from the L layer.
  • layer i and layer j are determined to be mutually orthogonal layers; or, in response to the matrix element taking a non-zero value, layer i and layer j are determined to be non-mutually orthogonal. layer.
  • the elements in the p-th row and q-th column of the orthogonal verification matrix O are op,q .
  • op,q 0, it means that the p-th layer and the q-th layer are orthogonal to each other.
  • op,q ⁇ 0 it means The p-th layer and the q-th layer are not orthogonal.
  • each antenna port group selects mutually orthogonal layers.
  • the set of layers selected by all antenna port groups is all layers, that is, the L layer; the layers selected by two antenna port groups do not overlap each other, that is, it is assumed that the set of layers corresponding to the m-th antenna port group is A m , and the set of layers corresponding to the n-th antenna port group is A n .
  • a m ⁇ A n
  • a 1 ⁇ A 2 ⁇ ... ⁇ A M A, where A is the set of all layers.
  • the (1,2,3,4) layers are orthogonal to each other
  • Layers (5, 6, 7, 8) are orthogonal to each other, that is, data from layers 1 to 4 are transmitted in the first antenna port group (1, 2, 3, 4), and data from layers 5 to 8 are transmitted in the second antenna port group (1, 2, 3, 4). Transmit within the antenna port group (5,6,7,8).
  • the determination can be based on the number N of antenna ports and the number M of antenna port groups.
  • modulus values of N and M are determined, and based on the modulus values, the number of target layers for each of the M antenna port groups is determined.
  • the modulus values of N and M being zero, it is determined that the number of target layers corresponding to each antenna port group is L/M.
  • each of the 3 antenna port groups corresponds to 2 layers, and 1 antenna port group corresponds to 1 layer.
  • a sparse matrix corresponding to the first codeword is determined according to the target layer and target port corresponding to each antenna port group.
  • the first matrix element corresponding to the target layer transmitted by the target port in each antenna port group and the second matrix element corresponding to the remaining layer are determined, and the value of the first matrix element corresponding to each antenna port group is determined. is a first value, for example, "1”, and the value of the remaining second matrix element is a second value, for example, "0", so that the sparse matrix of the first codeword can be determined.
  • the sparse matrix can be obtained as follows:
  • each first codeword corresponds to at least one first codeword.
  • the first codeword of the fully coherent antenna transmission of the N antenna port corresponding to the MIMO uplink transmission is determined. Based on the first codeword of the N antenna port and the sparse matrix corresponding to the first codeword, the N antenna port can be determined The second codeword transmitted coherently by some antennas of the L layer.
  • some antenna coherent transmission codewords can be designed based on the antenna fully coherent transmission codewords, so that MIMO uplink can support the transmission requirements of layer 1 to layer 8 of 8 antenna ports, thereby further enhancing the uplink MIMO technology.
  • the method for determining the partial antenna coherent transmission codeword provided by the above embodiment can be applied to terminal equipment and network equipment, and after the partial antenna coherent transmission second codeword is determined, the partial antenna coherent transmission second codeword can be determined based on the partial antenna coherent transmission second codeword.
  • Precoding codebook, terminal equipment and network equipment can perform (Physical Uplink Shared Channel, PUSCH) transmission based on the precoding codebook.
  • each of the foregoing embodiments can be executed individually or in any combination. And each of the foregoing embodiments can be executed by a network side device (such as a base station). In one implementation, the foregoing embodiments are executed by a network side device (eg, a base station), and the network side device (eg, a base station) sends the final determined second codeword to the UE.
  • a network side device eg, a base station
  • the network side device eg, a base station
  • the foregoing embodiments may also be executed by user equipment UE. Further, the UE sends the finally determined second codeword to the network side device (for example, the base station).
  • the network side device for example, the base station.
  • the foregoing embodiments may also be executed by each of the network side equipment (such as a base station) and the user equipment UE.
  • the network side equipment such as a base station
  • the user equipment UE may also be executed by each of the network side equipment (such as a base station) and the user equipment UE.
  • codebook-based uplink transmission (such as PUSCH transmission) is explained below:
  • Figure 4 is a schematic flowchart of an uplink transmission method provided by an embodiment of the present application. Executed by the terminal device, as shown in Figure 4, the method may include but is not limited to the following steps:
  • the network device can send Transmit Precoding Matrix Indicator (TPMI) information to the terminal device, where the precoding matrix indication information carries the precoding code
  • TPMI Precoding Matrix Indicator
  • the Transmit Precoding Matrix Indicator is used to indicate a target codeword in the precoding matrix.
  • S42 Based on the precoding matrix indication information, determine the target codeword corresponding to the uplink transmission from the precoding codebook of the L layer of the N antenna port corresponding to the MIMO uplink transmission.
  • the terminal device can determine the target codeword corresponding to the uplink transmission from the precoding codebook of the L layer of the N antenna port corresponding to the MIMO uplink transmission based on TPMI.
  • the precoding codebook corresponding to MIMO uplink transmission includes the first codeword of the antenna fully coherent transmission based on the N antenna port in the above embodiment, and determines the first codeword of the partial antenna coherent transmission of the L layer of the N antenna port.
  • the terminal device can determine a target codeword from the precoding codebook based on TPMI.
  • the mapping relationship between the codeword and the index can be set in advance, and the target codeword for uplink transmission is determined from the precoding codebook based on the index.
  • S43 Precode the PUSCH based on the target codeword and send it to the network device.
  • the PUSCH After obtaining the target codeword, the PUSCH can be precoded based on the target codeword, and the precoded PUSCH is sent to the network device.
  • the precoding matrix indication information sent by the network device is received, and based on the precoding matrix indication information, the target codeword corresponding to the uplink transmission is determined from the precoding codebook of the L layer of the N antenna port corresponding to the MIMO uplink transmission. , precode the PUSCH based on the target codeword and send it to the network device.
  • Some antenna coherent transmission codewords can be designed based on the fully coherent transmission codewords of all antennas.
  • MIMO uplink supports the transmission requirements of 8 antenna ports from layer 1 to layer 8, thus further improving the Uplink MIMO technology is further enhanced.
  • Figure 5 is a schematic flowchart of an uplink transmission method provided by an embodiment of the present application. Executed by the network device, as shown in Figure 5, the method may include but is not limited to the following steps:
  • S51 Determine the precoding matrix indication information and send the precoding matrix indication information to the terminal device to instruct the terminal device to determine the target codeword corresponding to the uplink transmission from the precoding codebook of the L layer of the N antenna port corresponding to the MIMO uplink transmission. .
  • the network device can receive the Sounding Reference Signals (SRS) resource sent by the terminal device, perform channel evaluation based on the SRS resource, determine the TPMI based on the evaluated channel condition, and send the TPMI to the terminal device.
  • SRS Sounding Reference Signals
  • TPMI is used to indicate a codeword in the precoding matrix, and may be the index of the codeword.
  • the precoding codebook corresponding to MIMO uplink transmission includes the first codeword of the antenna fully coherent transmission based on the N antenna port in the above embodiment, and determines the first codeword of the partial antenna coherent transmission of the L layer of the N antenna port.
  • the process of determining the second codeword for coherent transmission by partial antennas of the L layer of the N antenna port please refer to the relevant content in the above embodiments and will not be described again here.
  • S52 Receive the PUSCH transmission sent by the terminal device, where the PUSCH transmission is precoded by the terminal device based on the target codeword.
  • the terminal device After receiving the TPMI, the terminal device can obtain the target codeword determined for uplink transmission, precode the PUSCH based on the target codeword, and send the precoded PUSCH to the network device. Accordingly, the network device can receive the PUSCH transmission sent by the terminal device.
  • the precoding matrix indication information is determined and the precoding matrix indication information is sent to the terminal device to instruct the terminal device to determine the uplink transmission corresponding to the precoding codebook of the L layer of the N antenna port corresponding to the MIMO uplink transmission.
  • target codeword and receives the PUSCH transmission sent by the terminal device, where the PUSCH transmission is precoded by the terminal device based on the target codeword.
  • Some antenna coherent transmission codewords can be designed based on the fully coherent transmission codewords of all antennas.
  • MIMO uplink supports the transmission requirements of layer 1 to layer 8 of 8 antenna ports, thereby further enhancing the uplink MIMO technology.
  • network equipment and terminal equipment may include hardware structures and software modules to implement the above functions in the form of hardware structures, software modules, or hardware structures plus software modules.
  • a certain function among the above functions can be executed by a hardware structure, a software module, or a hardware structure plus a software module.
  • FIG. 6 is a schematic structural diagram of a communication device 60 provided by an embodiment of the present application.
  • the communication device 60 shown in FIG. 6 may include a transceiver module 61 and a processing module 62.
  • the transceiving module 61 may include a sending module and/or a receiving module.
  • the sending module is used to implement the sending function
  • the receiving module is used to implement the receiving function.
  • the transceiving module 61 may implement the sending function and/or the receiving function.
  • the communication device 60 may be a terminal device, a device in the terminal device, or a device that can be used in conjunction with the terminal device.
  • the communication device 60 may be a network device, a device in a network device, or a device that can be used in conjunction with the network device.
  • the communication device 60 includes: a processing module 62;
  • the processing module 62 is configured to: determine the first codeword of the antenna fully coherent transmission of the L layer of the N antenna port corresponding to the multiple-input multiple-output MIMO uplink transmission, where the L is a positive integer, and the L is less than or equal to the N ; Based on the first codeword of fully coherent transmission by the antenna, determine the sparse matrix corresponding to the first codeword; determine the L layer of the N antenna port based on the first codeword and the corresponding sparse matrix. The second codeword of the partial antenna coherent transmission.
  • the processing module 62 is also configured to: group the N antenna ports to obtain M antenna port groups, where M is a positive integer less than N; group all the antenna port groups according to the M antenna port groups.
  • the first codeword is split into M sub-matrices, where each antenna port group corresponds to one sub-matrix; based on the M sub-matrices, a sparse matrix corresponding to the first codeword is determined.
  • the processing module 62 is also configured to perform orthogonality verification on the sub-matrix corresponding to each of the antenna port groups, so as to determine the mutually orthogonal targets corresponding to the antenna port groups from the L layer. layer, wherein the data of the target layer is transmitted through the target port in the antenna port group; according to the target layer and the target port corresponding to each of the antenna port groups, it is determined that the first codeword corresponds to of sparse matrices.
  • the processing module 62 is also configured to: determine the first matrix element corresponding to the target layer transmitted by the target port in each of the antenna port groups and the second matrix element corresponding to the remaining layer;
  • the first matrix element corresponding to each antenna port group is determined to be a first value and the second matrix element is a second value to determine the sparse matrix of the first codeword.
  • the processing module 62 is also configured to: determine the conjugate transpose sub-matrix of the sub-matrix corresponding to the antenna port group;
  • the target layer corresponding to the antenna port group is determined from the L layer according to whether the value of the matrix element in the orthogonal verification matrix is zero.
  • the processing module 62 is also used to: determine the value i of the row where the matrix element is located and the value j of the column where the matrix element is located, where the i and j are positive integers, and both i and j are greater than or Equal to 1 and less than or equal to L;
  • the i layer and the j layer are determined to be mutually orthogonal layers; or,
  • the i layer and the j layer are non-mutually orthogonal layers.
