WO2023134542A1 - Pdcch传输方法、终端及网络侧设备 - Google Patents

Pdcch传输方法、终端及网络侧设备 Download PDF

Info

Publication number
WO2023134542A1
WO2023134542A1 PCT/CN2023/070738 CN2023070738W WO2023134542A1 WO 2023134542 A1 WO2023134542 A1 WO 2023134542A1 CN 2023070738 W CN2023070738 W CN 2023070738W WO 2023134542 A1 WO2023134542 A1 WO 2023134542A1
Authority
WO
WIPO (PCT)
Prior art keywords
symbol sequence
complex symbol
position index
side device
index groups
Prior art date
Application number
PCT/CN2023/070738
Other languages
English (en)
French (fr)
Inventor
刘殷卉
李�根
Original Assignee
维沃移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 维沃移动通信有限公司 filed Critical 维沃移动通信有限公司
Publication of WO2023134542A1 publication Critical patent/WO2023134542A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2602Signal structure
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2626Arrangements specific to the transmitter only
    • H04L27/2627Modulators
    • H04L27/2628Inverse Fourier transform modulators, e.g. inverse fast Fourier transform [IFFT] or inverse discrete Fourier transform [IDFT] modulators
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path

Definitions

  • the present application belongs to the technical field of communication, and in particular relates to a PDCCH transmission method, terminal and network side equipment.
  • the maximum output power of a radio frequency power amplifier decreases as the frequency of the wireless signal increases. That is to say, compared with the low-frequency mobile communication, in the high-frequency communication system (for example, fc>52.6GHz), the maximum output power of the PA is lower. Therefore, it is necessary to use a signal waveform with a lower "peak-to-average ratio" in order to improve the power amplifier efficiency of the PA, thereby ensuring the power of the output signal.
  • the uplink UL adopts cyclic prefix-orthogonal frequency division multiplexing (Cyclic Prefix Orthogonal Frequency Division Multiplexing, CP-OFDM) waveform or discrete Fourier transform-extension-orthogonal frequency division multiplexing (Discrete Fourier Transform spread Orthogonal Frequency Division Multiplexing, DFT-s-OFDM) waveform
  • CP-OFDM Cyclic Prefix Orthogonal Frequency Division Multiplexing
  • DFT-s-OFDM Discrete Fourier Transform spread Orthogonal Frequency Division Multiplexing
  • DFT-s-OFDM waveform can allocate different subcarriers to different users to realize multi-user communication. Therefore, in a high-frequency communication system, how to use DFT-s-OFDM waveforms to transmit the physical downlink control channel PDCCH in DL is a technical problem urgently needed to be solved by those skilled in the art.
  • the embodiment of the present application provides a PDCCH transmission method, a terminal and a network side device, which can solve the problem of how to use a DFT-s-OFDM waveform to transmit a physical downlink control channel PDCCH.
  • a PDCCH transmission method which is applied to a network side device, and the method includes:
  • the network side device determines a target position of the first complex symbol sequence in the second complex symbol sequence, and places the first complex symbol sequence at the target position in the second complex symbol sequence; the first complex symbol sequence
  • the sequence is used to carry the data of PDCCH;
  • the network side device performs DFT or transform precoding processing on the second complex symbol sequence to obtain a third complex symbol sequence
  • the network side device maps the third complex symbol sequence to a target time-frequency resource and sends it.
  • a PDCCH transmission method which is applied to a terminal, and the method includes:
  • the terminal receives the fourth complex symbol sequence on the target time-frequency resource, and performs an inverse discrete Fourier transform (IDFT) or conversion precoding inverse operation on the fourth complex symbol sequence to obtain a fifth complex symbol sequence;
  • IDFT inverse discrete Fourier transform
  • the terminal determines the position sequences of K candidate PDCCHs; the K is an integer greater than 0;
  • the terminal extracts a sixth complex symbol sequence from the fifth complex symbol sequence based on the position sequences of the K candidate PDCCHs;
  • the terminal performs blind detection based on the sixth complex symbol sequence.
  • a PDCCH transmission device including:
  • a processing module configured to determine a target position of the first complex symbol sequence in the second complex symbol sequence, and place the first complex symbol sequence at the target position in the second complex symbol sequence; the first The complex symbol sequence is used to carry the data of the PDCCH;
  • a sending module configured to map the second complex symbol sequence onto a target time-frequency resource and send it.
  • a PDCCH transmission device including:
  • a receiving module configured to receive the fourth complex symbol sequence on the target time-frequency resource
  • a processing module configured to perform an inverse discrete Fourier transform (IDFT) or a conversion precoding inverse operation on the fourth complex symbol sequence to obtain a fifth complex symbol sequence;
  • IDFT inverse discrete Fourier transform
  • conversion precoding inverse operation on the fourth complex symbol sequence to obtain a fifth complex symbol sequence
  • the processing module is also used to determine the position sequences of K candidate PDCCHs; the K is an integer greater than 0;
  • Blind detection is performed based on the sixth complex symbol sequence.
  • a terminal in a fifth aspect, includes a processor and a memory, the memory stores programs or instructions that can run on the processor, and when the programs or instructions are executed by the processor, the following The steps of the method described in the two aspects.
  • a terminal including a processor and a communication interface, wherein the communication interface is configured to receive a fourth complex symbol sequence on a target time-frequency resource, and perform discrete Fourier on the fourth complex symbol sequence Liye inverse transform IDFT or conversion precoding inverse operation to obtain the fifth complex symbol sequence; the processor is used to determine the position sequence of K candidate PDCCHs; the K is an integer greater than 0; based on the K candidate PDCCH A position sequence, extracting a sixth complex symbol sequence from the fifth complex symbol sequence; performing blind detection based on the sixth complex symbol sequence.
  • a network-side device in a seventh aspect, includes a processor and a memory, the memory stores programs or instructions that can run on the processor, and the programs or instructions are executed by the processor When realizing the steps of the method as described in the first aspect.
  • a network side device including a processor and a communication interface, wherein the processor is configured to determine the target position of the first complex symbol sequence in the second complex symbol sequence, and The target position in the symbol sequence places the first complex symbol sequence; the first complex symbol sequence is used to carry the data of the PDCCH; DFT or conversion precoding is performed on the second complex symbol sequence to obtain the third a complex symbol sequence, and map the third complex symbol sequence to a target time-frequency resource, and the communication interface is used to send the third complex symbol sequence mapped to the target time-frequency resource.
  • a ninth aspect provides a communication system, including: a terminal and a network-side device, the terminal can be used to perform the steps of the PDCCH transmission method described in the second aspect, and the network-side device can be used to perform the steps of the first aspect Steps of the PDCCH transmission method.
  • a readable storage medium is provided, and a program or an instruction is stored on the readable storage medium, and when the program or instruction is executed by a processor, the steps of the method described in the first aspect are implemented, or the steps of the method as described in the first aspect are implemented, or the The steps of the method described in the second aspect.
  • a chip in an eleventh aspect, includes a processor and a communication interface, the communication interface is coupled to the processor, and the processor is used to run a program or an instruction to implement the method described in the first aspect. method, or implement the method as described in the second aspect.
  • a twelfth aspect provides a computer program/program product, the computer program/program product is stored in a storage medium, and the computer program/program product is executed by at least one processor to implement the The steps of the PDCCH transmission method described in the second aspect.
  • the network side device determines the target position of the first complex symbol sequence in the second complex symbol sequence, and places the first complex symbol sequence at the target position in the second complex symbol sequence ;
  • the first complex symbol sequence is used to carry the data of the PDCCH;
  • DFT or conversion precoding processing is performed on the second complex symbol sequence to obtain the third complex symbol sequence, that is, the DFT-s-OFDM waveform;
  • the network side device uses the third The complex symbol sequence is mapped to the target time-frequency resource and sent.
  • the network side equipment can transmit the PDCCH through the DFT-s-OFDM waveform to obtain a lower peak-to-average ratio PAPR, which can improve the power amplifier efficiency of the PA, thereby ensuring the output signal power.
  • FIG. 1 is a structural diagram of a wireless communication system applicable to an embodiment of the present application
  • Fig. 2 is one of the system block diagrams of DFT-s-OFDM provided by the embodiment of the present application;
  • FIG. 3 is one of the schematic diagrams of CORESET provided by the embodiment of the present application.
  • FIG. 4 is the second schematic diagram of CORESET provided by the embodiment of this application.
  • FIG. 5 is the third schematic diagram of CORESET provided by the embodiment of this application.
  • FIG. 6 is one of the schematic flow charts of the PDCCH transmission method provided by the embodiment of the present application.
  • FIG. 7 is the second system block diagram of DFT-s-OFDM provided by the embodiment of the present application.
  • FIG. 8 is a schematic diagram of a second position index group provided by an embodiment of the present application.
  • FIG. 9 is the third system block diagram of DFT-s-OFDM provided by the embodiment of the present application.
  • FIG. 10 is one of the numbered schematic diagrams of the second position index group provided by the embodiment of the present application.
  • Fig. 11 is the second schematic diagram of the numbering of the second position index group provided by the embodiment of the present application.
  • Fig. 12 is the third schematic diagram of the numbering of the second position index group provided by the embodiment of the present application.
  • FIG. 13 is the second schematic flow diagram of the PDCCH transmission method provided by the embodiment of the present application.
  • FIG. 14 is one of the structural schematic diagrams of the PDCCH transmission device provided by the embodiment of the present application.
  • FIG. 15 is the second structural schematic diagram of the PDCCH transmission device provided by the embodiment of the present application.
  • FIG. 16 is a schematic structural diagram of a communication device provided by an embodiment of the present application.
  • FIG. 17 is a schematic diagram of a hardware structure of a terminal provided by an embodiment of the present application.
  • Fig. 18 is a schematic structural diagram of a network side device according to an embodiment of the present application.
  • first, second and the like in the specification and claims of the present application are used to distinguish similar objects, and are not used to describe a specific sequence or sequence. It is to be understood that the terms so used are interchangeable under appropriate circumstances such that the embodiments of the application are capable of operation in sequences other than those illustrated or described herein and that "first" and “second” distinguish objects. It is usually one category, and the number of objects is not limited. For example, there may be one or more first objects.
  • “and/or” in the description and claims means at least one of the connected objects, and the character “/” generally means that the related objects are an "or” relationship.
  • LTE Long Term Evolution
  • LTE-Advanced LTE-Advanced
  • LTE-A Long Term Evolution-Advanced
  • CDMA Code Division Multiple Access
  • TDMA Time Division Multiple Access
  • FDMA Frequency Division Multiple Access
  • OFDMA Orthogonal Frequency Division Multiple Access
  • SC-FDMA Single-carrier Frequency Division Multiple Access
  • system and “network” in the embodiments of the present application are often used interchangeably, and the described technology can be used for the above-mentioned system and radio technology, and can also be used for other systems and radio technologies.
  • NR New Radio
  • the following description describes the New Radio (NR) system for illustrative purposes, and uses NR terminology in most of the following descriptions, but these techniques can also be applied to applications other than NR system applications, such as the 6th generation (6 th Generation, 6G) communication system.
  • 6G 6th Generation
  • Fig. 1 shows a block diagram of a wireless communication system to which the embodiment of the present application is applicable.
  • the wireless communication system includes a terminal 11 and a network side device 12 .
  • the terminal 11 can be a mobile phone, a tablet computer (Tablet Personal Computer), a laptop computer (Laptop Computer) or a notebook computer, a personal digital assistant (Personal Digital Assistant, PDA), a palmtop computer, a netbook, a super mobile personal computer (ultra-mobile personal computer, UMPC), mobile Internet device (Mobile Internet Device, MID), augmented reality (augmented reality, AR) / virtual reality (virtual reality, VR) equipment, robot, wearable device (Wearable Device) , vehicle equipment (VUE), pedestrian terminal (PUE), smart home (home equipment with wireless communication functions, such as refrigerators, TVs, washing machines or furniture, etc.), game consoles, personal computers (personal computers, PCs), teller machines or self-service Wearable devices include: smart watches, smart bracelets, smart headphones, smart glasses, smart jewelry (
  • the network side device 12 may include an access network device or a core network device, wherein the access network device 12 may also be called a radio access network device, a radio access network (Radio Access Network, RAN), a radio access network function or Wireless access network unit.
  • RAN Radio Access Network
  • the access network device 12 may include a base station, a WLAN access point, or a WiFi node, etc., and the base station may be called a Node B, an evolved Node B (eNB), an access point, a Base Transceiver Station (Base Transceiver Station, BTS), a radio Base station, radio transceiver, Basic Service Set (BSS), Extended Service Set (ESS), Home Node B, Home Evolved Node B, Transmitting Receiving Point (TRP) or all As long as the same technical effect is achieved, the base station is not limited to a specific technical vocabulary. It should be noted that in this embodiment of the application, only the base station in the NR system is used as an example for introduction, and The specific type of the base station is not limited.
  • Fig. 2 is a system block diagram of DFT-s-OFDM.
  • the transmitter introduces the M-point DFT operation before the N-point IFFT, so that the PAPR of the output signal at the transmitter is significantly reduced.
  • a PDCCH is composed of one or more Control Channel Elements (CCEs), and the number of CCEs that make up the PDCCH is called the aggregation level (Aggregation Level, AL) of the PDCCH.
  • CCEs Control Channel Elements
  • AL aggregation Level
  • a CCE consists of 6 Resource Element Groups (Resource Element Group, REG), where a REG refers to a resource block (Resource Block, RB) on an OFDM symbol.
  • REG Resource Element Group
  • RB resource block
  • a CORESET (Control Resource Set) consists of frequency domain RB and time domain consists of OFDM symbols.
  • Figure 3 Figure 4, and Figure 5 are schematic diagrams of CORESET with N_CORESET_symb values of 1, 2, and 3, respectively.
  • Fig. 6 is a schematic flowchart of an embodiment of a PDCCH transmission method provided by an embodiment of the present invention. As shown in Figure 6, the method provided in this embodiment includes:
  • Step 101 the network side device determines the target position of the first complex symbol sequence in the second complex symbol sequence, and places the first complex symbol sequence at the target position in the second complex symbol sequence; the first complex symbol sequence is used to carry the PDCCH The data;
  • the network side device may place the first complex symbol sequence with a length of M1 at the target position of the second complex symbol sequence with a length of M2, where the first complex symbol sequence is used to carry the transmission data of the PDCCH;
  • M1 and M2 are integers greater than 0, and M1 is greater than or equal to M2.
  • the target position may be a continuous or discontinuous position in the second complex symbol sequence.
  • step 101 can be realized by selecting and placing modules in FIG. 7 .
  • Step 102 the network side device performs DFT or transform precoding processing on the second complex symbol sequence to obtain a third complex symbol sequence
  • DFT or transform precoding Transform Precoding processing is performed on the second complex symbol sequence to obtain a third complex symbol sequence with a length of M2.
  • the length of the second complex symbol sequence is related to at least one of the following:
  • the number of subcarriers contained in the physical resource block PRB is the number of subcarriers contained in the physical resource block PRB.
  • the time-frequency resource used for transmitting the reference signal in the target time-frequency resource is the time-frequency resource used for transmitting the reference signal in the target time-frequency resource.
  • Step 103 the network side device maps the third complex symbol sequence to the target time-frequency resource and sends it.
  • the third complex symbol sequence obtained through DFT or transform precoding processing is mapped to the target time-frequency resource for transmission.
  • the target time-frequency resource is a time-frequency resource configuring a search space or a control resource set CORESET.
  • the data at (1) is the first complex symbol sequence with a length of M1
  • the data at (2) is the second complex number with a length of M2
  • the data at (3) is the third complex symbol sequence with a length of M2.
  • the lengths of the data marked (1), (2), and (3) in Figure 7 after being accumulated by related multiple OFDM symbols are: M1, M2, M2, at this time, the sequence length of DFT and IDFT on each OFDM symbol is:
  • the number of resource blocks RB occupied by the CORESET on the OFDM symbol is multiplied by the number of subcarriers contained in each RB;
  • the number of RBs occupied by the CORESET on the OFDM symbol is multiplied by the number of subcarriers contained in each RB, and then the number of resource units RE occupied by the reference signal is subtracted.
  • the network side equipment can transmit the PDCCH through the DFT-s-OFDM waveform, obtain a lower peak-to-average ratio (PAPR), and the terminal can correctly detect the PDCCH.
  • PAPR peak-to-average ratio
  • the network side device determines the target position of the first complex symbol sequence in the second complex symbol sequence, and places the first complex symbol sequence at the target position in the second complex symbol sequence;
  • the first complex symbol sequence is used to carry the data of the PDCCH;
  • DFT or conversion precoding processing is performed on the second complex symbol sequence to obtain a third complex symbol sequence, that is, a DFT-s-OFDM waveform;
  • the network side device converts the third complex symbol sequence
  • the symbol sequence is mapped to the target time-frequency resource and sent.
  • the network side device can transmit the PDCCH through the DFT-s-OFDM waveform to obtain a lower peak-to-average ratio PAPR, which can improve the power amplifier efficiency of the PA, thereby ensuring the output signal. power.
  • the target position is the position corresponding to the position sequence of the target PDCCH among the K candidate PDCCHs; the K is an integer greater than 0;
  • K may be as shown in Table 1:
  • step 102 when the search space or CORESET occupies multiple OFDMs, the network side device starts from the first OFDM symbol occupied by the search space or CORESET, and performs DFT or transmission on the second complex symbol sequence one by one OFDM symbol precoding processing to obtain a third complex symbol sequence.
  • step 101 determining the target position of the first complex symbol sequence in the second complex symbol sequence.
  • the network side device divides the position index of the second complex symbol sequence into X3 first position index groups
  • the network side device maps the position sequence of the target PDCCH to X2 first position index groups among the X3 first position index groups;
  • the network side device takes the positions corresponding to the X2 first position index groups as the target positions;
  • X2 and X3 are integers greater than 0, and X3 is greater than or equal to X2.
  • the network side device groups the position indices of the second complex symbol sequence to obtain X3 first position index groups, and maps the position sequence of the target PDCCH to the X2 first position indices in the X3 first position index groups
