WO2022028464A1 - 资源调度方法、装置及设备 - Google Patents

资源调度方法、装置及设备 Download PDF

Info

Publication number
WO2022028464A1
WO2022028464A1 PCT/CN2021/110511 CN2021110511W WO2022028464A1 WO 2022028464 A1 WO2022028464 A1 WO 2022028464A1 CN 2021110511 W CN2021110511 W CN 2021110511W WO 2022028464 A1 WO2022028464 A1 WO 2022028464A1
Authority
WO
WIPO (PCT)
Prior art keywords
dci
configuration information
downlink transmission
information
transmission configuration
Prior art date
Application number
PCT/CN2021/110511
Other languages
English (en)
French (fr)
Inventor
李娜
潘学明
Original Assignee
维沃移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 维沃移动通信有限公司 filed Critical 维沃移动通信有限公司
Publication of WO2022028464A1 publication Critical patent/WO2022028464A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/80Services using short range communication, e.g. near-field communication [NFC], radio-frequency identification [RFID] or low energy communication
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/12Wireless traffic scheduling

Definitions

  • the present application belongs to the field of communication technologies, and in particular relates to a resource scheduling method, apparatus and device.
  • the use of multicast physical downlink shared channel (Physical Downlink Shared Channel PDSCH) transmission is an effective means to improve the system spectrum efficiency.
  • PDSCH Physical Downlink Shared Channel
  • the base station schedules the same PDSCH through different PDCCHs.
  • the frequency domain resource allocation (Frequency Domain Resource Allocation, FDRA) and time domain resource allocation (Time Domain Resource Allocation, TDRA) of different PDCCHs need to indicate the same PDSCH time-frequency resources.
  • a user equipment determines the number of FDRA bits and bit information according to the configuration of a specific active (active) bandwidth part (Band Width Part, BWP) of the UE.
  • BWP Band Width Part
  • the base station when the base station is scheduling, in order to enable the PDCCHs of different UEs to indicate the same PDSCH resource, the base station needs to determine the number of FDRA bits and/or FDRA bit information respectively according to the active BWP configuration of each UE. Similarly, the TDRA list, the Modulation and Coding Scheme (MCS) table, etc. are also UE-specific. The base station needs to determine the bit information corresponding to each UE according to the different configurations of different UEs to schedule the exact same PDSCH. , which increases the complexity of base station scheduling.
  • MCS Modulation and Coding Scheme
  • the embodiments of the present application provide a resource scheduling method, apparatus, and device, which can solve the problem of high complexity in the prior art that the base station schedules the multicast PDSCH through the unicast PDCCH.
  • the embodiments of the present application provide a resource scheduling method, applied to a terminal, including:
  • the embodiments of the present application provide a resource scheduling method, which is applied to a network side device, including:
  • an embodiment of the present application further provides a resource scheduling apparatus, including:
  • an acquisition module configured to acquire downlink transmission configuration information, where the downlink transmission configuration information is used for multicast downlink transmission
  • a processing module configured to receive downlink data according to the downlink transmission configuration information.
  • an embodiment of the present application further provides a resource scheduling apparatus, including:
  • a sending module configured to send downlink transmission configuration information, where the downlink transmission configuration information is used for multicast downlink transmission.
  • an embodiment of the present application further provides a communication device, the communication device includes a processor, a memory, and a program or instruction stored on the memory and executable on the processor, the program or instruction The steps of the method as described in the first aspect or the second aspect are implemented when executed by the processor.
  • an embodiment of the present application further provides a readable storage medium, where a program or an instruction is stored on the readable storage medium, and when the program or instruction is executed by a processor, the implementation of the first aspect or the second aspect steps of the method described.
  • an embodiment of the present application provides a chip, the chip includes a processor and a communication interface, the communication interface is coupled to the processor, and the processor is configured to run a program or an instruction, and implement the first aspect or the method described in the second aspect.
  • an embodiment of the present application provides a program product, the program product is stored in a non-volatile storage medium, and the program product is executed by at least one processor to implement the first aspect or the second aspect the steps of the method.
  • the downlink data reception can be completed according to the downlink transmission configuration information.
  • the network side device since the downlink transmission configuration information is used for multicast downlink transmission, the network side device can configure the same information for the terminal receiving the multicast downlink transmission, and it is not necessary to determine the indication information in the DCI for the respective configuration information of different terminals. Reduced scheduling complexity.
  • 1 is a block diagram of a wireless communication system
  • FIG. 2 is a schematic flowchart of a resource scheduling method applied to a terminal according to an embodiment of the present application
  • FIG. 3 is one of schematic diagrams of a first DCI structure according to an embodiment of the present application.
  • FIG. 5 is a schematic flowchart of a resource scheduling method applied to a network side device according to an embodiment of the present application
  • FIG. 6 is a schematic diagram of a device structure corresponding to the method shown in FIG. 2;
  • FIG. 7 is a schematic structural diagram of a device corresponding to the method shown in FIG. 5;
  • FIG. 8 is a schematic structural diagram of a communication device according to an embodiment of the application.
  • FIG. 9 is a schematic structural diagram of a terminal according to an embodiment of the present application.
  • FIG. 10 is a schematic structural diagram of a network side device according to an embodiment of the application.
  • LTE Long Term Evolution
  • LTE-Advanced LTE-Advanced
  • LTE-A Long Term Evolution
  • CDMA Code Division Multiple Access
  • TDMA Time Division Multiple Access
  • FDMA Frequency Division Multiple Access
  • OFDMA Orthogonal Frequency Division Multiple Access
  • SC-FDMA Single carrier-Frequency Division Multiple Access
  • system and “network” in the embodiments of the present application are often used interchangeably, and the described technology can be used not only for the above-mentioned systems and radio technologies, but also for other systems and radio technologies.
  • NR New Radio
  • 6G most Generation
  • FIG. 1 shows a block diagram of a wireless communication system to which the embodiments of the present application can be applied.
  • the wireless communication system includes a terminal 11 and a network-side device 12 .
  • the terminal 11 may also be called a terminal device or a user terminal (User Equipment, UE), and the terminal 11 may be a mobile phone, a tablet computer (Tablet Personal Computer), a laptop computer (Laptop Computer) or a notebook computer, a personal digital computer Assistant (Personal Digital Assistant, PDA), handheld computer, netbook, ultra-mobile personal computer (ultra-mobile personal computer, UMPC), mobile Internet device (Mobile Internet Device, MID), wearable device (Wearable Device) or vehicle-mounted device (VUE), pedestrian terminal (PUE) and other terminal-side devices, wearable devices include: bracelets, headphones, glasses, etc.
  • PDA Personal Digital Assistant
  • the network side device 12 may be a base station or a core network, wherein the base station may be referred to as a Node B, an evolved Node B, an access point, a Base Transceiver Station (BTS), a radio base station, a radio transceiver, a basic service Set (Basic Service Set, BSS), Extended Service Set (Extended Service Set, ESS), Node B, Evolved Node B (eNB), Home Node B, Home Evolved Node B, WLAN Access Point, WiFi Node, Send Transmitting Receiving Point (TRP) or some other suitable term in the field, as long as the same technical effect is achieved, the base station is not limited to specific technical terms.
  • the base station in the NR system is taken as an example, but the specific type of the base station is not limited.
  • user equipment may refer to an access terminal, a subscriber unit, a subscriber station, a mobile station, a mobile station, a remote station, a remote terminal, a mobile device, a user terminal, a terminal , wireless communication device, user agent or user device.
  • the terminal device may also be a cellular phone, a cordless phone, a session initiation protocol (SIP) phone, a wireless local loop (WLL) station, a personal digital assistant (PDA), a wireless communication Functional handheld devices, computing devices or other processing devices connected to wireless modems, in-vehicle devices, wearable devices.
  • SIP session initiation protocol
  • WLL wireless local loop
  • PDA personal digital assistant
  • a resource scheduling method As shown in FIG. 2 , a resource scheduling method according to an embodiment of the present application, applied to a terminal, includes:
  • Step 201 Obtain downlink transmission configuration information, where the downlink transmission configuration information is used for multicast downlink transmission.
  • the downlink transmission configuration information is used for multicast downlink transmission, that is, through the downlink transmission configuration information, the terminal will be able to receive the multicast physical downlink control channel PDSCH.
  • multicast downlink transmission means transmission through one-to-many transmission, that is, one sender and multiple receivers, which can also be expressed as multiple broadcast or broadcast transmission. It can be used to transport eg broadcast multicast services.
  • Step 202 Receive downlink data according to the downlink transmission configuration information.
  • the terminal after acquiring the downlink transmission configuration information in step 201, the terminal can receive the PDSCH according to the downlink transmission configuration information.
  • the terminal applying the resource scheduling method of the embodiment of the present application can complete the reception of downlink data according to the downlink transmission configuration information.
  • the network side device can configure the same information for the terminal receiving the multicast downlink transmission, and it is not necessary to determine the indication information in the DCI for the respective configuration information of different terminals. Reduced scheduling complexity.
  • the downlink transmission configuration information is general information corresponding to a terminal group, and the terminal group is the terminal group to which the above-mentioned terminal belongs.
  • the terminal group may include one or more UEs, and the downlink transmission configuration information is applicable to the one or more UEs. In this way, the downlink transmission configuration information is used to configure the multicast resources of a group of UEs.
  • the downlink transmission configuration information may be configured by RRC.
  • the downlink transmission configuration information includes at least one of the following:
  • the frequency domain resource is used to represent the frequency domain resource used for multicast downlink transmission, which may be BWP related information, or frequency domain resource configuration information, such as the initial Common Resource Blocks (CRB) and the number of CRBs. or at least one of the starting physical resource block (Physical Resource Block, PRB) and the number of PRBs.
  • the frequency domain resource allocation type is used to indicate the frequency domain resource allocation type used for multicast downlink transmission, including: downlink resource allocation type 0 (Resource Allocation Type0), downlink resource allocation type 1 (Resource Allocation Type1) and dynamic switch (Dynamic Switch) at least one of.
  • the interleaving mapping indication from virtual resource blocks (Virtual Resource Block, VRB) to physical resource blocks is used to indicate whether the interleaving mapping from VRB to PRB is performed in multicast downlink transmission.
  • the interleaving mapping indication from VRB to PRB can be indicated by parameters such as vrb-ToPRB-Interleaver configuration.
  • the resource block group (Resource Block Group, RBG) size is used to indicate the size of the RBG used for multicast downlink transmission, and the RBG size can be configured by parameters such as RBG-Size.
  • the time domain resource allocation information (Time Domain Resource Allocation, TDRA) is used to indicate the TDRA of multicast downlink transmission.
  • the table contains one or more available TDRAs.
  • a modulation and coding scheme can represent the MCS of multicast downlink transmission, and can be configured through a table, such as MCS-Table, each table contains one or more available MCSs.
  • the PDSCH demodulation reference signal (Demodulation Reference Signal, DMRS) mapping type may represent the DMRS mapping type of the scheduled PDSCH, such as type A (eg, dmrs-DownlinkForPDSCH-MappingTypeA) or type B (eg, dmrs-DownlinkForPDSCH-MappingTypeB).
  • the downlink transmission configuration information may also include a rate matching pattern (such as rate Match Pattern), the PDSCH aggregation factor corresponding to the PDSCH, the maximum number of codewords for the DCI scheduling corresponding to the DCI, and other information.
  • rate Match Pattern such as rate Match Pattern
  • the interleaving mapping indication from VRB to PRB can be configured, such as vrb-ToPRB-Interleaver .
  • the configuration frequency domain resource allocation type is Resource Allocation Type 0, it is not necessary to configure the interleaving mapping indication from VRB to PRB, but the size of the RBG is configured.
  • the downlink transmission configuration information in this embodiment includes one or more of the above-mentioned items of information, and is not limited to the above-mentioned information, which is not listed here.
  • step 201 includes:
  • the downlink transmission configuration information may be configured by the network side device and sent to the terminal.
  • the network side device may send the downlink transmission configuration information to each terminal in the terminal group to which the terminal belongs.
  • one or more items of the downlink transmission configuration information may also be predefined information, and the terminal may receive downlink data according to the network side device configuration and/or the predefined information.
  • the DMRS mapping type supported by multicast PDSCH for PDSCH is PDSCH DMRS type A; the maximum number of codewords is 1; the MCS table adopts a predefined table, such as the table 'qam64'; the TDRA list adopts a predefined table, such as using the default table ; PDSCH aggregation factor (pdsch-AggregationFactor) is equal to 1, that is, PDSCH repetition is not supported.
  • the downlink transmission configuration information configured by the corresponding network side device at least includes: frequency domain resources; frequency domain resource allocation type; VRB to PRB interleaving mapping indication; RBG size.
  • the network side device will send DCI to schedule PDSCH.
  • the DCI can be used to schedule the multicast PDSCH or the unicast PDSCH, that is, the DCI will carry the scheduling information of the multicast downlink data transmission, or carry the scheduling information of the unicast downlink data transmission.
  • the DCI is carried and transmitted by the network side equipment through the physical downlink control channel PDCCH, and the PDCCH may be a unicast PDCCH.
  • the network side device When the network side device generates DCI, it will schedule unicast PDSCH or multicast PDSCH according to the type of PDSCH it schedules.
  • the number of bits and bit information of each information field such as MCS, VRB-to-PRB mapping, etc.
  • the information field can also be understood as the bit field.
  • the information field of DCI includes but is not limited to at least one of the following: FDRA, TDRA, MCS, VRB-to-PRB mapping, and the maximum number of codewords scheduled by DCI.
  • the network side device for each information domain FDRA, the number of bits and/or bit information can be determined from the configured frequency domain resources and frequency domain resource allocation type;
  • TDRA the number of bits and/or bit information can be determined from the configured TDRA list.
  • VRB-to-PRB mapping the number of bits and/or bit information can be determined by the configured frequency domain resource allocation type and/or whether VRB to PRB interleaving mapping is configured; the maximum number of codewords for DCI scheduling, In the case where the configured maximum codeword is greater than 1, the maximum number of codewords in the DCI scheduling of the DCI may include the MCS of each transport block TB, the New Data Indicator (NDI), and the Redundancy Version (Redundancy Version, RV) indication, such as TB1: MCS, NDI and RV, and TB2: MCS, NDI, RV.
  • NDI New Data Indicator
  • RV Redundancy Version
  • the network side device when the network side device generates the DCI, it will schedule the PDSCH according to the type of the multicast PDSCH, and determine the number of bits in each information field in the DCI according to the downlink transmission configuration information. bit information.
  • the first information in the DCI will be the same, and it does not need to be determined according to the respective configuration information of each terminal, which reduces the complexity of scheduling the multicast PDSCH.
  • the first information includes frequency domain resource allocation indication, time domain resource allocation indication, interleaving mapping indication from virtual resource blocks to physical resource blocks, modulation and coding schemes, and the like.
  • step 202 includes:
  • each UE in the terminal group after receiving the DCI carrying the scheduling information of the multicast downlink data transmission, it can interpret the DCI based on the acquired downlink transmission configuration information to obtain the required scheduling information and complete the multicast Reception of downlink data.
  • step 202 further includes:
  • the size of the DCI is determined according to the downlink transmission configuration information.
  • the terminal will determine the DCI size (DCI size) according to the downlink transmission configuration information. Specifically, one or more items of information in the downlink transmission configuration information will be used to determine the information field of the DCI and the size of the information field, thereby obtaining the size of the DCI.
  • the number of bits in the information domain FDRA in the DCI can be determined according to the frequency domain resources in the downlink transmission configuration information; the number of bits in the information domain TDRA in the DCI can be determined according to the TDRA list in the downlink transmission configuration information; according to the downlink transmission configuration information
  • the frequency domain resource allocation type in can determine the number of VRB-to-PRB mapping bits in the information domain in the DCI, such as 0 bits or 1 bit; according to the maximum number of codewords scheduled by DCI in the downlink transmission configuration information, In the case where the maximum codeword of is greater than 1, it can be determined that the maximum number of codewords in the DCI can include the MCS, NDI, and RV of each TB, and so on.
  • step 202 includes:
  • unicast downlink data is received.
  • the DCI carrying the scheduling information of unicast downlink data transmission in addition to determining its size according to the configuration information corresponding to the unicast PDSCH, it can also be determined according to the downlink transmission configuration information.
  • the unicast downlink data After receiving the DCI, the unicast downlink data can be received based on the DCI.
  • the interpretation of the DCI is performed according to the configuration information corresponding to the unicast PDSCH.
  • the size of the DCI is equal to a target value, and the target value is:
  • the first value is the size of the DCI determined according to the configuration information corresponding to the unicast PDSCH
  • the second value is the size of the DCI determined according to the downlink transmission configuration information.
  • the effective number of bits of the second DCI (that is, the minimum number of bits required for scheduling the unicast PDSCH, or the number of bits in the DCI format except the The number of bits other than padding bits) is equal to the first value; for the first DCI for scheduling the multicast PDSCH, according to the downlink transmission configuration information, it can be obtained that the size of the effective number of bits of the first DCI is equal to the second value.
  • the size of the DCI sent by the network side device is equal to the maximum value of the first value and the second value; one way, the size of the DCI sent by the network side device, that is, the DCI format corresponding to the first or second DCI The size is equal to the first value; in another way, the size of the DCI sent by the network side device is equal to the second value.
  • the size of the total effective bits of each information field in the DCI is smaller than the target value
  • the DCI if the size of the downlink data transmission scheduling information is smaller than the target value value, then fill in the target position; wherein, the target position is within the information domain or outside the information domain.
  • the DCI needs to be filled to reach the target value.
  • the filled target position can be either within the information domain or outside the information domain.
  • the padding bit value may be 0 or 1.
  • the size of the information field may be 0, that is, the information field is not included in the DCI.
  • the DCI is a DCI of a certain format, such as DCI 1-1, and the DCI of this format can schedule both unicast downlink data transmission and multicast downlink data transmission.
  • Indication information in, or determine whether to schedule unicast downlink data transmission or multicast downlink data transmission according to the control resource set (Control Resource Set, CORESET) or search space (Search space, SS) where the DCI is located.
  • Control Resource Set, CORESET Control Resource Set
  • search space Search space
  • the UE Since the UE must determine its DCI size (that is, the target value) before receiving the DCI in this format, when determining the size of the DCI format, it can determine the DCI size (that is, the second value) determined for the configuration information corresponding to the multicast transmission ), or the size determined by the configuration information corresponding to the unicast transmission (ie, the first value), or the maximum value of the two. If the size of the DCI format is determined according to the configuration information corresponding to unicast transmission, in one embodiment, when configuring the downlink configuration information, the base station should make the size determined according to the information required when scheduling multicast downlink data. The DCI size is not larger than the size of the DCI format.
  • the number of bits included in the DCI formats corresponding to the first DCI scheduled for multicast downlink transmission and the second DCI scheduled for unicast transmission is determined according to the second DCI.
  • Scenario 1 Filling outside the information domain.
  • the design information fields of the first DCI and the second DCI are both 6, which in turn are the indications used to indicate the scheduled PDSCH type (ie, unicast or multicast PDSCH) (for example, through the information field MBS PDSCH indicator )/or indicate the scrambling sequence initialization value of PDSCH (where unicast or multicast PDSCH corresponds to different scrambling sequence initialization values), frequency domain resource allocation information (Frequency Domain Resource Allocation, FDRA), TDRA, VRB to PRB interleaving Mapping (VRB-To-PRB mapping), MCS, other.
  • the scheduled PDSCH type ie, unicast or multicast PDSCH
  • MBS PDSCH indicator indicates the scrambling sequence initialization value of PDSCH (where unicast or multicast PDSCH corresponds to different scrambling sequence initialization values)
  • frequency domain resource allocation information Frequency Domain Resource Allocation, FDRA
  • TDRA Time Domain Resource Allocation
  • the terminal parses the next information fields according to the scheduled PDSCH type, that is, determines the number of bits of each information field and the indicated information.
  • the first DCI schedules the multicast PDSCH, and the lengths of the information fields corresponding to the first DCI and the second DCI do not need to be the same, but only need to have the same overall number of bits. In this way, the first DCI in Figure 3 will be filled with 0s at the tail, such as zero padding.
  • the terminal receives the first DCI, it does not need to interpret the Zero padding at the tail of the first DCI, or the Zero padding at the tail of the DCI does not indicate valid information.
  • the information field included in the first DCI may also be different from the information field included in the second DCI, for example, the second DCI includes the first information field, but the first DCI does not include the first information field.
  • the size of the total information of each information field in the first DCI is smaller than the size of the second DCI, 0 is also filled at the tail.
  • the information fields of the first DCI are MBS PDSCH indicator, FDRA, TDRA, MCS and other in sequence.
  • the information fields of the second DCI are MBS PDSCH indicator, FDRA, TDRA, VRB-To-PRB mapping, MCS and other in sequence.
  • the terminal parses the following information fields according to the scheduled PDSCH type.
  • the terminal receives the DCI format, it determines that it is the first DCI, that is, the multicast PDSCH is scheduled. It needs to intercept 8 bits from the 10 bits corresponding to the FDRA, and interpret the FDRA of the first DCI to determine the multicast PDSCH.
  • the frequency domain resource allocation can be intercepted in the MSB/LSB.
  • the first DCI in FIG. 4 does not include the VRB-To-PRB mapping field, but the second DCI does.
  • Invalid bits or Zero padding can also be filled in the position corresponding to the VRB-To-PRB mapping of the second DCI, and The tail of the information field is filled with Invalid bits or Zero padding.
  • DCI indicates whether the scheduling is multicast PDSCH or unicast PDSCH through the information field MBS PDSCH indicator, of course, it can also be indicated by other implicit means, such as the CORESET or SS where the DCI is located, etc. Determines whether the scheduled PDSCH is unicast or multicast.
  • the scheduling information of the DCI includes at least one of the following:
  • the PDSCH scheduling information may be indicated by the information in the information field in the DCI, or may be jointly indicated by the PDSCH configuration information and the corresponding information field information in the DCI, or It is an independent indication of the configuration information of the PDSCH.
  • the FDRA scheduling PDSCH the FDRA in the DCI and the resources in the frequency domain resources in the configuration information need to determine the allocated physical resource block, and the DMRS mapping type of the PDSCH can be the DMRS mapping type in the configuration information and so on.
  • the terminal will determine the information field when the DCI schedules the unicast PDSCH according to the configuration information corresponding to the unicast PDSCH:
  • the terminal For FDRA, the terminal needs to combine the configuration of the active DL BWP in the configuration information corresponding to the unicast PDSCH and the frequency domain resource allocation type to determine:
  • the number of bits of FDRA is , which represents the number of RBGs in the active DL BWP;
  • the unicast PDSCH is only configured with resource allocation type 1, the number of bits of FDRA is , which indicates the size of the active DL BWP;
  • the unicast PDSCH is configured with type 0 and type 1 resource allocation, that is, Dynamic Switch, the number of bits of FDRA is .
  • VRB-to-PRB mapping (0or 1bit) if only resource allocation type 0 is configured for unicast PDSCH, or no interleaved VRB-to-PRB mapping is configured, then 0 bit; otherwise, 1 bit.
  • the terminal determines the time domain resources of the unicast PDSCH according to the TDRA table of the unicast PDSCH in the configuration information corresponding to the unicast PDSCH.
  • the terminal determines the corresponding modulation order (modulation order) and target code rate (target code rate) according to the MCS table of the unicast PDSCH in the configuration information corresponding to the unicast PDSCH.
  • DCI schedules multicast PDSCH for example, DCI format 1-1
  • the terminal will determine the information field when the DCI schedules multicast PDSCH according to the downlink transmission configuration information:
  • the terminal For FDRA, the terminal indicates the resources in the frequency domain resources according to the frequency domain resources in the downlink transmission configuration information.
  • the VRB-to-PRB mapping is determined according to the VRB-to-PRB mapping type in the downlink transmission configuration information.
  • the DCI scheduling multicast PDSCH time domain resource is determined according to the TDRA list in the downlink transmission configuration information and the bit information of the TDRA in the DCI.
  • the modulation order and target code rate of the first DCI scheduling multicast PDSCH are determined according to the MCS table in the downlink transmission configuration information and the bit information of the MCS in the DCI.
  • the DMRS mapping type of the DCI-scheduled multicast PDSCH is determined according to the downlink transmission configuration information.
  • the number of codes contained in the multicast PDSCH scheduled by the DCI is determined according to the downlink transmission configuration information and the bit information of the maximum number of codes in the DCI.
  • For the DMRS mapping type directly determine the DMRS mapping type of the PDSCH according to the DMRS mapping type in the downlink transmission configuration information.
  • the method of the embodiment of the present application is applied to the scenario where the network side equipment schedules a terminal group to receive the multicast PDSCH, and each terminal in the terminal group determines the scheduling information for scheduling the multicast PDSCH by acquiring the downlink transmission configuration information.
  • the frequency domain resource of the downlink transmission configuration information is the first resource or the first BWP
  • the frequency domain resource allocation type is Resource Allocation Type1.
  • the target frequency domain resource indicated by FDRA is within the first resource or the first BWP. Therefore, according to the following calculation formula of RIV:
  • the terminal can interpret the resource indication value (RIV) in the DCI according to N_BWP ⁇ size, so as to obtain the RBstart of the scheduled PDSCH and the number of consecutively allocated RBs LRBs.
  • N_BWP ⁇ size is the bandwidth of the first resource or the first BWP, that is, the number of RBs contained in the first resource or the first BWP; RBstart indicates that the first RB of the PDSCH is relative to the first resource or the first BWP.
  • the number of RBs for the RB offset The LRBs should not be greater than the number of RBs included in the first resource or the first BWP.
  • the downlink data reception can be completed according to the downlink transmission configuration information.
  • the network side device can configure the same information for the terminal receiving the multicast downlink transmission, and it is not necessary to determine the indication information in the DCI for the respective configuration information of different terminals. Reduced scheduling complexity.
  • a resource scheduling method applied to a network side device, includes:
  • Step 501 Send downlink transmission configuration information, where the downlink transmission configuration information is used for multicast downlink transmission.
  • the downlink transmission configuration information sent by the network side device is used for multicast downlink transmission, so that the terminal receives downlink data based on the row transmission configuration information.
  • the network-side device informs the terminal of the downlink transmission configuration information for receiving the multicast downlink transmission.
  • the network-side device can configure the same information for the terminal receiving the multicast downlink transmission, There is no need to separately determine the indication information in the DCI for the respective configuration information of different terminals, which reduces the complexity of scheduling.
  • the network-side device may send the downlink transmission configuration information to each terminal in the terminal group.
  • the terminal group may include one or more UEs, and the downlink transmission configuration information is applicable to the one or more UEs. In this way, the downlink transmission configuration information is used to configure the multicast resources of a group of UEs.
  • the downlink transmission configuration information includes at least one of the following:
  • the frequency domain resource is used to indicate the frequency domain resource used for multicast downlink transmission, which may be BWP related information, or frequency domain resource configuration information, such as including at least one of the starting CRB and the number of CRBs; or, including At least one of the starting PRB and the number of PRBs.
  • the frequency domain resource allocation type is used to indicate the frequency domain resource allocation type used for multicast downlink transmission, including: downlink resource allocation type 0 (Resource Allocation Type0), downlink resource allocation type 1 (Resource Allocation Type1) and at least one of Dynamic Switch item.
  • the VRB to PRB interleaving mapping indication is used to indicate whether the multicast downlink transmission performs VRB to PRB interleaving mapping, and the VRB to PRB interleaving mapping indication can be configured through parameters such as Vrb-ToPRB-Interleaver.
  • the RBG size is used to indicate the size of the RBG used for multicast downlink transmission, and the RBG size can be configured by, for example, the RBG-Size parameter.
  • TDRA is used to indicate the TDRA of multicast downlink transmission, and can be configured through a list, such as pdsch-TimeDomainAllocationList, and the table contains one or more available TDRAs.
  • the MCS can represent the MCS of multicast downlink transmission, and can be configured through a table, such as MCS-Table, and each table includes one or more available MCSs.
  • the DMRS mapping type of PDSCH may represent the DMRS mapping type of the scheduled PDSCH, such as type A (dmrs-DownlinkForPDSCH-MappingTypeA) or type B (dmrs-DownlinkForPDSCH-MappingTypeB).
  • the downlink transmission configuration information may also include information such as a rate matching pattern (rate Match Pattern), a PDSCH aggregation factor corresponding to the PDSCH, and the maximum number of codewords of the DCI scheduling corresponding to the DCI.
  • an interleaving mapping indication from VRB to PRB can be configured, such as vrb-ToPRB-Interleaver.
  • the configuration frequency domain resource allocation type is Resource Allocation Type 0, it is not necessary to configure the interleaving mapping indication from VRB to PRB, but the size of the RBG is configured.
  • the downlink transmission configuration information in this embodiment includes one or more of the above-mentioned items of information, and is not limited to the above-mentioned information, which is not listed here.
  • the DCI carries scheduling information for multicast downlink data transmission, or the DCI carries scheduling information for unicast downlink data transmission.
  • the DCI can be used to schedule multicast PDSCH or unicast PDSCH.
  • the DCI is carried and transmitted by the network side device through the PDCCH, and the PDCCH may be a unicast PDCCH.
  • the method before the sending the first physical downlink control channel PDCCH, the method further includes:
  • the size of the DCI is determined according to the downlink transmission configuration information.
  • the size of the DCI is equal to a target value, and the target value is:
  • the first value is the size of the DCI determined according to the configuration information corresponding to the unicast PDSCH
  • the second value is the size of the DCI determined according to the downlink transmission configuration information.
  • the size of the second DCI is equal to the first value
  • the size of the first DCI is equal to the second value.
  • the size sent by the network side device is equal to the maximum value of the first value and the second value; in one way, the size of the DCI sent by the network side device is equal to the first value; in another way, the network side device The size of the transmitted DCI is equal to the second value.
  • the DCI if the size of the scheduling information for downlink data transmission is smaller than the target value, then Filling is performed at the target position; wherein, the target position is within the information domain or outside the information domain.
  • the DCI needs to be filled to reach the target value.
  • the filled target position can be either within the information domain or outside the information domain.
  • the padding bit value may be 0 or 1.
  • the size of the information field may be 0, that is, the information field is not included in the DCI.
  • the DCI information field includes but is not limited to at least one of the following: FDRA, TDRA, MCS, VRB-to-PRB mapping, and the maximum number of codewords scheduled by DCI.
  • the DCI is generated by the network side device.
  • the network side device When the network side device generates the DCI, it will schedule the PDSCH type according to the DCI, that is, schedule the unicast PDSCH or the multicast PDSCH, according to the applicable configuration (can be predefined or network side configuration), Determine the number of bits and bit information of each information field in the DCI, such as FDRA, TDRA, MCS, and VRB-to-PRB mapping.
  • the terminal will select an applicable configuration for the PDSCH type scheduled by the DCI to determine each information field of the DCI.
  • the network side device will generate DCIs with the same first information for the terminal group according to these configurations, which does not need to be determined according to the respective configuration information of each terminal, which reduces the complexity of scheduling the multicast PDSCH.
  • the network side device determines each information field of the DCI according to the downlink transmission configuration information; and if the DCI sent by the network side device is used for scheduling For unicast PDSCH, it needs to be determined according to the unicast PDSCH configuration information.