  • the processing module is further configured to perform a Hadamard operation on the first codeword and the corresponding sparse matrix to obtain a second codeword corresponding to the first codeword.
  • the processing module 62 is further configured to: determine the modulus values of N and M; and determine the number of target layers for each of the M antenna port groups based on the modulus values.
  • the processing module is further configured to: in response to the modulus value being zero, determine the number of target layers corresponding to each of the antenna port groups as In response to the modulus value being non-zero, it is determined that the number of target layers corresponding to the antenna port groups of the modulus value is The number of target layers corresponding to the remaining antenna port groups is
  • the processing module 62 is also configured to determine the normalization coefficient of the second codeword, and perform normalization processing on the second codeword based on the normalization coefficient.
  • the first codeword of the fully coherent antenna transmission of the N antenna port corresponding to the MIMO uplink transmission is determined. Based on the first codeword of the N antenna port and the sparse matrix corresponding to the first codeword, the N antenna port can be determined The second codeword transmitted coherently by some antennas of the L layer.
  • some antenna coherent transmission codewords can be designed based on the antenna fully coherent transmission codeword, which can enable MIMO uplink to support the transmission requirements of layer 1 to layer 8 of 8 antenna ports, thereby further enhancing the uplink MIMO technology.
  • FIG. 7 is a schematic structural diagram of another communication device 70 provided by an embodiment of the present application.
  • the communication device 70 may be a network device, a terminal device, a chip, a chip system, or a processor that supports a network device to implement the above method, or a chip, a chip system, or a processor that supports a terminal device to implement the above method. Processor etc.
  • the device can be used to implement the method described in the above method embodiment. For details, please refer to the description in the above method embodiment.
  • Communication device 70 may include one or more processors 71.
  • the processor 71 may be a general-purpose processor or a special-purpose processor, or the like. For example, it can be a baseband processor or a central processing unit.
  • the baseband processor can be used to process communication protocols and communication data.
  • the central processor can be used to control communication devices (such as base stations, baseband chips, terminal equipment, terminal equipment chips, DU or CU, etc.) and execute computer programs. , processing data for computer programs.
  • the communication device 70 may also include one or more memories 72, on which a computer program 73 may be stored.
  • the processor 71 executes the computer program 73, so that the communication device 70 performs the steps described in the above method embodiment. method.
  • the memory 72 may also store data.
  • the communication device 70 and the memory 72 can be provided separately or integrated together.
  • the communication device 70 may also include a transceiver 74 and an antenna 75 .
  • the transceiver 74 may be called a transceiver unit, a transceiver, a transceiver circuit, etc., and is used to implement transceiver functions.
  • the transceiver 74 may include a receiver and a transmitter.
  • the receiver may be called a receiver or a receiving circuit, etc., used to implement the receiving function;
  • the transmitter may be called a transmitter, a transmitting circuit, etc., used to implement the transmitting function.
  • the communication device 70 may also include one or more interface circuits 76.
  • the interface circuit 76 is used to receive code instructions and transmit them to the processor 71 .
  • the processor 71 executes the code instructions to cause the communication device 70 to perform the method described in the above method embodiment.
  • the processor 71 may include a transceiver for implementing receiving and transmitting functions.
  • the transceiver may be a transceiver circuit, an interface, or an interface circuit.
  • the transceiver circuits, interfaces or interface circuits used to implement the receiving and transmitting functions can be separate or integrated together.
  • the above-mentioned transceiver circuit, interface or interface circuit can be used for reading and writing codes/data, or the above-mentioned transceiver circuit, interface or interface circuit can be used for signal transmission or transfer.
  • the processor 71 may store a computer program 73, and the computer program 73 runs on the processor 71, causing the communication device 70 to perform the method described in the above method embodiment.
  • the computer program 73 may be solidified in the processor 71, in which case the processor 71 may be implemented by hardware.
  • the communication device 70 may include a circuit, which may implement the functions of sending or receiving or communicating in the foregoing method embodiments.
  • the processor and transceiver described in this application can be implemented in integrated circuits (ICs), analog ICs, radio frequency integrated circuits RFICs, mixed signal ICs, application specific integrated circuits (ASICs), printed circuit boards ( printed circuit board (PCB), electronic equipment, etc.
  • the processor and transceiver can also be manufactured using various IC process technologies, such as complementary metal oxide semiconductor (CMOS), n-type metal oxide-semiconductor (NMOS), P-type Metal oxide semiconductor (positive channel metal oxide semiconductor, PMOS), bipolar junction transistor (BJT), bipolar CMOS (BiCMOS), silicon germanium (SiGe), gallium arsenide (GaAs), etc.
  • CMOS complementary metal oxide semiconductor
  • NMOS n-type metal oxide-semiconductor
  • PMOS P-type Metal oxide semiconductor
  • BJT bipolar junction transistor
  • BiCMOS bipolar CMOS
  • SiGe silicon germanium
  • GaAs gallium arsenide
  • the communication device described in the above embodiments may be a network device or a terminal device, but the scope of the communication device described in this application is not limited thereto, and the structure of the communication device may not be limited by FIG. 7 .
  • the communication device may be a stand-alone device or may be part of a larger device.
  • the communication device may be:
  • the IC collection may also include storage components for storing data and computer programs;
  • the communication device may be a chip or a chip system
  • the chip 80 shown in FIG. 8 includes a processor 81 and an interface 82.
  • the number of processors 81 may be one or more, and the number of interfaces 82 may be multiple.
  • Processor 81 configured to: determine the first codeword of antenna fully coherent transmission of the L layer of N antenna ports corresponding to multiple-input multiple-output MIMO uplink transmission, where the L is a positive integer, and the L is less than or equal to the N ; Based on the first codeword of fully coherent transmission by the antenna, determine the sparse matrix corresponding to the first codeword; determine the L layer of the N antenna port based on the first codeword and the corresponding sparse matrix. The second codeword of the partial antenna coherent transmission.
  • the processor 81 is also configured to: group the N antenna ports to obtain M antenna port groups, where M is a positive integer less than N; group all the antenna port groups according to the M antenna ports.
  • the first codeword is split into M sub-matrices, where each antenna port group corresponds to one sub-matrix; based on the M sub-matrices, a sparse matrix corresponding to the first codeword is determined.
  • the processor 81 is also configured to perform orthogonality verification on the sub-matrix corresponding to each of the antenna port groups, so as to determine the mutually orthogonal targets corresponding to the antenna port groups from the L layer. layer, wherein the data of the target layer is transmitted through the target port in the antenna port group; according to the target layer and the target port corresponding to each of the antenna port groups, it is determined that the first codeword corresponds to of sparse matrices.
  • the processor 81 is further configured to: determine the first matrix element corresponding to the target layer transmitted by the target port in each of the antenna port groups and the second matrix element corresponding to the remaining layer; determine each The first matrix element corresponding to the antenna port group is a first value and the second matrix element is a second value to determine the sparse matrix of the first codeword.
  • the processor 81 is also configured to: determine the conjugate transposed sub-matrix of the sub-matrix corresponding to the antenna port group;
  • the processor 81 is also configured to: determine the value i of the row where the matrix element is located and the value j of the column where the matrix element is located, where the i and j are positive integers, and both i and j are greater than or Equal to 1 and less than or equal to L;
  • the i layer and the j layer are determined to be mutually orthogonal layers; or,
  • the i layer and the j layer are non-mutually orthogonal layers.
  • the processor 81 is also configured to perform a Hadamard operation on the first codeword and the corresponding sparse matrix to obtain a second codeword corresponding to the first codeword.
  • the processor 81 is further configured to: determine the modulus values of N and M; and determine the number of target layers for each of the M antenna port groups based on the modulus values.
  • the processor 81 is further configured to: in response to the modulus value being zero, determine the number of target layers corresponding to each of the antenna port groups as In response to the modulus value being non-zero, it is determined that the number of target layers corresponding to the antenna port groups of the modulus value is The number of target layers corresponding to the remaining antenna port groups is
  • the processor 81 is also configured to determine the normalization coefficient of the second codeword, and perform normalization processing on the second codeword based on the normalization coefficient.
  • the chip also includes a memory 83, which is used to store necessary computer programs and data.
  • Embodiments of the present application also provide a system for determining the side link duration.
  • the system includes a communication device as a terminal device and a communication device as a network device in the embodiment of FIG. 6, or the system includes a communication device as in the embodiment of FIG. 7.
  • This application also provides a readable storage medium on which instructions are stored. When the instructions are executed by a computer, the functions of any of the above method embodiments are implemented.
  • This application also provides a computer program product, which, when executed by a computer, implements the functions of any of the above method embodiments.
  • the above embodiments it may be implemented in whole or in part by software, hardware, firmware, or any combination thereof.
  • software it may be implemented in whole or in part in the form of a computer program product.
  • the computer program product includes one or more computer programs.
  • the computer program When the computer program is loaded and executed on a computer, the processes or functions described in the embodiments of the present application are generated in whole or in part.
  • the computer may be a general-purpose computer, a special-purpose computer, a computer network, or other programmable device.
  • the computer program may be stored in or transferred from one computer-readable storage medium to another, for example, the computer program may be transferred from a website, computer, server, or data center Transmission to another website, computer, server or data center through wired (such as coaxial cable, optical fiber, digital subscriber line (DSL)) or wireless (such as infrared, wireless, microwave, etc.) means.
  • the computer-readable storage medium may be any available medium that can be accessed by a computer or a data storage device such as a server, data center, etc. that contains one or more available media integrated.
  • the usable media may be magnetic media (e.g., floppy disks, hard disks, magnetic tapes), optical media (e.g., high-density digital video discs (DVD)), or semiconductor media (e.g., solid state disks, SSD)) etc.
  • magnetic media e.g., floppy disks, hard disks, magnetic tapes
  • optical media e.g., high-density digital video discs (DVD)
  • DVD digital video discs
  • semiconductor media e.g., solid state disks, SSD
  • At least one in this application can also be described as one or more, and the plurality can be two, three, four or more, which is not limited by this application.
  • the technical feature is distinguished by “first”, “second”, “third”, “A”, “B”, “C” and “D”, etc.
  • the technical features described in “first”, “second”, “third”, “A”, “B”, “C” and “D” are in no particular order or order.
  • the corresponding relationships shown in each table in this application can be configured or predefined.
  • the values of the information in each table are only examples and can be configured as other values, which are not limited by this application.
  • the corresponding relationships shown in some rows may not be configured.
  • appropriate deformation adjustments can be made based on the above table, such as splitting, merging, etc.
  • the names of the parameters shown in the titles of the above tables may also be other names understandable by the communication device, and the values or expressions of the parameters may also be other values or expressions understandable by the communication device.
  • other data structures can also be used, such as arrays, queues, containers, stacks, linear lists, pointers, linked lists, trees, graphs, structures, classes, heaps, hash tables or hash tables. wait.
  • Predefinition in this application can be understood as definition, pre-definition, storage, pre-storage, pre-negotiation, pre-configuration, solidification, or pre-burning.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Databases & Information Systems (AREA)
  • Radio Transmission System (AREA)

