WO2022206754A1 - Srs的发送方法、接收方法、配置方法及装置 - Google Patents

Srs的发送方法、接收方法、配置方法及装置 Download PDF

Info

Publication number
WO2022206754A1
WO2022206754A1 PCT/CN2022/083669 CN2022083669W WO2022206754A1 WO 2022206754 A1 WO2022206754 A1 WO 2022206754A1 CN 2022083669 W CN2022083669 W CN 2022083669W WO 2022206754 A1 WO2022206754 A1 WO 2022206754A1
Authority
WO
WIPO (PCT)
Prior art keywords
srs
partial bandwidth
bandwidth
partial
frequency hopping
Prior art date
Application number
PCT/CN2022/083669
Other languages
English (en)
French (fr)
Inventor
施源
塔玛拉卡拉盖施
宋扬
Original Assignee
维沃移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 维沃移动通信有限公司 filed Critical 维沃移动通信有限公司
Priority to EP22778936.9A priority Critical patent/EP4300901A1/en
Publication of WO2022206754A1 publication Critical patent/WO2022206754A1/zh
Priority to US18/374,631 priority patent/US20240022378A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • H04L5/0051Allocation of pilot signals, i.e. of signals known to the receiver of dedicated pilots, i.e. pilots destined for a single user or terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/0202Channel estimation
    • H04L25/0224Channel estimation using sounding signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/69Spread spectrum techniques
    • H04B1/713Spread spectrum techniques using frequency hopping
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/69Spread spectrum techniques
    • H04B1/713Spread spectrum techniques using frequency hopping
    • H04B1/7143Arrangements for generation of hop patterns
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2602Signal structure
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2647Arrangements specific to the receiver only
    • H04L27/2655Synchronisation arrangements
    • H04L27/2666Acquisition of further OFDM parameters, e.g. bandwidth, subcarrier spacing, or guard interval length
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • H04L5/0007Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT
    • H04L5/0012Hopping in multicarrier systems

Definitions

  • the present application belongs to the technical field of wireless communication, and in particular relates to a method for sending, receiving, configuring, and apparatus for a reference signal (Sounding Reference Signal, SRS) for channel sounding.
  • a reference signal Sounding Reference Signal, SRS
  • SRS Orthogonal Frequency Division Multiplexing
  • the terminal cannot completely detect the channel.
  • Embodiments of the present application provide an SRS sending method, receiving method, configuration method and device, which can solve the problem that a terminal cannot obtain a complete sounding channel due to the appearance of a partial bandwidth.
  • a method for sending an SRS including:
  • the terminal transmits the SRS in a partial bandwidth frequency hopping manner on a complete bandwidth corresponding to R OFDM symbols of an SRS resource set or SRS resource, wherein, in the partial bandwidth frequency hopping manner, the SRS is in a part of each complete bandwidth Sending on the bandwidth, and there are at least two complete bandwidths, the sending position indices of the partial bandwidths of the at least two complete bandwidths are different, and R is a repetition factor, which is a positive integer greater than or equal to 1.
  • a method for sending an SRS including:
  • the terminal obtains the configuration information of the SRS resource set or the partial bandwidth-related parameters of the SRS resource, and the partial bandwidth-related parameters include at least one of the following: a partial bandwidth coefficient, a method for rounding the partial bandwidth, a starting position for sending the partial bandwidth, each The partial bandwidth-related parameters are configured with at least one parameter value;
  • the terminal transmits the SRS according to the configuration information.
  • a method for receiving an SRS including:
  • the network side device receives the SRS sent by the terminal in the partial bandwidth frequency hopping mode on the complete bandwidth corresponding to one SRS resource set or R OFDM symbols of the SRS resource, wherein, in the partial bandwidth frequency hopping mode, the SRS is The data is sent on a partial bandwidth of the complete bandwidths, and there are at least two complete bandwidths.
  • the sending position indices of the partial bandwidths of the at least two complete bandwidths are different, and R is a repetition factor, which is a positive integer greater than or equal to 1.
  • an SRS configuration method including:
  • the network side device sends the SRS resource set or the configuration information of the partial bandwidth-related parameters of the SRS resource, where the partial bandwidth-related parameters include at least one of the following: a partial bandwidth coefficient, a method for rounding a partial bandwidth, and a starting position for sending a partial bandwidth, Each of the partial bandwidth-related parameters is configured with at least one parameter value.
  • a fifth aspect provides a device for sending an SRS, including:
  • a sending module configured to send the SRS in a partial bandwidth frequency hopping manner on a complete bandwidth corresponding to R OFDM symbols of an SRS resource set or SRS resources, wherein, in the partial bandwidth frequency hopping manner, the SRS is in each The transmission is performed on a partial bandwidth of the full bandwidth, and there are at least two full bandwidths, and the sending position indices of the partial bandwidths of the at least two full bandwidths are different, and R is a repetition factor, which is a positive integer greater than or equal to 1.
  • a device for sending an SRS including:
  • An acquisition module configured to acquire the configuration information of the SRS resource set or the partial bandwidth-related parameters of the SRS resource, the partial bandwidth-related parameters including at least one of the following: a partial bandwidth coefficient, a method for rounding a partial bandwidth, and a start of sending a partial bandwidth position, each of the partial bandwidth-related parameters is configured with at least one parameter value;
  • a sending module configured to send the SRS according to the configuration information.
  • an apparatus for receiving an SRS including:
  • a receiving module configured to receive, on a complete bandwidth corresponding to R OFDM symbols of an SRS resource set or SRS resources, an SRS sent by a terminal in a partial bandwidth frequency hopping manner, wherein, in the partial bandwidth frequency hopping manner, the SRS Sending on a partial bandwidth of each full bandwidth, and there are at least two full bandwidths, the sending position indices of the partial bandwidths of the at least two full bandwidths are different, R is a repetition factor, and is a positive value greater than or equal to 1 Integer.
  • an apparatus for configuring an SRS including:
  • a first sending module configured to send the SRS resource set or the configuration information of the partial bandwidth-related parameters of the SRS resources, where the partial bandwidth-related parameters include at least one of the following: a partial bandwidth coefficient, a method for rounding a partial bandwidth, and a partial bandwidth transmission At the starting position, each of the partial bandwidth-related parameters is configured with at least one parameter value.
  • a terminal in a ninth aspect, includes a processor, a memory, and a program or instruction stored on the memory and executable on the processor, when the program or instruction is executed by the processor. The steps of implementing the method of the first aspect or the second aspect.
  • a terminal including a processor and a communication interface, wherein the communication interface is configured to perform a partial bandwidth frequency hopping over a complete bandwidth corresponding to R OFDM symbols of an SRS resource set or SRS resources Sending an SRS, wherein, in the partial bandwidth frequency hopping mode, the SRS is sent on a partial bandwidth of each complete bandwidth, and there are at least two complete bandwidths, and the at least two partial bandwidths of the complete bandwidth
  • the sending position index of is different, and R is the repetition factor, which is a positive integer greater than or equal to 1.
  • a terminal including a processor and a communication interface, wherein the communication interface is used to obtain configuration information of an SRS resource set or a partial bandwidth-related parameter of the SRS resource, and the partial bandwidth-related parameter includes the following At least one of: partial bandwidth coefficient, partial bandwidth rounding method, partial bandwidth sending start position, each of the partial bandwidth related parameters is configured with at least one parameter value; according to the configuration information, the SRS is sent.
  • a twelfth aspect provides a network-side device, the network-side device includes a processor, a memory, and a program or instruction stored on the memory and executable on the processor, the program or instruction being When executed by the processor, the steps of the method according to the third aspect or the fourth aspect are implemented.
  • a thirteenth aspect provides a network-side device, including a processor and a communication interface, wherein the communication interface is used for a receiving terminal to use an SRS resource set or a complete bandwidth corresponding to R OFDM symbols of the SRS resource.
  • the SRS sent in the partial bandwidth frequency hopping mode wherein, in the partial bandwidth frequency hopping mode, the SRS is sent on the partial bandwidth of each full bandwidth, and there are at least two full bandwidths, and the at least two full bandwidths exist.
  • the sending position indices of the partial bandwidth of the complete bandwidth are different, and R is a repetition factor, which is a positive integer greater than or equal to 1.
  • a fourteenth aspect provides a network-side device, including a processor and a communication interface, wherein the communication interface is used to send an SRS resource set or configuration information of a partial bandwidth-related parameter of the SRS resource, the partial bandwidth-related parameter It includes at least one of the following: a partial bandwidth coefficient, a method for rounding the partial bandwidth, and a sending start position of the partial bandwidth, and each of the partial bandwidth-related parameters is configured with at least one parameter value.
  • a fifteenth aspect provides a readable storage medium, on which a program or an instruction is stored, and when the program or instruction is executed by a processor, the first aspect, the second aspect, the third aspect or the The steps of the method of the fourth aspect.
  • a sixteenth aspect provides a chip, the chip includes a processor and a communication interface, the communication interface is coupled to the processor, and the processor is configured to run a program or an instruction to implement the first aspect and the second The method of aspect, third aspect or fourth aspect.
  • a seventeenth aspect provides a computer program/program product, the computer program/program product being stored in a non-transitory storage medium, the program/program product being executed by at least one processor to implement the first The steps of the method of aspect, second aspect, third aspect or fourth aspect.
  • the terminal can send the SRS on a part of the complete bandwidth, and at least two parts of the complete bandwidth have different sending position indices, which is beneficial for the terminal to obtain complete channel characteristics.
  • FIG. 1 is a block diagram of a wireless communication system to which an embodiment of the application can be applied;
  • FIG. 2 is a schematic flowchart of a method for sending an SRS according to an embodiment of the present application
  • FIG. 3 is a schematic flowchart of a method for receiving an SRS according to Embodiment 1 of the present application
  • FIG. 4 is a schematic flowchart of a method for receiving an SRS according to Embodiment 2 of the present application
  • FIG. 5 is a schematic flowchart of a method for receiving an SRS according to Embodiment 3 of the present application.
  • FIG. 6 is a schematic flowchart of a method for receiving an SRS according to Embodiment 4 of the present application.
  • FIG. 7 is a schematic flowchart of a method for receiving an SRS according to Embodiment 5 of the present application.
  • FIG. 8 is a schematic flowchart of a method for receiving an SRS according to Embodiment 6 of the present application.
  • FIG. 9 is a schematic flowchart of a method for receiving an SRS according to Embodiment 7 of the present application.
  • FIG. 10 is a schematic flowchart of a method for receiving an SRS according to another embodiment of the present application.
  • FIG. 11 is a schematic flowchart of a method for sending an SRS according to another embodiment of the present application.
  • FIG. 12 is a schematic flowchart of a method for configuring an SRS according to an embodiment of the present application
  • FIG. 13 is a schematic structural diagram of an apparatus for sending an SRS according to an embodiment of the present application.
  • FIG. 14 is a schematic structural diagram of an apparatus for sending an SRS according to another embodiment of the present application.
  • 15 is a schematic structural diagram of an apparatus for receiving an SRS according to an embodiment of the present application.
  • 16 is a schematic structural diagram of an apparatus for configuring an SRS according to an embodiment of the present application.
  • 17 is a schematic structural diagram of a communication device according to an embodiment of the application.
  • FIG. 18 is a schematic diagram of a hardware structure of a terminal according to an embodiment of the present application.
  • FIG. 19 is a schematic diagram of a hardware structure of a network side device according to an embodiment of the present application.
  • first, second and the like in the description and claims of the present application are used to distinguish similar objects, and are not used to describe a specific order or sequence. It is to be understood that the terms so used are interchangeable under appropriate circumstances so that the embodiments of the present application can be practiced in sequences other than those illustrated or described herein, and that "first”, “second” distinguishes Usually it is a class, and the number of objects is not limited.
  • the first object may be one or multiple.
  • “and/or” in the description and claims indicates at least one of the connected objects, and the character “/" generally indicates that the associated objects are in an "or” relationship.
  • LTE Long Term Evolution
  • LTE-Advanced LTE-Advanced
  • LTE-A Long Term Evolution-Advanced
  • CDMA Code Division Multiple Access
  • TDMA Time Division Multiple Access
  • FDMA Frequency Division Multiple Access
  • OFDMA Orthogonal Frequency Division Multiple Access
  • SC-FDMA Single-carrier Frequency-Division Multiple Access
  • system and “network” in the embodiments of the present application are often used interchangeably, and the described technology can be used not only for the above-mentioned systems and radio technologies, but also for other systems and radio technologies.