  • the sequence composed of the position index values contained in the X2 first position index groups is the position sequence of the target PDCCH
  • the position corresponding to the X2 first position index groups is the target position.
  • the network side device maps the position sequence of the target PDCCH to the X2 first position index groups among the X3 first position index groups based on the indexes of the target PDCCH in the K candidate PDCCHs.
  • the index of the target PDCCH in the K candidate PDCCHs is 2
  • K is 2
  • the index of the target PDCCH in the K candidate PDCCHs can start from 0, assuming that X3 is 6, X2 is 2, and X3 first position index groups
  • the numbers of are ⁇ 0, 1, 2, 3, 4, 5 ⁇ , and the position sequence of the target PDCCH can be mapped to the 4th and 5th first position index groups.
  • mapping the position sequence of the target PDCCH to X2 first position index groups among the X3 first position index groups is related to at least one of the following:
  • M1 is the length of the first complex symbol sequence.
  • the X2 first position index groups may be X2 consecutive position index groups among the X3 first position index groups.
  • X2 is related to the aggregation level.
  • the step "dividing the position index of the second complex symbol sequence into X3 first position index groups” specifically includes:
  • the network side device divides the position index of the second complex symbol sequence into X1 second position index groups
  • the network side device divides the X1 second location index groups into X3 first location index groups
  • X1 is greater than or equal to X3.
  • the position index (for example, 0 ⁇ (M2-1)) of the second complex symbol sequence is divided into X1 second position index groups; this step is equivalent to dividing REG in the time domain, and then divides the X1 second position index groups
  • the position index group is divided into X3 first position index groups, and this step is equivalent to dividing the CCEs in the time domain.
  • the position index of the second complex symbol sequence into X1 second position index groups, it is equivalent to dividing REG in the time domain; further, dividing the X1 second position index groups into X3 second position index groups
  • a position index group is equivalent to dividing CCEs in the time domain, and then mapping the position sequence of the target PDCCH to X2 first position index groups in the X3 first position index groups, that is, some CCEs in the time domain, that is, the target At the position, it is realized that the target position in the second sequence of complex symbols is placed in the first sequence of complex symbols.
  • FIG. 8 shows two methods for dividing the position indices of the second complex symbol sequence into X1 second position index groups.
  • X1 second position index groups may be divided in the following manner:
  • the network side device continuously divides the position index of the second complex symbol sequence into X1' second position index groups within the range of each OFDM symbol occupied by the search space or CORESET; or,
  • the network side device divides the position index of the second complex symbol sequence into X1' second position index groups in a uniformly dispersed manner within each OFDM symbol range occupied by the search space or CORESET;
  • the X1 second position index groups are obtained from the corresponding X1' second position index groups within the range of each OFDM symbol in the multiple OFDM symbols occupied by the search space or CORESET.
  • the position indices (for example, 0 ⁇ (M2-1)) of the second complex symbol sequence are divided into X1 second position index groups, for example, in a continuous concentration manner or in a uniform dispersion manner.
  • the second position index group is divided in a uniformly dispersed manner, so that the complex symbols of the candidate PDCCH are dispersed as much as possible in time, so as to obtain time diversity, and better performance can still be obtained when the wireless channel has fast fading. transmission performance.
  • the size of each first location index group, the size of each second location index group, or the quantities X1, X2, and X3 are predefined by the protocol or configured by the network side device.
  • the network side device may perform step 101 through an interleaver, where the position index of the second complex symbol sequence may be divided into X1 second position index groups by the interleaver, and the X1 second position index groups, Divide into X3 first position index groups, map the position sequence of the target PDCCH to the X2 first position index groups in the X3 first position index groups, and use the positions corresponding to the X2 first position index groups as targets Location.
  • an "Interleave” (Interleave) can be used at the sending end to address, and a “De-Interleave” (De-Interleave) can be used to address at the receiving end, such as Figure 9 shows.
  • the interleaver in FIG. 9 is an implementation of selecting a location and placing a module in FIG. 7
  • the deinterleaver in FIG. 9 is an implementation of selecting a location and extracting a module in FIG. 7 .
  • dividing the first position index group may be implemented in the following manner:
  • the network side device numbers the X1 second location index groups
  • the network side device divides the X1 second location index groups into X3 first and second location index groups based on the numbers of the second location index groups.
  • the second position index group is numbered. As shown in FIG. 10 , the number of the second position index group in OFDM is from 0-5.
  • the second position index groups are divided into X3 first position index groups in such a way that the numbers of the second position index groups are continuous and the numbers are uniform.
  • the numbers of the first position index group are numbered according to the order of the minimum value (or maximum value) of the numbers of the second position index group contained in the first position index group.
  • the first position index group 0 includes the second position index group 0 ⁇ (X1/X2 ⁇ 1).
  • the following method may be used for numbering the second position index group:
  • the network side device numbers the second position index group according to the OFDM symbol priority within the range of multiple OFDM symbols occupied by the search space or the CORESET;
  • the network side device numbers the second position index groups according to the order of the minimum value or the maximum value of the position indexes contained in each second position index group within the range of each OFDM symbol occupied by the search space or the CORESET.
  • the second position index group is numbered according to the priority of OFDM symbols; Within the range of symbols, the second position index group is numbered according to the priority of OFDM symbols; Groups are numbered. Within the range of each OFDM symbol occupied by the search space or CORESET, the numbers of the second position index groups, according to the lowest index contained in each second position index group, that is, the minimum value of the position index (or the highest index, that is, the maximum value of the position index Value) are numbered in order of magnitude.
  • the second position index groups are numbered according to the order of the minimum value or the maximum value of the position indexes contained in each second position index group, for example, Assume that the second position index group contains 12 position indices, the position indices contained in the second position index group 0 are 0-11, the position indices contained in the second position index group 2 are 24-35, and the minimum value is 0 and 24, the maximum value is 11 and 35, so the number of the second position index group 0 is smaller than the number of the second position index group 2.
  • the OFDM symbols Z0, Z1, and Z2 in FIG. 10-FIG. 12 may be continuous or discontinuous.
  • the second position index group is numbered according to the priority of OFDM symbols; within the range of each OFDM symbol occupied by the search space or CORESET, according to each The order of the minimum value or the maximum value of the position indexes contained in the second position index group is used to number the second position index group, and the implementation complexity is low.
  • the length of the second complex symbol sequence is any of the following:
  • Nf represents the number of resource blocks RB occupied by the search space or CORESET, Indicates the number of subcarriers contained in each RB, L1 indicates the number of OFDM symbols occupied by the search space or CORESET, and Nr indicates the number of resource elements RE used to transmit reference signals in the time-frequency resource occupied by the search space or CORESET.
  • the length of the second complex symbol sequence may be any of the following:
  • the number of RBs occupied by the search space is multiplied by the number of subcarriers contained in each RB, and then multiplied by the number of OFDM symbols occupied by the search space; or,
  • the number of RBs occupied by CORESET is multiplied by the number of subcarriers contained in each RB, and then multiplied by the number of OFDM symbols occupied by CORESET; or,
  • the number of RBs occupied by CORESET is multiplied by the number of subcarriers contained in each RB, multiplied by the number of OFDM symbols occupied by CORESET, and then subtracted from the number of resource units RE used to transmit reference signals in the time-frequency resources occupied by CORESET ;
  • the PDCCH transmission method also includes:
  • the network side device performs beamforming precoding on the target time-frequency resource with X4 RBs as the precoding granularity; X4 is an integer greater than 0; wherein, the same precoding vector is used in the X4 RBs.
  • the network side device when it transmits the PDCCH on the target time-frequency resource, it can use X4 RBs as the precoding granularity to perform beamforming precoding on the DFT-s-OFDM waveform, and use it within every X4 RBs
  • the same precoding vector facilitates decoding at the terminal side.
  • X4 is related to Nf, or related to the search space or other parameters of CORESET, for example, the number of consecutive PRBs in the frequency domain.
  • the precoding granularity is designed for the RB resources occupied by the search space, so as to achieve a balance between precoding flexibility and channel estimation accuracy.
  • FIG. 13 is the second schematic flow diagram of the PDCCH transmission method provided by the embodiment of the present application. As shown in Figure 13, the method provided in this embodiment includes:
  • Step 201 the terminal receives the fourth complex symbol sequence on the target time-frequency resource, and performs inverse discrete Fourier transform IDFT or conversion precoding inverse operation on the fourth complex symbol sequence to obtain the fifth complex symbol sequence;
  • Step 202 the terminal determines the position sequences of K candidate PDCCHs; K is an integer greater than 0;
  • Step 203 the terminal extracts a sixth complex symbol sequence from the fifth complex symbol sequence based on the position sequences of the K candidate PDCCHs;
  • Step 204 the terminal performs blind detection based on the sixth complex symbol sequence.
  • the terminal receives the fourth complex symbol sequence on the target time-frequency resource, and the network side device may or may not send the PDCCH on the target time-frequency resource received by the terminal.
  • the fourth complex symbol sequence may be the third complex symbol sequence.
  • steps 202 and 203 can be realized by the module of selecting and extracting the position in FIG. 7 .
  • the target time-frequency resource is a time-frequency resource configuring a search space or a control resource set CORESET.
  • the terminal determines position sequences of K candidate PDCCHs, including:
  • the terminal divides the position index of the fifth complex symbol sequence into X3 first position index groups
  • the terminal determines K groups of first position index groups among the X3 first position index groups based on the K candidate PDCCHs; each group of first position index groups in the K groups of first position index groups includes X2 a first position index group;
  • the terminal determines the K groups of first position index groups as the position sequences of the K candidate PDCCHs
  • X2 and X3 are integers greater than 0, and X3 is greater than or equal to X2.
  • the terminal divides the position index of the fifth complex symbol sequence into X3 first position index groups, including:
  • the terminal divides the position index of the fifth complex symbol sequence into X1 second position index groups
  • the terminal divides the X1 second location index groups into the X3 first location index groups
  • said X1 is greater than or equal to X3.
  • the terminal divides the position index of the fifth complex symbol sequence into X1 second position index groups, including:
  • the terminal continuously divides the position index of the fifth complex symbol sequence into X1' second position index groups within the range of each OFDM symbol occupied by the search space or CORESET; or,
  • the terminal divides the position index of the fifth complex symbol sequence into X1' second position index groups in a uniformly dispersed manner within each OFDM symbol range occupied by the search space or CORESET;
  • the X1 second position index groups are obtained from the X1' second position index groups corresponding to each of the OFDM symbol ranges in the plurality of OFDM symbols occupied by the search space or CORESET.
  • the terminal determines position sequences of K candidate PDCCHs, including:
  • the terminal determines position sequences of K candidate PDCCHs through a deinterleaver
  • the terminal extracts a sixth complex symbol sequence from the fifth complex symbol sequence based on the position sequences of the K candidate PDCCHs, including:
  • the terminal extracts the sixth complex symbol sequence from the fifth complex symbol sequence based on the position sequences of the K candidate PDCCHs through a deinterleaver.
  • the terminal divides the X1 second location index groups into the X3 first location index groups, including:
  • the terminal divides the X1 second location index groups into the X3 first location index groups based on numbers of the second location index groups.
  • the terminal numbers the X1 second location index groups including:
  • the terminal sorts the second position index according to the order of the minimum value or the maximum value of the position index contained in each of the second position index groups Groups are numbered.
  • the terminal determines K groups of first position index groups among the X3 first position index groups based on the K candidate PDCCHs, and is related to at least one of the following:
  • performing the inverse discrete Fourier transform IDFT or transform precoding inverse operation on the fourth complex symbol sequence to obtain the fifth complex symbol sequence includes:
  • the terminal starts from the first OFDM symbol occupied by the search space or CORESET, and performs IDFT or conversion precoding inversion on the fourth complex symbol sequence one by one OFDM symbols operation to obtain the fifth complex symbol sequence.
  • the length of the fifth complex symbol sequence is related to at least one of the following:
  • the number of subcarriers contained in the physical resource block PRB is the number of subcarriers contained in the physical resource block PRB.
  • Time-frequency resources used for transmitting reference signals in the target time-frequency resources are used for transmitting reference signals in the target time-frequency resources.
  • the length of the fifth complex symbol sequence is any of the following:
  • Nf represents the number of resource blocks RB occupied by the search space or CORESET, Indicates the number of subcarriers contained in each RB, L1 indicates the number of OFDM symbols occupied by the search space or CORESET, and Nr indicates the number of resource elements RE used to transmit reference signals in the time-frequency resource occupied by the search space or CORESET.
  • the terminal may assume (or assume) that the precoding granularity is X5 consecutive RBs in the frequency domain; X5 is an integer greater than 0.
  • the terminal may assume (assume) that the same precoding vector is used in the X5 RBs.
  • X5 may be the same as or different from X4, for example, X5 may be greater than X4.
  • At least one of the following is configured by the network side device or predefined by the protocol:
  • the X5 is configured by a network-side device or predefined by a protocol.
  • the PDCCH transmission method provided in the embodiment of the present application may be executed by a PDCCH transmission device.
  • the PDCCH transmission device provided in the embodiment of the present application is described by taking the PDCCH transmission device executing the PDCCH transmission method as an example.
  • Fig. 14 is one of the structural schematic diagrams of the PDCCH transmission device provided by this application. As shown in Figure 14, the PDCCH transmission device provided in this embodiment includes:
  • a processing module 210 configured to determine a target position of the first complex symbol sequence in the second complex symbol sequence, and place the first complex symbol sequence at the target position in the second complex symbol sequence;
  • a sequence of complex symbols is used to carry data of the PDCCH;
  • the sending module 220 is used for the network side device to map the third complex symbol sequence onto the target time-frequency resource and send it.
  • the target position is a position corresponding to the position sequence of the target PDCCH among the K candidate PDCCHs; the K is an integer greater than 0;
  • the target time-frequency resource is a time-frequency resource configuring a search space or a control resource set CORESET.
  • processing module 210 is specifically configured to:
  • the network side device uses the location corresponding to the X2 first location index groups as the target location;
  • X2 and X3 are integers greater than 0, and X3 is greater than or equal to X2.
  • processing module 210 is specifically configured to:
  • said X1 is greater than or equal to X3.
  • processing module 210 is specifically configured to:
  • the position index of the second complex symbol sequence is continuously divided into X1' second position index groups; or,
  • the position index of the second complex symbol sequence is divided into X1' second position index groups in a uniformly dispersed manner;
  • the X1 second position index groups are obtained from the X1' second position index groups corresponding to each of the OFDM symbol ranges in the plurality of OFDM symbols occupied by the search space or CORESET.
  • processing module 210 is specifically configured to:
  • processing module 210 is specifically configured to:
  • processing module 210 is specifically configured to:
  • processing module 210 is specifically configured to:
  • mapping the position sequence of the target PDCCH to the X2 first position index groups in the X3 first position index groups is related to at least one of the following:
  • the length of the second complex symbol sequence is related to at least one of the following:
  • the number of subcarriers contained in the physical resource block PRB is the number of subcarriers contained in the physical resource block PRB.
  • Time-frequency resources used for transmitting reference signals in the target time-frequency resources are used for transmitting reference signals in the target time-frequency resources.
  • the length of the second complex symbol sequence is any of the following:
  • Nf represents the number of resource blocks RB occupied by the search space or CORESET, Indicates the number of subcarriers contained in each RB, L1 indicates the number of OFDM symbols occupied by the search space or CORESET, and Nr indicates the number of resource elements RE used to transmit reference signals in the time-frequency resource occupied by the search space or CORESET.
  • processing module 210 is also used for:
  • processing module 210 is specifically configured to:
  • search space or CORESET occupies multiple OFDMs, starting from the first OFDM symbol occupied by the search space or CORESET, DFT or transform precoding is performed on the second complex symbol sequence one by one to obtain the Describe the third sequence of complex symbols.
  • At least one of the following is configured by the network side device or predefined by the protocol:
  • the X4 is configured by a network side device or predefined by a protocol.
  • the device in this embodiment can be used to execute the method in any of the aforementioned network-side method embodiments, and its specific implementation process and technical effects are similar to those in the network-side method embodiments. For details, please refer to the network-side method embodiments. A detailed introduction will not be repeated here.
  • FIG. 15 is the second schematic diagram of the structure of the PDCCH transmission device provided by the present application. As shown in Figure 15, the PDCCH transmission device provided in this embodiment includes:
  • a receiving module 310 configured to receive the fourth complex symbol sequence on the target time-frequency resource
  • a processing module 320 configured to perform an inverse discrete Fourier transform IDFT or a conversion precoding inverse operation on the fourth complex symbol sequence to obtain a fifth complex symbol sequence;
  • the processing module 320 is also used to determine the position sequences of K candidate PDCCHs; the K is an integer greater than 0;
  • Blind detection is performed based on the sixth complex symbol sequence.
  • the target time-frequency resource is a time-frequency resource configuring a search space or a control resource set CORESET.
  • processing module 320 is specifically configured to:
  • each group of first position index groups in the K groups of first position index groups includes X2 first position index groups position index group;