Abstract

本申请实施例公开了一种部分天线相干传输码字的确定方法及其装置,应用于通信技术领域,该方法包括:确定MIMO上行传输对应的N天线端口L层的天线全相干传输的第一码字,所述L为正整数,且所述L小于或等于所述N;基于所述天线全相干传输的第一码字,确定所述第一码字对应的稀疏矩阵;根据所述第一码字和所述对应的稀疏矩阵,确定所述N天线端口L层的部分天线相干传输的第二码字。本申请实施例中可基于天线全相干传输码字设计部分天线相干传输码字,能够使得MIMO上行支持8天线端口1层至8层传输的需求,进而对上行MIMO技术进一步增强。

Description

一种部分天线相干传输码字的确定方法及其装置 技术领域
本申请涉及通信技术领域,尤其涉及一种部分天线相干传输码字的确定方法及其装置。
背景技术
多输入多输出(Multiple Input Multiple Output,MIMO)系统中的预编码技术可有效降低干扰及系统开销,提升系统容量,是MIMO系统中极其重要的关键技术,在基于码本传输的MIMO上行系统中,码本设计也是预编码技术中重要的一部分。现有MIMO上行传输部分天线相干传输码字所支持的最大天线端口数量为4,即现有MIMO上行部分天线相干传输码字仅支持最大4天线端口最大4层的传输,在MIMO上行传输天线端口增强时,无法满足增强后天线端口的传输需求。
发明内容
本申请实施例提供一种部分天线相干传输码字的确定方法及其装置,通过所有天线全相干传输码字设计部分天线相干传输码字,可应用于MIMO上行传输8天线端口1层至8层部分天线相干传输码字设计。
第一方面,本申请实施例提供一种部分天线相干传输码字的确定方法,该方法包括:
确定MIMO上行传输对应的N天线端口L层的天线全相干传输的第一码字,所述L为正整数,且所述L小于或等于所述N;
基于所述天线全相干传输的第一码字,确定所述第一码字对应的稀疏矩阵;
根据所述第一码字和所述对应的稀疏矩阵,确定所述N天线端口L层的部分天线相干传输的第二码字。
本申请实施例中,确定MIMO上行传输对应的N天线端口的天线全相干传输的第一码字,基于N天线端口的第一码字和第一码字对应的稀疏矩阵,可以确定N天线端口L层的部分天线相干传输的第二码字。本申请实施例中可基于天线全相干传输码字设计部分天线相干传输码字,能够使得MIMO上行支持8天线端口1层至8层传输的需求,进而对上行MIMO技术进一步增强。
第二方面,本申请实施例提供一种通信装置,该通信装置具有实现上述第一方面所述的方法中终端设备的部分或全部功能,比如通信装置的功能可具备本申请中的部分或全部实施例中的功能,也可以具备单独实施本申请中的任一个实施例的功能。所述功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。所述硬件或软件包括一个或多个与上述功能相对应的单元或模块。
在一种实现方式中,该通信装置的结构中可包括收发模块和处理模块,所述处理模块被配置为支持通信装置执行上述方法中相应的功能。所述收发模块用于支持通信装置与其他设备之间的通信。所述通信装置还可以包括存储模块,所述存储模块用于与收发模块和处理模块耦合,其保存通信装置必要的计算机程序和数据。
作为示例,处理模块可以为处理器,收发模块可以为收发器或通信接口,存储模块可以为存储器。
在一种实现方式中,该通信装置的结构中可包括收发模块和处理模块,该处理模块被配置为支持通信装置执行上述方法中相应的功能。收发模块用于支持通信装置与其他设备之间的通信。所述通信装置还可以包括存储模块,所述存储模块用于与收发模块和处理模块耦合,其保存通信装置必要的计算机程 序和数据。
第三方面,本申请实施例提供一种通信装置,该通信装置包括处理器,当该处理器调用存储器中的计算机程序时,执行上述第一方面所述的方法。
第四方面,本申请实施例提供一种通信装置,该通信装置包括处理器和存储器,该存储器中存储有计算机程序;所述处理器执行该存储器所存储的计算机程序,以使该通信装置执行上述第一方面所述的方法。
第五方面,本申请实施例提供一种通信装置,该装置包括处理器和接口电路,该接口电路用于接收代码指令并传输至该处理器,该处理器用于运行所述代码指令以使该装置执行上述第一方面所述的方法。
第六方面,本发明实施例提供一种计算机可读存储介质,用于储存为上述终端设备所用的指令,当所述指令被执行时,使所述终端设备执行上述第一方面所述的方法。
第七方面,本申请还提供一种包括计算机程序的计算机程序产品,当其在计算机上运行时,使得计算机执行上述第一方面所述的方法。
第八方面,本申请提供一种芯片系统,该芯片系统包括至少一个处理器和接口,用于支持终端设备实现第一方面所涉及的功能,例如,确定或处理上述方法中所涉及的数据和信息中的至少一种。在一种可能的设计中,所述芯片系统还包括存储器,所述存储器,用于保存终端设备必要的计算机程序和数据。该芯片系统,可以由芯片构成,也可以包括芯片和其他分立器件。
第九方面,本申请提供一种计算机程序,当其在计算机上运行时,使得计算机执行上述第一方面所述的方法。
附图说明
为了更清楚地说明本申请实施例或背景技术中的技术方案,下面将对本申请实施例或背景技术中所需要使用的附图进行说明。
图1是本申请实施例提供的一种通信系统的架构示意图;
图2是本申请实施例提供的一种部分天线相干传输码字的确定方法的流程示意图;
图3是本申请实施例提供的另一种部分天线相干传输码字的确定方法的流程示意图;
图4是本申请实施例提供的一种基于码字的上行传输方法的流程示意图;
图5是本申请实施例提供的另一种基于码字的上行传输方法的流程示意图;
图6是本申请实施例提供的一种通信装置的结构示意图;
图7是本申请实施例提供的一种通信装置的结构示意图;
图8是本申请实施例提供的一种芯片的结构示意图。
具体实施方式
这里将详细地对示例性实施例进行说明,其示例表示在附图中。下面的描述涉及附图时,除非另有表示,不同附图中的相同数字表示相同或相似的要素。以下示例性实施例中所描述的实施方式并不代表与本公开相一致的所有实施方式。相反,它们仅是与如所附权利要求书中所详述的、本公开的一些方面相一致的装置和方法的例子。
在本公开实施例使用的术语是仅仅出于描述特定实施例的目的,而非旨在限制本公开实施例。在本公开实施例和所附权利要求书中所使用的单数形式的“一种”和“该”也旨在包括多数形式,除非上下 文清楚地表示其他含义。还应当理解,本文中使用的术语“和/或”是指并包含一个或多个相关联的列出项目的任何或所有可能组合。
应当理解,尽管在本公开实施例可能采用术语第一、第二、第三等来描述各种信息,但这些信息不应限于这些术语。这些术语仅用来将同一类型的信息彼此区分开。例如,在不脱离本公开实施例范围的情况下,第一信息也可以被称为第二信息,类似地,第二信息也可以被称为第一信息。取决于语境,如在此所使用的词语“如果”可以被解释成为“在……时”或“当……时”或“响应于确定”出于简洁和便于理解的目的,本文在表征大小关系时,所使用的术语为“大于”或“小于”、“高于”或“低于”。但对于本领域技术人员来说,可以理解:术语“大于”也涵盖了“大于等于”的含义,“小于”也涵盖了“小于等于”的含义;术语“高于”涵盖了“高于等于”的含义,“低于”也涵盖了“低于等于”的含义。
为了便于理解,首先介绍本申请涉及的术语。
物理上行共享信道(Physical Uplink Shared Channel,PUSCH)用于承载来自传输信道PUSCH的数据。
相干传输被定义为一种UE的能力,UE的相干传输能力包括:
全相干(Full Coherence)传输:所有的天线端口都可以相干传输。
部分相干(Partial Coherence)传输:同一相干传输组内的天线端口可以相干传输,不同相干传输组内的天线端口不能相干传输,每个相干传输组包括至少两个天线端口。
非相干(Non coherence)传输:没有天线端口可以相干传输。
通过本申请实施例公开的MIMO上行传输部分天线相干传输码字的确定方法,确定出部分天线相干传输码字可适用于通信系统中,下面首先对本申请实施例适用的通信系统进行描述。
为了更好的理解本申请实施例公开的一种部分天线相干传输码字的确定方法,下面首先对本申请实施例适用的通信系统进行描述。
请参见图1,图1为本申请实施例提供的一种通信系统的架构示意图。该通信系统可包括但不限于一个网络设备和一个终端设备,图1所示的设备数量和形态仅用于举例并不构成对本申请实施例的限定,实际应用中可以包括两个或两个以上的网络设备,两个或两个以上的终端设备。图1所示的通信系统以包括一个网络设备101和一个终端设备102为例。
需要说明的是,本申请实施例的技术方案可以应用于各种通信系统。例如:长期演进(long term evolution,LTE)系统、第五代(5th generation,5G)移动通信系统、5G新空口(new radio,NR)系统,或者其他未来的新型移动通信系统等。还需要说明的是,本申请实施例中的侧链路还可以称为侧行链路或直通链路。
本申请实施例中的网络设备101是网络侧的一种用于发射或接收信号的实体。例如,网络设备101可以为演进型基站(evolved NodeB,eNB)、传输点(transmission reception point,TRP)、NR系统中的下一代基站(next generation NodeB,gNB)、其他未来移动通信系统中的基站或无线保真(wireless fidelity,WiFi)系统中的接入节点等。本申请的实施例对网络设备所采用的具体技术和具体设备形态不做限定。本申请实施例提供的网络设备可以是由集中单元(central unit,CU)与分布式单元(distributed unit,DU)组成的,其中,CU也可以称为控制单元(control unit),采用CU-DU的结构可以将网络设备,例如基站的协议层拆分开,部分协议层的功能放在CU集中控制,剩下部分或全部协议层的功能分布在DU中,由CU集中控制DU。
本申请实施例中的终端设备102是用户侧的一种用于接收或发射信号的实体,如手机。终端设备也 可以称为终端设备(terminal)、用户设备(user equipment,UE)、移动台(mobile station,MS)、移动终端设备(mobile terminal,MT)等。终端设备可以是具备通信功能的汽车、智能汽车、手机(mobile phone)、穿戴式设备、平板电脑(Pad)、带无线收发功能的电脑、虚拟现实(virtual reality,VR)终端设备、增强现实(augmented reality,AR)终端设备、工业控制(industrial control)中的无线终端设备、无人驾驶(self-driving)中的无线终端设备、远程手术(remote medical surgery)中的无线终端设备、智能电网(smart grid)中的无线终端设备、运输安全(transportation safety)中的无线终端设备、智慧城市(smart city)中的无线终端设备、智慧家庭(smart home)中的无线终端设备等等。本申请的实施例对终端设备所采用的具体技术和具体设备形态不做限定。
在侧链路通信中,存在4种侧链路传输模式。侧链路传输模式1和侧链路传输模式2用于终端设备直通(device-to-device,D2D)通信。侧链路传输模式3和侧链路传输模式4用于V2X通信。当采用侧链路传输模式3时,资源分配由网络设备101调度。具体的,网络设备101可以将资源分配信息发送给终端设备102,然后由该终端设备102向另一终端设备分配资源,以使得该另一终端设备可以通过分配到的资源向网络设备101发送信息。在V2X通信中,可以将信号较好或者可靠性较高的终端设备作为终端设备102。本申请实施例中提及的第一终端设备可以指该终端设备102,第二终端设备可以指该另一终端设备。
可以理解的是,本申请实施例描述的通信系统是为了更加清楚的说明本申请实施例的技术方案,并不构成对于本申请实施例提供的技术方案的限定,本领域普通技术人员可知,随着系统架构的演变和新业务场景的出现,本申请实施例提供的技术方案对于类似的技术问题,同样适用。
