WO2023125953A1 - 时域绑定处理方法、终端及网络侧设备 - Google Patents

时域绑定处理方法、终端及网络侧设备 Download PDF

Info

Publication number
WO2023125953A1
WO2023125953A1 PCT/CN2022/144014 CN2022144014W WO2023125953A1 WO 2023125953 A1 WO2023125953 A1 WO 2023125953A1 CN 2022144014 W CN2022144014 W CN 2022144014W WO 2023125953 A1 WO2023125953 A1 WO 2023125953A1
Authority
WO
WIPO (PCT)
Prior art keywords
target
pdsch
opportunity
codebook
scheduled
Prior art date
Application number
PCT/CN2022/144014
Other languages
English (en)
French (fr)
Inventor
曾超君
Original Assignee
维沃移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 维沃移动通信有限公司 filed Critical 维沃移动通信有限公司
Publication of WO2023125953A1 publication Critical patent/WO2023125953A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0446Resources in time domain, e.g. slots or frames
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
    • H04W72/232Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal the control data signalling from the physical layer, e.g. DCI signalling

Definitions

  • the present application belongs to the technical field of communication, and in particular relates to a time domain binding processing method, a terminal and a network side device.
  • Multi-PDSCH scheduling transmission In some communication systems, multi-physical downlink shared channel (Multi-Physical Downlink Shared Channel, Multi-PDSCH) scheduling transmission is introduced.
  • Multi-PDSCH scheduling means that a single downlink control information (Downlink Control Information, DCI) can schedule the same Multiple physical downlink shared channel (Physical downlink shared channel, PDSCH) transmission on the carrier.
  • DCI Downlink Control Information
  • PDSCH Physical downlink shared channel
  • the embodiment of the present application provides a time domain binding processing method, a terminal and a network side device, which can solve the problem of poor configuration flexibility when the terminal transmits a codebook.
  • a time domain binding processing method includes:
  • the terminal When the terminal is configured to perform codebook transmission using time domain binding, determine the target operation
  • the target operation includes at least one of the following:
  • the physical downlink shared channel PDSCH corresponding to the last time domain resource allocation record in the row of the time domain resource allocation TDRA table for arbitrary scheduling and/or configuration is a valid PDSCH;
  • all scheduled PDSCHs or all effective PDSCHs scheduled by the downlink control information DCI are divided into bundling groups.
  • a time domain binding processing method includes:
  • the target operation includes at least one of the following:
  • the number of scheduled rows in the row set corresponding to the first opportunity is not more than 1, the first opportunity is any opportunity in the opportunity set corresponding to the codebook, and the row set corresponding to the first opportunity is included in The row corresponding to the first opportunity in the TDRA table;
  • the target operation includes at least one of the following:
  • all scheduled PDSCHs or all effective PDSCHs scheduled by the downlink control information DCI are divided into bundling groups.
  • a time-domain binding processing device including:
  • a determining module configured to determine a target operation under the condition that time-domain bundling is used for codebook transmission
  • the target operation includes at least one of the following:
  • the physical downlink shared channel PDSCH corresponding to the last time domain resource allocation record in the row of the time domain resource allocation TDRA table for arbitrary scheduling and/or configuration is a valid PDSCH;
  • the first opportunity is any opportunity in the opportunity set corresponding to the codebook, and the row set corresponding to the first opportunity includes the row corresponding to the first opportunity in the TDRA table;
  • the target operation includes at least one of the following:
  • all scheduled PDSCHs or all effective PDSCHs scheduled by the downlink control information DCI are divided into bundling groups.
  • a time-domain binding processing device including:
  • the first determining module is configured to determine the target operation when the codebook of the terminal is configured to use time domain binding for transmission;
  • the target operation includes at least one of the following:
  • the number of scheduled rows in the row set corresponding to the first opportunity is not more than 1, the first opportunity is any opportunity in the opportunity set corresponding to the codebook, and the row set corresponding to the first opportunity is included in The row corresponding to the first opportunity in the TDRA table;
  • the target operation includes at least one of the following:
  • all scheduled PDSCHs or all effective PDSCHs scheduled by the downlink control information DCI are divided into bundling groups.
  • a terminal in a fifth aspect, includes a processor and a memory, the memory stores programs or instructions that can run on the processor, and when the programs or instructions are executed by the processor, the following The steps of the method in one aspect.
  • the target operation includes at least one of the following:
  • the physical downlink shared channel PDSCH corresponding to the last time domain resource allocation record in the row of the time domain resource allocation TDRA table for arbitrary scheduling and/or configuration is a valid PDSCH;
  • the first opportunity is any opportunity in the opportunity set corresponding to the codebook, and the row set corresponding to the first opportunity includes the row corresponding to the first opportunity in the TDRA table;
  • the target operation includes at least one of the following:
  • all scheduled PDSCHs or all effective PDSCHs scheduled by the downlink control information DCI are divided into bundling groups.
  • a network-side device in a seventh aspect, includes a processor and a memory, the memory stores programs or instructions that can run on the processor, and the programs or instructions are executed by the processor When realizing the steps of the method as described in the first aspect.
  • a network side device including a processor and a communication interface, wherein the processor is configured to: determine a target operation when the codebook of the terminal is configured to use time domain binding for transmission;
  • the target operation includes at least one of the following:
  • the number of scheduled rows in the row set corresponding to the first opportunity is not more than 1, the first opportunity is any opportunity in the opportunity set corresponding to the codebook, and the row set corresponding to the first opportunity is included in The row corresponding to the first opportunity in the TDRA table;
  • the target operation includes at least one of the following:
  • a ninth aspect provides a time-domain binding processing system, including: a terminal and a network-side device, the terminal can be used to perform the steps of the time-domain binding processing method applied to the terminal as described in the first aspect,
  • the network-side device may be configured to execute the steps of the time-domain binding processing method applied to the network-side device as described in the second aspect.
  • a readable storage medium is provided, and a program or an instruction is stored on the readable storage medium, and when the program or instruction is executed by a processor, the steps of the method described in the first aspect are implemented, or the steps of the method as described in the first aspect are implemented, or the The steps of the method described in the second aspect.
  • a chip in an eleventh aspect, includes a processor and a communication interface, the communication interface is coupled to the processor, and the processor is used to run a program or an instruction to implement the method described in the first aspect. method, or implement the method as described in the second aspect.
  • a computer program product is provided, the computer program product is stored in a non-transitory readable storage medium, and the computer program product is executed by at least one processor to implement the above described in the first aspect or, the computer program/program product is executed by at least one processor to implement the steps of the time domain binding processing method as described in the second aspect.
  • the target operation when the terminal is configured to perform codebook transmission using time-domain bundling, the target operation is determined; wherein, when the codebook is the first codebook, the target operation includes At least one of the following: it is not expected that the number of scheduled rows in the row set corresponding to the first opportunity is greater than 1; it is expected that the last time-domain resource allocation record of the row of the time-domain resource allocation TDR table for arbitrary scheduling and/or configuration corresponds to The physical downlink shared channel PDSCH is an effective PDSCH; when the number of scheduled rows in the row set corresponding to the first opportunity is greater than 1, perform a first operation on the scheduled rows in the row set corresponding to the first opportunity; Wherein, the first opportunity is any opportunity in the opportunity set corresponding to the codebook, and the row set corresponding to the first opportunity includes the row corresponding to the first opportunity in the TDRA table; wherein, in the In the case where the codebook is the second codebook, the target operation includes at least one of the following: when no application space bundling
  • the timing conflict problem can be solved by determining the target operation; when the codebook is configured to use time-domain bundling for transmission, for the second codebook, by determining the target operation, it is possible to determine the bonding group division operation for joint configuration of time domain bonding and space bonding. Therefore, higher flexibility can be allowed to better match actual application scenarios, configuration flexibility can be improved, and PDSCH retransmission performance can be improved.
  • Fig. 1 is a block diagram of a wireless communication system to which the embodiment of the present application is applicable.
  • FIG. 2 is one of the flow charts of a time domain binding processing method provided by an embodiment of the present application
  • FIG. 3 is a schematic diagram of an opportunity mapping provided by an embodiment of the present application.
  • FIG. 4 is the second flowchart of a time-domain binding processing method provided by an embodiment of the present application.
  • FIG. 5 is one of the structural diagrams of a time-domain binding processing device provided in an embodiment of the present application.
  • FIG. 6 is the second structural diagram of a time-domain binding processing device provided by an embodiment of the present application.
  • FIG. 7 is a structural diagram of a communication device provided by an embodiment of the present application.
  • FIG. 8 is a schematic structural diagram of a terminal provided in an embodiment of the present application.
  • FIG. 9 is a schematic structural diagram of a network side device provided by an embodiment of the present application.
  • LTE Long Term Evolution
  • LTE-Advanced LTE-Advanced
  • LTE-A Long Term Evolution-Advanced
  • CDMA Code Division Multiple Access
  • TDMA Time Division Multiple Access
  • FDMA Frequency Division Multiple Access
  • OFDMA Orthogonal Frequency Division Multiple Access
  • SC-FDMA Single-carrier Frequency Division Multiple Access
  • Fig. 1 shows a block diagram of a wireless communication system to which the embodiment of the present application is applicable.
  • the wireless communication system includes a terminal 11 and a network side device 12 .
  • the terminal 11 can be a mobile phone, a tablet computer (Tablet Personal Computer), a laptop computer (Laptop Computer) or a notebook computer, a personal digital assistant (Personal Digital Assistant, PDA), a palmtop computer, a netbook, a super mobile personal computer (ultra-mobile personal computer, UMPC), mobile Internet device (Mobile Internet Device, MID), augmented reality (augmented reality, AR) / virtual reality (virtual reality, VR) equipment, robot, wearable device (Wearable Device) , Vehicle User Equipment (VUE), Pedestrian User Equipment (PUE), smart home (home equipment with wireless communication functions, such as refrigerators, TVs, washing machines or furniture, etc.), game consoles, personal computers (personal computer, PC), teller machine or self-service machine and other terminal side devices, wearable devices include: smart watches, smart bracelet
  • Core network equipment may include but not limited to at least one of the following: core network nodes, core network functions, mobility management entities (Mobility Management Entity, MME), access mobility management functions (Access and Mobility Management Function, AMF), session management functions (Session Management Function, SMF), User Plane Function (UPF), Policy Control Function (Policy Control Function, PCF), Policy and Charging Rules Function (PCRF), edge application service Discovery function (Edge Application Server Discovery Function, EASDF), unified data management (Unified Data Management, UDM), unified data storage (Unified Data Repository, UDR), home subscriber server (Home Subscriber Server, HSS), centralized network configuration ( Centralized network configuration, CNC), network storage function (Network Repository Function, NRF), network exposure function (Network Exposure Function, NEF), local NEF (Local NEF, or L-NEF), binding support function (Mobility Management Entity, MME), access mobility management functions (Access and Mobility Management Function, AMF), session management functions (Session Management Function, SMF), User
  • a terminal may also be called a user equipment (User Equipment, UE).
  • UE User Equipment
  • Multi-PDSCH scheduling means that a single DCI can schedule multiple PDSCH transmissions on the same carrier at one time. According to the NR protocol, these PDSCHs do not overlap with each other in the time domain.
  • TDRA Time Domain Resource Assignment
  • SLIV Start and length indicator value
  • Multi-PDSCH scheduling based on time domain bundling (Time domain bundling) hybrid automatic repeat request acknowledgment (automatic repeat request acknowledgment, HARQ-ACK) feedback:
  • Type-1 codebook codebook
  • Type-2 codebook is a dynamic codebook.
  • the Occasion in the Type-1 HARQ-ACK codebook is determined and mapped based on the last (Last) SLIV of each row in the TDRA table. All valid (Valid) PDSCH of Occasion to perform logical AND operation (Logical AND operation).
  • Type-2 codebook when Time domain bundling is used in the configuration, one or more Scheduled PDSCHs or Valid PDSCHs scheduled by each DCI are used to divide the Bundling group (Bundling group), and for each Bundling group To determine the value of the HARQ-ACK bit corresponding to this Bundling group in the Type-2HARQ-ACK codebook.
  • Scheduled PDSCH A PDSCH among one or more PDSCHs scheduled by a single DCI corresponds to a certain Entry or SLIV configured in a row in the TDRA table indicated by the DCI, which may be Valid PDSCH or invalid (Invalid) PDSCH .
  • Valid PDSCH Among one or more PDSCHs scheduled by a single DCI, a PDSCH that does not conflict with a semi-static uplink (Uplink, UL) symbol (symbol) can be understood as a Scheduled PDSCH that can be actually transmitted.
  • Uplink, UL semi-static uplink
  • Invalid PDSCH Among one or more PDSCHs scheduled by a single DCI, a PDSCH that conflicts with the Semi-static UL symbol can be understood as a Scheduled PDSCH that cannot actually be transmitted.
  • TB disabling When the high-level configuration allows dual-codeword transmission, that is, for a given Serving cell of the UE, it is configured for the active (Active) downlink (Downlink, DL) bandwidth part (BWP) If maxNrofCodeWordsScheduledByDCI is n2, it can be determined in some way whether a certain TB is turned on (that is, actually scheduled) or closed (that is, not actually scheduled) for one or more Valid PDSCHs scheduled by a certain DCI. Either of the following methods can be used:
  • TB disabling mode 1 For a certain transport block (Transport Block, TB) (for example, the first TB or the second TB), all Valid PDSCHs scheduled by a single DCI are uniformly determined to be on or off.
  • Transport Block Transport Block
  • the modulation and coding scheme Modulation and coding scheme, MCS
  • MCS Modulation and coding scheme
  • RV redundancy version
  • the RV information that is, the RV bit sequence corresponding to this TB contains N1 bits.
  • the aforementioned predefined 0 and/or 1 sequence may be a sequence of all 0s or all 1s with the same length as the RV bit sequence, for example, a sequence of all 1s with a length of M, N or N1.
  • each Valid PDSCH scheduled by a single DCI independently determines the on/off state.
  • Fig. 2 is one of flow charts of a kind of time domain binding processing method that the embodiment of the present application provides, as shown in Fig. 2, time domain binding processing method comprises the following steps:
  • Step 101 when the terminal is configured to use time domain binding for codebook transmission, determine the target operation
  • the physical downlink shared channel PDSCH corresponding to the last time domain resource allocation record in the row of the time domain resource allocation TDRA table for arbitrary scheduling and/or configuration is a valid PDSCH;
  • the first opportunity is any opportunity in the opportunity set corresponding to the codebook, and the row set corresponding to the first opportunity includes the row corresponding to the first opportunity in the TDRA table;
  • the target operation includes at least one of the following:
  • all scheduled PDSCHs or all effective PDSCHs scheduled by the downlink control information DCI are divided into bundling groups.
  • each time-domain resource allocation record corresponds to or includes a single SLIV.
  • the set of rows corresponding to the first opportunity may include one or more rows in the TDRA table corresponding to the first opportunity.
  • the above-mentioned first operation may include an AND operation.
  • the first operation may be a logical AND operation; or may be a binary AND operation (binary AND operation); etc., the present embodiment does not perform the first operation limited.
  • any Invalid PDSCH it can be considered that it is not actually scheduled and does not need to be received, so other configured and/or scheduled PDSCHs are allowed to overlap with it in time domain.
  • other configured and/or dynamically scheduled physical channels and/or signals may also be allowed to overlap in time domain, such as dynamically scheduled PUSCH, as long as other predefined requirements and/or conditions are met.
  • Solution 1 It is not expected that the number of scheduled rows in the row set corresponding to the first opportunity is greater than 1.
  • Solution 2 It is expected that the physical downlink shared channel PDSCH corresponding to the last time domain resource allocation record in the row of the time domain resource allocation TDRA table for arbitrary scheduling and/or configuration is a valid PDSCH.
  • Solution 3 When the number of scheduled rows in the row set corresponding to the first opportunity is greater than 1, perform the first operation on the scheduled rows in the row set corresponding to the first opportunity.
  • the Logical AND operation is uniformly executed for all Valid PDSCHs corresponding to these rows, and the HARQ-ACK bit corresponding to the Occasion is set.
  • the UE is allowed to perform Time domain bundling across TDRA tables based on the actual scheduling situation.
  • the HARQ-ACK codebook is configured to use time-domain bundling for transmission, there is no corresponding solution in some configurations, which makes these configurations actually unusable and leads to poor configuration flexibility.
  • the granularity of HARQ-ACK feedback is not optimal, which leads to poor retransmission performance of PDSCH.
  • the embodiment of the present application introduces a Occasion conflict resolution method, which can ensure consistent processing on both sides of the terminal and the network side equipment; Circumstances to improve scheduling flexibility.
  • Type-2 codebook when the configuration adopts Time domain bundling, when the upper layer configures dual codeword transmission, in related technologies, the Bundling group is uniformly divided for each TB (such as the first TB or the second TB) based on Configured SLIV, so that Affects HARQ-ACK feedback granularity and PDSCH retransmission performance.
  • the joint configuration of Time domain bundling and Spatial bundling there is no clear solution for the joint configuration of Time domain bundling and Spatial bundling.
  • a new Bundling group division method is introduced to optimize the HARQ-ACK feedback granularity, thereby improving the PDSCH retransmission performance; and determining The operation of joint configuration of Time domain bundling and Spatial bundling is simplified, which can ensure consistent processing on both sides of the terminal and network side equipment, and improve the flexibility of configuration.
  • the codebook of the terminal is configured to use time-domain bundling for transmission: when the codebook is the first codebook, at least one of the following items may be determined based on scheduling: The number of scheduled rows in the row set corresponding to the first opportunity is not more than 1, the first opportunity is any opportunity in the opportunity set corresponding to the codebook, and the row set corresponding to the first opportunity is included in TDRA The row corresponding to the first opportunity in the table; determine the physical downlink shared channel PDSCH corresponding to the last time domain resource allocation record in the row of the arbitrary scheduled and/or configured time domain resource allocation TDRA table as a valid PDSCH.
  • the codebook is the second codebook
  • at least one of the following items may be determined: in the case where application space bundling is not configured, uniformly divide the bundling groups for multiple transport blocks TB, or, for the multiple Each of the TBs is divided into a bonding group; in the case of configuring application space bonding, all scheduled PDSCHs or all effective PDSCHs scheduled by the downlink control information DCI are divided into bonding groups.
  • the network side device may determine the mapping relationship between the HARQ-ACK bits in the codebook and the scheduled PDSCH according to whether application space bundling is configured. By determining the operation for the joint configuration of Time domain bundling and Spatial bundling, it can ensure consistent processing on both sides of the terminal and the network side device, and improve the flexibility of configuration.
  • the time domain binding processing method includes:
  • the terminal When the terminal is configured to perform codebook transmission using time domain binding, determine the target operation
  • the target operation includes at least one of the following:
  • the physical downlink shared channel PDSCH corresponding to the last time domain resource allocation record in the row of the time domain resource allocation TDRA table for arbitrary scheduling and/or configuration is a valid PDSCH;
  • the first opportunity is any opportunity in the opportunity set corresponding to the codebook, and the row set corresponding to the first opportunity includes the row corresponding to the first opportunity in the TDRA table;
  • the target operation includes at least one of the following:
  • the binding group is uniformly divided for multiple transport block TBs according to the first target division method, or the binding group is divided for each of the multiple TBs according to the second target division method fixed group;
  • all scheduled PDSCHs or all effective PDSCHs scheduled by the downlink control information DCI are divided into bundling groups.
  • the first object division method or the second object division method includes at least one of the following:
  • dividing each TB in the plurality of TBs into a binding group respectively includes:
  • the first target TB of the effective PDSCH scheduled by the DCI is turned on, for the first target TB, divide the bonding group according to the first division method or the second division method;
  • At least one effective PDSCH scheduled by the DCI turns on the first target TB, for the first target TB, divide the bonding group according to the first division method, the second division method or the third division method;
  • the first target TB is any one of the multiple TBs.
  • the target operation when the terminal is configured to use time-domain binding for codebook transmission, the target operation is determined; wherein, when the codebook is the first codebook, the target operation includes the following At least one item: it is not expected that the number of scheduled rows in the row set corresponding to the first opportunity is greater than 1; it is expected that the physical The downlink shared channel PDSCH is an effective PDSCH; when the number of scheduled rows in the row set corresponding to the first opportunity is greater than 1, perform the first operation on the scheduled row in the row set corresponding to the first opportunity; wherein , the first opportunity is any opportunity in the opportunity set corresponding to the codebook, and the row set corresponding to the first opportunity includes the row corresponding to the first opportunity in the TDRA table; wherein, in the In the case where the codebook is the second codebook, the target operation includes at least one of the following: in the case of no application space bundling, uniformly divide the bundling groups for multiple transport blocks TB, or, for the multiple Each of the TBs is divided into
  • the timing conflict problem can be solved by determining the target operation; when the codebook is configured to use time-domain bundling for transmission, for the second codebook, by determining the target operation, it is possible to determine the bonding group division operation for joint configuration of time domain bonding and space bonding. Therefore, higher flexibility can be allowed to better match actual application scenarios, configuration flexibility can be improved, and PDSCH retransmission performance can be improved.
  • the unified division of the binding group for multiple transport blocks TB includes any of the following:
  • the bonding group is divided based on the PDSCH corresponding to the effective time domain resource allocation record and the reference TB is enabled.
  • the Bundling group can be divided based on the PDSCH corresponding to the Configured SLIV and/or the Valid SLIV, and/or, the Bundling group can be divided based on the PDSCH corresponding to the Valid SLIV and enabling the reference TB.
  • the second codebook when Time domain bundling is configured and dual-codeword transmission is allowed, a new Bundling group division method is introduced, which can improve the HARQ-ACK feedback performance and ensure that the terminal and the network side
  • the processing on both sides of the device is consistent; it can solve the problem that for Type-2 codebooks, when the configuration adopts Time domain bundling and the upper layer configures dual codeword transmission, in related technologies, it is unified based on Configured SLIV for each TB (such as the first TB or the second TB) TB) divides the Bundling group, thereby affecting the HARQ-ACK feedback granularity and the problem of PDSCH retransmission performance.
  • dividing each TB in the plurality of TBs into a binding group respectively includes:
  • the first target TB of the effective PDSCH scheduled by the DCI is turned on, for the first target TB, divide the binding group based on the PDSCH corresponding to the configured time domain resource allocation record or the effective time domain resource allocation record;
  • At least one valid PDSCH scheduled by DCI enables the first target TB, for the first target TB, divide the binding group based on the PDSCH corresponding to the configured time domain resource allocation record or the effective time domain resource allocation record, or, based on the corresponding Validate time-domain resource allocation records and enable the PDSCH division binding group of the first target TB;
  • the first target TB is any one of the multiple TBs.
  • the binding group based on the PDSCH division corresponding to the configured time domain resource allocation record or the effective time domain resource allocation record only applies to the first target TB.
  • the first TB disabling mode may be TB disabling mode 1
  • the second TB disabling mode may be TB disabling mode 2. Therefore, it is possible to differentiate the TB disabling manner and divide each TB into a binding group among the plurality of TBs.
  • the second codebook when Time domain bundling is configured and dual-codeword transmission is allowed, a new Bundling group division method is introduced based on the TB disabling method, which can improve the HARQ-ACK feedback performance, and It can ensure that the processing on both sides of the terminal and the network side device is consistent; it can solve the problem that for Type-2 codebooks, when Time domain bundling is used for configuration and dual-codeword transmission is configured for high-level layers, in related technologies, all TBs (such as the first TB or the second TB) to divide the Bundling group, thus affecting the granularity of HARQ-ACK feedback and the performance of PDSCH retransmission.
  • the method also includes:
  • the HARQ-ACK bit is a negative acknowledgment
  • the HARQ-ACK bit corresponding to the first target TB of the DCI or DAI is a negative acknowledgment.
  • the negative acknowledgment may be NACK.
  • the HARQ-ACK bit corresponding to the first target TB of the DCI and/or DAI can be directly Set to NACK. At this time, there is no need to divide the Bundling group.
  • the second TB disabling method when the Valid PDSCH scheduled by DCI all closes the first target TB, the HARQ-ACK bit corresponding to the first target TB of the DCI and/or DAI can be directly set as NACK. At this time, there is no need to divide the Bundling group.
  • the second codebook when the configuration adopts Time domain bundling and allows dual codeword transmission, a new Bundling group division method is introduced, and the HARQ-ACK bit settings in various cases are clarified, so that it can Improve the HARQ-ACK feedback performance, and ensure consistent processing on both sides of the terminal and network side equipment.
  • the method further includes:
  • the bonding group When the bonding group is empty, or the PDSCHs included in the bonding group are all invalid PDSCHs, determine that the HARQ-ACK bit corresponding to the bonding group is a negative acknowledgment;
  • the bonding group includes at least one valid PDSCH:
  • the decoding result of the second target TB of the effective PDSCH of the second target TB is set to a preset value, and the first operation is uniformly performed based on the decoding result of the second target TB of the effective PDSCH included in the bonding group , and determine the HARQ-ACK bit of the second target TB of the bonding group based on the operation result;
  • the second target TB is any one of the TBs configured on the network side.
  • the decoding result of the second target TB with the effective PDSCH of the second target TB disabled is set as a preset value.
  • the second codebook when the configuration adopts Time domain bundling and allows dual codeword transmission, a new Bundling group division method is introduced, and the HARQ-ACK bit settings in various cases are clarified, so that it can Improve the HARQ-ACK feedback performance, and ensure consistent processing on both sides of the terminal and network side equipment.
  • the method further includes:
  • the bonding group does not include a corresponding valid time domain resource allocation record and the PDSCH of the first target TB is enabled, determine that the HARQ-ACK bit corresponding to the bonding group is a negative acknowledgment;
  • the bonding group includes a corresponding valid time-domain resource allocation record and at least one PDSCH of the first target TB is enabled:
  • the first operation uniformly based on the decoding result of the at least one PDSCH, and determine the HARQ-ACK bits of the first target TB in the bonding group based on the operation result; or, when the corresponding valid time in the bonding group Domain resource allocation record and turn off the decoding result of the first target TB of the PDSCH of the first target TB is set to a preset value, based on the decoding result of the first target TB of the effective PDSCH included in the bonding group
  • the first operation is uniformly performed, and the HARQ-ACK bits of the first target TB in the bundling group are determined based on the operation result.
  • the above operation result may be the operation result of the first operation, taking the first operation as Logical AND operation as an example, the operation result is the result of executing the Logical AND operation.
  • the second codebook is a Type-2 codebook.
  • the HARQ-ACK bits are set as follows:
  • the UE When the UE receives one or at least two Valid PDSCHs scheduled by a certain DCI, for Time domain bundling, based on whether Spatial Bundling is configured, it can be divided into Case 1 and Case 2 for corresponding processing:
  • Bundling group division method 1 The Bundling group can be uniformly divided for two TBs. Specifically, either of the Bundling group division method 1-1 and the Bundling group division method 1-2 can be used:
  • Bundling group division method 1-1 divide Bundling group based on PDSCH corresponding to Configured SLIV and/or Valid SLIV
  • division when performing Bundling group division, division may be performed for all Scheduled PDSCHs or all Valid PDSCHs scheduled by the DCI.
  • the HARQ-ACK bits corresponding to the TB of the Bundling group in the HARQ-ACK codebook are all set to NACK. It is understandable that when the Bundling group is divided based on the PDSCH corresponding to the Valid SLIV, the situation that a certain Bundling group contains or only contains the Invalid PDSCH will not appear, because the Invalid PDSCH is ignored when dividing the Bundling group at this time, which is different from the Bundling group There is no mapping relationship between them.
  • the HARQ-ACK bit corresponding to the TB in the Bundling group in the HARQ-ACK codebook can be directly set to NACK.
  • Setting method 2-1 Only execute the Logical AND operation based on the decoding result of each Valid PDSCH of the TB, and set the HARQ-ACK bit corresponding to the TB of the Bundling group in the HARQ-ACK codebook based on the operation result .
  • Setting method 2-2 Perform Logical AND operation uniformly based on the decoding results of the TB of each Valid PDSCH, and set the HARQ-ACK bit corresponding to the TB in the HARQ-ACK codebook of the Bundling group based on the operation result, and in Logical AND Before the operation, the decoding result of the TB of each Valid PDSCH of the TB is assumed to be a predefined value, such as ACK.
  • Bundling group division method 1-2 divide the Bundling group based on the PDSCH corresponding to Valid SLIV and enabling the reference TB.
  • Bundling group division method 2 divide Bundling group for each TB
  • the division of Bundling group can be determined separately for each TB.
  • the TB is referred to as a designated TB in the following description.
  • the designated TBs of each Valid PDSCH scheduled by the DCI are either enabled or disabled.
  • the Bundling group can be divided based on the PDSCH corresponding to the Configured SLIV or Valid SLIV, and the HARQ-ACK bits in the Bundling group division method 1-1 can be used for each Bundling group and designated TB Set action. It is understandable that when the Bundling group is divided based on the PDSCH corresponding to the Valid SLIV, the situation that a certain Bundling group contains or only contains the Invalid PDSCH will not appear, because the Invalid PDSCH is ignored when dividing the Bundling group at this time, which is different from the Bundling group There is no mapping relationship between them.
  • the HARQ-ACK bits corresponding to the designated TBs of the DCI and/or DAI can be directly set to NACK. At this time, there is no need to divide the Bundling group.
  • Bundling group division method 2-1 When at least one Valid PDSCH in the DCI-scheduled Valid PDSCH opens the specified TB, either of Bundling group division method 2-1 and Bundling group division method 2-2 can be used:
  • Bundling group division method 2-1 Bundling group division based on PDSCH corresponding to Configured SLIV/Valid SLIV
  • the HARQ-ACK bit corresponding to the bonding group is set as a negative response
  • Bundling groups can be divided for all Scheduled PDSCHs or all Valid PDSCHs scheduled by this DCI, and the Bundling group division method can follow the existing operation, that is, all Scheduled PDSCHs or all Valid PDSCHs scheduled by this DCI are used as a given PDSCH set to divide Bundling groups.
  • the HARQ-ACK bits corresponding to this Bundling group in the HARQ-ACK codebook are all set to NACK.
  • Setting method 4-1 Perform the Logical AND operation uniformly based on the decoding results of each Valid PDSCH enabled TB (one TB or two TBs), and set the corresponding HARQ- ACK bit.
  • Setting method 4-2 Perform Logical AND operation uniformly based on the decoding results of TBs (two TBs) configured by each Valid PDSCH, and set the HARQ-ACK bits corresponding to this Bundling group in the HARQ-ACK codebook based on the operation results; And before the Logical AND operation, the decoding result of each Valid PDSCH closed TB is assumed to be a predefined value, such as ACK.
  • the method before dividing the binding group based on the PDSCH of the corresponding effective time domain resource allocation record and enabling the reference TB, the method further includes:
  • reference TB is any one of the following:
  • the third target TB is the TB with the largest number of valid PDSCHs that enable the third target TB.
  • CW is code word (Code Word).
  • the first TB may be TB1, and the second TB may be TB2.
  • the reference TB can be divided into Case 4-1 and Case 4-2 based on the adopted TB disabling method:
  • Case 4-1 When TB disabling method 1 is used, any one of the reference TB determination method 1-1 and reference TB determination method 1-2 can be used:
  • TB1 or TB2 can be selected; or the TB mapped to CW0 or CW1 can be selected; or, it can be configured by a high-level parameter or specified by a protocol.
  • TB determination method 1-2 take the first TB that is enabled.
  • Case4-2 When TB disabling method 2 is used, any one of the reference TB determination method 2-1 and the reference TB determination method 2-2 can be used:
  • TB1 or TB2 can be selected; or the TB mapped to CW0 or CW1 can be selected; or, it can be configured by a high-level parameter or specified by a protocol.
  • the number of Valid PDSCHs enabled for each TB can be determined separately, and the TB with a larger number of Valid PDSCHs can be selected; when there are two TBs with the same number, the agreed TB can be selected, for example, TB1.
  • the method further includes at least one of the following:
  • the effective PDSCH associated with the first opportunity is scheduled by a single DCI, perform the first operation uniformly based on the decoding result of the effective PDSCH associated with the first opportunity, and determine the HARQ-ACK corresponding to the first opportunity based on the operation result bit;
  • the effective PDSCH associated with the first opportunity is scheduled by at least two DCIs, perform the first operation uniformly based on the decoding result of the effective PDSCH scheduled by any one of the DCIs in the at least two DCIs, and determine the second operation based on the operation result HARQ-ACK bits corresponding to an opportunity.
  • the Logical AND operation is performed uniformly based on the decoding results of each Valid PDSCH, and the HARQ-ACK bit corresponding to the Occasion is set.
  • the Logical AND operation can be performed uniformly based on the decoding result of the first TB of each Valid PDSCH, and the HARQ-ACK bit corresponding to this Occasion can be set.
  • the Logical AND operation is uniformly executed, and the HARQ corresponding to this Occasion is set - ACK bit. For example, based on the decoding result of the first TB of each Valid PDSCH scheduled by any one of the at least two DCIs, the Logical AND operation can be performed uniformly, and the HARQ-ACK bit corresponding to the Occasion can be set.
  • the HARQ-ACK bit is determined based on the TB disabling method
  • the HARQ-ACK bit is determined based on the DCI corresponding to the effective PDSCH associated with the first occasion.
  • the determining the HARQ-ACK bit based on the TB disabling manner includes At least one of the following:
  • the target DCI is any one of the at least two DCIs;
  • the network-side device configures the serving cell to allow dual-codeword transmission
  • the network-side device configures two TBs for the terminal, that is, two TBs are configured for the serving cell of the terminal.
  • the PDSCH scheduling DCI for the terminal can be For the first TB (or TB1) and the second TB (or TB2), indicate the corresponding modulation and coding scheme (Modulation and coding scheme, MCS), new data indicator (New data indicator, NDI) and redundancy version ( Redundancy version, RV) and other information, and a single PDSCH transmission can carry up to two TB.
  • MCS Modulation and coding scheme
  • NDI new data indicator
  • RV Redundancy version
  • the determining the HARQ-ACK bit based on the TB disabling manner includes at least one of the following:
  • the fifth target TB of the effective PDSCH associated with the first opportunity is all off, then determine that the HARQ-ACK bit corresponding to the fifth target TB at the first opportunity is a negative acknowledgment;