  • X2 and X3 are integers greater than 0, and X3 is greater than or equal to X2.
  • processing module 320 is specifically configured to:
  • said X1 is greater than or equal to X3.
  • processing module 320 is specifically configured to:
  • the position index of the fifth complex symbol sequence is continuously divided into X1' second position index groups; or,
  • the position index of the fifth complex symbol sequence is divided into X1' second position index groups in a uniformly dispersed manner;
  • the X1 second position index groups are obtained from the X1' second position index groups corresponding to each of the OFDM symbol ranges in the plurality of OFDM symbols occupied by the search space or CORESET.
  • processing module 320 is specifically configured to:
  • processing module 320 is specifically configured to:
  • processing module 320 is specifically configured to:
  • the second position index group is numbered according to the OFDM symbol priority mode
  • the terminal determines K groups of first position index groups among the X3 first position index groups based on the K candidate PDCCHs, and is related to at least one of the following:
  • processing module 320 is specifically configured to:
  • the terminal starts from the first OFDM symbol occupied by the search space or CORESET, and performs IDFT or conversion precoding inversion on the fourth complex symbol sequence one by one OFDM symbols operation to obtain the fifth complex symbol sequence.
  • the length of the fifth complex symbol sequence is related to at least one of the following:
  • the number of subcarriers contained in the physical resource block PRB is the number of subcarriers contained in the physical resource block PRB.
  • Time-frequency resources used for transmitting reference signals in the target time-frequency resources are used for transmitting reference signals in the target time-frequency resources.
  • the length of the fifth complex symbol sequence is any of the following:
  • Nf represents the number of resource blocks RB occupied by the search space or CORESET, Indicates the number of subcarriers contained in each RB, L1 indicates the number of OFDM symbols occupied by the search space or CORESET, and Nr indicates the number of resource elements RE used to transmit reference signals in the time-frequency resource occupied by the search space or CORESET.
  • the processing module 320 is further configured to: determine that the precoding granularity is X5 consecutive PRBs in the frequency domain; X5 is an integer greater than 0.
  • At least one of the following is configured by the network side device or predefined by the protocol:
  • the X5 is configured by a network-side device or predefined by a protocol.
  • the device in this embodiment can be used to execute the method in any one of the foregoing terminal-side method embodiments, and its specific implementation process and technical effect are similar to those in the terminal-side method embodiment.
  • the terminal-side method embodiment please refer to the terminal-side method embodiment. A detailed introduction will not be repeated here.
  • the PDCCH transmission apparatus in the embodiment of the present application may be an electronic device, such as an electronic device with an operating system, or a component in the electronic device, such as an integrated circuit or a chip.
  • the electronic device may be a terminal, or other devices other than the terminal.
  • the terminal may include, but not limited to, the types of terminal 11 listed above, and other devices may be servers, Network Attached Storage (NAS), etc., which are not specifically limited in this embodiment of the present application.
  • NAS Network Attached Storage
  • the PDCCH transmission device provided in the embodiment of the present application can realize various processes realized by the method embodiments in FIG. 6 to FIG. 13 and achieve the same technical effect. To avoid repetition, details are not repeated here.
  • this embodiment of the present application also provides a communication device 1600, including a processor 1601 and a memory 1602.
  • the memory 1602 stores programs or instructions that can run on the processor 1601, such as
  • the communication device 1600 is a terminal, when the program or instruction is executed by the processor 1601, each step of the above PDCCH transmission method embodiment can be implemented, and the same technical effect can be achieved.
  • the communication device 1600 is a network side device, when the program or instruction is executed by the processor 1601, each step of the above PDCCH transmission method embodiment can be achieved, and the same technical effect can be achieved. To avoid repetition, details are not repeated here.
  • the embodiment of the present application also provides a terminal, including a processor and a communication interface, where the communication interface is used to receive a PDCCH sent by a network side device; wherein, the PDCCH includes a second complex symbol sequence mapped to a target time-frequency resource , the second complex symbol sequence number is obtained by performing DFT or transform precoding on the first complex symbol sequence; the target position of the first complex symbol sequence includes a third complex symbol sequence, and the third complex symbol sequence The length is less than or equal to the length of the first complex symbol sequence; the third complex symbol sequence is used to carry the transmission data of the PDCCH; the processor is used to obtain the transmission data of the PDCCH at the target position.
  • FIG. 17 is a schematic diagram of a hardware structure of a terminal implementing an embodiment of the present application.
  • the terminal 1000 includes but not limited to: a radio frequency unit 1001, a network module 1002, an audio output unit 1003, an input unit 1004, a sensor 1005, a display unit 1006, a user input unit 1007, an interface unit 1008, a memory 1009, and a processor 1010, etc. at least some of the components.
  • the terminal 1000 can also include a power supply (such as a battery) for supplying power to various components, and the power supply can be logically connected to the processor 1010 through the power management system, so as to manage charging, discharging, and power consumption through the power management system. Management and other functions.
  • a power supply such as a battery
  • the terminal structure shown in FIG. 17 does not constitute a limitation on the terminal.
  • the terminal may include more or fewer components than shown in the figure, or combine some components, or arrange different components, which will not be repeated here.
  • the input unit 1004 may include a graphics processing unit (Graphics Processing Unit, GPU) 10041 and a microphone 10042, and the graphics processor 10041 can be used by the image capture device (such as the image data of the still picture or video obtained by the camera) for processing.
  • the display unit 1006 may include a display panel 10061, and the display panel 10061 may be configured in the form of a liquid crystal display, an organic light emitting diode, or the like.
  • the user input unit 1007 includes at least one of a touch panel 10071 and other input devices 10072 .
  • the touch panel 10071 is also called a touch screen.
  • the touch panel 10071 may include two parts, a touch detection device and a touch controller.
  • Other input devices 10072 may include, but are not limited to, physical keyboards, function keys (such as volume control buttons, switch buttons, etc.), trackballs, mice, and joysticks, which will not be repeated here.
  • the radio frequency unit 1001 can transmit the downlink data received from the network side device to the processor 1010 for processing; in addition, the radio frequency unit 1001 can send the uplink data to the network side device to send the uplink data.
  • the radio frequency unit 1001 includes, but is not limited to, an antenna, at least one amplifier, a transceiver, a coupler, a low noise amplifier, a duplexer, and the like.
  • the memory 1009 can be used to store software programs or instructions as well as various data.
  • the memory 1009 may mainly include a first storage area for storing programs or instructions and a second storage area for storing data, wherein the first storage program or instruction area may store an operating system, an application program or instructions required by at least one function (such as a voice playback function, image playback function, etc.), etc.
  • memory 1009 may include volatile memory or nonvolatile memory, or, memory 1009 may include both volatile and nonvolatile memory.
  • Non-volatile memory can also include non-volatile memory, wherein, the non-volatile memory can be read-only memory (Read-Only Memory, ROM), programmable read-only memory (Programmable ROM, PROM), programmable Erasable programmable read-only memory (Erasable PROM, EPROM), electrically erasable programmable read-only memory (Electrically EPROM, EEPROM) or flash memory.
  • ROM Read-Only Memory
  • PROM programmable read-only memory
  • Erasable PROM Erasable PROM
  • EPROM programmable Erasable programmable read-only memory
  • Electrically erasable programmable read-only memory Electrically erasable programmable read-only memory
  • EEPROM electrically erasable programmable read-only memory
  • Volatile memory can be random access memory (Random Access Memory, RAM), static random access memory (Static RAM, SRAM), dynamic random access memory (Dynamic RAM, DRAM), synchronous dynamic random access memory (Synchronous DRAM, SDRAM), double data rate synchronous dynamic random access memory (Double Data Rate SDRAM, DDRSDRAM), enhanced synchronous dynamic random access memory (Enhanced SDRAM, ESDRAM), synchronous connection dynamic random access memory (Synch link DRAM , SLDRAM) and Direct Memory Bus Random Access Memory (Direct Rambus RAM, DRRAM).
  • RAM Random Access Memory
  • SRAM static random access memory
  • DRAM dynamic random access memory
  • DRAM synchronous dynamic random access memory
  • SDRAM double data rate synchronous dynamic random access memory
  • Double Data Rate SDRAM Double Data Rate SDRAM
  • DDRSDRAM double data rate synchronous dynamic random access memory
  • Enhanced SDRAM, ESDRAM enhanced synchronous dynamic random access memory
  • Synch link DRAM , SLDRAM
  • Direct Memory Bus Random Access Memory Direct Rambus
  • the processor 1010 may include one or more processing units; optionally, the processor 1010 may integrate an application processor and a modem processor, wherein the application processor mainly processes the operating system, user interface, application programs or instructions, etc.
  • modem processors mainly process wireless communication signals, such as baseband processors. It can be understood that the foregoing modem processor may not be integrated into the processor 1010 .
  • the radio frequency unit 1001 is used for the fourth complex symbol sequence on the target time-frequency resource
  • the processor 1010 is configured to perform an inverse discrete Fourier transform IDFT or a conversion precoding inverse operation on the fourth complex symbol sequence to obtain a fifth complex symbol sequence;
  • the processor 1010 is further configured to determine position sequences of K candidate PDCCHs; the K is an integer greater than 0;
  • Blind detection is performed based on the sixth complex symbol sequence.
  • the terminal determines the position sequences of the K candidate PDCCHs, extracts the sixth complex symbol sequence from the fifth complex symbol sequence, and performs blind detection based on the sixth complex symbol sequence to obtain the
  • the network side device uses the DFT-s-OFDM waveform to transmit the PDCCH, which can obtain a lower peak-to-average ratio PAPR and improve the power amplifier efficiency of the PA, thereby ensuring the power of the output signal.
  • the target time-frequency resource is a time-frequency resource configuring a search space or a control resource set CORESET.
  • processor 1010 is specifically configured to:
  • each group of first position index groups in the K groups of first position index groups includes X2 first position index groups position index group;
  • X2 and X3 are integers greater than 0, and X3 is greater than or equal to X2.
  • processor 1010 is specifically configured to:
  • said X1 is greater than or equal to X3.
  • the position index of the fifth complex symbol sequence into X1 second position index groups, it is equivalent to dividing REG in the time domain; further, dividing the X1 second position index groups into X3 second position index groups A position index group is equivalent to dividing the CCE in the time domain, and then based on the K candidate PDCCHs, determining K groups of first position index groups in the X3 first position index groups, realizing the determination of K candidate PDCCHs position sequences, and extract the sixth complex symbol sequence from the fifth complex symbol sequence based on the position sequences of the K candidate PDCCHs, so that the implementation complexity is low.
  • processor 1010 is specifically configured to:
  • the position index of the fifth complex symbol sequence is continuously divided into X1' second position index groups; or,
  • the position index of the fifth complex symbol sequence is divided into X1' second position index groups in a uniformly dispersed manner;
  • the X1 second position index groups are obtained from the X1' second position index groups corresponding to each of the OFDM symbol ranges in the plurality of OFDM symbols occupied by the search space or CORESET.
  • processor 1010 is specifically configured to:
  • processor 1010 is specifically configured to:
  • processor 1010 is specifically configured to:
  • the second position index group is numbered according to the priority of OFDM symbols; within the range of each OFDM symbol occupied by the search space or CORESET, according to each The order of the minimum value or the maximum value of the position indexes contained in the second position index group is used to number the second position index group, and the implementation complexity is low.
  • determining K groups of first position index groups among the X3 first position index groups is related to at least one of the following:
  • the processor 1010 is specifically configured to: in the case that the search space or the CORESET occupies multiple OFDMs, the terminal starts from the first OFDM symbol occupied by the search space or the CORESET, and compares all the OFDM symbols one by one. Perform IDFT or transform precoding inverse operation on the fourth complex symbol sequence to obtain the fifth complex symbol sequence.
  • the length of the fifth complex symbol sequence is related to at least one of the following:
  • the number of subcarriers contained in the physical resource block PRB is the number of subcarriers contained in the physical resource block PRB.
  • Time-frequency resources used for transmitting reference signals in the target time-frequency resources are used for transmitting reference signals in the target time-frequency resources.
  • the length of the fifth complex symbol sequence is any of the following:
  • Nf represents the number of resource blocks RB occupied by the search space or CORESET, Indicates the number of subcarriers contained in each RB, L1 indicates the number of OFDM symbols occupied by the search space or CORESET, and Nr indicates the number of resource elements RE used to transmit reference signals in the time-frequency resource occupied by the search space or CORESET.
  • the processor 1010 is further configured to: determine that the precoding granularity is X5 consecutive PRBs in the frequency domain; X5 is an integer greater than 0.
  • At least one of the following is configured by the network side device or predefined by the protocol:
  • the X5 is configured by a network-side device or predefined by a protocol.
  • the embodiment of the present application also provides a network side device, including a processor and a communication interface, and the processor is used to perform DFT or conversion precoding processing on the first complex symbol sequence to obtain a second complex symbol sequence; the first complex symbol sequence
  • the target position includes a third complex symbol sequence, the length of the third complex symbol sequence is less than or equal to the length of the first complex symbol sequence; the third complex symbol sequence is used to carry the transmission data of the PDCCH, and
  • the second complex symbol sequence is mapped to a target time-frequency resource, and the communication interface is used to send the second complex symbol sequence mapped to the target time-frequency resource.
  • the network-side device embodiment corresponds to the above-mentioned network-side device method embodiment, and each implementation process and implementation mode of the above-mentioned method embodiment can be applied to this network-side device embodiment, and can achieve the same technical effect.
  • the embodiment of the present application also provides a network side device.
  • the network side device 700 includes: an antenna 71 , a radio frequency device 72 , a baseband device 73 , a processor 75 and a memory 75 .
  • the antenna 71 is connected to a radio frequency device 72 .
  • the radio frequency device 72 receives information through the antenna 71, and sends the received information to the baseband device 73 for processing.
  • the baseband device 73 processes the information to be sent and sends it to the radio frequency device 72
  • the radio frequency device 72 processes the received information and sends it out through the antenna 71 .
  • the above frequency band processing device may be located in the baseband device 73 , and the method performed by the network side device in the above embodiment may be implemented in the baseband device 73 , and the baseband device 73 includes a baseband processor 75 and a memory 75 .
  • the baseband device 73 may include at least one baseband board, for example, a plurality of chips are arranged on the baseband board, as shown in FIG.
  • the program executes the network device operations shown in the above method embodiments.
  • the network side equipment of the baseband device 73 may also include a network interface 76 for exchanging information with the radio frequency device 72, and the interface is, for example, a common public radio interface (CPRI for short).
  • CPRI common public radio interface
  • the network-side device 700 in the embodiment of the present invention further includes: instructions or programs stored in the memory 75 and operable on the processor 75, and the processor 75 calls the instructions or programs in the memory 75 to execute each program shown in FIG.
  • the method of module execution achieves the same technical effect, so in order to avoid repetition, it is not repeated here.
  • the embodiment of the present application also provides a readable storage medium, on which a program or instruction is stored, and when the program or instruction is executed by a processor, each process of the above-mentioned PDCCH transmission method embodiment is realized, and the same To avoid repetition, the technical effects will not be repeated here.
  • the processor is the processor in the terminal described in the foregoing embodiments.
  • the readable storage medium includes a computer-readable storage medium, such as a computer read-only memory ROM, a random access memory RAM, a magnetic disk or an optical disk, and the like.
  • the embodiment of the present application further provides a chip, the chip includes a processor and a communication interface, the communication interface is coupled to the processor, and the processor is used to run programs or instructions to implement the above PDCCH transmission method embodiment
  • the chip includes a processor and a communication interface
  • the communication interface is coupled to the processor
  • the processor is used to run programs or instructions to implement the above PDCCH transmission method embodiment
  • the chip mentioned in the embodiment of the present application may also be called a system-on-chip, a system-on-chip, a system-on-a-chip, or a system-on-a-chip.
  • the embodiment of the present application further provides a computer program/program product, the computer program/program product is stored in a storage medium, and the computer program/program product is executed by at least one processor to implement the above PDCCH transmission method embodiment
  • the computer program/program product is stored in a storage medium, and the computer program/program product is executed by at least one processor to implement the above PDCCH transmission method embodiment
  • the embodiment of the present application also provides a communication system, including: a terminal and a network-side device, the terminal can be used to perform the steps of the PDCCH transmission method as described above, and the network-side device can be used to perform the PDCCH transmission as described above method steps.
  • the methods of the above embodiments can be implemented by means of software plus a necessary general-purpose hardware platform, and of course also by hardware, but in many cases the former is better implementation.
  • the technical solution of the present application can be embodied in the form of computer software products, which are stored in a storage medium (such as ROM/RAM, magnetic disk, etc.) , CD-ROM), including several instructions to make a terminal (which may be a mobile phone, a computer, a server, an air conditioner, or a network device, etc.) execute the methods described in the various embodiments of the present application.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Physics & Mathematics (AREA)
  • Discrete Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Mathematical Physics (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请公开了一种物理下行链路控制信道PDCCH传输方法、终端及网络侧设备,属于通信技术领域,本申请实施例的PDCCH传输方法包括:网络侧设备确定第一复数符号序列在第二复数符号序列中的目标位置,并在第二复数符号序列中的目标位置放置第一复数符号序列;第一复数符号序列用于携带 PDCCH的数据(101);网络侧设备对第二复数符号序列进行DFT或者转换预编码处理,得到第三复数符号序列(102);网络侧设备将第三复数符号序列映射到目标时频资源上并发送(103)。