  • NR New Radio
  • the following description describes a New Radio (NR) system for example purposes, and uses NR terminology in most of the description below, but the techniques are also applicable to applications other than NR system applications, such as 6th generation (6th generation ) Generation, 6G) communication system.
  • 6th generation 6th generation
  • 6G 6th generation
  • FIG. 1 shows a block diagram of a wireless communication system to which the embodiments of the present application can be applied.
  • the wireless communication system includes a terminal 11 and a network-side device 12 .
  • the terminal 11 may also be referred to as a terminal device or user equipment (User Equipment, UE), and the terminal 11 may be a mobile phone, a tablet computer (Tablet Personal Computer), a laptop computer (Laptop Computer) or a notebook computer, a personal digital computer Assistant (Personal Digital Assistant, PDA), PDA, Netbook, Ultra-Mobile Personal Computer (UMPC), Mobile Internet Device (Mobile Internet Device, MID), Wearable Device (Wearable Device) or vehicle-mounted device (VUE), pedestrian terminal (PUE) and other terminal-side devices, and wearable devices include: smart watches, wristbands, headphones, glasses, etc.
  • the network side device 12 may be a base station or a core network, wherein the base station may be referred to as a Node B, an evolved Node B, an access point, a Base Transceiver Station (BTS), a radio base station, a radio transceiver, a basic service Set (Basic Service Set, BSS), Extended Service Set (Extended Service Set, ESS), Node B, Evolved Node B (eNB), Home Node B, Home Evolved Node B, Wireless Local Area Network (WLAN) ) access point, WiFi node, Transmitting Receiving Point (TRP) or some other suitable term in the field, as long as the same technical effect is achieved, the base station is not limited to specific technical vocabulary, it should be noted that , in the embodiments of the present application, only the base station in the NR system is used as an example, but the specific type of the base station is not limited.
  • BSS Basic Service Set
  • ESS Extended Service Set
  • Node B Evolved Node B
  • Table 1 is the SRS bandwidth configuration table stipulated in the protocol.
  • C SRS and B SRS are index parameters
  • m SRS is the complete bandwidth of SRS on one OFDM symbol
  • N 0 , N 1 , N 2 and N 3 is the number of frequency hopping.
  • the network side can control the value of m SRS,b by configuring C_SRS and B_SRS parameters.
  • SRS transmission supports comb 2, comb 4 and comb 8, which respectively indicate that every 2 sub-carriers occupy one, every 4 sub-carriers occupy one, and every 8 sub-carriers occupy one for SRS transmission.
  • Sequence length of SRS It can be calculated by the following formula: where m SRS,b is the complete bandwidth of the SRS on one OFDM symbol obtained by configuring the C SRS and B SRS parameters, Indicates the number of subcarriers in a resource block (Resource Block, RB), and K TC represents the comb size, and the above-mentioned comb 2, comb 4, and comb 8 correspond to comb sizes of 2, 4, and 8, respectively.
  • the frequency domain position of the SRS on an OFDM symbol is jointly determined by parameters such as n shift and n RRC , where n shift is the frequency domain offset value relative to the reference point grid, and n RRC is the start of SRS bandwidth transmission positional parameters.
  • n shift is the frequency domain offset value relative to the reference point grid
  • K TC is the comb size
  • n b represents the frequency domain position index, which is obtained through the parameters configured in the SRS.
  • the SRS supports repeated transmission, and R represents a repetition factor.
  • the repetition factor represents the number of repetitions of the SRS on the time-domain symbol, that is, the complete bandwidth size and frequency-domain position of the SRS on multiple repeated OFDM symbols are exactly the same.
  • the current SRS transmission is to determine the frequency domain position of the SRS transmission on each OFDM symbol according to the value of the SRS transmission position counter n SRS .
  • the counter of the SRS transmit position
  • l' represents the symbol index of the SRS
  • R represents the repetition factor of SRS
  • T offset represents the cycle offset of the SRS
  • T SRS represents the period of the SRS
  • the number of symbols representing the SRS is the number of symbols representing the SRS.
  • n SRS is used in the following formula:
  • n b is related to n SRS .
  • SRS to perform partial frequency domain sounding on OFDM symbols of one SRS resource or SRS resource set, that is, to transmit SRS only on part of the continuous bandwidth over the entire bandwidth of OFDM symbols of one SRS resource or SRS resource set.
  • Part of the bandwidth may take the form of Among them, PF is the partial bandwidth coefficient, and the possible values are 2, 3, 4, 8, etc., and due to There will be a phenomenon that is not divisible, and corresponding rounding methods need to be introduced, such as rounding up, rounding down, rounding up to a multiple of 2, etc.
  • the complete bandwidth on one OFDM symbol may be divided into at least one available starting position by the partial bandwidth coefficient or the bandwidth size agreed upon by the protocol or configured by the network.
  • an indication method for parameters such as the starting position of a partial bandwidth or a partial bandwidth coefficient for sending a SRS resource on the one OFDM symbol is not yet clear.
  • the transmission starting position of the part of the bandwidth of the SRS on one OFDM symbol cannot be changed between multiple transmission periods or multiple frequency hopping, resulting in the reduction of the anti-interference ability of the UE.
  • the full bandwidth cannot be detected.
  • an embodiment of the present application provides a method for sending an SRS, including:
  • Step 21 The terminal transmits the SRS in a partial bandwidth frequency hopping manner on a complete bandwidth corresponding to R OFDM symbols of an SRS resource set or SRS resource, wherein, in the partial bandwidth frequency hopping manner, the SRS is transmitted in each complete bandwidth.
  • the bandwidth is sent on a part of the bandwidth, and there are at least two complete bandwidths, the sending position indices of the partial bandwidths of the at least two complete bandwidths are different, and R is a repetition factor, which is a positive integer greater than or equal to 1.
  • the terminal can send the SRS on a part of the complete bandwidth, and at least two parts of the complete bandwidth have different sending position indices, which is beneficial for the terminal to obtain complete channel characteristics.
  • the terminal sending the SRS in a partial bandwidth frequency hopping manner on the complete bandwidth corresponding to the R OFDM symbols of one SRS resource includes:
  • the terminal sends the SRS according to at least one of the sending position index of the partial bandwidth, the number M of the sending position indexes of the partial bandwidth in the partial bandwidth frequency hopping period, the frequency hopping rule of the partial bandwidth and the sending position index sequence of the partial bandwidth. .
  • the M satisfies one of the following conditions:
  • the M is equal to N, where N is the number of transmission position indices of the partial bandwidth determined from the complete bandwidths corresponding to the R OFDM symbols, and N is a positive integer greater than or equal to 1;
  • the terminal expects that the N partial bandwidths corresponding to the sending position indices of the N partial bandwidths have the same size, and the M is equal to N at this time.
  • the M is equal to N 1 , where N 1 is the N corresponding to the sending position indices of the N partial bandwidths In the partial bandwidth, the number of sending position indices corresponding to the largest partial bandwidth size;
  • the M is equal to N 2 , where N 2 is the N corresponding to the sending position indices of the N partial bandwidths In the partial bandwidth, the number of sending position indices corresponding to the smallest partial bandwidth size.
  • the M is less than or equal to N, which is indicated by the network side.
  • the N is determined by at least one of the following parameters: a partial bandwidth coefficient, a size of the complete bandwidth, and a partial bandwidth size.
  • the method further includes: the terminal obtains, by the terminal, configuration information of a set of SRS resources or a partial bandwidth-related parameter of the SRS resource, where the partial bandwidth-related parameter includes at least one of the following: a partial bandwidth coefficient , a method for rounding a partial bandwidth, a starting position for sending a partial bandwidth, and each of the partial bandwidth-related parameters is configured with at least one parameter value.
  • the method further includes: the terminal receiving first indication information, where the first indication information is used to indicate one parameter value from at least one parameter value configured for the partial bandwidth-related parameter target parameter value.
  • the sending position index of each part of the bandwidth participating in frequency hopping is the same. That is, in a complete frequency hopping bandwidth period, the starting position of each part of the bandwidth participating in frequency hopping remains unchanged, that is, the position of the complete bandwidth corresponding to the R OFDM symbols does not change.
  • the complete frequency hopping bandwidth period means that the complete bandwidth of the R OFDM symbols performs frequency hopping from the starting position of a complete bandwidth according to the protocol rules until the hopping returns to the starting position.
  • the period before the start position is called a complete frequency hopping bandwidth period.
  • the frequency hopping start position of a part of the bandwidth in a complete frequency hopping bandwidth period is the frequency domain position determined according to the start position of the first frequency hopping agreed in the protocol; that is, according to the initial The n b index determined by the parameter configuration is determined.
  • the starting position of the frequency hopping of the partial bandwidth within a complete frequency hopping bandwidth period is a frequency domain position determined according to X symbols or time slots after the partial bandwidth frequency hopping is enabled. That is, it is determined according to the initial parameter configuration and the n b index corresponding to the frequency domain position of the SRS determined by X symbols or time slots.
  • the n b index is related to the sending position index of the partial bandwidth in the partial frequency hopping. .
  • X may include the time from receiving a part of the bandwidth enable signaling to performing positive acknowledgment (Acknowledgement, ACK) feedback or negative acknowledgment (Negative Acknowledgement, NACK) feedback.
  • Acknowledgement ACK
  • NACK Negative Acknowledgement
  • the sending position indices of the partial bandwidths participating in the frequency hopping of adjacent complete frequency hopping bandwidth periods are different.
  • the sending position indices of adjacent partial bandwidths are different.
  • the method further includes: the terminal receiving part-bandwidth frequency hopping enable signaling, where the part-bandwidth frequency hopping enable signaling is used to indicate the terminal, an SRS resource set Or whether an SRS resource enables partial bandwidth frequency hopping.
  • the part of bandwidth frequency hopping enable signaling is downlink control information (Downlink Control Information, DCI), media access control (Media Access Control, MAC) control element (Control Element, CE) ) or radio resource control (Radio Resource Control, RRC) signaling.
  • DCI Downlink Control Information
  • MAC Media Access Control
  • CE Control Element
  • RRC Radio Resource Control
  • the terminal optionally, on the complete bandwidth corresponding to the R OFDM symbols of one SRS resource, the terminal sends the SRS in a partial bandwidth frequency hopping manner, including one of the following:
  • the terminal sends the SRS in a partial bandwidth frequency hopping manner after receiving the partial bandwidth frequency hopping enable signaling X symbols or time slots.
  • the terminal After receiving the partial bandwidth frequency hopping enable signaling, the terminal sends the SRS in the partial bandwidth frequency hopping mode for X symbols or time slots after the ACK or NACK feedback report is performed.
  • the partial bandwidth frequency hopping rule is to increase the index value sequentially or decrease the index value in reverse order. That is, the sending position index of the partial bandwidth of the current frequency hopping is determined according to the sending position index of the partial bandwidth of the previous frequency hopping.
  • the sending position index of the partial bandwidth of the current frequency hopping (the sending position index of the partial bandwidth of the previous frequency hopping+n)mod(M);
  • the sending position index of the partial bandwidth of the current frequency hopping (the sending position index of the partial bandwidth of the previous frequency hopping+n)mod(N); or
  • the sending position index of the partial bandwidth of the current frequency hopping (the sending position index of the partial bandwidth of the previous frequency hopping-n)mod(M); or
  • the sending position index of the partial bandwidth of the current frequency hopping (the sending position index of the partial bandwidth of the last frequency hopping-n) mod (N);
  • n is the increase value of the sending position index of each complete frequency hopping bandwidth period or part of the bandwidth during each frequency hopping, and n is a positive integer greater than or equal to 1.
  • the value of n is specified by the protocol or configured by the network side, and/or is related to the value of M or N.
  • n is equal to 1.
  • the method further includes: determining a sending position index sequence of the partial bandwidth according to indication information sent by the network side, where the indication information is used to indicate the sending position index sequence of the partial bandwidth.
  • the sending position index sequence of the partial bandwidth satisfies at least one of the following conditions:
  • the maximum index value in the sending position index sequence of the partial bandwidth is equal to M or M-1;
  • the number of indexes in the sending position index sequence of the partial bandwidth is not greater than M;
  • the same index value may be configured in the sending position index sequence of the partial bandwidth
  • the index values in the sending position index sequence of the partial bandwidth are all different.