  • the network side equipment for each information domain FDRA, the number of bits and/or bit information can be determined by the configured frequency domain resources and frequency domain resource allocation type; TDRA, the number of bits and/or bit information can be determined by the configured TDRA list or bit information; VRB-to-PRB mapping, the number of bits and/or bit information can be determined by the configured frequency domain resource allocation type and/or whether the interleaving mapping from VRB to PRB is configured; the maximum number of codewords for DCI scheduling, in When the configured maximum codeword is greater than 1, the maximum number of codewords in the DCI scheduling of the DCI may include the MCS, NDI, and RV indications of each TB, such as TB 1: MCS, NDI, and RV, and TB 2: MCS, NDI, RV.
  • the scheduling information of the DCI includes at least one of the following:
  • the scheduling information of the PDSCH may be indicated by the information in the information field in the DCI, may be jointly indicated by the PDSCH configuration information and the corresponding information field information in the DCI, or may be independently indicated by the PDSCH configuration information.
  • the FDRA scheduling PDSCH the FDRA in the DCI and the resources in the frequency domain resources in the downlink transmission configuration information need to determine the allocated physical resource block, and the DMRS mapping type of the PDSCH can be the DMRS mapping type in the downlink transmission configuration information, etc. .
  • the network side device informs the terminal of the downlink transmission configuration information for receiving multicast downlink transmission.
  • the terminals are configured with the same information, and there is no need to separately determine the indication information in the DCI for the respective configuration information of different terminals, which reduces the complexity of scheduling.
  • this method cooperates with the above-mentioned method applied to a terminal to realize resource scheduling, and the implementation manner of the above-mentioned embodiment of the above-mentioned method of resource scheduling applied to a terminal is applicable to this method and can also achieve the same technical effect.
  • the execution subject may be a resource scheduling apparatus, or a control module in the resource scheduling apparatus for executing the loading resource scheduling method.
  • the resource scheduling method provided by the embodiment of the present application is described by taking the resource scheduling apparatus executing the loading resource scheduling method as an example.
  • a resource scheduling apparatus includes:
  • an acquisition module 610 configured to acquire downlink transmission configuration information, where the downlink transmission configuration information is used for multicast downlink transmission;
  • the processing module 620 is configured to receive downlink data according to the downlink transmission configuration information.
  • the processing module includes:
  • a first receiving sub-module configured to receive downlink control information DCI, where the DCI carries scheduling information for multicast downlink data transmission;
  • the second receiving sub-module is configured to receive multicast downlink data according to the downlink transmission configuration information and the DCI.
  • the processing module includes:
  • the first determination submodule is configured to determine the size of the DCI according to the downlink transmission configuration information.
  • the processing module includes:
  • the second determination submodule is used to determine the size of the DCI according to the downlink transmission configuration information
  • a third receiving submodule configured to receive the DCI, where the DCI carries scheduling information for unicast downlink data transmission;
  • the fourth receiving sub-module is configured to receive unicast downlink data according to the DCI.
  • the downlink transmission configuration information includes at least one of the following:
  • the obtaining module is also used for:
  • the size of the DCI is equal to a target value, and the target value is:
  • the first value is the size of the DCI determined according to the configuration information corresponding to the unicast PDSCH
  • the second value is the size of the DCI determined according to the downlink transmission configuration information.
  • the DCI if the size of the scheduling information of the downlink data transmission is smaller than the target value, padding is performed at the target location; wherein the target location is within the information domain or outside the information domain.
  • the scheduling information of the DCI includes at least one of the following:
  • the apparatus After acquiring the downlink transmission configuration information, the apparatus according to the embodiment of the present application can complete the reception of downlink data according to the downlink transmission configuration information.
  • the network side device since the downlink transmission configuration information is used for multicast downlink transmission, the network side device can configure the same information for the terminal receiving the multicast downlink transmission, and it is not necessary to determine the indication information in the DCI for the respective configuration information of different terminals. Reduced scheduling complexity.
  • the apparatus is an apparatus to which the above-mentioned method applied to a terminal is applied, and the implementation manner of the embodiment of the above-mentioned method for resource scheduling applied to a terminal is applicable to the apparatus, and the same technical effect can also be achieved.
  • the resource scheduling apparatus in this embodiment of the present application may be an apparatus, or may be a component, an integrated circuit, or a chip in a terminal.
  • the apparatus may be a mobile electronic device or a non-mobile electronic device.
  • the mobile electronic device may be a mobile phone, a tablet computer, a notebook computer, a palmtop computer, an in-vehicle electronic device, a wearable device, an ultra-mobile personal computer (UMPC), a netbook, or a personal digital assistant (personal digital assistant).
  • UMPC ultra-mobile personal computer
  • PDA personal digital assistant
  • non-mobile electronic devices can be servers, network attached storage (Network Attached Storage, NAS), personal computer (personal computer, PC), television (television, TV), teller machine or self-service machine, etc., this application Examples are not specifically limited.
  • the resource scheduling apparatus in this embodiment of the present application may be an apparatus having an operating system.
  • the operating system may be an Android (Android) operating system, an ios operating system, or other possible operating systems, which are not specifically limited in the embodiments of the present application.
  • the resource scheduling apparatus provided in the embodiment of the present application can implement each process implemented by the terminal in the method embodiment of FIG. 2 , and to avoid repetition, details are not repeated here.
  • a resource scheduling apparatus includes:
  • the sending module 710 is configured to send downlink transmission configuration information, where the downlink transmission configuration information is used for multicast downlink transmission.
  • the downlink transmission configuration information includes at least one of the following:
  • the device further includes:
  • a control information sending module configured to send DCI, where the DCI carries scheduling information for multicast downlink data transmission, or the DCI carries scheduling information for unicast downlink data transmission.
  • the device further includes:
  • a determining module configured to determine the size of the DCI according to the downlink transmission configuration information.
  • the size of the DCI is equal to a target value, and the target value is:
  • the first value is the size of the DCI determined according to the configuration information corresponding to the unicast PDSCH
  • the second value is the size of the DCI determined according to the downlink transmission configuration information.
  • the scheduling information of the DCI includes at least one of the following:
  • the apparatus in this embodiment of the present application informs the terminal of the downlink transmission configuration information for receiving multicast downlink transmission.
  • the network side device can configure the same information for the terminal receiving the multicast downlink transmission, without the need for
  • the indication information in the DCI is determined respectively according to the respective configuration information of different terminals, which reduces the complexity of scheduling.
  • the apparatus is an apparatus that applies the above method applied to a network side device, and the implementation of the above embodiments of the resource scheduling method applied to a network side device is applicable to the apparatus, and can also achieve the same technical effect.
  • the resource scheduling apparatus in this embodiment of the present application may be an apparatus, or may be a component, an integrated circuit, or a chip in a network-side device.
  • the resource scheduling apparatus in the embodiment of the present application may be an apparatus having an operating system, and the operating system is not specifically limited in the embodiment of the present application.
  • the resource scheduling apparatus provided in the embodiment of the present application can implement each process implemented by the network-side device in the method embodiment of FIG. 5 , which is not repeated here to avoid repetition.
  • an embodiment of the present application further provides a communication device, including a processor 801, a memory 802, a program or instruction stored in the memory 802 and executable on the processor 801, such as , when the communication device 800 is a terminal, when the program or instruction is executed by the processor 801, each process of the above embodiments of the resource scheduling method applied to the terminal can be implemented, and the same technical effect can be achieved.
  • the communication device 800 is a network-side device, when the program or instruction is executed by the processor 801, each process of the above-mentioned embodiment of the resource scheduling method applied to the network-side device can be achieved, and the same technical effect can be achieved. To avoid repetition, here No longer.
  • FIG. 9 is a schematic diagram of a hardware structure of a terminal implementing various embodiments of the present application.
  • the terminal 900 includes but is not limited to: a radio frequency unit 901, a network module 902, an audio output unit 903, an input unit 904, a sensor 905, a display unit 906, a user input unit 907, an interface unit 908, a memory 909, and a processor 910 and other components .
  • the terminal 900 may also include a power source (such as a battery) for supplying power to various components, and the power source may be logically connected to the processor 910 through a power management system, so as to manage charging, discharging, and power consumption through the power management system management and other functions.
  • a power source such as a battery
  • the terminal structure shown in FIG. 9 does not constitute a limitation on the terminal, and the terminal may include more or less components than shown, or combine some components, or arrange different components, which will not be repeated here.
  • the input unit 904 may include a graphics processor (Graphics Processing Unit, GPU) 9041 and a microphone 9042. Such as camera) to obtain still pictures or video image data for processing.
  • the display unit 906 may include a display panel 9061, which may be configured in the form of a liquid crystal display, an organic light emitting diode, or the like.
  • the user input unit 907 includes a touch panel 9071 and other input devices 9072 .
  • the touch panel 9071 is also called a touch screen.
  • the touch panel 9071 may include two parts, a touch detection device and a touch controller.
  • Other input devices 9072 may include, but are not limited to, physical keyboards, function keys (such as volume control keys, switch keys, etc.), trackballs, mice, and joysticks, which will not be repeated here.
  • the radio frequency unit 901 receives the downlink data from the network side device, and then processes it to the processor 910; in addition, sends the uplink data to the network side device.
  • the radio frequency unit 901 includes, but is not limited to, an antenna, at least one amplifier, a transceiver, a coupler, a low noise amplifier, a duplexer, and the like.
  • Memory 909 may be used to store software programs or instructions as well as various data.
  • the memory 909 may mainly include a storage program or instruction area and a storage data area, wherein the stored program or instruction area may store an operating system, an application program or instruction required for at least one function (such as a sound playback function, an image playback function, etc.) and the like.
  • the memory 909 may include high-speed random access memory, and may also include non-volatile memory, wherein the non-volatile memory may be a read-only memory (Read-Only Memory, ROM), a programmable read-only memory (Programmable ROM) , PROM), erasable programmable read-only memory (Erasable PROM, EPROM), electrically erasable programmable read-only memory (Electrically EPROM, EEPROM) or flash memory.
  • ROM Read-Only Memory
  • PROM programmable read-only memory
  • PROM erasable programmable read-only memory
  • Erasable PROM Erasable PROM
  • EPROM electrically erasable programmable read-only memory
  • EEPROM electrically erasable programmable read-only memory
  • flash memory for example at least one magnetic disk storage device, flash memory device, or other non-volatile solid state storage device.
  • the processor 910 may include one or more processing units; optionally, the processor 910 may integrate an application processor and a modem processor, wherein the application processor mainly processes the operating system, user interface, application programs or instructions, etc., Modem processors mainly deal with wireless communications, such as baseband processors. It can be understood that, the above-mentioned modulation and demodulation processor may not be integrated into the processor 910.
  • the radio frequency unit 901 is configured to acquire downlink transmission configuration information, and the downlink transmission configuration information is used for multicast downlink transmission;
  • the processor 910 is configured to receive downlink data according to the downlink transmission configuration information.
  • the terminal After acquiring the downlink transmission configuration information, the terminal can complete the reception of downlink data according to the downlink transmission configuration information.
  • the network side device since the downlink transmission configuration information is used for multicast downlink transmission, the network side device can configure the same information for the terminal receiving the multicast downlink transmission, and it is not necessary to determine the indication information in the DCI for the respective configuration information of different terminals. Reduced scheduling complexity.
  • the network device 1000 includes: an antenna 1001 , a radio frequency device 1002 , and a baseband device 1003 .
  • the antenna 1001 is connected to the radio frequency device 1002 .
  • the radio frequency device 1002 receives information through the antenna 1001, and sends the received information to the baseband device 1003 for processing.
  • the baseband device 1003 processes the information to be sent and sends it to the radio frequency device 1002
  • the radio frequency device 1002 processes the received information and sends it out through the antenna 1001 .
  • the above-mentioned frequency band processing apparatus may be located in the baseband apparatus 1003 , and the method performed by the network side device in the above embodiments may be implemented in the baseband apparatus 1003 .
  • the baseband apparatus 1003 includes a processor 1004 and a memory 1005 .
  • the baseband device 1003 may include, for example, at least one baseband board on which multiple chips are arranged, as shown in FIG. 10 , one of the chips is, for example, the processor 1004 , which is connected to the memory 1005 to call a program in the memory 1005 to execute
  • the network devices shown in the above method embodiments operate.
  • the baseband device 1003 may further include a network interface 1006 for exchanging information with the radio frequency device 1002, and the interface is, for example, a common public radio interface (CPRI for short).
  • CPRI common public radio interface
  • the network-side device in the embodiment of the present invention further includes: instructions or programs stored in the memory 1005 and executable on the processor 1004, and the processor 1004 invokes the instructions or programs in the memory 1005 to execute the modules shown in FIG. 7 .
  • Embodiments of the present application further provide a readable storage medium, where a program or an instruction is stored on the readable storage medium, and when the program or instruction is executed by a processor, the above-mentioned resource scheduling method applied to a terminal, or the above-mentioned method applied to a network is implemented.
  • the various processes of the embodiments of the resource scheduling method of the side device can achieve the same technical effect, and in order to avoid repetition, details are not repeated here.
  • the processor is the processor in the electronic device described in the foregoing embodiments.
  • the readable storage medium includes a computer-readable storage medium, such as a computer read-only memory (Read-Only Memory, referred to as ROM), random access memory (Random Access Memory, referred to as RAM), a magnetic disk or an optical disk, etc.
  • ROM computer read-only memory
  • RAM random access memory
  • magnetic disk or an optical disk etc.
  • An embodiment of the present application further provides a chip, where the chip includes a processor and a communication interface, the communication interface is coupled to the processor, and the processor is configured to run a program or an instruction to implement the above-mentioned resource scheduling applied to a terminal method, or implement each process of the above-mentioned embodiments of the resource scheduling method applied to a network side device, and can achieve the same technical effect, and in order to avoid repetition, details are not described here.
  • the chip mentioned in the embodiments of the present application may also be referred to as a system-on-chip, a system-on-chip, a system-on-a-chip, or a system-on-a-chip, or the like.
  • modules, units, sub-modules, sub-units, etc. can be implemented in one or more Application Specific Integrated Circuits (ASIC), Digital Signal Processing (DSP), digital signal processing equipment ( DSP Device, DSPD), Programmable Logic Device (Programmable Logic Device, PLD), Field-Programmable Gate Array (Field-Programmable Gate Array, FPGA), general-purpose processor, controller, microcontroller, microprocessor, for in other electronic units or combinations thereof that perform the functions described herein.
  • ASIC Application Specific Integrated Circuits
  • DSP Digital Signal Processing
  • DSP Device digital signal processing equipment
  • PLD Programmable Logic Device
  • Field-Programmable Gate Array Field-Programmable Gate Array
  • FPGA Field-Programmable Gate Array
  • the method of the above embodiment can be implemented by means of software plus a necessary general hardware platform, and of course can also be implemented by hardware, but in many cases the former is better implementation.
  • the technical solution of the present application can be embodied in the form of a software product in essence or in a part that contributes to the prior art, and the computer software product is stored in a storage medium (such as ROM/RAM, magnetic disk, CD-ROM), including several instructions to make a terminal (which may be a mobile phone, a computer, a server, an air conditioner, or a network device, etc.) execute the methods described in the various embodiments of this application.
  • a storage medium such as ROM/RAM, magnetic disk, CD-ROM

