WO2023201503A1 - Mimo上行传输预编码码本的确定方法及其装置 - Google Patents

Mimo上行传输预编码码本的确定方法及其装置 Download PDF

Info

Publication number
WO2023201503A1
WO2023201503A1 PCT/CN2022/087521 CN2022087521W WO2023201503A1 WO 2023201503 A1 WO2023201503 A1 WO 2023201503A1 CN 2022087521 W CN2022087521 W CN 2022087521W WO 2023201503 A1 WO2023201503 A1 WO 2023201503A1
Authority
WO
WIPO (PCT)
Prior art keywords
codebook
codeword
matrix
antenna port
kerdock
Prior art date
Application number
PCT/CN2022/087521
Other languages
English (en)
French (fr)
Inventor
张振宇
Original Assignee
北京小米移动软件有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京小米移动软件有限公司 filed Critical 北京小米移动软件有限公司
Priority to CN202280001167.2A priority Critical patent/CN117256106A/zh
Priority to PCT/CN2022/087521 priority patent/WO2023201503A1/zh
Publication of WO2023201503A1 publication Critical patent/WO2023201503A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0413MIMO systems
    • H04B7/0456Selection of precoding matrices or codebooks, e.g. using matrices antenna weighting

Definitions

  • the present application relates to the field of communication technology, and in particular to a method and device for determining a MIMO uplink transmission precoding codebook.
  • Precoding technology in Multiple Input Multiple Output (MIMO) systems can effectively reduce interference and system overhead, and improve system capacity. It is an extremely important key technology in MIMO systems.
  • MIMO uplink systems based on codebook transmission Codebook design is also an important part of precoding technology.
  • the maximum number of antenna ports supported by existing MIMO uplink transmission is 4, that is, the existing MIMO uplink precoding codebook only supports transmission of a maximum of 4 antenna ports and a maximum of 4 layers. When the MIMO uplink transmission antenna port is enhanced, the enhanced antenna cannot be satisfied. Port transmission requirements.
  • the embodiments of this application provide a method and device for determining a MIMO uplink transmission precoding codebook.
  • a set of MIMO uplink transmission precoding codebooks based on the Kerdock codebook are constructed to support MIMO uplink transmission. Increased transmission requirements for rear antenna ports.
  • embodiments of the present application provide a method for determining a MIMO uplink transmission precoding codebook, which method includes:
  • N is a positive integer power of 2 and N is greater than 4;
  • the precoding codebook of the L layer of the N antenna ports corresponding to the MIMO uplink transmission is determined, where the L is a positive integer, and the L is less than or equal to the N.
  • a precoding codebook for MIMO uplink transmission is constructed through the Kerdock codebook.
  • the precoding codebook can support the transmission requirements when uplink transmission antenna ports increase.
  • embodiments of the present application provide another method for determining a MIMO uplink transmission precoding codebook, which method includes:
  • N is a positive integer power of 2 and N is greater than 4;
  • the precoding codebook of the L layer of the N antenna ports corresponding to the MIMO uplink transmission is determined, where the L is a positive integer, and the L is less than or equal to the N.
  • a precoding codebook for MIMO uplink transmission is constructed through the Kerdock codebook.
  • the precoding codebook can support the transmission requirements when uplink transmission antenna ports increase.
  • embodiments of the present application provide a communication device that has some or all of the functions of the terminal device in implementing the method described in the first aspect.
  • the functions of the communication device may have some or all of the functions in this application.
  • the functions in the embodiments may also be used to independently implement any of the embodiments in this application.
  • the functions described can be implemented by hardware, or can be implemented by hardware executing corresponding software.
  • the hardware or software includes one or more units or modules corresponding to the above functions.
  • the structure of the communication device may include a transceiver module and a processing module, and the processing module is configured to support the communication device to perform corresponding functions in the above method.
  • the transceiver module is used to support communication between the communication device and other devices.
  • the communication device may further include a storage module coupled to the transceiver module and the processing module, which stores necessary computer programs and data for the communication device.
  • the processing module may be a processor
  • the transceiver module may be a transceiver or a communication interface
  • the storage module may be a memory
  • embodiments of the present application provide another communication device that has some or all of the functions of the network device in the method example described in the second aspect.
  • the functions of the communication device may have some of the functions in this application.
  • the functions in all embodiments may also be used to implement any one embodiment of the present application independently.
  • the functions described can be implemented by hardware, or can be implemented by hardware executing corresponding software.
  • the hardware or software includes one or more units or modules corresponding to the above functions.
  • the structure of the communication device may include a transceiver module and a processing module, and the processing module is configured to support the communication device to perform corresponding functions in the above method.
  • the transceiver module is used to support communication between the communication device and other devices.
  • the communication device may further include a storage module coupled to the transceiver module and the processing module, which stores necessary computer programs and data for the communication device.
  • inventions of the present application provide a communication device.
  • the communication device includes a processor.
  • the processor calls a computer program in a memory, it executes the method described in the first aspect.
  • inventions of the present application provide a communication device.
  • the communication device includes a processor.
  • the processor calls a computer program in a memory, it executes the method described in the second aspect.
  • inventions of the present application provide a communication device.
  • the communication device includes a processor and a memory, and a computer program is stored in the memory; the processor executes the computer program stored in the memory, so that the communication device executes The method described in the first aspect above.
  • inventions of the present application provide a communication device.
  • the communication device includes a processor and a memory, and a computer program is stored in the memory; the processor executes the computer program stored in the memory, so that the communication device executes The method described in the second aspect above.
  • inventions of the present application provide a communication device.
  • the device includes a processor and an interface circuit.
  • the interface circuit is used to receive code instructions and transmit them to the processor.
  • the processor is used to run the code instructions to cause the The device performs the method described in the first aspect.
  • inventions of the present application provide a communication device.
  • the device includes a processor and an interface circuit.
  • the interface circuit is used to receive code instructions and transmit them to the processor.
  • the processor is used to run the code instructions to cause the The device performs the method described in the second aspect above.
  • embodiments of the present application provide a communication system, which includes the communication device described in the third aspect and the communication device described in the fourth aspect, or the system includes the communication device described in the fifth aspect and The communication device according to the sixth aspect, or the system includes the communication device according to the seventh aspect and the communication device according to the eighth aspect, or the system includes the communication device according to the ninth aspect and the communication device according to the tenth aspect. the above-mentioned communication device.
  • embodiments of the present invention provide a computer-readable storage medium for storing instructions used by the above-mentioned terminal equipment. When the instructions are executed, the terminal equipment is caused to execute the above-mentioned first aspect. method.
  • embodiments of the present invention provide a readable storage medium for storing instructions used by the above-mentioned network device. When the instructions are executed, the network device is caused to perform the method described in the second aspect. .
  • the present application also provides a computer program product including a computer program, which when run on a computer causes the computer to execute the method described in the first aspect.
  • the present application also provides a computer program product including a computer program, which when run on a computer causes the computer to execute the method described in the second aspect.
  • the present application provides a chip system, which includes at least one processor and an interface for supporting the terminal device to implement the functions involved in the first aspect, for example, determining or processing the data involved in the above method. and information.
  • the chip system further includes a memory, and the memory is used to store necessary computer programs and data for the terminal device.
  • the chip system may be composed of chips, or may include chips and other discrete devices.
  • this application provides a chip system, which includes at least one processor and an interface for supporting network equipment to implement the functions involved in the second aspect, for example, determining or processing the data involved in the above method. and information.
  • the chip system further includes a memory, and the memory is used to store necessary computer programs and data for the network device.
  • the chip system may be composed of chips, or may include chips and other discrete devices.
  • the present application provides a computer program that, when run on a computer, causes the computer to execute the method described in the first aspect.
  • this application provides a computer program that, when run on a computer, causes the computer to execute the method described in the second aspect.
  • Figure 1 is a schematic architectural diagram of a communication system provided by an embodiment of the present application.
  • Figure 2 is a schematic flowchart of a method for determining a MIMO uplink transmission precoding codebook provided by an embodiment of the present application
  • Figure 3 is a schematic flowchart of a method for determining a MIMO uplink transmission precoding codebook provided by an embodiment of the present application
  • Figure 4 is a schematic flowchart of a method for determining a MIMO uplink transmission precoding codebook provided by an embodiment of the present application
  • Figure 5 is a schematic flowchart of a method for determining a MIMO uplink transmission precoding codebook provided by an embodiment of the present application
  • Figure 6 is a schematic flowchart of a method for determining a MIMO uplink transmission precoding codebook provided by an embodiment of the present application
  • Figure 7 is a schematic flowchart of a codebook-based uplink transmission method provided by an embodiment of the present application.
  • Figure 8 is a schematic flowchart of a codebook-based uplink transmission method provided by an embodiment of the present application.
  • Figure 9 is a schematic structural diagram of a communication device provided by an embodiment of the present application.
  • Figure 10 is a schematic structural diagram of a communication device provided by an embodiment of the present application.
  • Figure 11 is a schematic structural diagram of a chip provided by an embodiment of the present application.
  • first, second, third, etc. may be used to describe various information in the embodiments of the present disclosure, the information should not be limited to these terms. These terms are only used to distinguish information of the same type from each other.
  • first information may also be called second information, and similarly, the second information may also be called first information.
  • word “if” as used herein may be interpreted as "when” or “when” or “in response to determining”
  • the terms used in this article are “greater than” or “less than”, “higher than” or “lower than” when characterizing size relationships. But for those skilled in the art, it can be understood that: the term “greater than” also covers the meaning of “greater than or equal to”, and “less than” also covers the meaning of “less than or equal to”; the term “higher than” covers the meaning of “higher than or equal to”. “The meaning of “less than” also covers the meaning of "less than or equal to”.
  • the Physical Uplink Shared Channel (PUSCH) is used to carry data from the transmission channel PUSCH.
  • Coherent transmission is defined as a UE capability.
  • the UE's coherent transmission capabilities include:
  • Partial Coherence transmission Antenna ports in the same coherent transmission group can transmit coherently, while antenna ports in different coherent transmission groups cannot transmit coherently.
  • Each coherent transmission group includes at least two antenna ports.
  • Non-coherence transmission No antenna port can transmit coherently.
  • the precoding codebook can be applied to the communication system.
  • the communication system applicable to the embodiment of the present application is first described below.
  • Figure 1 is a schematic architectural diagram of a communication system provided by an embodiment of the present application.
  • the communication system may include but is not limited to one network device and one terminal device.
  • the number and form of devices shown in Figure 1 are only for examples and do not constitute a limitation on the embodiments of the present application. In actual applications, two or more devices may be included.
  • the communication system shown in Figure 1 includes a network device 101 and a terminal device 102 as an example.
  • LTE long term evolution
  • 5th generation 5th generation
  • NR 5th generation new radio
  • side link in the embodiment of the present application may also be called a side link or a through link.
  • the network device 101 in the embodiment of this application is an entity on the network side that is used to transmit or receive signals.
  • the network device 101 may be an evolved base station (evolved NodeB, eNB), a transmission reception point (TRP), a next generation base station (next generation NodeB, gNB) in an NR system, or other base stations in future mobile communication systems.
  • the embodiments of this application do not limit the specific technology and specific equipment form used by the network equipment.
  • the network equipment provided by the embodiments of this application may be composed of a centralized unit (central unit, CU) and a distributed unit (DU).
  • the CU may also be called a control unit (control unit).
  • the structure can separate the protocol layers of network equipment, such as base stations, and place some protocol layer functions under centralized control on the CU. The remaining part or all protocol layer functions are distributed in the DU, and the CU centrally controls the DU.
  • the terminal device 102 in the embodiment of this application is an entity on the user side that is used to receive or transmit signals, such as a mobile phone.
  • Terminal equipment can also be called terminal equipment (terminal), user equipment (user equipment, UE), mobile station (mobile station, MS), mobile terminal equipment (mobile terminal, MT), etc.
  • the terminal device can be a car with communication functions, a smart car, a mobile phone, a wearable device, a tablet computer (Pad), a computer with wireless transceiver functions, a virtual reality (VR) terminal device, an augmented reality (augmented reality (AR) terminal equipment, wireless terminal equipment in industrial control, wireless terminal equipment in self-driving, wireless terminal equipment in remote medical surgery, smart grid ( Wireless terminal equipment in smart grid, wireless terminal equipment in transportation safety, wireless terminal equipment in smart city, wireless terminal equipment in smart home, etc.
  • the embodiments of this application do not limit the specific technology and specific equipment form used by the terminal equipment.
  • side-link transmission modes there are 4 side-link transmission modes.
  • Side link transmission mode 1 and side link transmission mode 2 are used for terminal device direct (device-to-device, D2D) communication.
  • Side-link transmission mode 3 and side-link transmission mode 4 are used for V2X communications.
  • resource allocation is scheduled by the network device 101.
  • the network device 101 can send resource allocation information to the terminal device 102, and then the terminal device 102 allocates resources to another terminal device, so that the other terminal device can send information to the network device 101 through the allocated resources.
  • a terminal device with better signal or higher reliability can be used as the terminal device 102 .
  • the first terminal device mentioned in the embodiment of this application may refer to the terminal device 102, and the second terminal device may refer to the other terminal device.
  • the method for determining the MIMO uplink transmission precoding codebook provided in any embodiment of the present application can be executed alone, or in combination with possible implementation methods in other embodiments, or in combination with the methods in related technologies. Any technical solutions are implemented together.
  • Figure 2 is a schematic flowchart of a method for determining a MIMO uplink transmission precoding codebook provided by an embodiment of the present application. As shown in Figure 2, the method may include but is not limited to the following steps:
  • N is a positive integer power of 2 and N is greater than 4.
  • Kerdock codebook is an orthogonal codebook that has been widely studied in communication system design and can be used to construct mutually unbiased basis sequences.
  • the 8-dimensional Kerdock codebook there are 8 matrices with a dimension of 8 ⁇ 8, and the 8-dimensional Kerdock codebook is shown in Table 1.
  • each element in Table 1 exists independently, and these elements are exemplarily listed in the same table, but it does not mean that all elements in the table must exist at the same time as shown in the table.
  • the value of each element does not depend on the value of any other element in Table 1. Therefore, those skilled in the art can understand that the value of each element in Table 1 is an independent embodiment.
  • the Kerdock codebook has orthogonality, that is, any two column vectors in each Kerdock codeword are orthogonal to each other.
  • This application does not limit the specific method for verifying the orthogonality of the Kerdock codebook, and it can be selected according to the actual situation.
  • software such as MATLAB can be used to verify the orthogonality of the Kerdock codebook; optionally, the orthogonality of the Kerdock codebook can be verified through calculation.
  • uplink transmission can support an increase in antenna ports and the number of uplink transmission layers. That is, the number of antenna ports can increase from 4 to N, and the number of uplink transmission layers can be expanded from 4 to L, for example.
  • the value of N can be 8, and the value of L can also be 6, 8, etc.
  • the precoding codebook of the L layer of the N antenna port corresponding to the MIMO uplink transmission can be determined.
  • the number of antenna ports N and the number of uplink transmission layers L for uplink transmission may be equal or unequal. That is to say, MIMO uplink transmission may be uplink transmission for N antenna ports and N layers. In this case, the uplink transmission The number of layers L is equal to the number of antenna ports N; MIMO uplink transmission can also be N antenna port L layers. In this case, the number of uplink transmission layers L is smaller than the number of antenna ports N.
  • the coherent transmission capabilities of terminal equipment include fully coherent transmission, non-coherent transmission and partially coherent transmission.
  • the precoding codebook includes a total of three types of codewords, which are the first codewords corresponding to fully coherent transmission by all antennas.
  • the second codeword is transmitted incoherently by the antenna, and the third codeword is transmitted coherently by some antennas.
  • an N-dimensional Kerdock codebook is obtained, and based on the N-dimensional Kerdock codebook, the first precoding codebook of the N layer of the N antenna port is determined, and L is equal to N. Further, based on the first precoding codebook, a second precoding codebook for the L layer of the N antenna port is determined, and L is smaller than N.