  • the y-th index value of the index sequence of the sending position of the partial bandwidth is used to indicate the starting position of sending the partial bandwidth before the frequency hopping of the partial bandwidth is enabled.
  • y is a positive integer greater than or equal to 1, which is specified by the protocol or configured by the network.
  • the sending position index sequence of the partial bandwidth takes effect after frequency hopping is enabled for the partial bandwidth; or the sending position index sequence of the partial bandwidth takes effect after the configuration.
  • the sequence of sending position indexes of the partial bandwidth is determined according to at least one of the following parameters: a frequency domain position index N b , a value of an SRS sending position counter n SRS , a value used to determine whether to jump
  • the parameters of frequency and frequency hopping times b hop the complete bandwidth m SRS,b of the SRS on one OFDM symbol, the SRS bandwidth transmission starting position parameter n RRC , the frequency hopping index parameter B SRS , the partial bandwidth within the partial bandwidth frequency hopping period
  • the SRS is a periodic SRS or a semi-persistent SRS. That is, the terminal does not expect the aperiodic SRS to be configured or enable partial bandwidth frequency hopping sounding.
  • FIG. 3 is a method for determining a sending position index of a partial bandwidth according to Embodiment 1 of the present application.
  • a complete bandwidth corresponding to an OFDM symbol is divided into three partial bandwidths, and the terminal determines that the number M of sending position indices of the partial bandwidths within the frequency hopping period of the partial bandwidth is equal to 2.
  • the terminal increases the index in order.
  • each complete frequency hopping bandwidth period in each complete frequency hopping bandwidth period, four existing frequency hopping (non-partial bandwidth frequency hopping) are performed, and on each complete bandwidth, each frequency hopping part
  • the sending position index of the bandwidth is the same.
  • 4 frequency hopping is performed, and the sending position index of part of the bandwidth of each frequency hopping is 0.
  • the second complete frequency hopping bandwidth In the period, 4 frequency hopping is performed, and the sending position index of the partial bandwidth of each frequency hopping is 1.
  • the sending position indices of the frequency hopping part of the bandwidth are different.
  • FIG. 4 is a method for determining a sending position index of a partial bandwidth according to Embodiment 2 of the present application.
  • a complete bandwidth corresponding to an OFDM symbol is divided into three partial bandwidths, and the terminal determines that the number M of sending position indices of the partial bandwidths within the partial bandwidth frequency hopping period is equal to 3.
  • the terminal decrements the indices in reverse order.
  • the sending position index sequence (0, 2, 1) of the partial bandwidth
  • each complete frequency hopping bandwidth period four existing frequency hopping (non-partial bandwidth frequency hopping) are performed, and on each complete bandwidth, each frequency hopping part
  • the sending position index of the bandwidth is the same.
  • the first complete frequency hopping bandwidth period four frequency hopping are performed, and the sending position index of the partial bandwidth of each frequency hopping is 1.
  • the second complete frequency hopping bandwidth In the period, 4 frequency hopping is performed, and the sending position index of the partial bandwidth of each frequency hopping is 2.
  • the sending position indices of the frequency hopping part of the bandwidth are different.
  • FIG. 5 is a method for determining a sending position index of a partial bandwidth according to Embodiment 3 of the present application.
  • a complete bandwidth corresponding to an OFDM symbol is divided into three partial bandwidths, and the terminal determines the sending position index sequence (1, 0, 2) of the partial bandwidths according to the network side instruction.
  • in each complete frequency hopping bandwidth period four existing frequency hopping (non-partial bandwidth frequency hopping) are performed, and on each complete bandwidth, each frequency hopping part
  • the sending position index of the bandwidth is the same. For example, in the first complete frequency hopping bandwidth period, four frequency hopping are performed, and the sending position index of the partial bandwidth of each frequency hopping is 1.
  • the sending position index of the partial bandwidth of each frequency hopping is 0.
  • the third complete frequency hopping bandwidth period 4 frequency hopping is performed, and the partial bandwidth of each frequency hopping is sent.
  • the position index is 2.
  • the sending position indices of the frequency hopping part of the bandwidth are different.
  • FIG. 6 is a method for determining a sending position index of a partial bandwidth according to Embodiment 4 of the present application.
  • a complete bandwidth corresponding to an OFDM symbol is divided into three partial bandwidths, and the terminal determines the sending position index sequence (1, 0) of the partial bandwidths according to the instructions of the network side.
  • in each complete frequency hopping bandwidth period four existing frequency hopping (non-partial bandwidth frequency hopping) are performed, and on each complete bandwidth, each frequency hopping part
  • the sending position index of the bandwidth is the same. For example, in the first complete frequency hopping bandwidth period, four frequency hopping are performed, and the sending position index of the partial bandwidth of each frequency hopping is 1.
  • the sending position index of the partial bandwidth of each frequency hopping is 0.
  • the third complete frequency hopping bandwidth period 4 frequency hopping is performed, and the partial bandwidth of each frequency hopping is sent.
  • the position index is 1.
  • the sending position indices of the frequency hopping part of the bandwidth are different.
  • FIG. 7 is a method for determining a sending position index of a partial bandwidth according to Embodiment 5 of the present application.
  • a complete bandwidth corresponding to an OFDM symbol is divided into three partial bandwidths, and the terminal determines the sending position index sequence (1, 0) of the partial bandwidths according to the instructions of the network side.
  • the transmission position indices of adjacent frequency hopping partial bandwidths are different, for example, in In the first complete frequency hopping bandwidth period, 4 frequency hopping is performed.
  • the sending position index of the partial bandwidth of the frequency hopping is 1, and the sending position index of the partial bandwidth of the fourth frequency hopping is 0.
  • FIG. 8 is a method for determining a sending position index of a partial bandwidth according to Embodiment 6 of the present application.
  • a complete bandwidth corresponding to an OFDM symbol is divided into three partial bandwidths, and the terminal determines the sending position index sequence (1, 0) of the partial bandwidth according to the instructions of the network side, and the starting position index of the partial bandwidth frequency hopping. When it is 1, it will take effect after the partial bandwidth frequency hopping is enabled.
  • FIG. 9 is a method for determining a sending position index of a partial bandwidth according to Embodiment 7 of the present application.
  • a complete bandwidth corresponding to an OFDM symbol is divided into three partial bandwidths, and the terminal determines the sending position index sequence (1, 0) of the partial bandwidth according to the instructions of the network side, and the starting position index of the partial bandwidth frequency hopping. If it is 1, it will take effect after the partial bandwidth frequency hopping configuration.
  • an embodiment of the present application further provides a method for receiving an SRS, including:
  • Step 101 The network side device receives the SRS sent by the terminal in the partial bandwidth frequency hopping mode on the complete bandwidth corresponding to one SRS resource set or R OFDM symbols of the SRS resource, wherein, in the partial bandwidth frequency hopping mode, the The SRS is sent on a partial bandwidth of each complete bandwidth, and there are at least two complete bandwidths, and the sending position indices of the partial bandwidths of the at least two complete bandwidths are different, and R is the repetition factor, which is greater than or equal to 1. positive integer.
  • an embodiment of the present application further provides a method for sending an SRS, including:
  • Step 111 The terminal obtains the configuration information of the SRS resource set or the partial bandwidth-related parameters of the SRS resource, where the partial bandwidth-related parameters include at least one of the following: a partial bandwidth coefficient, a method for rounding the partial bandwidth, and a starting position for sending the partial bandwidth , each of the partial bandwidth-related parameters is configured with at least one parameter value;
  • Step 112 The terminal transmits the SRS according to the configuration information.
  • the network side flexibly indicates some bandwidth-related parameters, so that the SRS is issued according to the indicated partial bandwidth-related parameters.
  • the network side flexibly indicates some bandwidth-related parameters, so that the SRS is issued according to the indicated partial bandwidth-related parameters.
  • the method further includes:
  • first indication information where the first indication information is used to indicate a target parameter value from at least one parameter value configured for the partial bandwidth-related parameter
  • the sending of the SRS by the terminal according to the configuration information includes: the terminal sending the SRS according to the target parameter value.
  • the first indication information is carried through DCI.
  • the SRS resource set or the time domain type corresponding to the SRS resource is an aperiodic type, and the SRS resource set or the SRS resource includes at least one trigger state (trigger state), each of the The trigger state can be associated with at least one parameter value of at least one of the partial bandwidth-related parameters;
  • the DCI selects and triggers the corresponding SRS resource set or the SRS resource configured with the target trigger state through the SRS request field.
  • the sending of the SRS by the terminal according to the configuration information includes:
  • the terminal sends the SRS according to at least one parameter value of at least one of the partial bandwidth-related parameters associated with the trigger state.
  • the partial bandwidth-related parameters associated with the target trigger state are configured with at least two parameter values
  • the DCI is further configured to indicate a target parameter value from at least two parameter values configured by the partial bandwidth-related parameters through a first field, where the first field and the SRS request field are different fields;
  • One of the at least two parameter values configured by the partial bandwidth-related parameters is stipulated by the protocol as the target parameter value.
  • the method further includes:
  • the terminal determines that the partial bandwidth detection function is disabled.
  • the SRS resource set or the time domain type corresponding to the SRS resource is an aperiodic type
  • the DCI triggers the SRS resource set or the target aperiodic SRS in the SRS resource through the SRS request field selection; each code point of the SRS request field can be associated with at least one parameter value of at least one of the partial bandwidth related parameters.
  • the sending of the SRS by the terminal according to the configuration information includes:
  • the terminal may, according to at least one parameter value of at least one of the partial bandwidth-related parameters associated with the SRS request field, The transmission of the SRS is performed.
  • the partial bandwidth-related parameters associated with the SRS request field for triggering the target aperiodic SRS are configured with at least two parameter values;
  • the DCI is further configured to indicate a target parameter value from at least two parameter values configured by the partial bandwidth-related parameters through a first field, where the first field and the aperiodic SRS request field are different fields;
  • One of the at least two parameter values configured by the partial bandwidth-related parameters is stipulated by the protocol as the target parameter value.
  • the value of the SRS request field is equal to 0, it means that the code point of the aperiodic SRS is not activated, and the association between the code point of the aperiodic SRS and some bandwidth-related parameters is not configured.
  • the first indication information is carried by a MAC CE.
  • the MAC CE is a MAC CE that activates or deactivates the semi-persistent SRS.
  • the method further includes:
  • the terminal receives update information of the configuration information of the partial bandwidth-related parameters, where the update information is used to update the parameter values of the partial bandwidth-related parameters.
  • the update information is carried by the MAC CE.
  • the terminal sending the SRS according to the configuration information includes: the terminal according to the configuration information.
  • the parameter value of the part of the bandwidth-related parameters configured in the SRS is sent.
  • At least two SRS resource sets or SRS resources satisfy one of the following conditions, at least one part of bandwidth-related parameters of the at least two SRS resource sets or SRS resources is configured with the same parameter value :
  • the at least two SRS resource sets or SRS resources belong to the same cell
  • the at least two SRS resource sets or SRS resources belong to the same carrier
  • the at least two SRS resource sets or SRS resources belong to the same terminal;
  • the bandwidth sizes of the at least two SRS resource sets or SRS resources are the same;
  • the starting positions of the at least two SRS resource sets or the bandwidth frequency domain of the SRS resources are the same;
  • Both of the at least two SRS resource sets or SRS resources support a terminal with partial bandwidth detection capability.
  • the at least two SRS resource sets or partial bandwidth coefficients of the SRS resources are configured with the same parameter value.
  • an embodiment of the present application further provides a method for configuring an SRS, including:
  • Step 121 The network-side device sends the SRS resource set or the configuration information of the partial bandwidth-related parameters of the SRS resource, where the partial bandwidth-related parameters include at least one of the following: a partial bandwidth coefficient, a method for rounding a partial bandwidth, and a starting point for sending a partial bandwidth.
  • the partial bandwidth-related parameters include at least one of the following: a partial bandwidth coefficient, a method for rounding a partial bandwidth, and a starting point for sending a partial bandwidth.
  • Each of the partial bandwidth-related parameters is configured with at least one parameter value.
  • the network side flexibly indicates some bandwidth-related parameters, so that the SRS is issued according to the indicated partial bandwidth-related parameters.
  • the method further includes: sending, by the network-side device, first indication information, where the first indication information is used to select from at least one parameter value configured for the partial bandwidth-related parameters Indicates a target parameter value.
  • the first indication information is carried through DCI.