需要说明的是,本申请中任一个实施例提供的MIMO上行传输部分天线相干传输码字的确定方法可以单独执行,或是结合其他实施例中的可能的实现方法一起被执行,还可以结合相关技术中的任一种技术方案一起被执行。
下面结合附图对本申请所提供的部分天线相干传输码字的确定方法及其装置进行详细地介绍。
请参见图2,图2是本申请实施例提供的一种部分天线相干传输码字的确定方法的流程示意图。该部分天线相干传输码字的确定方法的执行为通信设备。如图2所示,该方法可以包括但不限于如下步骤:
S21,确定MIMO上行传输对应的N天线端口L层的天线全相干传输的第一码字。
其中,L为正整数,且L小于或等于N。N为2的正整数次幂且N大于4。
随着传输需求和传输场景的增强,上行传输可以支持增多的天线端口和上行传输层数即天线端口数量可以从4个增多到最大N个,相应的,上行传输层数可以从4层扩展到L层,例如N的取值可以为8,L的取值也可以为1至8。
可选地,上行传输的天线端口数量N以及上行传输层数L可以相等,也可以不相等,也就是说,MIMO上行传输可以为N天线端口L层的上行传输,L=N,此种情况下,上行传输层数L等于天线端口数量N;MIMO上行传输也可以为N天线端口L层,此种情况下,上行传输层数L小于天线端口数量N。
本申请中对于N天线端口的第一码字的确定方式不作限定,可以根据实际情况进行确定。
可选地,N天线端口的第一码字可以为预先配置所有天线全相干传输的第一码字。可选地,N天线端口的第一码字,可以为基于N维的正交码本例如克尔杜克Kerdock码本,确定N天线端口的的所有天线全相干传输的第一码字,可选地,本申请中对Kerdock码本进行能量归一化获取N天线端口的所有天 线全相干传输的第一码字。需要说明的是,Kerdock码本是一种在通信系统设计中的正交码本,可用于构建相互无偏基序列。Kerdock码本具有正交性,即每个Kerdock码字中任意两列向量均互相正交。N维的克尔杜克Kerdock码本,共包含N个码字,其中每个码字均为N维度的正交矩阵,且仅含有1,-1,i,-i这4种元素。
可选地,可以为3GPP通信协议中约定的MIIMO上行传输N天线端口的预编码码本中所有天线全相干传输码字;可选地,可以为3GPP通信协议中约定的MIIMO下行传输N天线端口预编码码本中所有天线全相干传输码字,例如,上行全相干码字可采用下行类型一(Type I)单面板(Single Panel,SP)码字。可选地,可以为预先配置的N天线端口预编码码本中所有天线全相干传输码字。
S22,基于天线全相干传输的第一码字,确定第一码字对应的稀疏矩阵。
需要说明的是,本申请中对于N天线端口的所有天线全相干传输的第一码字的数量,;其中,利用所有天线全相干传输的第一码字,将每层传输的数据映射到所有的天线端口上。在一种可能的实现方式中,第一码字为非稀疏矩阵。
需要说明的说,稀疏矩阵中矩阵元素的取值,可以表示该矩阵元素指示的传输层是否在对应的端口上进行数据传输;该矩阵元素的取值为“1”,表示可以在该对应端口上传输该传输层的数据,若该矩阵元素的取值为“0”,则表示该对应端口上不能传输该传输层的数据。
本申请实施例中,由于天线全相干传输的第一码字为非稀疏矩阵,但是部分相干传输仅为部分天线端口对应的传输层相互正交。例如N个天线端口被分组后,则每个组只对应部分天线端口;例如8个天线端口被分为2组,每组为4个天线端口,对应4个上行传输层数;而此时需要一组内的4个上行传输层数要相互正交;而无需要求不同组之间的上行传输层数必须相互正交。因此,需要设计一个稀疏矩阵,通过第一码字与该稀疏矩阵做矩阵点乘运算,以得到部分相干传输的第二码字,即在已知第一码字的基础上,通过稀疏矩阵的设计,得到天线端口组内正交的上行传输层数的第二码字。
可选地,可以在第一码字的基础上按照N个天线端口之间的正交性,直接配置第一码字对应的稀疏矩阵。
可选地,可以基于第一码字,对第一码字进行相关运算,基于运算结果确定稀疏矩阵。在一些实现中,可以对第一码字进行拆分,形成多个子矩阵,根据子矩阵的正交性构建第一码字对应的稀疏矩阵。
S23,根据第一码字和对应的稀疏矩阵,确定N天线端口L层的部分天线相干传输的第二码字。
可选地,对第一码字和该第一码字对应的稀疏矩阵进行哈达玛Hadamard运算,得到第一码字对应的第二码字。需要说明的是,N个天线端口的第一码字有多个,每个第一码字可以按照上述实施方式获取到对应的稀疏矩阵,也就是说每个第一码字至少对应有一个第二码字。
本申请实施例中,确定MIMO上行传输对应的N天线端口的天线全相干传输的第一码字,基于N天线端口的第一码字和第一码字对应的稀疏矩阵,可以确定N天线端口L层的部分天线相干传输的第二码字。本申请实施例中可基于天线全相干传输码字设计部分天线相干传输码字,能够使得MIMO上行支持8天线端口1层至8层传输的需求,进而对上行MIMO技术进一步增强。
请参见图3,图3是本申请实施例提供的另一种部分天线相干传输码字的确定方法的流程示意图。该部分天线相干传输码字的确定方法的执行为通信设备。如图3所示,该方法可以包括但不限于如下步骤:
S31,确定MIMO上行传输对应的N天线端口L层的天线全相干传输的第一码字。
其中,L为正整数,且L小于或等于N。N为2的正整数次幂且N大于4。
本申请中对于N天线端口的第一码字的确定方式不作限定,可以根据实际情况进行确定。N天线端口L层的天线全相干传输的第一码字的确定过程,可参见上述实施例中相关内容的记载,此处不再赘述。
S32,对N个天线端口进行分组,得到M个天线端口组。
部分天线相干传输可以将所有N个天线端口分为多个天线端口组,组内的天线端口相互正交。也就是说,部分层传输的数据仅映射到一个天线端口组上,其他层传输的数据仅映射到其他天线端口组上,且每部分传输层和每天线端口组一一对应。本申请实施例中,可以对所有天线端口进行分组,得到组内所有天线端口全相干传输的M个天线端口组,其中M为小于N的正整数。
可选地,可以将N个天线端口进行均匀分配,或者将N个天线端口进行非均匀分配。可选地,将N个天线端口顺序分配或循环分配至M个天线端口组;或者确定N个天线端口之间的传输相干性,并基于N个天线端口之间的传输相干性,将N个天线端口分配至M个天线端口组。可选地,对于多面板(Multi Panel,MP)终端设备,一个天线面板上的所有天线端口可以划分为一个天线端口组,其中天线面板的数量即为天线端口组的数量。可选地,确定终端设备上天线面板之间的传输相干性,基于天线面板之间的传输相干性,将N个天线端口分配至M个天线端口组。
例如,以8个天线端口为例进行分组解释说明,可以将8个天线端口分为2个天线端口组或4天线端口组。
在将8个天线端口分为2个天线端口组的情况下,一种分组方式为:第一天线端口组为第1,3,5,7天线端口,第二天线端口组为第2,4,6,8天线端口。另一种分组方式为:第一天线端口组为第1,2,3,4天线端口,第二天线端口组为第5,6,7,8天线端口。
在将8个天线端口分为4个天线端口组的情况下,一种分组方式为:第一天线端口组为第1,2天线端口,第二天线端口组为第3,4天线端口,第三天线端口组为第5,6天线端口,第四天线端口组为第7,8天线端口。另一种分组方式为:第一天线端口组为第1,3天线端口,第二天线端口组为第2,4天线端口,第三天线端口组为第5,7天线端口,第四天线端口组为第6,8天线端口。
需要说明的是,在不同的天线端口编号规则下,天线端口的编号不同,例如,可以采用二进制方式对天线端口进行编号,编号可以00,01,10……,虽然天线端口的编号不同,同样可以使用本申请实施例提供的第二码字确定方法,只需将对应的层映射在对应天线端口编号上即可。
S33,按照M个天线端口组,将第一码字进行拆分为M个子矩阵,其中,每个天线端口组对应一个子矩阵。
将全相干传输的第一码字W,按照M个天线端口组划分为M个子矩阵,分别为W 1,...,W m,...,W M,其中,表示第m个天线端口组对应的子矩阵为W m。可选地,天线端口组内包括的端口可以称为该组内的目标端口,第一码字W每一行对应一个端口,第n行对应第n个端口。本申请实施例中,可以从第一码字W中选取天线端口组内目标端口所对应的行,生成该天线端口组的子矩阵。例如,天线端口组包括端口1、端口2、端口3和端口4,从第一码字W中选取端口1对应的第1行、端口2对应的第2行、端口3对应的第3行,端口4对应的第4行,基于第1行、第2行、第3行和第4行,生成该天线端口组的子矩阵。
下面以8个天线端口为例,对第一码字拆分为子矩阵的过程进行解释说明:
本公开中以天线全相干传输的第一码字为现有Type I SP下行8Tx的天线全相干传输的码字。
Figure PCTCN2022099627-appb-000001
8个天线端口分为2个天线端口组(1,2,3,4)和(5,6,7,8),将天线全相干的第一码字W,按照2个天线端口组分为两个子矩阵,也就是选取第一码字W中的第1行、第2行、第3行和第4行,生成天线端口组(1,2,3,4)对应的子矩阵W 1;选取W中的第5行、第6行、第7行和第8行,生成天线端口组(5,6,7,8)对应的子矩阵W 2
Figure PCTCN2022099627-appb-000002
Figure PCTCN2022099627-appb-000003
再例如,8个天线端口分为2个天线端口组(1,3,5,7)和(2,4,6,8),将天线全相干的第一码字W,按照2个天线端口组分为两个子矩阵,也就是选取第一码字W中的第1行、第3行、第5行和第7行,生成天线端口组(1,3,5,7)对应的子矩阵W 1;选取W中的第2行、第4行、第6行和第8行,生成天线端口组(2,4,6,8)对应的子矩阵W 2
再例如,8个天线端口分为4个天线端口组,第一天线端口组为第1,2天线端口,第二天线端口组为第3,4天线端口,第三天线端口组为第5,6天线端口,第四天线端口组为第7,8天线端口。相应地,第一天线端口组对应的W 1中包括W中的第1行和第2行;第二天线端口组对应的W 2中包括W中的第3行和第4行;第三天线端口组对应的W 3中包括W中的第5行和第6行;第四天线端口组对应的W 4中包括W中的第7行和第8行。
S34,根据M个子矩阵,确定第一码字对应的稀疏矩阵。
需要说明的是,N天线端口可以支持L层的上行传输,其中,传输层数L小于或者等于N,不同的天线端口可以支持不同的传输层。在将所有天线端口分成第一天线端口组和第二天线端口组后,对每个天线端口组对应的子矩阵进行正交性验证,以从L层中确定天线端口组对应的相互正交的目标层,以实现天线的部分相干传输。需要说明的是目标层的数据通过天线端口组内的目标端口传输。
在一些实现中,确定天线端口组对应的子矩阵的共轭转置子矩阵,对共轭转置子矩阵和子矩阵进行矩阵相乘,得到天线端口组对应的正交验证矩阵。例如,对于任意一个子矩阵W m,获取该子矩阵W m的共轭转置矩阵
Figure PCTCN2022099627-appb-000004
进一步地,对
Figure PCTCN2022099627-appb-000005
和W m做矩阵乘法,即
Figure PCTCN2022099627-appb-000006
得到正交验证矩阵O,对该正交验证矩阵O进行传输层的正交性进行验证。
在8个天线端口分为2个天线端口组(1,2,3,4)和(5,6,7,8)的情况下,对子矩阵W 1和W 2进行正交性验证。
Figure PCTCN2022099627-appb-000007
Figure PCTCN2022099627-appb-000008
进一步地,根据正交验证矩阵中矩阵元素的取值是否为零,从L层中确定天线端口组对应的目标层。可选地,确定矩阵元素所在行的取值i和所在列的取值j,其中,i和j均为正整数,i和j均大于或等于1且小于或者等于L。本公开实施例中,响应于矩阵元素取值为零,确定层i与层j为相互正交的层;或者,响应于矩阵元素取值非零,确定层i与层j为非相互正交的层。