  • N is a positive integer power of 2 and N is greater than 4; and based on the Kerdock codebook, the N antenna port L layer corresponding to the MIMO uplink transmission is determined.
  • Precoding codebook where L is a positive integer, and L is less than or equal to N.
  • a precoding codebook for MIMO uplink transmission is constructed through the Kerdock codebook.
  • the precoding codebook can support the transmission requirements when uplink transmission antenna ports increase. That is, the precoding codebook built based on the Kerdock codebook can support the transmission requirements of layer 1 to layer 8 corresponding to the MIMO uplink 8 antenna ports, thereby further enhancing the uplink MIMO technology.
  • Figure 3 is a schematic flowchart of a method for determining a MIMO uplink transmission precoding codebook provided by an embodiment of the present application. As shown in Figure 3, the method may include but is not limited to the following steps:
  • the Hadamard matrix is orthogonal and contains only elements 1 and -1. It is an orthogonal matrix that has been widely studied and applied.
  • the second-order Hadamard matrix is
  • the fourth-order Hadamard matrix is a
  • the 8th order Hadamard matrix is
  • each element in Table 2 exists independently, and these elements are exemplarily listed in the same table, but it does not mean that all elements in the table must exist at the same time as shown in the table.
  • the value of each element does not depend on the value of any other element in Table 2. Therefore, those skilled in the art can understand that the value of each element in Table 2 is an independent embodiment.
  • the N-dimensional Kerdock codebook can be determined based on the Hadamard matrix and N diagonal matrices D k , where 1 ⁇ k ⁇ N.
  • N-dimensional Kerdock codebook there are N matrices with N ⁇ N dimensions.
  • the 8-dimensional Kerdock codebook there are 8 matrices with a dimension of 8 ⁇ 8.
  • the calculation formula for the k-th matrix is: Then the 8-dimensional Kerdock codebook can be calculated, as shown in Table 1.
  • the energy of the Kerdock codebook can be normalized according to the Kerdock codebook, and then the precoding codebook can be determined.
  • step S32 the implementation in any embodiment of the present application can be adopted, and details will not be described again here.
  • the N-dimensional Kerdock codebook is determined, where 1 ⁇ k ⁇ N; determine the precoding codebook based on the N-dimensional Kerdock codebook.
  • a precoding codebook for MIMO uplink transmission is constructed through the Kerdock codebook.
  • the precoding codebook can support the transmission requirements when uplink transmission antenna ports increase. That is, the MIMO uplink transmission precoding codebook design method based on the Kerdock codebook can support the MIMO uplink support for layer 1 to layer 8 transmission corresponding to 8 antenna ports, thereby further enhancing the uplink MIMO technology.
  • Figure 4 is a schematic flowchart of a method for determining a MIMO uplink transmission precoding codebook provided by an embodiment of the present application. As shown in Figure 4, the method may include but is not limited to the following steps:
  • step SS41 For a detailed introduction to step SS41, please refer to the relevant content recorded in the above embodiment, and will not be described again here.
  • the first precoding codebook has the same three types of codewords, which are the first codeword corresponding to fully coherent transmission by all antennas, the second codeword corresponding to non-coherent transmission by antennas, and the third codeword corresponding to coherent transmission by some antennas.
  • determine an N ⁇ N unit matrix perform energy normalization on the unit matrix, and obtain the second codeword of non-coherent transmission by the antenna.
  • all antenna ports are grouped to obtain a first antenna port group and a second antenna port group for fully coherent transmission of all antenna ports in the group.
  • N 8.
  • antenna ports ⁇ 1,3,5,7 ⁇ can be set as the first antenna port group
  • antenna ports ⁇ 2,4,6,8 ⁇ can be set as the second antenna port group, that is, the first Layer 4 is transmitted on antenna ports ⁇ 1,3,5,7 ⁇
  • layers 5 to 8 are transmitted on antenna ports ⁇ 2,4,6,8 ⁇ .
  • antenna ports ⁇ 2,4,6,8 ⁇ can be set as the first antenna port group
  • antenna ports ⁇ 1,3,5,7 ⁇ can be set as the second antenna port group, that is, layers 1 to 4. Transmit on antenna ports ⁇ 2,4,6,8 ⁇ , and layers 5 to 8 transmit on antenna ports ⁇ 1,3,5,7 ⁇ . It should be noted that all antennas in each antenna port group transmit coherently, including but not limited to the following grouping methods.
  • the first antenna port group and the second antenna port group generate at least one first codeword corresponding to the first codeword. matrix, and energy normalizes the first matrix to obtain the third codeword of partial antenna coherent transmission corresponding to the first codeword.
  • the 8 all-antenna coherent transmission codewords in the 8-layer precoding codebook of 8 antenna ports for MIMO uplink transmission are also divided into two sub-matrices, and each sub-matrix The matrices are all 4 ⁇ 8 matrices.
  • each first codeword can obtain one or more first matrices according to the above implementation. That is to say, any codeword can correspond to one or more first matrices.
  • S43 Based on the first precoding codebook, determine the second precoding codebook for the L layer of the N antenna port, and L is less than N.
  • the first codeword in the first precoding codebook select any L layer among the N layers to generate a second matrix, and perform energy normalization on the second matrix to obtain full coherence for all antennas.
  • the fourth codeword transmitted.
  • the second codeword in the first precoding codebook select any L layer among the N layers, generate a third matrix, and perform energy normalization on the third matrix to obtain the third matrix of non-coherent transmission by the antenna.
  • the third codeword in the first precoding codebook select any L layer among the N layers to generate a fourth matrix, and perform energy normalization on the matrix to obtain the sixth code for coherent transmission by some antennas. word, where the absolute value of the difference between the number of columns selected from the 1st to N/2th layers and the number of columns selected from the N/2+1 to Nth layers needs to be less than or equal to 1.
  • a precoding codebook for MIMO uplink transmission is constructed through the Kerdock codebook.
  • the precoding codebook can support the transmission requirements when uplink transmission antenna ports increase. That is, the MIMO uplink transmission precoding codebook design method based on the Kerdock codebook can support the MIMO uplink support for layer 1 to layer 8 transmission corresponding to 8 antenna ports, thereby further enhancing the uplink MIMO technology.
  • Figure 5 is a schematic flowchart of a method for determining a MIMO uplink transmission precoding codebook provided by an embodiment of the present application. As shown in Figure 5, the method may include but is not limited to the following steps:
  • N is a positive integer power of 2 and N is greater than 4.
  • step S51 For a specific introduction to step S51, please refer to the relevant content recorded in the above embodiments, and will not be described again here.
  • the following explains the process of determining the first precoding codebook of the N layer of N antenna ports based on the N-dimensional Kerdock codebook, and L equals N.
  • S52 Perform energy normalization on each codeword in the N-dimensional Kerdock codebook to obtain N first codewords for coherent transmission by all antennas.
  • the normalization coefficient corresponding to the first codeword can be obtained, and then the N first codes of coherent transmission by all antennas can be obtained Character.
  • the normalization coefficient corresponding to the first codeword can be set to
  • the following explanation is based on the first precoding codebook of 8 antenna ports and 8 layers.
  • the energy of each codeword in the N-dimensional Kerdock codebook can be normalized, and the N first codewords of coherent transmission by all antennas can be obtained, where, The normalization coefficient corresponding to one codeword is Then the first codeword is Then we can get all the antenna coherent transmission codewords of the MIMO uplink transmission 8-antenna port 8-layer precoding codebook, that is, there are 8 codewords in total, where each codeword is an orthogonal matrix, as shown in Table 2.
  • Table 2 MIMO uplink transmission 8-antenna port 8-layer precoding codebook all antenna coherent transmission codewords
  • the normalization coefficient corresponding to the first codeword can be obtained, and then the N first codes of coherent transmission by all antennas can be obtained Character.
  • the normalization coefficient corresponding to the first codeword can be set to
  • the following explanation is based on the first precoding codebook of 8 antenna ports and 8 layers.
  • the unit matrix can be energy normalized, and the second codeword of the antenna's non-coherent transmission can be obtained, where the normalization coefficient corresponding to the second codeword is Then the first codeword is Then we can get the second codeword of the antenna's incoherent transmission, which is the energy normalized unit matrix:
  • all antenna ports in the group can be divided into a first antenna port group and a second antenna port group.
  • the specific division method of the first antenna port group and the second antenna port group is not limited in this application, and can be selected according to the actual situation.
  • antenna ports ⁇ 1,3,5,7 ⁇ can be set as the first antenna port group, and antenna ports ⁇ 2,4,6,8 ⁇ can be set as the second antenna port group, that is, layers 1 to 4 are Antenna ports ⁇ 1,3,5,7 ⁇ are transmitted, and layers 5 to 8 are transmitted on antenna ports ⁇ 2,4,6,8 ⁇
  • antenna ports ⁇ 2, 4, 6, 8 ⁇ can be set as the first antenna port group, and antenna ports ⁇ 1, 3, 5, 7 ⁇ can be set as the second antenna port group, that is, layers 1 to 4 are Antenna ports ⁇ 2,4,6,8 ⁇ are transmitted, and layers 5 to 8 are transmitted on antenna ports ⁇ 1,3,5,7 ⁇
  • the first antenna port group and the second antenna port group generate at least one first codeword corresponding to the first codeword. matrix.
  • the following explains the process of generating at least one first matrix corresponding to the first codeword based on any first codeword, the first antenna port group and the second antenna port group.
  • any first codeword based on any first codeword, perform orthogonality judgment on the N layer vectors corresponding to the first antenna port group and the second antenna port group to select N from any first codeword. /2 layers of mutually orthogonal vectors.
  • orthogonality judgment can be performed on the N-layer vectors corresponding to the first antenna port group and the second antenna port group to select N/2-layer mutually orthogonal vectors from any first codeword.
  • the following explanation is based on the first precoding codebook of 8 antenna ports and 8 layers.
  • layer 1 and layer 2 are not orthogonal
  • layer 3 and layer 4 are not orthogonal
  • layer 5 and layer 6 are not orthogonal
  • layer 7 and layer 8 are not orthogonal.
  • the layers are not orthogonal, and any other two layers are orthogonal to each other.
  • layer 1 and layer 2 are not orthogonal
  • layer 3 and layer 4 are not orthogonal
  • layer 5 and layer 6 are not orthogonal
  • layer 7 and layer 8 are not orthogonal.
  • the layers are not orthogonal, and any other two layers are orthogonal to each other.
  • four layers of mutually orthogonal vectors can be selected from any first codeword.
  • the values of the matrix elements corresponding to the first antenna port group and the values of the matrix elements corresponding to the second antenna port group are determined to generate a first matrix.
  • the following explains the process of determining the values of the matrix elements corresponding to the first antenna port group and the values of the matrix elements corresponding to the second antenna port group to generate a first matrix.
  • the matrix elements corresponding to the first antenna port group in the mutually orthogonal vectors of the N/2 layers are sequentially placed in the 1st to N/2th layers corresponding to the first antenna port group;
  • the following explanation is based on the first precoding codebook of 8 antenna ports and 8 layers.
  • any column in layer 1 and layer 2 can select any column in layer 1 and layer 2, and place the matrix element corresponding to the first antenna port group in layer 1; you can select any column in layer 3 and layer 4, and place the matrix element corresponding to the first antenna port group in layer 1.
  • the matrix elements corresponding to one antenna port group are placed on the 2nd layer; you can select a column in the 5th and 6th layers, and place the matrix elements corresponding to the first antenna port group on the 3rd layer, which can be on the 7th layer. and arbitrarily select a column in layer 8, and place the matrix element corresponding to the first antenna port group in layer 4.
  • the matrix elements corresponding to the second antenna port group in the mutually orthogonal vectors of the N/2 layers are sequentially placed in the N/2+1 to Nth layers corresponding to the second antenna port group;
  • the following explanation is based on the first precoding codebook of 8 antenna ports and 8 layers.
  • any column in layer 1 and layer 2 and place the matrix element corresponding to the second antenna port group in layer 5; you can select any column in layer 3 and layer 4, and place the matrix element corresponding to the second antenna port group in layer 5.
  • the matrix elements corresponding to the second antenna port group are placed on the 6th layer; you can select a column in the 5th and 6th layers, and place the matrix elements corresponding to the second antenna port group on the 7th layer. and arbitrarily select a column in layer 8, and place the matrix element corresponding to the second antenna port group in layer 8.
  • the remaining matrix elements are set to zero to obtain the first matrix.
  • the matrix elements corresponding to the first antenna port group are sequentially placed on the 1st to N/2th layers corresponding to the first antenna port group, and the matrix elements corresponding to the second antenna port group are sequentially placed on the After the N/2+1 to Nth layers corresponding to the two antenna port groups, the remaining matrix elements can be set to zero to obtain the first matrix.
  • the following explanation is based on the first precoding codebook of 8 antenna ports and 8 layers.
  • S55 Perform energy normalization on the first matrix to obtain the third codeword of partial antenna coherent transmission corresponding to the first codeword.
  • the energy of the first matrix can be normalized, the normalization coefficient corresponding to the third codeword can be obtained, and then the third codeword corresponding to the partial antenna coherent transmission of the first codeword can be obtained .
  • the normalization coefficient corresponding to the third codeword can be set as
  • the following explanation is based on the first precoding codebook of 8 antenna ports and 8 layers.
  • energy normalization can be performed on the first matrix, and a third codeword of partial antenna coherent transmission corresponding to the first codeword can be obtained.
  • the normalization coefficient corresponding to the third codeword is Then the third codeword is the energy-normalized identity matrix:
  • S56 Based on the first precoding codebook, determine the second precoding codebook for the L layer of the N antenna port, where L is less than N.
  • step S56 the implementation in any embodiment of the present application can be adopted, and details will not be described again here.
  • a precoding codebook for MIMO uplink transmission is constructed through the Kerdock codebook.
  • the precoding codebook can support the transmission requirements when uplink transmission antenna ports increase. That is, the MIMO uplink transmission precoding codebook design method based on the Kerdock codebook can support the MIMO uplink support for layer 1 to layer 8 transmission corresponding to 8 antenna ports, thereby further enhancing the uplink MIMO technology.
  • Figure 6 is a schematic flowchart of a method for determining a MIMO uplink transmission precoding codebook provided by an embodiment of the present application. As shown in Figure 6, the method may include but is not limited to the following steps:
  • N is a positive integer power of 2 and N is greater than 4.
  • step S61 please refer to the implementation in any embodiment of this application, and will not be described again here.
  • step S62 please refer to the implementation in any embodiment of this application, and will not be described again here.
  • the following explains the process of determining the second precoding codebook for the L layer of the N antenna port based on the first precoding codebook, and L is less than N.
  • the normalization coefficient corresponding to the fourth codeword can be obtained, and then the third codeword of coherent transmission by all antennas can be obtained.
  • the normalization coefficient corresponding to the fourth codeword can be set as
  • the following explanation is based on the second precoding codebook with 8 antenna ports and layers 1 to 7.
  • the number of transmission layers is 1, 2, 3, 4, 5, 6 or 7.
  • the normalization coefficient corresponding to the fourth codeword is The second matrix can be generated, and the energy of the second matrix can be normalized to obtain the fourth codeword of coherent transmission by all antennas.
  • the fourth codeword of coherent transmission by all antennas of the 8-antenna port 6-layer precoding codebook is as follows: As shown in Table 2.
  • Table 3 The fourth codeword of coherent transmission for all antennas in the 8-antenna port 6-layer precoding codebook
  • the normalization coefficient corresponding to the fifth codeword can be obtained, and the energy of the third matrix can be normalized, thereby obtaining the fifth codeword of non-coherent transmission by the antenna.
  • the normalization coefficient corresponding to the fifth codeword can be set as
  • the normalization coefficient corresponding to the fifth codeword is Then the energy of the third matrix can be normalized to obtain the fifth codeword of non-coherent transmission by the antenna.
  • S65 for the third codeword in the first precoding codebook, select any L layer among the N layers, generate a fourth matrix, and perform energy normalization on the matrix to obtain the sixth codeword for coherent transmission by some antennas, Among them, the absolute value of the difference between the number of columns selected from the 1st to N/2th layers and the number of columns selected from the N/2+1 to Lth layers needs to be less than or equal to 1.
  • the normalization coefficient corresponding to the fifth codeword can be obtained, the energy of the fourth matrix can be normalized, and the sixth codeword of the coherent transmission by separate antennas can be obtained.
  • the normalization coefficient corresponding to the sixth codeword can be set as
  • the normalization coefficient corresponding to the sixth codeword is Then the energy of the fourth matrix can be normalized to obtain the sixth codeword of coherent transmission by some antennas.
  • a precoding codebook for MIMO uplink transmission is constructed through the Kerdock codebook.
  • the precoding codebook can support the transmission requirements when uplink transmission antenna ports increase. That is, the MIMO uplink transmission precoding codebook design method based on the Kerdock codebook can support the MIMO uplink support for layer 1 to layer 8 transmission corresponding to 8 antenna ports, thereby further enhancing the uplink MIMO technology.
  • the terminal equipment and network equipment can perform uplink transmission.
  • Figure 7 is a schematic flowchart of a codebook-based uplink transmission method provided by an embodiment of the present application. Executed by the terminal device, as shown in Figure 7, the method may include but is not limited to the following steps:
  • the terminal device can receive the Precoding Matrix Indicator (TPMI) information sent by the network device.
  • TPMI Precoding Matrix Indicator
  • the Transmit Precoding Matrix Indicator is used to indicate a codeword in the precoding matrix, which can be the index value (index) of the codeword.
  • the precoding codebook is determined based on the N-dimensional Kerdock codebook, N is a positive integer power of 2 and N is greater than 4, and L is a positive integer, and L is less than or equal to N.
  • the terminal device may determine the precoding codebook in advance based on the precoding codebook determination method provided in the above embodiment.
  • the process of determining the precoding codebook please refer to the relevant records in the above embodiments, which will not be described again here.
