WO2022253312A1 - 上行数据传输方法、装置、终端及介质 - Google Patents

上行数据传输方法、装置、终端及介质 Download PDF

Info

Publication number
WO2022253312A1
WO2022253312A1 PCT/CN2022/096836 CN2022096836W WO2022253312A1 WO 2022253312 A1 WO2022253312 A1 WO 2022253312A1 CN 2022096836 W CN2022096836 W CN 2022096836W WO 2022253312 A1 WO2022253312 A1 WO 2022253312A1
Authority
WO
WIPO (PCT)
Prior art keywords
indication information
uplink data
waveform
target
dmrs
Prior art date
Application number
PCT/CN2022/096836
Other languages
English (en)
French (fr)
Inventor
塔玛拉卡拉盖施
孙鹏
Original Assignee
维沃移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 维沃移动通信有限公司 filed Critical 维沃移动通信有限公司
Priority to EP22815352.4A priority Critical patent/EP4351061A1/en
Publication of WO2022253312A1 publication Critical patent/WO2022253312A1/zh
Priority to US18/526,094 priority patent/US20240107530A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/0008Modulated-carrier systems arrangements for allowing a transmitter or receiver to use more than one type of modulation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2602Signal structure
    • H04L27/261Details of reference signals
    • H04L27/2613Structure of the reference signals
    • H04L27/26136Pilot sequence conveying additional information
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2626Arrangements specific to the transmitter only
    • H04L27/2627Modulators
    • H04L27/2634Inverse fast Fourier transform [IFFT] or inverse discrete Fourier transform [IDFT] modulators in combination with other circuits for modulation
    • H04L27/2636Inverse fast Fourier transform [IFFT] or inverse discrete Fourier transform [IDFT] modulators in combination with other circuits for modulation with FFT or DFT modulators, e.g. standard single-carrier frequency-division multiple access [SC-FDMA] transmitter or DFT spread orthogonal frequency division multiplexing [DFT-SOFDM]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • H04L5/0007Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • H04L5/0051Allocation of pilot signals, i.e. of signals known to the receiver of dedicated pilots, i.e. pilots destined for a single user or terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/12Wireless traffic scheduling
    • H04W72/1263Mapping of traffic onto schedule, e.g. scheduled allocation or multiplexing of flows
    • H04W72/1268Mapping of traffic onto schedule, e.g. scheduled allocation or multiplexing of flows of uplink data flows
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
    • H04W72/232Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal the control data signalling from the physical layer, e.g. DCI signalling
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Definitions