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请公开了一种资源调度方法、装置及设备,涉及通信技术领域。该方法,应用于终端,包括:获取下行传输配置信息,所述下行传输配置信息用于组播下行传输;根据所述下行传输配置信息,接收下行数据。

Description

资源调度方法、装置及设备
相关申请的交叉引用
本申请主张在2020年8月5日在中国提交的中国专利申请号No.202010780359.0的优先权,其全部内容通过引用包含于此。
技术领域
本申请属于通信技术领域,具体涉及一种资源调度方法、装置及设备。
背景技术
对于多播广播业务(Multicast and Broadcast Services,MBS)使用组播物理下行共享信道(Physical Downlink Shared Channel PDSCH)传输是一种有效提升系统频谱效率的手段。对于新空口(New Radio,NR)中的组播PDSCH,可以通过单播物理下行控制信道(Physical Downlink Control Channel,PDCCH)调度,当使用单播PDCCH调度时,基站通过不同PDCCH调度相同的PDSCH,其中不同PDCCH的频域资源分配(Frequency Domain Resource Allocation,FDRA)、时域资源分配(Time Domain Resource Allocation,TDRA)需要指示相同的PDSCH时频资源。现有技术中,对于单播PDCCH,用户设备(User Equipment,UE)根据UE特定的激活的(active)带宽部分(Band Width Part,BWP)的配置确定FDRA比特数以及比特信息。
因此,基站在调度时,为了使不同UE的PDCCH能够指示相同的PDSCH资源,基站需要根据每个UE的active BWP配置分别确定FDRA比特数和/或FDRA比特信息。类似的,TDRA列表、调制和编码方案(Modulation and coding scheme,MCS)表格等也都是UE特定的,基站要根据不同UE的不同配置,分别确定各个UE对应的比特信息以调度完全相同的PDSCH,增加了基站调度的复杂度。
发明内容
本申请实施例提供一种资源调度方法、装置及设备,能够解决现有技术 中基站通过单播PDCCH调度组播PDSCH的高复杂度的问题。
第一方面,本申请的实施例提供了一种资源调度方法,应用于终端,包括:
获取下行传输配置信息,所述下行传输配置信息用于组播下行传输;
根据所述下行传输配置信息,接收下行数据。
第二方面,本申请的实施例提供了一种资源调度方法,应用于网络侧设备,包括:
发送下行传输配置信息,所述下行传输配置信息用于组播下行传输。
第三方面,本申请实施例还提供了一种资源调度装置,包括:
获取模块,用于获取下行传输配置信息,所述下行传输配置信息用于组播下行传输;
处理模块,用于根据所述下行传输配置信息,接收下行数据。
第四方面,本申请实施例还提供了一种资源调度装置,包括:
发送模块,用于发送下行传输配置信息,所述下行传输配置信息用于组播下行传输。
第五方面,本申请实施例还提供了一种通信设备,该通信设备包括处理器、存储器及存储在所述存储器上并可在所述处理器上运行的程序或指令,所述程序或指令被所述处理器执行时实现如第一方面或第二方面所述的方法的步骤。
第六方面,本申请实施例还提供了一种可读存储介质,所述可读存储介质上存储程序或指令,所述程序或指令被处理器执行时实现如第一方面或第二方面所述的方法的步骤。
第七方面,本申请实施例提供了一种芯片,所述芯片包括处理器和通信接口,所述通信接口和所述处理器耦合,所述处理器用于运行程序或指令,实现如第一方面或第二方面所述的方法。
第八方面,本申请实施例提供了一种程序产品,所述程序产品被存储在非易失的存储介质中,所述程序产品被至少一个处理器执行以实现如第一方面或第二方面所述的方法的步骤。
这样,本申请实施例中,在获取到下行传输配置信息之后,能够根据该 下行传输配置信息,完成下行数据的接收。这里,由于该下行传输配置信息用于组播下行传输,因此网络侧设备可以为接收组播下行传输的终端配置相同的信息,而无需针对不同终端各自的配置信息分别确定DCI中的指示信息,降低了调度的复杂度。
附图说明
图1为无线通信系统的框图;
图2为本申请实施例的应用于终端的资源调度方法的流程示意图;
图3为本申请实施例的第一DCI结构的示意图之一;
图4为本申请实施例的第一DCI结构的示意图之二;
图5为本申请实施例的应用于网络侧设备的资源调度方法的流程示意图;
图6为图2所示方法对应的装置结构示意图;
图7为图5所示方法对应的装置结构示意图;
图8为本申请实施例的通信设备的结构示意图;
图9为本申请实施例的终端的结构示意图;
图10为本申请实施例的网络侧设备的结构示意图。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
本申请的说明书和权利要求书中的术语“第一”、“第二”等是用于区别类似的对象,而不用于描述特定的顺序或先后次序。应该理解这样使用的术语在适当情况下可以互换,以便本申请的实施例能够以除了在这里图示或描述的那些以外的顺序实施。此外,说明书以及权利要求中“和/或”表示所连接对象的至少其中之一,字符“/”,一般表示前后关联对象是一种“或”的关系。
值得指出的是,本申请实施例所描述的技术不限于长期演进型(Long  Term Evolution,LTE)/LTE的演进(LTE-Advanced,LTE-A)系统,还可用于其他无线通信系统,诸如码分多址(Code Division Multiple Access,CDMA)、时分多址(Time Division Multiple Access,TDMA)、频分多址(Frequency Division Multiple Access,FDMA)、正交频分多址(Orthogonal Frequency Division Multiple Access,OFDMA)、单载波频分多址(Single carrier-Frequency Division Multiple Access,SC-FDMA)和其他系统。本申请实施例中的术语“系统”和“网络”常被可互换地使用,所描述的技术既可用于以上提及的系统和无线电技术,也可用于其他系统和无线电技术。然而,以下描述出于示例目的描述了新空口(New Radio,NR)系统,并且在以下大部分描述中使用NR术语,这些技术也可应用于NR系统应用以外的应用,如第6代(6th Generation,6G)通信系统。
图1示出本申请实施例可应用的一种无线通信系统的框图。无线通信系统包括终端11和网络侧设备12。其中,终端11也可以称作终端设备或者用户终端(User Equipment,UE),终端11可以是手机、平板电脑(Tablet Personal Computer)、膝上型电脑(Laptop Computer)或称为笔记本电脑、个人数字助理(Personal Digital Assistant,PDA)、掌上电脑、上网本、超级移动个人计算机(ultra-mobile personal computer,UMPC)、移动上网装置(Mobile Internet Device,MID)、可穿戴式设备(Wearable Device)或车载设备(VUE)、行人终端(PUE)等终端侧设备,可穿戴式设备包括:手环、耳机、眼镜等。需要说明的是,在本申请实施例并不限定终端11的具体类型。网络侧设备12可以是基站或核心网,其中,基站可被称为节点B、演进节点B、接入点、基收发机站(Base Transceiver Station,BTS)、无线电基站、无线电收发机、基本服务集(Basic Service Set,BSS)、扩展服务集(Extended Service Set,ESS)、B节点、演进型B节点(eNB)、家用B节点、家用演进型B节点、WLAN接入点、WiFi节点、发送接收点(Transmitting Receiving Point,TRP)或所述领域中其他某个合适的术语,只要达到相同的技术效果,所述基站不限于特定技术词汇,需要说明的是,在本申请实施例中仅以NR系统中的基站为例,但是并不限定基站的具体类型。
下面结合附图,通过具体的实施例及其应用场景对本申请实施例提供的 资源调度方法进行详细地说明。
本申请实施例的方法应用于用户设备,用户设备(user equipment,UE)可以指接入终端、用户单元、用户站、移动站、移动台、远方站、远程终端、移动设备、用户终端、终端、无线通信设备、用户代理或用户装置。终端设备还可以是蜂窝电话、无绳电话、会话启动协议(session initiation protocol,SIP)电话、无线本地环路(wireless local loop,WLL)站、个人数字助理(personal digital assistant,PDA)、具有无线通信功能的手持设备、计算设备或连接到无线调制解调器的其它处理设备、车载设备、可穿戴设备。
如图2所示,本申请实施例的一种资源调度方法,应用于终端,包括:
步骤201,获取下行传输配置信息,所述下行传输配置信息用于组播下行传输。
这里,下行传输配置信息用于组播下行传输,即通过该下行传输配置信息,终端将能够进行组播物理下行控制信道PDSCH的接收。
这里,相对于单播传输中一对一的传输,即一个发端一个收端,组播下行传输表示通过一对多的传输方式进行的传输,即一个发端多个收端,也可以表示为多播传输或者广播传输。其可以用于传输例如广播多播业务。
步骤202,根据所述下行传输配置信息,接收下行数据。
本步骤中,在经步骤201获取到下行传输配置信息之后,终端就能够根据该下行传输配置信息,接收PDSCH。
如此,按照步骤201和步骤202,应用本申请实施例的资源调度方法的终端,在获取到下行传输配置信息之后,能够根据该下行传输配置信息,完成下行数据的接收。这里,由于该下行传输配置信息用于组播下行传输,因此网络侧设备可以为接收组播下行传输的终端配置相同的信息,而无需针对不同终端各自的配置信息分别确定DCI中的指示信息,降低了调度的复杂度。
其中,下行传输配置信息是对应终端组的通用信息,该终端组为上述终端的所属终端组。该终端组可以包括一个或多个UE,该下行传输配置信息适用于该一个或多个UE。如此,下行传输配置信息用于配置一组UE的组播资源。
可选的,该下行传输配置信息可以由无线资源控制RRC配置。
可选的,本申请实施例中,所述下行传输配置信息包括以下至少一项:
频域资源;
频域资源分配类型;
虚拟资源块到物理资源块的交织映射指示;
资源块组大小;
时域资源分配信息;
调制与编码方案;
PDSCH聚合因子;
PDSCH的解调参考信号映射类型;
DCI调度的最大码字数;
速率匹配模式。
这里,频域资源用于表示组播下行传输使用的频域资源,可以是BWP的相关信息,或者频域资源配置信息,如包括起始公共资源块(Common Resource Blocks,CRB)和CRB数目中的至少一项;又或者,包括起始物理资源块(Physical Resource Block,PRB)和PRB数目中的至少一项。频域资源分配类型用于表示组播下行传输使用的频域资源分配类型,包括:下行资源分配类型0(Resource Allocation Type0)、下行资源分配类型1(Resource Allocation Type1)和动态切换(Dynamic Switch)中的至少一项。虚拟资源块(Virtual Resource Block,VRB)到物理资源块的交织映射指示用于表示组播下行传输是否进行VRB到PRB的交织映射,VRB到PRB的交织映射指示可通过如vrb-ToPRB-Interleaver参数配置。资源块组(Resource Block Group,RBG)大小用于表示组播下行传输使用的RBG的大小,RBG大小可通过如RBG-Size参数配置。时域资源分配信息(Time Domain Resource Allocation,TDRA)用于表示组播下行传输的TDRA,具体可通过列表,如pdsch-TimeDomainAllocationList配置,表格中包含可用的一个或多个TDRA。调制与编码方案(Modulation and Coding Scheme,MCS)可以表示组播下行传输的MCS,具体可通过表格,如MCS-Table配置,每个表格中包含可用的一个或多个MCS。PDSCH的解调参考信号(Demodulation Reference Signal,DMRS)映射类型可以表示调度的PDSCH的DMRS映射类型,如类型A(如dmrs- DownlinkForPDSCH-MappingTypeA)或类型B(如dmrs-DownlinkForPDSCH-MappingTypeB)。此外,下行传输配置信息还可以包括速率匹配模式(如rate Match Pattern),对应PDSCH的PDSCH聚合因子,对应DCI的DCI调度的最大码字数等信息。