  • the precoding codebook determined based on the N-dimensional Kerdock codebook can be obtained according to a communication protocol in advance and stored in the terminal device.
  • the mapping relationship between the codeword and the index index can be set in advance, and the terminal device queries the mapping relationship based on the index indicated by the precoding indication information to obtain the target codeword for uplink transmission.
  • S73 Precode the PUSCH based on the target codeword and send it to the network device.
  • the PUSCH After obtaining the target codeword, the PUSCH can be precoded based on the target codeword, and the precoded PUSCH is sent to the network device.
  • a precoding codebook for MIMO uplink transmission is constructed through the Kerdock codebook.
  • the precoding codebook can support the transmission requirements when uplink transmission antenna ports increase. That is, the MIMO uplink transmission precoding codebook design method based on the Kerdock codebook can support the MIMO uplink support for layer 1 to layer 8 transmission corresponding to 8 antenna ports, thereby further enhancing the uplink MIMO technology.
  • Figure 8 is a schematic flowchart of a codebook-based uplink transmission method provided by an embodiment of the present application. Executed by the network device, as shown in Figure 8, the method may include but is not limited to the following steps:
  • S81 Determine the precoding indication information and send the precoding indication information to the terminal device to instruct the terminal device to determine the target codeword corresponding to the uplink transmission from the precoding codebook of the L layer of the N antenna port corresponding to the MIMO uplink transmission.
  • the precoding codebook is determined based on the N-dimensional Kerdock codebook, N is a positive integer power of 2 and N is greater than 4, and L is a positive integer, and L is less than or equal to N.
  • the network device can receive the Sounding Reference Signals (SRS) resource sent by the terminal device, perform channel evaluation based on the SRS resource, determine the TPMI based on the evaluated channel status information, and send the TPMI to the terminal device.
  • SRS Sounding Reference Signals
  • the TPMI is used to indicate a codeword in the precoding matrix, and may be the index of the codeword.
  • the precoding codebook is determined based on the N-dimensional Kerdock codebook, N is a positive integer power of 2 and N is greater than 4, and L is a positive integer, and L is less than or equal to N.
  • the network device may determine the precoding codebook in advance based on the precoding codebook determination method provided in the above embodiment.
  • the process of determining the precoding codebook please refer to the relevant records in the above embodiments, which will not be described again here.
  • the network device can agree on a communication protocol in advance to obtain the precoding codebook determined based on the N-dimensional Kerdock codebook, and store it in the network device.
  • S82 Receive the PUSCH transmission sent by the terminal device, where the PUSCH transmission is precoded by the terminal device based on the target codeword.
  • the terminal device After receiving the TPMI, the terminal device can obtain the target codeword determined for uplink transmission, precode the PUSCH based on the target codeword, and send the precoded PUSCH to the network device. Accordingly, the network device can receive the PUSCH transmission sent by the terminal device.
  • a precoding codebook for MIMO uplink transmission is constructed through the Kerdock codebook.
  • the precoding codebook can support the transmission requirements when uplink transmission antenna ports increase. That is, the MIMO uplink transmission precoding codebook design method based on the Kerdock codebook can support the MIMO uplink support for layer 1 to layer 8 transmission corresponding to 8 antenna ports, thereby further enhancing the uplink MIMO technology.
  • network equipment and terminal equipment may include hardware structures and software modules to implement the above functions in the form of hardware structures, software modules, or hardware structures plus software modules.
  • a certain function among the above functions can be executed by a hardware structure, a software module, or a hardware structure plus a software module.
  • FIG. 9 is a schematic structural diagram of a communication device 90 provided by an embodiment of the present application.
  • the communication device 90 shown in FIG. 9 may include a transceiver module 91 and a processing module 92.
  • the transceiving module 91 may include a sending module and/or a receiving module.
  • the sending module is used to implement the sending function
  • the receiving module is used to implement the receiving function.
  • the transceiving module 91 may implement the sending function and/or the receiving function.
  • the communication device 90 may be used to implement the method for determining the MIMO uplink transmission precoding codebook provided in the above embodiment.
  • the communication device 90 may be a terminal device, a device in the terminal device, or a device that can be used in conjunction with the terminal device.
  • the communication device 90 may be a network device, a device in a network device, or a device that can be used in conjunction with the network device.
  • the processing module 92 is used to determine an N-dimensional Kerdock codebook, where N is a positive integer power of 2 and N is greater than 4; based on the Kerdock codebook, determine N antennas corresponding to MIMO uplink transmission
  • the precoding codebook of the port L layer wherein the L is a positive integer, and the L is less than or equal to the N.
  • the processing module 92 is also used to: determine the N-order Hadamard matrix and N diagonal matrices D k , and determine the N-dimensional based on the Hadamard matrix and the N diagonal matrices D k Kerdock codebook, where 1 ⁇ k ⁇ N; determine the precoding codebook according to the N-dimensional Kerdock codebook.
  • the processing module 92 is further configured to: determine the first precoding codebook of the N layer of the N antenna port based on the N-dimensional Kerdock codebook, where the L is equal to the N; based on the first precoding codebook The encoding codebook determines the second precoding codebook of the L layer of the N antenna port, and the L is smaller than the N.
  • the processing module 92 is also configured to: perform energy normalization on each codeword in the N-dimensional Kerdock codebook to obtain N first codewords for coherent transmission by all antennas; or, determine N ⁇ N unit matrix, perform energy normalization on the unit matrix to obtain the second codeword for antenna non-coherent transmission; or group all antenna ports to obtain the first antenna port group for coherent transmission of all antenna ports in the group and second antenna port group;
  • the first codeword is generated according to the any first codeword, the first antenna port group and the second antenna port group. Corresponding to at least one first matrix;
  • Energy normalization is performed on the first matrix to obtain a third codeword of partial antenna coherent transmission corresponding to the first codeword.
  • the processing module 92 is also configured to perform orthogonality judgment on the N-layer vectors corresponding to the first antenna port group and the second antenna port group based on any first codeword, so as to obtain the Select N/2 layer mutually orthogonal vectors from any of the first codewords; based on the N/2 layer mutually orthogonal vectors, determine the values of the matrix elements corresponding to the first antenna port group and the The values of the matrix elements corresponding to the second antenna port group are used to generate the first matrix.
  • the processing module 92 is also configured to: place the matrix elements corresponding to the first antenna port group in the N/2 layer mutually orthogonal vectors in sequence corresponding to the first antenna port group. The 1st to N/2th layers; place the matrix elements corresponding to the second antenna port group in the mutually orthogonal vectors of the N/2 layers in sequence at the N/th layer corresponding to the second antenna port group. 2+1 to the Nth layer; set the remaining matrix elements to zero to obtain the first matrix.
  • the normalization coefficient corresponding to the first codeword is The normalization coefficient corresponding to the second codeword
  • the third code word corresponds to
  • the processing module 92 is also configured to: for the first codeword in the first precoding codebook, select any L layer among the N layers, generate a second matrix, and calculate the second matrix for the first codeword in the first precoding codebook.
  • the matrix is energy normalized to obtain the fourth codeword for coherent transmission by all antennas; or, for the second codeword in the first precoding codebook, select any L layer among the N layers to generate the third matrix, and energy normalizes the third matrix to obtain the fifth codeword for antenna non-coherent transmission; or, for the third codeword in the first precoding codebook, select the N layer At any L layer of The absolute value of the difference between N/2+1 and the number of columns selected in the Nth layer needs to be less than or equal to 1.
  • the normalization coefficient corresponding to the fourth codeword is The normalization coefficient corresponding to the fifth codeword
  • the sixth codeword corresponds to
  • the communication device 90 may be a terminal device, and after determining the precoding codebook, perform uplink transmission based on the precoding codebook.
  • the transceiver module 91 is configured to receive precoding indication information sent by the network device.
  • the processing module 92 is also configured to determine the target codeword corresponding to the uplink transmission from the precoding codebook of the N antenna port L layer corresponding to the multiple-input multiple-output MIMO uplink transmission based on the precoding indication information.
  • the communication device 90 may be a network device, and after determining the precoding codebook, perform uplink transmission based on the precoding codebook.
  • the transceiver module 91 is configured to determine the precoding indication information and send the precoding indication information to the terminal device to instruct the terminal device to determine the uplink from the precoding codebook of the L layer of the N antenna port corresponding to the MIMO uplink transmission. Transmit the corresponding target codeword.
  • the precoding codebook is determined based on the N-dimensional Kerdock codebook, N is a positive integer power of 2 and N is greater than 4, and L is a positive integer, and L is less than or equal to N.
  • the processing module 92 is also configured to receive the PUSCH transmission sent by the terminal device, where the PUSCH transmission is precoded by the terminal device based on the target codeword.
  • a precoding codebook for MIMO uplink transmission is constructed through the Kerdock codebook.
  • the precoding codebook can support the transmission requirements when uplink transmission antenna ports increase. That is, the MIMO uplink transmission precoding codebook design method based on the Kerdock codebook can support the MIMO uplink support for layer 1 to layer 8 transmission corresponding to 8 antenna ports, thereby further enhancing the uplink MIMO technology.
  • FIG. 10 is a schematic structural diagram of another communication device 100 provided by an embodiment of the present application.
  • the communication device 100 may be a terminal device, a network device, a chip, a chip system, or a processor that supports a terminal device to implement the above method, or a chip, a chip system, or a processor that supports a network device to implement the above method. Processor etc.
  • the device can be used to implement the method described in the above method embodiment. For details, please refer to the description in the above method embodiment.
  • the Communication device 100 may include one or more processors 101 .
  • the processor 101 may be a general-purpose processor or a special-purpose processor, or the like. For example, it can be a baseband processor or a central processing unit.
  • the baseband processor can be used to process communication protocols and communication data.
  • the central processor can be used to control communication devices (such as base stations, baseband chips, terminal equipment, terminal equipment chips, DU or CU, etc.) and execute computer programs. , processing data for computer programs.
  • the communication device 100 may also include one or more memories 102, on which a computer program 104 may be stored.
  • the processor 101 executes the computer program 104, so that the communication device 100 performs the steps described in the above method embodiments. method.
  • the memory 102 may also store data.
  • the communication device 100 and the memory 102 can be provided separately or integrated together.
  • the communication device 100 may also include a transceiver 105 and an antenna 106.
  • the transceiver 105 may be called a transceiver unit, a transceiver, a transceiver circuit, etc., and is used to implement transceiver functions.
  • the transceiver 105 may include a receiver and a transmitter.
  • the receiver may be called a receiver or a receiving circuit, etc., used to implement the receiving function;
  • the transmitter may be called a transmitter, a transmitting circuit, etc., used to implement the transmitting function.
  • the communication device 100 may also include one or more interface circuits 107.
  • the interface circuit 107 is used to receive code instructions and transmit them to the processor 101 .
  • the processor 101 executes the code instructions to cause the communication device 100 to perform the method described in the above method embodiment.
  • the processor 101 may include a transceiver for implementing receiving and transmitting functions.
  • the transceiver may be a transceiver circuit, an interface, or an interface circuit.
  • the transceiver circuits, interfaces or interface circuits used to implement the receiving and transmitting functions can be separate or integrated together.
  • the above-mentioned transceiver circuit, interface or interface circuit can be used for reading and writing codes/data, or the above-mentioned transceiver circuit, interface or interface circuit can be used for signal transmission or transfer.
  • the processor 101 may store a computer program 103, and the computer program 103 runs on the processor 101, causing the communication device 100 to perform the method described in the above method embodiment.
  • the computer program 103 may be solidified in the processor 101, in which case the processor 101 may be implemented by hardware.
  • the communication device 100 may include a circuit, and the circuit may implement the functions of sending or receiving or communicating in the foregoing method embodiments.
  • the processor and transceiver described in this application can be implemented in integrated circuits (ICs), analog ICs, radio frequency integrated circuits RFICs, mixed signal ICs, application specific integrated circuits (ASICs), printed circuit boards ( printed circuit board (PCB), electronic equipment, etc.
  • the processor and transceiver can also be manufactured using various IC process technologies, such as complementary metal oxide semiconductor (CMOS), n-type metal oxide-semiconductor (NMOS), P-type Metal oxide semiconductor (positive channel metal oxide semiconductor, PMOS), bipolar junction transistor (BJT), bipolar CMOS (BiCMOS), silicon germanium (SiGe), gallium arsenide (GaAs), etc.
  • CMOS complementary metal oxide semiconductor
  • NMOS n-type metal oxide-semiconductor
  • PMOS P-type Metal oxide semiconductor
  • BJT bipolar junction transistor
  • BiCMOS bipolar CMOS
  • SiGe silicon germanium
  • GaAs gallium arsenide
  • the communication device described in the above embodiments may be a sending device or a receiving device (such as the receiving device in the foregoing method embodiment), but the scope of the communication device described in this application is not limited thereto, and the structure of the communication device may not be limited to Limitations of Figure 10.
  • the communication device may be a stand-alone device or may be part of a larger device.
  • the communication device may be:
  • the IC collection may also include storage components for storing data and computer programs;
  • the communication device may be a chip or a chip system
  • the schematic structural diagram of the chip shown in FIG. 11 refer to the schematic structural diagram of the chip shown in FIG. 11 .
  • the chip shown in Figure 11 includes a processor 111 and an interface 112.
  • the number of processors 111 may be one or more, and the number of interfaces 112 may be multiple.
  • the chip also includes a memory 113, which is used to store necessary computer programs and data.
  • the chip is used to implement the functions of any of the above method embodiments when executed.
  • Embodiments of the present application also provide a communication system based on codebook uplink transmission.
  • the system includes a communication device as a terminal device (such as the terminal device in the foregoing method embodiment) in the embodiment of FIG. 9 and a communication device as a network device.
  • a communication device as a terminal device such as the terminal device in the foregoing method embodiment
  • a communication device as a network device such as the terminal device in the foregoing method embodiment
  • This application also provides a readable storage medium on which instructions are stored. When the instructions are executed by a computer, the functions of any of the above method embodiments are implemented.
  • This application also provides a computer program product, which, when executed by a computer, implements the functions of any of the above method embodiments.
  • the above embodiments it may be implemented in whole or in part by software, hardware, firmware, or any combination thereof.
  • software it may be implemented in whole or in part in the form of a computer program product.
  • the computer program product includes one or more computer programs.
  • the computer program When the computer program is loaded and executed on a computer, the processes or functions described in the embodiments of the present application are generated in whole or in part.
  • the computer may be a general-purpose computer, a special-purpose computer, a computer network, or other programmable device.
  • the computer program may be stored in or transferred from one computer-readable storage medium to another, for example, the computer program may be transferred from a website, computer, server, or data center Transmission to another website, computer, server or data center through wired (such as coaxial cable, optical fiber, digital subscriber line (DSL)) or wireless (such as infrared, wireless, microwave, etc.) means.
  • the computer-readable storage medium may be any available medium that can be accessed by a computer or a data storage device such as a server, data center, etc. that contains one or more available media integrated.
  • the usable media may be magnetic media (e.g., floppy disks, hard disks, magnetic tapes), optical media (e.g., high-density digital video discs (DVD)), or semiconductor media (e.g., solid state disks, SSD)) etc.
  • magnetic media e.g., floppy disks, hard disks, magnetic tapes
  • optical media e.g., high-density digital video discs (DVD)
  • DVD digital video discs
  • semiconductor media e.g., solid state disks, SSD
  • At least one in this application can also be described as one or more, and the plurality can be two, three, four or more, which is not limited by this application.
  • the technical feature is distinguished by “first”, “second”, “third”, “A”, “B”, “C” and “D”, etc.
  • the technical features described in “first”, “second”, “third”, “A”, “B”, “C” and “D” are in no particular order or order.
  • the corresponding relationships shown in each table in this application can be configured or predefined.
  • the values of the information in each table are only examples and can be configured as other values, which are not limited by this application.
  • the corresponding relationships shown in some rows may not be configured.
  • appropriate deformation adjustments can be made based on the above table, such as splitting, merging, etc.
  • the names of the parameters shown in the titles of the above tables may also be other names understandable by the communication device, and the values or expressions of the parameters may also be other values or expressions understandable by the communication device.
  • other data structures can also be used, such as arrays, queues, containers, stacks, linear lists, pointers, linked lists, trees, graphs, structures, classes, heaps, hash tables or hash tables. wait.
  • Predefinition in this application can be understood as definition, pre-definition, storage, pre-storage, pre-negotiation, pre-configuration, solidification, or pre-burning.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Radio Transmission System (AREA)