  • the present application belongs to the technical field of communication, and in particular relates to an uplink data transmission method, device, terminal and medium.
  • the user equipment can receive the radio resource control (Radio Resource Control, RRC) signaling from the network side equipment, and according to the information included in the RRC signaling Waveform configuration information, using cyclic prefix Orthogonal Frequency Division Multiplexing (Cyclic Prefix Orthogonal Frequency Division Multiplexing, CP-OFDM) waveform or Discrete Fourier Transform-Spread Orthogonal Frequency Division Multiplexing, DFT-S-OFDM) waveform transmits uplink data.
  • RRC Radio Resource Control
  • the UE can transmit one uplink data by using the CP-OFDM waveform, that is, single-stream transmission; or, the UE can transmit multiple uplink data by using the DFT-S-OFDM waveform, that is, multi-stream transmission.
  • the peak-to-average power ratio (Peak to Average Power Ratio, PAPR) of the reference signal symbols may be high, so the power amplifier efficiency of the UE is low .
  • Embodiments of the present application provide an uplink data transmission method, device, terminal, and medium, which can solve the problem of low power amplifier efficiency of a UE.
  • a method for transmitting uplink data includes: when the UE is configured to transmit uplink data using a first waveform, the UE receives target downlink control information DCI from a network side device, and the target DCI is used for Scheduling the target uplink data; when the indication information included in the target DCI satisfies the first preset condition, the UE uses the second waveform to transmit the target uplink data; wherein, the above indication information is used to indicate: the transmission parameters of the target uplink data.
  • an uplink data transmission device in a second aspect, includes: a receiving module and a transmitting module.
  • the receiving module is configured to receive target DCI from the network side equipment when the device for configuring uplink data transmission is configured to transmit uplink data using the first waveform, and the target DCI is used for scheduling target uplink data.
  • the transmission module is configured to transmit the target uplink data using the second waveform when the indication information contained in the target DCI received by the receiving module satisfies the first preset condition; wherein the above indication information is used to indicate: the transmission parameters of the target uplink data .
  • a terminal in a third aspect, includes a processor, a memory, and a program or instruction stored in the memory and operable on the processor. When the program or instruction is executed by the processor The steps of the method described in the first aspect are realized.
  • a terminal including a processor and a communication interface, wherein the communication interface is used to receive target downlink control information from a network side device when the terminal is configured to transmit uplink data using a first waveform DCI, the target DCI is used to schedule the target uplink data; when the indication information included in the target DCI satisfies the first preset condition, the second waveform is used to transmit the target uplink data; wherein, the above indication information is used to indicate: the target uplink data The transmission parameters.
  • a readable storage medium is provided, and programs or instructions are stored on the readable storage medium, and when the programs or instructions are executed by a processor, the steps of the method described in the first aspect are realized, or the steps of the method described in the first aspect are realized, or The steps of the method described in the third aspect.
  • a sixth aspect provides a chip, the chip includes a processor and a communication interface, the communication interface is coupled to the processor, the processor is used to run programs or instructions, and implement the method as described in the first aspect .
  • a computer program/program product is provided, the computer program/program product is stored in a non-volatile storage medium, and the program/program product is executed by at least one processor to implement the first aspect The steps of the method.
  • the UE in the case of being configured to transmit uplink data using the first waveform, may receive target DCI for scheduling target uplink data from the network side device, and indicate the target DCI included in the target DCI If the indication information of the transmission parameters of the target uplink data satisfies the first preset condition, the target uplink data is directly transmitted using the second waveform.
  • the UE can determine whether the indication information included in the target DCI satisfies the first preset condition, and when it is determined that the indication information satisfies the first preset condition, The second waveform is used to transmit the target uplink data instead of the preconfigured first waveform to transmit the target uplink data. Therefore, the PAPR of the reference signal symbols can be reduced, thus improving the power amplification efficiency of the UE.
  • FIG. 1 is a block diagram of a wireless communication system provided by an embodiment of the present application.
  • Fig. 2 is one of the schematic diagrams of the uplink data transmission method provided by the embodiment of the present application.
  • FIG. 3 is the second schematic diagram of the uplink data transmission method provided by the embodiment of the present application.
  • FIG. 4 is the third schematic diagram of the uplink data transmission method provided by the embodiment of the present application.
  • FIG. 5 is one of the structural schematic diagrams of an uplink data transmission device provided by an embodiment of the present application.
  • FIG. 6 is a second structural schematic diagram of an uplink data transmission device provided by an embodiment of the present application.
  • FIG. 7 is a schematic structural diagram of a communication device provided by an embodiment of the present application.
  • FIG. 8 is a schematic diagram of a hardware structure of a terminal provided by an embodiment of the present application.
  • the waveform in which the UE transmits uplink data may be semi-statically configured by RRC signaling received from the network side device.
  • the UE uses DFT-S-OFDM to transmit uplink data, and the uplink transmission is limited to single-stream transmission.
  • the UE uses CP-OFDM to transmit uplink data, and the uplink transmission can be single-stream transmission or multi-stream transmission.
  • the precoding and transport stream number information field is referred to as the TPMI field for short.
  • one information field can indicate precoding information and data stream number information at the same time.
  • the precoding information is used to indicate a precoding matrix.
  • first, second and the like in the specification and claims of the present application are used to distinguish similar objects, and are not used to describe a specific sequence or sequence. It is to be understood that the terms so used are interchangeable under appropriate circumstances such that the embodiments of the application are capable of operation in sequences other than those illustrated or described herein and that "first" and “second” distinguish objects. It is usually one category, and the number of objects is not limited. For example, there may be one or more first objects.
  • “and/or” in the description and claims means at least one of the connected objects, and the character “/” generally means that the related objects are an "or” relationship.
  • LTE Long Term Evolution
  • LTE-Advanced LTE-Advanced
  • LTE-A Long Term Evolution-Advanced
  • CDMA Code Division Multiple Access
  • TDMA Time Division Multiple Access
  • FDMA Frequency Division Multiple Access
  • OFDMA Orthogonal Frequency Division Multiple Access
  • SC-FDMA Single-carrier Frequency-Division Multiple Access
  • system and “network” in the embodiments of the present application are often used interchangeably, and the described technology can be used for the above-mentioned system and radio technology, and can also be used for other systems and radio technologies.
  • the following description describes the New Radio (New Radio, NR) system for example purposes, and uses NR terminology in most of the following descriptions, but these techniques can also be applied to applications other than NR system applications, such as the 6th Generation (6th Generation , 6G) communication system.
  • 6th Generation 6th Generation
  • Fig. 1 shows a block diagram of a wireless communication system to which the embodiment of the present application is applicable.
  • the wireless communication system includes a terminal 11 and a network side device 12 .
  • the terminal 11 can also be called a terminal device or a user terminal (User Equipment, UE), and the terminal 11 can be a mobile phone, a tablet computer (Tablet Personal Computer), a laptop computer (Laptop Computer) or a notebook computer, a personal digital Assistant (Personal Digital Assistant, PDA), handheld computer, netbook, ultra-mobile personal computer (UMPC), mobile Internet device (Mobile Internet Device, MID), wearable device (Wearable Device) or vehicle-mounted device (VUE), Pedestrian Terminal (PUE) and other terminal-side devices, wearable devices include: smart watches, bracelets, earphones, glasses, etc.
  • the network side device 12 may be a base station or a core network, where a base station may be called a node B, an evolved node B, an access point, a base transceiver station (Base Transceiver Station, BTS), a radio base station, a radio transceiver, a basic service Basic Service Set (BSS), Extended Service Set (ESS), Node B, Evolved Node B (eNB), Home Node B, Home Evolved Node B, WLAN access point, WiFi node, transmission Receiving point (Transmitting Receiving Point, TRP) or some other suitable term in the field, as long as the same technical effect is achieved, the base station is not limited to specific technical terms. It should be noted that in the embodiment of this application, only The base station in the NR system is taken as an example, but the specific type of the base station is not limited.
  • Fig. 2 shows a flowchart of an uplink data transmission method provided by an embodiment of the present application.
  • the uplink data transmission method provided by the embodiment of the present application may include the following steps 101 and 102 .
  • Step 101 In a case where the uplink data transmission device is configured to transmit uplink data using a first waveform, the uplink data transmission device receives a target DCI from a network side device.
  • the foregoing first waveform may be any of the following: CP-OFDM, DFT-S-OFDM.
  • the uplink data transmission device may receive RRC signaling from the network side device, and configure the uplink data transmission device to use the first waveform to transmit uplink data according to the transformPrecoder in the RRC signaling.
  • the foregoing target DCI is used for scheduling target uplink data.
  • Step 102 When the indication information included in the target DCI satisfies the first preset condition, the uplink data transmission device transmits the target uplink data using the second waveform.
  • the above indication information is used to indicate: the transmission parameters of the target uplink data.
  • the above indication information may be one indication information, or may include multiple sub-indication information.
  • the above-mentioned indication information includes at least one of the following: TPMI domain, sounding reference signal resource indication information (SRS Resource Indicator, SRI) domain, frequency domain resource allocation indication information (Frequency Domain Resource Allocation, FDRA) field, modulation and coding scheme (Modulation and Coding Scheme, MCS) index value, channel state information (Channel State Information, CSI) request field.
  • SRS Resource Indicator SRI
  • Frequency Domain Resource Allocation Frequency Domain Resource Allocation
  • FDRA frequency domain resource allocation indication information
  • MCS Modulation and Coding Scheme
  • CSI Channel State Information
  • the above indication information may also include at least one of the following: physical/virtual resource block (physical/virtual resource block, PRB/VRB) allocation indication information field, time domain resource allocation (Time Domain Resource Allocation, TDRA) indication information field, demodulation reference signal (Demodulation Reference Signal, DMRS) indication information field, etc.
  • physical/virtual resource block physical/virtual resource block, PRB/VRB
  • time domain resource allocation Time Domain Resource Allocation, TDRA
  • DMRS Demodulation Reference Signal
  • the above indication information satisfying the first preset condition includes at least one of the following:
  • the channel rank corresponding to the TPMI domain is less than or equal to the first threshold
  • the channel rank number corresponding to the SRI domain is less than or equal to the second threshold
  • the physical resource block PRB indicated by the FDRA field is a continuous PRB
  • the MCS index value is less than the third threshold
  • the indication information does not include the CSI request field
  • the indication information includes a CSI request field, and the CSI request field is not used to trigger the uplink data transmission device to report a CSI report.
  • the uplink data transmission device can use the DFT-S-OFDM waveform to perform single-stream transmission (that is, transmit target uplink data), so as to reduce the PAPR of the reference signal symbol.
  • the above indication information satisfying the first preset condition includes at least one of the following:
  • the rank corresponding to the TPMI field is greater than the first threshold
  • the rank corresponding to the SRI domain is greater than the second threshold
  • the PRBs indicated by the FDRA field are continuous or discontinuous PRBs
  • the MCS index value is greater than the third threshold
  • the indication information includes a CSI request field.
  • the uplink data transmission device may use a CP-OFDM waveform to perform multi-stream transmission (that is, transmit target uplink data), so as to reduce the PAPR of the reference signal symbol.
  • the uplink data transmission device when the uplink data transmission device is configured to transmit uplink data using CP-OFDM, if the uplink data transmission device is scheduled for single-stream transmission and meets the first preset condition, the uplink data transmission device can use DFT-S-OFDM transmits target uplink data.
  • the uplink data transmission device When the uplink data transmission device is configured to use CP-OFDM to transmit uplink data, if the uplink data transmission device is scheduled for single-stream transmission and does not meet the first preset condition, the uplink data transmission device still uses CP-OFDM to transmit the target upstream data.