例如,正交验证矩阵O的第p行第q列元素为o p,q,当o p,q=0时表示第p层和第q层相互正交,当o p,q≠0时表示第p层和第q层不正交。在判断正交性后,每个天线端口组选取相互正交的层,需要说明的是,所有天线端口组选取的层的集合为所有的层,即L层;两个天线端口组选取的层互不重叠,即假设第m个天线端口组对应的层的集合为A m,而第n个天线端口组对应的层的集合为A n。在第m个天线端口组与第n个天线端口组非同一个天线端口组的情况下,有A m∩A n=φ,且A 1∪A 2∪...∪A M=A,其中A为所有层的集合。
在8个天线端口分为2个天线端口组(1,2,3,4)和(5,6,7,8)的情况下,第(1,2,3,4)层相互正交,第(5,6,7,8)层相互正交,即第1至第4层数据在第一天线端口组(1,2,3,4)内传输,第5-8层数据在第二天线端口组(5,6,7,8)内传输。
需要说明的是,不同的天线端口组对应的目标层的数量不同,本公开中,可以基于天线端口的数量N和天线端口组的数量M进行确定。可选地,确定N和M的模值,基于该模值,确定M个天线端口组各自的目标层的数量。响应于该N和M的模值为零,确定每个天线端口组对应的目标层的数量为L/M,响应于该N和M的模值非零,确定该模值个天线端口组对应的目标层的数量为
Figure PCTCN2022099627-appb-000009
剩余的天线端口组对应的目标层的数量为
Figure PCTCN2022099627-appb-000010
也就是说,当a=mod(L,M)=0时,所有天线端口组均对应的目标层的数量为
Figure PCTCN2022099627-appb-000011
层。当a=mod(L,M)≠0时,则a个天线端口组中每个天线端口组对应的目标层的数量为
Figure PCTCN2022099627-appb-000012
层,即对
Figure PCTCN2022099627-appb-000013
向上取整。其余M-a个天线端口组每端口组对应的目标层的数量为
Figure PCTCN2022099627-appb-000014
层,即对
Figure PCTCN2022099627-appb-000015
向下取整。
例如L=7,M=4,a=mod(7,4)=3≠0,则3个天线端口组中每个天线端口组对应2层,1个天线端口组对应1层。
进一步地,根据每个天线端口组对应的目标层和目标端口,确定第一码字对应的稀疏矩阵。在一些实现中确定每个天线端口组内目标端口所传输的目标层对应的第一矩阵元素和剩余层对应的第二矩阵元素,并确定每个天线端口组对应的第一矩阵元素的取值为第一数值,例如为“1”,剩余的第二矩阵元素的取值为第二数值,例如为“0”,从而可以确定第一码字的稀疏矩阵。
继续以上述举例为例,可以获取到稀疏矩阵如下:
Figure PCTCN2022099627-appb-000016
S35,根据第一码字和对应的稀疏矩阵,确定N天线端口L层的部分天线相干传输的第二码字。
可选地,对第一码字和该第一码字对应的稀疏矩阵进行哈达玛Hadamard运算,得到第一码字对应的第二码字,即W p=W⊙S,其中,W P为第二码字,W为第一码字,S为稀疏矩阵。需要说明的是,N个天线端口的第一码字有多个,每个第一码字可以按照上述实施方式获取到对应的稀疏矩阵,也就是说每个第一码字至少对应有一个第二码字。
可选地,在获取到第二码字后,确定第二码字的归一化系数,并基于归一化系数对第二码字进行能量归一化处理。以得到归一化后的部分天线相干传输的第二码字。可选地,可以设置第二码字对应的归一化系数与非零元个数有关。例如,码字非零元的个数为K,则第二码字对应的归一化系数为
Figure PCTCN2022099627-appb-000017
可选地,可以设置第二码字对应的归一化系数为
Figure PCTCN2022099627-appb-000018
例如,N=8、L=8、M=2时,则第二码字对应的归一化系数为
Figure PCTCN2022099627-appb-000019
本申请实施例中,确定MIMO上行传输对应的N天线端口的天线全相干传输的第一码字,基于N天线端口的第一码字和第一码字对应的稀疏矩阵,可以确定N天线端口L层的部分天线相干传输的第二码字。本申请实施例中可基于天线全相干传输码字,设计部分天线相干传输码字,能够使得MIMO上行支持8天线端口1层至8层传输的需求,进而对上行MIMO技术进一步增强。
上述实施例提供的部分天线相干传输码字的确定方法,可适用于终端设备和网络设备,并且在确定了部分天线相干传输第二码字后,可以基于部分天线相干传输第二码字确定的预编码码本,终端设备和 网络设备可以基于该预编码码本进行(Physical Uplink Shared Channel,PUSCH)的传输。
需要说明的是,前述的各个实施例可以单独被执行,也可以任意组合在一起被执行。且前述的各个实施例可以由网络侧设备(例如基站)执行。在一种实现方式中,前述的各个实施例由网络侧设备(例如基站)执行,且网络侧设备(例如基站)将最终确定的第二码字,发送给UE。
在一些可能的实现方式中,前述的各个实施例还可以由用户设备UE执行。进一步的,UE将最终确定的第二码字,发送给网络侧设备(例如基站)。
在另一些可能的实现方式中,前述的各个实施例还可以由网络侧设备(例如基站)和用户设备UE各自执行。
下面对基于码本的上行传输(例如PUSCH传输)的过程进行解释:
请参见图4,图4是本申请实施例提供的一种上行传输方法的流程示意图。由终端设备执行,如图4所示,该方法可以包括但不限于如下步骤:
S41,接收网络设备发送的预编码矩阵指示信息。
需要说明的是,在基于预编码码本的PUSCH传输过程中,网络设备可以发送预编码矩阵指示(Transmit Precoding Matrix Indicator,TPMI)信息给终端设备,其中,预编码矩阵指示信息中携带预编码码本设计信息,相应地,终端设备可以接收网络设备发送的预编码指示信息。
其中,预编码矩阵指示(Transmit Precoding Matrix Indicator,TPMI),用于指示预编码矩阵中的一个目标码字。
S42,基于预编码矩阵指示信息,从MIMO上行传输对应的N天线端口L层的预编码码本中,确定上行传输对应的目标码字。
需要说明的是,终端设备可以基于TPMI,从MIMO上行传输对应的N天线端口L层的预编码码本中,确定上行传输对应的目标码字。需要说明的是,MIMO上行传输对应的预编码码本中,包括上述实施例中基于N天线端口的天线全相干传输的第一码字,确定出N天线端口L层的部分天线相干传输的第二码字。关于根据确定N天线端口L层的部分天线相干传输的第二码字的过程,可参见上述实施例中相关内容的记载,此处不再赘述。
终端设备可以基于TPMI,从预编码码本中确定一个目标码字。可选地,可以预先设置码字与索引index之间的映射关系,并根据索引,从预编码码本中确定上行传输的目标码字。
S43,基于目标码字对PUSCH进行预编码并发送给网络设备。
在获取到目标码字后,可以基于目标码字对PUSCH进行预编码,将预编码后的PUSCH发送给网络设备。
本申请实施例中,接收网络设备发送的预编码矩阵指示信息,基于预编码矩阵指示信息,从MIMO上行传输对应的N天线端口L层的预编码码本中,确定上行传输对应的目标码字,基于目标码字对PUSCH进行预编码并发送给网络设备,可以基于所有天线全相干传输码字设计部分天线相干传输码字,MIMO上行支持8天线端口1层至8层传输的需求,进而对上行MIMO技术进一步增强。
请参见图5,图5是本申请实施例提供的一种上行传输方法的流程示意图。由网络设备执行,如图5所示,该方法可以包括但不限于如下步骤:
S51,确定预编码矩阵指示信息,并向终端设备发送预编码矩阵指示信息,以指示终端设备从MIMO 上行传输对应的N天线端口L层的预编码码本中,确定上行传输对应的目标码字。
本申请实施例中,网络设备可以接收终端设备发送的探测参考信号(Sounding Reference Signals,SRS)资源,基于该SRS资源进行信道评估,基于评估出的信道情况,确定TPMI,并将向终端设备发送TPMI。该TPMI用于指示预编码矩阵中的一个码字,可以为该码字的index。
需要说明的是,MIMO上行传输对应的预编码码本中,包括上述实施例中基于N天线端口的天线全相干传输的第一码字,确定出N天线端口L层的部分天线相干传输的第二码字。关于根据确定N天线端口L层的部分天线相干传输的第二码字的过程,可参见上述实施例中相关内容的记载,此处不再赘述。
S52,接收终端设备发送的PUSCH传输,其中PUSCH传输由终端设备基于目标码字进行预编码得到。
终端设备接收到TPMI后,可以获取到确定出用于上行传输的目标码字,并基于目标码字对PUSCH进行预编码,并将预编码后的PUSCH发送给网络设备。相应地,网络设备可以接收终端设备发送的PUSCH传输。
本申请实施例中,确定预编码矩阵指示信息,并向终端设备发送预编码矩阵指示信息,以指示终端设备从MIMO上行传输对应的N天线端口L层的预编码码本中,确定上行传输对应的目标码字,接收终端设备发送的PUSCH传输,其中PUSCH传输由终端设备基于目标码字进行预编码得到。可以基于所有天线全相干传输码字设计部分天线相干传输码字,MIMO上行支持8天线端口1层至8层传输的需求,进而对上行MIMO技术进一步增强。
上述本申请提供的实施例中,分别从网络设备、终端设备的角度对本申请实施例提供的方法进行了介绍。为了实现上述本申请实施例提供的方法中的各功能,网络设备和终端设备可以包括硬件结构、软件模块,以硬件结构、软件模块、或硬件结构加软件模块的形式来实现上述各功能。上述各功能中的某个功能可以以硬件结构、软件模块、或者硬件结构加软件模块的方式来执行。
请参见图6,为本申请实施例提供的一种通信装置60的结构示意图。图6所示的通信装置60可包括收发模块61和处理模块62。收发模块61可包括发送模块和/或接收模块,发送模块用于实现发送功能,接收模块用于实现接收功能,收发模块61可以实现发送功能和/或接收功能。
通信装置60可以是终端设备,也可以是终端设备中的装置,还可以是能够与终端设备匹配使用的装置。或者,通信装置60可以是网络设备,也可以是网络设备中的装置,还可以是能够与网络设备匹配使用的装置。
通信装置60,包括:处理模块62;
处理模块62,用于:确定多输入多输出MIMO上行传输对应的N天线端口L层的天线全相干传输的第一码字,所述L为正整数,且所述L小于或等于所述N;基于所述天线全相干传输的第一码字,确定所述第一码字对应的稀疏矩阵;根据所述第一码字和所述对应的稀疏矩阵,确定所述N天线端口L层的部分天线相干传输的第二码字。
可选地,处理模块62,还用于:对N个所述天线端口进行分组,得到M个天线端口组,所述M为小于N的正整数;按照M个所述天线端口组,将所述第一码字进行拆分为M个子矩阵,其中,每个天线端口组对应一个子矩阵;根据M个所述子矩阵,确定所述第一码字对应的稀疏矩阵。
可选地,处理模块62,还用于:对每个所述天线端口组对应的子矩阵进行正交性验证,以从所述L 层中确定所述天线端口组对应的相互正交的目标层,其中,所述目标层的数据通过所述天线端口组内的目标端口传输;根据每个所述天线端口组对应的所述目标层和所述目标端口,确定所述第一码字对应的稀疏矩阵。
可选地,处理模块62,还用于:确定每个所述天线端口组内目标端口所传输的所述目标层对应的第一矩阵元素和剩余层对应的第二矩阵元素;
确定每个所述天线端口组对应的所述第一矩阵元素为第一数值第二矩阵元素为第二数值,以确定所述第一码字的稀疏矩阵。
可选地,处理模块62,还用于:确定所述天线端口组对应的子矩阵的共轭转置子矩阵;
对所述共轭转置子矩阵和所述子矩阵进行矩阵相乘,得到所述天线端口组对应的正交验证矩阵;
根据所述正交验证矩阵中矩阵元素的取值是否为零,从所述L层中确定所述天线端口组对应的所述目标层。
可选地,处理模块62,还用于:确定所述矩阵元素所在行的取值i和所在列的取值j,其中,所述i和j为正整数,所述i和j均大于或等于1且小于或者等于L;
响应于所述矩阵元素取值为零,确定i层与j层为相互正交的层;或者,
响应于所述所述矩阵元素取值非零,确定所述i层与所述j层为非相互正交的层。
可选地,处理模块,还用于:对所述第一码字和所述对应的稀疏矩阵进行哈达玛Hadamard运算,得到所述第一码字对应的第二码字。