  • the SRS resource set or the time domain type corresponding to the SRS resource is an aperiodic type, and the SRS resource set or the SRS resource includes at least one trigger state trigger state, each of the trigger state at least one parameter value capable of associating at least one of said partial bandwidth-related parameters;
  • the DCI selects and triggers the corresponding SRS resource set or the SRS resource configured with the target trigger state through the SRS request field.
  • the partial bandwidth-related parameters associated with the target trigger state are configured with at least two parameter values
  • the DCI is further configured to indicate a target parameter value from at least two parameter values configured by the partial bandwidth-related parameters through a first field, where the first field and the SRS request field are different fields;
  • One of the at least two parameter values configured by the partial bandwidth-related parameters is stipulated by the protocol as the target parameter value.
  • the SRS resource set or the time domain type corresponding to the SRS resource is an aperiodic type
  • the DCI triggers the SRS resource set or the target aperiodic SRS in the SRS resource through the SRS request field selection; each code point of the SRS request field can be associated with at least one parameter value of at least one of the partial bandwidth related parameters.
  • the partial bandwidth-related parameters associated with the SRS request field used to trigger the target aperiodic SRS are configured with at least two parameter values;
  • the DCI is further configured to indicate a target parameter value from at least two parameter values configured by the partial bandwidth-related parameters through a first field, where the first field and the aperiodic SRS request field are different fields;
  • One of the at least two parameter values configured by the partial bandwidth-related parameters is stipulated by the protocol as the target parameter value.
  • the first indication information is carried by a MAC CE.
  • the MAC CE is a MAC CE that activates or deactivates the semi-persistent SRS.
  • the method further includes:
  • the network-side device sends update information of the configuration information of the partial bandwidth-related parameters, where the update information is used to update the parameter values of the partial bandwidth-related parameters.
  • the update information is carried by the MAC CE.
  • At least two SRS resource sets or SRS resources satisfy one of the following conditions, at least one part of bandwidth-related parameters of the at least two SRS resource sets or SRS resources is configured with the same parameter value :
  • the at least two SRS resource sets or SRS resources belong to the same cell
  • the at least two SRS resource sets or SRS resources belong to the same carrier
  • the at least two SRS resource sets or SRS resources belong to the same terminal;
  • the bandwidth sizes of the at least two SRS resource sets or SRS resources are the same;
  • the starting positions of the at least two SRS resource sets or the bandwidth frequency domain of the SRS resources are the same;
  • Both of the at least two SRS resource sets or SRS resources support a terminal with partial bandwidth detection capability.
  • the execution subject may be an SRS sending apparatus, or a control module for executing SRS sending in the SRS sending apparatus.
  • the SRS transmitting device provided by the embodiment of the present application is described by taking the SRS transmitting device executing the SRS transmitting method as an example.
  • an embodiment of the present application further provides an apparatus 130 for sending an SRS, including:
  • the sending module 131 is configured to send the SRS in a partial bandwidth frequency hopping manner on a complete bandwidth corresponding to the R OFDM symbols of an SRS resource set or SRS resources, wherein, in the partial bandwidth frequency hopping manner, the SRS is in each
  • the data is sent on a partial bandwidth of the complete bandwidths, and there are at least two complete bandwidths.
  • the sending position indices of the partial bandwidths of the at least two complete bandwidths are different, and R is a repetition factor, which is a positive integer greater than or equal to 1.
  • the terminal can send the SRS on a part of the complete bandwidth, and at least two parts of the complete bandwidth have different sending position indices, which is beneficial for the terminal to obtain complete channel characteristics.
  • the sending module 131 is configured to transmit position indexes of the partial bandwidth according to the sending position index of the partial bandwidth, the number M of the sending position indexes of the partial bandwidth in the partial bandwidth frequency hopping period, the frequency hopping rule of the partial bandwidth, and the sending position index of the partial bandwidth. At least one of the sequences transmits SRS, and M is less than or equal to N.
  • the M meets one of the following conditions:
  • the M is equal to N, where N is the number of transmission position indices of the partial bandwidth determined from the complete bandwidths corresponding to the R OFDM symbols, and N is a positive integer greater than or equal to 1;
  • the M is equal to N
  • the M is equal to N 1 , where N 1 is the N partial bandwidths corresponding to the sending position indices of the N partial bandwidths , the number of sending position indices corresponding to the largest partial bandwidth size;
  • the M is equal to N 2 , where N 2 is the N partial bandwidths corresponding to the sending position indices of the N partial bandwidths , the number of sending position indices corresponding to the smallest partial bandwidth size;
  • the M is less than or equal to N, and is indicated by the network side.
  • the N is determined by at least one of the following parameters: a partial bandwidth coefficient, a size of the complete bandwidth, and a partial bandwidth size.
  • the SRS sending apparatus 130 further includes:
  • An acquisition module configured to acquire the configuration information of the SRS resource set or the partial bandwidth-related parameters of the SRS resource, the partial bandwidth-related parameters including at least one of the following: a partial bandwidth coefficient, a method for rounding a partial bandwidth, and a start of sending a partial bandwidth position, each of the partial bandwidth-related parameters is configured with at least one parameter value.
  • the SRS sending apparatus 130 further includes:
  • a first receiving module configured to receive first indication information, where the first indication information is used to indicate a target parameter value from at least one parameter value configured for the partial bandwidth-related parameter.
  • the sending position index of each part of the bandwidth participating in frequency hopping is the same.
  • the frequency hopping starting position of a part of the bandwidth in a complete frequency hopping bandwidth period is a frequency domain position determined according to the starting position of the first frequency hopping agreed in the protocol;
  • the starting position of the frequency hopping of the partial bandwidth within a complete frequency hopping bandwidth period is the frequency domain position determined according to X symbols or time slots after the partial bandwidth frequency hopping is enabled.
  • the sending position indices of the partial bandwidths participating in the frequency hopping of adjacent complete frequency hopping bandwidth periods are different.
  • the sending position indices of adjacent partial bandwidths are different.
  • the SRS sending apparatus 130 further includes:
  • the second receiving module is configured to receive partial bandwidth frequency hopping enable signaling, where the partial bandwidth frequency hopping enable signaling is used to indicate whether partial bandwidth frequency hopping is enabled for the terminal, an SRS resource set, or an SRS resource.
  • the partial bandwidth frequency hopping enable signaling is DCI, MAC CE or RRC signaling.
  • sending the SRS in a partial bandwidth frequency hopping manner includes one of the following:
  • the SRS After receiving the partial bandwidth frequency hopping enable signaling X symbols or time slots, the SRS is sent in a partial bandwidth frequency hopping manner.
  • the SRS After receiving the partial bandwidth frequency hopping enable signaling, the SRS is sent in the partial bandwidth frequency hopping mode for X symbols or time slots after the ACK or NACK feedback report is performed.
  • the partial bandwidth frequency hopping rule is to increase the index value sequentially or decrease the index value in reverse order.
  • the partial bandwidth frequency hopping rule is:
  • the sending position index of the partial bandwidth of the current frequency hopping (the sending position index of the partial bandwidth of the previous frequency hopping+n)mod(M);
  • the sending position index of the partial bandwidth of the current frequency hopping (the sending position index of the partial bandwidth of the previous frequency hopping+n)mod(N);
  • the sending position index of the partial bandwidth of the current frequency hopping (the sending position index of the partial bandwidth of the previous frequency hopping-n) mod (M);
  • the sending position index of the partial bandwidth of the current frequency hopping (the sending position index of the partial bandwidth of the last frequency hopping-n) mod(N);
  • n is the increase value of the sending position index of each complete frequency hopping bandwidth period or part of the bandwidth during each frequency hopping.
  • the SRS sending apparatus 130 further includes:
  • the second determining module is configured to determine the sending position index sequence of the partial bandwidth according to the indication information sent by the network side, where the indication information is used to indicate the sending position index sequence of the partial bandwidth.
  • the sending position index sequence of the partial bandwidth satisfies at least one of the following conditions:
  • the maximum index value in the sending position index sequence of the partial bandwidth is equal to M or M-1;
  • the number of indexes in the sending position index sequence of the partial bandwidth is not greater than M;
  • the same index value may be configured in the sending position index sequence of the partial bandwidth
  • the index values in the sending position index sequence of the partial bandwidth are all different.
  • the y-th index value of the index sequence of the sending position of the partial bandwidth is used to indicate the starting position of sending the partial bandwidth before the frequency hopping of the partial bandwidth is enabled.
  • y is a positive integer greater than or equal to 1, which is specified by the protocol or configured by the network.
  • the sending position index sequence of the partial bandwidth takes effect after the partial bandwidth frequency hopping is enabled
  • the sending position index sequence of the partial bandwidth takes effect after the configuration.
  • the sending position index sequence of the partial bandwidth is determined according to at least one of the following parameters: the frequency domain position index N b , the value of the SRS sending position counter n SRS , a value used to determine whether frequency hopping and the number of frequency hopping.
  • the parameters b hop , the complete bandwidth m SRS,b of the SRS on one OFDM symbol, the SRS bandwidth transmission start position parameter n RRC , the frequency hopping index parameter B SRS , the number of transmission position indices of the partial bandwidth within the partial bandwidth frequency hopping period.
  • the SRS is a periodic SRS or a semi-persistent SRS.
  • the SRS sending apparatus provided in the embodiment of the present application can implement each process implemented by the method embodiment in FIG. 2 , and achieve the same technical effect. To avoid repetition, details are not repeated here.
  • an embodiment of the present application further provides an apparatus 140 for sending an SRS, including:
  • the obtaining module 141 is configured to obtain the configuration information of the SRS resource set or the partial bandwidth-related parameters of the SRS resource, where the partial bandwidth-related parameters include at least one of the following: a partial bandwidth coefficient, a method for rounding a partial bandwidth, a starting point for sending a partial bandwidth; starting position, each of the partial bandwidth-related parameters is configured with at least one parameter value;
  • the sending module 142 is configured to send the SRS according to the configuration information.
  • the network side flexibly indicates some bandwidth-related parameters, so that the SRS is issued according to the indicated partial bandwidth-related parameters.
  • the SRS sending apparatus 140 further includes:
  • a first receiving module configured to receive first indication information, where the first indication information is used to indicate a target parameter value from at least one parameter value configured for the partial bandwidth-related parameter;
  • the sending module 142 is configured to send the SRS according to the target parameter value.
  • the first indication information is carried through DCI.
  • the time domain type corresponding to the SRS resource set or the SRS resource is an aperiodic type
  • the SRS resource set or the SRS resource includes at least one trigger state trigger state, and each of the trigger states can be associated with at least one of the trigger states.
  • the DCI selects and triggers the corresponding SRS resource set or the SRS resource configured with the target trigger state through the SRS request field.
  • the sending module 142 is configured to, if the target trigger state is associated with the partial bandwidth-related parameters, the terminal according to at least one parameter value of at least one of the partial bandwidth-related parameters associated with the trigger state. , to send the SRS.
  • the partial bandwidth-related parameters associated with the target trigger state are configured with at least two parameter values
  • the DCI is further configured to indicate a target parameter value from at least two parameter values configured by the partial bandwidth-related parameters through a first field, where the first field and the SRS request field are different fields;
  • One of the at least two parameter values configured by the partial bandwidth-related parameters is stipulated by the protocol as the target parameter value.
  • the SRS sending apparatus 140 further includes:
  • a determining module configured to determine that the partial bandwidth detection function is disabled if the target trigger state is not associated with the partial bandwidth related parameters.
  • the SRS resource set or the time domain type corresponding to the SRS resource is an aperiodic type
  • the DCI triggers the SRS resource set or the target aperiodic SRS in the SRS resource through the SRS request field selection; each code point of the SRS request field can be associated with at least one parameter value of at least one of the partial bandwidth related parameters.
  • the sending module 142 is configured to, if the SRS request field used to trigger the target aperiodic SRS is associated with the partial bandwidth-related parameters, according to at least one of the parts associated with the SRS request field. At least one parameter value of the bandwidth-related parameter is used to send the SRS.
  • the partial bandwidth-related parameters associated with the SRS request field for triggering the target aperiodic SRS are configured with at least two parameter values;
  • the DCI is further configured to indicate a target parameter value from at least two parameter values configured by the partial bandwidth-related parameters through a first field, where the first field and the aperiodic SRS request field are different fields;
  • One of the at least two parameter values configured by the partial bandwidth-related parameters is stipulated by the protocol as the target parameter value.
  • the first indication information is carried by MAC CE.
  • the MAC CE is a MAC CE that activates or deactivates the semi-persistent SRS.