  • the uplink data transmission device When the uplink data transmission device is configured to use DFT-S-OFDM to transmit uplink data, if the uplink data transmission device is scheduled for multi-stream transmission and meets the first preset condition, the uplink data transmission device can use CP-OFDM transmission Target uplink data.
  • the uplink data transmission device can receive the target DCI for scheduling the target uplink data from the network side equipment, and The indication information included in the DCI is used to indicate the transmission parameters of the target uplink data. If the first preset condition is satisfied, the target uplink data is directly transmitted using the second waveform.
  • the uplink data transmission device may determine whether the indication information included in the target DCI satisfies the first preset condition, and when determining that the indication information satisfies the first preset condition, Under the conditions set, the target uplink data is transmitted using the second waveform instead of the pre-configured first waveform, so the PAPR of the reference signal symbol can be reduced, so that the uplink data transmission device can be improved. power amplifier efficiency.
  • the uplink data transmission device uses the second waveform to transmit the target uplink data, some sub-indication information in the target DCI may be invalid for the second waveform. In this way, the uplink data transmission device can According to the sub-indication information except the certain sub-indication information, the target uplink data is transmitted by using the second waveform, that is, the certain sub-indication information is ignored.
  • the above indication information includes N sub-indication information, where N is a positive integer.
  • N is a positive integer.
  • the above-mentioned step 102 may be specifically implemented through the following step 102a.
  • Step 102a in the case that Q pieces of sub-indication information among the N pieces of sub-indication information satisfy a second preset condition, the uplink data transmission device transmits target uplink data using a second waveform according to other sub-indication information.
  • the above other sub-indication information is: among the N sub-indication information, sub-indication information except Q sub-indication information, where Q is a positive integer.
  • the uplink data transmission device uses the second waveform to transmit target uplink data according to other sub-indication information, that is, the uplink data transmission device ignores Q sub-indication information satisfying the second preset condition among the N sub-indication information.
  • the above-mentioned second preset condition may specifically be: the sub-indicator information is invalid for the second waveform.
  • the N sub-indication information includes a phase tracking reference signal (PhaseTracking Reference Signal, PTRS)-DMRS association information field
  • the PTRS-DMRS association is 2 bits
  • the PTRS-DMRS association is aimed at the second waveform (such as DFT- S-OFDM) is invalid
  • the uplink data transmission device can ignore the PTRS-DMRS association.
  • PhaseTracking Reference Signal PhaseTracking Reference Signal
  • the uplink data transmission apparatus may transmit target uplink data using the second waveform according to transmission parameters indicated by other sub-indication information.
  • the uplink data transmission device can use the second waveform to transmit the target uplink data according to the other sub-indication information that is valid for the second waveform among the N sub-indication information included in the target DCI, it will not be based on the invalid sub-indication information for the second waveform.
  • the Q pieces of sub-indication information are used to transmit the target uplink data, so the reliability of uplink data transmission by the uplink data transmission device can be improved.
  • the uplink data transmission device may also keep the size of certain sub-indication information among the plurality of sub-indication information unchanged, and perform a new interpretation on the certain sub-indication information.
  • the above-mentioned indication information includes: a first demodulation reference signal DMRS indication information field, where the first DMRS indication information field is used to indicate: when the transmission target uplink data is configured to use the first waveform In this case, the transmission port of the DMRS used by the target uplink data.
  • the uplink data transmission method provided by the embodiment of the present application may also include the following Step 301, and the above-mentioned step 102 can be specifically implemented through the following step 102b.
  • Step 301 When the indication information included in the target DCI satisfies the first preset condition, the uplink data transmission device determines the target transmission port according to the first DMRS indication information field.
  • the uplink data transmission device may be based on the pre-configured first DMRS indication table of the first waveform and the second DMRS indication table of the second waveform, according to the first DMRS indication information field and the first The DMRS indication table (or the second DMRS indication table) determines the target transmission port.
  • the first DMRS indication table includes at least one state
  • the second DMRS indication table includes at least one state
  • the number of states in the first DMRS indication table is different from the number of states in the second DMRS indication table.
  • Table 1 shows a DMRS indication table corresponding to DFT-S-OFDM.
  • the DMRS indication table includes 4 states (that is, the value of the number of states is 4), and a total of 2 bit indications.
  • Table 2 shows a DMRS indication table corresponding to CP-OFDM.
  • the DMRS indication table includes 6 states (that is, the value of the number of states is 6), and a total of 3 bits for indication.
  • the above-mentioned first DMRS indication information field corresponds to X bits, and X is determined based on the waveform with a large number of states among the first waveform and the second waveform , X is a positive integer.
  • X is a bit of a waveform with a large number of states among the first waveform and the second waveform.
  • the state quantity value of the first waveform is 6
  • the first waveform occupies 3 bits
  • the state quantity value of the second waveform is 4
  • the second waveform occupies 2 bits
  • X is:
  • the bits of the waveform with a large number of states are 3 bits.
  • the above-mentioned target transmission port is: the transmission port indicated by the target bit.
  • the above-mentioned target bits are: the first Y bits or the last Z bits among the X bits, and both Y and Z are positive integers.
  • the target transmission port is: the DMRS ports indicated by the first Y (for example, 2) ratio characteristics, or the DMRS ports indicated by the last Z (for example, 2) ratio characteristics.
  • the length of the DMRS information field and the above-mentioned target transmission port are: the transmission determined according to the state corresponding to the second waveform port.
  • the length of the DMRS information field and the target transmission port are: the transmission port determined according to the state corresponding to CP-OFDM (ie, the 6 states in Table 2).
  • the uplink data transmission device can perform new interpretation on the first DMRS indication information according to the state quantity value corresponding to the second waveform and the state quantity value corresponding to the first waveform, so as to determine the target transmission port, therefore, it can The reliability of uplink data transmission by the uplink data transmission device is improved.
  • step 301 may specifically be implemented through the following steps 301a and 301b.
  • Step 301a when the indication information included in the target DCI satisfies the first preset condition, the uplink data transmission device determines the second DMRS indication information field according to the index value of the first DMRS indication information field based on the M first mapping relationships index value.
  • each of the above-mentioned M first mapping relationships is respectively: a mapping relationship between index values of different DMRS indication information fields corresponding to different waveforms, and M is a positive integer;
  • the above M first mapping relationships may be: mapping relationships pre-stored in the uplink data transmission apparatus.
  • the above-mentioned second DMRS indication information field is used to indicate: in the case of being configured to transmit the target uplink data using the second waveform, the DMRS transmission port used by the target uplink data.
  • the uplink data transmission device may determine a matching first index value from the M first index values of the first waveform according to the index value of the first DMRS indication information field, and then Then according to the first index value, determine a mapped second index value from the M second index values of the second waveform, and determine the second index value as the index value of the second DMRS indication information field .
  • step 301b the uplink data transmission device determines the target transmission port according to the index value of the second DMRS indication information field.
  • the uplink data transmission device may determine the target transmission port according to the index value of the second DMRS indication information field and the first DMRS indication table (or the second DMRS indication table).
  • the uplink data transmission device can re-determine a new index value according to the index value of the first DMRS indication information field based on the M first mapping relationships, so as to determine the target transmission port according to the new index value, Therefore, the reliability of uplink data transmission by the uplink data transmission device can be improved.
  • step 102b the uplink data transmission device transmits the DMRS using the second waveform according to the target transmission port.
  • the DMRS indication information field in the target DCI is taken as an example to illustrate how the uplink data transmission device performs new interpretation on the sub-indication information, and uses the second waveform to transmit the DMRS.
  • the second waveform is used to transmit other transmission parameters indicated by the other sub-indication information, and transmit uplink data to transmit target uplink data.
  • the uplink data transmission device can perform a new interpretation of the first DMRS indication information to determine the target transmission port, the uplink data transmission device can transmit DMRS using the second waveform according to the target transmission port, therefore, it can be improved. Reliability of uplink data transmission by the uplink data transmission device.
  • the uplink data transmission method provided in the embodiment of the present application may be executed by an uplink data transmission device, or a control module in the uplink data transmission device for executing the uplink data transmission method.
  • an uplink data transmission device performing an uplink data transmission method is taken as an example to illustrate the uplink data transmission device provided in the embodiment of the present application.
  • FIG. 5 shows a possible structural diagram of a transmission device involved in the embodiment of the present application.
  • the uplink data transmission device 60 may include: a receiving module 61 and a transmitting module 62 .
  • the receiving module 61 is configured to receive target DCI from the network side equipment when the uplink data transmission apparatus 60 is configured to transmit uplink data using the first waveform, and the target DCI is used for scheduling target uplink data.
  • the transmission module 62 is configured to transmit the target uplink data using the second waveform when the indication information included in the target DCI received by the receiving module 61 satisfies the first preset condition.
  • the above indication information is used to indicate: the transmission parameters of the target uplink data.
  • the above indication information includes at least one of the following: TPMI field, SRI field, FDRA field, MCS index value, and CSI request field.
  • the above indication information satisfying the first preset condition includes at least one of the following:
  • the rank corresponding to the TPMI field is less than or equal to the first threshold; the rank corresponding to the SRI field is less than or equal to the second threshold; the PRBs indicated by the FDRA field are continuous PRBs; the MCS index value is less than the third threshold; the indication information does not include the CSI request field ;
  • the indication information includes a CSI request field, and the CSI request field is not used to trigger the uplink data transmission device 60 to report a CSI report.
  • the above indication information includes: a first DMRS indication information field, where the first DMRS indication information field is used to indicate: when configured to transmit target uplink data using the first waveform, the target The transmission port of the DMRS used for uplink data.
  • the uplink data transmission device 60 provided in the embodiment of the present application may further include: a processing module 63 .
  • the processing module 63 is configured to determine the target transmission port according to the first DMRS indication information field.
  • the transmission module 62 is specifically configured to transmit the DMRS using the second waveform according to the target transmission port determined by the processing module 63 .
  • the above-mentioned first DMRS indication information field corresponds to X bits, and X is determined based on the waveform with a large number of states in the first waveform and the second waveform, and X is a positive integer;
  • the target transmission port is: the transmission port indicated by the target bit;
  • the state quantity value corresponding to the second waveform is greater than the corresponding state quantity value of the first waveform
  • the target transmission port is: the transmission port determined according to the state corresponding to the second waveform.
  • the above-mentioned target bits are: the first Y bits or the last Z bits among the X bits, and both Y and Z are positive integers.
  • the above-mentioned processing module 63 is specifically configured to determine the index value of the second DMRS indication information field based on the M first mapping relationships and according to the index value of the first DMRS indication information field, where M is positive Integer; and determine the target transmission port according to the index value of the second DMRS indication information field.
  • each first mapping relationship is respectively: the mapping relationship between index values of different DMRS indication information fields corresponding to different waveforms; the above-mentioned second DMRS indication information field is used to indicate: when configured to use the second waveform to transmit the target uplink In the case of data, the transmission port of the DMRS used by the target uplink data.