  • the fifth target TB is any one of the TBs configured by the network side.
  • the decoding result of the fifth target TB with the effective PDSCH of the fifth target TB disabled is set as a preset value.
  • the determining the HARQ-ACK bit based on the DCI corresponding to the effective PDSCH associated with the first opportunity includes:
  • the decoding result is set to a preset value, and the first operation is uniformly performed based on the decoding results of all configured TBs of the effective PDSCH scheduled by the DCI, and the HARQ-ACK bit corresponding to the first opportunity is determined based on the operation result;
  • the target DCI performs the first operation uniformly based on the decoding results of all enabled TBs of the effective PDSCH scheduled by the target DCI, and determine the HARQ-ACK bit corresponding to the first opportunity based on the operation result; or, decode the TBs whose effective PDSCH is disabled
  • the result is set to a preset value, and the first operation is uniformly performed based on the decoding results of all configured TBs of the effective PDSCH scheduled by the target DCI, and the HARQ-ACK bit corresponding to the first opportunity is determined based on the operation result, and the target DCI is any one of the at least two DCIs.
  • the first codebook is a Type-1 codebook
  • the HARQ-ACK bits can be set as follows:
  • the TB can be the first TB or the second TB, which can be divided into Case 5-1 and Case 5- based on the TB disabling method adopted. 2 Two situations.
  • Case 5-1-1 When the Occasion-associated Valid PDSCH is scheduled by a single DCI, the specified TBs of the Occasion-associated Valid PDSCH are all enabled or disabled.
  • the Logical AND operation can be performed uniformly based on the decoding results of the specified TB of each Valid PDSCH, and the HARQ-ACK bit corresponding to the Occasion specified TB can be set.
  • the HARQ-ACK bit corresponding to the specified TB of the Occasion can be directly set to NACK.
  • Case 5-1-2 When the Valid PDSCH associated with Occasion is scheduled by at least two DCIs, the specified TBs of the Valid PDSCH scheduled by each DCI are all enabled or disabled, but different DCIs can be independently set to enable or disable the specified TB state.
  • the Logical AND operation is performed uniformly based on the decoding results of the specified TBs of each Valid PDSCH scheduled by any one of the DCIs in the at least two DCIs, and the Occasion corresponding to the specified TB is set.
  • HARQ-ACK bits When the at least two DCIs both enable the specified TB, the Logical AND operation is performed uniformly based on the decoding results of the specified TBs of each Valid PDSCH scheduled by any one of the DCIs in the at least two DCIs, and the Occasion corresponding to the specified TB is set.
  • the HARQ-ACK bit corresponding to the specified TB of this Occasion may be directly set as NACK.
  • the HARQ-ACK bit can be set in any of the setting modes 7 and 8:
  • Setting method 7 Only execute the Logical AND operation based on the decoding results of the specified TB of each Valid PDSCH scheduled by any DCI in at least one DCI of the specified TB (at least one Valid PDSCH is involved), and set the HARQ corresponding to the Occasion specified TB - ACK bit.
  • the Valid PDSCH in the Valid PDSCH set may be scheduled by a single DCI, or may be scheduled by at least two DCIs, and the specified TBs of each Valid PDSCH are turned on or off, and the specified TBs of different Valid PDSCHs On or off status can be set independently.
  • the HARQ-ACK bit corresponding to the specified TB of this Occasion can be directly set to NACK.
  • the HARQ-ACK bit can be set according to any one of setting mode 9 and setting mode 10:
  • the Logical AND operation is uniformly executed, and the HARQ-ACK bit corresponding to this Occasion is set. For example, based on the decoding results of one or two TBs enabled by each Valid PDSCH scheduled by the DCI, the Logical AND operation can be performed uniformly, and the HARQ-ACK bit corresponding to this Occasion can be set.
  • Setting method 12 Based on the decoding result of each Valid PDSCH configured by the DCI, execute Logical AND operation uniformly, and set the HARQ-ACK bit corresponding to this Occasion; and before executing Logical AND operation, set each Valid PDSCH closed
  • the decoding result of TB assumes a predefined value, such as ACK.
  • the decoding result of each TB whose Valid PDSCH is closed can be assumed to be ACK, and the decoding results of the two TBs configured based on each Valid PDSCH scheduled by the DCI are uniformly executed Logical AND operation, and the HARQ-ACK corresponding to this Occasion is set bit.
  • Setting mode 13 Based on the decoding results of TBs enabled by each Valid PDSCH scheduled by any one of the at least two DCIs, the Logical AND operation is uniformly performed, and the HARQ-ACK bit corresponding to this Occasion is set. For example, based on the decoding results of one or two TBs enabled by each Valid PDSCH scheduled by any one of the at least two DCIs, the Logical AND operation can be performed uniformly, and the HARQ-ACK bit corresponding to this Occasion can be set.
  • determining the HARQ-ACK bit setting when the codebook is the first codebook and the serving cell is configured to allow dual codeword transmission can ensure consistent processing between the terminal and the network side device.
  • FIG. 4 is the second flowchart of a time-domain binding processing method provided in an embodiment of the present application. As shown in FIG. 4, the time-domain binding processing method includes the following steps:
  • Step 201 the network side device determines the target operation when the codebook of the terminal is configured to use time domain binding for transmission;
  • the target operation includes at least one of the following:
  • the unified division of the binding group for multiple transport blocks TB includes any of the following:
  • the bonding group is divided based on the PDSCH corresponding to the effective time domain resource allocation record and the reference TB is enabled.
  • dividing each TB in the plurality of TBs into a binding group respectively includes:
  • the first target TB of the effective PDSCH scheduled by the DCI is turned on, for the first target TB, divide the binding group based on the PDSCH corresponding to the configured time domain resource allocation record or the effective time domain resource allocation record;
  • At least one valid PDSCH scheduled by DCI enables the first target TB, for the first target TB, divide the binding group based on the PDSCH corresponding to the configured time domain resource allocation record or the effective time domain resource allocation record, or, based on the corresponding Validate time-domain resource allocation records and enable the PDSCH division binding group of the first target TB;
  • the first target TB is any one of the multiple TBs.
  • the method further includes:
  • the network side device determines the mapping relationship between the HARQ-ACK bits in the codebook and the scheduled PDSCH according to whether application space bundling is configured.
  • this embodiment is an implementation manner of network-side equipment corresponding to the embodiment shown in FIG. 2 , and its specific implementation manner can refer to the relevant description of the embodiment shown in FIG. 2 , in order to avoid repeated descriptions.
  • This embodiment will not be described in detail.
  • the codebook when the codebook is configured to use time domain binding for transmission, for the first codebook, the timing conflict problem can be solved by determining the target operation; when the codebook is configured to use time domain binding for transmission In this case, for the second codebook, by determining the target operation, the bonding group division operation for the joint configuration of time domain bonding and spatial bonding can be determined. Therefore, higher flexibility can be allowed to better match actual application scenarios, configuration flexibility can be improved, and PDSCH retransmission performance can be improved.
  • the time domain binding processing method provided in the embodiment of the present application may be executed by a time domain binding processing device.
  • the method for performing the time domain binding processing by the time domain binding processing apparatus is taken as an example to describe the time domain binding processing apparatus provided in the embodiment of the present application.
  • FIG. 5 is one of the structural diagrams of a time domain binding processing device provided in the embodiment of the present application. As shown in FIG. 5, the time domain binding processing device 300 includes:
  • a determining module 301 configured to determine a target operation when it is configured to use time domain bundling for codebook transmission;
  • the target operation includes at least one of the following:
  • the physical downlink shared channel PDSCH corresponding to the last time domain resource allocation record in the row of the time domain resource allocation TDRA table for arbitrary scheduling and/or configuration is a valid PDSCH;
  • the first opportunity is any opportunity in the opportunity set corresponding to the codebook, and the row set corresponding to the first opportunity includes the row corresponding to the first opportunity in the TDRA table;
  • the target operation includes at least one of the following:
  • all scheduled PDSCHs or all effective PDSCHs scheduled by the downlink control information DCI are divided into bundling groups.
  • the target operation includes any of the following:
  • the bonding group is divided based on the PDSCH corresponding to the effective time domain resource allocation record and the reference TB is enabled.
  • the target operation includes:
  • the first target TB of the effective PDSCH scheduled by the DCI is turned on, for the first target TB, divide the binding group based on the PDSCH corresponding to the configured time domain resource allocation record or the effective time domain resource allocation record;
  • At least one valid PDSCH scheduled by DCI enables the first target TB, for the first target TB, divide the binding group based on the PDSCH corresponding to the configured time domain resource allocation record or the effective time domain resource allocation record, or, based on the corresponding Validate time-domain resource allocation records and enable the PDSCH division binding group of the first target TB;
  • the first target TB is any one of the multiple TBs.
  • the device also includes:
  • a first setup module for:
  • the hybrid automatic repeat request confirmation HARQ-ACK bit corresponding to the first target TB of the DCI or downlink allocation index DAI is negative answer
  • the HARQ-ACK bit corresponding to the first target TB of the DCI or DAI is a negative acknowledgment.
  • the device when the codebook is the second codebook, the device further includes:
  • a second setup module for:
  • the bonding group When the bonding group is empty, or the PDSCHs included in the bonding group are all invalid PDSCHs, determine that the HARQ-ACK bit corresponding to the bonding group is a negative acknowledgment;
  • the bonding group includes at least one valid PDSCH:
  • the decoding result of the second target TB of the effective PDSCH of the second target TB is set to a preset value, and the first operation is uniformly performed based on the decoding result of the second target TB of the effective PDSCH included in the bonding group , and determine the HARQ-ACK bit of the second target TB of the bonding group based on the operation result;
  • the second target TB is any one of the TBs configured on the network side.
  • the device also includes:
  • a third setting module for:
  • the bonding group does not include a corresponding valid time domain resource allocation record and the PDSCH of the first target TB is enabled, determine that the HARQ-ACK bit corresponding to the bonding group is a negative acknowledgment;
  • the bonding group includes a corresponding valid time-domain resource allocation record and at least one PDSCH of the first target TB is enabled:
  • the first operation uniformly based on the decoding result of the at least one PDSCH, and determine the HARQ-ACK bits of the first target TB in the bonding group based on the operation result; or, when the corresponding valid time in the bonding group Domain resource allocation record and turn off the decoding result of the first target TB of the PDSCH of the first target TB is set to a preset value, based on the decoding result of the first target TB of the effective PDSCH included in the bonding group
  • the first operation is uniformly performed, and the HARQ-ACK bits of the first target TB in the bundling group are determined based on the operation result.
  • the target operation also includes:
  • reference TB is any one of the following:
  • the third target TB is the TB with the largest number of valid PDSCHs that enable the third target TB.
  • the device also includes:
  • the fourth setting module is used for at least one of the following when the codebook is the first codebook and the serving cell is not configured to allow double codeword transmission:
  • the effective PDSCH associated with the first opportunity is scheduled by a single DCI, perform the first operation uniformly based on the decoding result of the effective PDSCH associated with the first opportunity, and determine the HARQ-ACK corresponding to the first opportunity based on the operation result bit;
  • the effective PDSCH associated with the first opportunity is scheduled by at least two DCIs, perform the first operation uniformly based on the decoding result of the effective PDSCH scheduled by any one of the DCIs in the at least two DCIs, and determine the second operation based on the operation result HARQ-ACK bits corresponding to an opportunity.
  • the device also includes:
  • the fifth setting module is used for at least one of the following when the codebook is the first codebook and the serving cell is configured to allow double codeword transmission:
  • the HARQ-ACK bit is determined based on the TB disabling method
  • the HARQ-ACK bit is determined based on the DCI corresponding to the effective PDSCH associated with the first opportunity.
  • the fifth setting module is used for at least one of the following:
  • the target DCI is any one of the at least two DCIs;
  • the decoding results of the four target TBs are set to preset values, and the first operation is uniformly performed based on the decoding results of the fourth target TB of the effective PDSCH scheduled by any one of the DCIs in the at least two DCIs, and the determination of the The HARQ-ACK bit corresponding to the fourth
  • the fourth target TB is any one of the TBs configured by the network side.
  • the fifth setting module is used for at least one of the following:
  • the fifth target TB of the effective PDSCH associated with the first opportunity is all off, then determine that the HARQ-ACK bit corresponding to the fifth target TB at the first opportunity is a negative acknowledgment;
  • the fifth target TB is any one of the TBs configured by the network side.
  • the fifth setting module is used for:
  • the decoding result is set to a preset value, and the first operation is uniformly performed based on the decoding results of all configured TBs of the effective PDSCH scheduled by the DCI, and the HARQ-ACK bit corresponding to the first opportunity is determined based on the operation result;
  • the target DCI performs the first operation uniformly based on the decoding results of all enabled TBs of the effective PDSCH scheduled by the target DCI, and determine the HARQ-ACK bit corresponding to the first opportunity based on the operation result; or, decode the TBs whose effective PDSCH is disabled
  • the result is set to a preset value, and the first operation is uniformly performed based on the decoding results of all configured TBs of the effective PDSCH scheduled by the target DCI, and the HARQ-ACK bit corresponding to the first opportunity is determined based on the operation result, and the target DCI is any one of the at least two DCIs.
  • the timing conflict problem can be solved by determining the target operation; when the codebook is configured In the case of using time-domain bundling for transmission, for the second codebook, by determining the target operation, the bundling group division operation for joint configuration of time-domain bundling and spatial bundling can be determined. Therefore, higher flexibility can be allowed to better match actual application scenarios, configuration flexibility can be improved, and PDSCH retransmission performance can be improved.
  • FIG. 6 is one of the structural diagrams of a time-domain binding processing device provided in the embodiment of the present application. As shown in FIG. 6, the time-domain binding processing device 400 includes:
  • the first determining module 401 is configured to determine the target operation when the codebook of the terminal is configured to use time domain binding for transmission;
  • the target operation includes at least one of the following:
  • the number of scheduled rows in the row set corresponding to the first opportunity is not more than 1, the first opportunity is any opportunity in the opportunity set corresponding to the codebook, and the row set corresponding to the first opportunity is included in The row corresponding to the first opportunity in the TDRA table;
  • the target operation includes at least one of the following:
  • all scheduled PDSCHs or all effective PDSCHs scheduled by the downlink control information DCI are divided into bundling groups.
  • the target operation includes at least one of the following:
  • the bonding group is divided based on the PDSCH corresponding to the effective time domain resource allocation record and the reference TB is enabled.
  • the target operation includes at least one of the following:
  • the first target TB of the effective PDSCH scheduled by the DCI is turned on, for the first target TB, divide the binding group based on the PDSCH corresponding to the configured time domain resource allocation record or the effective time domain resource allocation record;
  • At least one valid PDSCH scheduled by DCI enables the first target TB, for the first target TB, divide the binding group based on the PDSCH corresponding to the configured time domain resource allocation record or the effective time domain resource allocation record, or, based on the corresponding Validate time-domain resource allocation records and enable the PDSCH division binding group of the first target TB;
  • the first target TB is any one of the multiple TBs.
  • the device also includes:
  • the second determination module is configured to determine the mapping relationship between the HARQ-ACK bits in the codebook and the scheduled PDSCH according to whether application space bundling is configured.
  • the timing conflict problem can be solved by determining the target operation; when the codebook is configured In the case of using time-domain bundling for transmission, for the second codebook, by determining the target operation, the bundling group division operation for joint configuration of time-domain bundling and spatial bundling can be determined. Therefore, higher flexibility can be allowed to better match actual application scenarios, configuration flexibility can be improved, and PDSCH retransmission performance can be improved.
  • the time domain binding processing apparatus in this embodiment of the present application may be an electronic device, such as an electronic device with an operating system, or a component in the electronic device, such as an integrated circuit or a chip.
  • the electronic device may be a terminal, or other devices other than the terminal.
  • the terminal may include, but not limited to, the types of terminal 11 listed above, and other devices may be servers, Network Attached Storage (NAS), etc., which are not specifically limited in this embodiment of the present application.
  • NAS Network Attached Storage
  • the time-domain binding processing device provided in the embodiment of the present application can realize each process realized by the method embodiments in FIG. 2 and FIG. 4 and achieve the same technical effect. To avoid repetition, details are not repeated here.
  • the embodiment of the present application also provides a communication device 500, including a processor 501 and a memory 502, and the memory 502 stores programs or instructions that can run on the processor 501, such as
  • the communication device 500 is a terminal
  • the program or instruction is executed by the processor 501
  • each step of the above embodiment of the time domain binding processing method can be implemented, and the same technical effect can be achieved.
  • the communication device 500 is a network-side device
  • the program or instruction is executed by the processor 501
  • each step of the above-mentioned embodiment of the time-domain binding processing method can be achieved, and the same technical effect can be achieved. To avoid repetition, details are not repeated here. .
  • the embodiment of the present application also provides a terminal, including a processor and a communication interface, where the processor is configured to determine a target operation when the terminal is configured to perform codebook transmission using time domain binding; wherein, in the case where the codebook is the first codebook, the target operation includes at least one of the following: the number of scheduled rows in the row set corresponding to the first opportunity is not expected to be greater than 1; any scheduling and/or configured time domain is expected
  • the physical downlink shared channel PDSCH corresponding to the last time-domain resource allocation record in the resource allocation TDRA table is a valid PDSCH; when the number of scheduled rows in the row set corresponding to the first opportunity is greater than 1, the second The scheduled row in the row set corresponding to an opportunity performs the first operation; wherein, the first opportunity is any opportunity in the opportunity set corresponding to the codebook, and the row set corresponding to the first opportunity is included in TDRA A row corresponding to the first opportunity in the table; wherein, in the case where the codebook is the second codebook, the target operation
  • FIG. 8 is a schematic diagram of a hardware structure of a terminal implementing an embodiment of the present application.
  • the terminal 600 includes, but is not limited to: a radio frequency unit 601, a network module 602, an audio output unit 603, an input unit 604, a sensor 605, a display unit 606, a user input unit 607, an interface unit 608, a memory 609, and a processor 610, etc. At least some parts.
  • the terminal 600 may also include a power supply (such as a battery) for supplying power to various components, and the power supply may be logically connected to the processor 610 through the power management system, so as to manage charging, discharging, and power consumption through the power management system. Management and other functions.
  • a power supply such as a battery
  • the terminal structure shown in FIG. 8 does not constitute a limitation on the terminal, and the terminal may include more or fewer components than shown in the figure, or combine some components, or arrange different components, which will not be repeated here.
  • the input unit 604 may include a graphics processing unit (Graphics Processing Unit, GPU) 6041 and a microphone 6042, and the graphics processor 6041 is used in a video capture mode or an image capture mode by an image capture device (such as the image data of the still picture or video obtained by the camera) for processing.
  • the display unit 606 may include a display panel 6061, and the display panel 6061 may be configured in the form of a liquid crystal display, an organic light emitting diode, or the like.
  • the user input unit 607 includes at least one of a touch panel 6071 and other input devices 6072 . Touch panel 6 071, also called touch screen.
  • the touch panel 6071 may include two parts, a touch detection device and a touch controller.
  • Other input devices 6072 may include, but are not limited to, physical keyboards, function keys (such as volume control buttons, switch buttons, etc.), trackballs, mice, and joysticks, which will not be repeated here.
  • the radio frequency unit 601 may transmit it to the processor 610 for processing; in addition, the radio frequency unit 601 may send the uplink data to the network side device.
  • the radio frequency unit 601 includes, but is not limited to, an antenna, an amplifier, a transceiver, a coupler, a low noise amplifier, a duplexer, and the like.
  • the memory 609 can be used to store software programs or instructions as well as various data.
  • the memory 609 may mainly include a first storage area for storing programs or instructions and a second storage area for storing data, wherein the first storage area may store an operating system, an application program or instructions required by at least one function (such as a sound playing function, image playback function, etc.), etc.
  • memory 609 may include volatile memory or nonvolatile memory, or, memory 609 may include both volatile and nonvolatile memory.
  • the non-volatile memory can be read-only memory (Read-Only Memory, ROM), programmable read-only memory (Programmable ROM, PROM), erasable programmable read-only memory (Erasable PROM, EPROM), electronically programmable Erase Programmable Read-Only Memory (Electrically EPROM, EEPROM) or Flash.
  • ROM Read-Only Memory
  • PROM programmable read-only memory
  • Erasable PROM Erasable PROM
  • EPROM erasable programmable read-only memory
  • Electrical EPROM Electrical EPROM
  • EEPROM electronically programmable Erase Programmable Read-Only Memory
  • Volatile memory can be random access memory (Random Access Memory, RAM), static random access memory (Static RAM, SRAM), dynamic random access memory (Dynamic RAM, DRAM), synchronous dynamic random access memory (Synchronous DRAM, SDRAM), double data rate synchronous dynamic random access memory (Double Data Rate SDRAM, DDRSDRAM), enhanced synchronous dynamic random access memory (Enhanced SDRAM, ESDRAM), synchronous connection dynamic random access memory (Synch link DRAM , SLDRAM) and Direct Memory Bus Random Access Memory (Direct Rambus RAM, DRRAM).
  • RAM Random Access Memory
  • SRAM static random access memory
  • DRAM dynamic random access memory
  • DRAM synchronous dynamic random access memory
  • SDRAM double data rate synchronous dynamic random access memory
  • Double Data Rate SDRAM Double Data Rate SDRAM
  • DDRSDRAM double data rate synchronous dynamic random access memory
  • Enhanced SDRAM, ESDRAM enhanced synchronous dynamic random access memory
  • Synch link DRAM , SLDRAM
  • Direct Memory Bus Random Access Memory Direct Rambus
  • the processor 610 is configured to: determine the target operation when the terminal is configured to perform codebook transmission using time domain binding;
  • the target operation includes at least one of the following:
  • the first opportunity is any opportunity in the opportunity set corresponding to the codebook, and the row set corresponding to the first opportunity includes the row corresponding to the first opportunity in the TDRA table;
  • the target operation includes at least one of the following:
  • all scheduled PDSCHs or all effective PDSCHs scheduled by the downlink control information DCI are divided into bundling groups.
  • the target operation includes any of the following:
  • the target operation includes:
  • the first target TB of the effective PDSCH scheduled by the DCI is turned on, for the first target TB, divide the binding group based on the PDSCH corresponding to the configured time domain resource allocation record or the effective time domain resource allocation record;
  • At least one valid PDSCH scheduled by DCI enables the first target TB, for the first target TB, divide the binding group based on the PDSCH corresponding to the configured time domain resource allocation record or the effective time domain resource allocation record, or, based on the corresponding Validate time-domain resource allocation records and enable the PDSCH division binding group of the first target TB;
  • the first target TB is any one of the multiple TBs.
  • the processor 610 is configured to:
  • the hybrid automatic repeat request confirmation HARQ-ACK bit corresponding to the first target TB of the DCI or downlink allocation index DAI is negative answer
  • the HARQ-ACK bit corresponding to the first target TB of the DCI or DAI is a negative acknowledgment.
  • the processor 610 is configured to:
  • the bonding group When the bonding group is empty, or the PDSCHs included in the bonding group are all invalid PDSCHs, determine that the HARQ-ACK bit corresponding to the bonding group is a negative acknowledgment;
  • the bonding group includes at least one valid PDSCH:
  • the decoding result of the second target TB of the effective PDSCH of the second target TB is set to a preset value, and the first operation is uniformly performed based on the decoding result of the second target TB of the effective PDSCH included in the bonding group , and determine the HARQ-ACK bit of the second target TB of the bonding group based on the operation result;
  • the second target TB is any one of the TBs configured on the network side.
  • the processor 610 is configured to:
  • the bonding group does not include a corresponding valid time domain resource allocation record and the PDSCH of the first target TB is enabled, determine that the HARQ-ACK bit corresponding to the bonding group is a negative acknowledgment;
  • the bonding group includes a corresponding valid time-domain resource allocation record and at least one PDSCH of the first target TB is enabled:
  • the first operation uniformly based on the decoding result of the at least one PDSCH, and determine the HARQ-ACK bits of the first target TB in the bonding group based on the operation result; or, when the corresponding valid time in the bonding group Domain resource allocation record and turn off the decoding result of the first target TB of the PDSCH of the first target TB is set to a preset value, based on the decoding result of the first target TB of the effective PDSCH included in the bonding group
  • the first operation is uniformly performed, and the HARQ-ACK bits of the first target TB in the bundling group are determined based on the operation result.
  • the target operation also includes:
  • reference TB is any one of the following:
  • the third target TB is the TB with the largest number of valid PDSCHs that enable the third target TB.
  • the processor 610 is configured to at least one of the following when the codebook is the first codebook and the serving cell is not configured to allow double codeword transmission:
  • the effective PDSCH associated with the first opportunity is scheduled by a single DCI, perform the first operation uniformly based on the decoding result of the effective PDSCH associated with the first opportunity, and determine the HARQ-ACK corresponding to the first opportunity based on the operation result bit;
  • the effective PDSCH associated with the first opportunity is scheduled by at least two DCIs, perform the first operation uniformly based on the decoding result of the effective PDSCH scheduled by any one of the DCIs in the at least two DCIs, and determine the second operation based on the operation result HARQ-ACK bits corresponding to an opportunity.
  • the processor 610 is configured to at least one of the following when the codebook is the first codebook and the serving cell is configured to allow dual codeword transmission:
  • the HARQ-ACK bit is determined based on the TB disabling method
  • the HARQ-ACK bit is determined based on the DCI corresponding to the effective PDSCH associated with the first occasion.
  • the processor 610 is used for at least one of the following:
  • the target DCI is any one of the at least two DCIs;
  • the decoding results of the four target TBs are set to preset values, and the first operation is uniformly performed based on the decoding results of the fourth target TB of the effective PDSCH scheduled by any one of the DCIs in the at least two DCIs, and the determination of the The HARQ-ACK bit corresponding to the fourth
  • the fourth target TB is any one of the TBs configured by the network side.
  • the processor 610 is used for at least one of the following:
  • the fifth target TB of the effective PDSCH associated with the first opportunity is all off, then determine that the HARQ-ACK bit corresponding to the fifth target TB at the first opportunity is a negative acknowledgment;
  • the fifth target TB is any one of the TBs configured by the network side.
  • the processor 610 is configured to:
  • the decoding result is set to a preset value, and the first operation is uniformly performed based on the decoding results of all configured TBs of the effective PDSCH scheduled by the DCI, and the HARQ-ACK bit corresponding to the first opportunity is determined based on the operation result;
  • the target DCI performs the first operation uniformly based on the decoding results of all enabled TBs of the effective PDSCH scheduled by the target DCI, and determine the HARQ-ACK bit corresponding to the first opportunity based on the operation result; or, decode the TBs whose effective PDSCH is disabled
  • the result is set to a preset value, and the first operation is uniformly performed based on the decoding results of all configured TBs of the effective PDSCH scheduled by the target DCI, and the HARQ-ACK bit corresponding to the first opportunity is determined based on the operation result, and the target DCI is any one of the at least two DCIs.
  • the target operation when the terminal is configured to perform codebook transmission using time-domain bundling, the target operation is determined; wherein, when the codebook is the first codebook, the target operation includes At least one of the following: it is not expected that the number of scheduled rows in the row set corresponding to the first opportunity is greater than 1; it is expected that the last time-domain resource allocation record of the row of the time-domain resource allocation TDR table for arbitrary scheduling and/or configuration corresponds to The physical downlink shared channel PDSCH is an effective PDSCH; when the number of scheduled rows in the row set corresponding to the first opportunity is greater than 1, perform a first operation on the scheduled rows in the row set corresponding to the first opportunity; Wherein, the first opportunity is any opportunity in the opportunity set corresponding to the codebook, and the row set corresponding to the first opportunity includes the row corresponding to the first opportunity in the TDRA table; wherein, in the In the case where the codebook is the second codebook, the target operation includes at least one of the following: when no application space bundling
  • the embodiment of the present application also provides a network side device, including a processor and a communication interface, the processor is used to: determine the target operation when the codebook of the terminal is configured to use time domain binding for transmission; wherein, in When the codebook is the first codebook, the target operation includes at least one of the following items: the number of scheduled rows in the row set corresponding to the first opportunity is no more than 1, and the first opportunity is the Any opportunity in the opportunity set corresponding to the codebook, the row set corresponding to the first opportunity includes the row corresponding to the first opportunity in the TDRA table; determine any scheduled and/or configured time-domain resource allocation TDRA table
  • the physical downlink shared channel PDSCH corresponding to the last time-domain resource allocation record of the row is an effective PDSCH; wherein, in the case where the codebook is the second codebook, the target operation includes at least one of the following: In the case of application space binding, the binding group is uniformly divided for multiple transport block TBs, or the binding group is divided for each TB in the multiple TB
  • the embodiment of the present application also provides a network side device.
  • the network side device 700 includes: an antenna 701 , a radio frequency device 702 , a baseband device 703 , a processor 704 and a memory 705 .
  • the antenna 701 is connected to the radio frequency device 702 .
  • the radio frequency device 702 receives information through the antenna 701, and sends the received information to the baseband device 703 for processing.
  • the baseband device 703 processes the information to be sent and sends it to the radio frequency device 702
  • the radio frequency device 702 processes the received information and sends it out through the antenna 701 .
  • the method performed by the network side device in the above embodiments may be implemented in the baseband device 703, where the baseband device 703 includes a baseband processor.
  • the baseband device 703 may include at least one baseband board, for example, a plurality of chips are arranged on the baseband board, as shown in FIG.
  • the program executes the network device operations shown in the above method embodiments.
  • the network side device may also include a network interface 706, such as a common public radio interface (common public radio interface, CPRI).
  • a network interface 706, such as a common public radio interface (common public radio interface, CPRI).
  • the network-side device 700 in this embodiment of the present application further includes: instructions or programs stored in the memory 705 and executable on the processor 704, and the processor 704 calls the instructions or programs in the memory 705 to execute the various programs shown in FIG.
  • the method of module execution achieves the same technical effect, so in order to avoid repetition, it is not repeated here.
  • the embodiment of the present application also provides a readable storage medium, the readable storage medium may be nonvolatile or volatile, the readable storage medium stores programs or instructions, and the programs or instructions are stored in When executed by the processor, each process of the above embodiment of the time-domain binding processing method can be realized, and the same technical effect can be achieved. To avoid repetition, details are not repeated here.
  • the processor is the processor in the terminal described in the foregoing embodiments.
  • the readable storage medium includes a computer-readable storage medium, such as a computer read-only memory ROM, a random access memory RAM, a magnetic disk or an optical disk, and the like.
  • the embodiment of the present application further provides a chip, the chip includes a processor and a communication interface, the communication interface is coupled to the processor, and the processor is used to run programs or instructions to implement the above-mentioned time-domain binding processing method
  • the chip includes a processor and a communication interface
  • the communication interface is coupled to the processor
  • the processor is used to run programs or instructions to implement the above-mentioned time-domain binding processing method
  • the chip mentioned in the embodiment of the present application may also be called a system-on-chip, a system-on-chip, a system-on-a-chip, or a system-on-a-chip.
  • the embodiment of the present application further provides a computer program product, the computer program product is stored in a storage medium, and the computer program product is executed by at least one processor to implement the various processes in the above embodiments of the time domain binding processing method , and can achieve the same technical effect, in order to avoid repetition, it will not be repeated here.
  • the embodiment of the present application also provides a time-domain binding processing system, including: a terminal and a network-side device, the terminal can be used to perform the steps of the above-mentioned time-domain binding processing method applied to the terminal, the network The side device may be configured to execute the steps of the time domain binding processing method applied to the network side device as described above.
  • the term “comprising”, “comprising” or any other variation thereof is intended to cover a non-exclusive inclusion such that a process, method, article or apparatus comprising a set of elements includes not only those elements, It also includes other elements not expressly listed, or elements inherent in the process, method, article, or device. Without further limitations, an element defined by the phrase “comprising a " does not preclude the presence of additional identical elements in the process, method, article, or apparatus comprising that element.
  • the scope of the methods and devices in the embodiments of the present application is not limited to performing functions in the order shown or discussed, and may also include performing functions in a substantially simultaneous manner or in reverse order according to the functions involved. Functions are performed, for example, the described methods may be performed in an order different from that described, and various steps may also be added, omitted, or combined. Additionally, features described with reference to certain examples may be combined in other examples.
  • the methods of the above embodiments can be implemented by means of software plus a necessary general-purpose hardware platform, and of course also by hardware, but in many cases the former is better implementation.
  • the technical solution of the present application can be embodied in the form of computer software products, which are stored in a storage medium (such as ROM/RAM, magnetic disk, etc.) , CD-ROM), including several instructions to make a terminal (which may be a mobile phone, a computer, a server, an air conditioner, or a network device, etc.) execute the methods described in the various embodiments of the present application.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Data Exchanges In Wide-Area Networks (AREA)