Description

PDCCH传输方法、终端及网络侧设备
相关申请的交叉引用
本申请要求于2022年1月11提交的申请号为202210028242.6,发明名称为“PDCCH传输方法、终端及网络侧设备”的中国专利申请的优先权,其通过引用方式全部并入本申请。
技术领域
本申请属于通信技术领域,具体涉及一种PDCCH传输方法、终端及网络侧设备。
背景技术
为了支持更高的传输速率、更广泛的业务类型,同时考虑到52.6GHz以上频段的频率资源更丰富,需要对52.6GHz以上频段的移动通信做进一步的研究。在无线通信中,对于一定的半导体技术而言,射频功放器件(PA)的最大输出功率随着无线信号的频率增加而降低。也就是说,与中低频移动通信相比,在高频通信系统中(例如fc>52.6GHz),PA的最大输出功率较低。所以,需要采用“峰均比”较低的信号波形,以便提高PA的功放效率,从而保证输出信号的功率。
在5G NR系统中,上行UL采用循环前缀-正交频分复用(Cyclic Prefix Orthogonal Frequency Division Multiplexing,CP-OFDM)波形或者离散傅里叶变换-扩展-正交频分复用(Discrete Fourier Transform spread Orthogonal Frequency Division Multiplexing,DFT-s-OFDM)波形,下行DL采用CP-OFDM波形。与CP-OFDM波形相比,DFT-s-OFDM波形的峰均比更低。与单载波频域均衡(Single Carrier Frequency Domain Equalization,SC-FDE)波形相比,DFT-s-OFDM波形可以为不同的用户分配不同的子载波,实现多用户通信。因此,在高频通信系统中,如何在DL使用DFT-s-OFDM波形来传输物理下行链路控制信道PDCCH,是本领域技术人员亟需解决的技术问题。
发明内容
本申请实施例提供一种PDCCH传输方法、终端及网络侧设备,能够解决如何使用DFT-s-OFDM波形来传输物理下行链路控制信道PDCCH的问题。
第一方面,提供了一种PDCCH传输方法,应用于网络侧设备,该方法包括:
网络侧设备确定第一复数符号序列在第二复数符号序列中的目标位置,并在所述 第二复数符号序列中的所述目标位置放置所述第一复数符号序列;所述第一复数符号序列用于携带PDCCH的数据;
所述网络侧设备对所述第二复数符号序列进行DFT或者转换预编码处理,得到第三复数符号序列;
所述网络侧设备将所述第三复数符号序列映射到目标时频资源上并发送。
第二方面,提供了一种PDCCH传输方法,应用于终端,该方法包括:
终端接收目标时频资源上的第四复数符号序列,并对所述第四复数符号序列进行离散傅里叶逆变换IDFT或者转换预编码逆运算,得到第五复数符号序列;
所述终端确定K个候选PDCCH的位置序列;所述K为大于0的整数;
所述终端基于所述K个候选PDCCH的位置序列,从所述第五复数符号序列中提取出第六复数符号序列;
所述终端基于所述第六复数符号序列进行盲检。
第三方面,提供了一种PDCCH传输装置,包括:
处理模块,用于确定第一复数符号序列在第二复数符号序列中的目标位置,并在所述第二复数符号序列中的所述目标位置放置所述第一复数符号序列;所述第一复数符号序列用于携带PDCCH的数据;
对所述第二复数符号序列进行DFT或者转换预编码处理,得到第三复数符号序列;
发送模块,用于将所述第二复数符号序列映射到目标时频资源上并发送。
第四方面,提供了一种PDCCH传输装置,包括:
接收模块,用于接收目标时频资源上的第四复数符号序列;
处理模块,用于对所述第四复数符号序列进行离散傅里叶逆变换IDFT或者转换预编码逆运算,得到第五复数符号序列;
所述处理模块,还用于确定K个候选PDCCH的位置序列;所述K为大于0的整数;
基于所述K个候选PDCCH的位置序列,从所述第五复数符号序列中提取出所述第六复数符号序列;
基于所述第六复数符号序列进行盲检。
第五方面,提供了一种终端,该终端包括处理器和存储器,所述存储器存储可在所述处理器上运行的程序或指令,所述程序或指令被所述处理器执行时实现如第二方面所述的方法的步骤。
第六方面,提供了一种终端,包括处理器及通信接口,其中,所述通信接口用于接收目标时频资源上的第四复数符号序列,并对所述第四复数符号序列进行离散傅里叶逆变换IDFT或者转换预编码逆运算,得到第五复数符号序列;所述处理器用于确定K个候选PDCCH的位置序列;所述K为大于0的整数;基于所述K个候选PDCCH的位置序列,从所述第五复数符号序列中提取出第六复数符号序列;基于所述第六复 数符号序列进行盲检。
第七方面,提供了一种网络侧设备,该网络侧设备包括处理器和存储器,所述存储器存储可在所述处理器上运行的程序或指令,所述程序或指令被所述处理器执行时实现如第一方面所述的方法的步骤。
第八方面,提供了一种网络侧设备,包括处理器及通信接口,其中,所述处理器用于确定第一复数符号序列在第二复数符号序列中的目标位置,并在所述第二复数符号序列中的所述目标位置放置所述第一复数符号序列;所述第一复数符号序列用于携带PDCCH的数据;对所述第二复数符号序列进行DFT或者转换预编码处理,得到第三复数符号序列,并将所述第三复数符号序列映射到目标时频资源上,通信接口用于发送映射到目标时频资源上的所述第三复数符号序列。
第九方面,提供了一种通信系统,包括:终端及网络侧设备,所述终端可用于执行如第二方面所述的PDCCH传输方法的步骤,所述网络侧设备可用于执行如第一方面所述的PDCCH传输方法的步骤。
第十方面,提供了一种可读存储介质,所述可读存储介质上存储程序或指令,所述程序或指令被处理器执行时实现如第一方面所述的方法的步骤,或者实现如第二方面所述的方法的步骤。
第十一方面,提供了一种芯片,所述芯片包括处理器和通信接口,所述通信接口和所述处理器耦合,所述处理器用于运行程序或指令,实现如第一方面所述的方法,或实现如第二方面所述的方法。
第十二方面,提供了一种计算机程序/程序产品,所述计算机程序/程序产品被存储在存储介质中,所述计算机程序/程序产品被至少一个处理器执行以实现如第一方面或第二方面所述的PDCCH传输方法的步骤。
在本申请实施例中,网络侧设备确定第一复数符号序列在第二复数符号序列中的目标位置,并在所述第二复数符号序列中的所述目标位置放置所述第一复数符号序列;所述第一复数符号序列用于携带PDCCH的数据;对第二复数符号序列进行DFT或者转换预编码处理,得到第三复数符号序列,即DFT-s-OFDM波形;网络侧设备将第三复数符号序列映射到目标时频资源上并发送,上述方案中网络侧设备能通过DFT-s-OFDM波形传输PDCCH,获得较低的峰均比PAPR,能够提高PA的功放效率,从而保证输出信号的功率。
附图说明
图1是本申请实施例可应用的无线通信系统的结构图;
图2是本申请实施例提供的DFT-s-OFDM的系统框图之一;
图3是本申请实施例提供的CORESET示意图之一;
图4是本申请实施例提供的CORESET示意图之二;
图5是本申请实施例提供的CORESET示意图之三;
图6是本申请实施例提供的PDCCH传输方法的流程示意图之一;
图7是本申请实施例提供的DFT-s-OFDM的系统框图之二;
图8是本申请实施例提供的第二位置索引组示意图;
图9是本申请实施例提供的DFT-s-OFDM的系统框图之三;
图10是本申请实施例提供的第二位置索引组的编号示意图之一;
图11是本申请实施例提供的第二位置索引组的编号示意图之二;
图12是本申请实施例提供的第二位置索引组的编号示意图之三;
图13是本申请实施例提供的PDCCH传输方法的流程示意图之二;
图14是本申请实施例提供的PDCCH传输装置的结构示意图之一;
图15是本申请实施例提供的PDCCH传输装置的结构示意图之二;
图16是本申请实施例提供的通信设备的结构示意图;
图17是本申请实施例提供的终端的硬件结构示意图;
图18是本申请实施例的网络侧设备的结构示意图。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚描述,显然,所描述的实施例是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员所获得的所有其他实施例,都属于本申请保护的范围。
本申请的说明书和权利要求书中的术语“第一”、“第二”等是用于区别类似的对象,而不用于描述特定的顺序或先后次序。应该理解这样使用的术语在适当情况下可以互换,以便本申请的实施例能够以除了在这里图示或描述的那些以外的顺序实施,且“第一”、“第二”所区别的对象通常为一类,并不限定对象的个数,例如第一对象可以是一个,也可以是多个。此外,说明书以及权利要求中“和/或”表示所连接对象的至少其中之一,字符“/”一般表示前后关联对象是一种“或”的关系。
值得指出的是,本申请实施例所描述的技术不限于长期演进型(Long Term Evolution,LTE)/LTE的演进(LTE-Advanced,LTE-A)系统,还可用于其他无线通信系统,诸如码分多址(Code Division Multiple Access,CDMA)、时分多址(Time Division Multiple Access,TDMA)、频分多址(Frequency Division Multiple Access,FDMA)、正交频分多址(Orthogonal Frequency Division Multiple Access,OFDMA)、单载波频分多址(Single-carrier Frequency Division Multiple Access,SC-FDMA)和其他系统。本申请实施例中的术语“系统”和“网络”常被可互换地使用,所描述的技术既可用于以上提及的系统和无线电技术,也可用于其他系统和无线电技术。以下描 述出于示例目的描述了新空口(New Radio,NR)系统,并且在以下大部分描述中使用NR术语,但是这些技术也可应用于NR系统应用以外的应用,如第6代(6 th Generation,6G)通信系统。
图1示出本申请实施例可应用的一种无线通信系统的框图。无线通信系统包括终端11和网络侧设备12。其中,终端11可以是手机、平板电脑(Tablet Personal Computer)、膝上型电脑(Laptop Computer)或称为笔记本电脑、个人数字助理(Personal Digital Assistant,PDA)、掌上电脑、上网本、超级移动个人计算机(ultra-mobile personal computer,UMPC)、移动上网装置(Mobile Internet Device,MID)、增强现实(augmented reality,AR)/虚拟现实(virtual reality,VR)设备、机器人、可穿戴式设备(Wearable Device)、车载设备(VUE)、行人终端(PUE)、智能家居(具有无线通信功能的家居设备,如冰箱、电视、洗衣机或者家具等)、游戏机、个人计算机(personal computer,PC)、柜员机或者自助机等终端侧设备,可穿戴式设备包括:智能手表、智能手环、智能耳机、智能眼镜、智能首饰(智能手镯、智能手链、智能戒指、智能项链、智能脚镯、智能脚链等)、智能腕带、智能服装等。需要说明的是,在本申请实施例并不限定终端11的具体类型。网络侧设备12可以包括接入网设备或核心网设备,其中,接入网设备12也可以称为无线接入网设备、无线接入网(Radio Access Network,RAN)、无线接入网功能或无线接入网单元。接入网设备12可以包括基站、WLAN接入点或WiFi节点等,基站可被称为节点B、演进节点B(eNB)、接入点、基收发机站(Base Transceiver Station,BTS)、无线电基站、无线电收发机、基本服务集(Basic Service Set,BSS)、扩展服务集(Extended Service Set,ESS)、家用B节点、家用演进型B节点、发送接收点(Transmitting Receiving Point,TRP)或所述领域中其他某个合适的术语,只要达到相同的技术效果,所述基站不限于特定技术词汇,需要说明的是,在本申请实施例中仅以NR系统中的基站为例进行介绍,并不限定基站的具体类型。
图2是DFT-s-OFDM的系统框图。与OFDM相比,发射端在N点IFFT之前引入M点DFT操作,使得发射端输出信号的PAPR明显降低。
基于OFDM的PDCCH:
一个PDCCH由一个或多个控制信道元素(Control Channel Element,CCE)组成,其中组成该PDCCH的CCE个数称为该PDCCH的聚合等级(Aggregation Level,AL)。
一个CCE由6个资源元素组(Resource Element Group,REG)组成,其中一个REG是指一个OFDM符号上的一个资源块(Resource Block,RB)。
一个CORESET(Control Resource Set)由频域上
Figure PCTCN2023070738-appb-000001
个RB与时域上
Figure PCTCN2023070738-appb-000002
个OFDM符号组成。
图3、图4、图5分别是N_CORESET_symb取值为1、2和3的CORESET的示意图。
下面结合附图,通过一些实施例及其应用场景对本申请实施例提供的PDCCH传 输方法进行详细地说明。
图6是本发明实施例提供的PDCCH传输方法一实施例的流程示意图。如图6所示,本实施例提供的方法,包括:
步骤101、网络侧设备确定第一复数符号序列在第二复数符号序列中的目标位置,并在第二复数符号序列中的目标位置放置第一复数符号序列;第一复数符号序列用于携带PDCCH的数据;
具体地,网络侧设备可以将长度为M1的第一复数符号序列放置到长度为M2的第二复数符号序列的目标位置,其中第一复数符号序列用于携带PDCCH的传输数据;
M1和M2为大于0的整数,M1大于或等于M2。
其中,目标位置可以是第二复数符号序列中连续或非连续的位置。
其中,步骤101可以通过图7中选择位置并放置的模块实现。
步骤102、网络侧设备对第二复数符号序列进行DFT或者转换预编码处理,得到第三复数符号序列;
具体地,对第二复数符号序列进行DFT或者转换预编码(Transform Precoding)处理,得到长度为M2的第三复数符号序列。