  • the above indication information includes N sub-indication information, where N is a positive integer.
  • the above transmission module 62 is specifically configured to transmit the target uplink data using the second waveform according to other sub-indication information when Q sub-indication information among the N sub-indication information satisfies the second preset condition.
  • the above other sub-indication information is: sub-indication information except Q sub-indication information among N sub-indication information, where Q is a positive integer.
  • the uplink data transmission device when the uplink data transmission device is configured to transmit uplink data using the first waveform, the uplink data transmission device can determine whether the indication information included in the target DCI satisfies the first preset condition , and when it is determined that the indication information satisfies the first preset condition, the target uplink data is transmitted using the second waveform instead of the preconfigured first waveform, so that the number of reference signal symbols can be reduced In this way, the PAPR can improve the power amplification efficiency of the uplink data transmission device.
  • the uplink data transmission device in the embodiment of the present application may be a device, a device with an operating system or an electronic device, or a component, an integrated circuit, or a chip in a terminal.
  • the apparatus or electronic equipment may be a mobile terminal or a non-mobile terminal.
  • the mobile terminal may include but not limited to the types of terminals 11 listed above, and the non-mobile terminal may be a server, a network attached storage (Network Attached Storage, NAS), a personal computer (Personal Computer, PC), a television ( Television, TV), teller machines or self-service machines, etc., are not specifically limited in this embodiment of the present application.
  • the uplink data transmission device provided by the embodiment of the present application can realize each process realized by the method embodiments in FIG. 1 to FIG. 4 , and achieve the same technical effect. To avoid repetition, details are not repeated here.
  • the embodiment of the present application further provides a communication device 70, including a processor 71, a memory 72, and programs or instructions stored in the memory 72 and operable on the processor 71,
  • a communication device 70 including a processor 71, a memory 72, and programs or instructions stored in the memory 72 and operable on the processor 71
  • the communication device 70 is a terminal
  • the program or instruction is executed by the processor 71
  • each process of the above-mentioned uplink data transmission method embodiment can be achieved, and the same technical effect can be achieved. To avoid repetition, details are not repeated here.
  • the embodiment of the present application also provides a terminal, including a processor and a communication interface, where the communication interface is used to receive target downlink control information DCI from a network side device when the terminal is configured to transmit uplink data using a first waveform, the target The DCI is used to schedule the target uplink data; when the indication information included in the target DCI satisfies the first preset condition, the second waveform is used to transmit the target uplink data; wherein, the above indication information is used to indicate: the transmission parameters of the target uplink data.
  • This terminal embodiment corresponds to the above-mentioned terminal-side method embodiment, and each implementation process and implementation mode of the above-mentioned method embodiment can be applied to this terminal embodiment, and can achieve the same technical effect.
  • FIG. 8 is a schematic diagram of a hardware structure of a terminal implementing an embodiment of the present application.
  • the terminal 100 includes but is not limited to: a radio frequency unit 101, a network module 102, an audio output unit 103, an input unit 104, a sensor 105, a display unit 106, a user input unit 107, an interface unit 108, a memory 109, and a processor 110, etc. at least some of the components.
  • the terminal 100 may also include a power supply (such as a battery) for supplying power to various components, and the power supply may be logically connected to the processor 110 through the power management system, so as to manage charging, discharging, and power consumption through the power management system. Management and other functions.
  • a power supply such as a battery
  • the terminal structure shown in FIG. 8 does not constitute a limitation on the terminal, and the terminal may include more or fewer components than shown in the figure, or combine some components, or arrange different components, which will not be repeated here.
  • the input unit 104 may include a graphics processing unit (Graphics Processing Unit, GPU) 1041 and a microphone 1042, and the graphics processing unit 1041 is used by the image capturing device (such as the image data of the still picture or video obtained by the camera) for processing.
  • the display unit 106 may include a display panel 1061, and the display panel 1061 may be configured in the form of a liquid crystal display, an organic light emitting diode, or the like.
  • the user input unit 107 includes a touch panel 1071 and other input devices 1072 .
  • the touch panel 1071 is also called a touch screen.
  • the touch panel 1071 may include two parts, a touch detection device and a touch controller.
  • Other input devices 1072 may include, but are not limited to, physical keyboards, function keys (such as volume control keys, switch keys, etc.), trackballs, mice, and joysticks, which will not be repeated here.
  • the radio frequency unit 101 receives the downlink data from the network side device, and processes it to the processor 110; in addition, sends the uplink data to the network side device.
  • the radio frequency unit 101 includes, but is not limited to, an antenna, at least one amplifier, a transceiver, a coupler, a low noise amplifier, a duplexer, and the like.
  • the memory 109 can be used to store software programs or instructions as well as various data.
  • the memory 109 may mainly include a program or instruction storage area and a data storage area, wherein the program or instruction storage area may store an operating system, an application program or instructions required by at least one function (such as a sound playback function, an image playback function, etc.) and the like.
  • the memory 109 may include a high-speed random access memory, and may also include a nonvolatile memory, wherein the nonvolatile memory may be a read-only memory (Read-Only Memory, ROM), a programmable read-only memory (Programmable ROM) , PROM), erasable programmable read-only memory (Erasable PROM, EPROM), electrically erasable programmable read-only memory (Electrically EPROM, EEPROM) or flash memory.
  • ROM Read-Only Memory
  • PROM programmable read-only memory
  • PROM erasable programmable read-only memory
  • Erasable PROM Erasable PROM
  • EPROM electrically erasable programmable read-only memory
  • EEPROM electrically erasable programmable read-only memory
  • flash memory for example at least one magnetic disk storage device, flash memory device, or other non-volatile solid-state storage device.
  • the processor 110 may include one or more processing units; optionally, the processor 110 may integrate an application processor and a modem processor, wherein the application processor mainly processes the operating system, user interface and application programs or instructions, etc., Modem processors mainly handle wireless communications, such as baseband processors. It can be understood that the foregoing modem processor may not be integrated into the processor 110 .
  • the radio frequency unit 101 is configured to receive the target DCI from the network side device when the terminal is configured to transmit uplink data using the first waveform, and the target DCI is used to schedule the target uplink data; the indication information included in the target DCI satisfies In the case of the first preset condition, the target uplink data is transmitted using the second waveform.
  • the above indication information is used to indicate: the transmission parameters of the target uplink data.
  • the terminal when the terminal is configured to transmit uplink data using the first waveform, the terminal can determine whether the indication information included in the target DCI satisfies the first preset condition, and determines that the indication information satisfies the second preset condition.
  • the target uplink data is transmitted using the second waveform instead of using the preconfigured first waveform to transmit the target uplink data, therefore, the PAPR of the reference signal symbol can be reduced, thus, the terminal performance can be improved. Power amplifier efficiency.
  • the above-mentioned indication information includes: a first demodulation reference signal DMRS indication information field, where the first DMRS indication information field is used to indicate: when the transmission target uplink data is configured to use the first waveform In this case, the transmission port of the DMRS used by the target uplink data.
  • the processor 110 is further configured to determine the target transmission port according to the first DMRS indication information field.
  • the radio frequency unit 101 is specifically configured to transmit the DMRS using the second waveform according to the target transmission port.
  • the terminal can perform a new interpretation of the first DMRS indication information to determine the target transmission port, so that the terminal can transmit DMRS using the second waveform according to the target transmission port, therefore, the reliability of the terminal's uplink data transmission can be improved. sex.
  • the processor 110 is specifically configured to determine the index value of the second DMRS indication information field based on the M first mapping relationships and according to the index value of the first DMRS indication information field, where M is positive Integer; and determine the target transmission port according to the index value of the second DMRS indication information field.
  • each first mapping relationship is respectively: the mapping relationship between index values of different DMRS indication information fields corresponding to different waveforms; the above-mentioned second DMRS indication information field is used to indicate: when configured to use the second waveform to transmit the target uplink In the case of data, the transmission port of the DMRS used by the target uplink data.
  • the terminal can re-determine a new index value according to the index value of the first DMRS indication information field based on the M first mapping relationships, so as to determine the target transmission port according to the new index value, therefore, can Improve the reliability of the terminal to transmit uplink data.
  • the above indication information includes N sub-indication information, where N is a positive integer.
  • the radio frequency unit 101 is specifically configured to transmit target uplink data using a second waveform according to other sub-indication information when Q sub-indication information among the N sub-indication information satisfies a second preset condition.
  • sub-indication information is: sub-indication information except Q sub-indication information among N sub-indication information, where Q is a positive integer.
  • the terminal since the terminal can use the second waveform to transmit the target uplink data according to the other sub-indication information that is valid for the second waveform among the N sub-indication information included in the target DCI, it will not transmit the target uplink data based on the Q sub-indication information that is invalid for the second waveform.
  • the indication information transmits the target uplink data, therefore, the reliability of the terminal to transmit the uplink data can be improved.
  • the embodiment of the present application also provides a readable storage medium, the readable storage medium stores a program or an instruction, and when the program or instruction is executed by the processor, each process of the above-mentioned uplink data transmission method embodiment is realized, and can achieve The same technical effects are not repeated here to avoid repetition.
  • the processor is the processor in the terminal described in the foregoing embodiments.
  • the readable storage medium includes computer readable storage medium, such as computer read-only memory (Read-Only Memory, ROM), random access memory (Random Access Memory, RAM), magnetic disk or optical disk, etc.
  • the embodiment of the present application further provides a chip, the chip includes a processor and a communication interface, the communication interface is coupled to the processor, and the processor is used to run programs or instructions to implement the above-mentioned embodiment of the uplink data transmission method Each process, and can achieve the same technical effect, in order to avoid repetition, will not repeat them here.
  • chips mentioned in the embodiments of the present application may also be referred to as system-on-chip, system-on-chip, system-on-a-chip, or system-on-chip.
  • the term “comprising”, “comprising” or any other variation thereof is intended to cover a non-exclusive inclusion such that a process, method, article or apparatus comprising a set of elements includes not only those elements, It also includes other elements not expressly listed, or elements inherent in the process, method, article, or device. Without further limitations, an element defined by the phrase “comprising a " does not preclude the presence of additional identical elements in the process, method, article, or apparatus comprising that element.
  • the scope of the methods and devices in the embodiments of the present application is not limited to performing functions in the order shown or discussed, and may also include performing functions in a substantially simultaneous manner or in reverse order according to the functions involved. Functions are performed, for example, the described methods may be performed in an order different from that described, and various steps may also be added, omitted, or combined. Additionally, features described with reference to certain examples may be combined in other examples.
  • the methods of the above embodiments can be implemented by means of software plus a necessary general-purpose hardware platform, and of course also by hardware, but in many cases the former is better implementation.
  • the technical solution of the present application can be embodied in the form of computer software products, which are stored in a storage medium (such as ROM/RAM, magnetic disk, etc.) , CD-ROM), including several instructions to make a terminal (which may be a mobile phone, a computer, a server, an air conditioner, or a network device, etc.) execute the methods described in the various embodiments of the present application.