Abstract

本申请公开了一种时域绑定处理方法、终端及网络侧设备,属于通信技术领域,该方法包括:终端在被配置为采用时域绑定进行码本传输的情况下,确定目标操作;其中,在码本为第一码本的情况下,目标操作包括如下至少一项:不期望第一时机对应的行集合中被调度的行的数量大于1;在第一时机对应的行集合中被调度的行的数量大于1的情况下,对该第一时机对应的行集合中被调度的行执行第一操作;其中,在码本为第二码本的情况下,目标操作包括如下至少一项:在未配置应用空间绑定的情况下,对多个TB统一划分绑定组,或者,对多个TB中每个TB分别划分绑定组;在配置应用空间绑定的情况下,对下行控制信息DCI调度的全部调度PDSCH或全部有效PDSCH划分绑定组。

Description

时域绑定处理方法、终端及网络侧设备
相关申请的交叉引用
本申请主张在2021年12月31日在中国提交的中国专利申请No.202111673268.8的优先权,其全部内容通过引用包含于此。
技术领域
本申请属于通信技术领域,具体涉及一种时域绑定处理方法、终端及网络侧设备。
背景技术
在一些通信系统中引入了多物理下行共享信道(Multi-Physical Downlink Shared Channel,Multi-PDSCH)调度传输,其中,Multi-PDSCH调度指单个下行控制信息(Downlink Control Information,DCI)能一次性调度同一载波上的多个物理下行共享信道(Physical downlink shared channel,PDSCH)传输。但在这些通信系统中,在终端传输码本时,在一些配置下并无对应的解决方案,从而配置灵活性较差。
发明内容
本申请实施例提供一种时域绑定处理方法、终端及网络侧设备,能够解决终端传输码本时的配置灵活性较差的问题。
第一方面,提供了一种时域绑定处理方法,该方法包括:
终端在被配置为采用时域绑定进行码本传输的情况下,确定目标操作;
其中,在所述码本为第一码本的情况下,所述目标操作包括如下至少一项:
不期望第一时机对应的行集合中被调度的行的数量大于1;
期望任意调度和/或配置的时域资源分配TDRA表的行的最后的时域资源分配记录对应的物理下行共享信道PDSCH为有效PDSCH;
在第一时机对应的行集合中被调度的行的数量大于1的情况下,对所述 第一时机对应的行集合中被调度的行执行第一操作;
其中,所述第一时机为所述码本对应的时机集合中的任意一个时机,所述第一时机对应的行集合包括在TDRA表中与所述第一时机对应的行;
其中,在所述码本为第二码本的情况下,所述目标操作包括如下至少一项:
在未配置应用空间绑定的情况下,对多个传输块TB统一划分绑定组,或者,对所述多个TB中每个TB分别划分绑定组;
在配置应用空间绑定的情况下,对下行控制信息DCI调度的全部调度PDSCH或全部有效PDSCH划分绑定组。
第二方面,提供了一种时域绑定处理方法,该方法包括:
网络侧设备在终端的码本被配置采用时域绑定进行传输的情况下,确定目标操作;
其中,在所述码本为第一码本的情况下,所述目标操作包括如下至少一项:
在第一时机对应的行集合中被调度的行的数目不超过1,所述第一时机为所述码本对应的时机集合中的任意一个时机,所述第一时机对应的行集合包括在TDRA表中与所述第一时机对应的行;
确定任意调度和/或配置的时域资源分配TDRA表的行的最后的时域资源分配记录对应的物理下行共享信道PDSCH为有效PDSCH;
其中,在所述码本为第二码本的情况下,所述目标操作包括如下至少一项:
在未配置应用空间绑定的情况下,对多个传输块TB统一划分绑定组,或者,对所述多个TB中每个TB分别划分绑定组;
在配置应用空间绑定的情况下,对下行控制信息DCI调度的全部调度PDSCH或全部有效PDSCH划分绑定组。
第三方面,提供了一种时域绑定处理装置,包括:
确定模块,用于在被配置为采用时域绑定进行码本传输的情况下,确定目标操作;
其中,在所述码本为第一码本的情况下,所述目标操作包括如下至少一 项:
不期望第一时机对应的行集合中被调度的行的数量大于1;
期望任意调度和/或配置的时域资源分配TDRA表的行的最后的时域资源分配记录对应的物理下行共享信道PDSCH为有效PDSCH;
在第一时机对应的行集合中被调度的行的数量大于1的情况下,对所述第一时机对应的行集合中被调度的行执行第一操作;
其中,所述第一时机为所述码本对应的时机集合中的任意一个时机,所述第一时机对应的行集合包括在TDRA表中与所述第一时机对应的行;
其中,在所述码本为第二码本的情况下,所述目标操作包括如下至少一项:
在未配置应用空间绑定的情况下,对多个传输块TB统一划分绑定组,或者,对所述多个TB中每个TB分别划分绑定组;
在配置应用空间绑定的情况下,对下行控制信息DCI调度的全部调度PDSCH或全部有效PDSCH划分绑定组。
第四方面,提供了一种时域绑定处理装置,包括:
第一确定模块,用于在终端的码本被配置采用时域绑定进行传输的情况下,确定目标操作;
其中,在所述码本为第一码本的情况下,所述目标操作包括如下至少一项:
在第一时机对应的行集合中被调度的行的数目不超过1,所述第一时机为所述码本对应的时机集合中的任意一个时机,所述第一时机对应的行集合包括在TDRA表中与所述第一时机对应的行;
确定任意调度和/或配置的时域资源分配TDRA表的行的最后的时域资源分配记录对应的物理下行共享信道PDSCH为有效PDSCH;
其中,在所述码本为第二码本的情况下,所述目标操作包括如下至少一项:
在未配置应用空间绑定的情况下,对多个传输块TB统一划分绑定组,或者,对所述多个TB中每个TB分别划分绑定组;
在配置应用空间绑定的情况下,对下行控制信息DCI调度的全部调度 PDSCH或全部有效PDSCH划分绑定组。
第五方面,提供了一种终端,该终端包括处理器和存储器,所述存储器存储可在所述处理器上运行的程序或指令,所述程序或指令被所述处理器执行时实现如第一方面所述的方法的步骤。
第六方面,提供了一种终端,包括处理器及通信接口,其中,所述处理器用于:在被配置为采用时域绑定进行码本传输的情况下,确定目标操作;
其中,在所述码本为第一码本的情况下,所述目标操作包括如下至少一项:
不期望第一时机对应的行集合中被调度的行的数量大于1;
期望任意调度和/或配置的时域资源分配TDRA表的行的最后的时域资源分配记录对应的物理下行共享信道PDSCH为有效PDSCH;
在第一时机对应的行集合中被调度的行的数量大于1的情况下,对所述第一时机对应的行集合中被调度的行执行第一操作;
其中,所述第一时机为所述码本对应的时机集合中的任意一个时机,所述第一时机对应的行集合包括在TDRA表中与所述第一时机对应的行;
其中,在所述码本为第二码本的情况下,所述目标操作包括如下至少一项:
在未配置应用空间绑定的情况下,对多个传输块TB统一划分绑定组,或者,对所述多个TB中每个TB分别划分绑定组;
在配置应用空间绑定的情况下,对下行控制信息DCI调度的全部调度PDSCH或全部有效PDSCH划分绑定组。
第七方面,提供了一种网络侧设备,该网络侧设备包括处理器和存储器,所述存储器存储可在所述处理器上运行的程序或指令,所述程序或指令被所述处理器执行时实现如第一方面所述的方法的步骤。
第八方面,提供了一种网络侧设备,包括处理器及通信接口,其中,所述处理器用于:在终端的码本被配置采用时域绑定进行传输的情况下,确定目标操作;
其中,在所述码本为第一码本的情况下,所述目标操作包括如下至少一项:
在第一时机对应的行集合中被调度的行的数目不超过1,所述第一时机为所述码本对应的时机集合中的任意一个时机,所述第一时机对应的行集合包括在TDRA表中与所述第一时机对应的行;
确定任意调度和/或配置的时域资源分配TDRA表的行的最后的时域资源分配记录对应的物理下行共享信道PDSCH为有效PDSCH;
其中,在所述码本为第二码本的情况下,所述目标操作包括如下至少一项:
在未配置应用空间绑定的情况下,对多个传输块TB统一划分绑定组,或者,对所述多个TB中每个TB分别划分绑定组;
在配置应用空间绑定的情况下,对下行控制信息DCI调度的全部调度PDSCH或全部有效PDSCH划分绑定组。
第九方面,提供了一种时域绑定处理系统,包括:终端及网络侧设备,所述终端可用于执行如第一方面所述的的应用于终端的时域绑定处理方法的步骤,所述网络侧设备可用于执行如第二方面所述的应用于网络侧设备的时域绑定处理方法的步骤。
第十方面,提供了一种可读存储介质,所述可读存储介质上存储程序或指令,所述程序或指令被处理器执行时实现如第一方面所述的方法的步骤,或者实现如第二方面所述的方法的步骤。
第十一方面,提供了一种芯片,所述芯片包括处理器和通信接口,所述通信接口和所述处理器耦合,所述处理器用于运行程序或指令,实现如第一方面所述的方法,或实现如第二方面所述的方法。
第十二方面,提供了一种计算机程序产品,所述计算机程序产品被存储在非瞬态的可读存储介质中,所述计算机程序产品被至少一个处理器执行以实现如第一方面所述的时域绑定处理方法的步骤,或者,所述计算机程序/程序产品被至少一个处理器执行以实现如第二方面所述的时域绑定处理方法的步骤。
在本申请实施例中,终端在被配置为采用时域绑定进行码本传输的情况下,确定目标操作;其中,在所述码本为第一码本的情况下,所述目标操作包括如下至少一项:不期望第一时机对应的行集合中被调度的行的数量大于 1;期望任意调度和/或配置的时域资源分配TDRA表的行的最后的时域资源分配记录对应的物理下行共享信道PDSCH为有效PDSCH;在第一时机对应的行集合中被调度的行的数量大于1的情况下,对所述第一时机对应的行集合中被调度的行执行第一操作;其中,所述第一时机为所述码本对应的时机集合中的任意一个时机,所述第一时机对应的行集合包括在TDRA表中与所述第一时机对应的行;其中,在所述码本为第二码本的情况下,所述目标操作包括如下至少一项:在未配置应用空间绑定的情况下,对多个传输块TB统一划分绑定组,或者,对所述多个TB中每个TB分别划分绑定组;在配置应用空间绑定的情况下,对下行控制信息DCI调度的全部调度PDSCH或全部有效PDSCH划分绑定组。这样,在码本被配置采用时域绑定进行传输的情况下,对于第一码本,通过确定目标操作能够解决时机冲突问题;在码本被配置采用时域绑定进行传输的情况下,对于第二码本,通过确定目标操作能够确定对于时域绑定与空间绑定联合配置时的绑定组划分操作。从而能够允许更高的灵活性,以更匹配实际应用场景,能够提高配置灵活性,并且能够提升PDSCH重传性能。
附图说明
图1是本申请实施例可应用的一种无线通信系统的框图。
图2是本申请实施例提供的一种时域绑定处理方法的流程图之一;
图3是本申请实施例提供的一种时机映射示意图;
图4是本申请实施例提供的一种时域绑定处理方法的流程图之二;
图5是本申请实施例提供的一种时域绑定处理装置的结构图之一;
图6是本申请实施例提供的一种时域绑定处理装置的结构图之二;
图7是本申请实施例提供的一种通信设备的结构图;
图8是本申请实施例提供的一种终端的结构示意图;
图9是本申请实施例提供的一种网络侧设备的结构示意图。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行 清楚描述,显然,所描述的实施例是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员所获得的所有其他实施例,都属于本申请保护的范围。
本申请的说明书和权利要求书中的术语“第一”、“第二”等是用于区别类似的对象,而不用于描述特定的顺序或先后次序。应该理解这样使用的术语在适当情况下可以互换,以便本申请的实施例能够以除了在这里图示或描述的那些以外的顺序实施,且“第一”、“第二”所区别的对象通常为一类,并不限定对象的个数,例如第一对象可以是一个,也可以是多个。此外,说明书以及权利要求中“和/或”表示所连接对象的至少其中之一,字符“/”一般表示前后关联对象是一种“或”的关系。
值得指出的是,本申请实施例所描述的技术不限于长期演进型(Long Term Evolution,LTE)/LTE的演进(LTE-Advanced,LTE-A)系统,还可用于其他无线通信系统,诸如码分多址(Code Division Multiple Access,CDMA)、时分多址(Time Division Multiple Access,TDMA)、频分多址(Frequency Division Multiple Access,FDMA)、正交频分多址(Orthogonal Frequency Division Multiple Access,OFDMA)、单载波频分多址(Single-carrier Frequency Division Multiple Access,SC-FDMA)和其他系统。本申请实施例中的术语“系统”和“网络”常被可互换地使用,所描述的技术既可用于以上提及的系统和无线电技术,也可用于其他系统和无线电技术。以下描述出于示例目的描述了新空口(New Radio,NR)系统,并且在以下大部分描述中使用NR术语,但是这些技术也可应用于NR系统应用以外的应用,如第6代(6 th Generation,6G)通信系统。
图1示出本申请实施例可应用的一种无线通信系统的框图。无线通信系统包括终端11和网络侧设备12。其中,终端11可以是手机、平板电脑(Tablet Personal Computer)、膝上型电脑(Laptop Computer)或称为笔记本电脑、个人数字助理(Personal Digital Assistant,PDA)、掌上电脑、上网本、超级移动个人计算机(ultra-mobile personal computer,UMPC)、移动上网装置(Mobile Internet Device,MID)、增强现实(augmented reality,AR)/虚拟现实(virtual reality,VR)设备、机器人、可穿戴式设备(Wearable Device)、车载设备(Vehicle  User Equipment,VUE)、行人终端(Pedestrian User Equipment,PUE)、智能家居(具有无线通信功能的家居设备,如冰箱、电视、洗衣机或者家具等)、游戏机、个人计算机(personal computer,PC)、柜员机或者自助机等终端侧设备,可穿戴式设备包括:智能手表、智能手环、智能耳机、智能眼镜、智能首饰(智能手镯、智能手链、智能戒指、智能项链、智能脚镯、智能脚链等)、智能腕带、智能服装等。需要说明的是,在本申请实施例并不限定终端11的具体类型。网络侧设备12可以包括接入网设备或核心网设备,其中,接入网设备12也可以称为无线接入网设备、无线接入网(Radio Access Network,RAN)、无线接入网功能或无线接入网单元。接入网设备12可以包括基站、无线局域网(Wireless Local Area Network,WLAN)接入点或WiFi节点等,基站可被称为节点B、演进节点B(Evolved Node B,eNB)、接入点、基收发机站(Base Transceiver Station,BTS)、无线电基站、无线电收发机、基本服务集(Basic Service Set,BSS)、扩展服务集(Extended Service Set,ESS)、家用B节点、家用演进型B节点、发送接收点(Transmission Reception Point,TRP)或所述领域中其他某个合适的术语,只要达到相同的技术效果,所述基站不限于特定技术词汇,需要说明的是,在本申请实施例中仅以NR系统中的基站为例进行介绍,并不限定基站的具体类型。核心网设备可以包含但不限于如下至少一项:核心网节点、核心网功能、移动管理实体(Mobility Management Entity,MME)、接入移动管理功能(Access and Mobility Management Function,AMF)、会话管理功能(Session Management Function,SMF)、用户平面功能(User Plane Function,UPF)、策略控制功能(Policy Control Function,PCF)、策略与计费规则功能单元(Policy and Charging Rules Function,PCRF)、边缘应用服务发现功能(Edge Application Server Discovery Function,EASDF)、统一数据管理(Unified Data Management,UDM)、统一数据仓储(Unified Data Repository,UDR)、归属用户服务器(Home Subscriber Server,HSS)、集中式网络配置(Centralized network configuration,CNC)、网络存储功能(Network Repository Function,NRF),网络开放功能(Network Exposure Function,NEF)、本地NEF(Local NEF,或L-NEF)、绑定支持功能(Binding Support Function,BSF)、应用功能(Application  Function,AF)等。需要说明的是,在本申请实施例中仅以NR系统中的核心网设备为例进行介绍,并不限定核心网设备的具体类型。终端也可以称作用户终端(User Equipment,UE)。
为了方便理解,以下对本申请实施例涉及的一些内容进行说明:
对于Multi-PDSCH调度:
在52.6~71GHz特性研究过程中,确认针对新的NR部署频段需要引入新的子载波间隔(Subcarrier Spacing,SCS),包括480kHz和960kHz。针对这些新引入的SCS,物理下行控制信道(Physical downlink control channel,PDCCH)监测需要作相应的调整或增强,例如避免用户设备(User Equipment,UE)在每个时隙(Slot)内都需要监测PDCCH,以降低UE实现复杂度。相应地,为了充分利用载波时域资源,需要研究和/或引入Multi-PDSCH调度和Multi-PUSCH调度。
Multi-PDSCH调度指单个DCI能一次性调度同一载波上的多个PDSCH传输。根据NR的协议规定,这些PDSCH在时域相互不交叠。
当为UE配置的某一服务小区(Serving cell)支持Multi-PDSCH调度时,为此服务小区配置的时域资源分配(Time Domain Resource Assignment,TDRA)表(table)中至少有一行配置了大于一个条目(Entry)或起点长度指示值(Start and length indicator value,SLIV)。下行调度DCI通过指示此TDRA table中的一行,来为UE调度指示行中各Entry或SLIV对应的PDSCH,某一Entry或SLIV给出了对应PDSCH的时域资源分配信息。
对于Multi-PDSCH调度基于时域绑定(Time domain bundling)的混合自动重传请求应答(automatic repeat request acknowledgement,HARQ-ACK)反馈:
对于Multi-PDSCH调度,可以配置采用类型1(Type-1)码本(codebook)或Type-2 codebook。Type-1码本为半静态码本,Type-2码本为动态码本。对于Type-1 codebook,当配置采用Time domain bundling时,基于TDRA table中各行的最后的(Last)SLIV来确定和映射Type-1 HARQ-ACK码本中的时机(Occasion),针对映射至某一Occasion的所有有效(Valid)PDSCH来执行逻辑与操作(Logical AND operation)。对于Type-2 codebook,当配置采用 Time domain bundling时,针对每个DCI调度的一到多个调度(Scheduled)PDSCH或Valid PDSCH来划分绑定组(Bundling group),并针对每个Bundling group的情况来确定此Bundling group在Type-2HARQ-ACK码本中对应的HARQ-ACK比特的取值。
以下是对涉及的一些名词的说明:
Scheduled PDSCH:单个DCI调度的一到多个PDSCH中的某个PDSCH,其与DCI指示的TDRA table中的某一行中配置的某个Entry或SLIV对应,其可能为Valid PDSCH或无效(Invalid)PDSCH。
Valid PDSCH:单个DCI调度的一到多个PDSCH中,与半静态(Semi-static)上行(Uplink,UL)符号(symbol)不存在冲突的某个PDSCH,可以理解为能实际传输的Scheduled PDSCH。
Invalid PDSCH:单个DCI调度的一到多个PDSCH中,与Semi-static UL symbol存在冲突的某个PDSCH,可以理解为实际无法传输的Scheduled PDSCH。
TB去使能(disabling):当高层配置允许双码字传输时,即对于UE的某一给定Serving cell,为其生效(Active)下行(Downlink,DL)带宽部分(Bandwidth Part,BWP)配置了maxNrofCodeWordsScheduledByDCI为n2,可以通过某种方式,确定对于某个DCI调度的一到多个Valid PDSCH,某一TB是开启(即实际被调度)还是关闭(即实际未被调度)。可以采用以下任意一种方式:
(1)TB disabling方式1:对于某个传输块(Transport Block,TB)(例如,第一个TB或第二个TB),单个DCI调度的所有Valid PDSCH统一确定开启或关闭状态。
例如,对于某个TB,当在DCI中指示此TB对应的调制和编码方案(Modulation and coding scheme,MCS)满足IMCS=26,并且DCI中与此TB对应的冗余版本(redundancy version,RV)比特序列取值为某个预定义的0和/或1序列时,即指示此DCI调度的各个Valid PDSCH的此TB都被关闭;当不满足上述条件时,则认为此DCI调度的各个Valid PDSCH的此TB都已开启。
上述DCI中与某一TB对应的RV比特序列可以为以下任意一种:
(a)由DCI中为此TB预留的所有RV比特依次级联而成;例如假设TDRA table中某一行配置的Entry或SLIV的最大数目为M,则当某一DCI调度的PDSCH数目大于1时,在此DCI中为某一TB预留M个RV比特,即与此TB对应的RV比特序列包含M比特。
(b)由DCI中为此TB预留的所有RV比特中,与此DCI调度的某个Scheduled PDSCH对应的所有RV比特依次级联而成;例如当某一DCI调度的PDSCH数目N大于1(N<=M)时,在此DCI中为某一TB预留M个RV比特,其中仅N个RV比特实际被用于指示Scheduled PDSCH的RV信息,即与此TB对应的RV比特序列包含N比特。
(c)由DCI中为此TB预留的所有RV比特中,与此DCI调度的某个Valid PDSCH对应的所有RV比特依次级联而成;例如当某一DCI调度的PDSCH数目N大于1(N<=M),并且其中包含N1个Valid PDSCH(N1<=N)时,在此DCI中为某一TB预留M个RV比特,其中仅N1个RV比特实际被用于指示Valid PDSCH的RV信息,即与此TB对应的RV比特序列包含N1比特。
上述预定义的0和/或1序列,可以为与RV比特序列等长的全0或全1序列,例如长度为M或N或N1的全1序列。
(2)TB disabling方式2:对于某个TB(例如第一个TB或第二个TB),单个DCI调度的各个Valid PDSCH分别独立确定开启/关闭状态。
例如,对于某个TB以及某个Valid PDSCH,当在DCI中指示此TB对应的MCS满足IMCS=26,并且DCI中与此TB及此Valid PDSCH对应的RV比特的取值为某个预定义的取值时,即指示此Valid PDSCH的此TB被关闭;当不满足上述条件时,则认为此Valid PDSCH的此TB已开启。
例如,DCI中与某个TB以及某个Valid PDSCH对应的RV比特仅包含单个比特,预定义的取值可以为1,或者,与rvid=2对应的取值。
下面结合附图,通过一些实施例及其应用场景对本申请实施例提供的时域绑定处理方法进行详细地说明。
参见图2,图2是本申请实施例提供的一种时域绑定处理方法的流程图 之一,如图2所示,时域绑定处理方法包括以下步骤:
步骤101、终端在被配置为采用时域绑定进行码本传输的情况下,确定目标操作;
其中,在所述码本为第一码本的情况下,所述目标操作包括如下至少一项:
不期望第一时机对应的行集合中被调度的行的数量大于1;
期望任意调度和/或配置的时域资源分配TDRA表的行的最后的时域资源分配记录对应的物理下行共享信道PDSCH为有效PDSCH;
在第一时机对应的行集合中被调度的行的数量大于1的情况下,对所述第一时机对应的行集合中被调度的行执行第一操作;
其中,所述第一时机为所述码本对应的时机集合中的任意一个时机,所述第一时机对应的行集合包括在TDRA表中与所述第一时机对应的行;
其中,在所述码本为第二码本的情况下,所述目标操作包括如下至少一项:
在未配置应用空间绑定的情况下,对多个传输块TB统一划分绑定组,或者,对所述多个TB中每个TB分别划分绑定组;
在配置应用空间绑定的情况下,对下行控制信息DCI调度的全部调度PDSCH或全部有效PDSCH划分绑定组。
其中,上述第一码本可以为半静态(Type-1)codebook,上述第二码本可以为动态(Type-2)codebook。上述配置的TDRA表的行,可以包括网络侧设备基于半持续调度(Semi-persistent scheduling,SPS)机制,在SPS激活DCI中向UE指示的TDRA表中的一行。上述时域资源分配记录,可以与SLIV对应,或者可以包含SLIV,或者可以为指示单个PDSCH对应的时域资源分配信息的记录,本实施例对此不进行限定。一种实施方式中,每个时域资源分配记录对应或包含单个SLIV。上述第一时机对应的行集合可以包括在TDRA表中与所述第一时机对应的一行或多行。上述第一操作可以包括与操作,示例地,第一操作可以为逻辑与操作(logical AND operation);或者可以为二进制与操作(binary AND operation);等等,本实施例对第一操作不进行限定。
需要说明的是,对于任意一个Invalid PDSCH,可以认为其实际未被调度,也无需接收,因此允许其它配置和/或调度PDSCH与之时域交叠。可选地,也可以允许其它配置和/或动态调度的物理信道和/或信号与之时域交叠,例如动态调度PUSCH,只要满足预定义的其它要求和/或条件即可。
对于上述处理规则,当采用Type-1 codebook并配置Time domain bundling时,按照目前基于TDRA table中每行的Last SLIV的Occasion映射方案,会存在Occasion冲突的问题。例如,在图3中,TDRA table的行(Row)0和Row 1基于各自的Last SLIV都映射至同一个Occasion,并且按照上述处理规则,这两行可以同时被调度。当这两行实际被同时调度时,如果按照目前仅针对基于同一TDRA table行被调度的Valid PDSCH执行Logical AND operation,则需要基于这两行分别执行Logical AND operation得到的结果去设置映射的同一个Occasion对应的HARQ-ACK比特,从而导致冲突。