Abstract

本申请实施例公开了MIMO上行传输预编码码本的确定方法及其装置,可以应用于通信系统中,该方法包括:确定N维的克尔杜克Kerdock码本,N为2的正整数次幂且N大于4;基于Kerdock码本,确定MIMO上行传输对应的N天线端口L层的预编码码本,其中,L为正整数,且L小于或等于N。本申请实施例中,通过Kerdock码本,构建了一个MIMO上行传输的预编码码本,该预编码码本中能够支持上行传输天线端口增多的情况下的传输需求。即基于Kerdock码本构建的MIMO上行传输预编码码本设计方法,可以支持MIMO上行支持8天线端口对应的1层至8层传输的需求,进而对上行MIMO技术进一步增强。

Description

MIMO上行传输预编码码本的确定方法及其装置 技术领域
本申请涉及通信技术领域,尤其涉及MIMO上行传输预编码码本的确定方法及其装置。
背景技术
多输入多输出(Multiple Input Multiple Output,MIMO)系统中的预编码技术可有效降低干扰及系统开销,提升系统容量,是MIMO系统中极其重要的关键技术,在基于码本传输的MIMO上行系统中,码本设计也是预编码技术中重要的一部分。现有MIMO上行传输所支持的最大天线端口数量为4,即现有MIMO上行预编码码本仅支持最大4天线端口最大4层的传输,在MIMO上行传输天线端口增强时,无法满足增强后天线端口的传输需求。
发明内容
本申请实施例提供的一种MIMO上行传输预编码码本的确定方法及其装置,通过计算Kerdock码本,构建一组基于Kerdock码本的MIMO上行传输预编码码本,用于支持MIMO上行传输增加后天线端口的传输需求。
第一方面,本申请实施例提供的一种MIMO上行传输预编码码本的确定方法,该方法包括:
确定N维的克尔杜克Kerdock码本,所述N为2的正整数次幂且所述N大于4;
基于所述Kerdock码本,确定MIMO上行传输对应的N天线端口L层的预编码码本,其中,所述L为正整数,且所述L小于或等于所述N。
本申请实施例中,通过Kerdock码本,构建了一个MIMO上行传输的预编码码本,该预编码码本中能够支持上行传输天线端口增多的情况下的传输需求。
第二方面,本申请实施例提供另一种MIMO上行传输预编码码本的确定方法,该方法包括:
确定N维的克尔杜克Kerdock码本,所述N为2的正整数次幂且所述N大于4;
基于所述Kerdock码本,确定MIMO上行传输对应的N天线端口L层的预编码码本,其中,所述L为正整数,且所述L小于或等于所述N。
本申请实施例中,通过Kerdock码本,构建了一个MIMO上行传输的预编码码本,该预编码码本中能够支持上行传输天线端口增多的情况下的传输需求。
第三方面,本申请实施例提供一种通信装置,该通信装置具有实现上述第一方面所述的方法中终端设备的部分或全部功能,比如通信装置的功能可具备本申请中的部分或全部实施例中的功能,也可以具备单独实施本申请中的任一个实施例的功能。所述功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。所述硬件或软件包括一个或多个与上述功能相对应的单元或模块。
在一种实现方式中,该通信装置的结构中可包括收发模块和处理模块,所述处理模块被配置为支持通信装置执行上述方法中相应的功能。所述收发模块用于支持通信装置与其他设备之间的通信。所述通信装置还可以包括存储模块,所述存储模块用于与收发模块和处理模块耦合,其保存通信装置必要的计算机程序和数据。
作为示例,处理模块可以为处理器,收发模块可以为收发器或通信接口,存储模块可以为存储器。
第四方面,本申请实施例提供另一种通信装置,该通信装置具有实现上述第二方面所述的方法示例中网络设备的部分或全部功能,比如通信装置的功能可具备本申请中的部分或全部实施例中的功能,也可以具备单独实施本申请中的任一个实施例的功能。所述功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。所述硬件或软件包括一个或多个与上述功能相对应的单元或模块。
在一种实现方式中,该通信装置的结构中可包括收发模块和处理模块,该处理模块被配置为支持通信装置执行上述方法中相应的功能。收发模块用于支持通信装置与其他设备之间的通信。所述通信装置还可以包括存储模块,所述存储模块用于与收发模块和处理模块耦合,其保存通信装置必要的计算机程序和数据。
第五方面,本申请实施例提供一种通信装置,该通信装置包括处理器,当该处理器调用存储器中的计算机程序时,执行上述第一方面所述的方法。
第六方面,本申请实施例提供一种通信装置,该通信装置包括处理器,当该处理器调用存储器中的计算机程序时,执行上述第二方面所述的方法。
第七方面,本申请实施例提供一种通信装置,该通信装置包括处理器和存储器,该存储器中存储有计算机程序;所述处理器执行该存储器所存储的计算机程序,以使该通信装置执行上述第一方面所述的方法。
第八方面,本申请实施例提供一种通信装置,该通信装置包括处理器和存储器,该存储器中存储有计算机程序;所述处理器执行该存储器所存储的计算机程序,以使该通信装置执行上述第二方面所述的方法。
第九方面,本申请实施例提供一种通信装置,该装置包括处理器和接口电路,该接口电路用于接收代码指令并传输至该处理器,该处理器用于运行所述代码指令以使该装置执行上述第一方面所述的方法。
第十方面,本申请实施例提供一种通信装置,该装置包括处理器和接口电路,该接口电路用于接收代码指令并传输至该处理器,该处理器用于运行所述代码指令以使该装置执行上述第二方面所述的方法。
第十一方面,本申请实施例提供一种通信系统,该系统包括第三方面所述的通信装置以及第四方面所述的通信装置,或者,该系统包括第五方面所述的通信装置以及第六方面所述的通信装置,或者,该系统包括第七方面所述的通信装置以及第八方面所述的通信装置,或者,该系统包括第九方面所述的通信装置以及第十方面所述的通信装置。
第十二方面,本发明实施例提供一种计算机可读存储介质,用于储存为上述终端设备所用的指令,当所述指令被执行时,使所述终端设备执行上述第一方面所述的方法。
第十三方面,本发明实施例提供一种可读存储介质,用于储存为上述网络设备所用的指令,当所述指令被执行时,使所述网络设备执行上述第二方面所述的方法。
第十四方面,本申请还提供一种包括计算机程序的计算机程序产品,当其在计算机上运行时,使得计算机执行上述第一方面所述的方法。
第十五方面,本申请还提供一种包括计算机程序的计算机程序产品,当其在计算机上运行时,使得计算机执行上述第二方面所述的方法。
第十六方面,本申请提供一种芯片系统,该芯片系统包括至少一个处理器和接口,用于支持终端设备实现第一方面所涉及的功能,例如,确定或处理上述方法中所涉及的数据和信息中的至少一种。在一 种可能的设计中,所述芯片系统还包括存储器,所述存储器,用于保存终端设备必要的计算机程序和数据。该芯片系统,可以由芯片构成,也可以包括芯片和其他分立器件。
第十七方面,本申请提供一种芯片系统,该芯片系统包括至少一个处理器和接口,用于支持网络设备实现第二方面所涉及的功能,例如,确定或处理上述方法中所涉及的数据和信息中的至少一种。在一种可能的设计中,所述芯片系统还包括存储器,所述存储器,用于保存网络设备必要的计算机程序和数据。该芯片系统,可以由芯片构成,也可以包括芯片和其他分立器件。
第十八方面,本申请提供一种计算机程序,当其在计算机上运行时,使得计算机执行上述第一方面所述的方法。
第十九方面,本申请提供一种计算机程序,当其在计算机上运行时,使得计算机执行上述第二方面所述的方法。
附图说明
为了更清楚地说明本申请实施例或背景技术中的技术方案,下面将对本申请实施例或背景技术中所需要使用的附图进行说明。
图1是本申请实施例提供的一种通信系统的架构示意图;
图2是本申请实施例提供的一种MIMO上行传输预编码码本的确定方法的流程示意图;
图3是本申请实施例提供的一种MIMO上行传输预编码码本的确定方法的流程示意图;
图4是本申请实施例提供的一种MIMO上行传输预编码码本的确定方法的流程示意图;
图5是本申请实施例提供的一种MIMO上行传输预编码码本的确定方法的流程示意图;
图6是本申请实施例提供的一种MIMO上行传输预编码码本的确定方法的流程示意图;
图7是本申请实施例提供的一种基于码本的上行传输方法的流程示意图;
图8是本申请实施例提供的一种基于码本的上行传输方法的流程示意图;
图9是本申请实施例提供的一种通信装置的结构示意图;
图10是本申请实施例提供的一种通信装置的结构示意图;
图11是本申请实施例提供的一种芯片的结构示意图。
具体实施方式
这里将详细地对示例性实施例进行说明,其示例表示在附图中。下面的描述涉及附图时,除非另有表示,不同附图中的相同数字表示相同或相似的要素。以下示例性实施例中所描述的实施方式并不代表与本公开相一致的所有实施方式。相反,它们仅是与如所附权利要求书中所详述的、本公开的一些方面相一致的装置和方法的例子。
在本公开实施例使用的术语是仅仅出于描述特定实施例的目的,而非旨在限制本公开实施例。在本公开实施例和所附权利要求书中所使用的单数形式的“一种”和“该”也旨在包括多数形式,除非上下文清楚地表示其他含义。还应当理解,本文中使用的术语“和/或”是指并包含一个或多个相关联的列出项目的任何或所有可能组合。
应当理解,尽管在本公开实施例可能采用术语第一、第二、第三等来描述各种信息,但这些信息不应限于这些术语。这些术语仅用来将同一类型的信息彼此区分开。例如,在不脱离本公开实施例范围的情况下,第一信息也可以被称为第二信息,类似地,第二信息也可以被称为第一信息。取决于语境,如在此所使用的词语“如果”可以被解释成为“在……时”或“当……时”或“响应于确定”
出于简洁和便于理解的目的,本文在表征大小关系时,所使用的术语为“大于”或“小于”、“高于”或“低 于”。但对于本领域技术人员来说,可以理解:术语“大于”也涵盖了“大于等于”的含义,“小于”也涵盖了“小于等于”的含义;术语“高于”涵盖了“高于等于”的含义,“低于”也涵盖了“低于等于”的含义。
为了便于理解,首先介绍本申请涉及的术语。
物理上行共享信道(Physical Uplink Shared Channel,PUSCH)用于承载来自传输信道PUSCH的数据。
相干传输被定义为一种UE的能力,UE的相干传输能力包括:
全相干(Full Coherence)传输:所有的天线端口都可以相干传输。
部分相干(Partial Coherence)传输:同一相干传输组内的天线端口可以相干传输,不同相干传输组内的天线端口不能相干传输,每个相干传输组包括至少两个天线端口。
非相干(Non coherence)传输:没有天线端口可以相干传输。
通过本申请实施例公开的MIMO上行传输预编码码本的确定方法,确定出预编码码本可适用于通信系统中,下面首先对本申请实施例适用的通信系统进行描述。
请参见图1,图1为本申请实施例提供的一种通信系统的架构示意图。该通信系统可包括但不限于一个网络设备和一个终端设备,图1所示的设备数量和形态仅用于举例并不构成对本申请实施例的限定,实际应用中可以包括两个或两个以上的网络设备,两个或两个以上的终端设备。图1所示的通信系统以包括一个网络设备101和一个终端设备102为例。
需要说明的是,本申请实施例的技术方案可以应用于各种通信系统。例如:长期演进(long term evolution,LTE)系统、第五代(5th generation,5G)移动通信系统、5G新空口(new radio,NR)系统,或者其他未来的新型移动通信系统等。还需要说明的是,本申请实施例中的侧链路还可以称为侧行链路或直通链路。
本申请实施例中的网络设备101是网络侧的一种用于发射或接收信号的实体。例如,网络设备101可以为演进型基站(evolved NodeB,eNB)、发送接收点(transmission reception point,TRP)、NR系统中的下一代基站(next generation NodeB,gNB)、其他未来移动通信系统中的基站或无线保真(wireless fidelity,WiFi)系统中的接入节点等。本申请的实施例对网络设备所采用的具体技术和具体设备形态不做限定。本申请实施例提供的网络设备可以是由集中单元(central unit,CU)与分布式单元(distributed unit,DU)组成的,其中,CU也可以称为控制单元(control unit),采用CU-DU的结构可以将网络设备,例如基站的协议层拆分开,部分协议层的功能放在CU集中控制,剩下部分或全部协议层的功能分布在DU中,由CU集中控制DU。
本申请实施例中的终端设备102是用户侧的一种用于接收或发射信号的实体,如手机。终端设备也可以称为终端设备(terminal)、用户设备(user equipment,UE)、移动台(mobile station,MS)、移动终端设备(mobile terminal,MT)等。终端设备可以是具备通信功能的汽车、智能汽车、手机(mobile phone)、穿戴式设备、平板电脑(Pad)、带无线收发功能的电脑、虚拟现实(virtual reality,VR)终端设备、增强现实(augmented reality,AR)终端设备、工业控制(industrial control)中的无线终端设备、无人驾驶(self-driving)中的无线终端设备、远程手术(remote medical surgery)中的无线终端设备、智能电网(smart grid)中的无线终端设备、运输安全(transportation safety)中的无线终端设备、智慧城市(smart city)中的无线终端设备、智慧家庭(smart home)中的无线终端设备等等。本申请的实施例对终端设备所采用的具体技术和具体设备形态不做限定。