  • the SRS sending apparatus 140 further includes:
  • the second receiving module is configured to receive update information of the configuration information of the partial bandwidth-related parameters, where the update information is used to update the parameter values of the partial bandwidth-related parameters.
  • the update information is carried by MAC CE.
  • the sending module 142 is configured to send the SRS according to the parameter value of the partial bandwidth-related parameters configured in the configuration information.
  • At least two SRS resource sets or SRS resources meet one of the following conditions, at least one part of bandwidth-related parameters of the at least two SRS resource sets or SRS resources is configured to be the same parameter value:
  • the at least two SRS resource sets or SRS resources belong to the same cell
  • the at least two SRS resource sets or SRS resources belong to the same carrier
  • the at least two SRS resource sets or SRS resources belong to the same terminal;
  • the bandwidth sizes of the at least two SRS resource sets or SRS resources are the same;
  • the starting positions of the at least two SRS resource sets or the bandwidth frequency domain of the SRS resources are the same;
  • Both of the at least two SRS resource sets or SRS resources support a terminal with partial bandwidth detection capability.
  • the apparatus for sending the SRS in this embodiment of the present application may be an apparatus, an apparatus having an operating system or an electronic device, and may also be a component, an integrated circuit, or a chip in a terminal.
  • the apparatus or electronic device may be a mobile terminal or a non-mobile terminal.
  • the mobile terminal may include but is not limited to the types of terminals 11 listed above, and the non-mobile terminal may be a server, a network attached storage (Network Attached Storage, NAS), a personal computer (Personal Computer, PC), a television ( Television, TV), teller machine, or self-service machine, etc., which are not specifically limited in the embodiments of the present application.
  • the SRS sending apparatus provided in the embodiment of the present application can implement each process implemented by the method embodiment in FIG. 4 , and achieve the same technical effect. To avoid repetition, details are not repeated here.
  • an embodiment of the present application further provides an apparatus 150 for receiving an SRS, including:
  • the receiving module 151 is configured to receive, on a complete bandwidth corresponding to R OFDM symbols of an SRS resource set or SRS resources, an SRS sent by a terminal in a partial bandwidth frequency hopping manner, wherein, in the partial bandwidth frequency hopping manner, the The SRS is sent on a partial bandwidth of each complete bandwidth, and there are at least two complete bandwidths, and the sending position indices of the partial bandwidths of the at least two complete bandwidths are different, and R is the repetition factor, which is greater than or equal to 1. positive integer.
  • the terminal can send the SRS on a part of the complete bandwidth, and at least two parts of the complete bandwidth have different sending position indices, which is beneficial for the terminal to obtain complete channel characteristics.
  • an embodiment of the present application further provides an SRS configuration apparatus 160, including:
  • the first sending module 161 is configured to send the SRS resource set or the configuration information of the partial bandwidth-related parameters of the SRS resources, where the partial bandwidth-related parameters include at least one of the following: a partial bandwidth coefficient, a method for rounding a partial bandwidth, a partial bandwidth For the sending start position, each of the partial bandwidth-related parameters is configured with at least one parameter value.
  • the network side flexibly indicates some bandwidth-related parameters, so that the SRS is issued according to the indicated partial bandwidth-related parameters.
  • the SRS configuration device 160 further includes:
  • the second sending module is configured to send first indication information, where the first indication information is used to indicate a target parameter value from at least one parameter value configured for the partial bandwidth-related parameter.
  • the first indication information is carried through DCI.
  • the time domain type corresponding to the SRS resource set or the SRS resource is an aperiodic type
  • the SRS resource set or the SRS resource includes at least one trigger state trigger state, and each of the trigger states can be associated with at least one of the trigger states.
  • the DCI selects and triggers the corresponding SRS resource set or the SRS resource configured with the target trigger state through the SRS request field.
  • the partial bandwidth-related parameters associated with the target trigger state are configured with at least two parameter values
  • the DCI is further configured to indicate a target parameter value from at least two parameter values configured by the partial bandwidth-related parameters through a first field, where the first field and the SRS request field are different fields;
  • One of the at least two parameter values configured by the partial bandwidth-related parameters is stipulated by the protocol as the target parameter value.
  • the SRS resource set or the time domain type corresponding to the SRS resource is an aperiodic type
  • the DCI triggers the SRS resource set or the target aperiodic SRS in the SRS resource through the SRS request field selection; each code point of the SRS request field can be associated with at least one parameter value of at least one of the partial bandwidth related parameters.
  • the partial bandwidth-related parameters associated with the SRS request field for triggering the target aperiodic SRS are configured with at least two parameter values;
  • the DCI is further configured to indicate a target parameter value from at least two parameter values configured by the partial bandwidth-related parameters through a first field, where the first field and the aperiodic SRS request field are different fields;
  • One of the at least two parameter values configured by the partial bandwidth-related parameters is stipulated by the protocol as the target parameter value.
  • the first indication information is carried by MAC CE.
  • the MAC CE is a MAC CE that activates or deactivates the semi-persistent SRS.
  • the SRS configuration device 160 further includes:
  • the third sending module is configured to send update information of the configuration information of the partial bandwidth-related parameters, where the update information is used to update the parameter values of the partial bandwidth-related parameters.
  • the update information is carried by MAC CE.
  • At least two SRS resource sets or SRS resources meet one of the following conditions, at least one part of bandwidth-related parameters of the at least two SRS resource sets or SRS resources is configured to be the same parameter value:
  • the at least two SRS resource sets or SRS resources belong to the same cell
  • the at least two SRS resource sets or SRS resources belong to the same carrier
  • the at least two SRS resource sets or SRS resources belong to the same terminal;
  • the bandwidth sizes of the at least two SRS resource sets or SRS resources are the same;
  • the starting positions of the at least two SRS resource sets or the bandwidth frequency domain of the SRS resources are the same;
  • Both of the at least two SRS resource sets or SRS resources support a terminal with partial bandwidth detection capability.
  • an embodiment of the present application further provides a communication device 170, including a processor 171, a memory 172, and a program or instruction stored in the memory 172 and executable on the processor 171.
  • a communication device 170 including a processor 171, a memory 172, and a program or instruction stored in the memory 172 and executable on the processor 171.
  • the communication When the device 170 is a terminal, when the program or instruction is executed by the processor 171, each process of the foregoing SRS sending method embodiment can be implemented, and the same technical effect can be achieved.
  • the communication device 170 is a network-side device, when the program or instruction is executed by the processor 171, each process of the above-mentioned embodiments of the SRS receiving method or the SRS configuration method can be realized, and the same technical effect can be achieved. To avoid repetition, here No longer.
  • Embodiments of the present application further provide a terminal, including a processor and a communication interface, where the communication interface is configured to transmit SRS in a partial bandwidth frequency hopping manner on a complete bandwidth corresponding to R OFDM symbols of an SRS resource set or SRS resources, wherein , in the partial bandwidth frequency hopping mode, the SRS is sent on the partial bandwidth of each complete bandwidth, and there are at least two complete bandwidths, and the sending position index of the partial bandwidth of the at least two complete bandwidths Different, R is the repetition factor, which is a positive integer greater than or equal to 1.
  • the communication interface is used to obtain the configuration information of the SRS resource set or the partial bandwidth-related parameters of the SRS resources, where the partial bandwidth-related parameters include at least one of the following: a partial bandwidth coefficient, a method for rounding a partial bandwidth, a starting point for sending a partial bandwidth
  • the partial bandwidth-related parameters include at least one of the following: a partial bandwidth coefficient, a method for rounding a partial bandwidth, a starting point for sending a partial bandwidth
  • Each of the partial bandwidth-related parameters is configured with at least one parameter value; according to the configuration information, the SRS is sent.
  • This terminal embodiment corresponds to the above-mentioned terminal-side method embodiment, and each implementation process and implementation manner of the above-mentioned method embodiment can be applied to this terminal embodiment, and can achieve the same technical effect.
  • FIG. 18 is a schematic diagram of a hardware structure of a terminal implementing an embodiment of the present application.
  • the terminal 180 includes but is not limited to: a radio frequency unit 181, a network module 182, an audio output unit 183, an input unit 184, a sensor 185, a display unit 186, a user input unit 187, an interface unit 188, a memory 189, and a processor 1810, etc. at least part of the components.
  • the terminal 180 may also include a power source (such as a battery) for supplying power to various components, and the power source may be logically connected to the processor 1810 through a power management system, so as to manage charging, discharging, and power consumption through the power management system management and other functions.
  • a power source such as a battery
  • the terminal structure shown in FIG. 18 does not constitute a limitation on the terminal, and the terminal may include more or less components than shown, or combine some components, or arrange different components, which will not be repeated here.
  • the input unit 184 may include a graphics processor (Graphics Processing Unit, GPU) 1841 and a microphone 1842. Such as camera) to obtain still pictures or video image data for processing.
  • the display unit 186 may include a display panel 1861, which may be configured in the form of a liquid crystal display, an organic light emitting diode, or the like.
  • the user input unit 187 includes a touch panel 1871 and other input devices 1872 .
  • the touch panel 1871 is also called a touch screen.
  • the touch panel 1871 may include two parts, a touch detection device and a touch controller.
  • Other input devices 1872 may include, but are not limited to, physical keyboards, function keys (such as volume control keys, switch keys, etc.), trackballs, mice, and joysticks, which will not be described herein again.
  • the radio frequency unit 181 receives the downlink data from the network side device, and then processes it to the processor 1810; in addition, sends the uplink data to the network side device.
  • the radio frequency unit 181 includes, but is not limited to, an antenna, at least one amplifier, a transceiver, a coupler, a low noise amplifier, a duplexer, and the like.
  • Memory 189 may be used to store software programs or instructions as well as various data.
  • the memory 189 may mainly include a storage program or instruction area and a storage data area, wherein the stored program or instruction area may store an operating system, an application program or instruction required for at least one function (such as a sound playback function, an image playback function, etc.) and the like.
  • the memory 189 may include a high-speed random access memory, and may also include a non-volatile memory, wherein the non-volatile memory may be a read-only memory (Read-Only Memory, ROM), a programmable read-only memory (Programmable ROM) , PROM), erasable programmable read-only memory (Erasable PROM, EPROM), electrically erasable programmable read-only memory (Electrically EPROM, EEPROM) or flash memory.
  • ROM Read-Only Memory
  • PROM programmable read-only memory
  • PROM erasable programmable read-only memory
  • Erasable PROM Erasable PROM
  • EPROM electrically erasable programmable read-only memory
  • EEPROM electrically erasable programmable read-only memory
  • flash memory for example at least one magnetic disk storage device, flash memory device, or other non-volatile solid state storage device.
  • the processor 1810 may include one or more processing units; optionally, the processor 1810 may integrate an application processor and a modem processor, wherein the application processor mainly processes the operating system, user interface, application programs or instructions, etc., Modem processors mainly deal with wireless communications, such as baseband processors. It can be understood that, the above-mentioned modulation and demodulation processor may not be integrated into the processor 1810.
  • the radio frequency unit 181 is configured to transmit the SRS in a partial bandwidth frequency hopping manner on a complete bandwidth corresponding to R OFDM symbols of an SRS resource set or SRS resources, wherein the partial bandwidth In the frequency hopping mode, the SRS is sent on a partial bandwidth of each complete bandwidth, and there are at least two complete bandwidths, and the sending position indices of the partial bandwidths of the at least two complete bandwidths are different, and R is repetition.
  • Factor a positive integer greater than or equal to 1.
  • the terminal can send the SRS on a part of the complete bandwidth, and at least two parts of the complete bandwidth have different sending position indices, which is beneficial for the terminal to obtain complete channel characteristics.
  • the radio frequency unit 181 is configured to transmit position index of the partial bandwidth according to the number M of the sending position index of the partial bandwidth in the partial bandwidth frequency hopping period, the frequency hopping rule of the partial bandwidth and the sending position index of the partial bandwidth. At least one of the sequences transmits SRS, and M is less than or equal to N.
  • the M meets one of the following conditions:
  • said M is equal to N;
  • the M is equal to N
  • the M is equal to N 1 , where N 1 is the N partial bandwidths corresponding to the sending position indices of the N partial bandwidths , the number of sending position indices corresponding to the largest partial bandwidth size;
  • the M is equal to N 2 , where N 2 is the N partial bandwidths corresponding to the sending position indices of the N partial bandwidths , the number of sending position indices corresponding to the smallest partial bandwidth size;
  • the M is less than or equal to N, which is indicated by the network side.