对于上述Occasion冲突问题,可以采用解决方式1-3中任意一种方式解决:
解决方式1:不期望第一时机对应的行集合中的行被调度的数量大于1。
一种实施方式中:UE不期望对于某一Occasion,超过一个TDRA table行实际被调度。可以理解为,基站通过调度的实现来避免上述Occasion冲突,UE只需要考虑针对基于同一TDRA table行被调度的Valid PDSCH执行Logical AND operation,并设置映射的Occasion对应的HARQ-ACK比特。
解决方式2:期望任意调度和/或配置的时域资源分配TDRA表的行的最后的时域资源分配记录对应的物理下行共享信道PDSCH为有效PDSCH。
一种实施方式中:UE期望任意一个调度和/或配置的TDRA table行的Last SLIV对应的PDSCH为Valid PDSCH,或者不与Semi-static UL symbol存在冲突。或者说,UE不期望任意一个调度和/或配置的TDRA table行的Last SLIV对应的PDSCH为Invalid PDSCH,或者与Semi-static UL symbol存在冲突。可以理解为,基站通过调度的实现来避免上述Occasion冲突。这里避免Occasion冲突的实现方式可以利用Rel-15或16中同一UE在同一Serving cell上接收的PDSCH不允许存在时域交叠的规定。
解决方式3:在第一时机对应的行集合中的行被调度的数量大于1的情 况下,对所述第一时机对应的行集合中被调度的行执行第一操作。
一种实施方式中:当某一Occasion对应的TDRA table行中,超过一行实际被调度时,针对这些行对应的所有Valid PDSCH统一执行Logical AND operation,并设置此Occasion对应的HARQ-ACK比特。此时,允许UE基于实际调度情况跨TDRA table行执行Time domain bundling。
需要说明的是,在HARQ-ACK码本被配置采用时域绑定进行传输的情况下,在一些配置下并无对应的解决方案,从而导致这些配置实际无法使用进而导致配置灵活性较差,另外在一些配置下HARQ-ACK反馈粒度欠优从而导致PDSCH重传性能较差。例如,对于Type-1 codebook,当配置采用Time domain bundling时,存在Occasion冲突问题,目前尚未有明确的解决方案。本申请实施例对于Type-1 codebook,引入Occasion冲突的解决方法,能够保证终端和网络侧设备两侧处理一致;在一些实施方式中,进一步允许针对同一Occasion实际调度的TDRA table行数超过1的情况,以提升调度的灵活性。
对于Type-2 codebook,当配置采用Time domain bundling时,当高层配置双码字传输时,相关技术中统一基于Configured SLIV为各个TB(例如第一个TB或第二个TB)划分Bundling group,从而影响HARQ-ACK反馈粒度,以及PDSCH重传性能。此外,对于Time domain bundling与Spatial bundling联合配置时的操作,目前尚未有明确的解决方案。本申请实施例对于Type-2 codebook,当配置采用Time domain bundling及允许双码字传输时,引入了新的Bundling group划分方式,以优化HARQ-ACK反馈粒度,从而提升PDSCH重传性能;并且确定了对于Time domain bundling与Spatial bundling联合配置时的操作,能够保证终端和网络侧设备两侧处理一致,并提升配置的灵活性。
需要说明的是,网络侧设备在终端的码本被配置采用时域绑定进行传输的情况下:在所述码本为第一码本的情况下,可以基于调度确定如下至少一项:在第一时机对应的行集合中被调度的行的数目不超过1,所述第一时机为所述码本对应的时机集合中的任意一个时机,所述第一时机对应的行集合包括在TDRA表中与所述第一时机对应的行;确定任意调度和/或配置的时域资源分配TDRA表的行的最后的时域资源分配记录对应的物理下行共享信道 PDSCH为有效PDSCH。在所述码本为第二码本的情况下,可以确定如下至少一项:在未配置应用空间绑定的情况下,对多个传输块TB统一划分绑定组,或者,对所述多个TB中每个TB分别划分绑定组;在配置应用空间绑定的情况下,对下行控制信息DCI调度的全部调度PDSCH或全部有效PDSCH划分绑定组。网络侧设备可以根据是否配置应用空间绑定确定所述码本中的HARQ-ACK比特与调度PDSCH的映射关系。通过确定对于Time domain bundling与Spatial bundling联合配置时的操作,能够保证终端和网络侧设备两侧处理一致,并提升配置的灵活性。
作为一种具体的实施例,时域绑定处理方法包括:
终端在被配置为采用时域绑定进行码本传输的情况下,确定目标操作;
其中,在所述码本为第一码本的情况下,所述目标操作包括如下至少一项:
不期望第一时机对应的行集合中被调度的行的数量大于1;
期望任意调度和/或配置的时域资源分配TDRA表的行的最后的时域资源分配记录对应的物理下行共享信道PDSCH为有效PDSCH;
在第一时机对应的行集合中被调度的行的数量大于1的情况下,对所述第一时机对应的行集合中被调度的行执行第一操作;
其中,所述第一时机为所述码本对应的时机集合中的任意一个时机,所述第一时机对应的行集合包括在TDRA表中与所述第一时机对应的行;
其中,在所述码本为第二码本的情况下,所述目标操作包括如下至少一项:
在未配置应用空间绑定的情况下,按照第一目标划分方式对多个传输块TB统一划分绑定组,或者,按照第二目标划分方式对所述多个TB中每个TB分别划分绑定组;
在配置应用空间绑定的情况下,对下行控制信息DCI调度的全部调度PDSCH或全部有效PDSCH划分绑定组。
可选地,所述第一目标划分方式或所述第二目标划分方式包括如下至少一项:
基于配置的时域资源分配记录对应的PDSCH划分绑定组的第一划分方 式;
基于有效时域资源分配记录对应的PDSCH划分绑定组的第二划分方式;
基于对应有效时域资源分配记录且开启参考TB的PDSCH划分绑定组的第三划分方式。
可选地,所述对所述多个TB中每个TB分别划分绑定组,包括:
在采用第一TB去使能方式的情况下:
若DCI调度的有效PDSCH的第一目标TB开启,则针对所述第一目标TB,按照所述第一划分方式或所述第二划分方式划分绑定组;
和/或
在采用第二TB去使能方式的情况下:
若DCI调度的至少一个有效PDSCH开启第一目标TB,则针对所述第一目标TB,按照所述第一划分方式、所述第二划分方式或所述第三划分方式划分绑定组;
其中,所述第一目标TB为所述多个TB中的任意一个TB。
本申请实施例中,终端在被配置为采用时域绑定进行码本传输的情况下,确定目标操作;其中,在所述码本为第一码本的情况下,所述目标操作包括如下至少一项:不期望第一时机对应的行集合中被调度的行的数量大于1;期望任意调度和/或配置的时域资源分配TDRA表的行的最后的时域资源分配记录对应的物理下行共享信道PDSCH为有效PDSCH;在第一时机对应的行集合中被调度的行的数量大于1的情况下,对所述第一时机对应的行集合中被调度的行执行第一操作;其中,所述第一时机为所述码本对应的时机集合中的任意一个时机,所述第一时机对应的行集合包括在TDRA表中与所述第一时机对应的行;其中,在所述码本为第二码本的情况下,所述目标操作包括如下至少一项:在未配置应用空间绑定的情况下,对多个传输块TB统一划分绑定组,或者,对所述多个TB中每个TB分别划分绑定组;在配置应用空间绑定的情况下,对下行控制信息DCI调度的全部调度PDSCH或全部有效PDSCH划分绑定组。这样,在码本被配置采用时域绑定进行传输的情况下,对于第一码本,通过确定目标操作能够解决时机冲突问题;在码本被配置采用时域绑定进行传输的情况下,对于第二码本,通过确定目标操作能 够确定对于时域绑定与空间绑定联合配置时的绑定组划分操作。从而能够允许更高的灵活性,以更匹配实际应用场景,能够提高配置灵活性,并且能够提升PDSCH重传性能。
可选地,所述对多个传输块TB统一划分绑定组,包括如下任意一项:
基于配置的时域资源分配记录或有效时域资源分配记录对应的PDSCH划分绑定组;
基于对应有效时域资源分配记录且开启参考TB的PDSCH划分绑定组。
其中,可以基于Configured SLIV和/或Valid SLIV对应的PDSCH划分Bundling group,和/或,可以基于对应Valid SLIV且开启参考TB的PDSCH划分Bundling group。
需要说明的是,对于第二码本,当配置采用Time domain bundling及允许双码字传输时,引入了新的Bundling group划分方式,从而能够提升HARQ-ACK反馈性能,并能够保证终端和网络侧设备两侧处理一致;能够解决对于Type-2 codebook,当配置采用Time domain bundling,且高层配置双码字传输时,相关技术中统一基于Configured SLIV为各个TB(例如第一个TB或第二个TB)划分Bundling group,从而影响HARQ-ACK反馈粒度,以及PDSCH重传性能的问题。
可选地,所述对所述多个TB中每个TB分别划分绑定组,包括:
在采用第一TB去使能方式的情况下:
若DCI调度的有效PDSCH的第一目标TB开启,则针对所述第一目标TB,基于配置的时域资源分配记录或有效时域资源分配记录对应的PDSCH划分绑定组;
和/或
在采用第二TB去使能方式的情况下:
若DCI调度的至少一个有效PDSCH开启第一目标TB,则针对所述第一目标TB,基于配置的时域资源分配记录或有效时域资源分配记录对应的PDSCH划分绑定组,或者,基于对应有效时域资源分配记录且开启所述第一目标TB的PDSCH划分绑定组;
其中,所述第一目标TB为所述多个TB中的任意一个TB。
另外,上述针对所述第一目标TB,基于配置的时域资源分配记录或有效时域资源分配记录对应的PDSCH划分的绑定组仅应用于所述第一目标TB。所述第一TB去使能方式可以为TB disabling方式1,第二TB去使能方式可以为TB disabling方式2。从而能够区分TB去使能方式对所述多个TB中每个TB分别划分绑定组。
需要说明的是,对于第二码本,当配置采用Time domain bundling及允许双码字传输时,基于TB去使能方式引入了新的Bundling group划分方式,从而能够提升HARQ-ACK反馈性能,并能够保证终端和网络侧设备两侧处理一致;能够解决对于Type-2 codebook,当配置采用Time domain bundling,且高层配置双码字传输时,相关技术中统一基于Configured SLIV为各个TB(例如第一个TB或第二个TB)划分Bundling group,从而影响HARQ-ACK反馈粒度,以及PDSCH重传性能的问题。
可选地,所述方法还包括:
在采用所述第一TB去使能方式的情况下:
若所述DCI调度的有效PDSCH的所述第一目标TB关闭,则确定所述DCI或下行链路分配索引(Downlink assignment index,DAI)的所述第一目标TB对应的混合自动重传请求确认HARQ-ACK比特为否定应答;
和/或
在采用所述第二TB去使能方式的情况下:
若所述DCI调度的全部有效PDSCH的所述第一目标TB均关闭,则确定所述DCI或DAI的所述第一目标TB对应的HARQ-ACK比特为否定应答。
其中,否定应答可以为NACK。
另外,在采用第一TB去使能方式的情况下,当DCI调度的各个Valid PDSCH的第一目标TB都关闭时,该DCI和/或DAI的第一目标TB对应的HARQ-ACK比特可直接设置为NACK。此时无需划分Bundling group。在采用所述第二TB去使能方式的情况下,当DCI调度的Valid PDSCH都关闭第一目标TB时,该DCI和/或DAI的第一目标TB对应的HARQ-ACK比特可直接设置为NACK。此时无需划分Bundling group。
需要说明的是,对于第二码本,当配置采用Time domain bundling及允许 双码字传输时,引入了新的Bundling group划分方式,且明确了各种情况下的HARQ-ACK比特设置,从而能够提升HARQ-ACK反馈性能,并能够保证终端和网络侧设备两侧处理一致。
可选地,所述确定目标操作之后,在所述码本为第二码本的情况下,所述方法还包括:
在绑定组为空,或者所述绑定组包括的PDSCH均为无效PDSCH的情况下,确定所述绑定组对应的HARQ-ACK比特为否定应答;
和/或
在所述绑定组包括至少一个有效PDSCH的情况下:
若所述绑定组包括的有效PDSCH均关闭了第二目标TB,则确定所述绑定组的所述第二目标TB的HARQ-ACK比特为否定应答;和/或
若所述绑定组包括的有效PDSCH中存在至少一个有效PDSCH开启了第二目标TB,则基于所述至少一个有效PDSCH已开启的所述第二目标TB的解码结果统一执行第一操作,并基于操作结果确定所述绑定组的所述第二目标TB的HARQ-ACK比特;或者,若所述绑定组包括的有效PDSCH中存在至少一个有效PDSCH开启了第二目标TB,则将关闭所述第二目标TB的有效PDSCH的所述第二目标TB的解码结果设为预设值,基于所述绑定组包括的有效PDSCH的所述第二目标TB的解码结果统一执行第一操作,并基于操作结果确定所述绑定组的所述第二目标TB的HARQ-ACK比特;
其中,所述第二目标TB为网络侧配置的TB中的任意一个。
另外,可以是在所述绑定组包括的有效PDSCH中存在至少一个有效PDSCH开启了第二目标TB,且所述绑定组包括的有效PDSCH中存在至少一个有效PDSCH关闭了第二目标TB的情况下,将关闭所述第二目标TB的有效PDSCH的所述第二目标TB的解码结果设为预设值。
需要说明的是,对于第二码本,当配置采用Time domain bundling及允许双码字传输时,引入了新的Bundling group划分方式,且明确了各种情况下的HARQ-ACK比特设置,从而能够提升HARQ-ACK反馈性能,并能够保证终端和网络侧设备两侧处理一致。
可选地,所述基于对应有效时域资源分配记录且开启所述第一目标TB 的PDSCH划分绑定组之后,所述方法还包括:
在绑定组不包括对应有效时域资源分配记录且开启了所述第一目标TB的PDSCH的情况下,确定所述绑定组对应的HARQ-ACK比特为否定应答;
和/或
在绑定组包括对应有效时域资源分配记录且开启了所述第一目标TB的至少一个PDSCH的情况下:
基于所述至少一个PDSCH的解码结果统一执行第一操作,并基于操作结果确定所述绑定组的所述第一目标TB的HARQ-ACK比特;或者,将所述绑定组中对应有效时域资源分配记录且关闭所述第一目标TB的PDSCH的所述第一目标TB的解码结果设为预设值,基于所述绑定组包括的有效PDSCH的所述第一目标TB的解码结果统一执行第一操作,并基于操作结果确定所述绑定组的所述第一目标TB的HARQ-ACK比特。
其中,上述操作结果可以为第一操作的操作结果,以第一操作为Logical AND operation为例,操作结果为执行Logical AND operation的结果。
作为一种具体的实施例,第二码本为Type-2 codebook,对于Type-2 codebook,当某一Serving cell配置双码字传输时的HARQ-ACK比特按如下设置:
当UE收到某个DCI调度了一个或至少两个Valid PDSCH时,对于Time domain bundling,基于是否配置Spatial Bundling,可以分为实例(Case)1和Case 2进行相应的处理:
Case1:当未配置应用Spatial bundling时,可以采用Bundling group划分方式1及Bundling group划分方式2中任意一种方式确定此DCI对应的Bundling group划分:
Bundling group划分方式1:可以针对两个TB统一划分Bundling group,具体地,可以采用Bundling group划分方式1-1及Bundling group划分方式1-2中任意一种方式:
Bundling group划分方式1-1:基于Configured SLIV和/或Valid SLIV对应的PDSCH划分Bundling group
其中,在进行Bundling group划分时,可以针对该DCI调度的所有 Scheduled PDSCH或所有Valid PDSCH进行划分。
对于某个Bundling group以及某个TB,可以按设置方式1及设置方式2中至少一项配置HARQ-ACK比特:
设置方式1:当Bundling group为空,或者仅包含Invalid PDSCH时:
该Bundling group该TB在HARQ-ACK码本中对应的HARQ-ACK比特均设置为NACK。可以理解的是,当基于Valid SLIV对应的PDSCH划分Bundling group时,某个Bundling group包含或仅包含Invalid PDSCH的情形不会出现,因为此时Invalid PDSCH在划分Bundling group时都被忽略,与Bundling group之间并无映射关系。
设置方式2:当Bundling group包含至少一个Valid PDSCH时:
当所有Valid PDSCH都关闭该TB时,该Bundling group该TB在HARQ-ACK码本中对应的HARQ-ACK比特可直接设置为NACK。
当至少一个Valid PDSCH开启该TB时,可以采用设置方式2-1及设置方式2-2中任意一种方式配置HARQ-ACK比特:
设置方式2-1:只基于开启该TB的各个Valid PDSCH的该TB的解码结果统一执行Logical AND operation,并基于操作结果设置该Bundling group该TB在HARQ-ACK码本中对应的HARQ-ACK比特。
设置方式2-2:基于各个Valid PDSCH的该TB的解码结果统一执行Logical AND operation,并基于操作结果设置该Bundling group该TB在HARQ-ACK码本中对应的HARQ-ACK比特,且在Logical AND operation前将关闭该TB的各个Valid PDSCH的该TB的解码结果假设为预定义值,例如ACK。
Bundling group划分方式1-2:基于对应Valid SLIV且开启参考TB的PDSCH划分Bundling group。
Bundling group划分方法2:针对每个TB分别划分Bundling group
针对每个TB可分别确定Bundling group的划分。当针对某个TB确定Bundling group的划分时,该TB在下述描述中被称为指定TB。
可以基于采用的TB disabling方式,分为Case 3-1及Case 3-2分别进行描述。
Case 3-1:当采用TB disabling方式1时:
该DCI调度的各个Valid PDSCH的指定TB要么都开启,要么都关闭。
当DCI调度的各个Valid PDSCH的指定TB都开启时,可基于Configured SLIV或Valid SLIV对应的PDSCH划分Bundling group,针对各个Bundling group及指定TB可以采用Bundling group划分方式1-1中的HARQ-ACK比特设置操作。可以理解的是,当基于Valid SLIV对应的PDSCH划分Bundling group时,某个Bundling group包含或仅包含Invalid PDSCH的情形不会出现,因为此时Invalid PDSCH在划分Bundling group时都被忽略,与Bundling group之间并无映射关系。
当DCI调度的各个Valid PDSCH的指定TB都关闭时,该DCI和/或DAI的指定TB对应的HARQ-ACK比特可直接设置为NACK。此时无需划分Bundling group。
Case 3-2:当采用TB disabling方式2时:
当DCI调度的Valid PDSCH都关闭指定TB时,该DCI和/或DAI的指定TB对应的HARQ-ACK比特可直接设置为NACK。此时无需划分Bundling group。
当DCI调度的Valid PDSCH中至少一个Valid PDSCH开启指定TB时,可以采用Bundling group划分方式2-1及Bundling group划分方式2-2中任意一种方式:
Bundling group划分方式2-1:基于Configured SLIV/Valid SLIV对应的PDSCH划分Bundling group
Bundling group划分方式2-2:基于对应Valid SLIV且开启指定TB的PDSCH划分Bundling group
对于上述Bundling group划分方式2-1,两个TB的Bundling group划分完全一致,针对各个Bundling group及指定TB可以采用Bundling group划分方式1-1中的HARQ-ACK比特设置操作。
对于上述Bundling group划分方式2-2,当其中至少一个Valid PDSCH开启指定TB时,Bundling group划分方式可以沿用现有操作,针对此DCI调度的所有对应Valid SLIV且开启指定TB的Scheduled PDSCH进行划分,即将 此DCI调度的所有对应Valid SLIV且开启指定TB的Scheduled PDSCH作为给定的PDSCH集合来划分Bundling group;针对各个Bundling group及指定TB可以采用Bundling group划分方式1-1中的HARQ-ACK比特设置操作。
需要说明的是,Bundling group划分方式的现有操作包括:假设给定的PDSCH集合中一共包含C个PDSCH(C>0),按预定义顺序进行排列(例如,按照各PDSCH对应的SLIV在所在TDRA table行中配置的先后顺序进行排列,或者,按照各PDSCH在时域的先后顺序进行排列),假设高层配置的绑定组数目为N,则UE可以根据如下公式确定此PDSCH集合划分的绑定组的数量M:M=min(N,C)。定义:M 1=mod(C,M),
Figure PCTCN2022144014-appb-000001
Figure PCTCN2022144014-appb-000002
如果M 1>0,则绑定组m,m=0,1,...,M 1-1,包括索引分别为m·K 1+k,k=0,1,...,K 1-1的PDSCH;绑定组m,m=M 1,M 1+1,...,M-1,包括索引分别为M 1·K 1+(m-M 1)·K 2+k,k=0,1,...,K 2-1的PDSCH。
一种实施方式中,基于对应Valid SLIV且开启指定TB的PDSCH划分绑定组之后:
在绑定组不包括对应有效SLIV且开启指定TB的PDSCH的情况下,设置所述绑定组对应的HARQ-ACK比特为否定应答;
和/或
在绑定组包括对应有效SLIV且开启指定TB的至少一个PDSCH的情况下:
基于所述至少一个PDSCH的解码结果统一执行Logical AND operation,并基于操作结果设置所述绑定组的所述指定TB的HARQ-ACK比特;或者,将所述绑定组中对应有效SLIV且关闭所述指定TB的PDSCH的所述指定TB的解码结果设为预设值,基于所述绑定组包括的有效PDSCH的所述指定TB的解码结果统一执行Logical AND operation,并基于操作结果设置所述绑定组的所述指定TB的HARQ-ACK比特。
Case 2:当配置应用Spatial bundling时:
可以针对此DCI调度的所有Scheduled PDSCH或所有Valid PDSCH划分 Bundling group,Bundling group划分方式可以沿用现有操作,即将此DCI调度的所有Scheduled PDSCH或所有Valid PDSCH作为给定的PDSCH集合来划分Bundling group。
对于某个Bundling group,可以按设置方式3及设置方式4中至少一项配置HARQ-ACK比特。
设置方式3:当Bundling group为空,或者仅包含Invalid PDSCH时:
此Bundling group在HARQ-ACK码本中对应的HARQ-ACK比特都设置为NACK。
可以理解的是,当基于Valid PDSCH划分Bundling group时,某个Bundling group包含或仅包含Invalid PDSCH的情形不会出现,因为此时Invalid PDSCH在划分Bundling group时都被忽略,与Bundling group之间并无映射关系。
设置方式4:当Bundling group包含至少一个Valid PDSCH时,可以采用设置方式4-1及设置方式4-2中任意一种方式配置HARQ-ACK比特。
设置方式4-1:基于各个Valid PDSCH已开启的TB(一个TB或两个TB)的解码结果统一执行Logical AND operation,并基于操作结果设置此Bundling group在HARQ-ACK码本中对应的HARQ-ACK比特。
设置方式4-2:仍基于各个Valid PDSCH配置的TB(两个TB)的解码结果统一执行Logical AND operation,并基于操作结果设置此Bundling group在HARQ-ACK码本中对应的HARQ-ACK比特;且在Logical AND operation操作前将各个Valid PDSCH已关闭的TB的解码结果假设为预定义值,例如ACK。
可选地,所述基于对应有效时域资源分配记录且开启参考TB的PDSCH划分绑定组之前,所述方法还包括:
确定参考TB;
其中,所述参考TB为如下任意一项:
第一TB,第二TB,映射至码字CW0或码字CW1的TB,开启的第一个TB,第三目标TB;
所述第三目标TB为开启所述第三目标TB的有效PDSCH数量最多的TB。
其中,CW为码字(Code Word)。第一TB可以为TB1,第二TB可以为TB2。参考TB可以基于采用的TB disabling方式,分为Case 4-1及Case 4-2分别确定:
Case 4-1:当采用TB disabling方式1时,可以采用参考TB确定方式1-1及参考TB确定方式1-2中任意一种方式:
参考TB确定方式1-1:可以取TB1或者TB2;或者取映射至CW0或CW1的TB;或者,可以由高层参数配置或者由协议规定。
参考TB确定方式1-2:取开启的第一个TB。
Case4-2:当采用TB disabling方式2时,可以采用参考TB确定方式2-1及参考TB确定方式2-2中任意一种方式:
参考TB确定方式2-1:可以取TB1或者TB2;或者取映射至CW0或CW1的TB;或者,可以由高层参数配置或者由协议规定。