在侧链路通信中,存在4种侧链路传输模式。侧链路传输模式1和侧链路传输模式2用于终端设备直通(device-to-device,D2D)通信。侧链路传输模式3和侧链路传输模式4用于V2X通信。当采用侧链路传输模式3时,资源分配由网络设备101调度。具体的,网络设备101可以将资源分配信息发送给终端设备102,然后由该终端设备102向另一终端设备分配资源,以使得该另一终端设备可以通过分配到的资源向网络设备101发送信息。在V2X通信中,可以将信号较好或者可靠性较高的终端设备作为终端设备102。本申请实施例中提及的第一终端设备可以指该终端设备102,第二终端设备可以指该另一终端设备。
可以理解的是,本申请实施例描述的通信系统是为了更加清楚的说明本申请实施例的技术方案,并不构成对于本申请实施例提供的技术方案的限定,本领域普通技术人员可知,随着系统架构的演变和新业务场景的出现,本申请实施例提供的技术方案对于类似的技术问题,同样适用。
需要说明的是,本申请中任一个实施例提供的MIMO上行传输预编码码本的确定方法可以单独执行,或是结合其他实施例中的可能的实现方法一起被执行,还可以结合相关技术中的任一种技术方案一起被执行。
下面结合附图对本申请所提供的MIMO上行传输预编码码本的确定方法及其装置进行详细地介绍。
请参见图2,图2是本申请实施例提供的一种MIMO上行传输预编码码本的确定方法的流程示意图。如图2所示,该方法可以包括但不限于如下步骤:
S21,确定N维的克尔杜克Kerdock码本,N为2的正整数次幂且N大于4。
需要说明的是,克尔杜克Kerdock码本是一种在通信系统设计中被广泛研究的正交码本,可用于构建相互无偏基序列。
N维的克尔杜克Kerdock码本,共包含N个码字,其中每个码字均为N×N维度的正交矩阵,且仅含有1,-1,i,-i这4种元素(不包含归一化系数)。其中,N为2的正整数次幂且N大于4,如N=8,……。可选地,对于8维的Kerdock码本,共有8个维度为8×8的矩阵,8维Kerdock码本,如表1所示。
表1 8维Kerdock码本
Figure PCTCN2022087521-appb-000001
Figure PCTCN2022087521-appb-000002
可以理解的是,表1中的每一个元素都是独立存在的,这些元素被示例性的列在同一张表格中,但是并不代表表格中的所有元素必须根据表格中所示的同时存在。其中每一个元素的值,是不依赖于表1中任何其他元素值。因此本领域内技术人员可以理解,该表1中的每一个元素的取值都是一个独立的实施例。
需要说明的是,Kerdock码本具有正交性,即每个Kerdock码字中任意两列向量均互相正交。本申请对于验证Kerdock码本的正交性的具体方式不作限定,可以根据实际情况进行选取。可选地,可以利用MATLAB等软件进行验证Kerdock码本的正交性;可选地,可以通过计算方式,进行验证Kerdock码本的正交性。
S22,基于Kerdock码本,确定MIMO上行传输对应的N天线端口L层的预编码码本,其中,L为正整数,且L小于或等于N。
随着传输需求和传输场景的增强,上行传输可以支持增多的天线端口和上行传输层数即天线端口数量可以从4个增多到N个,上行传输层数可以从4层扩展到L层,例如N的取值可以为8,L的取值也可以为6、8等。为了实现基于码本的PUSCH上行传输,需要重新构建支持N天线端口L层的预编码码本。本申请实施例中,基于Kerdock码本的正交码本的特点,在获取到Kerdock码本后,可以确定MIMO上行传输对应的N天线端口L层的预编码码本。
可选地,上行传输的天线端口数量N以及上行传输层数L可以相等,也可以不相等,也就是说,MIMO上行传输可以为N天线端口N层的上行传输,此种情况下,上行传输层数L等于天线端口数量N;MIMO上行传输也可以为N天线端口L层,此种情况下,上行传输层数L小于天线端口数量N。
终端设备的相干传输能力包括全相干传输、非相干传输和部分相干传输,相应地预编码码本中包括共包含三种类型的码字,分别为所有天线全相干传输对应的第一码字,天线非相干传输的第二码字,以及部分天线相干传输的第三码字。
本申请实施例中,获取到N维的Kerdock码本,基于该N维的Kerdock码本,确定N天线端口N层的第一预编码码本,L等于N。进一步地,基于该第一预编码码本,确定N天线端口L层的第二预编码码本,L小于N。示例性说明,N=8时,基于N维的Kerdock码本,确定8天线端口8层的第一预编码码本,再基于8天线端口8层的第一预编码码本,确定8天线端口剩余上行传输层的第二预编码码本,此时L={1,2,3,4,5,6,7}。
本申请实施例中,通过确定N维的克尔杜克Kerdock码本,N为2的正整数次幂且N大于4;并基于Kerdock码本,确定MIMO上行传输对应的N天线端口L层的预编码码本,其中,L为正整数,且L小于或等于N。本申请实施例中,通过Kerdock码本,构建了一个MIMO上行传输的预编码码本,该预编码码本中能够支持上行传输天线端口增多的情况下的传输需求。即基于Kerdock码本构建的预编码码本,可以支持MIMO上行8天线端口对应的1层至8层传输的需求,进而对上行MIMO技术进一步增强。
请参见图3,图3是本申请实施例提供的一种MIMO上行传输预编码码本的确定方法的流程示意图。如图3所示,该方法可以包括但不限于如下步骤:
S31,确定N阶哈达玛Hadamard矩阵和N个对角矩阵D k,并基于Hadamard矩阵和N个对角矩阵D k,确定N维的Kerdock码本,其中,1≤k≤N。
其中,哈达玛Hadamard矩阵具有正交性,且仅包含元素1和-1,是一种被广泛研究和应用的正交矩阵。
下面对确定N阶哈达玛Hadamard矩阵的过程进行解释说明。
其中,2阶哈达玛Hadamard矩阵为
Figure PCTCN2022087521-appb-000003
4阶哈达玛Hadamard矩阵为
Figure PCTCN2022087521-appb-000004
8阶哈达玛Hadamard矩阵为
Figure PCTCN2022087521-appb-000005
其中,
Figure PCTCN2022087521-appb-000006
表示Kronecker积。
需要说明的是,对于N维的Kerdock码本,共有N个对角矩阵D k,其中,在获取对角矩阵D k时可以通过表2进行获取。其中,k=1,…,8。
表1 对角矩阵D k
Figure PCTCN2022087521-appb-000007
Figure PCTCN2022087521-appb-000008
可以理解的是,表2中的每一个元素都是独立存在的,这些元素被示例性的列在同一张表格中,但是并不代表表格中的所有元素必须根据表格中所示的同时存在。其中每一个元素的值,是不依赖于表2中任何其他元素值。因此本领域内技术人员可以理解,该表2中的每一个元素的取值都是一个独立的实施例。
进一步地,在获取到Hadamard矩阵和N个对角矩阵D k后,可以基于Hadamard矩阵和N个对角矩阵D k确定N维的Kerdock码本,其中,1≤k≤N。
需要说明的是,对于N维的Kerdock码本,共有N个维度为N×N的矩阵。
可选地,对于8维的Kerdock码本,共有8个维度为8×8的矩阵,第k个矩阵计算公式为
Figure PCTCN2022087521-appb-000009
则可以计算8维Kerdock码本,如表1所示。
S32,基于Kerdock码本,确定MIMO上行传输对应的N天线端口L层的预编码码本。
在获取到N维的Kerdock码本后,可以根据Kerdock码本,对Kerdock码本进行能量归一化,进而确定预编码码本。
关于步骤S32的实现方式,可采用本申请任一实施例中的实现方式,此处不再赘述。
本申请实施例中,通过确定N阶哈达玛Hadamard矩阵和N个对角矩阵D k,并基于Hadamard矩阵和N个对角矩阵D k,确定N维的Kerdock码本,其中,1≤k≤N;根据N维的Kerdock码本,确定预编码码本。本申请实施例中,通过Kerdock码本,构建了一个MIMO上行传输的预编码码本,该预编码码本中能够支持上行传输天线端口增多的情况下的传输需求。即基于Kerdock码本构建的MIMO上行传输预编码码本设计方法,可以支持MIMO上行支持8天线端口对应的1层至8层传输的需求,进而对上行MIMO技术进一步增强。
请参见图4,图4是本申请实施例提供的一种MIMO上行传输预编码码本的确定方法的流程示意图。如图4所示,该方法可以包括但不限于如下步骤:
S41,确定N阶哈达玛Hadamard矩阵和N个对角矩阵D k,并基于Hadamard矩阵和N个对角矩阵D k,确定N维的Kerdock码本,其中,1≤k≤N。
关于步骤SS41的具体介绍,可参加上述实施例中相关内容的记载,此处不再赘述。
S42,基于N维的Kerdock码本,确定N天线端口N层的第一预编码码本,L等于N。
第一预编码码本同样三种类型的码字,分别为所有天线全相干传输对应的第一码字,天线非相干传输的第二码字,以及部分天线相干传输的第三码字。
可选地,对N维的Kerdock码本内每个码字进行能量归一化,得到所有天线全相干传输的N个第一码字。
可选地,确定N×N的单位矩阵,对所述单位矩阵进行能量归一化,得到天线非相干传输的第二码 字。
可选地,对所有天线端口进行分组,得到组内所有天线端口全相干传输的第一天线端口组和第二天线端口组。例如N=8,在一些实现中可以设置天线端口{1,3,5,7}为第一天线端口组,天线端口{2,4,6,8}为第二天线端口组,即第1至第4层在天线端口{1,3,5,7}传输,第5至第8层在天线端口{2,4,6,8}传输。在另一些实现中可以设置天线端口{2,4,6,8}为第一天线端口组,天线端口{1,3,5,7}为第二天线端口组,即第1至第4层在天线端口{2,4,6,8}传输,第5至第8层在天线端口{1,3,5,7}传输。需要说明的是,其中每个天线端口组中的所有天线相干传输,包括但不限于以下几种分组方式。
进一步地,针对N个第一码字中任一第一码字、根据该任一第一码字、第一天线端口组和第二天线端口组,生成第一码字对应的至少一个第一矩阵,并对第一矩阵进行能量归一化,得到与第一码字对应的部分天线相干传输的第三码字。例如,将8个天线端口分为两个天线端口组后,此时MIMO上行传输8天线端口8层预编码码本中的8个所有天线相干传输码字也同样分为两个子矩阵,每个子矩阵均为4×8的矩阵。对于任意一种天线端口分组方式,判断其每个天线端口组中各层之间的正交性,基于正交性判断结果,确定得到与第一码字对应的部分天线相干传输的第三码字。
需要说明的是,N天线端口的第一码字有多个,每个第一码字可以按照上述实施方式获取到一个或多个第一矩阵。也就是说任一码字可以对应有一个或多个第一矩阵。对于任意的列向量选取组合,共有2 4=16种选取方式,因此对于MIMO上行传输8天线端口8层预编码码本中的任意部分天线相干传输码字CB k,均有16种设计方案。
S43,基于第一预编码码本,确定N天线端口L层的第二预编码码本,L小于N。
可选地,对于第一预编码码本中的第一码字,选取N层中的任意L层,生成第二矩阵,并对所述第二矩阵进行能量归一化,得到所有天线全相干传输的第四码字。
可选地,对于第一预编码码本中的第二码字,选取N层中的任意L层,生成第三矩阵,并对第三矩阵进行能量归一化,得到天线非相干传输的第五码字;
可选地,对于第一预编码码本中的第三码字,选取N层中的任意L层,生成第四矩阵,并对矩阵进行能量归一化,得到部分天线相干传输的第六码字,其中,从第1至第N/2层选取的列数与从第N/2+1至第N层选取的列数之间的差值的绝对值需要小于或者等于1。
本申请实施例中,通过Kerdock码本,构建了一个MIMO上行传输的预编码码本,该预编码码本中能够支持上行传输天线端口增多的情况下的传输需求。即基于Kerdock码本构建的MIMO上行传输预编码码本设计方法,可以支持MIMO上行支持8天线端口对应的1层至8层传输的需求,进而对上行MIMO技术进一步增强。
请参见图5,图5是本申请实施例提供的一种MIMO上行传输预编码码本的确定方法的流程示意图。如图5所示,该方法可以包括但不限于如下步骤:
S51,确定N维的克尔杜克Kerdock码本,N为2的正整数次幂且N大于4。
关于步骤S51的具体介绍,可参加上述实施例中相关内容的记载,此处不再赘述。
下面对基于N维的Kerdock码本,确定N天线端口N层的第一预编码码本,L等于N的过程进行解释说明。
S52,对N维的Kerdock码本内每个码字进行能量归一化,得到所有天线相干传输的N个第一码字。
需要说明的是,在对N维的Kerdock码本内每个码字进行能量归一化时,可以获取第一码字对应的归一化系数,进而得到所有天线相干传输的N个第一码字。
可选地,可以设置第一码字对应的归一化系数为
Figure PCTCN2022087521-appb-000010
下面以8天线端口8层的第一预编码码本进行解释说明。
需要说明的是,当N为8时,则第一码字对应的归一化系数为
Figure PCTCN2022087521-appb-000011
可选地,当k=1,…,8时,可以对N维的Kerdock码本内每个码字进行能量归一化,可以得到所有天线相干传输的N个第一码字,其中,第一码字对应的归一化系数为
Figure PCTCN2022087521-appb-000012
则第一码字为
Figure PCTCN2022087521-appb-000013
则可以得到MIMO上行传输8天线端口8层预编码码本所有天线相干传输码字,即共有8个码字,其中,每个码字均为正交矩阵,如表2所示。
表2 MIMO上行传输8天线端口8层预编码码本所有天线相干传输码字
Figure PCTCN2022087521-appb-000014
S53,确定N×N的单位矩阵,对单位矩阵进行能量归一化,得到天线非相干传输的第二码字;或者
需要说明的是,在对N维的Kerdock码本内每个码字进行能量归一化时,可以获取第一码字对应的归一化系数,进而得到所有天线相干传输的N个第一码字。
可选地,可以设置第一码字对应的归一化系数为
Figure PCTCN2022087521-appb-000015
下面以8天线端口8层的第一预编码码本进行解释说明。
需要说明的是,当N为8时,则第二码字对应的归一化系数为