其中,下行传输配置信息的各项信息之间还可能存在一定的关联,例如,当频域资源分配类型为Resource Allocation Type 1时,可以配置VRB到PRB的交织映射指示,如vrb-ToPRB-Interleaver。又或者,当配置频域资源分配类型为Resource Allocation Type 0时,则不需要配置VRB到PRB的交织映射指示,但配置RBG的大小。
当然,该实施例中的下行传输配置信息包括上述项信息的一种或多种,且不限于上述信息,在此不再列举。
可选的,步骤201包括:
获取网络侧设备发送的下行传输配置信息。
如此,在该实施例中,下行传输配置信息可以由网络侧设备配置,并向终端发送。可选的,网络侧设备可以向终端所属终端组的各个终端发送该下行传输配置信息。
此外,该下行传输配置信息中的一项或多项还可以是预定义信息,则终端可以根据网络侧设备配置和/或预定义信息接收下行数据。
例如,预定义:组播PDSCH支持PDSCH的DMRS映射类型为PDSCH DMRS type A;最大码字数为1;MCS表格采用预定义表格,如表格‘qam64’;TDRA列表采用预定义表格,如使用默认表格;PDSCH聚合因子(pdsch-AggregationFactor)等于1,即不支持PDSCH重复等。而对应的网络侧设备配置的下行传输配置信息至少包括:频域资源;频域资源分配类型;VRB到PRB的交织映射指示;RBG大小。
此外,网络侧设备会发送DCI,来调度PDSCH。而且,该DCI可用于调度组播PDSCH或单播PDSCH,即该DCI将携带组播下行数据传输的调度信息,或者,携带单播下行数据传输的调度信息。
可选的,本申请的实施例中,DCI是网络侧设备通过物理下行控制信道PDCCH携带传输的,该PDCCH可以是单播PDCCH。
而网络侧设备在生成DCI时,会根据其调度PDSCH的类型即调度单播PDSCH还是组播PDSCH,按照适用的配置(可以是预定义或网络侧配置),确定该DCI的如FDRA,TDRA,MCS,VRB-to-PRB mapping等各信息域的比特数和比特信息。当然,信息域也可以理解为比特域。
该实施例中,DCI的信息域包括但不限于以下至少之一:FDRA,TDRA,MCS,VRB-to-PRB mapping,DCI调度的最大码字数。具体的,网络侧设备针对各信息域:FDRA,可以由配置的频域资源和频域资源分配类型,确定其比特数和/或比特信息;TDRA,可以由配置的TDRA列表确定其比特数和/或比特信息;VRB-to-PRB mapping,可以由配置的频域资源分配类型和/或是否配置VRB到PRB的交织映射,确定其比特数和/或比特信息;DCI调度的最大码字数,在配置的最大码字大于1的情况下,该DCI的DCI调度的最大码字数中可以包含每个传输块TB的MCS,新数据指示(New Data Indicator,NDI),冗余版本(Redundancy Version,RV)指示,如TB1:MCS、NDI和RV,以及TB2:MCS、NDI、RV。
如此,对于携带组播下行数据传输的调度信息的DCI,网络侧设备在生成DCI时,会根据其调度PDSCH的类型为组播PDSCH,根据下行传输配置信息确定DCI中各信息域的比特数和比特信息。这样,该DCI中的第一信息将是相同的,不需要根据每个终端的各自配置信息分别确定,降低了调度组播PDSCH的复杂度。其中,第一信息包括频域资源分配指示,时域资源分配指示,虚拟资源块到物理资源块的交织映射指示,调制与编码方案等。
故,本申请实施例中,可选的,步骤202包括:
接收下行控制信息DCI,DCI携带组播下行数据传输的调度信息;
根据所述下行传输配置信息和所述DCI,接收组播下行数据。
这样,对于终端组的每个UE,在接收携带组播下行数据传输的调度信息的DCI之后,就能够基于已获取的下行传输配置信息,解读该DCI来得到所需的调度信息,完成组播下行数据的接收。
可选的,本申请的实施例中,步骤202还包括:
根据下行传输配置信息,确定所述DCI的大小。
如此,终端将会根据下行传输配置信息确定DCI的大小(DCI size)。具体 的,将由下行传输配置信息中的一项或多项信息,确定DCI的信息域以及信息域的大小,从而得到DCI的大小。
例如,根据下行传输配置信息中的频域资源,可确定DCI中信息域FDRA的比特数;根据下行传输配置信息中的TDRA列表,可确定DCI中信息域TDRA的比特数;根据下行传输配置信息中的频域资源分配类型,可确定DCI中信息域VRB-to-PRB mapping比特数,如确定为0比特或确定为1比特;根据下行传输配置信息中的DCI调度的最大码字数,在配置的最大码字大于1的情况下,可确定DCI中的最大码字数中可以包含每个TB的MCS、NDI和RV,等等。
可选的,本申请实施例中,步骤202包括:
根据下行传输配置信息,确定DCI的大小;
接收所述DCI,所述DCI携带单播下行数据传输的调度信息;
根据所述DCI,接收单播下行数据。
这里,对于携带单播下行数据传输的调度信息的DCI,除根据单播PDSCH对应的配置信息确定其大小外,也可根据下行传输配置信息来确定。而在接收该DCI之后,就能够基于该DCI完成单播下行数据的接收。当然,对该DCI的解读是根据单播PDSCH对应的配置信息进行的。
可选的,该实施例中,所述DCI的大小等于目标值,所述目标值为:
第一值和第二值的最大值;或者
第一值;或者
第二值;
其中,所述第一值是根据单播PDSCH对应的配置信息确定的DCI的大小,所述第二值是根据所述下行传输配置信息确定的DCI的大小。
即,对于调度单播PDSCH的第二DCI,根据单播PDSCH对应的配置信息,可得第二DCI的有效比特数大小(即调度单播PDSCH所需的最小比特数,或者说DCI格式中除了填充比特以外的比特数)等于第一值;对于调度组播PDSCH的第一DCI,根据下行传输配置信息,可得第一DCI的有效比特数大小等于第二值。这样,一种方式,网络侧设备发送的DCI的大小等于第一值和第二值的最大值;一种方式,网络侧设备发送的DCI的大小,即第 一或第二DCI对应的DCI格式的大小,等于第一值;另一种方式,网络侧设备发送的DCI的大小等于第二值。而考虑到DCI中各信息域的有效比特数总信息的大小存在小于目标值的情况,该实施例中,可选的,所述DCI中,若下行数据传输的调度信息的大小小于所述目标值,则在目标位置进行填充;其中,所述目标位置为信息域内或信息域外。如此,网络侧设备发送的DCI,若其携带的调度信息的有效比特数小于目标值,需要对该DCI进行填充,以达到目标值。而填充的目标位置可以是信息域内,也可以是信息域外。其中,填充的比特值可以是0,也可以是1。其中信息域的大小可以是0,即DCI中不包含该信息域。
可以理解的是,例如该DCI为某一格式的DCI,如DCI 1-1,该格式的DCI既可以调度单播下行数据传输,也可以调度组播下行数据传输,具体的,UE可以根据DCI中的指示信息,或者根据DCI所在的控制资源集(Control Resource Set,CORESET)或搜索空间(Search space,SS)等方式确定调度的是单播下行数据传输还是组播下行数据传输。由于UE在接收该格式的DCI之前,必须确定其DCI大小(即目标值),其中在确定DCI格式的大小时,其可以确定为组播传输对应的配置信息确定的DCI大小(即第二值),或者单播传输对应的配置信息确定的大小(即第一值),或者两者中的最大值。如果DCI格式的大小是根据单播传输对应的配置信息确定的大小,一种实施方式中,基站在配置所述下行配置信息时,应使得根据此信息确定的调度组播下行数据时所需的DCI大小不比该DCI格式的大小大。
以目标值等于第二DCI(即调度单播PDSCH的DCI)的大小为例:
该实施例中,调度组播下行传输的第一DCI和调度单播传输的第二DCI对应的DCI格式包含的比特数根据第二DCI确定。
场景一、在信息域外填充。
如图3所示,第一DCI与第二DCI的设计信息域均为6个,依次为用于指示调度的PDSCH类型(即单播或组播PDSCH)的指示(例如通过信息域MBS PDSCH indicator)/或者指示PDSCH的加扰序列初始化值(其中单播或组播PDSCH对应不同的加扰序列初始化值),频域资源分配信息(Frequency Domain Resource Allocation,FDRA),TDRA,VRB到PRB的交织映射(VRB- To-PRB mapping),MCS,其它(other)。其中MBS PDSCH indicator可为1bit信息域,MBS PDSCH indicator=0,表示调度的是单播PDSCH;MBS PDSCH indicator=1,表示调度的是组播PDSCH。终端根据调度的PDSCH类型分别解析接下来的各个信息域,即确定各个信息域的比特数和指示的信息。此时,第一DCI调度组播PDSCH,其与第二DCI中对应的信息域的长度不需要相同,而只需要两者的整体比特数相同。如此,图3中的第一DCI,会在尾部填充0,如零填充区域(Zero padding)。而终端接收到该第一DCI时,不需要解读该第一DCI尾部的Zero padding,或者DCI尾部的Zero padding不指示有效信息。
当然,第一DCI的包含的信息域也可与第二DCI包含的信息域不同,例如第二DCI包含第一信息域,而第一DCI不包含第一信息域。在第一DCI中各信息域的总信息的大小小于第二DCI的大小的情况下,同样在尾部填充0。
场景二、在信息域内填充。
如图4所示,第一DCI的信息域依次为MBS PDSCH indicator,FDRA,TDRA,MCS和other。第二DCI的信息域依次为MBS PDSCH indicator,FDRA,TDRA,VRB-To-PRB mapping,MCS和other。其中MBS PDSCH indicator可为1bit信息域,MBS PDSCH indicator=0,表示调度的是单播PDSCH;MBS PDSCH indicator=1,表示调度的是组播PDSCH。终端根据调度的PDSCH类型分别解析接下来的各个信息域。此时,第一DCI调度组播PDSCH,需要其与第二DCI中的信息域以及信息域的长度均相同,实现两者的整体比特数相同。如此,图4中的第一DCI的FDRA因只需要8比特,而第二DCI的FDRA为10比特,则可在第一DCI的FDRA中填充无效比特位(Invalid bits)或Zero padding。而终端在接收到该DCI格式时,判断为第一DCI,即调度的是组播PDSCH,需要在FDRA对应位置的10比特中截取8比特,解读出第一DCI的FDRA用于确定组播PDSCH的频域资源分配,可以是在MSB/LSB中截取。另外,图4中的第一DCI不包含VRB-To-PRB mapping域,而第二DCI包含,则还可在与第二DCI的VRB-To-PRB mapping对应位置填充Invalid bits或Zero padding,以及信息域的尾部填充Invalid bits或Zero padding。而终端接收到该第一DCI时,不需要解读这些位置,或者这些位置 不指示有效信息。
应该知道的是,图3、图4中的信息域,以及信息域的排列顺序仅是该实施例中的示例,当然还可以有其他实现,在此不再赘述。而且,在图3和图4中,DCI均是通过信息域MBS PDSCH indicator来指示调度的是组播PDSCH还是单播PDSCH,当然也可以通过其他隐式方式指示,如DCI所在的CORESET或SS等确定调度的PDSCH是单播还是组播。
可选地,本申请的实施例中,所述DCI的调度信息包括以下至少一项:
频域资源分配信息;
时域资源分配信息;
解调参考信号映射类型;
调制与编码方案;
PDSCH聚合因子;
虚拟资源块到物理资源块的交织映射;
PDSCH包含的码数;
速率匹配模式。
应该知道是,终端接收下行数据,即PDSCH的数据,该PDSCH的调度信息可以是该DCI中信息域的信息指示的,可以是PDSCH的配置信息与DCI中对应信息域信息联合指示的,还可以是PDSCH的配置信息独立指示。例如,确定调度PDSCH的FDRA,需要DCI中FDRA以及配置信息中频域资源内的资源确定分配的物理资源块,而PDSCH的DMRS映射类型则可以是配置信息中的DMRS映射类型等等。
具体的,DCI调度单播PDSCH,例如DCI格式1-1,终端将根据单播PDSCH对应的配置信息确定该DCI调度单播PDSCH时的信息域:
对于FDRA,终端需要结合单播PDSCH对应的配置信息中active DL BWP的配置以及频域资源分配类型来确定:
如果单播PDSCH只配置了资源分配类型0,则FDRA的比特数为,其中表示active DL BWP内的RBG数;