Abstract

本申请公开了一种上行数据传输方法、装置、终端及介质,本申请实施例的上行数据传输方法包括:在UE被配置为采用第一波形传输上行数据的情况下,UE从网络侧设备接收目标下行控制信息DCI,该目标DCI用于调度目标上行数据;在目标DCI包括的指示信息满足第一预设条件的情况下,UE采用第二波形传输目标上行数据;其中,上述指示信息用于指示:目标上行数据的传输参数。

Description

上行数据传输方法、装置、终端及介质
本申请要求于2021年6月2日提交国家知识产权局、申请号为202110615438.0、申请名称为“上行数据传输方法、装置、终端及介质”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请属于通信技术领域,具体涉及一种上行数据传输方法、装置、终端及介质。
背景技术
目前,在新空口(New Radio,NR)系统中,用户设备(User Equipment,UE)可以从网络侧设备接收无线资源控制(Radio Resource Control,RRC)信令,并根据该RRC信令中包括的波形配置信息,采用循环前缀的正交频分复用(Cyclic Prefix Orthogonal Frequency Division Multiplexing,CP-OFDM)波形或离散傅里叶变换扩频的正交频分复用(Discrete Fourier Transform-Spread Orthogonal Frequency Division Multiplexing,DFT-S-OFDM)波形传输上行数据。
通常,UE可以采用CP-OFDM波形传输一个上行数据,即单流传输;或者,UE可以采用DFT-S-OFDM波形传输多个上行数据,即多流传输。
但是,由于在UE采用CP-OFDM波形进行单流传输时,可能会出现参考信号符号的峰值平均功率比(Peak to Average Power Ratio,PAPR)较高的情况,因此,导致UE的功放效率较低。
发明内容
本申请实施例提供一种上行数据传输方法、装置、终端及介质,能够解决UE的功放效率较低的问题。
第一方面,提供了一种上行数据传输方法,该方法包括:在UE被配置为采用第一波形传输上行数据的情况下,UE从网络侧设备接收目标下行控制信息DCI,该目标DCI用于调度目标上行数据;在目标DCI包括的指示信息满足第一预设条件的情况下,UE采用第二波形传输目标上行数据;其中,上述指示信息用于指示:目标上行数据的传输参数。
第二方面,提供了一种上行数据传输装置,该上行数据传输装置包括:接收模块和传输模块。其中,接收模块,用于在配置上行数据传输装置被配置为采用第一波形传输上行数据的情况下,从网络侧设备接收目标DCI,该目标DCI用于调度目标上行数据。传输模块,用于在接收模块接收的目标DCI包括的指示信息满足第一预设条件的情况下,采用第二波形传输目标上行数据;其中,上述指示信息用于指示:目标上行数据的传输参数。
第三方面,提供了一种终端,该终端包括处理器、存储器及存储在所述存储器上并可在所述处理器上运行的程序或指令,所述程序或指令被所述处理器执行时实现如第一方面所述的方法的步骤。
第四方面,提供了一种终端,包括处理器及通信接口,其中,所述通信接口用于 在终端被配置为采用第一波形传输上行数据的情况下,从网络侧设备接收目标下行控制信息DCI,该目标DCI用于调度目标上行数据;在目标DCI包括的指示信息满足第一预设条件的情况下,采用第二波形传输目标上行数据;其中,上述指示信息用于指示:目标上行数据的传输参数。
第五方面,提供了一种可读存储介质,所述可读存储介质上存储程序或指令,所述程序或指令被处理器执行时实现如第一方面所述的方法的步骤,或者实现如第三方面所述的方法的步骤。
第六方面,提供了一种芯片,所述芯片包括处理器和通信接口,所述通信接口和所述处理器耦合,所述处理器用于运行程序或指令,实现如第一方面所述的方法。
第七方面,提供了一种计算机程序/程序产品,所述计算机程序/程序产品被存储在非易失的存储介质中,所述程序/程序产品被至少一个处理器执行以实现如第一方面所述的方法的步骤。
在本申请实施例中,在被配置为采用第一波形传输上行数据的情况下,UE可以从网络侧设备接收用于调度目标上行数据的目标DCI,并在该目标DCI包括的用于指示该目标上行数据的传输参数的指示信息,满足第一预设条件的情况下,直接采用第二波形传输该目标上行数据。由于在UE被配置为采用第一波形传输上行数据的情况下,UE可以确定目标DCI包括的指示信息是否满足第一预设条件,并在确定该指示信息满足第一预设条件的情况下,采用第二波形传输该目标上行数据,而并不是采用预配置的第一波形传输该目标上行数据,因此,可以减少参考信号符号的PAPR,如此,可以提高UE的功放效率。
附图说明
图1是本申请实施例提供的一种无线通信系统的框图;
图2是本申请实施例提供的上行数据传输方法的示意图之一;
图3是本申请实施例提供的上行数据传输方法的示意图之二;
图4是本申请实施例提供的上行数据传输方法的示意图之三;
图5是本申请实施例提供的上行数据传输装置的结构示意图之一;
图6是本申请实施例提供的上行数据传输装置的结构示意图之二;
图7是本申请实施例提供的通信设备的结构示意图;
图8是本申请实施例提供的终端的硬件结构示意图。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚描述,显然,所描述的实施例是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员所获得的所有其他实施例,都属于本申请保护的范围。
以下将对本申请实施例涉及的术语进行说明。
1、上行数据传输波形的配置
UE传输上行数据的波形可以由从网络侧设备接收的RRC信令半静态配置。
当RRC信令中的transformPrecoder被配置为使能(enabled)时,UE采用DFT-S-OFDM传输上行数据,而且上行传输限制为单流传输。
当RRC信令中的transformPrecoder被配置为不使能(disabled)时,UE采用 CP-OFDM传输上行数据,上行传输可以为单流传输或多流传输。
2、预编码和传输流数信息域
本申请实施例中,将预编码和传输流数信息域简称为TPMI域。
在该TPMI域中,一个信息域可以同时指示预编码信息和数据流数信息。其中,预编码信息用于指示预编码矩阵。
3、其他术语
本申请的说明书和权利要求书中的术语“第一”、“第二”等是用于区别类似的对象,而不用于描述特定的顺序或先后次序。应该理解这样使用的术语在适当情况下可以互换,以便本申请的实施例能够以除了在这里图示或描述的那些以外的顺序实施,且“第一”、“第二”所区别的对象通常为一类,并不限定对象的个数,例如第一对象可以是一个,也可以是多个。此外,说明书以及权利要求中“和/或”表示所连接对象的至少其中之一,字符“/”一般表示前后关联对象是一种“或”的关系。
值得指出的是,本申请实施例所描述的技术不限于长期演进型(Long Term Evolution,LTE)/LTE的演进(LTE-Advanced,LTE-A)系统,还可用于其他无线通信系统,诸如码分多址(Code Division Multiple Access,CDMA)、时分多址(Time Division Multiple Access,TDMA)、频分多址(Frequency Division Multiple Access,FDMA)、正交频分多址(Orthogonal Frequency Division Multiple Access,OFDMA)、单载波频分多址(Single-carrier Frequency-Division Multiple Access,SC-FDMA)和其他系统。本申请实施例中的术语“系统”和“网络”常被可互换地使用,所描述的技术既可用于以上提及的系统和无线电技术,也可用于其他系统和无线电技术。以下描述出于示例目的描述了新空口(New Radio,NR)系统,并且在以下大部分描述中使用NR术语,但是这些技术也可应用于NR系统应用以外的应用,如第6代(6th Generation,6G)通信系统。
图1示出本申请实施例可应用的一种无线通信系统的框图。无线通信系统包括终端11和网络侧设备12。其中,终端11也可以称作终端设备或者用户终端(User Equipment,UE),终端11可以是手机、平板电脑(Tablet Personal Computer)、膝上型电脑(Laptop Computer)或称为笔记本电脑、个人数字助理(Personal Digital Assistant,PDA)、掌上电脑、上网本、超级移动个人计算机(ultra-mobile personal computer,UMPC)、移动上网装置(Mobile Internet Device,MID)、可穿戴式设备(Wearable Device)或车载设备(VUE)、行人终端(PUE)等终端侧设备,可穿戴式设备包括:智能手表、手环、耳机、眼镜等。需要说明的是,在本申请实施例并不限定终端11的具体类型。网络侧设备12可以是基站或核心网,其中,基站可被称为节点B、演进节点B、接入点、基收发机站(Base Transceiver Station,BTS)、无线电基站、无线电收发机、基本服务集(Basic Service Set,BSS)、扩展服务集(Extended Service Set,ESS)、B节点、演进型B节点(eNB)、家用B节点、家用演进型B节点、WLAN接入点、WiFi节点、发送接收点(Transmitting Receiving Point,TRP)或所述领域中其他某个合适的术语,只要达到相同的技术效果,所述基站不限于特定技术词汇,需要说明的是,在本申请实施例中仅以NR系统中的基站为例,但是并不限定基站的具体类型。
下面结合附图,通过一些实施例及其应用场景对本申请实施例提供的上行数据传输方法进行详细地说明。
图2示出了本申请实施例提供的一种上行数据传输方法的流程图。如图2所示,本申请实施例提供的上行数据传输方法可以包括下述的步骤101和步骤102。
步骤101、在上行数据传输装置被配置为采用第一波形传输上行数据的情况下,上行数据传输装置从网络侧设备接收目标DCI。
可选地,本申请实施例中,上述第一波形可以为以下任一项:CP-OFDM、DFT-S-OFDM。
可选地,本申请实施例中,上行数据传输装置可以从网络侧设备接收RRC信令,并根据该RRC信令中的transformPrecoder,将上行数据传输装置配置为采用第一波形传输上行数据。
本申请实施例中,上述目标DCI用于调度目标上行数据。
步骤102、在目标DCI包括的指示信息满足第一预设条件的情况下,上行数据传输装置采用第二波形传输目标上行数据。
本申请实施例中,上述指示信息用于指示:目标上行数据的传输参数。
可选地,本申请实施例中,上述指示信息可以为一个指示信息,或者,可以包括多个子指示信息。
可选地,本申请实施例中,上述指示信息包括以下至少一项:TPMI域、探测参考信号资源指示信息(SRS ResourceIndicator,SRI)域、频域资源分配指示信息(Frequency Domain Resource Allocation,FDRA)域、调制编码方式(Modulation and Coding Scheme,MCS)索引值、信道状态信息(Channel State Information,CSI)请求域。
进一步可选地,本申请实施例中,上述指示信息还可以包括以下至少一项:物理/虚拟资源模块(physical/virtual Resource Block,PRB/VRB)分配指示信息域、时域资源分配(Time Domain Resource Allocation,TDRA)指示信息域、解调参考信号(Demodulation Reference Signal,DMRS)指示信息域等。
可选地,本申请实施例中,在第一波形为CP-OFDM,且第二波形为DFT-S-OFDM的情况下,上述指示信息满足第一预设条件包括以下至少一项:
TPMI域对应的信道秩数rank小于或等于第一阈值;
SRI域对应的信道秩数rank小于或等于第二阈值;
FDRA域指示的物理资源块PRB为连续的PRB;
MCS索引值小于第三阈值;
指示信息中不包括CSI请求域;