可选地,处理模块62,还用于:确定所述N和所述M的模值;根据所述模值,确定M个所述天线端口组各自的所述目标层的数量。
可选地,处理模块,还用于:响应于所述模值为零,确定每个所述天线端口组对应的所述目标层的数量为
Figure PCTCN2022099627-appb-000020
响应于所述模值非零,确定所述模值个的天线端口组对应的所述目标层的数量为
Figure PCTCN2022099627-appb-000021
剩余的天线端口组对应的所述目标层的数量为
Figure PCTCN2022099627-appb-000022
可选地,处理模块62,还用于:确定所述第二码字的归一化系数,并基于所述归一化系数对所述第二码字进行归一化处理。
本申请实施例中,确定MIMO上行传输对应的N天线端口的天线全相干传输的第一码字,基于N天线端口的第一码字和第一码字对应的稀疏矩阵,可以确定N天线端口L层的部分天线相干传输的第二码字。本申请实施例中可基于天线全相干传输码字设计部分天线相干传输码字,能够使得MIMO上行支持8天线端口1层至8层传输的需求,进而对上行MIMO技术进一步增强。
请参见图7,图7是本申请实施例提供的另一种通信装置70的结构示意图。通信装置70可以是网络设备,也可以是终端设备,也可以是支持网络设备实现上述方法的芯片、芯片系统、或处理器等,还可以是支持终端设备实现上述方法的芯片、芯片系统、或处理器等。该装置可用于实现上述方法实施例中描述的方法,具体可以参见上述方法实施例中的说明。
通信装置70可以包括一个或多个处理器71。处理器71可以是通用处理器或者专用处理器等。例如可以是基带处理器或中央处理器。基带处理器可以用于对通信协议以及通信数据进行处理,中央处理器 可以用于对通信装置(如,基站、基带芯片,终端设备、终端设备芯片,DU或CU等)进行控制,执行计算机程序,处理计算机程序的数据。
可选的,通信装置70中还可以包括一个或多个存储器72,其上可以存有计算机程序73,处理器71执行所述计算机程序73,以使得通信装置70执行上述方法实施例中描述的方法。可选的,所述存储器72中还可以存储有数据。通信装置70和存储器72可以单独设置,也可以集成在一起。
可选的,通信装置70还可以包括收发器74、天线75。收发器74可以称为收发单元、收发机、或收发电路等,用于实现收发功能。收发器74可以包括接收器和发送器,接收器可以称为接收机或接收电路等,用于实现接收功能;发送器可以称为发送机或发送电路等,用于实现发送功能。
可选的,通信装置70中还可以包括一个或多个接口电路76。接口电路76用于接收代码指令并传输至处理器71。处理器71运行所述代码指令以使通信装置70执行上述方法实施例中描述的方法。
在一种实现方式中,处理器71中可以包括用于实现接收和发送功能的收发器。例如该收发器可以是收发电路,或者是接口,或者是接口电路。用于实现接收和发送功能的收发电路、接口或接口电路可以是分开的,也可以集成在一起。上述收发电路、接口或接口电路可以用于代码/数据的读写,或者,上述收发电路、接口或接口电路可以用于信号的传输或传递。
在一种实现方式中,处理器71可以存有计算机程序73,计算机程序73在处理器71上运行,可使得通信装置70执行上述方法实施例中描述的方法。计算机程序73可能固化在处理器71中,该种情况下,处理器71可能由硬件实现。
在一种实现方式中,通信装置70可以包括电路,所述电路可以实现前述方法实施例中发送或接收或者通信的功能。本申请中描述的处理器和收发器可实现在集成电路(integrated circuit,IC)、模拟IC、射频集成电路RFIC、混合信号IC、专用集成电路(application specific integrated circuit,ASIC)、印刷电路板(printed circuit board,PCB)、电子设备等上。该处理器和收发器也可以用各种IC工艺技术来制造,例如互补金属氧化物半导体(complementary metal oxide semiconductor,CMOS)、N型金属氧化物半导体(nMetal-oxide-semiconductor,NMOS)、P型金属氧化物半导体(positive channel metal oxide semiconductor,PMOS)、双极结型晶体管(bipolar junction transistor,BJT)、双极CMOS(BiCMOS)、硅锗(SiGe)、砷化镓(GaAs)等。
以上实施例描述中的通信装置可以是网络设备或者终端设备,但本申请中描述的通信装置的范围并不限于此,而且通信装置的结构可以不受图7的限制。通信装置可以是独立的设备或者可以是较大设备的一部分。例如所述通信装置可以是:
(1)独立的集成电路IC,或芯片,或,芯片系统或子系统;
(2)具有一个或多个IC的集合,可选的,该IC集合也可以包括用于存储数据,计算机程序的存储部件;
(3)ASIC,例如调制解调器(Modem);
(4)可嵌入在其他设备内的模块;
(5)接收机、终端设备、智能终端设备、蜂窝电话、无线设备、手持机、移动单元、车载设备、网络设备、云设备、人工智能设备等等;
(6)其他等等。
对于通信装置可以是芯片或芯片系统的情况,可参见图8所示的芯片的结构示意图。图8所示的芯片80包括处理器81和接口82。其中,处理器81的数量可以是一个或多个,接口82的数量可以是多个。
处理器81,用于:确定多输入多输出MIMO上行传输对应的N天线端口L层的天线全相干传输的第一码字,所述L为正整数,且所述L小于或等于所述N;基于所述天线全相干传输的第一码字,确定所述第一码字对应的稀疏矩阵;根据所述第一码字和所述对应的稀疏矩阵,确定所述N天线端口L层的部分天线相干传输的第二码字。
可选地,处理器81,还用于:对N个所述天线端口进行分组,得到M个天线端口组,所述M为小于N的正整数;按照M个所述天线端口组,将所述第一码字进行拆分为M个子矩阵,其中,每个天线端口组对应一个子矩阵;根据M个所述子矩阵,确定所述第一码字对应的稀疏矩阵。
可选地,处理器81,还用于:对每个所述天线端口组对应的子矩阵进行正交性验证,以从所述L层中确定所述天线端口组对应的相互正交的目标层,其中,所述目标层的数据通过所述天线端口组内的目标端口传输;根据每个所述天线端口组对应的所述目标层和所述目标端口,确定所述第一码字对应的稀疏矩阵。
可选地,处理器81,还用于:确定每个所述天线端口组内目标端口所传输的所述目标层对应的第一矩阵元素和剩余层对应的第二矩阵元素;确定每个所述天线端口组对应的所述第一矩阵元素为第一数值第二矩阵元素为第二数值,以确定所述第一码字的稀疏矩阵。
可选地,处理器81,还用于:确定所述天线端口组对应的子矩阵的共轭转置子矩阵;
对所述共轭转置子矩阵和所述子矩阵进行矩阵相乘,得到所述天线端口组对应的正交验证矩阵;根据所述正交验证矩阵中矩阵元素的取值是否为零,从所述L层中确定所述天线端口组对应的所述目标层。
可选地,处理器81,还用于:确定所述矩阵元素所在行的取值i和所在列的取值j,其中,所述i和j为正整数,所述i和j均大于或等于1且小于或者等于L;
响应于所述矩阵元素取值为零,确定i层与j层为相互正交的层;或者,
响应于所述所述矩阵元素取值非零,确定所述i层与所述j层为非相互正交的层。
可选地,处理器81,还用于:对所述第一码字和所述对应的稀疏矩阵进行哈达玛Hadamard运算,得到所述第一码字对应的第二码字。
可选地,处理器81,还用于:确定所述N和所述M的模值;根据所述模值,确定M个所述天线端口组各自的所述目标层的数量。
可选地,处理器81,还用于:响应于所述模值为零,确定每个所述天线端口组对应的所述目标层的数量为
Figure PCTCN2022099627-appb-000023
响应于所述模值非零,确定所述模值个的天线端口组对应的所述目标层的数量为
Figure PCTCN2022099627-appb-000024
剩余的天线端口组对应的所述目标层的数量为
Figure PCTCN2022099627-appb-000025
可选地,处理器81,还用于:确定所述第二码字的归一化系数,并基于所述归一化系数对所述第二码字进行归一化处理。
可选的,芯片还包括存储器83,存储器83用于存储必要的计算机程序和数据。
本领域技术人员还可以了解到本申请实施例列出的各种说明性逻辑块(illustrative logical block)和 步骤(step)可以通过电子硬件、电脑软件,或两者的结合进行实现。这样的功能是通过硬件还是软件来实现取决于特定的应用和整个系统的设计要求。本领域技术人员可以对于每种特定的应用,可以使用各种方法实现所述的功能,但这种实现不应被理解为超出本申请实施例保护的范围。
本申请实施例还提供一种确定侧链路时长的系统,该系统包括前述图6实施例中作为终端设备的通信装置和作为网络设备的通信装置,或者,该系统包括前述图7实施例中作为终端设备的通信装置和作为网络设备的通信装置。
本申请还提供一种可读存储介质,其上存储有指令,该指令被计算机执行时实现上述任一方法实施例的功能。
本申请还提供一种计算机程序产品,该计算机程序产品被计算机执行时实现上述任一方法实施例的功能。
在上述实施例中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。所述计算机程序产品包括一个或多个计算机程序。在计算机上加载和执行所述计算机程序时,全部或部分地产生按照本申请实施例所述的流程或功能。所述计算机可以是通用计算机、专用计算机、计算机网络、或者其他可编程装置。所述计算机程序可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,所述计算机程序可以从一个网站站点、计算机、服务器或数据中心通过有线(例如同轴电缆、光纤、数字用户线(digital subscriber line,DSL))或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。所述计算机可读存储介质可以是计算机能够存取的任何可用介质或者是包含一个或多个可用介质集成的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质(例如,软盘、硬盘、磁带)、光介质(例如,高密度数字视频光盘(digital video disc,DVD))、或者半导体介质(例如,固态硬盘(solid state disk,SSD))等。
本领域普通技术人员可以理解:本申请中涉及的第一、第二等各种数字编号仅为描述方便进行的区分,并不用来限制本申请实施例的范围,也表示先后顺序。
本申请中的至少一个还可以描述为一个或多个,多个可以是两个、三个、四个或者更多个,本申请不做限制。在本申请实施例中,对于一种技术特征,通过“第一”、“第二”、“第三”、“A”、“B”、“C”和“D”等区分该种技术特征中的技术特征,该“第一”、“第二”、“第三”、“A”、“B”、“C”和“D”描述的技术特征间无先后顺序或者大小顺序。
本申请中各表所示的对应关系可以被配置,也可以是预定义的。各表中的信息的取值仅仅是举例,可以配置为其他值,本申请并不限定。在配置信息与各参数的对应关系时,并不一定要求必须配置各表中示意出的所有对应关系。例如,本申请中的表格中,某些行示出的对应关系也可以不配置。又例如,可以基于上述表格做适当的变形调整,例如,拆分,合并等等。上述各表中标题示出参数的名称也可以采用通信装置可理解的其他名称,其参数的取值或表示方式也可以通信装置可理解的其他取值或表示方式。上述各表在实现时,也可以采用其他的数据结构,例如可以采用数组、队列、容器、栈、线性表、指针、链表、树、图、结构体、类、堆、散列表或哈希表等。
本申请中的预定义可以理解为定义、预先定义、存储、预存储、预协商、预配置、固化、或预烧制。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能 够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以所述权利要求的保护范围为准。