如果单播PDSCH只配置了资源分配类型1,则FDRA的比特数为,其中表示active DL BWP的大小;
如果单播PDSCH配置了type 0和type 1资源分配,即Dynamic Switch,则FDRA的比特数为。
对于VRB-to-PRB mapping(0or 1bit),如果单播PDSCH只配置了资源分配类型0,或者没有配置interleaved VRB-to-PRB mapping,则0比特;否则1比特。
对于TDRA,终端根据单播PDSCH对应的配置信息中,单播PDSCH的TDRA表格确定单播PDSCH的时域资源。
对于MCS,终端根据单播PDSCH对应的配置信息中,单播PDSCH的MCS表格,确定对应的调制阶数(modulation order)和目标码率(target code rate)。
具体的,DCI调度组播PDSCH,例如DCI格式1-1,终端将根据下行传输配置信息确定该DCI调度组播PDSCH时的信息域:
对于FDRA,终端根据下行传输配置信息中的频域资源,指示该频域资源内的资源。
对于VRB-to-PRB mapping,根据下行传输配置信息中VRB到PRB的映射类型确定VRB到PRB的映射。
对于TDRA,根据下行传输配置信息中TDRA列表和DCI中TDRA的比特信息,确定DCI调度组播PDSCH时域资源。
对于MCS,根据下行传输配置信息中MCS表格和DCI中MCS的比特信息,确定第一DCI调度组播PDSCH的调制阶数和目标码率。
对于DMRS映射类型,根据下行传输配置信息确定DCI调度的组播PDSCH的DMRS映射类型。
对于PDSCH包含的码数,根据下行传输配置信息和DCI中最大码子数的比特信息,确定DCI调度的组播PDSCH包含的码数。
对于DMRS映射类型:根据下行传输配置信息中的DMRS映射类型,直接确定PDSCH的DMRS映射类型。
当然,对于调度信息中的其他项信息,也是类似的确定方式,在此不再一一列举。
由上述内容可知,本申请实施例的方法,应用于网络侧设备调度终端组 接收组播PDSCH的场景,该终端组中的各终端通过获取下行传输配置信息,确定调度组播PDSCH的调度信息。例如,下行传输配置信息的频域资源为第一资源或第一BWP,频域资源分配类型为Resource Allocation Type1。终端A接收到的DCI中,FDRA指示的目标频域资源在该第一资源或第一BWP内,故,根据RIV的如下计算公式:
if then
else
where 1 and shall not exceed;
终端能够根据N_BWP^size解读DCI中的资源指示值(resource indication value,RIV),从而得到调度PDSCH的RBstart和连续分配的RB数LRBs。其中N_BWP^size是第一资源或第一BWP的带宽,即表示第一资源或第一BWP包含的RB数;RBstart表示PDSCH的第一个RB相对于第一资源或第一BWP的第一个RB偏移的RB数。其中LRBs应不大于第一资源或第一BWP包含的RB数。
综上所述,本申请实施例的方法,在获取到下行传输配置信息之后,能够根据该下行传输配置信息,完成下行数据的接收。这里,由于该下行传输配置信息用于组播下行传输,因此网络侧设备可以为接收组播下行传输的终端配置相同的信息,而无需针对不同终端各自的配置信息分别确定DCI中的指示信息,降低了调度的复杂度。
如图5所示,本申请实施例的一种资源调度方法,应用于网络侧设备,包括:
步骤501,发送下行传输配置信息,所述下行传输配置信息用于组播下行传输。
这里,网络侧设备发送的下行传输配置信息用于组播下行传输,以便终端基于该行传输配置信息接收下行数据。
这样,通过步骤501,网络侧设备向终端告知了接收组播下行传输的下行传输配置信息,在调度组播PDSCH的情况下,网络侧设备可以为接收组播下 行传输的终端配置相同的信息,而无需针对不同终端各自的配置信息分别确定DCI中的指示信息,降低了调度的复杂度。
其中,针对终端组,网络侧设备可以向该终端组的各个终端发送该下行传输配置信息。该终端组可以包括一个或多个UE,该下行传输配置信息适用于该一个或多个UE。如此,下行传输配置信息用于配置一组UE的组播资源。
可选地,所述下行传输配置信息包括以下至少一项:
频域资源;
频域资源分配类型;
虚拟资源块到物理资源块的交织映射指示;
资源块组大小;
时域资源分配信息;
调制与编码方案;
PDSCH聚合因子;
PDSCH的解调参考信号映射类型;
DCI调度的最大码字数;
速率匹配模式。
这里,频域资源用于表示组播下行传输使用的频域资源,可以是BWP的相关信息,或者频域资源配置信息,如包括起始CRB和CRB数目中的至少一项;又或者,包括起始PRB和PRB数目中的至少一项。频域资源分配类型用于表示组播下行传输使用的频域资源分配类型,包括:下行资源分配类型0(Resource Allocation Type0)、下行资源分配类型1(Resource Allocation Type1)和Dynamic Switch中的至少一项。VRB到PRB的交织映射指示用于表示组播下行传输是否进行VRB到PRB的交织映射,VRB到PRB的交织映射指示可通过如Vrb-ToPRB-Interleaver参数配置。RBG大小用于表示组播下行传输使用的RBG的大小,RBG大小可通过如RBG-Size参数配置。TDRA用于表示组播下行传输的TDRA,具体可通过列表,如pdsch-TimeDomainAllocationList配置,表格中包含可用的一个或多个TDRA。MCS可以表示组播下行传输的MCS,具体可通过表格,如MCS-Table配置,每个表格中包含可用的一个或多个MCS。PDSCH的DMRS映射类型可以表示调 度的PDSCH的DMRS映射类型,如类型A(dmrs-DownlinkForPDSCH-MappingTypeA)或类型B(dmrs-DownlinkForPDSCH-MappingTypeB)。此外,下行传输配置信息还可以包括速率匹配模式(rate Match Pattern),对应PDSCH的PDSCH聚合因子,对应DCI的DCI调度的最大码字数等信息。
其中,下行传输配置信息的各项信息之间还可能存在一定的关联,例如,当频域资源分配类型为Resource Allocation Type1时,可以配置VRB到PRB的交织映射指示,如vrb-ToPRB-Interleaver。又或者,当配置频域资源分配类型为Resource Allocation Type 0时,则不需要配置VRB到PRB的交织映射指示,但配置RBG的大小。
当然,该实施例中的下行传输配置信息包括上述项信息的一种或多种,且不限于上述信息,在此不再列举。
可选的,本申请的实施例中,还包括:
发送DCI,所述DCI携带组播下行数据传输的调度信息,或者所述DCI携带单播下行数据传输的调度信息。
即该DCI可用于调度组播PDSCH或单播PDSCH。
可选的,本申请的实施例中,DCI是网络侧设备通过PDCCH携带传输的,该PDCCH可以是单播PDCCH。
可选的,所述发送第一物理下行控制信道PDCCH之前,还包括:
根据下行传输配置信息,确定所述DCI的大小。
可选的,所述DCI的大小等于目标值,所述目标值为:
第一值和第二值的最大值;或者
第一值;或者
第二值;
其中,所述第一值是根据单播PDSCH对应的配置信息确定的DCI的大小,所述第二值是根据所述下行传输配置信息确定的DCI的大小。
即,对于调度单播PDSCH的第二DCI,根据单播PDSCH对应的配置信息,可得第二DCI的大小等于第一值;对于调度组播PDSCH的第一DCI,根据所述下行传输配置信息,可得第一DCI的大小等于第二值。这样,一种方式,网络侧设备发送的的大小等于第一值和第二值的最大值;一种方式, 网络侧设备发送的DCI的大小等于第一值;另一种方式,网络侧设备发送的DCI的大小等于第二值。
而考虑到DCI中各信息域的总信息的大小存在小于目标值的情况,该实施例中,可选的,所述DCI中,若下行数据传输的调度信息的大小小于所述目标值,则在目标位置进行填充;其中,所述目标位置为信息域内或信息域外。如此,网络侧设备发送的DCI,若其携带的调度信息的大小小于目标值,需要对该DCI进行填充,以达到目标值。而填充的目标位置可以是信息域内,也可以是信息域外。其中,填充的比特值可以是0,也可以是1。其中,信息域的大小可以是0,即DCI中不包含该信息域。
可选的,该实施例中,DCI的信息域包括但不限于以下至少之一:FDRA,TDRA,MCS,VRB-to-PRB mapping,DCI调度的最大码字数。DCI是网络侧设备生成的,网络侧设备在生成DCI时,会根据DCI的调度PDSCH的类型,即调度单播PDSCH还是组播PDSCH,按照适用的配置(可以是预定义或网络侧配置),确定该DCI中如FDRA,TDRA,MCS,VRB-to-PRB mapping等各信息域的比特数和比特信息。如此,终端将会针对DCI调度的PDSCH类型,选用适用的配置来确定该DCI的各信息域。而对于组播PDSCH,网络侧设备针对这些配置对于终端组将生成具有相同的第一信息的DCI,不需要根据每个终端的各自配置信息分别确定,降低了调度组播PDSCH的复杂度。
这样,若网络侧设备发送的DCI是用于调度组播PDSCH的DCI,网络侧设备是根据下行传输配置信息,来确定该DCI的各信息域;而若网络侧设备发送的DCI是用于调度单播PDSCH的,则需要根据单播PDSCH配置信息确定。
具体的,网络侧设备针对各信息域:FDRA,可以由配置的频域资源和频域资源分配类型确定其比特数和/或比特信息;TDRA,可以由配置的TDRA列表确定其比特数和/或比特信息;VRB-to-PRB mapping,可以由配置的频域资源分配类型和/或是否配置VRB到PRB的交织映射,确定其比特数和/或比特信息;DCI调度的最大码字数,在配置的最大码字大于1的情况下,该DCI的DCI调度的最大码字数中可以包含每个TB的MCS,NDI,RV指示,如TB 1:MCS、NDI和RV,以及TB 2:MCS、NDI、RV。
可选的,所述DCI的调度信息包括以下至少一项:
频域资源分配信息;
时域资源分配信息;
解调参考信号映射类型;
调制与编码方案;
PDSCH聚合因子;
虚拟资源块到物理资源块的交织映射;
PDSCH包含的码数;
速率匹配模式。
应该知道是,PDSCH的的调度信息可以是该DCI中信息域的信息指示的,可以是PDSCH的配置信息与DCI中对应信息域信息联合指示的,还可以是PDSCH的配置信息独立指示。例如,确定调度PDSCH的FDRA,需要DCI中FDRA以及下行传输配置信息中频域资源内的资源确定分配的物理资源块,而PDSCH的DMRS映射类型则可以是下行传输配置信息中的DMRS映射类型等等。
综上所述,本申请实施例的方法,网络侧设备向终端告知了接收组播下行传输的下行传输配置信息,在调度组播PDSCH的情况下,网络侧设备可以为接收组播下行传输的终端配置相同的信息,而无需针对不同终端各自的配置信息分别确定DCI中的指示信息,降低了调度的复杂度。
需要说明的是,该方法是与上述应用于终端的方法配合实现资源调度的,上述应用于终端的资源调度方法的实施例的实现方式适用于该方法,也能达到相同的技术效果。
还需要说明的是,本申请实施例提供的资源调度方法,执行主体可以为资源调度装置,或者该资源调度装置中的用于执行加载资源调度方法的控制模块。本申请实施例中以资源调度装置执行加载资源调度方法为例,说明本申请实施例提供的资源调度方法。
如图6所示,本申请实施例的一种资源调度装置,包括:
获取模块610,用于获取下行传输配置信息,所述下行传输配置信息用于组播下行传输;
处理模块620,用于根据所述下行传输配置信息,接收下行数据。
可选的,所述处理模块包括:
第一接收子模块,用于接收下行控制信息DCI,DCI携带组播下行数据传输的调度信息;
第二接收子模块,用于根据所述下行传输配置信息和所述DCI,接收组播下行数据。
可选的,所述处理模块包括:
第一确定子模块,用于根据下行传输配置信息,确定所述DCI的大小。
可选的,所述处理模块包括:
第二确定子模块,用于根据下行传输配置信息,确定DCI的大小;
第三接收子模块,用于接收所述DCI,所述DCI携带单播下行数据传输的调度信息;
第四接收子模块,用于根据所述DCI,接收单播下行数据。
可选的,所述下行传输配置信息包括以下至少一项:
频域资源;
频域资源分配类型;
虚拟资源块到物理资源块的交织映射指示;
资源块组大小;
时域资源分配信息;
调制与编码方案;
PDSCH聚合因子;
PDSCH的解调参考信号映射类型;
DCI调度的最大码字数;
速率匹配模式。
可选的,所述获取模块还用于:
获取网络侧设备发送的下行传输配置信息。
可选的,所述DCI的大小等于目标值,所述目标值为:
第一值和第二值的最大值;或者
第一值;或者
第二值;