参考TB确定方式2-2:可以对各TB分别确定开启该TB的Valid PDSCH数目,取Valid PDSCH数目较多的TB;当存在两个TB的数目一致时可以取约定的TB,例如,TB1。
可以理解的是:对于上述参考TB确定方式1-1及参考TB确定方式2-1中取映射至CW0的TB,或者,上述参考TB确定方式1-2,其实际操作与Bundling group划分方式1-1中基于Valid SLIV对应的PDSCH划分Bundling group时完全相同,因为任一Valid PDSCH必然至少开启了一个TB,而且映射至CW0的TB必然开启,其它选项都可能导致Bundling group的划分忽略了未被选作参考TB的TB的调度情况,从而导致HARQ-ACK信息丢失;该处列出这些选项能够保证完整性。
可选地,在所述码本为第一码本,且在服务小区未配置允许双码字传输的情况下,所述方法还包括如下至少一项:
若所述第一时机关联的有效PDSCH由单个DCI调度,则基于所述第一时机关联的有效PDSCH的解码结果统一执行第一操作,并基于操作结果确定所述第一时机对应的HARQ-ACK比特;
若所述第一时机关联的有效PDSCH由至少两个DCI调度,则基于所述至少两个DCI中任意一个DCI调度的有效PDSCH的解码结果统一执行第一 操作,并基于操作结果确定所述第一时机对应的HARQ-ACK比特。
一种实施方式中,第一码本为Type-1 codebook,对于Type-1 codebook,HARQ-ACK比特可以按如下设置:
对于某个Serving cell的某个Occasion,假设UE收到了至少一个关联的Valid PDSCH。这些关联的Valid PDSCH可能由单个DCI调度,也可能由多于一个DCI调度,每个DCI仅调度和/或指示TDRA table中的一行。
当针对此Serving cell未配置允许双码字传输时,可以按设置方式5及设置方式6中至少一项设置HARQ-ACK比特:
设置方式5:当Occasion关联的Valid PDSCH由单个DCI调度时,基于各个Valid PDSCH的解码结果统一执行Logical AND operation,并设置此Occasion对应的HARQ-ACK比特。示例地,可以基于各个Valid PDSCH的第一个TB的解码结果统一执行Logical AND operation,并设置此Occasion对应的HARQ-ACK比特。
设置方式6:当Occasion关联的Valid PDSCH由至少两个DCI调度时,基于由该至少两个DCI中任意一个DCI调度的各个Valid PDSCH的解码结果统一执行Logical AND operation,并设置此Occasion对应的HARQ-ACK比特。示例地,可以基于由该至少两个DCI中任意一个DCI调度的各个Valid PDSCH的第一个TB的解码结果统一执行Logical AND operation,并设置此Occasion对应的HARQ-ACK比特。
该实施方式中,确定在所述码本为第一码本,且在服务小区未配置允许双码字传输的情况下的HARQ-ACK比特设置,能够保证终端和网络侧设备两侧处理一致。
可选地,在所述码本为第一码本,且在服务小区配置允许双码字传输的情况下,所述方法还包括如下至少一项:
若未配置应用空间绑定,则基于TB去使能方式确定HARQ-ACK比特;
若配置应用空间绑定,则基于与所述第一时机关联的有效PDSCH对应的DCI确定HARQ-ACK比特。
可选地,在采用第一TB去使能方式,且在所述第一时机关联的有效PDSCH由至少两个DCI调度的情况下,所述基于TB去使能方式确定 HARQ-ACK比特,包括如下至少一项:
若所述至少两个DCI均开启了第四目标TB,则基于目标DCI调度的有效PDSCH的所述第四目标TB的解码结果统一执行第一操作,并基于操作结果确定所述第四目标TB对应的HARQ-ACK比特,所述目标DCI为所述至少两个DCI中的任意一个DCI;
若所述至少两个DCI均关闭所述第四目标TB,则确定所述第一时机的所述第四目标TB对应的HARQ-ACK比特为否定应答;
若所述至少两个DCI中存在至少一个DCI开启所述第四目标TB,且存在至少一个DCI关闭所述第四目标TB,则基于开启所述第四目标TB的DCI中任意一个DCI调度的有效PDSCH的所述第四目标TB的解码结果统一执行第一操作,并基于操作结果确定所述第一时机的所述第四目标TB对应的HARQ-ACK比特;或者,若所述至少两个DCI中存在至少一个DCI开启所述第四目标TB,且存在至少一个DCI关闭所述第四目标TB,则将由关闭所述第四目标TB的DCI中任意一个DCI调度的有效PDSCH的所述第四目标TB的解码结果设为预设值,基于所述至少两个DCI中任意一个DCI调度的有效PDSCH的所述第四目标TB的解码结果统一执行第一操作,并基于操作结果确定所述第一时机的所述第四目标TB对应的HARQ-ACK比特;
其中,所述第四目标TB为网络侧配置的TB中的任意一个。
另外,可以是所述至少两个DCI中存在至少一个DCI开启所述第四目标TB且所述至少两个DCI中存在至少一个DCI关闭所述第四目标TB的情况下,将由关闭所述第四目标TB的DCI中任意一个DCI调度的有效PDSCH的所述第四目标TB的解码结果设为预设值。
另外,网络侧设备为服务小区配置允许双码字传输时,网络侧设备为终端配置了两个TB,即为终端的该服务小区配置了两个TB,此时针对终端的PDSCH调度DCI中可针对第一个TB(或TB1)和第二个TB(或TB2)分别指示对应的调制和编码方案(Modulation and coding scheme,MCS)、新数据标识(New data indicator,NDI)和冗余版本(Redundancy version,RV)等信息,并且单个PDSCH传输最多可以承载两个TB。相应地,在反馈HARQ-ACK信息时,如果未配置空间绑定,可区分第一个TB和第二个TB 分别反馈对应的HARQ-ACK,例如,当未配置时域绑定时,可针对某个Valid的第一个TB和第二个TB分别反馈对应的HARQ-ACK,当配置了时域绑定时,对于第二码本,如果针对两个TB统一划分绑定组,则可针对某个划分的绑定组的第一个TB和第二个TB分别反馈对应的HARQ-ACK,如果针对每个TB分别划分绑定组,则某个划分的绑定组只对应于第一个TB和第二个TB中的一个,针对此绑定组对应的TB反馈对应的HARQ-ACK即可。
可选地,在采用第二TB去使能方式的情况下,所述基于TB去使能方式确定HARQ-ACK比特,包括如下至少一项:
若所述第一时机关联的有效PDSCH的第五目标TB均关闭,则确定所述第一时机的所述第五目标TB对应的HARQ-ACK比特为否定应答;
若所述第一时机关联的有效PDSCH中存在至少一个PDSCH开启所述第五目标TB,则基于开启所述第五目标TB的有效PDSCH的所述第五目标TB的解码结果统一执行第一操作,并基于操作结果确定所述第一时机的所述第五目标TB对应的HARQ-ACK比特;或者,若所述第一时机关联的有效PDSCH中存在至少一个PDSCH开启所述第五目标TB,则将关闭所述第五目标TB的有效PDSCH的所述第五目标TB的解码结果设为预设值,基于所述第一时机关联的有效PDSCH的所述第五目标TB的解码结果统一执行第一操作,并基于操作结果确定所述第一时机的所述第五目标TB对应的HARQ-ACK比特;
其中,所述第五目标TB为网络侧配置的TB中的任意一个。
另外,可以是在所述第一时机关联的有效PDSCH中存在至少一个PDSCH开启所述第五目标TB,且所述第一时机关联的有效PDSCH中存在至少一个PDSCH关闭所述第五目标TB的情况下,将关闭所述第五目标TB的有效PDSCH的所述第五目标TB的解码结果设为预设值。
可选地,所述基于与所述第一时机关联的有效PDSCH对应的DCI确定HARQ-ACK比特,包括:
在调度所述第一时机关联的有效PDSCH的DCI的数量为一个的情况下:
基于所述DCI调度的有效PDSCH所有开启的TB的解码结果统一执行第一操作,并基于操作结果确定所述第一时机对应的HARQ-ACK比特;或 者,将所述有效PDSCH已关闭的TB的解码结果设为预设值,基于所述DCI调度的有效PDSCH所有配置的TB的解码结果统一执行第一操作,并基于操作结果确定所述第一时机对应的HARQ-ACK比特;
和/或
在调度所述第一时机关联的有效PDSCH的DCI的数量为至少两个的情况下:
基于目标DCI调度的有效PDSCH所有开启的TB的解码结果统一执行第一操作,并基于操作结果确定所述第一时机对应的HARQ-ACK比特;或者,将所述有效PDSCH已关闭的TB的解码结果设为预设值,基于所述目标DCI调度的有效PDSCH所有配置的TB的解码结果统一执行第一操作,并基于操作结果确定所述第一时机对应的HARQ-ACK比特,所述目标DCI为所述至少两个DCI中的任意一个。
其中,在网络侧配置了两个TB时,每个有效PDSCH也配置了两个TB,即每个有效PDSCH最多可以承载两个TB,可基于对应的调度DCI中的指示信息以及采用的TB去使能方式确定某个有效PDSCH实际承载的TB数目,为1个或2个。
作为一种具体的实施例,第一码本为Type-1 codebook,对于Type-1 codebook,HARQ-ACK比特可以按如下设置:
对于某个Serving cell的某个Occasion,假设UE收到了至少一个关联的Valid PDSCH。这些关联的Valid PDSCH可能由单个DCI调度,也可能由多于一个DCI调度,每个DCI仅调度和/或指示TDRA table中的一行。
当针对此Serving cell配置允许双码字传输时,基于是否配置空间绑定(Spatial Bundling),可以分为Case 5和Case 6两种情况分别描述。
Case 5:当未配置应用Spatial bundling时:
对于某个TB(为方便描述,称之为指定TB),例如,该TB可以为第一个TB或第二个TB,可以基于采用的TB disabling方式,分为Case 5-1及Case 5-2两种情况。
Case 5-1:当采用TB disabling方式1时:
可以进一步分为Case 5-1-1及Case 5-1-2进行相应的处理:
Case 5-1-1:当Occasion关联的Valid PDSCH由单个DCI调度时,该Occasion关联的Valid PDSCH的指定TB均开启,或者,均关闭。
当均开启时,可以基于各个Valid PDSCH的指定TB的解码结果统一执行Logical AND operation,并设置此Occasion指定TB对应的HARQ-ACK比特。
当均关闭时,该Occasion的指定TB对应的HARQ-ACK比特可直接设置为NACK。
Case 5-1-2:当Occasion关联的Valid PDSCH由至少两个DCI调度时,各DCI调度的Valid PDSCH的指定TB均开启,或者均关闭,但不同的DCI针对指定TB可独立设置开启或关闭状态。
当所述至少两个DCI均开启指定TB时,基于由所述至少两个DCI中任意一个DCI调度的各个Valid PDSCH的指定TB的解码结果统一执行Logical AND operation,并设置此Occasion指定TB对应的HARQ-ACK比特。
当所述至少两个DCI均关闭指定TB时,此Occasion的指定TB对应的HARQ-ACK比特可直接设置为NACK。
当所述至少两个DCI中存在至少一个DCI开启指定TB,以及存在至少一个DCI关闭指定TB时,可以按设置方式7及设置方式8中任意一种方式设置HARQ-ACK比特:
设置方式7:只基于开启指定TB的至少一个DCI中任意一个DCI调度的各个Valid PDSCH(至少涉及一个Valid PDSCH)的指定TB的解码结果统一执行Logical AND operation,并设置此Occasion指定TB对应的HARQ-ACK比特。
设置方式8:基于由所述至少两个DCI中任意一个DCI调度的各个Valid PDSCH的指定TB的解码结果统一执行Logical AND operation,并设置此Occasion指定TB对应的HARQ-ACK比特;且在执行Logical AND operation之前,将由关闭指定TB的至少一个DCI中任意一个DCI调度的各个Valid PDSCH的指定TB的解码结果假设为预定义值,例如ACK。
Case 5-2:当采用TB disabling方式2时:
对于关联的Valid PDSCH集合,该Valid PDSCH集合中的Valid PDSCH 可能由单个DCI调度,也可能由至少两个DCI调度,各个Valid PDSCH的指定TB均开启,或者均关闭,不同Valid PDSCH的指定TB的开启或关闭状态可独立设置。
当该Valid PDSCH集合中的Valid PDSCH均关闭指定TB时,此Occasion的指定TB对应的HARQ-ACK比特可直接设置为NACK。
当该Valid PDSCH集合中存在至少一个Valid PDSCH开启指定TB时,可以按设置方式9及设置方式10中任意一项设置HARQ-ACK比特:
设置方式9:只基于开启指定TB的各个Valid PDSCH的指定TB的解码结果统一执行Logical AND operation,并设置此Occasion指定TB对应的HARQ-ACK比特。
设置方式10:基于各个Valid PDSCH的指定TB的解码结果统一执行Logical AND operation,并设置此Occasion指定TB对应的HARQ-ACK比特;且在执行Logical AND operation之前,将关闭指定TB的各个Valid PDSCH的指定TB的解码结果假设为预定义值,例如ACK。
Case 6:当配置应用Spatial bundling时:
可以分为Case6-1及Case 6-2进行相应的处理:
Case 6-1:当Occasion关联的Valid PDSCH由单个DCI调度时,可以按设置方式11及设置方式12中任意一项设置HARQ-ACK比特:
设置方式11:基于该DCI调度的各个Valid PDSCH开启的TB的解码结果统一执行Logical AND operation,并设置此Occasion对应的HARQ-ACK比特。示例地,可以基于该DCI调度的各个Valid PDSCH开启的一个或两个TB的解码结果统一执行Logical AND operation,并设置此Occasion对应的HARQ-ACK比特。
设置方式12:基于该DCI调度的各个Valid PDSCH配置的TB的解码结果统一执行Logical AND operation,并设置此Occasion对应的HARQ-ACK比特;且在执行Logical AND operation之前,将各个Valid PDSCH已关闭的TB的解码结果假设为预定义值,例如ACK。示例地,可以将各个Valid PDSCH已关闭的TB的解码结果假设为ACK,基于该DCI调度的各个Valid PDSCH配置的两个TB的解码结果统一执行Logical AND operation,并设置此 Occasion对应的HARQ-ACK比特。
Case 6-2:当Occasion关联的Valid PDSCH由至少两个DCI调度时,可以按设置方式13及设置方式14中任意一种方式设置HARQ-ACK比特:
设置方式13:基于由所述至少两个DCI中任意一个DCI调度的各个Valid PDSCH开启的TB的解码结果统一执行Logical AND operation,并设置此Occasion对应的HARQ-ACK比特。示例地,可以基于由所述至少两个DCI中任意一个DCI调度的各个Valid PDSCH开启的一个或两个TB的解码结果统一执行Logical AND operation,并设置此Occasion对应的HARQ-ACK比特。
设置方式14:基于由所述至少两个DCI中任意一个DCI调度的各个Valid PDSCH配置的TB的解码结果统一执行Logical AND operation,并设置此Occasion对应的HARQ-ACK比特;且在执行Logical AND operation之前,将各个Valid PDSCH已关闭的TB的解码结果假设为预定义值,例如ACK。示例地,可以将各个Valid PDSCH已关闭的TB的解码结果假设为ACK,基于由所述至少两个DCI中任意一个DCI调度的各个Valid PDSCH配置的两个TB的解码结果统一执行Logical AND operation,并设置此Occasion对应的HARQ-ACK比特。
需要说明的是,对于某个Occasion,当UE未收到任何关联的Valid PDSCH时,此Occasion在Type-1 codebook中对应的HARQ-ACK比特可以直接设置为NACK。示例地,当未配置应用Spatial bundling时,将此Occasion与任意一个TB对应的HARQ-ACK比特设置为NACK;当配置应用Spatial bundling时,将此Occasion对应的HARQ-ACK比特设置为NACK,此时HARQ-ACK比特不区分TB。
该实施方式中,确定在所述码本为第一码本,且在服务小区配置允许双码字传输的情况下的HARQ-ACK比特设置,能够保证终端和网络侧设备两侧处理一致。
参见图4,图4是本申请实施例提供的一种时域绑定处理方法的流程图之二,如图4所示,时域绑定处理方法包括以下步骤:
步骤201、网络侧设备在终端的码本被配置采用时域绑定进行传输的情况下,确定目标操作;
其中,在所述码本为第一码本的情况下,所述目标操作包括如下至少一项:
在第一时机对应的行集合中被调度的行的数目不超过1,所述第一时机为所述码本对应的时机集合中的任意一个时机,所述第一时机对应的行集合包括在TDRA表中与所述第一时机对应的行;
确定任意调度和/或配置的时域资源分配TDRA表的行的最后的时域资源分配记录对应的物理下行共享信道PDSCH为有效PDSCH;
其中,在所述码本为第二码本的情况下,所述目标操作包括如下至少一项:
在未配置应用空间绑定的情况下,对多个传输块TB统一划分绑定组,或者,对所述多个TB中每个TB分别划分绑定组;
在配置应用空间绑定的情况下,对下行控制信息DCI调度的全部调度PDSCH或全部有效PDSCH划分绑定组。
可选地,所述对多个传输块TB统一划分绑定组,包括如下任意一项:
基于配置的时域资源分配记录或有效时域资源分配记录对应的PDSCH划分绑定组;
基于对应有效时域资源分配记录且开启参考TB的PDSCH划分绑定组。
可选地,所述对所述多个TB中每个TB分别划分绑定组,包括:
在采用第一TB去使能方式的情况下:
若DCI调度的有效PDSCH的第一目标TB开启,则针对所述第一目标TB,基于配置的时域资源分配记录或有效时域资源分配记录对应的PDSCH划分绑定组;
和/或
在采用第二TB去使能方式的情况下:
若DCI调度的至少一个有效PDSCH开启第一目标TB,则针对所述第一目标TB,基于配置的时域资源分配记录或有效时域资源分配记录对应的PDSCH划分绑定组,或者,基于对应有效时域资源分配记录且开启所述第一目标TB的PDSCH划分绑定组;
其中,所述第一目标TB为所述多个TB中的任意一个TB。
可选地,所述确定目标操作之后,所述方法还包括:
网络侧设备根据是否配置应用空间绑定确定所述码本中的HARQ-ACK比特与调度PDSCH的映射关系。
需要说明的是,基于HARQ-ACK比特与调度PDSCH的映射关系,网络侧设备可以确定HARQ-ACK码本的长度(即包含的HARQ-ACK比特数),并基于此长度接收终端发送的HARQ-ACK码本,之后基于HARQ-ACK码本中各HARQ-ACK比特的取值,获取各个调度的PDSCH对应的HARQ-ACK信息,并基于这些HARQ-ACK信息根据需要执行进一步的重传调度。
需要说明的是,本实施例作为与图2所示的实施例中对应的网络侧设备的实施方式,其具体的实施方式可以参见图2所示的实施例的相关说明,以为避免重复说明,本实施例不再赘述。本实施例中,在码本被配置采用时域绑定进行传输的情况下,对于第一码本,通过确定目标操作能够解决时机冲突问题;在码本被配置采用时域绑定进行传输的情况下,对于第二码本,通过确定目标操作能够确定对于时域绑定与空间绑定联合配置时的绑定组划分操作。从而能够允许更高的灵活性,以更匹配实际应用场景,能够提高配置灵活性,并且能够提升PDSCH重传性能。
本申请实施例提供的时域绑定处理方法,执行主体可以为时域绑定处理装置。本申请实施例中以时域绑定处理装置执行时域绑定处理的方法为例,说明本申请实施例提供的时域绑定处理的装置。
请参见图5,图5是本申请实施例提供的一种时域绑定处理装置的结构图之一,如图5所示,时域绑定处理装置300包括:
确定模块301,用于在被配置为采用时域绑定进行码本传输的情况下,确定目标操作;
其中,在所述码本为第一码本的情况下,所述目标操作包括如下至少一项:
不期望第一时机对应的行集合中被调度的行的数量大于1;
期望任意调度和/或配置的时域资源分配TDRA表的行的最后的时域资源分配记录对应的物理下行共享信道PDSCH为有效PDSCH;
在第一时机对应的行集合中被调度的行的数量大于1的情况下,对所述 第一时机对应的行集合中被调度的行执行第一操作;
其中,所述第一时机为所述码本对应的时机集合中的任意一个时机,所述第一时机对应的行集合包括在TDRA表中与所述第一时机对应的行;
其中,在所述码本为第二码本的情况下,所述目标操作包括如下至少一项:
在未配置应用空间绑定的情况下,对多个传输块TB统一划分绑定组,或者,对所述多个TB中每个TB分别划分绑定组;
在配置应用空间绑定的情况下,对下行控制信息DCI调度的全部调度PDSCH或全部有效PDSCH划分绑定组。
可选地,在所述码本为第二码本且在未配置应用空间绑定的情况下,所述目标操作包括如下任意一项:
基于配置的时域资源分配记录或有效时域资源分配记录对应的PDSCH划分绑定组;
基于对应有效时域资源分配记录且开启参考TB的PDSCH划分绑定组。
可选地,在所述码本为第二码本且在未配置应用空间绑定的情况下,所述目标操作包括:
在采用第一TB去使能方式的情况下:
若DCI调度的有效PDSCH的第一目标TB开启,则针对所述第一目标TB,基于配置的时域资源分配记录或有效时域资源分配记录对应的PDSCH划分绑定组;
和/或
在采用第二TB去使能方式的情况下:
若DCI调度的至少一个有效PDSCH开启第一目标TB,则针对所述第一目标TB,基于配置的时域资源分配记录或有效时域资源分配记录对应的PDSCH划分绑定组,或者,基于对应有效时域资源分配记录且开启所述第一目标TB的PDSCH划分绑定组;
其中,所述第一目标TB为所述多个TB中的任意一个TB。
可选地,所述装置还包括:
第一设置模块,用于:
在采用所述第一TB去使能方式的情况下:
若所述DCI调度的有效PDSCH的所述第一目标TB关闭,则确定所述DCI或下行链路分配索引DAI的所述第一目标TB对应的混合自动重传请求确认HARQ-ACK比特为否定应答;
和/或
在采用所述第二TB去使能方式的情况下:
若所述DCI调度的全部有效PDSCH的所述第一目标TB均关闭,则确定所述DCI或DAI的所述第一目标TB对应的HARQ-ACK比特为否定应答。
可选地,在所述码本为第二码本的情况下,所述装置还包括:
第二设置模块,用于:
在绑定组为空,或者所述绑定组包括的PDSCH均为无效PDSCH的情况下,确定所述绑定组对应的HARQ-ACK比特为否定应答;
和/或
在所述绑定组包括至少一个有效PDSCH的情况下:
若所述绑定组包括的有效PDSCH均关闭了第二目标TB,则确定所述绑定组的所述第二目标TB的HARQ-ACK比特为否定应答;和/或
若所述绑定组包括的有效PDSCH中存在至少一个有效PDSCH开启了第二目标TB,则基于所述至少一个有效PDSCH已开启的所述第二目标TB的解码结果统一执行第一操作,并基于操作结果确定所述绑定组的所述第二目标TB的HARQ-ACK比特;或者,若所述绑定组包括的有效PDSCH中存在至少一个有效PDSCH开启了第二目标TB,则将关闭所述第二目标TB的有效PDSCH的所述第二目标TB的解码结果设为预设值,基于所述绑定组包括的有效PDSCH的所述第二目标TB的解码结果统一执行第一操作,并基于操作结果确定所述绑定组的所述第二目标TB的HARQ-ACK比特;
其中,所述第二目标TB为网络侧配置的TB中的任意一个。
可选地,所述装置还包括:
第三设置模块,用于:
在绑定组不包括对应有效时域资源分配记录且开启了所述第一目标TB的PDSCH的情况下,确定所述绑定组对应的HARQ-ACK比特为否定应答;
和/或
在绑定组包括对应有效时域资源分配记录且开启了所述第一目标TB的至少一个PDSCH的情况下:
基于所述至少一个PDSCH的解码结果统一执行第一操作,并基于操作结果确定所述绑定组的所述第一目标TB的HARQ-ACK比特;或者,将所述绑定组中对应有效时域资源分配记录且关闭所述第一目标TB的PDSCH的所述第一目标TB的解码结果设为预设值,基于所述绑定组包括的有效PDSCH的所述第一目标TB的解码结果统一执行第一操作,并基于操作结果确定所述绑定组的所述第一目标TB的HARQ-ACK比特。
可选地,所述目标操作还包括:
确定参考TB;
其中,所述参考TB为如下任意一项:
第一TB,第二TB,映射至码字CW0或码字CW1的TB,开启的第一个TB,第三目标TB;
所述第三目标TB为开启所述第三目标TB的有效PDSCH数量最多的TB。
可选地,所述装置还包括:
第四设置模块,在所述码本为第一码本,且在服务小区未配置允许双码字传输的情况下,用于如下至少一项:
若所述第一时机关联的有效PDSCH由单个DCI调度,则基于所述第一时机关联的有效PDSCH的解码结果统一执行第一操作,并基于操作结果确定所述第一时机对应的HARQ-ACK比特;
若所述第一时机关联的有效PDSCH由至少两个DCI调度,则基于所述至少两个DCI中任意一个DCI调度的有效PDSCH的解码结果统一执行第一操作,并基于操作结果确定所述第一时机对应的HARQ-ACK比特。
可选地,所述装置还包括:
第五设置模块,在所述码本为第一码本,且在服务小区配置允许双码字传输的情况下,用于如下至少一项:
若未配置应用空间绑定,则基于TB去使能方式确定HARQ-ACK比特;
若配置应用空间绑定,则基于与所述第一时机关联的有效PDSCH对应 的DCI确定HARQ-ACK比特。
可选地,在采用第一TB去使能方式,且在所述第一时机关联的有效PDSCH由至少两个DCI调度的情况下,所述第五设置模块用于如下至少一项:
若所述至少两个DCI均开启了第四目标TB,则基于目标DCI调度的有效PDSCH的所述第四目标TB的解码结果统一执行第一操作,并基于操作结果确定所述第四目标TB对应的HARQ-ACK比特,所述目标DCI为所述至少两个DCI中的任意一个DCI;
若所述至少两个DCI均关闭所述第四目标TB,则确定所述第一时机的所述第四目标TB对应的HARQ-ACK比特为否定应答;