Claims (14)

  1. 一种部分天线相干传输码字的确定方法,其特征在于,所述方法包括:
    确定多输入多输出MIMO上行传输对应的N天线端口L层的天线全相干传输的第一码字,所述L为正整数,且所述L小于或等于所述N;
    基于所述天线全相干传输的第一码字,确定所述第一码字对应的稀疏矩阵;
    根据所述第一码字和所述对应的稀疏矩阵,确定所述N天线端口L层的部分天线相干传输的第二码字。
  2. 根据权利要求1所述的方法,其特征在于,所述基于所述天线全相干传输的第一码字,确定所述第一码字对应的稀疏矩阵,包括:
    对N个所述天线端口进行分组,得到M个天线端口组,所述M为小于N的正整数;
    按照M个所述天线端口组,将所述第一码字进行拆分为M个子矩阵,其中,每个天线端口组对应一个子矩阵;
    根据M个所述子矩阵,确定所述第一码字对应的稀疏矩阵。
  3. 根据权利要求2所述的方法,其特征在于,所述根据M个所述子矩阵,确定所述稀疏矩阵,包括:
    对每个所述天线端口组对应的子矩阵进行正交性验证,以从所述L层中确定所述天线端口组对应的相互正交的目标层,其中,所述目标层的数据通过所述天线端口组内的目标端口传输;
    根据每个所述天线端口组对应的所述目标层和所述目标端口,确定所述第一码字对应的稀疏矩阵。
  4. 根据权利要求3所述的方法,其特征在于,所述根据每个所述天线端口组对应的所述目标层和所述目标端口,确定所述第一码字对应的稀疏矩阵,包括:
    确定每个所述天线端口组内目标端口所传输的所述目标层对应的第一矩阵元素和剩余层对应的第二矩阵元素;
    确定每个所述天线端口组对应的所述第一矩阵元素为第一数值第二矩阵元素为第二数值,以确定所述第一码字的稀疏矩阵。
  5. 根据权利要求3所述的方法,其特征在于,所述对每个所述天线端口组对应的子矩阵进行正交性验证,以从所述L层中确定所述天线端口组对应的相互正交的目标层,包括:
    确定所述天线端口组对应的子矩阵的共轭转置子矩阵;
    对所述共轭转置子矩阵和所述子矩阵进行矩阵相乘,得到所述天线端口组对应的正交验证矩阵;
    根据所述正交验证矩阵中矩阵元素的取值是否为零,从所述L层中确定所述天线端口组对应的所述目标层。
  6. 根据权利要求5所述的方法,其特征在于,所述根据所述正交验证矩阵中矩阵元素的取值是否为零,从所述L层中确定所述天线端口组对应的所述目标层,包括:
    确定所述矩阵元素所在行的取值i和所在列的取值j,其中,所述i和j为正整数,所述i和j均大于或等于1且小于或者等于L;
    响应于所述矩阵元素取值为零,确定i层与j层为相互正交的层;或者,
    响应于所述所述矩阵元素取值非零,确定所述i层与所述j层为非相互正交的层。
  7. 根据权利要求1-6中任一项所述的方法,其特征在于,所述根据所述第一码字和所述对应的稀疏矩阵,确定所述N天线端口L层的部分天线相干传输的第二码字,包括:
    对所述第一码字和所述对应的稀疏矩阵进行哈达玛Hadamard运算,得到所述第一码字对应的第二码字。
  8. 根据权利要求3-6中任一项所述的方法,其特征在于,所述天线端口组对应的所述目标层的数量确定过程,包括:
    确定所述N和所述M的模值;
    根据所述模值,确定M个所述天线端口组各自的所述目标层的数量。
  9. 根据权利要求8所述的方法,其特征在于,所述根据所述模值,确定所述M个天线端口组对应的所述目标层的数量,包括:
    响应于所述模值为零,确定每个所述天线端口组对应的所述目标层的数量为
    Figure PCTCN2022099627-appb-100001
    响应于所述模值非零,确定所述模值个的天线端口组对应的所述目标层的数量为
    Figure PCTCN2022099627-appb-100002
    剩余的天线端口组对应的所述目标层的数量为
    Figure PCTCN2022099627-appb-100003
  10. 根据权利要求1所述的方法,其特征在于,所述确定所述N天线端口L层的部分天线相干传输的第二码字之后,还包括:
    确定所述第二码字的归一化系数,并基于所述归一化系数对所述第二码字进行归一化处理。
  11. 一种通信装置,其特征在于,包括:
    处理模块,用于确定多输入多输出MIMO上行传输对应的N天线端口L层的天线全相干传输的第一码字,所述L为正整数,且所述L小于或等于所述N;基于所述天线全相干传输的第一码字,确定所述第一码字对应的稀疏矩阵;根据所述第一码字和所述对应的稀疏矩阵,确定所述N天线端口L层的部分天线相干传输的第二码字。
  12. 一种通信装置,其特征在于,所述装置包括处理器和存储器,所述存储器中存储有计算机程序,所述处理器执行所述存储器中存储的计算机程序,以使所述装置执行如权利要求1至10中任一项所述的方法。
  13. 一种通信装置,其特征在于,包括:处理器和接口电路;
    所述接口电路,用于接收代码指令并传输至所述处理器;
    所述处理器,用于运行所述代码指令以执行如权利要求1至10中任一项所述的方法。
  14. 一种计算机可读存储介质,用于存储有指令,当所述指令被执行时,使如权利要求1至10中任一项所述的方法被实现。
PCT/CN2022/099627 2022-06-17 2022-06-17 一种部分天线相干传输码字的确定方法及其装置 WO2023240654A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2022/099627 WO2023240654A1 (zh) 2022-06-17 2022-06-17 一种部分天线相干传输码字的确定方法及其装置
CN202280002109.1A CN117616698A (zh) 2022-06-17 2022-06-17 一种部分天线相干传输码字的确定方法及其装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/099627 WO2023240654A1 (zh) 2022-06-17 2022-06-17 一种部分天线相干传输码字的确定方法及其装置