其中,所述第一值是根据单播PDSCH对应的配置信息确定的DCI的大小,所述第二值是根据所述下行传输配置信息确定的DCI的大小。
可选的,所述DCI中,若下行数据传输的调度信息的大小小于所述目标值,则在目标位置进行填充;其中,所述目标位置为信息域内或信息域外。
可选的,所述DCI的调度信息包括以下至少一项:
频域资源分配信息;
时域资源分配信息;
解调参考信号映射类型;
调制与编码方案;
PDSCH聚合因子;
虚拟资源块到物理资源块的交织映射;
PDSCH包含的码数;
速率匹配模式。
本申请实施例的装置,在获取到下行传输配置信息之后,能够根据该下行传输配置信息,完成下行数据的接收。这里,由于该下行传输配置信息用于组播下行传输,因此网络侧设备可以为接收组播下行传输的终端配置相同的信息,而无需针对不同终端各自的配置信息分别确定DCI中的指示信息,降低了调度的复杂度。
需要说明的是,该装置是应用了上述应用于终端的方法的装置,上述应用于终端的资源调度方法的实施例的实现方式适用于该装置,也能达到相同的技术效果。
本申请实施例中的资源调度装置可以是装置,也可以是终端中的部件、集成电路、或芯片。该装置可以是移动电子设备,也可以为非移动电子设备。示例性的,移动电子设备可以为手机、平板电脑、笔记本电脑、掌上电脑、车载电子设备、可穿戴设备、超级移动个人计算机(ultra-mobile personal computer,UMPC)、上网本或者个人数字助理(personal digital assistant,PDA)等,非移动电子设备可以为服务器、网络附属存储器(Network Attached Storage,NAS)、个人计算机(personal computer,PC)、电视机(television,TV)、柜 员机或者自助机等,本申请实施例不作具体限定。
本申请实施例中的资源调度装置可以为具有操作系统的装置。该操作系统可以为安卓(Android)操作系统,可以为ios操作系统,还可以为其他可能的操作系统,本申请实施例不作具体限定。
本申请实施例提供的资源调度装置能够实现图2方法实施例中终端实现的各个过程,为避免重复,这里不再赘述。
如图7所示,本申请实施例的一种资源调度装置,包括:
发送模块710,用于发送下行传输配置信息,所述下行传输配置信息用于组播下行传输。
可选的,所述下行传输配置信息包括以下至少一项:
频域资源;
频域资源分配类型;
虚拟资源块到物理资源块的交织映射指示;
资源块组大小;
时域资源分配信息;
调制与编码方案;
PDSCH聚合因子;
PDSCH的解调参考信号映射类型;
DCI调度的最大码字数;
速率匹配模式。
可选的,所述装置还包括:
控制信息发送模块,用于发送DCI,所述DCI携带组播下行数据传输的调度信息,或者所述DCI携带单播下行数据传输的调度信息。
可选的,所述装置还包括:
确定模块,用于根据下行传输配置信息,确定所述DCI的大小。
可选的,所述DCI的大小等于目标值,所述目标值为:
第一值和第二值的最大值;或者
第一值;或者
第二值;
其中,所述第一值是根据单播PDSCH对应的配置信息确定的DCI的大小,所述第二值是根据所述下行传输配置信息确定的DCI的大小。
可选的,所述DCI的调度信息包括以下至少一项:
频域资源分配信息;
时域资源分配信息;
解调参考信号映射类型;
调制与编码方案;
PDSCH聚合因子;
虚拟资源块到物理资源块的交织映射;
PDSCH包含的码数;
速率匹配模式。
本申请实施例的装置,向终端告知了接收组播下行传输的下行传输配置信息,在调度组播PDSCH的情况下,网络侧设备可以为接收组播下行传输的终端配置相同的信息,而无需针对不同终端各自的配置信息分别确定DCI中的指示信息,降低了调度的复杂度。
需要说明的是,该装置是应用了上述应用于网络侧设备的方法的装置,上述应用于网络侧设备的资源调度方法的实施例的实现方式适用于该装置,也能达到相同的技术效果。
本申请实施例中的资源调度装置可以是装置,也可以是网络侧设备中的部件、集成电路、或芯片。
本申请实施例中的资源调度装置可以为具有操作系统的装置,该操作系统在本申请实施例不作具体限定。
本申请实施例提供的资源调度装置能够实现图5方法实施例中网络侧设备实现的各个过程,为避免重复,这里不再赘述。
可选的,如图8所示,本申请实施例还提供一种通信设备,包括处理器801,存储器802,存储在存储器802上并可在所述处理器801上运行的程序或指令,例如,该通信设备800为终端时,该程序或指令被处理器801执行时实现上述应用于终端的资源调度方法实施例的各个过程,且能达到相同的技术效果。该通信设备800为网络侧设备时,该程序或指令被处理器801执 行时实现上述应用于网络侧设备的资源调度方法实施例的各个过程,且能达到相同的技术效果,为避免重复,这里不再赘述。
图9为实现本申请各个实施例的一种终端的硬件结构示意图。
该终端900包括但不限于:射频单元901、网络模块902、音频输出单元903、输入单元904、传感器905、显示单元906、用户输入单元907、接口单元908、存储器909、以及处理器910等部件。
本领域技术人员可以理解,终端900还可以包括给各个部件供电的电源(比如电池),电源可以通过电源管理系统与处理器910逻辑相连,从而通过电源管理系统实现管理充电、放电、以及功耗管理等功能。图9中示出的终端结构并不构成对终端的限定,终端可以包括比图示更多或更少的部件,或者组合某些部件,或者不同的部件布置,在此不再赘述。
应理解的是,本申请实施例中,输入单元904可以包括图形处理器(Graphics Processing Unit,GPU)9041和麦克风9042,图形处理器9041对在视频捕获模式或图像捕获模式中由图像捕获装置(如摄像头)获得的静态图片或视频的图像数据进行处理。显示单元906可包括显示面板9061,可以采用液晶显示器、有机发光二极管等形式来配置显示面板9061。用户输入单元907包括触控面板9071以及其他输入设备9072。触控面板9071,也称为触摸屏。触控面板9071可包括触摸检测装置和触摸控制器两个部分。其他输入设备9072可以包括但不限于物理键盘、功能键(比如音量控制按键、开关按键等)、轨迹球、鼠标、操作杆,在此不再赘述。
本申请实施例中,射频单元901将来自网络侧设备的下行数据接收后,给处理器910处理;另外,将上行的数据发送给网络侧设备。通常,射频单元901包括但不限于天线、至少一个放大器、收发信机、耦合器、低噪声放大器、双工器等。
存储器909可用于存储软件程序或指令以及各种数据。存储器909可主要包括存储程序或指令区和存储数据区,其中,存储程序或指令区可存储操作系统、至少一个功能所需的应用程序或指令(比如声音播放功能、图像播放功能等)等。此外,存储器909可以包括高速随机存取存储器,还可以包括非易失性存储器,其中,非易失性存储器可以是只读存储器(Read-Only  Memory,ROM)、可编程只读存储器(Programmable ROM,PROM)、可擦除可编程只读存储器(Erasable PROM,EPROM)、电可擦除可编程只读存储器(Electrically EPROM,EEPROM)或闪存。例如至少一个磁盘存储器件、闪存器件、或其他非易失性固态存储器件。
处理器910可包括一个或多个处理单元;可选的,处理器910可集成应用处理器和调制解调处理器,其中,应用处理器主要处理操作系统、用户界面和应用程序或指令等,调制解调处理器主要处理无线通信,如基带处理器。可以理解的是,上述调制解调处理器也可以不集成到处理器910中。
其中,射频单元901用于获取下行传输配置信息,所述下行传输配置信息用于组播下行传输;
处理器910,用于根据所述下行传输配置信息,接收下行数据。
该终端在获取到下行传输配置信息之后,能够根据该下行传输配置信息,完成下行数据的接收。这里,由于该下行传输配置信息用于组播下行传输,因此网络侧设备可以为接收组播下行传输的终端配置相同的信息,而无需针对不同终端各自的配置信息分别确定DCI中的指示信息,降低了调度的复杂度。
具体地,本申请实施例还提供了一种网络侧设备。如图10所示,该网络设备1000包括:天线1001、射频装置1002、基带装置1003。天线1001与射频装置1002连接。在上行方向上,射频装置1002通过天线1001接收信息,将接收的信息发送给基带装置1003进行处理。在下行方向上,基带装置1003对要发送的信息进行处理,并发送给射频装置1002,射频装置1002对收到的信息进行处理后经过天线1001发送出去。
上述频带处理装置可以位于基带装置1003中,以上实施例中网络侧设备执行的方法可以在基带装置1003中实现,该基带装置1003包括处理器1004和存储器1005。
基带装置1003例如可以包括至少一个基带板,该基带板上设置有多个芯片,如图10所示,其中一个芯片例如为处理器1004,与存储器1005连接,以调用存储器1005中的程序,执行以上方法实施例中所示的网络设备操作。
该基带装置1003还可以包括网络接口1006,用于与射频装置1002交互 信息,该接口例如为通用公共无线接口(common public radio interface,简称CPRI)。
具体地,本发明实施例的网络侧设备还包括:存储在存储器1005上并可在处理器1004上运行的指令或程序,处理器1004调用存储器1005中的指令或程序执行图7所示各模块执行的方法,并达到相同的技术效果,为避免重复,故不在此赘述。
本申请实施例还提供一种可读存储介质,所述可读存储介质上存储程序或指令,该程序或指令被处理器执行时实现上述应用于终端的资源调度方法,或者实现上述应用于网络侧设备的资源调度方法实施例的各个过程,且能达到相同的技术效果,为避免重复,这里不再赘述。
其中,所述处理器为上述实施例中所述的电子设备中的处理器。所述可读存储介质,包括计算机可读存储介质,如计算机只读存储器(Read-Only Memory,简称ROM)、随机存取存储器(Random Access Memory,简称RAM)、磁碟或者光盘等。
本申请实施例另提供了一种芯片,所述芯片包括处理器和通信接口,所述通信接口和所述处理器耦合,所述处理器用于运行程序或指令,实现上述应用于终端的资源调度方法,或者实现上述应用于网络侧设备的资源调度方法实施例的各个过程,且能达到相同的技术效果,为避免重复,这里不再赘述。
应理解,本申请实施例提到的芯片还可以称为系统级芯片、系统芯片、芯片系统或片上系统芯片等。
可以理解的是,本公开描述的这些实施例可以用硬件、软件、固件、中间件、微码或其组合来实现。对于硬件实现,模块、单元、子模块、子单元等可以实现在一个或多个专用集成电路(Application Specific Integrated Circuits,ASIC)、数字信号处理器(Digital Signal Processing,DSP)、数字信号处理设备(DSP Device,DSPD)、可编程逻辑设备(Programmable Logic Device,PLD)、现场可编程门阵列(Field-Programmable Gate Array,FPGA)、通用处理器、控制器、微控制器、微处理器、用于执行本申请所述功能的其它电子单元或其组合中。
需要说明的是,在本文中,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者装置不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者装置所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括该要素的过程、方法、物品或者装置中还存在另外的相同要素。此外,需要指出的是,本申请实施方式中的方法和装置的范围不限按示出或讨论的顺序来执行功能,还可包括根据所涉及的功能按基本同时的方式或按相反的顺序来执行功能,例如,可以按不同于所描述的次序来执行所描述的方法,并且还可以添加、省去、或组合各种步骤。另外,参照某些示例所描述的特征可在其他示例中被组合。
通过以上的实施方式的描述,本领域的技术人员可以清楚地了解到上述实施例方法可借助软件加必需的通用硬件平台的方式来实现,当然也可以通过硬件,但很多情况下前者是更佳的实施方式。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质(如ROM/RAM、磁碟、光盘)中,包括若干指令用以使得一台终端(可以是手机,计算机,服务器,空调器,或者网络设备等)执行本申请各个实施例所述的方法。
上面结合附图对本申请的实施例进行了描述,但是本申请并不局限于上述的具体实施方式,上述的具体实施方式仅仅是示意性的,而不是限制性的,本领域的普通技术人员在本申请的启示下,在不脱离本申请宗旨和权利要求所保护的范围情况下,还可做出很多形式,均属于本申请的保护之内。