指示信息中包括CSI请求域,且该CSI请求域不用于触发上行数据传输装置上报CSI报告。
本申请实施例中,若指示信息满足第一预设条件,则可以认为上行数据传输装置被调度为单流传输,而上行数据传输装置采用CP-OFDM进行单流传输时,会出现参考信号符号的PAPR较高的情况,因此,上行数据传输装置可以采用DFT-S-OFDM波形进行单流传输(即传输目标上行数据),以减少参考信号符号的PAPR。
可选地,本申请实施例中,在第一波形为DFT-S-OFDM,且第二波形为CP-OFDM 的情况下,上述指示信息满足第一预设条件包括以下至少一项:
TPMI域对应的rank大于第一阈值;
SRI域对应的rank大于第二阈值;
FDRA域指示的PRB为连续或不连续的PRB;
MCS索引值大于第三阈值;
指示信息中包括CSI请求域。
本申请实施例中,若指示信息满足第一预设条件,则可以认为上行数据传输装置被调度为多流传输,而上行数据传输装置采用DFT-S-OFDM进行多流传输时,会出现参考信号符号的PAPR较高的情况,因此,上行数据传输装置可以采用CP-OFDM波形进行多流传输(即传输目标上行数据),以减少参考信号符号的PAPR。
本申请实施例中,当上行数据传输装置被配置为采用CP-OFDM传输上行数据时,若上行数据传输装置被调度成单流传输、且满足第一预设条件,则上行数据传输装置可以采用DFT-S-OFDM传输目标上行数据。
当上行数据传输装置被配置为采用CP-OFDM传输上行数据时,若上行数据传输装置被调度成单流传输、且不满足第一预设条件,则上行数据传输装置仍采用CP-OFDM传输目标上行数据。
当上行数据传输装置被配置为采用DFT-S-OFDM传输上行数据时,若上行数据传输装置被调度成多流传输、且满足第一预设条件,则上行数据传输装置可以采用CP-OFDM传输目标上行数据。
本申请实施例提供的上行数据传输方法,在被配置为采用第一波形传输上行数据的情况下,上行数据传输装置可以从网络侧设备接收用于调度目标上行数据的目标DCI,并在该目标DCI包括的用于指示该目标上行数据的传输参数的指示信息,满足第一预设条件的情况下,直接采用第二波形传输该目标上行数据。由于在上行数据传输装置被配置为采用第一波形传输上行数据的情况下,上行数据传输装置可以确定目标DCI包括的指示信息是否满足第一预设条件,并在确定该指示信息满足第一预设条件的情况下,采用第二波形传输该目标上行数据,而并不是采用预配置的第一波形传输该目标上行数据,因此,可以减少参考信号符号的PAPR,如此,可以提高上行数据传输装置的功放效率。
在本申请实施例中,若上行数据传输装置采用第二波形传输目标上行数据,则可能会出现目标DCI中的某些子指示信息对于该第二波形无效的情况,这样,上行数据传输装置可以根据除该某些子指示信息外的子指示信息,采用第二波形传输该目标上行数据,即忽略该某些子指示信息。
以下将以上述某些子指示信息为Q个子指示信息为例,进行举例说明。
可选地,本申请实施例中,上述指示信息包括N个子指示信息,N为正整数。具体地,结合图2,如图3所示,上述的步骤102具体可以通过下述的步骤102a实现。
步骤102a、在N个子指示信息中的Q个子指示信息满足第二预设条件的情况下,上行数据传输装置根据其他子指示信息,采用第二波形传输目标上行数据。
本申请实施例中,上述其他子指示信息为:N个子指示信息中,除Q个子指示信息外的子指示信息,Q为正整数。
可以理解,上行数据传输装置根据其他子指示信息,采用第二波形传输目标上行数据,即上行数据传输装置忽略N个子指示信息中的满足第二预设条件的Q个子指示信息。
进一步可选地,本申请实施例中,上述第二预设条件具体可以为:子指示信息针对第二波形无效。
示例性地,假设N个子指示信息包括相位跟踪参考信号(PhaseTracking Reference Signal,PTRS)-DMRS关联association信息域,该PTRS-DMRS association为2比特,该PTRS-DMRS association针对第二波形(例如DFT-S-OFDM)无效,则上行数据传输装置可以忽略该PTRS-DMRS association。
本申请实施例中,上行数据传输装置可以根据其他子指示信息指示的传输参数,采用第二波形传输目标上行数据。
如此可知,由于上行数据传输装置可以根据目标DCI包括的N个子指示信息中,针对第二波形有效的其他子指示信息,采用第二波形传输目标上行数据,而并不会根据针对第二波形无效的Q个子指示信息,传输目标上行数据,因此,可以提高上行数据传输装置传输上行数据的可靠性。
在本申请实施例中,上行数据传输装置还可以保持多个子指示信息中的某个子指示信息的大小不变,且对该某个子指示信息进行新的解读。
以下将以上述某个子指示信息为DMRS指示信息域为例,进行举例说明。
可选地,本申请实施例中,上述指示信息包括:第一解调参考信号DMRS指示信息域,该第一DMRS指示信息域用于指示:在被配置为采用第一波形传输目标上行数据的情况下,目标上行数据所使用的DMRS的传输端口。具体地,结合图2,如图4所示,在上述步骤102中的“上行数据传输装置采用第二波形传输目标上行数据”之前,本申请实施例提供的上行数据传输方法还可以包括下述的步骤301,且上述的步骤102具体可以通过下述的步骤102b实现。
步骤301、在目标DCI包括的指示信息满足第一预设条件的情况下,上行数据传输装置根据第一DMRS指示信息域,确定目标传输端口。
进一步可选地,本申请实施例中,上行数据传输装置可以基于预先配置的第一波形的第一DMRS指示表格和第二波形的第二DMRS指示表格,根据第一DMRS指示信息域和第一DMRS指示表格(或第二DMRS指示表格),确定目标传输端口。其中,该第一DMRS指示表格中包括至少一个状态,该第二DMRS指示表格中包括至少一个状态,该第一DMRS指示表格的状态数量值,和第二DMRS指示表格的状态数量值不相同。
示例性地,表1示出了DFT-S-OFDM对应的DMRS指示表格。
表1
Figure PCTCN2022096836-appb-000001
如表1所示,该DMRS指示表格包括4个状态(即状态数量值为4),共2个比特指示。
表2示出了CP-OFDM对应的DMRS指示表格。
表2
Figure PCTCN2022096836-appb-000002
如表2所示,该DMRS指示表格包括6个状态(即状态数量值为6),共3比特指示。
可选地,在本申请实施例的一种可能的实现方式中,上述第一DMRS指示信息域对应X个比特位,X是基于第一波形和第二波形中,状态数量值大的波形确定的,X为正整数。
进一步可选地,本申请实施例中,X为第一波形和第二波形中,状态数量值大的波形的比特位。
示例性地,假设第一波形的状态数量值为6,该第一波形占用3个比特位,该第二波形的状态数量值为4,该第二波形占用2个比特位,则X为:第一波形和第二波形中,状态数量值大的波形(即第一波形)的比特位,即3个比特位。
本申请实施例中,在第二波形对应的状态数量值,小于第一波形对应的状态数量值的情况下,上述目标传输端口为:目标比特位指示的传输端口。其中,上述目标比特位为:X个比特位中的前Y个比特位,或后Z个比特位,Y、Z均为正整数。
进一步可选地,本申请实施例中,Y与Z可以相同或不同,即Y=Z,或Y≠Z。
示例性地,假设第二波形为DFT-S-OFDM,第一波形为CP-OFDM,结合表1和 表2,DFT-S-OFDM对应的状态数量值,小于CP-OFDM对应的状态数量值,则目标传输端口为:前Y(例如2)个比特征指示的DMRS端口,或后Z(例如2)个比特征指示的DMRS端口。
本申请实施例中,在第二波形对应的状态数量值,大于第一波形对应的状态数量值的情况下,DMRS信息域长度以及上述目标传输端口为:根据第二波形对应的状态确定的传输端口。
示例性地,假设第二波形为CP-OFDM,第一波形为DFT-S-OFDM,结合表1和表2,CP-OFDM对应的状态数量值,大于DFT-S-OFDM对应的状态数量值,则DMRS信息域长度以及目标传输端口为:根据CP-OFDM对应的状态(即表2中的6个状态)确定的传输端口。
如此可知,由于上行数据传输装置可以根据第二波形对应的状态数量值,和第一波形对应的状态数量值,对第一DMRS指示信息进行新的解读,以确定出目标传输端口,因此,可以提高上行数据传输装置传输上行数据的可靠性。
可选地,在本申请实施例的另一种可能的实现方式中,上述步骤301具体可以通过下述的步骤301a和步骤301b实现。
步骤301a、在目标DCI包括的指示信息满足第一预设条件的情况下,上行数据传输装置基于M个第一映射关系,根据第一DMRS指示信息域的索引值,确定第二DMRS指示信息域的索引值。
本申请实施例中,上述M个第一映射关系中的每个第一映射关系分别为:不同波形对应的不同DMRS指示信息域的索引值间的映射关系,M为正整数;
进一步可选地,本申请实施例中,上述M个第一映射关系可以为:上行数据传输装置中预先存储的映射关系。
本申请实施例中,上述第二DMRS指示信息域用于指示:在被配置为采用第二波形传输目标上行数据的情况下,目标上行数据所使用的DMRS的传输端口。
进一步可选地,本申请实施例中,上行数据传输装置可以根据第一DMRS指示信息域的索引值,从第一波形的M个第一索引值中确定出匹配的一个第一索引值,然后再根据该一个第一索引值,从第二波形的M个第二索引值中确定出映射的一个第二索引值,并将该一个第二索引值确定为第二DMRS指示信息域的索引值。
示例性地,结合表1和表2,上行数据传输装置可以基于M个第一映射关系,根据第一DMRS指示信息域的索引值(例如表2中的vaule=2),确定第二DMRS指示信息域的索引值(例如表1中的vaule=0),或者,根据第一DMRS指示信息域的索引值(例如表2中的vaule=3),确定第二DMRS指示信息域的索引值(例如表1中的vaule=1),或者,根据第一DMRS指示信息域的索引值(例如表2中的vaule=4),确定第二DMRS指示信息域的索引值(例如表1中的vaule=2),或者,根据第一DMRS指示信息域的索引值(例如表2中的vaule=5),确定第二DMRS指示信息域的索引值(例如表1中的vaule=3)。
步骤301b、上行数据传输装置根据第二DMRS指示信息域的索引值,确定目标传输端口。
进一步可选地,本申请实施例中,上行数据传输装置可以根据第二DMRS指示信 息域的索引值和第一DMRS指示表格(或第二DMRS指示表格),确定目标传输端口。
如此可知,由于上行数据传输装置可以基于M个第一映射关系,根据第一DMRS指示信息域的索引值,重新确定一个新的索引值,以根据该一个新的索引值,确定目标传输端口,因此,可以提高上行数据传输装置传输上行数据的可靠性。
步骤102b、上行数据传输装置根据目标传输端口,采用第二波形传输DMRS。
需要说明的是,在本申请实施例中,是以目标DCI中的DMRS指示信息域为例,说明上行数据传输装置是如何对子指示信息进行新的解读,并采用第二波形传输DMRS的,针对目标DCI中的其他子指示信息,均可以采用上述实施例中的各个步骤,并采用第二波形传输该其他子指示信息指示的其他传输参数,传输上行数据,以传输目标上行数据。
如此可知,由于上行数据传输装置可以对第一DMRS指示信息进行新的解读,以确定出目标传输端口,从而上行数据传输装置可以根据该目标传输端口,采用第二波形传输DMRS,因此,可以提高上行数据传输装置传输上行数据的可靠性。
需要说明的是,本申请实施例提供的上行数据传输方法,执行主体可以为上行数据传输装置,或者,该上行数据传输装置中的用于执行上行数据传输方法的控制模块。本申请实施例中以上行数据传输装置执行上行数据传输方法为例,说明本申请实施例提供的上行数据传输装置的。
图5示出了本申请实施例中涉及的传输装置的一种可能的结构示意图。如图5所示,上行数据传输装置60可以包括:接收模块61和传输模块62。
其中,接收模块61,用于在上行数据传输装置60被配置为采用第一波形传输上行数据的情况下,从网络侧设备接收目标DCI,该目标DCI用于调度目标上行数据。传输模块62,用于在接收模块61接收的目标DCI包括的指示信息满足第一预设条件的情况下,采用第二波形传输目标上行数据。其中,上述指示信息用于指示:目标上行数据的传输参数。
在一种可能的实现方式中,上述指示信息包括以下至少一项:TPMI域、SRI域、FDRA域、MCS索引值、CSI请求域。