Figure PCTCN2022087521-appb-000016
可选地,当k=1,…,8时,可以对单位矩阵进行能量归一化,可以得到天线非相干传输的第二码字,其中,第二码字对应的归一化系数为
Figure PCTCN2022087521-appb-000017
则第一码字为
Figure PCTCN2022087521-appb-000018
则可以得得到天线非相干传输的第二码字,即为能量归一化的单位阵:
Figure PCTCN2022087521-appb-000019
S54,对所有天线端口进行分组,得到组内所有天线端口相干传输的第一天线端口组和第二天线端口组,其中,1≤M≤N;
针对部分天线相干传输场景,可以将组内所有天线端口分为第一天线端口组和第二天线端口组。
需要说明的是,本申请中对于第一天线端口组和第二天线端口组的具体划分方式不作限定,可以根据实际情况进行选取。
可选地,可以设置天线端口{1,3,5,7}为第一天线端口组,天线端口{2,4,6,8}为第二天线端口组,即第1至第4层在天线端口{1,3,5,7}传输,第5至第8层在天线端口{2,4,6,8}传输
可选地,可以设置天线端口{2,4,6,8}为第一天线端口组,天线端口{1,3,5,7}为第二天线端口组,即第1至第4层在天线端口{2,4,6,8}传输,第5至第8层在天线端口{1,3,5,7}传输
可选地,针对N个第一码字中任一第一码字、根据任一第一码字、第一天线端口组和第二天线端口组,生成第一码字对应的至少一个第一矩阵。
下面对根据任一第一码字、第一天线端口组和第二天线端口组,生成第一码字对应的至少一个第一矩阵的过程进行解释说明。
作为一种可能的实现方式,基于任一第一码字,对第一天线端口组和第二天线端口组对应的N层向量进行正交性判断,以从任一第一码字中选取N/2层相互正交的向量。
需要说明的是,可以对第一天线端口组和第二天线端口组对应的N层向量进行正交性判断,以从任一第一码字中选取N/2层相互正交的向量。
下面以8天线端口8层的第一预编码码本进行解释说明。
可选地,针对第一天线端口组,第1层与第2层不正交,第3层与第4层不正交,第5层与第6层不正交,第7层与第8层不正交,其余任意两层均互相正交。
可选地,针对第二天线端口组,第1层与第2层不正交,第3层与第4层不正交,第5层与第6层不正交,第7层与第8层不正交,其余任意两层均互相正交。
进一步地,可以从任一第一码字中选取4层相互正交的向量。
进一步地,基于N/2层相互正交的向量,确定第一天线端口组对应的矩阵元素的取值和第二天线端口组对应的矩阵元素的取值,以生成一个第一矩阵。
下面对确定第一天线端口组对应的矩阵元素的取值和第二天线端口组对应的矩阵元素的取值,以生成一个第一矩阵的过程进行解释说明。
可选地,将N/2层相互正交的向量中与第一天线端口组对应的矩阵元素依次置于与第一天线端口组对应的第1至第N/2层;
下面以8天线端口8层的第一预编码码本进行解释说明。
可选地,可以在第1层和第2层中任意选取一列,将第一天线端口组对应的矩阵元素置于第1层;可以在第3层和第4层中任意选取一列,将第一天线端口组对应的矩阵元素元素置于第2层;可以在第5层和第6层中任意选取一列,将第一天线端口组对应的矩阵元素置于第3层,可以在第7层和第8层中任意选取一列,将第一天线端口组对应的矩阵元素置于第4层。
进一步地,将N/2层相互正交的向量中与第二天线端口组对应的矩阵元素依次置于与第二天线端口组对应的第N/2+1至第N层;
下面以8天线端口8层的第一预编码码本进行解释说明。
可选地,可以在第1层和第2层中任意选取一列,将第二天线端口组对应的矩阵元素置于第5层;可以在第3层和第4层中任意选取一列,将第二天线端口组对应的矩阵元素元素置于第6层;可以在第5层和第6层中任意选取一列,将第二天线端口组对应的矩阵元素置于第7层,可以在第7层和第8层中任意选取一列,将第二天线端口组对应的矩阵元素置于第8层。
进一步地,将剩余的矩阵元素置零,得到第一矩阵。
进一步地,在将与第一天线端口组对应的矩阵元素依次置于与第一天线端口组对应的第1至第N/2层以及与第二天线端口组对应的矩阵元素依次置于与第二天线端口组对应的第N/2+1至第N层后,可以将剩余的矩阵元素置零,以得到第一矩阵。
下面以8天线端口8层的第一预编码码本进行解释说明。
可选地,当选取第1、3、5、7层时,可以获取对应的第一矩阵:
Figure PCTCN2022087521-appb-000020
S55,对第一矩阵进行能量归一化,得到与第一码字对应的部分天线相干传输的第三码字。
在获取到第一矩阵后,可以对第一矩阵进行能量归一化,可以获取第三码字对应的归一化系数,进而得到与第一码字对应的部分天线相干传输的第三码字。
可选地,可以设置第三码字对应的归一化系数为
Figure PCTCN2022087521-appb-000021
下面以8天线端口8层的第一预编码码本进行解释说明。
需要说明的是,当N为8时,则第三码字对应的归一化系数为
Figure PCTCN2022087521-appb-000022
可选地,可以对第一矩阵进行能量归一化,可以得到与第一码字对应的部分天线相干传输的第三码字。其中,第三码字对应的归一化系数为
Figure PCTCN2022087521-appb-000023
则第三码字为能量归一化的单位矩阵:
Figure PCTCN2022087521-appb-000024
需要说明的是,对于任意的列向量选取组合,共有2 4=16种选取方式,因此,对于MIMO上行传输8天线端口8层预编码码本中的任意部分天线相干传输码字CB k,均有16种设计方案。
S56,基于第一预编码码本,确定N天线端口L层的第二预编码码本,L小于N。
关于步骤S56的实现方式,可采用本申请任一实施例中的实现方式,此处不再赘述。
本申请实施例中,通过Kerdock码本,构建了一个MIMO上行传输的预编码码本,该预编码码本中能够支持上行传输天线端口增多的情况下的传输需求。即基于Kerdock码本构建的MIMO上行传输预编码码本设计方法,可以支持MIMO上行支持8天线端口对应的1层至8层传输的需求,进而对上行MIMO技术进一步增强。
请参见图6,图6是本申请实施例提供的一种MIMO上行传输预编码码本的确定方法的流程示意图。如图6所示,该方法可以包括但不限于如下步骤:
S61,确定N维的克尔杜克Kerdock码本,N为2的正整数次幂且N大于4。
关于步骤S61的具体实现,可参见本申请中任一实施例中的实现方式,此处不再赘述。
S62,基于N维的Kerdock码本,确定N天线端口N层的第一预编码码本,L等于N。
关于步骤S62的具体实现,可参见本申请中任一实施例中的实现方式,此处不再赘述。
下面对基于第一预编码码本,确定N天线端口L层的第二预编码码本,L小于N的过程进行解释说明。
S63,对于第一预编码码本中的第一码字,选取N层中的任意L层,生成第二矩阵,并对第二矩阵进行能量归一化,得到所有天线相干传输的第四码字。
需要说明的是,在对于第一预编码码本中的第一码字,选取N层中的任意L层,可以获取第四码字对应的归一化系数,进而得到所有天线相干传输的第四码字。
可选地,可以设置第四码字对应的归一化系数为
Figure PCTCN2022087521-appb-000025
下面以8天线端口、1层至7层的第二预编码码本进行解释说明。
需要说明的是,当层数小于8时,则传输层数为1、2、3、4、5、6或7时。
可选地,当L为6时(选取第1、2、3、5、6、8层),则第四码字对应的归一化系数为
Figure PCTCN2022087521-appb-000026
可以生成第二矩阵,并对第二矩阵进行能量归一化,得到所有天线相干传输的第四码字,其中,8天线端口6层预编码码本所有天线相干传输的第四码字,如表2所示。
表3 8天线端口6层预编码码本所有天线相干传输的第四码字
Figure PCTCN2022087521-appb-000027
S64,对于第一预编码码本中的第二码字,选取N层中的任意L层,生成第三矩阵,并对第三矩阵进行能量归一化,得到天线非相干传输的第五码字;
需要说明的是,可以获取第五码字对应的归一化系数,对第三矩阵进行能量归一化,进而得到天线非相干传输的第五码字。
可选地,可以设置第五码字对应的归一化系数为
Figure PCTCN2022087521-appb-000028
可选地,当选取L为6层时(选取第1、2、3、5、6、8层),则第五码字对应的归一化系数为
Figure PCTCN2022087521-appb-000029
则可以对第三矩阵进行能量归一化,得到天线非相干传输的第五码字。
S65,对于第一预编码码本中的第三码字,选取N层中的任意L层,生成第四矩阵,并对矩阵进行能量归一化,得到部分天线相干传输的第六码字,其中,从第1至第N/2层选取的列数与从第N/2+1至第L层选取的列数之间的差值的绝对值需要小于或者等于1。
需要说明的是,可以获取第五码字对应的归一化系数,对第四矩阵进行能量归一化,进而得到分天线相干传输的第六码字。
可选地,可以设置第六码字对应的归一化系数为
Figure PCTCN2022087521-appb-000030
可选地,当选取L为6层时(选取第1、2、3、5、6、8层),则第六码字对应的归一化系数为
Figure PCTCN2022087521-appb-000031
则可以对第四矩阵进行能量归一化,得到部分天线相干传输的第六码字。
本申请实施例中,通过Kerdock码本,构建了一个MIMO上行传输的预编码码本,该预编码码本中能够支持上行传输天线端口增多的情况下的传输需求。即基于Kerdock码本构建的MIMO上行传输预编码码本设计方法,可以支持MIMO上行支持8天线端口对应的1层至8层传输的需求,进而对上行MIMO技术进一步增强。
在上述实施例的基础之上,在确定了MIMO上行传输N天线端口L层对应的预编码码本后,终端 设备和网络设备可以进行上行传输。
请参见图7,图7是本申请实施例提供的一种基于码本的上行传输方法的流程示意图。由终端设备执行,如图7所示,该方法可以包括但不限于如下步骤:
S71,接收网络设备发送的预编码指示信息。
需要说明的是,在基于码本的PUSCH的传输过程中,终端设备可以接收网络设备发送的预编码矩阵指示(Transmit Precoding Matrix Indicator,TPMI)信息。
其中,预编码矩阵指示(Transmit Precoding Matrix Indicator,TPMI),用于指示预编码矩阵中的一个码字,可以为该码字的索引值(index)。
S72,基于预编码指示信息,从多输入多输出MIMO上行传输对应的N天线端口L层的预编码码本中,确定上行传输对应的目标码字。
需要说明的是,预编码码本为根据N维的克尔杜克Kerdock码本确定,N为2的正整数次幂且N大于4,且L为正整数,且L小于或等于N。
可选地,终端设备可以预先基于上述实施例中提供的预编码码本确定方式,确定预编码码本。关于预编码码本的确定过程,可以参见上述实施例中相关内容的记载,此处不再赘述。
可选地,可以预先通信协议约定得到基于N维的克尔杜克Kerdock码本确定出的预编码码本,并存储在终端设备内。
可选地,可以预先设置码字与索引index之间的映射关系,终端设备基于预编码指示信息所指示的index,查询该映射关系,得到用于上行传输的目标码字。
S73,基于目标码字对PUSCH进行预编码并发送给网络设备。
在获取到目标码字后,可以基于目标码字对PUSCH进行预编码,并将预编码后的PUSCH发送给网络设备。
本申请实施例中,通过Kerdock码本,构建了一个MIMO上行传输的预编码码本,该预编码码本中能够支持上行传输天线端口增多的情况下的传输需求。即基于Kerdock码本构建的MIMO上行传输预编码码本设计方法,可以支持MIMO上行支持8天线端口对应的1层至8层传输的需求,进而对上行MIMO技术进一步增强。
请参见图8,图8是本申请实施例提供的一种基于码本的上行传输方法的流程示意图。由网络设备执行,如图8所示,该方法可以包括但不限于如下步骤:
S81,确定预编码指示信息,并向终端设备发送预编码指示信息,以指示终端设备从MIMO上行传输对应的N天线端口L层的预编码码本中,确定上行传输对应的目标码字。
其中,预编码码本根据N维的克尔杜克Kerdock码本确定,N为2的正整数次幂且N大于4,且L为正整数,且L小于或等于N。
本申请实施例中,网络设备可以接收终端设备发送的探测参考信号(Sounding Reference Signals,SRS)资源,基于该SRS资源进行信道评估,基于评估出的信道状态信息,确定TPMI,并将向终端设备发送TPMI。该TPMI用于指示预编码矩阵中的一个码字,可以为该码字的index。
需要说明的是,预编码码本为根据N维的克尔杜克Kerdock码本确定,N为2的正整数次幂且N大于4,且L为正整数,且L小于或等于N。
可选地,网络设备可以预先基于上述实施例中提供的预编码码本确定方式,确定预编码码本。关于预编码码本的确定过程,可以参见上述实施例中相关内容的记载,此处不再赘述。
可选地,网络设备可以预先通信协议约定得到基于N维的克尔杜克Kerdock码本确定出的预编码码本,并存储在网络设备内。
S82,接收终端设备发送的PUSCH传输,其中PUSCH传输由终端设备基于目标码字进行预编码得到。
终端设备接收到TPMI后,可以获取到确定出用于上行传输的目标码字,并基于目标码字对PUSCH进行预编码,并将预编码后的PUSCH发送给网络设备。相应地,网络设备可以接收终端设备发送的PUSCH传输。
本申请实施例中,通过Kerdock码本,构建了一个MIMO上行传输的预编码码本,该预编码码本中能够支持上行传输天线端口增多的情况下的传输需求。即基于Kerdock码本构建的MIMO上行传输预编码码本设计方法,可以支持MIMO上行支持8天线端口对应的1层至8层传输的需求,进而对上行MIMO技术进一步增强。