可选地,第二复数符号序列的长度与以下至少一项有关:
目标时频资源的时域长度;
目标时频资源的频域长度;
物理资源块PRB包含的子载波个数;
目标时频资源中用于传输参考信号的时频资源。
步骤103、网络侧设备将第三复数符号序列映射到目标时频资源上并发送。
具体地,将DFT或者转换预编码处理得到的第三复数符号序列映射到目标时频资源上进行发送。
可选地,目标时频资源为配置搜索空间或控制资源集合CORESET的时频资源。
对于搜索空间或CORESET仅占用一个OFDM符号的情况,图7中,标注(1)处的数据即长度为M1的第一复数符号序列,标注(2)处的数据即长度为M2的第二复数符号序列,标注(3)处的数据即长度为M2的第三复数符号序列。
对于搜索空间或CORESET占用OFDM符号数大于一的情况,图7中标注(1)、(2)、(3)处的数据,经相关多个OFDM符号累加后的长度分别为:M1,M2,M2,此时,各个OFDM符号上DFT与IDFT的序列长度为:
该OFDM符号上CORESET占用资源块RB数乘以每个RB包含的子载波数;
或者,该OFDM符号上CORESET占用RB数乘以每个RB包含的子载波数,再减去参考信号占用的资源单元RE数。
通过该方法,网络侧设备能通过DFT-s-OFDM波形传输PDCCH,获得较低的峰均比(PAPR),终端能够正确地对PDCCH做检测。
本实施例的方法,网络侧设备确定第一复数符号序列在第二复数符号序列中的目标位置,并在所述第二复数符号序列中的所述目标位置放置所述第一复数符号序列;所述第一复数符号序列用于携带PDCCH的数据;对第二复数符号序列进行DFT或者转换预编码处理,得到第三复数符号序列,即DFT-s-OFDM波形;网络侧设备将第三复数符号序列映射到目标时频资源上并发送,上述方案中网络侧设备能通过DFT-s-OFDM波形传输PDCCH,获得较低的峰均比PAPR,能够提高PA的功放效率,从而保证输出信号的功率。
在一实施例中,目标位置为K个候选PDCCH中目标PDCCH的位置序列对应的位置;所述K为大于0的整数;
具体地,K个候选PDCCH中目标PDCCH的位置序列对应的位置作为目标位置,第一复数符号序列位于该第二复数符号序列中该目标位置处,K例如可以为表1中所示:
表1
Figure PCTCN2023070738-appb-000003
可选地,步骤102中在搜索空间或CORESET占用多个OFDM的情况下,网络侧设备从搜索空间或CORESET占用的第一个OFDM符号开始,逐个OFDM符号对第二复数符号序列进行DFT或者传输预编码处理,得到第三复数符号序列。
在一实施例中,步骤101中“确定第一复数符号序列在第二复数符号序列中的目标位置”可以通过如下方式实现:
网络侧设备将第二复数符号序列的位置索引,划分为X3个第一位置索引组;
网络侧设备将目标PDCCH的位置序列映射到X3个第一位置索引组中X2个第一位置索引组;
网络侧设备将X2个第一位置索引组对应的位置作为目标位置;
其中,所述X2和X3为大于0的整数,X3大于或等于X2。
具体地,网络侧设备将第二复数符号序列的位置索引进行分组,得到X3个第一位置索引组,并将目标PDCCH的位置序列映射到X3个第一位置索引组中X2个第一位置索引组上,X2个第一位置索引组所包含的位置索引值组成的序列,即为该目标PDCCH的位置序列,X2个第一位置索引组对应的位置,即为目标位置。
可选地,网络侧设备基于目标PDCCH在K个候选PDCCH中的索引,将目标PDCCH的位置序列映射到X3个第一位置索引组中X2个第一位置索引组。
例如,目标PDCCH在K个候选PDCCH中的索引为2,K为2,目标PDCCH在K个候选PDCCH中的索引可以从0开始,假设X3为6,X2为2,X3个第一位置索引组的编号为{0,1,2,3,4,5},可以将目标PDCCH的位置序列映射到第4和第5个第一位置索引组。
可选地,将目标PDCCH的位置序列映射到X3个第一位置索引组中X2个第一位置索引组,与以下至少一项相关:
M1、X2、X3、与M1或X2相关的候选PDCCH的个数K、小区索引和无线网络临时标识符RNTI;
其中,M1为第一复数符号序列的长度。
可选地,X2个第一位置索引组可以是X3个第一位置索引组中连续的X2个位置索引组。
可选地,X2与聚合等级有关。
可选地,步骤“将第二复数符号序列的位置索引,划分为X3个第一位置索引组”具体包括:
网络侧设备将第二复数符号序列的位置索引,划分为X1个第二位置索引组;
网络侧设备将X1个第二位置索引组,划分为X3个第一位置索引组;
其中,X1大于或等于X3。
具体地,把第二复数符号序列的位置索引(例如,0~(M2-1)),划分为X1个第二位置索引组;该步骤相当于在时域划分REG,进而把X1个第二位置索引组,划分为X3个第一位置索引组,该步骤相当于在时域上划分CCE。
上述实施方式中,通过将第二复数符号序列的位置索引,划分为X1个第二位置索引组,相当于在时域划分REG;进一步,把X1个第二位置索引组,划分为X3个第一位置索引组,相当于在时域上划分CCE,然后将目标PDCCH的位置序列映射到X3个第一位置索引组中X2个第一位置索引组,即时域上的某些CCE上,即目标位置处,实现了将第二复数符号序列中的目标位置放置第一复数符号序列。
图8示出了第二复数符号序列的位置索引划分为X1个第二位置索引组的两类方法。可选地,如图8所示,可以通过如下方式划分X1个第二位置索引组:
网络侧设备在搜索空间或CORESET占用的每个正交频分复用OFDM符号范围内,将第二复数符号序列的位置索引,连续地划分为X1’个第二位置索引组;或,
网络侧设备在搜索空间或CORESET占用的每个OFDM符号范围内,将第二复数符号序列的位置索引,以均匀分散的方式划分为X1’个所述第二位置索引组;
其中,X1个第二位置索引组为由搜索空间或CORESET占用的多个OFDM符号中每个OFDM符号范围内对应的X1’个第二位置索引组得到的。
具体地,将第二复数符号序列的位置索引(例如,0~(M2-1)),划分为X1个第二位置索引组,例如可以通过连续集中的方式或者均匀分散的方式。
图8中,M2=72,X1=6,搜索空间或CORESET占据OFDM符号的个数为1,此时X1’等于X1。
上述实施方式中,采用均匀分散的方式划分第二位置索引组,使得候选PDCCH的复数符号传输时在时间上尽可能分散,以便获取时间分集,在无线信道有快速衰落时仍能获得较好的传输性能。
可选地,每个第一位置索引组的大小,每个第二位置索引组的大小,或者数量X1、X2和X3,为协议预定义或网络侧设备配置的。
可选地,网络侧设备可以通过交织器执行步骤101,其中,可以通过交织器将第二复数符号序列的位置索引,划分为X1个第二位置索引组,将X1个第二位置索引组,划分为X3个第一位置索引组,将目标PDCCH的位置序列映射到所述X3个第一位置索引组中X2个第一位置索引组,并将X2个第一位置索引组对应的位置作为目标位置。
具体地,为达到图8中均匀分散的划分方式,可以在发送端采用“交织器”(Interleave)来寻址,在接收端可以通过“解交织器”(De-Interleave)来寻址,如图9所示。
图9中交织器是图7中选择位置并放置模块的一种实现方式,图9中解交织器是图7中选择位置并提取模块的一种实现方式。
在一实施例中,划分第一位置索引组可以通过如下方式实现:
网络侧设备对X1个第二位置索引组进行编号;
网络侧设备基于第二位置索引组的编号,将X1个第二位置索引组,划分为X3个第一二位置索引组。
具体地,首先,对第二位置索引组进行编号,如图10所示,第二位置索引组在OFDM内的编号为从0-5。
然后以第二位置索引组编号连续、个数均匀的方式,分为X3个第一位置索引组。第一位置索引组的编号,按照第一位置索引组内包含第二位置索引组的编号的最小值(或最大值)的大小顺序来编号。例如,第一位置索引组0包含第二位置索引组0~(X1/X2-1)。
可选地,对第二位置索引组编号可以采用如下方式:
网络侧设备在搜索空间或CORESET占用的多个OFDM符号范围内,按照OFDM符号优先的方式对第二位置索引组进行编号;
网络侧设备在搜索空间或CORESET占用的每个OFDM符号范围内,按照各第二位置索引组内包含的位置索引的最小值或最大值的大小顺序,对第二位置索引组进行编号。
具体地,对于搜索空间或CORESET占用的多个OFDM符号范围内,首先,按照OFDM符号优先的方式对第二位置索引组进行编号;如图11所示,在搜索空间或CORESET占用的2个OFDM符号范围内,按照OFDM符号优先的方式对第二位置索引组进行编号;如图12所示,在搜索空间或CORESET占用的3个OFDM符号范围内,按照OFDM符号优先的方式对第二位置索引组进行编号。在搜索空间或CORESET占用的每个OFDM符号范围内,第二位置索引组的编号,按照各个第二位置索引组内包含最低索引,即位置索引的最小值(或最高索引,即位置索引的最大值)的大小顺序来编号。
另外如图11所示,在占用的每个OFDM符号范围内,按照各第二位置索引组内包含的位置索引的最小值或最大值的大小顺序,对第二位置索引组进行编号,例如,假设第二位置索引组内包含12个位置索引,第二位置索引组0内包含的位置索引为0-11,第二位置索引组2内包含的位置索引为24-35,最小值为0和24,最大值为11和35,因此第二位置索引组0的编号小于第二位置索引组2的编号。
其中,图10-图12中OFDM符号Z0、Z1、Z2可以是连续的,也可以是不连续的。
上述实施方式中,在搜索空间或CORESET占用的多个OFDM符号范围内,按照OFDM符号优先的方式对第二位置索引组进行编号;在搜索空间或CORESET占用的每个OFDM符号范围内,按照各第二位置索引组内包含的位置索引的最小值或最大值的大小顺序,对第二位置索引组进行编号,实现复杂度较低。
可选地,第二复数符号序列的长度为以下任意一项:
Figure PCTCN2023070738-appb-000004
Figure PCTCN2023070738-appb-000005
其中,Nf表示搜索空间或CORESET所占资源块RB个数,
Figure PCTCN2023070738-appb-000006
表示每个RB包含的子载波个数,L1表示搜索空间或CORESET所占OFDM符号个数,Nr表示搜索空间或CORESET所占时频资源内用于传输参考信号的资源单元RE个数。
具体地,第二复数符号序列的长度可以是以下任意一项:
搜索空间所占RB个数乘以每个RB包含的子载波个数,再乘以搜索空间所占OFDM符号个数;或,
CORESET所占RB个数乘以每个RB包含的子载波个数,再乘以CORESET所占OFDM符号个数;或,
搜索空间所占RB个数乘以每个RB包含的子载波个数,再乘以搜索空间所占OFDM符号个数,再减去搜索空间所占时频资源内用于传输参考信号的资源单元RE个数;或,
CORESET所占RB个数乘以每个RB包含的子载波个数,再乘以CORESET所占OFDM符号个数,再减去CORESET所占时频资源内用于传输参考信号的资源单元 RE个数;
可选地,该PDCCH传输方法还包括:
网络侧设备在目标时频资源上以X4个RB为预编码颗粒度,进行波束赋形预编码;X4为大于0的整数;其中,X4个RB内使用相同的预编码向量。
具体地,网络侧设备在对目标时频资源上的PDCCH进行传输时,可以以X4个RB为预编码颗粒度,对DFT-s-OFDM波形进行波束赋形预编码,每X4个RB内使用相同的预编码向量,便于终端侧进行解码。
可选地,X4与Nf相关,或者,与搜索空间或CORESET其他参数相关,例如频域上连续的PRB个数。
上述实施方式中,对搜索空间占据的RB资源设计了预编码颗粒度,以便在预编码灵活性与信道估计精度上获取平衡。
图13是本申请实施例提供的PDCCH传输方法的流程示意图之二。如图13所示,本实施例提供的方法,包括:
步骤201、终端接收目标时频资源上的第四复数符号序列,并对第四复数符号序列进行离散傅里叶逆变换IDFT或者转换预编码逆运算,得到第五复数符号序列;
步骤202、终端确定K个候选PDCCH的位置序列;K为大于0的整数;
步骤203、终端基于K个候选PDCCH的位置序列,从第五复数符号序列中提取出第六复数符号序列;
步骤204、终端基于第六复数符号序列进行盲检。
具体地,终端接收目标时频资源上的第四复数符号序列,在终端接收的目标时频资源上网络侧设备可能发送PDCCH,但也可能并未发送PDCCH。
在网络侧设备在目标时频资源上发送了PDCCH的情况下,第四复数符号序列可以是第三复数符号序列。
其中,步骤202和203可以通过图7中选择位置并提取的模块实现。
可选地,所述目标时频资源为配置搜索空间或控制资源集合CORESET的时频资源。
可选地,所述终端确定K个候选PDCCH的位置序列,包括:
所述终端将所述第五复数符号序列的位置索引,划分为X3个第一位置索引组;
所述终端基于所述K个候选PDCCH,在所述X3个第一位置索引组中确定K组第一位置索引组;所述K组第一位置索引组中每组第一位置索引组包括X2个第一位置索引组;
所述终端将所述K组第一位置索引组,确定为所述K个候选PDCCH的位置序列;
其中,所述X2和X3为大于0的整数,X3大于或等于X2。
可选地,所述终端将所述第五复数符号序列的位置索引,划分为X3个第一位置索引组,包括:
所述终端将所述第五复数符号序列的位置索引,划分为X1个第二位置索引组;
所述终端将所述X1个第二位置索引组,划分为所述X3个第一位置索引组;
其中,所述X1大于或等于X3。
可选地,所述终端将所述第五复数符号序列的位置索引,划分为X1个第二位置索引组,包括:
所述终端在搜索空间或CORESET占用的每个正交频分复用OFDM符号范围内,将第五复数符号序列的位置索引,连续地划分为X1’个所述第二位置索引组;或,
所述终端在所述搜索空间或CORESET占用的每个OFDM符号范围内,将第五复数符号序列的位置索引,以均匀分散的方式划分为X1’个所述第二位置索引组;
其中,所述X1个第二位置索引组为由所述搜索空间或CORESET占用的多个OFDM符号中每个所述OFDM符号范围内对应的X1’个所述第二位置索引组得到的。
可选地,所述终端确定K个候选PDCCH的位置序列,包括:
所述终端通过解交织器确定K个候选PDCCH的位置序列;
所述终端基于所述K个候选PDCCH的位置序列,从所述第五复数符号序列中提取出第六复数符号序列,包括:
所述终端通过解交织器基于所述K个候选PDCCH的位置序列,从所述第五复数符号序列中提取出所述第六复数符号序列。