在一种可能的实现方式中,在第一波形为CP-OFDM,且第二波形为DFT-S-OFDM的情况下,上述指示信息满足第一预设条件包括以下至少一项:
TPMI域对应的rank小于或等于第一阈值;SRI域对应的rank小于或等于第二阈值;FDRA域指示的PRB为连续的PRB;MCS索引值小于第三阈值;指示信息中不包括CSI请求域;指示信息中包括CSI请求域,且该CSI请求域不用于触发上行数据传输装置60上报CSI报告。
在一种可能的实现方式中,上述指示信息包括:第一DMRS指示信息域,该第一DMRS指示信息域用于指示:在被配置为采用第一波形传输目标上行数据的情况下,该目标上行数据所使用的DMRS的传输端口。结合图5,如图6所示,本申请实施例提供的上行数据传输装置60还可以包括:处理模块63。其中,处理模块63,用于根据第一DMRS指示信息域,确定目标传输端口。上述传输模块62,具体用于根据处理模块63确定的目标传输端口,采用第二波形传输DMRS。
在一种可能的实现方式中,上述第一DMRS指示信息域对应X个比特位,X是基 于第一波形和第二波形中,状态数量值大的波形确定的,X为正整数;在第二波形对应的状态数量值,小于第一波形对应的状态数量值的情况下,目标传输端口为:目标比特位指示的传输端口;在第二波形对应的状态数量值,大于第一波形对应的状态数量值的情况下,目标传输端口为:根据第二波形对应的状态确定的传输端口。其中,上述目标比特位为:X个比特位中的前Y个比特位,或后Z个比特位,Y、Z均为正整数。
在一种可能的实现方式中,上述处理模块63,具体用于基于M个第一映射关系,根据第一DMRS指示信息域的索引值,确定第二DMRS指示信息域的索引值,M为正整数;并根据第二DMRS指示信息域的索引值,确定目标传输端口。其中,每个第一映射关系分别为:不同波形对应的不同DMRS指示信息域的索引值间的映射关系;上述第二DMRS指示信息域用于指示:在被配置为采用第二波形传输目标上行数据的情况下,目标上行数据所使用的DMRS的传输端口。
在一种可能的实现方式中,上述指示信息包括N个子指示信息,N为正整数。上述传输模块62,具体用于在N个子指示信息中的Q个子指示信息满足第二预设条件的情况下,根据其他子指示信息,采用第二波形传输目标上行数据。其中,上述其他子指示信息为:N个子指示信息中,除Q个子指示信息外的子指示信息,Q为正整数。
本申请实施例提供的上行数据传输装置,由于在上行数据传输装置被配置为采用第一波形传输上行数据的情况下,上行数据传输装置可以确定目标DCI包括的指示信息是否满足第一预设条件,并在确定该指示信息满足第一预设条件的情况下,采用第二波形传输该目标上行数据,而并不是采用预配置的第一波形传输该目标上行数据,因此,可以减少参考信号符号的PAPR,如此,可以提高上行数据传输装置的功放效率。
本申请实施例中的上行数据传输装置可以是装置,具有操作系统的装置或电子设备,也可以是终端中的部件、集成电路、或芯片。该装置或电子设备可以是移动终端,也可以为非移动终端。示例性地,移动终端可以包括但不限于上述所列举的终端11的类型,非移动终端可以为服务器、网络附属存储器(Network Attached Storage,NAS)、个人计算机(Personal Computer,PC)、电视机(Television,TV)、柜员机或者自助机等,本申请实施例不作具体限定。
本申请实施例提供的上行数据传输装置能够实现图1至图4的方法实施例实现的各个过程,并达到相同的技术效果,为避免重复,这里不再赘述。
可选地,如图7所示,本申请实施例还提供一种通信设备70,包括处理器71,存储器72,存储在存储器72上并可在所述处理器71上运行的程序或指令,例如,该通信设备70为终端时,该程序或指令被处理器71执行时实现上述上行数据传输方法实施例的各个过程,且能达到相同的技术效果,为避免重复,这里不再赘述。
本申请实施例还提供一种终端,包括处理器和通信接口,通信接口用于在终端被配置为采用第一波形传输上行数据的情况下,从网络侧设备接收目标下行控制信息DCI,该目标DCI用于调度目标上行数据;在目标DCI包括的指示信息满足第一预设条件的情况下,采用第二波形传输目标上行数据;其中,上述指示信息用于指示:目标上行数据的传输参数。该终端实施例是与上述终端侧方法实施例对应的,上述方法 实施例的各个实施过程和实现方式均可适用于该终端实施例中,且能达到相同的技术效果。具体地,图8为实现本申请实施例的一种终端的硬件结构示意图。
该终端100包括但不限于:射频单元101、网络模块102、音频输出单元103、输入单元104、传感器105、显示单元106、用户输入单元107、接口单元108、存储器109、以及处理器110等中的至少部分部件。
本领域技术人员可以理解,终端100还可以包括给各个部件供电的电源(比如电池),电源可以通过电源管理系统与处理器110逻辑相连,从而通过电源管理系统实现管理充电、放电、以及功耗管理等功能。图8中示出的终端结构并不构成对终端的限定,终端可以包括比图示更多或更少的部件,或者组合某些部件,或者不同的部件布置,在此不再赘述。
应理解的是,本申请实施例中,输入单元104可以包括图形处理器(Graphics Processing Unit,GPU)1041和麦克风1042,图形处理器1041对在视频捕获模式或图像捕获模式中由图像捕获装置(如摄像头)获得的静态图片或视频的图像数据进行处理。显示单元106可包括显示面板1061,可以采用液晶显示器、有机发光二极管等形式来配置显示面板1061。用户输入单元107包括触控面板1071以及其他输入设备1072。触控面板1071,也称为触摸屏。触控面板1071可包括触摸检测装置和触摸控制器两个部分。其他输入设备1072可以包括但不限于物理键盘、功能键(比如音量控制按键、开关按键等)、轨迹球、鼠标、操作杆,在此不再赘述。
本申请实施例中,射频单元101将来自网络侧设备的下行数据接收后,给处理器110处理;另外,将上行的数据发送给网络侧设备。通常,射频单元101包括但不限于天线、至少一个放大器、收发信机、耦合器、低噪声放大器、双工器等。
存储器109可用于存储软件程序或指令以及各种数据。存储器109可主要包括存储程序或指令区和存储数据区,其中,存储程序或指令区可存储操作系统、至少一个功能所需的应用程序或指令(比如声音播放功能、图像播放功能等)等。此外,存储器109可以包括高速随机存取存储器,还可以包括非易失性存储器,其中,非易失性存储器可以是只读存储器(Read-Only Memory,ROM)、可编程只读存储器(Programmable ROM,PROM)、可擦除可编程只读存储器(Erasable PROM,EPROM)、电可擦除可编程只读存储器(Electrically EPROM,EEPROM)或闪存。例如至少一个磁盘存储器件、闪存器件、或其他非易失性固态存储器件。
处理器110可包括一个或多个处理单元;可选地,处理器110可集成应用处理器和调制解调处理器,其中,应用处理器主要处理操作系统、用户界面和应用程序或指令等,调制解调处理器主要处理无线通信,如基带处理器。可以理解的是,上述调制解调处理器也可以不集成到处理器110中。
其中,射频单元101,用于在终端被配置为采用第一波形传输上行数据的情况下,从网络侧设备接收目标DCI,该目标DCI用于调度目标上行数据;在目标DCI包括的指示信息满足第一预设条件的情况下,采用第二波形传输目标上行数据。
其中,上述指示信息用于指示:目标上行数据的传输参数。
本申请实施例提供的终端,由于在终端被配置为采用第一波形传输上行数据的情况下,终端可以确定目标DCI包括的指示信息是否满足第一预设条件,并在确定该指 示信息满足第一预设条件的情况下,采用第二波形传输该目标上行数据,而并不是采用预配置的第一波形传输该目标上行数据,因此,可以减少参考信号符号的PAPR,如此,可以提高终端的功放效率。
可选地,本申请实施例中,上述指示信息包括:第一解调参考信号DMRS指示信息域,该第一DMRS指示信息域用于指示:在被配置为采用第一波形传输目标上行数据的情况下,目标上行数据所使用的DMRS的传输端口。
处理器110,还用于根据第一DMRS指示信息域,确定目标传输端口。
射频单元101,具体用于根据目标传输端口,采用第二波形传输DMRS。
如此可知,由于终端可以对第一DMRS指示信息进行新的解读,以确定出目标传输端口,从而终端可以根据该目标传输端口,采用第二波形传输DMRS,因此,可以提高终端传输上行数据的可靠性。
可选地,本申请实施例中,处理器110,具体用于基于M个第一映射关系,根据第一DMRS指示信息域的索引值,确定第二DMRS指示信息域的索引值,M为正整数;并根据第二DMRS指示信息域的索引值,确定目标传输端口。
其中,每个第一映射关系分别为:不同波形对应的不同DMRS指示信息域的索引值间的映射关系;上述第二DMRS指示信息域用于指示:在被配置为采用第二波形传输目标上行数据的情况下,目标上行数据所使用的DMRS的传输端口。
如此可知,由于终端可以基于M个第一映射关系,根据第一DMRS指示信息域的索引值,重新确定一个新的索引值,以根据该一个新的索引值,确定目标传输端口,因此,可以提高终端传输上行数据的可靠性。
可选地,本申请实施例中,上述指示信息包括N个子指示信息,N为正整数。
射频单元101,具体用于在N个子指示信息中的Q个子指示信息满足第二预设条件的情况下,根据其他子指示信息,采用第二波形传输目标上行数据。
其中,上述其他子指示信息为:N个子指示信息中,除Q个子指示信息外的子指示信息,Q为正整数。
如此可知,由于终端可以根据目标DCI包括的N个子指示信息中,针对第二波形有效的其他子指示信息,采用第二波形传输目标上行数据,而并不会根据针对第二波形无效的Q个子指示信息,传输目标上行数据,因此,可以提高终端传输上行数据的可靠性。
本申请实施例还提供一种可读存储介质,所述可读存储介质上存储有程序或指令,该程序或指令被处理器执行时实现上述上行数据传输方法实施例的各个过程,且能达到相同的技术效果,为避免重复,这里不再赘述。
其中,所述处理器为上述实施例中所述的终端中的处理器。所述可读存储介质,包括计算机可读存储介质,如计算机只读存储器(Read-Only Memory,ROM)、随机存取存储器(Random Access Memory,RAM)、磁碟或者光盘等。
本申请实施例另提供了一种芯片,所述芯片包括处理器和通信接口,所述通信接口和所述处理器耦合,所述处理器用于运行程序或指令,实现上述上行数据传输方法实施例的各个过程,且能达到相同的技术效果,为避免重复,这里不再赘述。
应理解,本申请实施例提到的芯片还可以称为系统级芯片,系统芯片,芯片系统 或片上系统芯片等。
需要说明的是,在本文中,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者装置不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者装置所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括该要素的过程、方法、物品或者装置中还存在另外的相同要素。此外,需要指出的是,本申请实施方式中的方法和装置的范围不限按示出或讨论的顺序来执行功能,还可包括根据所涉及的功能按基本同时的方式或按相反的顺序来执行功能,例如,可以按不同于所描述的次序来执行所描述的方法,并且还可以添加、省去、或组合各种步骤。另外,参照某些示例所描述的特征可在其他示例中被组合。
通过以上的实施方式的描述,本领域的技术人员可以清楚地了解到上述实施例方法可借助软件加必需的通用硬件平台的方式来实现,当然也可以通过硬件,但很多情况下前者是更佳的实施方式。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分可以以计算机软件产品的形式体现出来,该计算机软件产品存储在一个存储介质(如ROM/RAM、磁碟、光盘)中,包括若干指令用以使得一台终端(可以是手机,计算机,服务器,空调器,或者网络设备等)执行本申请各个实施例所述的方法。
上面结合附图对本申请的实施例进行了描述,但是本申请并不局限于上述的具体实施方式,上述的具体实施方式仅仅是示意性的,而不是限制性的,本领域的普通技术人员在本申请的启示下,在不脱离本申请宗旨和权利要求所保护的范围情况下,还可做出很多形式,均属于本申请的保护之内。