上述本申请提供的实施例中,分别从网络设备、终端设备的角度对本申请实施例提供的方法进行了介绍。为了实现上述本申请实施例提供的方法中的各功能,网络设备和终端设备可以包括硬件结构、软件模块,以硬件结构、软件模块、或硬件结构加软件模块的形式来实现上述各功能。上述各功能中的某个功能可以以硬件结构、软件模块、或者硬件结构加软件模块的方式来执行。
请参见图9,为本申请实施例提供的一种通信装置90的结构示意图。图9所示的通信装置90可包括收发模块91和处理模块92。收发模块91可包括发送模块和/或接收模块,发送模块用于实现发送功能,接收模块用于实现接收功能,收发模块91可以实现发送功能和/或接收功能。该通信装置90可以用于实现上述实施例中提供的MIMO上行传输预编码码本的确定方法。
通信装置90可以是终端设备,也可以是终端设备中的装置,还可以是能够与终端设备匹配使用的装置。或者,通信装置90可以是网络设备,也可以是网络设备中的装置,还可以是能够与网络设备匹配使用的装置。
通信装置90:
处理模块92,用于确定N维的克尔杜克Kerdock码本,所述N为2的正整数次幂且所述N大于4;基于所述Kerdock码本,确定MIMO上行传输对应的N天线端口L层的预编码码本,其中,所述L为正整数,且所述L小于或等于所述N。
可选地,处理模块92,还用于:确定N阶哈达玛Hadamard矩阵和N个对角矩阵D k,并基于所述Hadamard矩阵和所述N个对角矩阵D k,确定所述N维的Kerdock码本,其中,1≤k≤N;根据所述N维的Kerdock码本,确定所述预编码码本。
可选地,处理模块92,还用于:基于所述N维的Kerdock码本,确定N天线端口N层的第一预编码码本,所述L等于所述N;基于所述第一预编码码本,确定N天线端口L层的第二预编码码本,所述L小于所述N。
可选地,处理模块92,还用于:对所述N维的Kerdock码本内每个码字进行能量归一化,得到所有天线相干传输的N个第一码字;或者,确定N×N的单位矩阵,对所述单位矩阵进行能量归一化,得 到天线非相干传输的第二码字;或者,对所有天线端口进行分组,得到组内所有天线端口相干传输的第一天线端口组和第二天线端口组;
针对所述N个第一码字中任一第一码字、根据所述任一第一码字、所述第一天线端口组和所述第二天线端口组,生成所述第一码字对应的至少一个第一矩阵;
对所述第一矩阵进行能量归一化,得到与所述第一码字对应的部分天线相干传输的第三码字。
可选地,处理模块92,还用于:基于任一第一码字,对所述第一天线端口组和所述第二天线端口组对应的N层向量进行正交性判断,以从所述任一第一码字中选取N/2层相互正交的向量;基于所述N/2层相互正交的向量,确定所述第一天线端口组对应的矩阵元素的取值和所述第二天线端口组对应的矩阵元素的取值,以生成一个所述第一矩阵。
可选地,处理模块92,还用于:将所述N/2层相互正交的向量中与所述第一天线端口组对应的矩阵元素依次置于与所述第一天线端口组对应的第1至第N/2层;将所述N/2层相互正交的向量中与所述第二天线端口组对应的矩阵元素依次置于与所述第二天线端口组对应的第N/2+1至第N层;将剩余的矩阵元素置零,得到所述第一矩阵。
可选地,第一码字对应的归一化系数为
Figure PCTCN2022087521-appb-000032
所述第二码字对应的归一化系数
Figure PCTCN2022087521-appb-000033
所述第三码字对应的
Figure PCTCN2022087521-appb-000034
可选地,处理模块92,还用于:对于所述第一预编码码本中的所述第一码字,选取N层中的任意L层,生成第二矩阵,并对所述第二矩阵进行能量归一化,得到所有天线相干传输的第四码字;或者,对于所述第一预编码码本中的所述第二码字,选取N层中的任意L层,生成第三矩阵,并对所述第三矩阵进行能量归一化,得到天线非相干传输的第五码字;或者,对于所述第一预编码码本中的所述第三码字,选取N层中的任意L层,生成第四矩阵,并对所述矩阵进行能量归一化,得到部分天线相干传输的第六码字,其中,从第1至第N/2层选取的列数与从第N/2+1至第N层选取的列数之间的差值的绝对值需要小于或者等于1。
可选地,当N=8时,第四码字对应的归一化系数为
Figure PCTCN2022087521-appb-000035
所述第五码字对应的归一化系数
Figure PCTCN2022087521-appb-000036
所述第六码字对应的
Figure PCTCN2022087521-appb-000037
作为一种可能的实现方式,通信装置90可以是终端设备,在确定出预编码码本后,基于该预编码码本进行上行传输。
可选地,收发模块91,用于接收网络设备发送的预编码指示信息。
可选地,处理模块92,还用于基于预编码指示信息,从多输入多输出MIMO上行传输对应的N天线端口L层的预编码码本中,确定上行传输对应的目标码字。
作为另一种可能的实现方式,通信装置90可以是网络设备,在确定出预编码码本后,基于该预编码码本进行上行传输。
可选地,收发模块91,用于确定预编码指示信息,并向终端设备发送预编码指示信息,以指示终端 设备从MIMO上行传输对应的N天线端口L层的预编码码本中,确定上行传输对应的目标码字。
其中,预编码码本根据N维的克尔杜克Kerdock码本确定,N为2的正整数次幂且N大于4,且L为正整数,且L小于或等于N。
可选地,处理模块92,还用于接收终端设备发送的PUSCH传输,其中PUSCH传输由终端设备基于目标码字进行预编码得到。
本申请实施例中,通过Kerdock码本,构建了一个MIMO上行传输的预编码码本,该预编码码本中能够支持上行传输天线端口增多的情况下的传输需求。即基于Kerdock码本构建的MIMO上行传输预编码码本设计方法,可以支持MIMO上行支持8天线端口对应的1层至8层传输的需求,进而对上行MIMO技术进一步增强。
请参见图10,图10是本申请实施例提供的另一种通信装置100的结构示意图。通信装置100可以是终端设备,也可以是网络设备,也可以是支持终端设备实现上述方法的芯片、芯片系统、或处理器等,还可以是支持网络设备实现上述方法的芯片、芯片系统、或处理器等。该装置可用于实现上述方法实施例中描述的方法,具体可以参见上述方法实施例中的说明。
通信装置100可以包括一个或多个处理器101。处理器101可以是通用处理器或者专用处理器等。例如可以是基带处理器或中央处理器。基带处理器可以用于对通信协议以及通信数据进行处理,中央处理器可以用于对通信装置(如,基站、基带芯片,终端设备、终端设备芯片,DU或CU等)进行控制,执行计算机程序,处理计算机程序的数据。
可选的,通信装置100中还可以包括一个或多个存储器102,其上可以存有计算机程序104,处理器101执行所述计算机程序104,以使得通信装置100执行上述方法实施例中描述的方法。可选的,所述存储器102中还可以存储有数据。通信装置100和存储器102可以单独设置,也可以集成在一起。
可选的,通信装置100还可以包括收发器105、天线106。收发器105可以称为收发单元、收发机、或收发电路等,用于实现收发功能。收发器105可以包括接收器和发送器,接收器可以称为接收机或接收电路等,用于实现接收功能;发送器可以称为发送机或发送电路等,用于实现发送功能。
可选的,通信装置100中还可以包括一个或多个接口电路107。接口电路107用于接收代码指令并传输至处理器101。处理器101运行所述代码指令以使通信装置100执行上述方法实施例中描述的方法。
在一种实现方式中,处理器101中可以包括用于实现接收和发送功能的收发器。例如该收发器可以是收发电路,或者是接口,或者是接口电路。用于实现接收和发送功能的收发电路、接口或接口电路可以是分开的,也可以集成在一起。上述收发电路、接口或接口电路可以用于代码/数据的读写,或者,上述收发电路、接口或接口电路可以用于信号的传输或传递。
在一种实现方式中,处理器101可以存有计算机程序103,计算机程序103在处理器101上运行,可使得通信装置100执行上述方法实施例中描述的方法。计算机程序103可能固化在处理器101中,该种情况下,处理器101可能由硬件实现。
在一种实现方式中,通信装置100可以包括电路,所述电路可以实现前述方法实施例中发送或接收或者通信的功能。本申请中描述的处理器和收发器可实现在集成电路(integrated circuit,IC)、模拟IC、射频集成电路RFIC、混合信号IC、专用集成电路(application specific integrated circuit,ASIC)、印刷电路板(printed circuit board,PCB)、电子设备等上。该处理器和收发器也可以用各种IC工艺技术来制 造,例如互补金属氧化物半导体(complementary metal oxide semiconductor,CMOS)、N型金属氧化物半导体(nMetal-oxide-semiconductor,NMOS)、P型金属氧化物半导体(positive channel metal oxide semiconductor,PMOS)、双极结型晶体管(bipolar junction transistor,BJT)、双极CMOS(BiCMOS)、硅锗(SiGe)、砷化镓(GaAs)等。
以上实施例描述中的通信装置可以是发送设备或者接收设备(如前述方法实施例中的接收设备),但本申请中描述的通信装置的范围并不限于此,而且通信装置的结构可以不受图10的限制。通信装置可以是独立的设备或者可以是较大设备的一部分。例如所述通信装置可以是:
(1)独立的集成电路IC,或芯片,或,芯片系统或子系统;
(2)具有一个或多个IC的集合,可选的,该IC集合也可以包括用于存储数据,计算机程序的存储部件;
(3)ASIC,例如调制解调器(Modem);
(4)可嵌入在其他设备内的模块;
(5)接收机、终端设备、智能终端设备、蜂窝电话、无线设备、手持机、移动单元、车载设备、网络设备、云设备、人工智能设备等等;
(6)其他等等。
对于通信装置可以是芯片或芯片系统的情况,可参见图11所示的芯片的结构示意图。图11所示的芯片包括处理器111和接口112。其中,处理器111的数量可以是一个或多个,接口112的数量可以是多个。
可选的,芯片还包括存储器113,存储器113用于存储必要的计算机程序和数据。
该芯片用于执行时实现上述任一方法实施例的功能。
本领域技术人员还可以了解到本申请实施例列出的各种说明性逻辑块(illustrative logical block)和步骤(step)可以通过电子硬件、电脑软件,或两者的结合进行实现。这样的功能是通过硬件还是软件来实现取决于特定的应用和整个系统的设计要求。本领域技术人员可以对于每种特定的应用,可以使用各种方法实现所述的功能,但这种实现不应被理解为超出本申请实施例保护的范围。
本申请实施例还提供一种基于码本的上行传输的通信系统,该系统包括前述图9实施例中作为终端设备(如前述方法实施例中的终端设备)的通信装置和作为网络设备的通信装置,或者,该系统包括前述图10实施例中作为终端设备(如前述方法实施例中的终端设备)的通信装置和作为网络设备的通信装置。
本申请还提供一种可读存储介质,其上存储有指令,该指令被计算机执行时实现上述任一方法实施例的功能。
本申请还提供一种计算机程序产品,该计算机程序产品被计算机执行时实现上述任一方法实施例的功能。
在上述实施例中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。所述计算机程序产品包括一个或多个计算机程序。在计算机上加载和执行所述计算机程序时,全部或部分地产生按照本申请实施例所述的流程或功能。所述计算机可以是通用计算机、专用计算机、计算机网络、或者其他可编程装置。所述计算机程序可以 存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,所述计算机程序可以从一个网站站点、计算机、服务器或数据中心通过有线(例如同轴电缆、光纤、数字用户线(digital subscriber line,DSL))或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。所述计算机可读存储介质可以是计算机能够存取的任何可用介质或者是包含一个或多个可用介质集成的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质(例如,软盘、硬盘、磁带)、光介质(例如,高密度数字视频光盘(digital video disc,DVD))、或者半导体介质(例如,固态硬盘(solid state disk,SSD))等。
本领域普通技术人员可以理解:本申请中涉及的第一、第二等各种数字编号仅为描述方便进行的区分,并不用来限制本申请实施例的范围,也表示先后顺序。
本申请中的至少一个还可以描述为一个或多个,多个可以是两个、三个、四个或者更多个,本申请不做限制。在本申请实施例中,对于一种技术特征,通过“第一”、“第二”、“第三”、“A”、“B”、“C”和“D”等区分该种技术特征中的技术特征,该“第一”、“第二”、“第三”、“A”、“B”、“C”和“D”描述的技术特征间无先后顺序或者大小顺序。
本申请中各表所示的对应关系可以被配置,也可以是预定义的。各表中的信息的取值仅仅是举例,可以配置为其他值,本申请并不限定。在配置信息与各参数的对应关系时,并不一定要求必须配置各表中示意出的所有对应关系。例如,本申请中的表格中,某些行示出的对应关系也可以不配置。又例如,可以基于上述表格做适当的变形调整,例如,拆分,合并等等。上述各表中标题示出参数的名称也可以采用通信装置可理解的其他名称,其参数的取值或表示方式也可以通信装置可理解的其他取值或表示方式。上述各表在实现时,也可以采用其他的数据结构,例如可以采用数组、队列、容器、栈、线性表、指针、链表、树、图、结构体、类、堆、散列表或哈希表等。
本申请中的预定义可以理解为定义、预先定义、存储、预存储、预协商、预配置、固化、或预烧制。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以所述权利要求的保护范围为准。