  • the N is determined by at least one of the following parameters: a partial bandwidth coefficient, a size of the complete bandwidth, and a partial bandwidth size.
  • the radio frequency unit 181 is configured to obtain the configuration information of the SRS resource set or the partial bandwidth-related parameters of the SRS resources, where the partial bandwidth-related parameters include at least one of the following: a partial bandwidth coefficient and a partial bandwidth rounding method. .
  • the sending start position of the partial bandwidth, each of the partial bandwidth-related parameters is configured with at least one parameter value.
  • the radio frequency unit 181 is configured to receive first indication information, where the first indication information is used to indicate a target parameter value from at least one parameter value configured for the partial bandwidth-related parameter.
  • the sending position index of each part of the bandwidth participating in frequency hopping is the same.
  • the frequency hopping starting position of a part of the bandwidth in a complete frequency hopping bandwidth period is a frequency domain position determined according to the starting position of the first frequency hopping agreed in the protocol;
  • the starting position of the frequency hopping of the partial bandwidth in a complete frequency hopping bandwidth period is the frequency domain position determined according to X symbols or time slots after the partial bandwidth frequency hopping is enabled.
  • the sending position indices of the partial bandwidths participating in the frequency hopping of adjacent complete frequency hopping bandwidth periods are different.
  • the sending position indices of adjacent partial bandwidths are different.
  • the radio frequency unit 181 is configured to receive partial bandwidth frequency hopping enable signaling, where the partial bandwidth frequency hopping enable signaling is used to indicate whether the terminal, an SRS resource set or an SRS resource is enabled Partial bandwidth frequency hopping.
  • the partial bandwidth frequency hopping enable signaling is DCI, MAC CE or RRC signaling.
  • the radio frequency unit 181 is configured to perform one of the following:
  • the SRS After receiving the partial bandwidth frequency hopping enable signaling, the SRS is sent in the partial bandwidth frequency hopping mode for X symbols or time slots after the ACK or NACK feedback report is performed.
  • the partial bandwidth frequency hopping rule is to increase the index value sequentially or decrease the index value in reverse order.
  • the partial bandwidth frequency hopping rule is:
  • the sending position index of the partial bandwidth of the current frequency hopping (the sending position index of the partial bandwidth of the previous frequency hopping+n)mod(M);
  • the sending position index of the partial bandwidth of the current frequency hopping (the sending position index of the partial bandwidth of the previous frequency hopping+n)mod(N);
  • the sending position index of the partial bandwidth of the current frequency hopping (the sending position index of the partial bandwidth of the last frequency hopping-n) mod (M);
  • the sending position index of the partial bandwidth of the current frequency hopping (the sending position index of the partial bandwidth of the last frequency hopping-n) mod (N);
  • n is the increase value of the sending position index of each complete frequency hopping bandwidth period or part of the bandwidth during each frequency hopping.
  • the processor 1810 is configured to determine, according to indication information sent by the network side, a sending position index sequence of the partial bandwidth, where the indication information is used to indicate the sending position index sequence of the partial bandwidth.
  • the sending position index sequence of the partial bandwidth satisfies at least one of the following conditions:
  • the maximum index value in the sending position index sequence of the partial bandwidth is equal to M or M-1;
  • the number of indexes in the sending position index sequence of the partial bandwidth is not greater than M;
  • the same index value may be configured in the sending position index sequence of the partial bandwidth
  • the index values in the sending position index sequence of the partial bandwidth are all different.
  • the y-th index value of the index sequence of the sending position of the partial bandwidth is used to indicate the starting position of sending the partial bandwidth before the frequency hopping of the partial bandwidth is enabled.
  • y is a positive integer greater than or equal to 1, which is specified by the protocol or configured by the network.
  • the sending position index sequence of the partial bandwidth takes effect after the partial bandwidth frequency hopping is enabled
  • the sending position index sequence of the partial bandwidth takes effect after the configuration.
  • the sending position index sequence of the partial bandwidth is determined according to at least one of the following parameters: the frequency domain position index N b , the value of the SRS sending position counter n SRS , a value used to determine whether frequency hopping and the number of frequency hopping.
  • the parameters b hop , the complete bandwidth m SRS,b of the SRS on one OFDM symbol, the SRS bandwidth transmission start position parameter n RRC , the frequency hopping index parameter B SRS , the number of transmission position indices of the partial bandwidth within the partial bandwidth frequency hopping period.
  • the SRS is a periodic SRS or a semi-persistent SRS.
  • the radio frequency unit 181 is configured to obtain the configuration information of the SRS resource set or the partial bandwidth-related parameters of the SRS resources, where the partial bandwidth-related parameters include at least one of the following: a partial bandwidth coefficient, a partial bandwidth The method for rounding the bandwidth, the starting position for sending the partial bandwidth, each of the partial bandwidth related parameters is configured with at least one parameter value; according to the configuration information, the SRS is sent.
  • the network side flexibly indicates some bandwidth-related parameters, so that the SRS is issued according to the indicated partial bandwidth-related parameters.
  • the radio frequency unit 181 is configured to receive first indication information, where the first indication information is used to indicate a target parameter value from at least one parameter value configured for the partial bandwidth-related parameter; according to the The target parameter value is used to send the SRS.
  • the first indication information is carried through DCI.
  • the time domain type corresponding to the SRS resource set or the SRS resource is an aperiodic type
  • the SRS resource set or the SRS resource includes at least one trigger state trigger state, and each of the trigger states can be associated with at least one of the trigger states.
  • the DCI selects and triggers the corresponding SRS resource set or the SRS resource configured with the target trigger state through the SRS request field.
  • the radio frequency unit 181 is configured to, if the target trigger state is associated with the partial bandwidth-related parameter, the terminal according to at least one parameter value of the partial bandwidth-related parameter associated with the trigger state. , to send the SRS.
  • the partial bandwidth-related parameters associated with the target trigger state are configured with at least two parameter values
  • the DCI is further configured to indicate a target parameter value from at least two parameter values configured by the partial bandwidth-related parameters through a first field, where the first field and the SRS request field are different fields;
  • One of the at least two parameter values configured by the partial bandwidth-related parameters is agreed upon by the protocol as the target parameter value.
  • the processor 1810 is configured to determine that the partial bandwidth detection function is disabled if the target trigger state is not associated with the partial bandwidth related parameters.
  • the SRS resource set or the time domain type corresponding to the SRS resource is an aperiodic type
  • the DCI triggers the SRS resource set or the target aperiodic SRS in the SRS resource through the SRS request field selection; each code point of the SRS request field can be associated with at least one parameter value of at least one of the partial bandwidth related parameters.
  • the radio frequency unit 181 is configured to, if the SRS request field used to trigger the target aperiodic SRS is associated with the partial bandwidth-related parameters, according to at least one of the parts associated with the SRS request field. At least one parameter value of the bandwidth-related parameter is used to send the SRS.
  • the partial bandwidth-related parameters associated with the SRS request field for triggering the target aperiodic SRS are configured with at least two parameter values;
  • the DCI is further configured to indicate a target parameter value from at least two parameter values configured by the partial bandwidth-related parameters through a first field, where the first field and the aperiodic SRS request field are different fields;
  • One of the at least two parameter values configured by the partial bandwidth-related parameters is stipulated by the protocol as the target parameter value.
  • the first indication information is carried by MAC CE.
  • the MAC CE is a MAC CE that activates or deactivates the semi-persistent SRS.
  • the radio frequency unit 181 is configured to receive update information of the configuration information of the partial bandwidth-related parameters, where the update information is used to update the parameter values of the partial bandwidth-related parameters.
  • the update information is carried by MAC CE.
  • the radio frequency unit 181 is configured to send the SRS according to the parameter value of the partial bandwidth-related parameter configured in the configuration information.
  • At least two SRS resource sets or SRS resources meet one of the following conditions, at least one part of bandwidth-related parameters of the at least two SRS resource sets or SRS resources is configured to be the same parameter value:
  • the at least two SRS resource sets or SRS resources belong to the same cell
  • the at least two SRS resource sets or SRS resources belong to the same carrier
  • the at least two SRS resource sets or SRS resources belong to the same terminal;
  • the bandwidth sizes of the at least two SRS resource sets or SRS resources are the same;
  • the starting positions of the at least two SRS resource sets or the bandwidth frequency domain of the SRS resources are the same;
  • Both of the at least two SRS resource sets or SRS resources support a terminal with partial bandwidth detection capability.
  • Embodiments of the present application further provide a network-side device, including a processor and a communication interface, where the communication interface is used for a receiving terminal to perform frequency hopping in a partial bandwidth over a complete bandwidth corresponding to R OFDM symbols of an SRS resource set or SRS resources
  • the sent SRS wherein, in the partial bandwidth frequency hopping mode, the SRS is sent on the partial bandwidth of each complete bandwidth, and there are at least two of the complete bandwidths, and the at least two parts of the complete bandwidth
  • the transmission position index of the bandwidth is different, and R is the repetition factor, which is a positive integer greater than or equal to 1.
  • the communication interface is configured to send the SRS resource set or the configuration information of the partial bandwidth-related parameters of the SRS resource, where the partial bandwidth-related parameters include at least one of the following: a partial bandwidth coefficient, a method for rounding a partial bandwidth, a partial bandwidth At least one parameter value is configured for each of the partial bandwidth-related parameters.
  • This network-side device embodiment corresponds to the above-mentioned network-side device method embodiment, and each implementation process and implementation manner of the above-mentioned method embodiment can be applied to this network-side device embodiment, and can achieve the same technical effect.
  • the network device 190 includes: an antenna 191 , a radio frequency device 192 , and a baseband device 193 .
  • the antenna 191 is connected to the radio frequency device 192 .
  • the radio frequency device 192 receives information through the antenna 191, and sends the received information to the baseband device 193 for processing.
  • the baseband device 193 processes the information to be sent and sends it to the radio frequency device 192
  • the radio frequency device 192 processes the received information and sends it out through the antenna 191 .
  • the above-mentioned frequency band processing apparatus may be located in the baseband apparatus 193 , and the method performed by the network side device in the above embodiments may be implemented in the baseband apparatus 193 .
  • the baseband apparatus 193 includes a processor 194 and a memory 195 .
  • the baseband device 193 may include, for example, at least one baseband board on which multiple chips are arranged, as shown in FIG. 19 , one of the chips is, for example, the processor 194 , which is connected to the memory 195 to call the program in the memory 195 to execute
  • the network devices shown in the above method embodiments operate.
  • the baseband device 193 may further include a network interface 196 for exchanging information with the radio frequency device 192, and the interface is, for example, a Common Public Radio Interface (CPRI).
  • CPRI Common Public Radio Interface
  • the network-side device in the embodiment of the present invention further includes: an instruction or program stored in the memory 195 and executable on the processor 194, and the processor 194 invokes the instruction or program in the memory 195 to execute the instruction or program shown in FIG. 15 or FIG. 16 . In order to avoid repetition, it is not repeated here.
  • Embodiments of the present application further provide a readable storage medium, where a program or an instruction is stored on the readable storage medium, and when the program or instruction is executed by a processor, the above-mentioned method for sending an SRS, a method for receiving an SRS, or a configuration of the SRS is implemented.
  • a processor executes the above-mentioned method for sending an SRS, a method for receiving an SRS, or a configuration of the SRS.
  • the processor is the processor in the terminal described in the foregoing embodiment.
  • the readable storage medium includes a computer-readable storage medium, such as a computer read-only memory (Read-Only Memory, ROM), a random access memory (Random Access Memory, RAM), a magnetic disk or an optical disk, and the like.
  • An embodiment of the present application further provides a chip, where the chip includes a processor and a communication interface, the communication interface is coupled to the processor, and the processor is used for running a program or an instruction to implement the above-mentioned SRS sending method, SRS
  • the chip includes a processor and a communication interface
  • the communication interface is coupled to the processor
  • the processor is used for running a program or an instruction to implement the above-mentioned SRS sending method, SRS
  • the chip mentioned in the embodiments of the present application may also be referred to as a system-on-chip, a system-on-chip, a system-on-chip, or a system-on-a-chip, or the like.
  • Embodiments of the present application further provide a computer program product, where the computer program product is stored in a non-transitory storage medium, and the computer program product is executed by at least one processor to implement the above-mentioned SRS sending method and SRS receiving
  • the method or each process of the SRS configuration method embodiment can achieve the same technical effect, and to avoid repetition, details are not repeated here.