可选地,所述终端将所述X1个第二位置索引组,划分为所述X3个第一位置索引组,包括:
所述终端对所述X1个第二位置索引组进行编号;
所述终端基于所述第二位置索引组的编号,将所述X1个第二位置索引组,划分为所述X3个第一位置索引组。
可选地,所述终端对所述X1个第二位置索引组进行编号,包括:
所述终端在所述搜索空间或CORESET占用的多个OFDM符号范围内,按照OFDM符号优先的方式对所述第二位置索引组进行编号;
所述终端在所述搜索空间或CORESET占用的每个OFDM符号范围内,按照各所述第二位置索引组内包含的位置索引的最小值或最大值的大小顺序,对所述第二位置索引组进行编号。
可选地,所述终端基于所述K个候选PDCCH,在所述X3个第一位置索引组中确定K组第一位置索引组,与以下至少一项相关:
M1、X2、X3、与M1或X2相关的候选PDCCH的个数K、小区索引和无线网络临时标识符RNTI;其中,所述M1为所述第六复数符号序列的长度。
可选地,所述对所述第四复数符号序列进行离散傅里叶逆变换IDFT或者转换预编码逆运算,得到第五复数符号序列包括:
在搜索空间或CORESET占用多个OFDM的情况下,所述终端从所述搜索空间或 CORESET占用的第一个OFDM符号开始,逐个OFDM符号对所述第四复数符号序列进行IDFT或者转换预编码逆运算,得到所述第五复数符号序列。
可选地,所述第五复数符号序列的长度与以下至少一项有关:
所述目标时频资源的时域长度;
所述目标时频资源的频域长度;
物理资源块PRB包含的子载波个数;
所述目标时频资源中用于传输参考信号的时频资源。
可选地,所述第五复数符号序列的长度为以下任意一项:
Figure PCTCN2023070738-appb-000007
Figure PCTCN2023070738-appb-000008
其中,Nf表示搜索空间或CORESET所占资源块RB个数,
Figure PCTCN2023070738-appb-000009
表示每个RB包含的子载波个数,L1表示搜索空间或CORESET所占OFDM符号个数,Nr表示搜索空间或CORESET所占时频资源内用于传输参考信号的资源单元RE个数。
可选地,所述终端可认定(或假设assume)预编码颗粒度为频域上连续的X5个RB;X5为大于0的整数。
其中,终端可假设(assume)X5个RB内使用相同的预编码向量。
可选地,X5可以与X4相同或不同,例如X5可以大于X4。
可选地,以下至少一项是由网络侧设备配置,或由协议预定义的:
所述第一位置索引组的大小、所述第二位置索引组的大小、所述X1、X2、X3和K。
可选地,所述X5为网络侧设备配置,或协议预定义的。
本实施例的方法,其具体实现过程与技术效果与网络侧方法实施例中类似,具体可以参见网络侧方法实施例中的详细介绍,此处不再赘述。
本申请实施例提供的PDCCH传输方法,执行主体可以为PDCCH传输装置。本申请实施例中以PDCCH传输装置执行PDCCH传输方法为例,说明本申请实施例提供的PDCCH传输装置。
图14是本申请提供的PDCCH传输装置的结构示意图之一。如图14所示,本实施例提供的PDCCH传输装置,包括:
处理模块210,用于确定第一复数符号序列在第二复数符号序列中的目标位置,并在所述第二复数符号序列中的所述目标位置放置所述第一复数符号序列;所述第一复数符号序列用于携带PDCCH的数据;
对所述第二复数符号序列进行DFT或者转换预编码处理,得到第三复数符号序列;
发送模块220,用于网络侧设备将所述第三复数符号序列映射到目标时频资源上并发送。
可选地,所述目标位置为K个候选PDCCH中目标PDCCH的位置序列对应的位置;所述K为大于0的整数;
所述目标时频资源为配置搜索空间或控制资源集合CORESET的时频资源。
可选地,处理模块210,具体用于:
将所述第二复数符号序列的位置索引,划分为X3个第一位置索引组;
将目标PDCCH的位置序列映射到所述X3个第一位置索引组中X2个第一位置索引组;
所述网络侧设备将所述X2个第一位置索引组对应的位置作为所述目标位置;
其中,所述X2和X3为大于0的整数,X3大于或等于X2。
可选地,处理模块210,具体用于:
将所述第二复数符号序列的位置索引,划分为X1个第二位置索引组;
将所述X1个第二位置索引组,划分为所述X3个第一位置索引组;
其中,所述X1大于或等于X3。
可选地,处理模块210,具体用于:
在所述搜索空间或CORESET占用的每个正交频分复用OFDM符号范围内,将第二复数符号序列的位置索引,连续地划分为X1’个所述第二位置索引组;或,
在所述搜索空间或CORESET占用的每个OFDM符号范围内,将第二复数符号序列的位置索引,以均匀分散的方式划分为X1’个所述第二位置索引组;
其中,所述X1个第二位置索引组为由所述搜索空间或CORESET占用的多个OFDM符号中每个所述OFDM符号范围内对应的X1’个所述第二位置索引组得到的。
可选地,处理模块210,具体用于:
通过交织器确定第一复数符号序列在第二复数符号序列中的目标位置,并在所述第二复数符号序列中的所述目标位置放置所述第一复数符号序列。
可选地,处理模块210,具体用于:
对所述X1个第二位置索引组进行编号;
基于所述第二位置索引组的编号,将所述X1个第二位置索引组,划分为所述X3个第一位置索引组。
可选地,处理模块210,具体用于:
基于所述目标PDCCH在所述K个候选PDCCH的索引,将目标PDCCH的位置序列映射到所述X3个第一位置索引组中X2个第一位置索引组。
可选地,处理模块210,具体用于:
在所述搜索空间或CORESET占用的多个OFDM符号范围内,按照OFDM符号优先的方式对所述第二位置索引组进行编号;
在所述搜索空间或CORESET占用的每个OFDM符号范围内,按照各所述第二位置索引组内包含的位置索引的最小值或最大值的大小顺序,对所述第二位置索引组进 行编号。
可选地,将目标PDCCH的位置序列映射到所述X3个第一位置索引组中X2个第一位置索引组,与以下至少一项相关:
M1、X2、X3、与M1或X2相关的候选PDCCH的个数K、小区索引和无线网络临时标识符RNTI;其中,所述M1为所述第一复数符号序列的长度。
可选地,所述第二复数符号序列的长度与以下至少一项有关:
所述目标时频资源的时域长度;
所述目标时频资源的频域长度;
物理资源块PRB包含的子载波个数;
所述目标时频资源中用于传输参考信号的时频资源。
可选地,所述第二复数符号序列的长度为以下任意一项:
Figure PCTCN2023070738-appb-000010
Figure PCTCN2023070738-appb-000011
其中,Nf表示搜索空间或CORESET所占资源块RB个数,
Figure PCTCN2023070738-appb-000012
表示每个RB包含的子载波个数,L1表示搜索空间或CORESET所占OFDM符号个数,Nr表示搜索空间或CORESET所占时频资源内用于传输参考信号的资源单元RE个数。
可选地,处理模块210,还用于:
在所述目标时频资源上以X4个RB为预编码颗粒度,进行波束赋形预编码;所述X4为大于0的整数;其中,所述X4个RB内使用相同的预编码向量。
可选地,处理模块210,具体用于:
在搜索空间或CORESET占用多个OFDM的情况下,从所述搜索空间或CORESET占用的第一个OFDM符号开始,逐个OFDM符号对所述第二复数符号序列进行DFT或者转换预编码处理,得到所述第三复数符号序列。
可选地,以下至少一项是由网络侧设备配置,或由协议预定义的:
所述第一位置索引组的大小、所述第二位置索引组的大小、所述X1、X2、X3和K。
可选地,所述X4为网络侧设备配置,或协议预定义的。
本实施例的装置,可以用于执行前述网络侧方法实施例中任一实施例的方法,其具体实现过程与技术效果与网络侧方法实施例中类似,具体可以参见网络侧方法实施例中的详细介绍,此处不再赘述。
图15是本申请提供的PDCCH传输装置的结构示意图之二。如图15所示,本实施例提供的PDCCH传输装置,包括:
接收模块310,用于接收目标时频资源上的第四复数符号序列;
处理模块320,用于对所述第四复数符号序列进行离散傅里叶逆变换IDFT或者 转换预编码逆运算,得到第五复数符号序列;
所述处理模块320,还用于确定K个候选PDCCH的位置序列;所述K为大于0的整数;
基于所述K个候选PDCCH的位置序列,从所述第五复数符号序列中提取出所述第六复数符号序列;
基于所述第六复数符号序列进行盲检。
可选地,所述目标时频资源为配置搜索空间或控制资源集合CORESET的时频资源。
可选地,所述处理模块320具体用于:
将所述第五复数符号序列的位置索引,划分为X3个第一位置索引组;
基于所述K个候选PDCCH,在所述X3个第一位置索引组中确定K组第一位置索引组;所述K组第一位置索引组中每组第一位置索引组包括X2个第一位置索引组;
将所述K组第一位置索引组,确定为所述K个候选PDCCH的位置序列;
其中,所述X2和X3为大于0的整数,X3大于或等于X2。
可选地,所述处理模块320具体用于:
将所述第五复数符号序列的位置索引,划分为X1个第二位置索引组;
将所述X1个第二位置索引组,划分为所述X3个第一位置索引组;
其中,所述X1大于或等于X3。
可选地,所述处理模块320具体用于:
在搜索空间或CORESET占用的每个正交频分复用OFDM符号范围内,将第五复数符号序列的位置索引,连续地划分为X1’个所述第二位置索引组;或,
在所述搜索空间或CORESET占用的每个OFDM符号范围内,将第五复数符号序列的位置索引,以均匀分散的方式划分为X1’个所述第二位置索引组;
其中,所述X1个第二位置索引组为由所述搜索空间或CORESET占用的多个OFDM符号中每个所述OFDM符号范围内对应的X1’个所述第二位置索引组得到的。
可选地,所述处理模块320具体用于:
通过解交织器确定K个候选PDCCH的位置序列;
通过解交织器基于所述K个候选PDCCH的位置序列,从所述第五复数符号序列中提取出所述第六复数符号序列。
可选地,所述处理模块320具体用于:
对所述X1个第二位置索引组进行编号;
基于所述第二位置索引组的编号,将所述X1个第二位置索引组,划分为所述X3个第一位置索引组。
可选地,所述处理模块320具体用于:
在所述搜索空间或CORESET占用的多个OFDM符号范围内,按照OFDM符号 优先的方式对所述第二位置索引组进行编号;
在所述搜索空间或CORESET占用的每个OFDM符号范围内,按照各所述第二位置索引组内包含的位置索引的最小值或最大值的大小顺序,对所述第二位置索引组进行编号。
可选地,所述终端基于所述K个候选PDCCH,在所述X3个第一位置索引组中确定K组第一位置索引组,与以下至少一项相关:
M1、X2、X3、与M1或X2相关的候选PDCCH的个数K、小区索引和无线网络临时标识符RNTI;其中,所述M1为所述第六复数符号序列的长度。
可选地,所述处理模块320具体用于:
在搜索空间或CORESET占用多个OFDM的情况下,所述终端从所述搜索空间或CORESET占用的第一个OFDM符号开始,逐个OFDM符号对所述第四复数符号序列进行IDFT或者转换预编码逆运算,得到所述第五复数符号序列。
可选地,所述第五复数符号序列的长度与以下至少一项有关:
所述目标时频资源的时域长度;
所述目标时频资源的频域长度;
物理资源块PRB包含的子载波个数;
所述目标时频资源中用于传输参考信号的时频资源。
可选地,所述第五复数符号序列的长度为以下任意一项:
Figure PCTCN2023070738-appb-000013
Figure PCTCN2023070738-appb-000014
其中,Nf表示搜索空间或CORESET所占资源块RB个数,
Figure PCTCN2023070738-appb-000015
表示每个RB包含的子载波个数,L1表示搜索空间或CORESET所占OFDM符号个数,Nr表示搜索空间或CORESET所占时频资源内用于传输参考信号的资源单元RE个数。
可选地,所述处理模块320还用于:可认定预编码颗粒度为频域上连续的X5个PRB;X5为大于0的整数。
可选地,以下至少一项是由网络侧设备配置,或由协议预定义的:
所述第一位置索引组的大小、所述第二位置索引组的大小、所述X1、X2、X3和K。
可选地,所述X5为网络侧设备配置,或协议预定义的。
本实施例的装置,可以用于执行前述终端侧方法实施例中任一实施例的方法,其具体实现过程与技术效果与终端侧方法实施例中类似,具体可以参见终端侧方法实施例中的详细介绍,此处不再赘述。
本申请实施例中的PDCCH传输装置可以是电子设备,例如具有操作系统的电子设备,也可以是电子设备中的部件,例如集成电路或芯片。该电子设备可以是终端, 也可以为除终端之外的其他设备。示例性的,终端可以包括但不限于上述所列举的终端11的类型,其他设备可以为服务器、网络附属存储器(Network Attached Storage,NAS)等,本申请实施例不作具体限定。
本申请实施例提供的PDCCH传输装置能够实现图6至图13的方法实施例实现的各个过程,并达到相同的技术效果,为避免重复,这里不再赘述。
可选的,如图16所示,本申请实施例还提供一种通信设备1600,包括处理器1601和存储器1602,存储器1602上存储有可在所述处理器1601上运行的程序或指令,例如,该通信设备1600为终端时,该程序或指令被处理器1601执行时实现上述PDCCH传输方法实施例的各个步骤,且能达到相同的技术效果。该通信设备1600为网络侧设备时,该程序或指令被处理器1601执行时实现上述PDCCH传输方法实施例的各个步骤,且能达到相同的技术效果,为避免重复,这里不再赘述。
本申请实施例还提供一种终端,包括处理器和通信接口,所述通信接口用于接收网络侧设备发送的PDCCH;其中,所述PDCCH包括映射到目标时频资源上的第二复数符号序列,所述第二复数符号序号为对第一复数符号序列进行DFT或者转换预编码处理得到的;所述第一复数符号序列的目标位置包括第三复数符号序列,所述第三复数符号序列的长度,小于或等于所述第一复数符号序列的长度;所述第三复数符号序列用于携带所述PDCCH的传输数据;所述处理器用于在所述目标位置获取所述PDCCH的传输数据。该终端实施例与上述终端侧方法实施例对应,上述方法实施例的各个实施过程和实现方式均可适用于该终端实施例中,且能达到相同的技术效果。具体地,图17为实现本申请实施例的一种终端的硬件结构示意图。