Claims (19)

  1. 一种上行数据传输方法,所述方法包括:
    在用户设备UE被配置为采用第一波形传输上行数据的情况下,所述UE从网络侧设备接收目标下行控制信息DCI,所述目标DCI用于调度目标上行数据;
    在所述目标DCI包括的指示信息满足第一预设条件的情况下,所述UE采用第二波形传输所述目标上行数据;
    其中,所述指示信息用于指示:所述目标上行数据的传输参数。
  2. 根据权利要求1所述的方法,其中,所述指示信息包括以下至少一项:预编码和传输流数信息TPMI域、探测参考信号资源指示信息SRI域、频域资源分配指示信息FDRA域、调制编码方式MCS索引值、信道状态信息CSI请求域。
  3. 根据权利要求2所述的方法,其中,在所述第一波形为循环前缀正交频分复用CP-OFDM,且所述第二波形为离散傅里叶变换扩频的正交频分复用DFT-S-OFDM的情况下,所述指示信息满足所述第一预设条件包括以下至少一项:
    所述TPMI域对应的信道秩数rank小于或等于第一阈值;
    所述SRI域对应的信道秩数rank小于或等于第二阈值;
    所述FDRA域指示的物理资源块PRB为连续的PRB;
    所述MCS索引值小于第三阈值;
    所述指示信息中不包括所述CSI请求域;
    所述指示信息中包括所述CSI请求域,且所述CSI请求域不用于触发所述UE上报CSI报告。
  4. 根据权利要求1所述的方法,其中,所述指示信息包括:第一解调参考信号DMRS指示信息域,所述第一DMRS指示信息域用于指示:在被配置为采用所述第一波形传输所述目标上行数据的情况下,所述目标上行数据所使用的DMRS的传输端口;
    所述UE采用第二波形传输所述目标上行数据之前,所述方法还包括:
    所述UE根据所述第一DMRS指示信息域,确定目标传输端口;
    所述UE采用第二波形传输所述目标上行数据,包括:
    所述UE根据所述目标传输端口,采用所述第二波形传输所述DMRS。
  5. 根据权利要求4所述的方法,其中,所述第一DMRS指示信息域对应X个比特位,X是基于所述第一波形和所述第二波形中,状态数量值大的波形确定的,X为正整数;
    在所述第二波形对应的状态数量值,小于所述第一波形对应的状态数量值的情况下,所述目标传输端口为:目标比特位指示的传输端口;
    在所述第二波形对应的状态数量值,大于所述第一波形对应的状态数量值的情况下,所述目标传输端口为:根据所述第二波形对应的状态确定的传输端口;
    其中,所述目标比特位为:所述X个比特位中的前Y个比特位,或后Z个比特位,Y、Z均为正整数。
  6. 根据权利要求4所述的方法,其中,所述UE根据所述第一DMRS指示信息域,确定目标传输端口,包括:
    所述UE基于M个第一映射关系,根据所述第一DMRS指示信息域的索引值,确 定第二DMRS指示信息域的索引值,M为正整数;
    所述UE根据所述第二DMRS指示信息域的索引值,确定所述目标传输端口;
    其中,每个第一映射关系分别为:不同波形对应的不同DMRS指示信息域的索引值间的映射关系;
    所述第二DMRS指示信息域用于指示:在被配置为采用所述第二波形传输所述目标上行数据的情况下,所述目标上行数据所使用的DMRS的传输端口。
  7. 根据权利要求1所述的方法,其中,所述指示信息包括N个子指示信息,N为正整数;
    所述UE采用第二波形传输所述目标上行数据,包括:
    在所述N个子指示信息中的Q个子指示信息满足第二预设条件的情况下,所述UE根据其他子指示信息,采用所述第二波形传输所述目标上行数据;
    其中,所述其他子指示信息为:所述N个子指示信息中,除所述Q个子指示信息外的子指示信息,Q为正整数。
  8. 一种上行数据传输装置,所述上行数据传输装置包括:接收模块和传输模块;
    所述接收模块,用于在上行数据传输装置被配置为采用第一波形传输上行数据的情况下,从网络侧设备接收目标DCI,所述目标DCI用于调度目标上行数据;
    所述传输模块,用于在所述接收模块接收的所述目标DCI包括的指示信息满足第一预设条件的情况下,采用第二波形传输所述目标上行数据;
    其中,所述指示信息用于指示:所述目标上行数据的传输参数。
  9. 根据权利要求8所述的上行数据传输装置,其中,所述指示信息包括以下至少一项:TPMI域、SRI域、FDRA域、MCS索引值、CSI请求域。
  10. 根据权利要求9所述的上行数据传输装置,其中,在所述第一波形为CP-OFDM,且所述第二波形为DFT-S-OFDM的情况下,所述指示信息满足所述第一预设条件包括以下至少一项:
    所述TPMI域对应的rank小于或等于第一阈值;
    所述SRI域对应的rank小于或等于第二阈值;
    所述FDRA域指示的PRB为连续的PRB;
    所述MCS索引值小于第三阈值;
    所述指示信息中不包括所述CSI请求域;
    所述指示信息中包括所述CSI请求域,且所述CSI请求域不用于触发所述上行数据传输装置上报CSI报告。
  11. 根据权利要求8所述的上行数据传输装置,其中,所述指示信息包括:第一DMRS指示信息域,所述第一DMRS指示信息域用于指示:在被配置为采用所述第一波形传输所述目标上行数据的情况下,所述目标上行数据所使用的DMRS的传输端口;
    所述上行数据传输装置还包括:处理模块;
    所述处理模块,用于根据所述第一DMRS指示信息域,确定目标传输端口;
    所述传输模块,具体用于根据所述处理模块确定的所述目标传输端口,采用所述第二波形传输所述DMRS。
  12. 根据权利要求11所述的上行数据传输装置,其中,所述第一DMRS指示信息 域对应X个比特位,X是基于所述第一波形和所述第二波形中,状态数量值大的波形确定的,X为正整数;
    在所述第二波形对应的状态数量值,小于所述第一波形对应的状态数量值的情况下,所述目标传输端口为:目标比特位指示的传输端口;
    在所述第二波形对应的状态数量值,大于所述第一波形对应的状态数量值的情况下,所述目标传输端口为:根据所述第二波形对应的状态确定的传输端口;
    其中,所述目标比特位为:所述X个比特位中的前Y个比特位,或后Z个比特位,Y、Z均为正整数。
  13. 根据权利要求11所述的上行数据传输装置,其中,所述处理模块,具体用于基于M个第一映射关系,根据所述第一DMRS指示信息域的索引值,确定第二DMRS指示信息域的索引值,M为正整数;并根据所述第二DMRS指示信息域的索引值,确定所述目标传输端口;
    其中,每个第一映射关系分别为:不同波形对应的不同DMRS指示信息域的索引值间的映射关系;
    所述第二DMRS指示信息域用于指示:在被配置为采用所述第二波形传输所述目标上行数据的情况下,所述目标上行数据所使用的DMRS的传输端口。
  14. 根据权利要求8所述的上行数据传输装置,其中,所述指示信息包括N个子指示信息,N为正整数;
    所述传输模块,具体用于在所述N个子指示信息中的Q个子指示信息满足第二预设条件的情况下,根据其他子指示信息,采用所述第二波形传输所述目标上行数据;
    其中,所述其他子指示信息为:所述N个子指示信息中,除所述Q个子指示信息外的子指示信息,Q为正整数。
  15. 一种终端,包括处理器,存储器及存储在所述存储器上并可在所述处理器上运行的程序或指令,所述程序或指令被所述处理器执行时实现如权利要求1至7中任一项所述的上行数据传输方法的步骤。
  16. 一种可读存储介质,所述可读存储介质上存储程序或指令,所述程序或指令被处理器执行时实现如权利要求1至7中任一项所述的上行数据传输方法。
  17. 一种芯片,所述芯片包括处理器和通信接口,所述通信接口和所述处理器耦合,所述处理器用于运行程序或指令,实现如权利要求1至7中任一项所述的上行数据传输方法的步骤。
  18. 一种计算机程序产品,所述计算机程序产品被存储在非易失的存储介质中,所述计算机程序产品被至少一个处理器执行以实现如权利要求1至7中任一项所述的上行数据传输方法的步骤。
  19. 一种电子设备,包括所述电子设备被配置成用于执行如权利要求1至7中任一项所述的上行数据传输方法的步骤。
PCT/CN2022/096836 2021-06-02 2022-06-02 上行数据传输方法、装置、终端及介质 WO2022253312A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP22815352.4A EP4351061A1 (en) 2021-06-02 2022-06-02 Uplink data transmission method and apparatus, terminal and medium
US18/526,094 US20240107530A1 (en) 2021-06-02 2023-12-01 Uplink Data Transmission Method, Terminal, and Medium

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110615438.0A CN115442004A (zh) 2021-06-02 2021-06-02 上行数据传输方法、装置、终端及介质
CN202110615438.0 2021-06-02

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/526,094 Continuation US20240107530A1 (en) 2021-06-02 2023-12-01 Uplink Data Transmission Method, Terminal, and Medium

Publications (1)

Publication Number Publication Date
WO2022253312A1 true WO2022253312A1 (zh) 2022-12-08

Family

ID=84239865

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/096836 WO2022253312A1 (zh) 2021-06-02 2022-06-02 上行数据传输方法、装置、终端及介质

Country Status (4)

Country Link
US (1) US20240107530A1 (zh)
EP (1) EP4351061A1 (zh)
CN (1) CN115442004A (zh)
WO (1) WO2022253312A1 (zh)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111316729A (zh) * 2017-09-26 2020-06-19 夏普株式会社 终端装置以及基站装置
WO2021047973A1 (en) * 2019-09-09 2021-03-18 Telefonaktiebolaget Lm Ericsson (Publ) Switching waveforms for uplink transmission in nr network

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111316729A (zh) * 2017-09-26 2020-06-19 夏普株式会社 终端装置以及基站装置
WO2021047973A1 (en) * 2019-09-09 2021-03-18 Telefonaktiebolaget Lm Ericsson (Publ) Switching waveforms for uplink transmission in nr network

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
QUALCOMM INC.: "Potential Coverage Enhancement Techniques for PUSCH", 3GPP TSG-RAN WG1 MEETING#103E E-MEETING, R1-2008626, 1 November 2020 (2020-11-01), XP051940252 *

Also Published As

Publication number Publication date
US20240107530A1 (en) 2024-03-28
CN115442004A (zh) 2022-12-06
EP4351061A1 (en) 2024-04-10

Similar Documents

Publication Publication Date Title
WO2022152176A1 (zh) 传输处理方法及相关设备
WO2022002250A1 (zh) Pdcch监听方法、发送方法及相关设备
WO2022028464A1 (zh) 资源调度方法、装置及设备
WO2022083634A1 (zh) 资源配置方法、装置、设备及可读存储介质
WO2018228409A1 (zh) 控制信息的传输方法、终端设备和网络设备
WO2022214013A1 (zh) 资源确定方法、装置、终端、网络侧设备及存储介质
WO2022148389A9 (zh) 编码调制符号数的确定方法、装置及通信设备
WO2022253312A1 (zh) 上行数据传输方法、装置、终端及介质
WO2022017354A1 (zh) Pdcch的校验方法、发送方法、终端及网络侧设备
WO2022028524A1 (zh) 物理下行控制信道的监听方法、装置和设备
WO2022077438A1 (en) Method for beam switching in mmwave systems
WO2023036151A1 (zh) 时隙配置方法、终端及网络侧设备
WO2022206997A1 (zh) 功率控制参数指示方法、终端及网络侧设备
WO2022206593A1 (zh) Pdcch监听处理方法、监听配置方法及相关设备
WO2023134668A1 (zh) Srs端口映射方法、装置及终端
WO2023088230A1 (zh) 信息传输方法、装置、终端、网络侧设备及可读存储介质
WO2023083173A1 (zh) 资源处理方法、装置、通信设备及存储介质
WO2022206754A1 (zh) Srs的发送方法、接收方法、配置方法及装置
WO2022242677A1 (zh) 波束应用时间的确定方法、装置及通信设备
WO2022152273A1 (zh) Srs传输方法、装置、设备及存储介质
WO2022228341A1 (zh) 上行信道的传输参数方法、终端及网络侧设备
WO2023051525A1 (zh) 行为确定方法、装置及相关设备
WO2022194275A1 (zh) 物理上行控制信道资源的确定方法、终端及网络侧设备
WO2022143494A1 (zh) 物理下行共享信道资源配置方法、装置、设备及存储介质
WO2023046094A1 (zh) 资源确定方法、装置、终端及可读存储介质

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22815352

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023574663

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 2022815352

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2022815352

Country of ref document: EP

Effective date: 20240102