Claims (23)

  1. 一种资源调度方法,应用于终端,包括:
    获取下行传输配置信息,所述下行传输配置信息用于组播下行传输;
    根据所述下行传输配置信息,接收下行数据。
  2. 根据权利要求1所述的方法,其特征在于,所述根据所述下行传输配置信息,接收下行数据,包括,
    接收下行控制信息DCI,DCI携带组播下行数据传输的调度信息;
    根据所述下行传输配置信息和所述DCI,接收组播下行数据。
  3. 根据权利要求2所述的方法,其中,所述根据下行传输配置信息,接收下行数据,还包括:
    根据下行传输配置信息,确定所述DCI的大小。
  4. 根据权利要求1所述的方法,其中,所述根据所述下行传输配置信息,接收下行数据包括:
    根据下行传输配置信息,确定DCI的大小;
    接收所述DCI,所述DCI携带单播下行数据传输的调度信息;
    根据所述DCI,接收单播下行数据。
  5. 根据权利要求1所述的方法,其中,所述下行传输配置信息包括以下至少一项:
    频域资源;
    频域资源分配类型;
    虚拟资源块到物理资源块的交织映射指示;
    资源块组大小;
    时域资源分配信息;
    调制与编码方案;
    物理下行共享信道PDSCH聚合因子;
    PDSCH的解调参考信号映射类型;
    DCI调度的最大码字数;
    速率匹配模式。
  6. 根据权利要求1所述的方法,其中,所述获取下行传输配置信息,包括:
    获取网络侧设备发送的下行传输配置信息。
  7. 根据权利要求2至4中任一项所述的方法,其中,所述DCI的大小等于目标值,所述目标值为:
    第一值和第二值的最大值;或者
    第一值;或者
    第二值;
    其中,所述第一值是根据单播PDSCH对应的配置信息确定的DCI的大小,所述第二值是根据所述下行传输配置信息确定的DCI的大小。
  8. 根据权利要求7所述的方法,其中,所述DCI中,若下行数据传输的调度信息的大小小于所述目标值,则在目标位置进行填充;其中,所述目标位置为信息域内或信息域外。
  9. 根据权利要求2或4所述的方法,其中,所述DCI的调度信息包括以下至少一项:
    频域资源分配信息;
    时域资源分配信息;
    解调参考信号映射类型;
    调制与编码方案;
    PDSCH聚合因子;
    虚拟资源块到物理资源块的交织映射;
    PDSCH包含的码数;
    速率匹配模式。
  10. 一种资源调度方法,应用于网络侧设备,包括:
    发送下行传输配置信息,所述下行传输配置信息用于组播下行传输。
  11. 根据权利要求10所述的方法,其中,所述下行传输配置信息包括以下至少一项:
    频域资源;
    频域资源分配类型;
    虚拟资源块到物理资源块的交织映射指示;
    资源块组大小;
    时域资源分配信息;
    调制与编码方案;
    PDSCH聚合因子;
    PDSCH的解调参考信号映射类型;
    DCI调度的最大码字数;
    速率匹配模式。
  12. 根据权利要求10所述的方法,其中,还包括:
    发送DCI,所述DCI携带组播下行数据传输的调度信息,或者所述DCI携带单播下行数据传输的调度信息。
  13. 根据权利要求12所述的方法,其中,所述发送DCI之前,还包括:
    根据下行传输配置信息,确定所述DCI的大小。
  14. 根据权利要求12或13所述的方法,其中,所述DCI的大小等于目标值,所述目标值为:
    第一值和第二值的最大值;或者
    第一值;或者
    第二值;
    其中,所述第一值是根据单播PDSCH对应的配置信息确定的DCI的大小,所述第二值是根据所述下行传输配置信息确定的DCI的大小。
  15. 根据权利要求12所述的方法,其中,所述DCI的调度信息包括以下至少一项:
    频域资源分配信息;
    时域资源分配信息;
    解调参考信号映射类型;
    调制与编码方案;
    PDSCH聚合因子;
    虚拟资源块到物理资源块的交织映射;
    PDSCH包含的码数;
    速率匹配模式。
  16. 一种资源调度装置,包括:
    获取模块,用于获取下行传输配置信息,所述下行传输配置信息用于组播下行传输;
    处理模块,用于根据所述下行传输配置信息,接收下行数据。
  17. 根据权利要求16所述的装置,其中,所述下行传输配置信息包括以下至少一项:
    频域资源;
    频域资源分配类型;
    虚拟资源块到物理资源块的交织映射指示;
    资源块组大小;
    时域资源分配信息;
    调制与编码方案;
    PDSCH聚合因子;
    PDSCH的解调参考信号映射类型;
    DCI调度的最大码字数;
    速率匹配模式。
  18. 一种资源调度装置,包括:
    发送模块,用于发送下行传输配置信息,所述下行传输配置信息用于组播下行传输。
  19. 一种通信设备,其中,包括处理器、存储器及存储在所述存储器上并可在所述处理器上运行的程序或指令,所述程序或指令被所述处理器执行时实现如权利要求1至9中任一项所述的资源调度方法,或者,实现如权利要求10至15中任一项所述的资源调度方法的步骤。
  20. 一种可读存储介质,其中,所述可读存储介质上存储程序或指令,所述程序或指令被处理器执行时实现如权利要求1至9中任一项所述的资源调度方法,或者,实现如权利要求10至15中任一项所述的资源调度方法的步骤。
  21. 一种芯片,所述芯片包括处理器和通信接口,所述通信接口和所述处 理器耦合,所述处理器用于运行程序或指令,实现如如权利要求1至9中任一项所述的资源调度方法,或者,实现如权利要求10至15中任一项所述的资源调度方法。
  22. 一种计算机程序产品,所述程序产品被存储在非易失的存储介质中,所述程序产品被至少一个处理器执行以实现如如权利要求1至9中任一项所述的资源调度方法,或者,实现如权利要求10至15中任一项所述的资源调度方法。
  23. 一种通信设备,所述通信设备被配置成用于执行如权利要求1至9中任一项所述的资源调度方法,或者,所述通信设备被配置成用于执行如权利要求10至15中任一项所述的资源调度方法。
PCT/CN2021/110511 2020-08-05 2021-08-04 资源调度方法、装置及设备 WO2022028464A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010780359.0 2020-08-05
CN202010780359.0A CN114071766A (zh) 2020-08-05 2020-08-05 资源调度方法、装置及设备

Publications (1)

Publication Number Publication Date
WO2022028464A1 true WO2022028464A1 (zh) 2022-02-10

Family

ID=80120018

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/110511 WO2022028464A1 (zh) 2020-08-05 2021-08-04 资源调度方法、装置及设备

Country Status (2)

Country Link
CN (1) CN114071766A (zh)
WO (1) WO2022028464A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115004620A (zh) * 2022-04-29 2022-09-02 北京小米移动软件有限公司 无线传输的方法、装置、通信设备及存储介质

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117240419A (zh) * 2022-06-02 2023-12-15 北京紫光展锐通信技术有限公司 通信方法、装置及存储介质
WO2024098417A1 (zh) * 2022-11-11 2024-05-16 深圳传音控股股份有限公司 资源处理方法、通信设备及存储介质

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109845179A (zh) * 2017-04-04 2019-06-04 Lg 电子株式会社 在下一代通信系统中广播数据的dm-rs传输方法及其装置
CN110830184A (zh) * 2018-08-09 2020-02-21 北京三星通信技术研究有限公司 块传输方法、下行传输方法、nrs接收方法、ue、基站和介质
US20200112941A1 (en) * 2018-10-04 2020-04-09 Qualcomm Incorporated Multicast or broadcast ethernet traffic transmissions over a radio access network

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107734468B (zh) * 2016-08-12 2020-07-28 中兴通讯股份有限公司 组播传输方法及装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109845179A (zh) * 2017-04-04 2019-06-04 Lg 电子株式会社 在下一代通信系统中广播数据的dm-rs传输方法及其装置
CN110830184A (zh) * 2018-08-09 2020-02-21 北京三星通信技术研究有限公司 块传输方法、下行传输方法、nrs接收方法、ue、基站和介质
US20200112941A1 (en) * 2018-10-04 2020-04-09 Qualcomm Incorporated Multicast or broadcast ethernet traffic transmissions over a radio access network

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
SESSION CHAIR (SAMSUNG): "Chairman’s notes for AI 7.2 NR-MIMO", 3GPP DRAFT; R1-1721657, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, no. Reno, USA; 20171127 - 20171201, 4 December 2017 (2017-12-04), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , XP051370740 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115004620A (zh) * 2022-04-29 2022-09-02 北京小米移动软件有限公司 无线传输的方法、装置、通信设备及存储介质

Also Published As

Publication number Publication date
CN114071766A (zh) 2022-02-18

Similar Documents

Publication Publication Date Title
TWI727982B (zh) 用於波束聚合系統中的下行鏈路控制指示符設計之系統及方法
WO2022028464A1 (zh) 资源调度方法、装置及设备
KR102212799B1 (ko) 제어 정보 검출 방법, 제어 정보 전송 방법 및 장치
US10841978B2 (en) Enhanced self-contained time-division duplex subframe structure
US20200067780A1 (en) Data transmission method and device
WO2022152176A1 (zh) 传输处理方法及相关设备
US10873430B2 (en) Signal sending method and apparatus
WO2019096030A1 (zh) 跳频处理方法及设备
WO2022083739A1 (zh) 指示载波信道状态信息的方法和终端设备
WO2022002250A1 (zh) Pdcch监听方法、发送方法及相关设备
JP2023078303A (ja) V2xトラフィックに対応するための制御チャネル構造設計
CN112020145A (zh) 一种通信方法及装置
WO2021031906A1 (zh) 配置时域资源的方法和装置
CN110730513B (zh) 一种通信方法及装置
US20220200748A1 (en) Downlink control information for reduced-complexity device
WO2019096276A1 (zh) 数据传输的方法和装置
CN109150457B (zh) 控制信息的传输方法和终端设备
US20220124785A1 (en) Wireless communication method, device, and system
WO2022028521A1 (zh) Sps pdsch的类型指示方法、装置、终端及网络侧设备
WO2022017409A1 (zh) 上行传输方法、装置及相关设备
WO2022017354A1 (zh) Pdcch的校验方法、发送方法、终端及网络侧设备
US20220303073A1 (en) Technologies for Reliable Physical Data Channel Reception in Wireless Communications
CN108933647B (zh) 一种比特映射的方法及装置
WO2022253312A1 (zh) 上行数据传输方法、装置、终端及介质
WO2023020403A1 (zh) 物理下行控制信道的传输方法、终端及网络侧设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21853499

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21853499

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 21853499

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 01/08/2023)