若所述至少两个DCI中存在至少一个DCI开启所述第四目标TB,且存在至少一个DCI关闭所述第四目标TB,则基于开启所述第四目标TB的DCI中任意一个DCI调度的有效PDSCH的所述第四目标TB的解码结果统一执行第一操作,并基于操作结果确定所述第一时机的所述第四目标TB对应的HARQ-ACK比特;或者,若所述至少两个DCI中存在至少一个DCI开启所述第四目标TB,且存在至少一个DCI关闭所述第四目标TB,则将由关闭所述第四目标TB的DCI中任意一个DCI调度的有效PDSCH的所述第四目标TB的解码结果设为预设值,基于所述至少两个DCI中任意一个DCI调度的有效PDSCH的所述第四目标TB的解码结果统一执行第一操作,并基于操作结果确定所述第一时机的所述第四目标TB对应的HARQ-ACK比特;
其中,所述第四目标TB为网络侧配置的TB中的任意一个。
可选地,在采用第二TB去使能方式的情况下,所述第五设置模块用于如下至少一项:
若所述第一时机关联的有效PDSCH的第五目标TB均关闭,则确定所述第一时机的所述第五目标TB对应的HARQ-ACK比特为否定应答;
若所述第一时机关联的有效PDSCH中存在至少一个PDSCH开启所述第五目标TB,则基于开启所述第五目标TB的有效PDSCH的所述第五目标TB的解码结果统一执行第一操作,并基于操作结果确定所述第一时机的所述第五目标TB对应的HARQ-ACK比特;或者,若所述第一时机关联的有效PDSCH中存在至少一个PDSCH开启所述第五目标TB,则将关闭所述第五 目标TB的有效PDSCH的所述第五目标TB的解码结果设为预设值,基于所述第一时机关联的有效PDSCH的所述第五目标TB的解码结果统一执行第一操作,并基于操作结果确定所述第一时机的所述第五目标TB对应的HARQ-ACK比特;
其中,所述第五目标TB为网络侧配置的TB中的任意一个。
可选地,在所述码本为第一码本,且在服务小区配置允许双码字传输的情况下,若配置应用空间绑定,所述第五设置模块用于:
在调度所述第一时机关联的有效PDSCH的DCI的数量为一个的情况下:
基于所述DCI调度的有效PDSCH所有开启的TB的解码结果统一执行第一操作,并基于操作结果确定所述第一时机对应的HARQ-ACK比特;或者,将所述有效PDSCH已关闭的TB的解码结果设为预设值,基于所述DCI调度的有效PDSCH所有配置的TB的解码结果统一执行第一操作,并基于操作结果确定所述第一时机对应的HARQ-ACK比特;
和/或
在调度所述第一时机关联的有效PDSCH的DCI的数量为至少两个的情况下:
基于目标DCI调度的有效PDSCH所有开启的TB的解码结果统一执行第一操作,并基于操作结果确定所述第一时机对应的HARQ-ACK比特;或者,将所述有效PDSCH已关闭的TB的解码结果设为预设值,基于所述目标DCI调度的有效PDSCH所有配置的TB的解码结果统一执行第一操作,并基于操作结果确定所述第一时机对应的HARQ-ACK比特,所述目标DCI为所述至少两个DCI中的任意一个。
本申请实施例中的时域绑定处理装置,在码本被配置采用时域绑定进行传输的情况下,对于第一码本,通过确定目标操作能够解决时机冲突问题;在码本被配置采用时域绑定进行传输的情况下,对于第二码本,通过确定目标操作能够确定对于时域绑定与空间绑定联合配置时的绑定组划分操作。从而能够允许更高的灵活性,以更匹配实际应用场景,能够提高配置灵活性,并且能够提升PDSCH重传性能。
请参见图6,图6是本申请实施例提供的一种时域绑定处理装置的结构 图之一,如图6所示,时域绑定处理装置400包括:
第一确定模块401,用于在终端的码本被配置采用时域绑定进行传输的情况下,确定目标操作;
其中,在所述码本为第一码本的情况下,所述目标操作包括如下至少一项:
在第一时机对应的行集合中被调度的行的数目不超过1,所述第一时机为所述码本对应的时机集合中的任意一个时机,所述第一时机对应的行集合包括在TDRA表中与所述第一时机对应的行;
确定任意调度和/或配置的时域资源分配TDRA表的行的最后的时域资源分配记录对应的物理下行共享信道PDSCH为有效PDSCH;
其中,在所述码本为第二码本的情况下,所述目标操作包括如下至少一项:
在未配置应用空间绑定的情况下,对多个传输块TB统一划分绑定组,或者,对所述多个TB中每个TB分别划分绑定组;
在配置应用空间绑定的情况下,对下行控制信息DCI调度的全部调度PDSCH或全部有效PDSCH划分绑定组。
可选地,在所述码本为第二码本的情况下且在未配置应用空间绑定的情况下,所述目标操作包括如下至少一项:
基于配置的时域资源分配记录或有效时域资源分配记录对应的PDSCH划分绑定组;
基于对应有效时域资源分配记录且开启参考TB的PDSCH划分绑定组。
可选地,在所述码本为第二码本的情况下且在未配置应用空间绑定的情况下,所述目标操作包括如下至少一项:
在采用第一TB去使能方式的情况下:
若DCI调度的有效PDSCH的第一目标TB开启,则针对所述第一目标TB,基于配置的时域资源分配记录或有效时域资源分配记录对应的PDSCH划分绑定组;
和/或
在采用第二TB去使能方式的情况下:
若DCI调度的至少一个有效PDSCH开启第一目标TB,则针对所述第一目标TB,基于配置的时域资源分配记录或有效时域资源分配记录对应的PDSCH划分绑定组,或者,基于对应有效时域资源分配记录且开启所述第一目标TB的PDSCH划分绑定组;
其中,所述第一目标TB为所述多个TB中的任意一个TB。
可选地,所述装置还包括:
第二确定模块,用于根据是否配置应用空间绑定确定所述码本中的HARQ-ACK比特与调度PDSCH的映射关系。
本申请实施例中的时域绑定处理装置,在码本被配置采用时域绑定进行传输的情况下,对于第一码本,通过确定目标操作能够解决时机冲突问题;在码本被配置采用时域绑定进行传输的情况下,对于第二码本,通过确定目标操作能够确定对于时域绑定与空间绑定联合配置时的绑定组划分操作。从而能够允许更高的灵活性,以更匹配实际应用场景,能够提高配置灵活性,并且能够提升PDSCH重传性能。
本申请实施例中的时域绑定处理装置可以是电子设备,例如具有操作系统的电子设备,也可以是电子设备中的部件,例如集成电路或芯片。该电子设备可以是终端,也可以为除终端之外的其他设备。示例性的,终端可以包括但不限于上述所列举的终端11的类型,其他设备可以为服务器、网络附属存储器(Network Attached Storage,NAS)等,本申请实施例不作具体限定。
本申请实施例提供的时域绑定处理装置能够实现图2及图4的方法实施例实现的各个过程,并达到相同的技术效果,为避免重复,这里不再赘述。
可选地,如图7所示,本申请实施例还提供一种通信设备500,包括处理器501和存储器502,存储器502上存储有可在所述处理器501上运行的程序或指令,例如,该通信设备500为终端时,该程序或指令被处理器501执行时实现上述时域绑定处理方法实施例的各个步骤,且能达到相同的技术效果。该通信设备500为网络侧设备时,该程序或指令被处理器501执行时实现上述时域绑定处理方法实施例的各个步骤,且能达到相同的技术效果,为避免重复,这里不再赘述。
本申请实施例还提供一种终端,包括处理器和通信接口,所述处理器用 于:终端在被配置为采用时域绑定进行码本传输的情况下,确定目标操作;其中,在所述码本为第一码本的情况下,所述目标操作包括如下至少一项:不期望第一时机对应的行集合中被调度的行的数量大于1;期望任意调度和/或配置的时域资源分配TDRA表的行的最后的时域资源分配记录对应的物理下行共享信道PDSCH为有效PDSCH;在第一时机对应的行集合中被调度的行的数量大于1的情况下,对所述第一时机对应的行集合中被调度的行执行第一操作;其中,所述第一时机为所述码本对应的时机集合中的任意一个时机,所述第一时机对应的行集合包括在TDRA表中与所述第一时机对应的行;其中,在所述码本为第二码本的情况下,所述目标操作包括如下至少一项:在未配置应用空间绑定的情况下,对多个传输块TB统一划分绑定组,或者,对所述多个TB中每个TB分别划分绑定组;在配置应用空间绑定的情况下,对下行控制信息DCI调度的全部调度PDSCH或全部有效PDSCH划分绑定组。该终端实施例与上述终端侧方法实施例对应,上述方法实施例的各个实施过程和实现方式均可适用于该终端实施例中,且能达到相同的技术效果。具体地,图8为实现本申请实施例的一种终端的硬件结构示意图。
该终端600包括但不限于:射频单元601、网络模块602、音频输出单元603、输入单元604、传感器605、显示单元606、用户输入单元607、接口单元608、存储器609以及处理器610等中的至少部分部件。
本领域技术人员可以理解,终端600还可以包括给各个部件供电的电源(比如电池),电源可以通过电源管理系统与处理器610逻辑相连,从而通过电源管理系统实现管理充电、放电、以及功耗管理等功能。图8中示出的终端结构并不构成对终端的限定,终端可以包括比图示更多或更少的部件,或者组合某些部件,或者不同的部件布置,在此不再赘述。
应理解的是,本申请实施例中,输入单元604可以包括图形处理单元(Graphics Processing Unit,GPU)6041和麦克风6042,图形处理器6041对在视频捕获模式或图像捕获模式中由图像捕获装置(如摄像头)获得的静态图片或视频的图像数据进行处理。显示单元606可包括显示面板6061,可以采用液晶显示器、有机发光二极管等形式来配置显示面板6061。用户输入单元607包括触控面板6071以及其他输入设备6072中的至少一种。触控面板 6 071,也称为触摸屏。触控面板6071可包括触摸检测装置和触摸控制器两个部分。其他输入设备6072可以包括但不限于物理键盘、功能键(比如音量控制按键、开关按键等)、轨迹球、鼠标、操作杆,在此不再赘述。
本申请实施例中,射频单元601接收来自网络侧设备的下行数据后,可以传输给处理器610进行处理;另外,射频单元601可以向网络侧设备发送上行数据。通常,射频单元601包括但不限于天线、放大器、收发信机、耦合器、低噪声放大器、双工器等。
存储器609可用于存储软件程序或指令以及各种数据。存储器609可主要包括存储程序或指令的第一存储区和存储数据的第二存储区,其中,第一存储区可存储操作系统、至少一个功能所需的应用程序或指令(比如声音播放功能、图像播放功能等)等。此外,存储器609可以包括易失性存储器或非易失性存储器,或者,存储器609可以包括易失性和非易失性存储器两者。其中,非易失性存储器可以是只读存储器(Read-Only Memory,ROM)、可编程只读存储器(Programmable ROM,PROM)、可擦除可编程只读存储器(Erasable PROM,EPROM)、电可擦除可编程只读存储器(Electrically EPROM,EEPROM)或闪存。易失性存储器可以是随机存取存储器(Random Access Memory,RAM),静态随机存取存储器(Static RAM,SRAM)、动态随机存取存储器(Dynamic RAM,DRAM)、同步动态随机存取存储器(Synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(Double Data Rate SDRAM,DDRSDRAM)、增强型同步动态随机存取存储器(Enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(Synch link DRAM,SLDRAM)和直接内存总线随机存取存储器(Direct Rambus RAM,DRRAM)。本申请实施例中的存储器609包括但不限于这些和任意其它适合类型的存储器。
处理器610可包括一个或多个处理单元;可选地,处理器610集成应用处理器和调制解调处理器,其中,应用处理器主要处理涉及操作系统、用户界面和应用程序等的操作,调制解调处理器主要处理无线通信信号,如基带处理器。可以理解的是,上述调制解调处理器也可以不集成到处理器610中。
其中,处理器610,用于:终端在被配置为采用时域绑定进行码本传输的情况下,确定目标操作;
其中,在所述码本为第一码本的情况下,所述目标操作包括如下至少一项:
不期望第一时机对应的行集合中被调度的行的数量大于1;
期望任意调度和/或配置的时域资源分配TDRA表的行的最后的时域资源分配记录对应的物理下行共享信道PDSCH为有效PDSCH;
在第一时机对应的行集合中被调度的行的数量大于1的情况下,对所述第一时机对应的行集合中被调度的行执行第一操作;
其中,所述第一时机为所述码本对应的时机集合中的任意一个时机,所述第一时机对应的行集合包括在TDRA表中与所述第一时机对应的行;
其中,在所述码本为第二码本的情况下,所述目标操作包括如下至少一项:
在未配置应用空间绑定的情况下,对多个传输块TB统一划分绑定组,或者,对所述多个TB中每个TB分别划分绑定组;
在配置应用空间绑定的情况下,对下行控制信息DCI调度的全部调度PDSCH或全部有效PDSCH划分绑定组。
可选地,在所述码本为第二码本且在未配置应用空间绑定的情况下,所述目标操作包括如下任意一项:
基于配置的时域资源分配记录或有效时域资源分配记录对应的PDSCH划分绑定组;
基于对应有效时域资源分配记录且开启参考TB的PDSCH划分绑定组。
可选地,在所述码本为第二码本且在未配置应用空间绑定的情况下,所述目标操作包括:
在采用第一TB去使能方式的情况下:
若DCI调度的有效PDSCH的第一目标TB开启,则针对所述第一目标TB,基于配置的时域资源分配记录或有效时域资源分配记录对应的PDSCH划分绑定组;
和/或
在采用第二TB去使能方式的情况下:
若DCI调度的至少一个有效PDSCH开启第一目标TB,则针对所述第一 目标TB,基于配置的时域资源分配记录或有效时域资源分配记录对应的PDSCH划分绑定组,或者,基于对应有效时域资源分配记录且开启所述第一目标TB的PDSCH划分绑定组;
其中,所述第一目标TB为所述多个TB中的任意一个TB。
可选地,所处理器610,用于:
在采用所述第一TB去使能方式的情况下:
若所述DCI调度的有效PDSCH的所述第一目标TB关闭,则确定所述DCI或下行链路分配索引DAI的所述第一目标TB对应的混合自动重传请求确认HARQ-ACK比特为否定应答;
和/或
在采用所述第二TB去使能方式的情况下:
若所述DCI调度的全部有效PDSCH的所述第一目标TB均关闭,则确定所述DCI或DAI的所述第一目标TB对应的HARQ-ACK比特为否定应答。
可选地,在所述码本为第二码本的情况下,处理器610,用于:
在绑定组为空,或者所述绑定组包括的PDSCH均为无效PDSCH的情况下,确定所述绑定组对应的HARQ-ACK比特为否定应答;
和/或
在所述绑定组包括至少一个有效PDSCH的情况下:
若所述绑定组包括的有效PDSCH均关闭了第二目标TB,则确定所述绑定组的所述第二目标TB的HARQ-ACK比特为否定应答;和/或
若所述绑定组包括的有效PDSCH中存在至少一个有效PDSCH开启了第二目标TB,则基于所述至少一个有效PDSCH已开启的所述第二目标TB的解码结果统一执行第一操作,并基于操作结果确定所述绑定组的所述第二目标TB的HARQ-ACK比特;或者,若所述绑定组包括的有效PDSCH中存在至少一个有效PDSCH开启了第二目标TB,则将关闭所述第二目标TB的有效PDSCH的所述第二目标TB的解码结果设为预设值,基于所述绑定组包括的有效PDSCH的所述第二目标TB的解码结果统一执行第一操作,并基于操作结果确定所述绑定组的所述第二目标TB的HARQ-ACK比特;
其中,所述第二目标TB为网络侧配置的TB中的任意一个。
可选地,处理器610,用于:
在绑定组不包括对应有效时域资源分配记录且开启了所述第一目标TB的PDSCH的情况下,确定所述绑定组对应的HARQ-ACK比特为否定应答;
和/或
在绑定组包括对应有效时域资源分配记录且开启了所述第一目标TB的至少一个PDSCH的情况下:
基于所述至少一个PDSCH的解码结果统一执行第一操作,并基于操作结果确定所述绑定组的所述第一目标TB的HARQ-ACK比特;或者,将所述绑定组中对应有效时域资源分配记录且关闭所述第一目标TB的PDSCH的所述第一目标TB的解码结果设为预设值,基于所述绑定组包括的有效PDSCH的所述第一目标TB的解码结果统一执行第一操作,并基于操作结果确定所述绑定组的所述第一目标TB的HARQ-ACK比特。
可选地,所述目标操作还包括:
确定参考TB;
其中,所述参考TB为如下任意一项:
第一TB,第二TB,映射至码字CW0或码字CW1的TB,开启的第一个TB,第三目标TB;
所述第三目标TB为开启所述第三目标TB的有效PDSCH数量最多的TB。
可选地,处理器610,在所述码本为第一码本,且在服务小区未配置允许双码字传输的情况下,用于如下至少一项:
若所述第一时机关联的有效PDSCH由单个DCI调度,则基于所述第一时机关联的有效PDSCH的解码结果统一执行第一操作,并基于操作结果确定所述第一时机对应的HARQ-ACK比特;
若所述第一时机关联的有效PDSCH由至少两个DCI调度,则基于所述至少两个DCI中任意一个DCI调度的有效PDSCH的解码结果统一执行第一操作,并基于操作结果确定所述第一时机对应的HARQ-ACK比特。
可选地,处理器610,在所述码本为第一码本,且在服务小区配置允许双码字传输的情况下,用于如下至少一项:
若未配置应用空间绑定,则基于TB去使能方式确定HARQ-ACK比特;
若配置应用空间绑定,则基于与所述第一时机关联的有效PDSCH对应的DCI确定HARQ-ACK比特。
可选地,在采用第一TB去使能方式,且在所述第一时机关联的有效PDSCH由至少两个DCI调度的情况下,处理器610用于如下至少一项:
若所述至少两个DCI均开启了第四目标TB,则基于目标DCI调度的有效PDSCH的所述第四目标TB的解码结果统一执行第一操作,并基于操作结果确定所述第四目标TB对应的HARQ-ACK比特,所述目标DCI为所述至少两个DCI中的任意一个DCI;
若所述至少两个DCI均关闭所述第四目标TB,则确定所述第一时机的所述第四目标TB对应的HARQ-ACK比特为否定应答;
若所述至少两个DCI中存在至少一个DCI开启所述第四目标TB,且存在至少一个DCI关闭所述第四目标TB,则基于开启所述第四目标TB的DCI中任意一个DCI调度的有效PDSCH的所述第四目标TB的解码结果统一执行第一操作,并基于操作结果确定所述第一时机的所述第四目标TB对应的HARQ-ACK比特;或者,若所述至少两个DCI中存在至少一个DCI开启所述第四目标TB,且存在至少一个DCI关闭所述第四目标TB,则将由关闭所述第四目标TB的DCI中任意一个DCI调度的有效PDSCH的所述第四目标TB的解码结果设为预设值,基于所述至少两个DCI中任意一个DCI调度的有效PDSCH的所述第四目标TB的解码结果统一执行第一操作,并基于操作结果确定所述第一时机的所述第四目标TB对应的HARQ-ACK比特;
其中,所述第四目标TB为网络侧配置的TB中的任意一个。
可选地,在采用第二TB去使能方式的情况下,处理器610用于如下至少一项:
若所述第一时机关联的有效PDSCH的第五目标TB均关闭,则确定所述第一时机的所述第五目标TB对应的HARQ-ACK比特为否定应答;
若所述第一时机关联的有效PDSCH中存在至少一个PDSCH开启所述第五目标TB,则基于开启所述第五目标TB的有效PDSCH的所述第五目标TB的解码结果统一执行第一操作,并基于操作结果确定所述第一时机的所述第五目标TB对应的HARQ-ACK比特;或者,若所述第一时机关联的有效 PDSCH中存在至少一个PDSCH开启所述第五目标TB,则将关闭所述第五目标TB的有效PDSCH的所述第五目标TB的解码结果设为预设值,基于所述第一时机关联的有效PDSCH的所述第五目标TB的解码结果统一执行第一操作,并基于操作结果确定所述第一时机的所述第五目标TB对应的HARQ-ACK比特;
其中,所述第五目标TB为网络侧配置的TB中的任意一个。
可选地,在所述码本为第一码本,且在服务小区配置允许双码字传输的情况下,若配置应用空间绑定,处理器610用于:
在调度所述第一时机关联的有效PDSCH的DCI的数量为一个的情况下:
基于所述DCI调度的有效PDSCH所有开启的TB的解码结果统一执行第一操作,并基于操作结果确定所述第一时机对应的HARQ-ACK比特;或者,将所述有效PDSCH已关闭的TB的解码结果设为预设值,基于所述DCI调度的有效PDSCH所有配置的TB的解码结果统一执行第一操作,并基于操作结果确定所述第一时机对应的HARQ-ACK比特;
和/或
在调度所述第一时机关联的有效PDSCH的DCI的数量为至少两个的情况下:
基于目标DCI调度的有效PDSCH所有开启的TB的解码结果统一执行第一操作,并基于操作结果确定所述第一时机对应的HARQ-ACK比特;或者,将所述有效PDSCH已关闭的TB的解码结果设为预设值,基于所述目标DCI调度的有效PDSCH所有配置的TB的解码结果统一执行第一操作,并基于操作结果确定所述第一时机对应的HARQ-ACK比特,所述目标DCI为所述至少两个DCI中的任意一个。
在本申请实施例中,终端在被配置为采用时域绑定进行码本传输的情况下,确定目标操作;其中,在所述码本为第一码本的情况下,所述目标操作包括如下至少一项:不期望第一时机对应的行集合中被调度的行的数量大于1;期望任意调度和/或配置的时域资源分配TDRA表的行的最后的时域资源分配记录对应的物理下行共享信道PDSCH为有效PDSCH;在第一时机对应的行集合中被调度的行的数量大于1的情况下,对所述第一时机对应的行集 合中被调度的行执行第一操作;其中,所述第一时机为所述码本对应的时机集合中的任意一个时机,所述第一时机对应的行集合包括在TDRA表中与所述第一时机对应的行;其中,在所述码本为第二码本的情况下,所述目标操作包括如下至少一项:在未配置应用空间绑定的情况下,对多个传输块TB统一划分绑定组,或者,对所述多个TB中每个TB分别划分绑定组;在配置应用空间绑定的情况下,对下行控制信息DCI调度的全部调度PDSCH或全部有效PDSCH划分绑定组。这样,在码本被配置采用时域绑定进行传输的情况下,能够允许更高的灵活性,以更匹配实际应用场景,从而能够提高配置灵活性,并且能够提升PDSCH重传性能。
本申请实施例还提供一种网络侧设备,包括处理器和通信接口,所述处理器用于:在终端的码本被配置采用时域绑定进行传输的情况下,确定目标操作;其中,在所述码本为第一码本的情况下,所述目标操作包括如下至少一项:在第一时机对应的行集合中被调度的行的数目不超过1,所述第一时机为所述码本对应的时机集合中的任意一个时机,所述第一时机对应的行集合包括在TDRA表中与所述第一时机对应的行;确定任意调度和/或配置的时域资源分配TDRA表的行的最后的时域资源分配记录对应的物理下行共享信道PDSCH为有效PDSCH;其中,在所述码本为第二码本的情况下,所述目标操作包括如下至少一项:在未配置应用空间绑定的情况下,对多个传输块TB统一划分绑定组,或者,对所述多个TB中每个TB分别划分绑定组;在配置应用空间绑定的情况下,对下行控制信息DCI调度的全部调度PDSCH或全部有效PDSCH划分绑定组。该网络侧设备实施例与上述网络侧设备方法实施例对应,上述方法实施例的各个实施过程和实现方式均可适用于该网络侧设备实施例中,且能达到相同的技术效果。
具体地,本申请实施例还提供了一种网络侧设备。如图9所示,该网络侧设备700包括:天线701、射频装置702、基带装置703、处理器704和存储器705。天线701与射频装置702连接。在上行方向上,射频装置702通过天线701接收信息,将接收的信息发送给基带装置703进行处理。在下行方向上,基带装置703对要发送的信息进行处理,并发送给射频装置702,射频装置702对收到的信息进行处理后经过天线701发送出去。
以上实施例中网络侧设备执行的方法可以在基带装置703中实现,该基带装置703包括基带处理器。
基带装置703例如可以包括至少一个基带板,该基带板上设置有多个芯片,如图9所示,其中一个芯片例如为基带处理器,通过总线接口与存储器705连接,以调用存储器705中的程序,执行以上方法实施例中所示的网络设备操作。
该网络侧设备还可以包括网络接口706,该接口例如为通用公共无线接口(common public radio interface,CPRI)。
具体地,本申请实施例的网络侧设备700还包括:存储在存储器705上并可在处理器704上运行的指令或程序,处理器704调用存储器705中的指令或程序执行图6所示各模块执行的方法,并达到相同的技术效果,为避免重复,故不在此赘述。
本申请实施例还提供一种可读存储介质,所述可读存储介质可以是非易失的,也可以是易失的,所述可读存储介质上存储有程序或指令,该程序或指令被处理器执行时实现上述时域绑定处理方法实施例的各个过程,且能达到相同的技术效果,为避免重复,这里不再赘述。
其中,所述处理器为上述实施例中所述的终端中的处理器。所述可读存储介质,包括计算机可读存储介质,如计算机只读存储器ROM、随机存取存储器RAM、磁碟或者光盘等。
本申请实施例另提供了一种芯片,所述芯片包括处理器和通信接口,所述通信接口和所述处理器耦合,所述处理器用于运行程序或指令,实现上述时域绑定处理方法实施例的各个过程,且能达到相同的技术效果,为避免重复,这里不再赘述。
应理解,本申请实施例提到的芯片还可以称为系统级芯片,系统芯片,芯片系统或片上系统芯片等。
本申请实施例另提供了一种计算机程序产品,所述计算机程序产品被存储在存储介质中,所述计算机程序产品被至少一个处理器执行以实现上述时域绑定处理方法实施例的各个过程,且能达到相同的技术效果,为避免重复,这里不再赘述。
本申请实施例还提供了一种时域绑定处理系统,包括:终端及网络侧设备,所述终端可用于执行如上所述的应用于终端的时域绑定处理方法的步骤,所述网络侧设备可用于执行如上所述的应用于网络侧设备的时域绑定处理方法的步骤。
需要说明的是,在本文中,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者装置不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者装置所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括该要素的过程、方法、物品或者装置中还存在另外的相同要素。此外,需要指出的是,本申请实施方式中的方法和装置的范围不限按示出或讨论的顺序来执行功能,还可包括根据所涉及的功能按基本同时的方式或按相反的顺序来执行功能,例如,可以按不同于所描述的次序来执行所描述的方法,并且还可以添加、省去、或组合各种步骤。另外,参照某些示例所描述的特征可在其他示例中被组合。
通过以上的实施方式的描述,本领域的技术人员可以清楚地了解到上述实施例方法可借助软件加必需的通用硬件平台的方式来实现,当然也可以通过硬件,但很多情况下前者是更佳的实施方式。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分可以以计算机软件产品的形式体现出来,该计算机软件产品存储在一个存储介质(如ROM/RAM、磁碟、光盘)中,包括若干指令用以使得一台终端(可以是手机,计算机,服务器,空调器,或者网络设备等)执行本申请各个实施例所述的方法。
上面结合附图对本申请的实施例进行了描述,但是本申请并不局限于上述的具体实施方式,上述的具体实施方式仅仅是示意性的,而不是限制性的,本领域的普通技术人员在本申请的启示下,在不脱离本申请宗旨和权利要求所保护的范围情况下,还可做出很多形式,均属于本申请的保护之内。