Publications (1)

Publication Number Publication Date
WO2023240654A1 true WO2023240654A1 (zh) 2023-12-21

Family

ID=89192936

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/099627 WO2023240654A1 (zh) 2022-06-17 2022-06-17 一种部分天线相干传输码字的确定方法及其装置

Country Status (2)

Country Link
CN (1) CN117616698A (zh)
WO (1) WO2023240654A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130182791A1 (en) * 2010-10-07 2013-07-18 Research In Motion Limited Sparse codes for mimo channel and detector alternatives for sparse code
WO2014153681A1 (zh) * 2013-03-27 2014-10-02 阿尔卡特朗讯 Mimo系统中的多天线信道码本反馈方法及装置
CN108270474A (zh) * 2018-01-08 2018-07-10 西安电子科技大学 基于遗传算法的mimo-scma系统码本设计方法
CN109495879A (zh) * 2017-09-11 2019-03-19 电信科学技术研究院 一种资源配置方法、基站和终端
CN113557675A (zh) * 2019-04-22 2021-10-26 三星电子株式会社 使能全功率上行链路传输的能力信令

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130182791A1 (en) * 2010-10-07 2013-07-18 Research In Motion Limited Sparse codes for mimo channel and detector alternatives for sparse code
WO2014153681A1 (zh) * 2013-03-27 2014-10-02 阿尔卡特朗讯 Mimo系统中的多天线信道码本反馈方法及装置
CN109495879A (zh) * 2017-09-11 2019-03-19 电信科学技术研究院 一种资源配置方法、基站和终端
CN108270474A (zh) * 2018-01-08 2018-07-10 西安电子科技大学 基于遗传算法的mimo-scma系统码本设计方法
CN113557675A (zh) * 2019-04-22 2021-10-26 三星电子株式会社 使能全功率上行链路传输的能力信令

Also Published As

Publication number Publication date
CN117616698A (zh) 2024-02-27

Similar Documents

Publication Publication Date Title
WO2023184372A1 (zh) 上行信道的发送和接收的方法及装置
WO2023240654A1 (zh) 一种部分天线相干传输码字的确定方法及其装置
WO2023201501A1 (zh) Mimo上行传输部分天线相干传输码字的确定方法及其装置
WO2024021129A1 (zh) 上行mimo传输8天线端口多天线面板的码字确定方法及其装置
WO2024000204A1 (zh) 一种上行mimo传输码字的确定方法及其装置
WO2023201503A1 (zh) Mimo上行传输预编码码本的确定方法及其装置
WO2024000179A1 (zh) 一种上行mimo传输的天线全相干传输码字的确定方法及其装置
WO2023201500A1 (zh) 基于码本的pusch传输方法及其装置
WO2023184434A1 (zh) 基于码本的上行信道发送方法及装置
WO2023168574A1 (zh) 一种天线切换能力上报方法及其装置
WO2024060142A1 (zh) 上行mimo传输8天线端口多天线面板的码本确定方法及其装置
WO2024065333A1 (zh) 上行mimo传输8天线端口的全相干传输码本的确定方法及其装置
WO2024026797A1 (zh) 上行mimo传输的预编码矩阵确定方法及其装置
WO2024026796A1 (zh) 上行mimo传输的预编码矩阵确定方法及其装置
WO2023184451A1 (zh) 一种基于非码本的pusch发送、接收信息的方法及其装置
WO2023168575A1 (zh) 一种天线切换能力上报方法及其装置
WO2024065443A1 (zh) 基于码本的上行信道发送方法及装置
WO2024026798A1 (zh) 上行mimo传输的预编码矩阵确定方法及其装置
WO2024031719A1 (zh) 支持8Tx的基于码本的PUSCH传输的预编码指示方法及装置
WO2024168762A1 (zh) 一种指示方法、确定方法及其装置
WO2023184450A1 (zh) 一种基于非码本的pusch接收/发送信息的方法及其装置
WO2024145752A1 (zh) 上行8天线端口的码本确定方法及装置
CN118318403A (zh) 上行mimo传输8天线端口的全相干传输码本的确定方法及其装置
WO2023184448A1 (zh) 一种基于非码本的pusch发送/接收信息的方法及其装置
WO2024045143A1 (zh) 一种轨道角动量oam的预编码矩阵确定方法及其装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 202280002109.1

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22946335

Country of ref document: EP

Kind code of ref document: A1