  • the disclosed apparatus and method may be implemented in other manners.
  • the apparatus embodiments described above are only illustrative.
  • the division of the units is only a logical function division. In actual implementation, there may be other division methods.
  • multiple units or components may be combined or Can be integrated into another system, or some features can be ignored, or not implemented.
  • the shown or discussed mutual coupling or direct coupling or communication connection may be through some interfaces, indirect coupling or communication connection of devices or units, and may be in electrical, mechanical or other forms.
  • the units described as separate components may or may not be physically separated, and components shown as units may or may not be physical units, that is, may be located in one place, or may be distributed to multiple network units. Some or all of the units may be selected according to actual needs to achieve the purpose of the solution in this embodiment.
  • each functional unit in each embodiment of the present application may be integrated into one processing unit, or each unit may exist physically alone, or two or more units may be integrated into one unit.
  • the functions, if implemented in the form of software functional units and sold or used as independent products, may be stored in a computer-readable storage medium.
  • the technical solution of the present application can be embodied in the form of a software product in essence, or the part that contributes to the related technology or the part of the technical solution.
  • the computer software product is stored in a storage medium, including several
  • the instructions are used to cause a computer device (which may be a personal computer, a server, or a network device, etc.) to execute all or part of the steps of the methods described in the various embodiments of the present application.
  • the aforementioned storage medium includes: a U disk, a removable hard disk, a ROM, a RAM, a magnetic disk, or an optical disk and other mediums that can store program codes.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Power Engineering (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请公开了一种SRS的发送方法、接收方法、配置方法及装置,该SRS的发送方法包括:在一个SRS资源集合或SRS资源的R个OFDM符号对应的完整带宽上,以部分带宽跳频方式发送SRS,其中,SRS在每个完整带宽的部分带宽上发送,且存在至少两个所述完整带宽,所述至少两个所述完整带宽的部分带宽的发送位置索引不同,R为重复因子。

Description

SRS的发送方法、接收方法、配置方法及装置
相关申请的交叉引用
本申请主张在2021年03月29日在中国提交的中国专利申请No.202110336680.4的优先权,其全部内容通过引用包含于此。
技术领域
本申请属于无线通信技术领域,具体涉及一种信道探测用参考信号(Sounding Reference Signal,SRS)的发送方法、接收方法、配置方法及装置。
背景技术
目前正在讨论在一个SRS资源(resource)或SRS资源集(resource set)的正交频分复用技术(Orthogonal Frequency Division Multiplexing,OFDM)符号上采用SRS进行部分频域探测,也就是在一个SRS资源或SRS资源集的OFDM符号的完整带宽上仅在部分连续带宽(下面简称为部分带宽)上发送SRS。
然而,如果仅在部分带宽上发送SRS,会导致终端无法完整探测信道。
发明内容
本申请实施例提供一种SRS的发送方法、接收方法、配置方法及装置,能够解决由于部分带宽的出现导致终端无法获得完整的探测信道的问题。
第一方面,提供了一种SRS的发送方法,包括:
终端在一个SRS资源集合或SRS资源的R个OFDM符号对应的完整带宽上,以部分带宽跳频方式发送SRS,其中,所述部分带宽跳频方式中,所述SRS在每个完整带宽的部分带宽上发送,且存在至少两个所述完整带宽,所述至少两个所述完整带宽的部分带宽的发送位置索引不同,R为重复因子,为大于等于1的正整数。
第二方面,提供了一种SRS的发送方法,包括:
终端获取SRS资源集合或SRS资源的部分带宽相关参数的配置信息,所述部分带宽相关参数包括以下至少之一:部分带宽系数、部分带宽的取整方法、部分带宽的发送起始位置,每一所述部分带宽相关参数配置有至少一个参数值;
所述终端根据所述配置信息,进行SRS的发送。
第三方面,提供了一种SRS的接收方法,包括:
网络侧设备在一个SRS资源集合或SRS资源的R个OFDM符号对应的完整带宽上,接收终端以部分带宽跳频方式发送的SRS,其中,所述部分带宽跳频方式中,所述SRS在每个完整带宽的部分带宽上发送,且存在至少两个所述完整带宽,所述至少两个所述完整带宽的部分带宽的发送位置索引不同,R为重复因子,为大于等于1的正整数。
第四方面,提供了一种SRS的配置方法,包括:
网络侧设备发送SRS资源集合或SRS资源的部分带宽相关参数的配置信息,所述部分带宽相关参数包括以下至少之一:部分带宽系数、部分带宽的取整方法、部分带宽的发送起始位置,每一所述部分带宽相关参数配置有至少一个参数值。
第五方面,提供了一种SRS的发送装置,包括:
发送模块,用于在一个SRS资源集合或SRS资源的R个OFDM符号对应的完整带宽上,以部分带宽跳频方式发送SRS,其中,所述部分带宽跳频方式中,所述SRS在每个完整带宽的部分带宽上发送,且存在至少两个所述完整带宽,所述至少两个所述完整带宽的部分带宽的发送位置索引不同,R为重复因子,为大于等于1的正整数。
第六方面,提供了一种SRS的发送装置,包括:
获取模块,用于获取SRS资源集合或SRS资源的部分带宽相关参数的配置信息,所述部分带宽相关参数包括以下至少之一:部分带宽系数、部分带宽的取整方法、部分带宽的发送起始位置,每一所述部分带宽相关参数配置 有至少一个参数值;
发送模块,用于根据所述配置信息,进行SRS的发送。
第七方面,提供了一种SRS的接收装置,包括:
接收模块,用于在一个SRS资源集合或SRS资源的R个OFDM符号对应的完整带宽上,接收终端以部分带宽跳频方式发送的SRS,其中,所述部分带宽跳频方式中,所述SRS在每个完整带宽的部分带宽上发送,且存在至少两个所述完整带宽,所述至少两个所述完整带宽的部分带宽的发送位置索引不同,R为重复因子,为大于等于1的正整数。
第八方面,提供了一种SRS的配置装置,包括:
第一发送模块,用于发送SRS资源集合或SRS资源的部分带宽相关参数的配置信息,所述部分带宽相关参数包括以下至少之一:部分带宽系数、部分带宽的取整方法、部分带宽的发送起始位置,每一所述部分带宽相关参数配置有至少一个参数值。
第九方面,提供了一种终端,该终端包括处理器、存储器及存储在所述存储器上并可在所述处理器上运行的程序或指令,所述程序或指令被所述处理器执行时实现如第一方面或第二方面所述的方法的步骤。
第十方面,提供了一种终端,包括处理器及通信接口,其中,所述通信接口用于在一个SRS资源集合或SRS资源的R个OFDM符号对应的完整带宽上,以部分带宽跳频方式发送SRS,其中,所述部分带宽跳频方式中,所述SRS在每个完整带宽的部分带宽上发送,且存在至少两个所述完整带宽,所述至少两个所述完整带宽的部分带宽的发送位置索引不同,R为重复因子,为大于等于1的正整数。
第十一方面,提供了一种终端,包括处理器及通信接口,其中,所述通信接口用于获取SRS资源集合或SRS资源的部分带宽相关参数的配置信息,所述部分带宽相关参数包括以下至少之一:部分带宽系数、部分带宽的取整方法、部分带宽的发送起始位置,每一所述部分带宽相关参数配置有至少一个参数值;根据所述配置信息,进行SRS的发送。
第十二方面,提供了一种网络侧设备,该网络侧设备包括处理器、存储器及存储在所述存储器上并可在所述处理器上运行的程序或指令,所述程序或指令被所述处理器执行时实现如第三方面或第四方面所述的方法的步骤。
第十三方面,提供了一种网络侧设备,包括处理器及通信接口,其中,所述通信接口用于在一个SRS资源集合或SRS资源的R个OFDM符号对应的完整带宽上,接收终端以部分带宽跳频方式发送的SRS,其中,所述部分带宽跳频方式中,所述SRS在每个完整带宽的部分带宽上发送,且存在至少两个所述完整带宽,所述至少两个所述完整带宽的部分带宽的发送位置索引不同,R为重复因子,为大于等于1的正整数。
第十四方面,提供了一种网络侧设备,包括处理器及通信接口,其中,所述通信接口用于发送SRS资源集合或SRS资源的部分带宽相关参数的配置信息,所述部分带宽相关参数包括以下至少之一:部分带宽系数、部分带宽的取整方法、部分带宽的发送起始位置,每一所述部分带宽相关参数配置有至少一个参数值。
第十五方面,提供了一种可读存储介质,所述可读存储介质上存储程序或指令,所述程序或指令被处理器执行时实现如第一方面、第二方面、第三方面或第四方面所述的方法的步骤。
第十六方面,提供了一种芯片,所述芯片包括处理器和通信接口,所述通信接口和所述处理器耦合,所述处理器用于运行程序或指令,实现如第一方面、第二方面、第三方面或第四方面所述的方法。
第十七方面,提供了一种计算机程序/程序产品,所述计算机程序/程序产品被存储在非瞬态的存储介质中,所述程序/程序产品被至少一个处理器执行以实现如第一方面、第二方面、第三方面或第四方面所述的方法的步骤。
在本申请实施例中,终端能够在完整带宽的部分带宽上发送SRS,且至少两个完整带宽的部分带宽的发送位置索引不同,从而有利于终端获得完整的信道特性。
附图说明
图1为本申请实施例可应用的一种无线通信系统的框图;
图2为本申请一实施例的SRS的发送方法的流程示意图;
图3为本申请实施例1的SRS的接收方法的流程示意图;
图4为本申请实施例2的SRS的接收方法的流程示意图;
图5为本申请实施例3的SRS的接收方法的流程示意图;
图6为本申请实施例4的SRS的接收方法的流程示意图;
图7为本申请实施例5的SRS的接收方法的流程示意图;
图8为本申请实施例6的SRS的接收方法的流程示意图;
图9为本申请实施例7的SRS的接收方法的流程示意图;
图10为本申请另一实施例的SRS的接收方法的流程示意图;
图11为本申请另一实施例的SRS的发送方法的流程示意图;
图12为本申请实施例的SRS的配置方法的流程示意图;
图13为本申请一实施例的SRS的发送装置的结构示意图;
图14为本申请另一实施例的SRS的发送装置的结构示意图;
图15为本申请实施例的SRS的接收装置的结构示意图;
图16为本申请实施例的SRS的配置装置的结构示意图;
图17为本申请实施例的通信设备的结构示意图;
图18为本申请实施例的终端的硬件结构示意图;
图19为本申请实施例的网络侧设备的硬件结构示意图。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚描述,显然,所描述的实施例是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员所获得的所有其他实施例,都属于本申请保护的范围。
本申请的说明书和权利要求书中的术语“第一”、“第二”等是用于区别 类似的对象,而不用于描述特定的顺序或先后次序。应该理解这样使用的术语在适当情况下可以互换,以便本申请的实施例能够以除了在这里图示或描述的那些以外的顺序实施,且“第一”、“第二”所区别的对象通常为一类,并不限定对象的个数,例如第一对象可以是一个,也可以是多个。此外,说明书以及权利要求中“和/或”表示所连接对象的至少其中之一,字符“/”一般表示前后关联对象是一种“或”的关系。