Claims (23)

  1. 一种时域绑定处理方法,包括:
    终端在被配置为采用时域绑定进行码本传输的情况下,确定目标操作;
    其中,在所述码本为第一码本的情况下,所述目标操作包括如下至少一项:
    不期望第一时机对应的行集合中被调度的行的数量大于1;
    期望任意调度和/或配置的时域资源分配TDRA表的行的最后的时域资源分配记录对应的物理下行共享信道PDSCH为有效PDSCH;
    在第一时机对应的行集合中被调度的行的数量大于1的情况下,对所述第一时机对应的行集合中被调度的行执行第一操作;
    其中,所述第一时机为所述码本对应的时机集合中的任意一个时机,所述第一时机对应的行集合包括在TDRA表中与所述第一时机对应的行;
    其中,在所述码本为第二码本的情况下,所述目标操作包括如下至少一项:
    在未配置应用空间绑定的情况下,对多个传输块TB统一划分绑定组,或者,对所述多个TB中每个TB分别划分绑定组;
    在配置应用空间绑定的情况下,对下行控制信息DCI调度的全部调度PDSCH或全部有效PDSCH划分绑定组。
  2. 根据权利要求1所述的方法,其中,所述对多个传输块TB统一划分绑定组,包括如下任意一项:
    基于配置的时域资源分配记录或有效时域资源分配记录对应的PDSCH划分绑定组;
    基于对应有效时域资源分配记录且开启参考TB的PDSCH划分绑定组。
  3. 根据权利要求1所述的方法,其中,所述对所述多个TB中每个TB分别划分绑定组,包括:
    在采用第一TB去使能方式的情况下:
    若DCI调度的有效PDSCH的第一目标TB开启,则针对所述第一目标TB,基于配置的时域资源分配记录或有效时域资源分配记录对应的PDSCH 划分绑定组;
    和/或
    在采用第二TB去使能方式的情况下:
    若DCI调度的至少一个有效PDSCH开启第一目标TB,则针对所述第一目标TB,基于配置的时域资源分配记录或有效时域资源分配记录对应的PDSCH划分绑定组,或者,基于对应有效时域资源分配记录且开启所述第一目标TB的PDSCH划分绑定组;
    其中,所述第一目标TB为所述多个TB中的任意一个TB。
  4. 根据权利要求3所述的方法,所述方法还包括:
    在采用所述第一TB去使能方式的情况下:
    若所述DCI调度的有效PDSCH的所述第一目标TB关闭,则确定所述DCI或下行链路分配索引DAI的所述第一目标TB对应的混合自动重传请求确认HARQ-ACK比特为否定应答;
    和/或
    在采用所述第二TB去使能方式的情况下:
    若所述DCI调度的全部有效PDSCH的所述第一目标TB均关闭,则确定所述DCI或DAI的所述第一目标TB对应的HARQ-ACK比特为否定应答。
  5. 根据权利要求1-4中任一项所述的方法,其中,所述确定目标操作之后,在所述码本为第二码本的情况下,所述方法还包括:
    在绑定组为空,或者所述绑定组包括的PDSCH均为无效PDSCH的情况下,确定所述绑定组对应的HARQ-ACK比特为否定应答;
    和/或
    在所述绑定组包括至少一个有效PDSCH的情况下:
    若所述绑定组包括的有效PDSCH均关闭了第二目标TB,则确定所述绑定组的所述第二目标TB的HARQ-ACK比特为否定应答;和/或
    若所述绑定组包括的有效PDSCH中存在至少一个有效PDSCH开启了第二目标TB,则基于所述至少一个有效PDSCH已开启的所述第二目标TB的解码结果统一执行第一操作,并基于操作结果确定所述绑定组的所述第二目标TB的HARQ-ACK比特;或者,若所述绑定组包括的有效PDSCH中存在 至少一个有效PDSCH开启了第二目标TB,则将关闭所述第二目标TB的有效PDSCH的所述第二目标TB的解码结果设为预设值,基于所述绑定组包括的有效PDSCH的所述第二目标TB的解码结果统一执行第一操作,并基于操作结果确定所述绑定组的所述第二目标TB的HARQ-ACK比特;
    其中,所述第二目标TB为网络侧配置的TB中的任意一个。
  6. 根据权利要求3所述的方法,其中,所述基于对应有效时域资源分配记录且开启所述第一目标TB的PDSCH划分绑定组之后,所述方法还包括:
    在绑定组不包括对应有效时域资源分配记录且开启了所述第一目标TB的PDSCH的情况下,确定所述绑定组对应的HARQ-ACK比特为否定应答;
    和/或
    在绑定组包括对应有效时域资源分配记录且开启了所述第一目标TB的至少一个PDSCH的情况下:
    基于所述至少一个PDSCH的解码结果统一执行第一操作,并基于操作结果确定所述绑定组的所述第一目标TB的HARQ-ACK比特;或者,将所述绑定组中对应有效时域资源分配记录且关闭所述第一目标TB的PDSCH的所述第一目标TB的解码结果设为预设值,基于所述绑定组包括的有效PDSCH的所述第一目标TB的解码结果统一执行第一操作,并基于操作结果确定所述绑定组的所述第一目标TB的HARQ-ACK比特。
  7. 根据权利要求2所述的方法,其中,所述基于对应有效时域资源分配记录且开启参考TB的PDSCH划分绑定组之前,所述方法还包括:
    确定参考TB;
    其中,所述参考TB为如下任意一项:
    第一TB,第二TB,映射至码字CW0或码字CW1的TB,开启的第一个TB,第三目标TB;
    所述第三目标TB为开启所述第三目标TB的有效PDSCH数量最多的TB。
  8. 根据权利要求1所述的方法,其中,在所述码本为第一码本,且在服务小区未配置允许双码字传输的情况下,所述方法还包括如下至少一项:
    若所述第一时机关联的有效PDSCH由单个DCI调度,则基于所述第一时机关联的有效PDSCH的解码结果统一执行第一操作,并基于操作结果确 定所述第一时机对应的HARQ-ACK比特;
    若所述第一时机关联的有效PDSCH由至少两个DCI调度,则基于所述至少两个DCI中任意一个DCI调度的有效PDSCH的解码结果统一执行第一操作,并基于操作结果确定所述第一时机对应的HARQ-ACK比特。
  9. 根据权利要求1所述的方法,其中,在所述码本为第一码本,且在服务小区配置允许双码字传输的情况下,所述方法还包括如下至少一项:
    若未配置应用空间绑定,则基于TB去使能方式确定HARQ-ACK比特;
    若配置应用空间绑定,则基于与所述第一时机关联的有效PDSCH对应的DCI确定HARQ-ACK比特。
  10. 根据权利要求9所述的方法,其中,在采用第一TB去使能方式,且在所述第一时机关联的有效PDSCH由至少两个DCI调度的情况下,所述基于TB去使能方式确定HARQ-ACK比特,包括如下至少一项:
    若所述至少两个DCI均开启了第四目标TB,则基于目标DCI调度的有效PDSCH的所述第四目标TB的解码结果统一执行第一操作,并基于操作结果确定所述第四目标TB对应的HARQ-ACK比特,所述目标DCI为所述至少两个DCI中的任意一个DCI;
    若所述至少两个DCI均关闭所述第四目标TB,则确定所述第一时机的所述第四目标TB对应的HARQ-ACK比特为否定应答;
    若所述至少两个DCI中存在至少一个DCI开启所述第四目标TB,且存在至少一个DCI关闭所述第四目标TB,则基于开启所述第四目标TB的DCI中任意一个DCI调度的有效PDSCH的所述第四目标TB的解码结果统一执行第一操作,并基于操作结果确定所述第一时机的所述第四目标TB对应的HARQ-ACK比特;或者,若所述至少两个DCI中存在至少一个DCI开启所述第四目标TB,且存在至少一个DCI关闭所述第四目标TB,则将由关闭所述第四目标TB的DCI中任意一个DCI调度的有效PDSCH的所述第四目标TB的解码结果设为预设值,基于所述至少两个DCI中任意一个DCI调度的有效PDSCH的所述第四目标TB的解码结果统一执行第一操作,并基于操作结果确定所述第一时机的所述第四目标TB对应的HARQ-ACK比特;
    其中,所述第四目标TB为网络侧配置的TB中的任意一个。
  11. 根据权利要求9所述的方法,其中,在采用第二TB去使能方式的情况下,所述基于TB去使能方式确定HARQ-ACK比特,包括如下至少一项:
    若所述第一时机关联的有效PDSCH的第五目标TB均关闭,则确定所述第一时机的所述第五目标TB对应的HARQ-ACK比特为否定应答;
    若所述第一时机关联的有效PDSCH中存在至少一个PDSCH开启所述第五目标TB,则基于开启所述第五目标TB的有效PDSCH的所述第五目标TB的解码结果统一执行第一操作,并基于操作结果确定所述第一时机的所述第五目标TB对应的HARQ-ACK比特;或者,若所述第一时机关联的有效PDSCH中存在至少一个PDSCH开启所述第五目标TB,则将关闭所述第五目标TB的有效PDSCH的所述第五目标TB的解码结果设为预设值,基于所述第一时机关联的有效PDSCH的所述第五目标TB的解码结果统一执行第一操作,并基于操作结果确定所述第一时机的所述第五目标TB对应的HARQ-ACK比特;
    其中,所述第五目标TB为网络侧配置的TB中的任意一个。
  12. 根据权利要求9所述的方法,其中,所述基于与所述第一时机关联的有效PDSCH对应的DCI确定HARQ-ACK比特,包括:
    在调度所述第一时机关联的有效PDSCH的DCI的数量为一个的情况下:
    基于所述DCI调度的有效PDSCH所有开启的TB的解码结果统一执行第一操作,并基于操作结果确定所述第一时机对应的HARQ-ACK比特;或者,将所述有效PDSCH已关闭的TB的解码结果设为预设值,基于所述DCI调度的有效PDSCH所有配置的TB的解码结果统一执行第一操作,并基于操作结果确定所述第一时机对应的HARQ-ACK比特;
    和/或
    在调度所述第一时机关联的有效PDSCH的DCI的数量为至少两个的情况下:
    基于目标DCI调度的有效PDSCH所有开启的TB的解码结果统一执行第一操作,并基于操作结果确定所述第一时机对应的HARQ-ACK比特;或者,将所述有效PDSCH已关闭的TB的解码结果设为预设值,基于所述目标DCI调度的有效PDSCH所有配置的TB的解码结果统一执行第一操作,并基 于操作结果确定所述第一时机对应的HARQ-ACK比特,所述目标DCI为所述至少两个DCI中的任意一个。
  13. 一种时域绑定处理方法,包括:
    网络侧设备在终端的码本被配置采用时域绑定进行传输的情况下,确定目标操作;
    其中,在所述码本为第一码本的情况下,所述目标操作包括如下至少一项:
    在第一时机对应的行集合中被调度的行的数目不超过1,所述第一时机为所述码本对应的时机集合中的任意一个时机,所述第一时机对应的行集合包括在TDRA表中与所述第一时机对应的行;
    确定任意调度和/或配置的时域资源分配TDRA表的行的最后的时域资源分配记录对应的物理下行共享信道PDSCH为有效PDSCH;
    其中,在所述码本为第二码本的情况下,所述目标操作包括如下至少一项:
    在未配置应用空间绑定的情况下,对多个传输块TB统一划分绑定组,或者,对所述多个TB中每个TB分别划分绑定组;
    在配置应用空间绑定的情况下,对下行控制信息DCI调度的全部调度PDSCH或全部有效PDSCH划分绑定组。
  14. 根据权利要求13所述的方法,其中,所述对多个传输块TB统一划分绑定组,包括如下任意一项:
    基于配置的时域资源分配记录或有效时域资源分配记录对应的PDSCH划分绑定组;
    基于对应有效时域资源分配记录且开启参考TB的PDSCH划分绑定组。
  15. 根据权利要求13所述的方法,其中,所述对所述多个TB中每个TB分别划分绑定组,包括:
    在采用第一TB去使能方式的情况下:
    若DCI调度的有效PDSCH的第一目标TB开启,则针对所述第一目标TB,基于配置的时域资源分配记录或有效时域资源分配记录对应的PDSCH划分绑定组;
    和/或
    在采用第二TB去使能方式的情况下:
    若DCI调度的至少一个有效PDSCH开启第一目标TB,则针对所述第一目标TB,基于配置的时域资源分配记录或有效时域资源分配记录对应的PDSCH划分绑定组,或者,基于对应有效时域资源分配记录且开启所述第一目标TB的PDSCH划分绑定组;
    其中,所述第一目标TB为所述多个TB中的任意一个TB。
  16. 根据权利要求13至15中任一项所述的方法,其中,所述确定目标操作之后,所述方法还包括:
    网络侧设备根据是否配置应用空间绑定确定所述码本中的HARQ-ACK比特与调度PDSCH的映射关系。
  17. 一种时域绑定处理装置,包括:
    确定模块,用于在被配置为采用时域绑定进行码本传输的情况下,确定目标操作;
    其中,在所述码本为第一码本的情况下,所述目标操作包括如下至少一项:
    不期望第一时机对应的行集合中被调度的行的数量大于1;
    期望任意调度和/或配置的时域资源分配TDRA表的行的最后的时域资源分配记录对应的物理下行共享信道PDSCH为有效PDSCH;
    在第一时机对应的行集合中被调度的行的数量大于1的情况下,对所述第一时机对应的行集合中被调度的行执行第一操作;
    其中,所述第一时机为所述码本对应的时机集合中的任意一个时机,所述第一时机对应的行集合包括在TDRA表中与所述第一时机对应的行;
    其中,在所述码本为第二码本的情况下,所述目标操作包括如下至少一项:
    在未配置应用空间绑定的情况下,对多个传输块TB统一划分绑定组,或者,对所述多个TB中每个TB分别划分绑定组;
    在配置应用空间绑定的情况下,对下行控制信息DCI调度的全部调度PDSCH或全部有效PDSCH划分绑定组。
  18. 根据权利要求17所述的装置,其中,在所述码本为第二码本且在未配置应用空间绑定的情况下,所述目标操作包括如下任意一项:
    基于配置的时域资源分配记录或有效时域资源分配记录对应的PDSCH划分绑定组;
    基于对应有效时域资源分配记录且开启参考TB的PDSCH划分绑定组。
  19. 根据权利要求17所述的装置,其中,在所述码本为第二码本且在未配置应用空间绑定的情况下,所述目标操作包括:
    在采用第一TB去使能方式的情况下:
    若DCI调度的有效PDSCH的第一目标TB开启,则针对所述第一目标TB,基于配置的时域资源分配记录或有效时域资源分配记录对应的PDSCH划分绑定组;
    和/或
    在采用第二TB去使能方式的情况下:
    若DCI调度的至少一个有效PDSCH开启第一目标TB,则针对所述第一目标TB,基于配置的时域资源分配记录或有效时域资源分配记录对应的PDSCH划分绑定组,或者,基于对应有效时域资源分配记录且开启所述第一目标TB的PDSCH划分绑定组;
    其中,所述第一目标TB为所述多个TB中的任意一个TB。
  20. 一种时域绑定处理装置,包括:
    第一确定模块,用于在终端的码本被配置采用时域绑定进行传输的情况下,确定目标操作;
    其中,在所述码本为第一码本的情况下,所述目标操作包括如下至少一项:
    在第一时机对应的行集合中被调度的行的数目不超过1,所述第一时机为所述码本对应的时机集合中的任意一个时机,所述第一时机对应的行集合包括在TDRA表中与所述第一时机对应的行;
    确定任意调度和/或配置的时域资源分配TDRA表的行的最后的时域资源分配记录对应的物理下行共享信道PDSCH为有效PDSCH;
    其中,在所述码本为第二码本的情况下,所述目标操作包括如下至少一 项:
    在未配置应用空间绑定的情况下,对多个传输块TB统一划分绑定组,或者,对所述多个TB中每个TB分别划分绑定组;
    在配置应用空间绑定的情况下,对下行控制信息DCI调度的全部调度PDSCH或全部有效PDSCH划分绑定组。
  21. 一种终端,包括处理器和存储器,所述存储器存储可在所述处理器上运行的程序或指令,所述程序或指令被所述处理器执行时实现如权利要求1至12任一项所述的时域绑定处理方法的步骤。
  22. 一种网络侧设备,包括处理器和存储器,所述存储器存储可在所述处理器上运行的程序或指令,所述程序或指令被所述处理器执行时实现如权利要求13至16任一项所述的时域绑定处理方法的步骤。
  23. 一种可读存储介质,所述可读存储介质上存储程序或指令,所述程序或指令被处理器执行时实现如权利要求1至12任一项所述的时域绑定处理方法,或者实现如权利要求13至16任一项所述的时域绑定处理方法的步骤。
PCT/CN2022/144014 2021-12-31 2022-12-30 时域绑定处理方法、终端及网络侧设备 WO2023125953A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111673268.8 2021-12-31
CN202111673268.8A CN116437455A (zh) 2021-12-31 2021-12-31 时域绑定处理方法、终端及网络侧设备