该终端1000包括但不限于:射频单元1001、网络模块1002、音频输出单元1003、输入单元1004、传感器1005、显示单元1006、用户输入单元1007、接口单元1008、存储器1009、以及处理器1010等中的至少部分部件。
本领域技术人员可以理解,终端1000还可以包括给各个部件供电的电源(比如电池),电源可以通过电源管理系统与处理器1010逻辑相连,从而通过电源管理系统实现管理充电、放电、以及功耗管理等功能。图17中示出的终端结构并不构成对终端的限定,终端可以包括比图示更多或更少的部件,或者组合某些部件,或者不同的部件布置,在此不再赘述。
应理解的是,本申请实施例中,输入单元1004可以包括图形处理单元(Graphics Processing Unit,GPU)10041和麦克风10042,图形处理器10041对在视频捕获模式或图像捕获模式中由图像捕获装置(如摄像头)获得的静态图片或视频的图像数据进行处理。显示单元1006可包括显示面板10061,可以采用液晶显示器、有机发光二极管等形式来配置显示面板10061。用户输入单元1007包括触控面板10071以及其它输入设备10072中的至少一种。触控面板10071,也称为触摸屏。触控面板10071可包括触摸检测装置和触摸控制器两个部分。其它输入设备10072可以包括但不限于物理 键盘、功能键(比如音量控制按键、开关按键等)、轨迹球、鼠标、操作杆,在此不再赘述。
本申请实施例中,射频单元1001将接收来自网络侧设备的下行数据接收后,可以传输给处理器1010进行处理;另外,射频单元1001可以将上行的数据发送给向网络侧设备发送上行数据。通常,射频单元1001包括但不限于天线、至少一个放大器、收发信机、耦合器、低噪声放大器、双工器等。
存储器1009可用于存储软件程序或指令以及各种数据。存储器1009可主要包括存储程序或指令的第一存储区和存储数据的第二存储区,其中,第一存储程序或指令区可存储操作系统、至少一个功能所需的应用程序或指令(比如声音播放功能、图像播放功能等)等。此外,存储器1009可以包括易失性存储器或非易失性存储器,或者,存储器1009可以包括易失性和非易失性存储器两者。包括高速随机存取存储器,还可以包括非易失性存储器,其中,非易失性存储器可以是只读存储器(Read-Only Memory,ROM)、可编程只读存储器(Programmable ROM,PROM)、可擦除可编程只读存储器(Erasable PROM,EPROM)、电可擦除可编程只读存储器(Electrically EPROM,EEPROM)或闪存。易失性存储器可以是随机存取存储器(Random Access Memory,RAM),静态随机存取存储器(Static RAM,SRAM)、动态随机存取存储器(Dynamic RAM,DRAM)、同步动态随机存取存储器(Synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(Double Data Rate SDRAM,DDRSDRAM)、增强型同步动态随机存取存储器(Enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(Synch link DRAM,SLDRAM)和直接内存总线随机存取存储器(Direct Rambus RAM,DRRAM)。本申请实施例中的存储器1009包括但不限于这些和任意其它适合类型的存储器例如至少一个磁盘存储器件、闪存器件、或其它非易失性固态存储器件。
处理器1010可包括一个或多个处理单元;可选的,处理器1010可集成应用处理器和调制解调处理器,其中,应用处理器主要处理涉及操作系统、用户界面和应用程序或指令等的操作,调制解调处理器主要处理无线通信信号,如基带处理器。可以理解的是,上述调制解调处理器也可以不集成到处理器1010中。
其中,射频单元1001,用于目标时频资源上的第四复数符号序列;
处理器1010,用于对所述第四复数符号序列进行离散傅里叶逆变换IDFT或者转换预编码逆运算,得到第五复数符号序列;
所述处理器1010,还用于确定K个候选PDCCH的位置序列;所述K为大于0的整数;
基于所述K个候选PDCCH的位置序列,从所述第五复数符号序列中提取出所述第六复数符号序列;
基于所述第六复数符号序列进行盲检。
上述实施方式中,终端确定K个候选PDCCH的位置序列,并从第五复数符号序列中提取出所述第六复数符号序列,并基于所述第六复数符号序列进行盲检,以获取网络侧设备的PDCCH,网络侧设备利用DFT-s-OFDM波形传输PDCCH,能够获得较低的峰均比PAPR,提高PA的功放效率,从而保证输出信号的功率。
可选地,所述目标时频资源为配置搜索空间或控制资源集合CORESET的时频资源。
可选地,所述处理器1010具体用于:
将所述第五复数符号序列的位置索引,划分为X3个第一位置索引组;
基于所述K个候选PDCCH,在所述X3个第一位置索引组中确定K组第一位置索引组;所述K组第一位置索引组中每组第一位置索引组包括X2个第一位置索引组;
将所述K组第一位置索引组,确定为所述K个候选PDCCH的位置序列;
其中,所述X2和X3为大于0的整数,X3大于或等于X2。
可选地,所述处理器1010具体用于:
将所述第五复数符号序列的位置索引,划分为X1个第二位置索引组;
将所述X1个第二位置索引组,划分为所述X3个第一位置索引组;
其中,所述X1大于或等于X3。
上述实施方式中,通过将第五复数符号序列的位置索引,划分为X1个第二位置索引组,相当于在时域划分REG;进一步,把X1个第二位置索引组,划分为X3个第一位置索引组,相当于在时域上划分CCE,然后基于所述K个候选PDCCH,在所述X3个第一位置索引组中确定K组第一位置索引组,实现了确定K个候选PDCCH的位置序列,并基于K个候选PDCCH的位置序列从第五复数符号序列中提取出所述第六复数符号序列,实现复杂度较低。
可选地,所述处理器1010具体用于:
在搜索空间或CORESET占用的每个正交频分复用OFDM符号范围内,将第五复数符号序列的位置索引,连续地划分为X1’个所述第二位置索引组;或,
在所述搜索空间或CORESET占用的每个OFDM符号范围内,将第五复数符号序列的位置索引,以均匀分散的方式划分为X1’个所述第二位置索引组;
其中,所述X1个第二位置索引组为由所述搜索空间或CORESET占用的多个OFDM符号中每个所述OFDM符号范围内对应的X1’个所述第二位置索引组得到的。
可选地,所述处理器1010具体用于:
通过解交织器确定K个候选PDCCH的位置序列;
通过解交织器基于所述K个候选PDCCH的位置序列,从所述第五复数符号序列中提取出所述第六复数符号序列。
可选地,所述处理器1010具体用于:
对所述X1个第二位置索引组进行编号;
基于所述第二位置索引组的编号,将所述X1个第二位置索引组,划分为所述X3个第一位置索引组。
可选地,所述处理器1010具体用于:
在所述搜索空间或CORESET占用的多个OFDM符号范围内,按照OFDM符号优先的方式对所述第二位置索引组进行编号;
在所述搜索空间或CORESET占用的每个OFDM符号范围内,按照各所述第二位置索引组内包含的位置索引的最小值或最大值的大小顺序,对所述第二位置索引组进行编号。
上述实施方式中,在搜索空间或CORESET占用的多个OFDM符号范围内,按照OFDM符号优先的方式对第二位置索引组进行编号;在搜索空间或CORESET占用的每个OFDM符号范围内,按照各第二位置索引组内包含的位置索引的最小值或最大值的大小顺序,对第二位置索引组进行编号,实现复杂度较低。
可选地,基于所述K个候选PDCCH,在所述X3个第一位置索引组中确定K组第一位置索引组,与以下至少一项相关:
M1、X2、X3、与M1或X2相关的候选PDCCH的个数K、小区索引和无线网络临时标识符RNTI;其中,所述M1为所述第六复数符号序列的长度。
可选地,所述处理器1010具体用于:在搜索空间或CORESET占用多个OFDM的情况下,所述终端从所述搜索空间或CORESET占用的第一个OFDM符号开始,逐个OFDM符号对所述第四复数符号序列进行IDFT或者转换预编码逆运算,得到所述第五复数符号序列。
可选地,所述第五复数符号序列的长度与以下至少一项有关:
所述目标时频资源的时域长度;
所述目标时频资源的频域长度;
物理资源块PRB包含的子载波个数;
所述目标时频资源中用于传输参考信号的时频资源。
可选地,所述第五复数符号序列的长度为以下任意一项:
Figure PCTCN2023070738-appb-000016
Figure PCTCN2023070738-appb-000017
其中,Nf表示搜索空间或CORESET所占资源块RB个数,
Figure PCTCN2023070738-appb-000018
表示每个RB包含的子载波个数,L1表示搜索空间或CORESET所占OFDM符号个数,Nr表示搜索空间或CORESET所占时频资源内用于传输参考信号的资源单元RE个数。
可选地,所述处理器1010还用于:可认定预编码颗粒度为频域上连续的X5个PRB;X5为大于0的整数。
可选地,以下至少一项是由网络侧设备配置,或由协议预定义的:
所述第一位置索引组的大小、所述第二位置索引组的大小、所述X1、X2、X3和K。
可选地,所述X5为网络侧设备配置,或协议预定义的。
本申请实施例还提供一种网络侧设备,包括处理器和通信接口,处理器用于对第一复数符号序列进行DFT或者转换预编码处理,得到第二复数符号序列;所述第一复数符号序列的目标位置包括第三复数符号序列,所述第三复数符号序列的长度,小于或等于所述第一复数符号序列的长度;所述第三复数符号序列用于携带PDCCH的传输数据,并将所述第二复数符号序列映射到目标时频资源上,通信接口用于发送映射到目标时频资源上的所述第二复数符号序列。该网络侧设备实施例与上述网络侧设备方法实施例对应,上述方法实施例的各个实施过程和实现方式均可适用于该网络侧设备实施例中,且能达到相同的技术效果。
具体地,本申请实施例还提供了一种网络侧设备。如图18所示,该网络侧设备700包括:天线71、射频装置72、基带装置73、处理器75和存储器75。天线71与射频装置72连接。在上行方向上,射频装置72通过天线71接收信息,将接收的信息发送给基带装置73进行处理。在下行方向上,基带装置73对要发送的信息进行处理,并发送给射频装置72,射频装置72对收到的信息进行处理后经过天线71发送出去。
上述频带处理装置可以位于基带装置73中,以上实施例中网络侧设备执行的方法可以在基带装置73中实现,该基带装置73包括基带处理器75和存储器75。
基带装置73例如可以包括至少一个基带板,该基带板上设置有多个芯片,如图18所示,其中一个芯片例如为基带处理器75,通过总线接口与存储器75连接,以调用存储器75中的程序,执行以上方法实施例中所示的网络设备操作。
该基带装置73网络侧设备还可以包括网络接口76,用于与射频装置72交互信息,该接口例如为通用公共无线接口(common public radio interface,简称CPRI)。
具体地,本发明实施例的网络侧设备700还包括:存储在存储器75上并可在处理器75上运行的指令或程序,处理器75调用存储器75中的指令或程序执行图14所示各模块执行的方法,并达到相同的技术效果,为避免重复,故不在此赘述。
本申请实施例还提供一种可读存储介质,所述可读存储介质上存储有程序或指令,该程序或指令被处理器执行时实现上述PDCCH传输方法实施例的各个过程,且能达到相同的技术效果,为避免重复,这里不再赘述。
其中,所述处理器为上述实施例中所述的终端中的处理器。所述可读存储介质,包括计算机可读存储介质,如计算机只读存储器ROM、随机存取存储器RAM、磁碟或者光盘等。
本申请实施例另提供了一种芯片,所述芯片包括处理器和通信接口,所述通信接口和所述处理器耦合,所述处理器用于运行程序或指令,实现上述PDCCH传输方法 实施例的各个过程,且能达到相同的技术效果,为避免重复,这里不再赘述。
应理解,本申请实施例提到的芯片还可以称为系统级芯片,系统芯片,芯片系统或片上系统芯片等。
本申请实施例另提供了一种计算机程序/程序产品,所述计算机程序/程序产品被存储在存储介质中,所述计算机程序/程序产品被至少一个处理器执行以实现上述PDCCH传输方法实施例的各个过程,且能达到相同的技术效果,为避免重复,这里不再赘述。
本申请实施例还提供了一种通信系统,包括:终端及网络侧设备,所述终端可用于执行如上所述的PDCCH传输方法的步骤,所述网络侧设备可用于执行如上所述的PDCCH传输方法的步骤。
需要说明的是,在本文中,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者装置不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者装置所固有的要素。在没有更多限制的情况下,由语句“包括一个......”限定的要素,并不排除在包括该要素的过程、方法、物品或者装置中还存在另外的相同要素。此外,需要指出的是,本申请实施方式中的方法和装置的范围不限按示出或讨论的顺序来执行功能,还可包括根据所涉及的功能按基本同时的方式或按相反的顺序来执行功能,例如,可以按不同于所描述的次序来执行所描述的方法,并且还可以添加、省去、或组合各种步骤。另外,参照某些示例所描述的特征可在其他示例中被组合。
通过以上的实施方式的描述,本领域的技术人员可以清楚地了解到上述实施例方法可借助软件加必需的通用硬件平台的方式来实现,当然也可以通过硬件,但很多情况下前者是更佳的实施方式。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分可以以计算机软件产品的形式体现出来,该计算机软件产品存储在一个存储介质(如ROM/RAM、磁碟、光盘)中,包括若干指令用以使得一台终端(可以是手机,计算机,服务器,空调器,或者网络设备等)执行本申请各个实施例所述的方法。
上面结合附图对本申请的实施例进行了描述,但是本申请并不局限于上述的具体实施方式,上述的具体实施方式仅仅是示意性的,而不是限制性的,本领域的普通技术人员在本申请的启示下,在不脱离本申请宗旨和权利要求所保护的范围情况下,还可做出很多形式,均属于本申请的保护之内。