Claims (13)

  1. 一种多输入多输出MIMO上行传输预编码码本的确定方法,其特征在于,所述方法包括:
    确定N维的克尔杜克Kerdock码本,所述N为2的正整数次幂且所述N大于4;
    基于所述Kerdock码本,确定MIMO上行传输对应的N天线端口L层的预编码码本,其中,所述L为正整数,且所述L小于或等于所述N。
  2. 根据权利要求1所述的方法,其特征在于,所述确定N维的Kerdock码本包括:
    确定N阶哈达玛Hadamard矩阵和N个对角矩阵D k,并基于所述Hadamard矩阵和所述N个对角矩阵D k,确定所述N维的Kerdock码本,其中,1≤k≤N;
    根据所述N维的Kerdock码本,确定所述预编码码本。
  3. 根据权利要求2所述的方法,其特征在于,所述根据所述N维的Kerdock码本,确定MIMO上行传输N天线端口L层的预编码码本,包括:
    基于所述N维的Kerdock码本,确定N天线端口N层的第一预编码码本,所述L等于所述N;
    基于所述第一预编码码本,确定N天线端口L层的第二预编码码本,所述L小于所述N。
  4. 根据权利要求3所述的方法,其特征在于,所述基于所述N维的Kerdock码本,确定N天线端口N层的第一预编码码本,包括:
    对所述N维的Kerdock码本内每个码字进行能量归一化,得到所有天线相干传输的N个第一码字;或者
    确定N×N的单位矩阵,对所述单位矩阵进行能量归一化,得到天线非相干传输的第二码字;或者对所有天线端口进行分组,得到组内所有天线端口相干传输的第一天线端口组和第二天线端口组;
    针对所述N个第一码字中任一第一码字、根据所述任一第一码字、所述第一天线端口组和所述第二天线端口组,生成所述第一码字对应的至少一个第一矩阵;
    对所述第一矩阵进行能量归一化,得到与所述第一码字对应的部分天线相干传输的第三码字。
  5. 根据权利要求4所述的方法,其特征在于,所述根据所述任一第一码字、所述第一天线端口组和所述第二天线端口组,生成所述第一码字对应的至少一个第一矩阵,包括:
    基于任一第一码字,对所述第一天线端口组和所述第二天线端口组对应的N层向量进行正交性判断,以从所述任一第一码字中选取N/2层相互正交的向量;
    基于所述N/2层相互正交的向量,确定所述第一天线端口组对应的矩阵元素的取值和所述第二天线端口组对应的矩阵元素的取值,以生成一个所述第一矩阵。
  6. 根据权利要求5所述的方法,其特征在于,所述基于所述N/2层相互正交的向量,确定所述第一天线端口组和所述第二天线端口组各自对应的矩阵元素的取值,以生成一个所述第一矩阵,包括:
    将所述N/2层相互正交的向量中与所述第一天线端口组对应的矩阵元素依次置于与所述第一天线端口组对应的第1至第N/2层;
    将所述N/2层相互正交的向量中与所述第二天线端口组对应的矩阵元素依次置于与所述第二天线端口组对应的第N/2+1至第N层;
    将剩余的矩阵元素置零,得到所述第一矩阵。
  7. 根据权利要求4-6中任一项所述的方法,其特征在于,所述第一码字对应的归一化系数为
    Figure PCTCN2022087521-appb-100001
    所述第二码字对应的归一化系数
    Figure PCTCN2022087521-appb-100002
    所述第三码字对应的
    Figure PCTCN2022087521-appb-100003
  8. 根据权利要求3所述的方法,其特征在于,所述基于所述第一预编码码本,确定N天线端口L层的第二预编码码本,包括:
    对于所述第一预编码码本中的所述第一码字,选取N层中的任意L层,生成第二矩阵,并对所述第二矩阵进行能量归一化,得到所有天线相干传输的第四码字;
    对于所述第一预编码码本中的所述第二码字,选取N层中的任意L层,生成第三矩阵,并对所述第三矩阵进行能量归一化,得到天线非相干传输的第五码字;
    对于所述第一预编码码本中的所述第三码字,选取N层中的任意L层,生成第四矩阵,并对所述矩阵进行能量归一化,得到部分天线相干传输的第六码字,其中,从第1至第N/2层选取的列数与从第N/2+1至第N层选取的列数之间的差值的绝对值需要小于或者等于1。
  9. 根据权利要求8所述的方法,其特征在于,所述第四码字对应的归一化系数为
    Figure PCTCN2022087521-appb-100004
    所述第五码字对应的归一化系数
    Figure PCTCN2022087521-appb-100005
    所述第六码字对应的
    Figure PCTCN2022087521-appb-100006
  10. 一种通信装置,其特征在于,包括:
    处理模块,用于确定N维的克尔杜克Kerdock码本,所述N为2的正整数次幂且所述N大于4;基于所述Kerdock码本,确定MIMO上行传输对应的N天线端口L层的预编码码本,其中,所述L为正整数,且所述L小于或等于所述N。
  11. 一种通信装置,其特征在于,所述装置包括处理器和存储器,所述存储器中存储有计算机程序,所述处理器执行所述存储器中存储的计算机程序,以使所述装置执行如权利要求1至9中任一项所述的方法。
  12. 一种通信装置,其特征在于,包括:处理器和接口电路;
    所述接口电路,用于接收代码指令并传输至所述处理器;
    所述处理器,用于运行所述代码指令以执行如权利要求1至9中任一项所述的方法。
  13. 一种计算机可读存储介质,用于存储有指令,当所述指令被执行时,使如权利要求1至9中任一项所述的方法被实现。
PCT/CN2022/087521 2022-04-18 2022-04-18 Mimo上行传输预编码码本的确定方法及其装置 WO2023201503A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202280001167.2A CN117256106A (zh) 2022-04-18 2022-04-18 Mimo上行传输预编码码本的确定方法及其装置
PCT/CN2022/087521 WO2023201503A1 (zh) 2022-04-18 2022-04-18 Mimo上行传输预编码码本的确定方法及其装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/087521 WO2023201503A1 (zh) 2022-04-18 2022-04-18 Mimo上行传输预编码码本的确定方法及其装置

Publications (1)

Publication Number Publication Date
WO2023201503A1 true WO2023201503A1 (zh) 2023-10-26

Family

ID=88418943

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/087521 WO2023201503A1 (zh) 2022-04-18 2022-04-18 Mimo上行传输预编码码本的确定方法及其装置

Country Status (2)

Country Link
CN (1) CN117256106A (zh)
WO (1) WO2023201503A1 (zh)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103944687A (zh) * 2014-04-15 2014-07-23 电子科技大学 一种基于傅里叶扰动矩阵的码本设计方法
CN104184506A (zh) * 2013-05-24 2014-12-03 北京三星通信技术研究有限公司 一种自适应的码本类型选择方法及终端
US20170093470A1 (en) * 2014-05-23 2017-03-30 Nec Communication Systems, Ltd Wireless communication system

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104184506A (zh) * 2013-05-24 2014-12-03 北京三星通信技术研究有限公司 一种自适应的码本类型选择方法及终端
CN103944687A (zh) * 2014-04-15 2014-07-23 电子科技大学 一种基于傅里叶扰动矩阵的码本设计方法
US20170093470A1 (en) * 2014-05-23 2017-03-30 Nec Communication Systems, Ltd Wireless communication system

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
"Master's Thesis", 1 March 2019, HANGZHOU UNIVERSITY OF ELECTRONIC SCIENCE AND TECHNOLOGY, CN, article TIAN, JINGDA: "Codebook Design and Optimization for Massive MIMO Systems", pages: 1 - 74, XP009549799 *
XIN SU; SHICHAO YU; JIE ZENG; YUJUN KUANG; NAYAN FANG; ZEJIAO LI: "Hierarchical codebook design for massive MIMO", 2013 8TH INTERNATIONAL CONFERENCE ON COMMUNICATIONS AND NETWORKING IN CHINA (CHINACOM), IEEE, 14 August 2013 (2013-08-14), pages 178 - 182, XP032546769, DOI: 10.1109/ChinaCom.2013.6694587 *

Also Published As

Publication number Publication date
CN117256106A (zh) 2023-12-19

Similar Documents

Publication Publication Date Title
WO2023184372A1 (zh) 上行信道的发送和接收的方法及装置
WO2023201503A1 (zh) Mimo上行传输预编码码本的确定方法及其装置
WO2023201501A1 (zh) Mimo上行传输部分天线相干传输码字的确定方法及其装置
WO2023240654A1 (zh) 一种部分天线相干传输码字的确定方法及其装置
WO2024000204A1 (zh) 一种上行mimo传输码字的确定方法及其装置
WO2023184434A1 (zh) 基于码本的上行信道发送方法及装置
WO2023201500A1 (zh) 基于码本的pusch传输方法及其装置
WO2024021129A1 (zh) 上行mimo传输8天线端口多天线面板的码字确定方法及其装置
WO2024000179A1 (zh) 一种上行mimo传输的天线全相干传输码字的确定方法及其装置
WO2024045143A1 (zh) 一种轨道角动量oam的预编码矩阵确定方法及其装置
WO2023168574A1 (zh) 一种天线切换能力上报方法及其装置
WO2023184451A1 (zh) 一种基于非码本的pusch发送、接收信息的方法及其装置
WO2024060142A1 (zh) 上行mimo传输8天线端口多天线面板的码本确定方法及其装置
WO2024026797A1 (zh) 上行mimo传输的预编码矩阵确定方法及其装置
WO2024065443A1 (zh) 基于码本的上行信道发送方法及装置
WO2023168575A1 (zh) 一种天线切换能力上报方法及其装置
WO2024026798A1 (zh) 上行mimo传输的预编码矩阵确定方法及其装置
WO2023184450A1 (zh) 一种基于非码本的pusch接收/发送信息的方法及其装置
WO2024065333A1 (zh) 上行mimo传输8天线端口的全相干传输码本的确定方法及其装置
WO2024026796A1 (zh) 上行mimo传输的预编码矩阵确定方法及其装置
WO2024031719A1 (zh) 支持8Tx的基于码本的PUSCH传输的预编码指示方法及装置
WO2023245683A1 (zh) 基向量类型的指示方法和装置
WO2023184448A1 (zh) 一种基于非码本的pusch发送/接收信息的方法及其装置
WO2023184449A1 (zh) 一种发送tri的方法及其装置、接收tri的方法及其装置
CN116888900A (zh) 一种码字集合确定方法及其装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 202280001167.2

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22937741

Country of ref document: EP

Kind code of ref document: A1