Publications (1)

Publication Number Publication Date
WO2023125953A1 true WO2023125953A1 (zh) 2023-07-06

Family

ID=86998222

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/144014 WO2023125953A1 (zh) 2021-12-31 2022-12-30 时域绑定处理方法、终端及网络侧设备

Country Status (2)

Country Link
CN (1) CN116437455A (zh)
WO (1) WO2023125953A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021035437A1 (en) * 2019-08-23 2021-03-04 Lenovo (Beijing) Limited Method and apparatus for determining harq-ack codebook
CN112822775A (zh) * 2019-11-15 2021-05-18 索尼公司 电子设备、无线通信方法和计算机可读存储介质
US20210367727A1 (en) * 2020-05-19 2021-11-25 Lg Electronics Inc. Method and apparatus for transmitting and receiving uplink signal in wireless communication system
WO2021248463A1 (en) * 2020-06-12 2021-12-16 Qualcomm Incorporated Techniques for enhanced semi-static codebooks

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021035437A1 (en) * 2019-08-23 2021-03-04 Lenovo (Beijing) Limited Method and apparatus for determining harq-ack codebook
CN112822775A (zh) * 2019-11-15 2021-05-18 索尼公司 电子设备、无线通信方法和计算机可读存储介质
US20210367727A1 (en) * 2020-05-19 2021-11-25 Lg Electronics Inc. Method and apparatus for transmitting and receiving uplink signal in wireless communication system
WO2021248463A1 (en) * 2020-06-12 2021-12-16 Qualcomm Incorporated Techniques for enhanced semi-static codebooks

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
MODERATOR (LG ELECTRONICS): "Summary #3 of PDSCH/PUSCH enhancements (Scheduling/HARQ)", 3GPP TSG RAN WG1 #107-E R1-2112703, 17 November 2021 (2021-11-17), XP052082129 *

Also Published As

Publication number Publication date
CN116437455A (zh) 2023-07-14

Similar Documents

Publication Publication Date Title
WO2022194249A1 (zh) Harq ack反馈方法、装置、终端及存储介质
US20240023108A1 (en) Method and apparatus for determining pucch resource, and terminal
WO2022152072A1 (zh) 信道信息发送方法、信道信息接收方法及相关设备
WO2022078451A1 (zh) 配置授权的重复传输方法、装置、设备及可读存储介质
WO2023125912A1 (zh) 上行传输的跳频、指示方法、装置、终端及网络侧设备
WO2023125906A1 (zh) 资源传输方向确定方法、装置及终端
WO2023116591A1 (zh) 传输确定方法、装置、终端、网络侧设备和存储介质
WO2022188794A1 (zh) 半静态harq-ack码本的生成方法及终端
WO2022237620A1 (zh) Csi测量资源的处理方法及装置、终端及可读存储介质
WO2022213899A1 (zh) 上行信道传输方法、装置、终端及网络侧设备
WO2023125953A1 (zh) 时域绑定处理方法、终端及网络侧设备
WO2022012433A1 (zh) Harq-ack的反馈方法和设备
JP2023552477A (ja) 通信処理方法、装置と通信機器
JP2023543761A (ja) 伝送情報決定方法、装置及び端末
WO2023198045A1 (zh) Harq ack反馈方法、装置、终端及网络侧设备
WO2023125959A1 (zh) 功率控制参数确定方法、装置和终端
WO2023198044A1 (zh) 信息接收方法、信息发送方法、装置及设备
WO2023116675A1 (zh) 混合自动重传请求反馈处理方法、装置及终端
WO2022237683A1 (zh) 动态harq-ack码本处理方法、装置、设备及可读存储介质
WO2023011286A1 (zh) 反馈方法、相关设备及可读存储介质
WO2023006026A1 (zh) 上行传输方法、装置及终端
WO2023011309A1 (zh) 反馈方法、相关设备及可读存储介质
WO2024017197A1 (zh) 传输处理方法、装置及设备
WO2023169363A1 (zh) 上行对象发送方法、装置、通信设备、系统及存储介质
WO2023160502A1 (zh) 传输方法、终端及网络侧设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22915201

Country of ref document: EP

Kind code of ref document: A1