Claims (36)

  1. 一种物理下行链路控制信道PDCCH传输方法,包括:
    网络侧设备确定第一复数符号序列在第二复数符号序列中的目标位置,并在所述第二复数符号序列中的所述目标位置放置所述第一复数符号序列;所述第一复数符号序列用于携带PDCCH的数据;
    所述网络侧设备对所述第二复数符号序列进行DFT或者转换预编码处理,得到第三复数符号序列;
    所述网络侧设备将所述第三复数符号序列映射到目标时频资源上并发送。
  2. 根据权利要求1所述的PDCCH传输方法,其中,
    所述目标位置为K个候选PDCCH中目标PDCCH的位置序列对应的位置;所述K为大于0的整数;
    所述目标时频资源为配置搜索空间或控制资源集合CORESET的时频资源。
  3. 根据权利要求2所述的PDCCH传输方法,其中,所述网络侧设备确定目标PDCCH的位置序列对应的位置,包括:
    所述网络侧设备将所述第二复数符号序列的位置索引,划分为X3个第一位置索引组;
    所述网络侧设备将目标PDCCH的位置序列映射到所述X3个第一位置索引组中X2个第一位置索引组;
    所述网络侧设备将所述X2个第一位置索引组对应的位置作为所述目标位置;
    其中,所述X2和X3为大于0的整数,X3大于或等于X2。
  4. 根据权利要求3所述的PDCCH传输方法,其中,所述网络侧设备将所述第二复数符号序列的位置索引,划分为X3个第一位置索引组,包括:
    所述网络侧设备将所述第二复数符号序列的位置索引,划分为X1个第二位置索引组;
    所述网络侧设备将所述X1个第二位置索引组,划分为所述X3个第一位置索引组;
    其中,所述X1大于或等于X3。
  5. 根据权利要求4所述的PDCCH传输方法,其中,所述网络侧设备将所述第二复数符号序列的位置索引,划分为X1个第二位置索引组,包括:
    所述网络侧设备在所述搜索空间或CORESET占用的每个正交频分复用OFDM符号范围内,将第二复数符号序列的位置索引,连续地划分为X1’个所述第二位置索引组;或,
    所述网络侧设备在所述搜索空间或CORESET占用的每个OFDM符号范围内,将第二复数符号序列的位置索引,以均匀分散的方式划分为X1’个所述第二位置索引组;
    其中,所述X1个第二位置索引组为由所述搜索空间或CORESET占用的多个OFDM符号中每个所述OFDM符号范围内对应的X1’个所述第二位置索引组得到的。
  6. 根据权利要求1-5任一项所述的PDCCH传输方法,其中,所述网络侧设备确定第一复数符号序列在第二复数符号序列中的目标位置,并在所述第二复数符号序列中的所述目标位置放置所述第一复数符号序列,包括:
    所述网络侧设备通过交织器确定第一复数符号序列在第二复数符号序列中的目标位置,并在所述第二复数符号序列中的所述目标位置放置所述第一复数符号序列。
  7. 根据权利要求4或5所述的PDCCH传输方法,其中,所述网络侧设备将所述X1个第二位置索引组,划分为所述X3个第一位置索引组,包括:
    所述网络侧设备对所述X1个第二位置索引组进行编号;
    所述网络侧设备基于所述第二位置索引组的编号,将所述X1个第二位置索引组,划分为所述X3个第一位置索引组。
  8. 根据权利要求3-5任一项所述的PDCCH传输方法,其中,所述网络侧设备将目标PDCCH的位置序列映射到所述X3个第一位置索引组中X2个第一位置索引组,包括:
    所述网络侧设备基于所述目标PDCCH在所述K个候选PDCCH的索引,将目标PDCCH的位置序列映射到所述X3个第一位置索引组中X2个第一位置索引组。
  9. 根据权利要求7所述的PDCCH传输方法,其中,所述网络侧设备对所述X1个第二位置索引组进行编号,包括:
    所述网络侧设备在所述搜索空间或CORESET占用的多个OFDM符号范围内,按照OFDM符号优先的方式对所述第二位置索引组进行编号;
    所述网络侧设备在所述搜索空间或CORESET占用的每个OFDM符号范围内,按照各所述第二位置索引组内包含的位置索引的最小值或最大值的大小顺序,对所述第二位置索引组进行编号。
  10. 根据权利要求3-5任一项所述的PDCCH传输方法,其中,将目标PDCCH的位置序列映射到所述X3个第一位置索引组中X2个第一位置索引组,与以下至少一项相关:
    M1、X2、X3、与M1或X2相关的候选PDCCH的个数K、小区索引和无线网络临时标识符RNTI;其中,所述M1为所述第一复数符号序列的长度。
  11. 根据权利要求1-5任一项所述的PDCCH传输方法,其中,
    所述第二复数符号序列的长度与以下至少一项有关:
    所述目标时频资源的时域长度;
    所述目标时频资源的频域长度;
    物理资源块PRB包含的子载波个数;
    所述目标时频资源中用于传输参考信号的时频资源。
  12. 根据权利要求11所述的PDCCH传输方法,其中,
    所述第二复数符号序列的长度为以下任意一项:
    Figure PCTCN2023070738-appb-100001
    Figure PCTCN2023070738-appb-100002
    其中,N f表示搜索空间或CORESET所占资源块RB个数,
    Figure PCTCN2023070738-appb-100003
    表示每个RB包含的子载波个数,L1表示搜索空间或CORESET所占OFDM符号个数,Nr表示搜索空间或CORESET所占时频资源内用于传输参考信号的资源单元RE个数。
  13. 根据权利要求1-5任一项所述的PDCCH传输方法,其中,所述方法还包括:
    所述网络侧设备在所述目标时频资源上以X4个RB为预编码颗粒度,进行波束赋形预编码;所述X4为大于0的整数;其中,所述X4个RB内使用相同的预编码向量。
  14. 根据权利要求1-5任一项所述的PDCCH传输方法,其中,所述网络侧设备对第二复数符号序列进行DFT或者转换预编码处理,得到第三复数符号序列,包括:
    在搜索空间或CORESET占用多个OFDM的情况下,所述网络侧设备从所述搜索空间或CORESET占用的第一个OFDM符号开始,逐个OFDM符号对所述第二复数符号序列进行DFT或者转换预编码处理,得到所述第三复数符号序列。
  15. 根据权利要求4所述的PDCCH传输方法,其中,以下至少一项是由网络侧设备配置,或由协议预定义的:
    所述第一位置索引组的大小、所述第二位置索引组的大小、所述X1、X2、X3和K。
  16. 根据权利要求13所述的PDCCH传输方法,其中,
    所述X4为网络侧设备配置,或协议预定义的。
  17. 一种物理下行链路控制信道PDCCH传输方法,包括:
    终端接收目标时频资源上的第四复数符号序列,并对所述第四复数符号序列进行离散傅里叶逆变换IDFT或者转换预编码逆运算,得到第五复数符号序列;
    所述终端确定K个候选PDCCH的位置序列;所述K为大于0的整数;
    所述终端基于所述K个候选PDCCH的位置序列,从所述第五复数符号序列中提取出第六复数符号序列;
    所述终端基于所述第六复数符号序列进行盲检。
  18. 根据权利要求17所述的PDCCH传输方法,其中,
    所述目标时频资源为配置搜索空间或控制资源集合CORESET的时频资源。
  19. 根据权利要求17或18所述的PDCCH传输方法,其中,所述终端确定K个候选PDCCH的位置序列,包括:
    所述终端将所述第五复数符号序列的位置索引,划分为X3个第一位置索引组;
    所述终端基于所述K个候选PDCCH,在所述X3个第一位置索引组中确定K组第一位置索引组;所述K组第一位置索引组中每组第一位置索引组包括X2个第一位置索引组;
    所述终端将所述K组第一位置索引组,确定为所述K个候选PDCCH的位置序列;
    其中,所述X2和X3为大于0的整数,X3大于或等于X2。
  20. 根据权利要求19所述的PDCCH传输方法,其中,所述终端将所述第五复数符号序列的位置索引,划分为X3个第一位置索引组,包括:
    所述终端将所述第五复数符号序列的位置索引,划分为X1个第二位置索引组;
    所述终端将所述X1个第二位置索引组,划分为所述X3个第一位置索引组;
    其中,所述X1大于或等于X3。
  21. 根据权利要求20所述的PDCCH传输方法,其中,所述终端将所述第五复数符号序列的位置索引,划分为X1个第二位置索引组,包括:
    所述终端在搜索空间或CORESET占用的每个正交频分复用OFDM符号范围内,将第五复数符号序列的位置索引,连续地划分为X1’个所述第二位置索引组;或,
    所述终端在所述搜索空间或CORESET占用的每个OFDM符号范围内,将第五复数符号序列的位置索引,以均匀分散的方式划分为X1’个所述第二位置索引组;
    其中,所述X1个第二位置索引组为由所述搜索空间或CORESET占用的多个OFDM符号中每个所述OFDM符号范围内对应的X1’个所述第二位置索引组得到的。
  22. 根据权利要求20所述的PDCCH传输方法,其中,所述终端确定K个候选PDCCH的位置序列,包括:
    所述终端通过解交织器确定K个候选PDCCH的位置序列;
    所述终端基于所述K个候选PDCCH的位置序列,从所述第五复数符号序列中提取出第六复数符号序列,包括:
    所述终端通过解交织器基于所述K个候选PDCCH的位置序列,从所述第五复数符号序列中提取出所述第六复数符号序列。
  23. 根据权利要求20所述的PDCCH传输方法,其中,所述终端将所述X1个第二位置索引组,划分为所述X3个第一位置索引组,包括:
    所述终端对所述X1个第二位置索引组进行编号;
    所述终端基于所述第二位置索引组的编号,将所述X1个第二位置索引组,划分为所述X3个第一位置索引组。
  24. 根据权利要求23所述的PDCCH传输方法,其中,所述终端对所述X1个第二位置索引组进行编号,包括:
    所述终端在搜索空间或CORESET占用的多个OFDM符号范围内,按照OFDM符号优先的方式对所述第二位置索引组进行编号;
    所述终端在所述搜索空间或CORESET占用的每个OFDM符号范围内,按照各所 述第二位置索引组内包含的位置索引的最小值或最大值的大小顺序,对所述第二位置索引组进行编号。
  25. 根据权利要求19所述的PDCCH传输方法,其中,
    所述终端基于所述K个候选PDCCH,在所述X3个第一位置索引组中确定K组第一位置索引组,与以下至少一项相关:
    M1、X2、X3、与M1或X2相关的候选PDCCH的个数K、小区索引和无线网络临时标识符RNTI;其中,所述M1为所述第六复数符号序列的长度。
  26. 根据权利要求17或18所述的PDCCH传输方法,其中,
    所述第五复数符号序列的长度与以下至少一项有关:
    所述目标时频资源的时域长度;
    所述目标时频资源的频域长度;
    物理资源块PRB包含的子载波个数;
    所述目标时频资源中用于传输参考信号的时频资源。
  27. 根据权利要求26所述的PDCCH传输方法,其中,
    所述第五复数符号序列的长度为以下任意一项:
    Figure PCTCN2023070738-appb-100004
    Figure PCTCN2023070738-appb-100005
    其中,N f表示搜索空间或CORESET所占资源块RB个数,
    Figure PCTCN2023070738-appb-100006
    表示每个RB包含的子载波个数,L1表示搜索空间或CORESET所占OFDM符号个数,Nr表示搜索空间或CORESET所占时频资源内用于传输参考信号的资源单元RE个数。
  28. 根据权利要求17或18所述的PDCCH传输方法,其中,所述方法还包括:
    所述终端可认定预编码颗粒度为频域上连续的X5个PRB;X5为大于0的整数。
  29. 根据权利要求17或18所述的PDCCH传输方法,其中,所述对所述第四复数符号序列进行离散傅里叶逆变换IDFT或者转换预编码逆运算,得到第五复数符号序列包括:
    在搜索空间或CORESET占用多个OFDM的情况下,所述终端从所述搜索空间或CORESET占用的第一个OFDM符号开始,逐个OFDM符号对所述第四复数符号序列进行IDFT或者转换预编码逆运算,得到所述第五复数符号序列。
  30. 根据权利要求20所述的PDCCH传输方法,其中,以下至少一项是由网络侧设备配置,或由协议预定义的:
    所述第一位置索引组的大小、所述第二位置索引组的大小、所述X1、X2、X3和K。
  31. 根据权利要求28所述的PDCCH传输方法,其中,
    所述X5为网络侧设备配置,或协议预定义的。
  32. 一种物理下行链路控制信道PDCCH传输装置,包括:
    处理模块,用于确定第一复数符号序列在第二复数符号序列中的目标位置,并在所述第二复数符号序列中的所述目标位置放置所述第一复数符号序列;所述第一复数符号序列用于携带PDCCH的数据;
    对所述第二复数符号序列进行DFT或者转换预编码处理,得到第三复数符号序列;
    发送模块,用于将所述第三复数符号序列映射到目标时频资源上并发送。
  33. 一种物理下行链路控制信道PDCCH传输装置,包括:
    接收模块,用于接收目标时频资源上的第四复数符号序列;
    处理模块,用于对所述第四复数符号序列进行离散傅里叶逆变换IDFT或者转换预编码逆运算,得到第五复数符号序列;
    所述处理模块,还用于确定K个候选PDCCH的位置序列;所述K为大于0的整数;
    基于所述K个候选PDCCH的位置序列,从所述第五复数符号序列中提取出第六复数符号序列;
    基于所述第六复数符号序列进行盲检。
  34. 一种网络侧设备,包括处理器和存储器,所述存储器存储可在所述处理器上运行的程序或指令,所述程序或指令被所述处理器执行时实现如权利要求1至16任一项所述的PDCCH传输方法的步骤。
  35. 一种终端,包括处理器和存储器,所述存储器存储可在所述处理器上运行的程序或指令,所述程序或指令被所述处理器执行时实现如权利要求17至31任一项所述的PDCCH传输方法的步骤。
  36. 一种可读存储介质,所述可读存储介质上存储程序或指令,所述程序或指令被处理器执行时实现如权利要求1-16任一项所述的PDCCH传输方法,或者实现如权利要求17至31任一项所述的PDCCH传输方法的步骤。
PCT/CN2023/070738 2022-01-11 2023-01-05 Pdcch传输方法、终端及网络侧设备 WO2023134542A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210028242.6A CN116470997A (zh) 2022-01-11 2022-01-11 Pdcch传输方法、终端及网络侧设备
CN202210028242.6 2022-01-11

Publications (1)

Publication Number Publication Date
WO2023134542A1 true WO2023134542A1 (zh) 2023-07-20

Family

ID=87179344

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/070738 WO2023134542A1 (zh) 2022-01-11 2023-01-05 Pdcch传输方法、终端及网络侧设备

Country Status (2)

Country Link
CN (1) CN116470997A (zh)
WO (1) WO2023134542A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106817331A (zh) * 2015-12-02 2017-06-09 华为技术有限公司 通信系统中处理通信信号的方法和装置
CN111294150A (zh) * 2019-07-05 2020-06-16 北京展讯高科通信技术有限公司 物理下行控制信道盲检方法及用户设备、可读存储介质
WO2020164461A1 (zh) * 2019-02-14 2020-08-20 电信科学技术研究院有限公司 一种下行传输方法及其装置
US20210084634A1 (en) * 2019-12-02 2021-03-18 Intel Corporation Control resource set configuration and physical downlink control channel design for above 52.6ghz
CN113330710A (zh) * 2019-02-01 2021-08-31 苹果公司 利用dft-s-ofdm波形对pdsch传输进行调度

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106817331A (zh) * 2015-12-02 2017-06-09 华为技术有限公司 通信系统中处理通信信号的方法和装置
CN113330710A (zh) * 2019-02-01 2021-08-31 苹果公司 利用dft-s-ofdm波形对pdsch传输进行调度
WO2020164461A1 (zh) * 2019-02-14 2020-08-20 电信科学技术研究院有限公司 一种下行传输方法及其装置
CN111294150A (zh) * 2019-07-05 2020-06-16 北京展讯高科通信技术有限公司 物理下行控制信道盲检方法及用户设备、可读存储介质
US20210084634A1 (en) * 2019-12-02 2021-03-18 Intel Corporation Control resource set configuration and physical downlink control channel design for above 52.6ghz

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
ERICSSON: "Aligning of terminologies for MSG3, MSG3 retransmission, RAR UL grant in 38.21x", 3GPP TSG-RAN WG1 MEETING #97 TDOC R1-1907684, 13 May 2019 (2019-05-13), XP051728999 *
ETRI: "PUCCH resource allocation for CA A/N feedback", 3GPP TSG RAN WG1 MEETING #62 R1-104667, 17 August 2010 (2010-08-17), XP050449944 *

Also Published As

Publication number Publication date
CN116470997A (zh) 2023-07-21

Similar Documents

Publication Publication Date Title
US9025684B2 (en) Method for generating and transmitting a reference signal for uplink demodulation in a clustered DFT-spread OFDM transmission scheme
WO2018177295A1 (zh) 传输dmrs的方法和装置
WO2022214013A1 (zh) 资源确定方法、装置、终端、网络侧设备及存储介质
WO2019029326A1 (zh) 基于序列的信号处理方法及装置
JP2023014109A (ja) 系列に基づく信号処理方法および装置
US20210328842A1 (en) Sequence-based signal processing method and apparatus
WO2020052419A1 (zh) 参考信号及序列配置方法和装置
CN112968756B (zh) 参考信号配置方法和装置
US11252003B2 (en) Sequence-based signal processing method and apparatus
JP7121199B2 (ja) シーケンスを生成及び処理する方法並びに装置
WO2023134542A1 (zh) Pdcch传输方法、终端及网络侧设备
WO2022206554A1 (zh) 传输方向的确定方法、装置、终端及网络侧设备
WO2022077438A1 (en) Method for beam switching in mmwave systems
KR101895997B1 (ko) 주파수 분할 다중 접속을 위한 송신기 및 수신기
WO2023143353A1 (zh) Dmrs生成方法、终端及网络侧设备
WO2022253312A1 (zh) 上行数据传输方法、装置、终端及介质
WO2023131316A1 (zh) 探测参考信号的端口映射方法和终端
WO2023134668A1 (zh) Srs端口映射方法、装置及终端
WO2023088230A1 (zh) 信息传输方法、装置、终端、网络侧设备及可读存储介质
WO2023143428A1 (zh) 信息传输方法、设备、终端及网络侧设备
WO2023116874A1 (zh) 通信资源确定方法、终端及网络侧设备
WO2023138633A1 (zh) 信息传输方法、装置、网络侧设备及终端
WO2023116775A1 (zh) 信号生成和接收方法及设备
WO2023125824A1 (zh) 控制信道监测方法、终端及网络侧设备
WO2023134585A1 (zh) 下行传输方法、终端及网络侧设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23739886

Country of ref document: EP

Kind code of ref document: A1