值得指出的是,本申请实施例所描述的技术不限于长期演进型(Long Term Evolution,LTE)/LTE的演进(LTE-Advanced,LTE-A)系统,还可用于其他无线通信系统,诸如码分多址(Code Division Multiple Access,CDMA)、时分多址(Time Division Multiple Access,TDMA)、频分多址(Frequency Division Multiple Access,FDMA)、正交频分多址(Orthogonal Frequency Division Multiple Access,OFDMA)、单载波频分多址(Single-carrier Frequency-Division Multiple Access,SC-FDMA)和其他系统。本申请实施例中的术语“系统”和“网络”常被可互换地使用,所描述的技术既可用于以上提及的系统和无线电技术,也可用于其他系统和无线电技术。以下描述出于示例目的描述了新空口(New Radio,NR)系统,并且在以下大部分描述中使用NR术语,但是这些技术也可应用于NR系统应用以外的应用,如第6代(6 th Generation,6G)通信系统。
图1示出本申请实施例可应用的一种无线通信系统的框图。无线通信系统包括终端11和网络侧设备12。其中,终端11也可以称作终端设备或者用户设备(User Equipment,UE),终端11可以是手机、平板电脑(Tablet Personal Computer)、膝上型电脑(Laptop Computer)或称为笔记本电脑、个人数字助理(Personal Digital Assistant,PDA)、掌上电脑、上网本、超级移动个人计算机(Ultra-Mobile Personal Computer,UMPC)、移动上网装置(Mobile Internet Device,MID)、可穿戴式设备(Wearable Device)或车载设备(VUE)、行人终端(PUE)等终端侧设备,可穿戴式设备包括:智能手表、手环、耳机、 眼镜等。需要说明的是,在本申请实施例并不限定终端11的具体类型。网络侧设备12可以是基站或核心网,其中,基站可被称为节点B、演进节点B、接入点、基收发机站(Base Transceiver Station,BTS)、无线电基站、无线电收发机、基本服务集(Basic Service Set,BSS)、扩展服务集(Extended Service Set,ESS)、B节点、演进型B节点(eNB)、家用B节点、家用演进型B节点、无线局域网(Wireless Local Area Network,WLAN)接入点、WiFi节点、发送接收点(Transmitting Receiving Point,TRP)或所述领域中其他某个合适的术语,只要达到相同的技术效果,所述基站不限于特定技术词汇,需要说明的是,在本申请实施例中仅以NR系统中的基站为例,但是并不限定基站的具体类型。
下面结合附图,通过一些实施例及其应用场景对本申请实施例提供的SRS的发送方法、接收方法、配置方法及装置进行详细地说明。
下面首先对本申请涉及的SRS的相关内容进行介绍。
请参考表1,表1为协议约定的SRS带宽配置表格,表格中C SRS和B SRS为索引参数,m SRS,b为SRS在一个OFDM符号上的完整带宽,N 0、N 1、N 2和N 3为跳频次数。网络侧可以通过配置C_SRS和B_SRS参数,来控制m SRS,b的值。
表1 SRS带宽配置(SRS bandwidth configuration)
Figure PCTCN2022083669-appb-000001
Figure PCTCN2022083669-appb-000002
Figure PCTCN2022083669-appb-000003
目前SRS传输支持comb 2,comb4以及comb 8,分别表示每2个子载波中占用一个,每4个子载波中占用一个,每8个子载波中占用一个用于SRS传输。
SRS的序列长度
Figure PCTCN2022083669-appb-000004
可以采用如下公式计算:
Figure PCTCN2022083669-appb-000005
其中,m SRS,b是通过C SRS和B SRS参数配置获得的SRS在一个OFDM符号上的完整带宽,
Figure PCTCN2022083669-appb-000006
表示一个资源块(Resource Block,RB)内的子载波个数,K TC则表示comb size,上述comb 2,comb 4,comb8分别对应comb size为2,4,8。
SRS在一个OFDM符号上的频域位置是通过n shift和n RRC等参数共同确定的,其中,n shift是表示相对于参考点网格的频域偏移数值,n RRC是SRS带宽发送起始位置参数。
现有协议中,SRS频域起始位置
Figure PCTCN2022083669-appb-000007
通过以下公式确定:
Figure PCTCN2022083669-appb-000008
其中:
Figure PCTCN2022083669-appb-000009
如果
Figure PCTCN2022083669-appb-000010
Figure PCTCN2022083669-appb-000011
and p i∈{1001,1003}
Figure PCTCN2022083669-appb-000012
否则,
Figure PCTCN2022083669-appb-000013
n shift是相对于参考点网格的频域偏移数值;
Figure PCTCN2022083669-appb-000014
是一个RB中的子载波个数;
Figure PCTCN2022083669-appb-000015
是端口p i的comb offset;
Figure PCTCN2022083669-appb-000016
是协议约定的一个额外偏移值;
K TC是comb size;
Figure PCTCN2022083669-appb-000017
是SRS中配置的comb offset;
Figure PCTCN2022083669-appb-000018
是SRS中配置的循环移位值;
Figure PCTCN2022083669-appb-000019
是最大循环移位值,协议约定与comb size相关;
n b表示频域位置索引,通过配置在SRS中的参数获得。
另外,SRS支持重复发送,R代表重复因子,所述重复因子代表该SRS在时域符号上的重复次数,即SRS在多个重复的OFDM符号上的完整带宽大小以及频域位置完全相同。
目前SRS发送是根据SRS发送位置计数器n SRS的值,确定每个OFDM符号上SRS发送的频域位置。
对于非周期SRS,SRS发送位置的计数器
Figure PCTCN2022083669-appb-000020
对于周期和半持续SRS,发送位置的计数器
Figure PCTCN2022083669-appb-000021
Figure PCTCN2022083669-appb-000022
其中,需要满足
Figure PCTCN2022083669-appb-000023
l′代表SRS的符号索引,
Figure PCTCN2022083669-appb-000024
R代表SRS的重复因子;
T offset代表SRS的周期偏移;
T SRS代表SRS的周期;
Figure PCTCN2022083669-appb-000025
代表SRS的符号个数。
其中,计数器n SRS用在如下公式中:
Figure PCTCN2022083669-appb-000026
Figure PCTCN2022083669-appb-000027
即当跳频开启时,也就是b hop<B SRS时,频域位置索引n b与n SRS有关。
目前正在讨论在一个SRS资源或SRS资源集的OFDM符号上采用SRS进行部分频域探测,也就是在一个SRS资源或SRS资源集的OFDM符号的完整带宽上仅在部分连续带宽上发送SRS。部分带宽可能的形式为
Figure PCTCN2022083669-appb-000028
其中,P F是部分带宽系数,可能的取值为2,3,4,8等,且由于
Figure PCTCN2022083669-appb-000029
会出现无法整除的现象,需要引入相应的取整方法,例如,向上取整,向下取整,向上取整到2的倍数等。对于一个SRS资源发送的部分带宽来说,在一个OFDM符号上的完整带宽可以被部分带宽系数或协议约定或网络配置的带宽大小划分成至少一个可用的起始位置。
目前,一个SRS资源在所述一个OFDM符号上发送部分带宽的起始位置或部分带宽系数等参数的指示方法还不明确。并且,当部分发送带宽的起始位置确定后,SRS在一个OFDM符号上的部分带宽的发送起始位置无法在多个发送周期或多次跳频之间变换发送位置,导致UE抗干扰能力降低,且使用部分带宽发送的方法后,无法完整探测带宽。
为解决上述问题,请参考图2,本申请实施例提供了一种SRS的发送方法,包括:
步骤21:终端在一个SRS资源集合或SRS资源的R个OFDM符号对应的完整带宽上,以部分带宽跳频方式发送SRS,其中,所述部分带宽跳频方式中,所述SRS在每个完整带宽的部分带宽上发送,且存在至少两个所述完整带宽,所述至少两个所述完整带宽的部分带宽的发送位置索引不同,R为重复因子,为大于等于1的正整数。
在本申请实施例中,终端能够在完整带宽的部分带宽上发送SRS,且至少两个完整带宽的部分带宽的发送位置索引不同,从而有利于终端获得完整的信道特性。
本申请施例中,可选的,终端在一个SRS资源的R个OFDM符号对应的完整带宽上,以部分带宽跳频方式发送SRS包括:
所述终端根据部分带宽的发送位置索引、部分带宽跳频周期内的部分带宽的发送位置索引的个数M、部分带宽跳频规则和部分带宽的发送位置索引序列中的至少之一,发送SRS。
本申请实施例中,可选的,所述M满足以下条件之一:
1)所述M等于N,其中,N为从所述R个OFDM符号对应的完整带宽中确定的部分带宽的发送位置索引的个数,N为大于等于1的正整数;
2)若所述N个部分带宽的发送位置索引对应的N个部分带宽大小相同,所述M等于N;
即终端期望所述N个部分带宽的发送位置索引对应的N个部分带宽大小相同,此时所述M等于N。
3)若所述N个部分带宽的发送位置索引对应的N个部分带宽大小不完全相同,所述M等于N 1,其中,N 1为所述N个部分带宽的发送位置索引对应的N个部分带宽中,最大的部分带宽大小对应的发送位置索引的个数;
可选的,除最大的部分带宽大小对应的部分带宽之外,其他部分带宽不参与部分带宽跳频。
4)若所述N个部分带宽的发送位置索引对应的N个部分带宽大小不完全相同,所述M等于N 2,其中,N 2为所述N个部分带宽的发送位置索引对应的N个部分带宽中,最小的部分带宽大小对应的发送位置索引的个数。
5)所述M小于等于N,由网络侧指示。
本申请实施例中,可选的,所述N由以下参数中的至少之一确定:部分带宽系数、所述完整带宽的大小和部分带宽大小。
本申请实施例中,可选的,所述方法还包括:所述终端获取SRS资源集 合或SRS资源的部分带宽相关参数的配置信息,所述部分带宽相关参数包括以下至少之一:部分带宽系数、部分带宽的取整方法、部分带宽的发送起始位置,每一所述部分带宽相关参数配置有至少一个参数值。
本申请实施例中,可选的,所述方法还包括:所述终端接收第一指示信息,所述第一指示信息用于从为所述部分带宽相关参数配置的至少一个参数值中指示一个目标参数值。
本申请实施例中,可选的,在一个完整的跳频带宽周期内,每个参与跳频的部分带宽的发送位置索引相同。即在一个完整的跳频带宽周期内,每个参与跳频的部分带宽的发送起始位置不变,也就是相对R个OFDM符号对应的完整带宽的位置不变。
本申请实施例中,所述完整的跳频带宽周期,是指所述R个OFDM符号的完整带宽按照协议规则,从一个完整带宽的起始位置开始进行跳频,直到跳回到所述起始位置之前的称为一个完整的跳频带宽周期。
本申请实施例中,可选的,一个完整的跳频带宽周期内的部分带宽的跳频起始位置是根据协议约定的第一次跳频的起始位置确定的频域位置;即根据初始参数配置确定的n b索引确定。
或者,一个完整的跳频带宽周期内的部分带宽的跳频起始位置是根据部分带宽跳频使能之后的X个符号或时隙确定的频域位置。即根据初始参数配置以及X个符号或时隙确定的所述SRS的频域位置对应的n b索引确定,可选的,所述n b索引与部分跳频中的部分带宽的发送位置索引有关。
其中,X可以包括接收到部分带宽使能信令后到进行肯定确认(Acknowledgement,ACK)反馈或否定确认(Negative Acknowledgement,NACK)反馈的时间。
本申请实施例中,可选的,相邻的完整的跳频带宽周期的参与跳频的部分带宽的发送位置索引不同。
本申请实施例中,可选的,相邻的部分带宽的发送位置索引不同。
本申请实施例中,可选的,所述方法还包括:所述终端接收部分带宽跳 频使能信令,所述部分带宽跳频使能信令用于指示所述终端、一个SRS资源集合或者一个SRS资源是否使能部分带宽跳频。
本申请实施例中,可选的,所述部分带宽跳频使能信令为下行控制信息(Downlink Control Information,DCI)、媒体接入控制(Media Access Control,MAC)控制单元(Control Element,CE)或无线资源控制(Radio Resource Control,RRC)信令。
本申请实施例中,可选的,终端在一个SRS资源的R个OFDM符号对应的完整带宽上,以部分带宽跳频方式发送SRS包括以下之一:
所述终端在接收部分带宽跳频使能信令之后的X个符号或时隙,以部分带宽跳频方式发送SRS。
所述终端在接收部分带宽跳频使能信令之后进行ACK或NACK反馈报告后的X个符号或时隙,以部分带宽跳频方式发送SRS。
本申请实施例中,可选的,所述部分带宽跳频规则为顺序增加索引值或者倒序减少索引值。即当前跳频的部分带宽的发送位置索引根据上一次跳频的部分带宽的发送位置索引确定。
本申请实施例中,可选的,当前跳频的部分带宽的发送位置索引=(上一次跳频的部分带宽的发送位置索引+n)mod(M);或者
当前跳频的部分带宽的发送位置索引=(上一次跳频的部分带宽的发送位置索引+n)mod(N);或者
当前跳频的部分带宽的发送位置索引=(上一次跳频的部分带宽的发送位置索引-n)mod(M);或者
当前跳频的部分带宽的发送位置索引=(上一次跳频的部分带宽的发送位置索引-n)mod(N);
其中,n为每个完整的跳频带宽周期或每次跳频时部分带宽的发送位置索引增加值,n为大于等于1的正整数。可选的,n的取值由协议约定或网络侧配置,和/或与所述M或N的值有关。
进一步可选的,n等于1。
本申请实施例中,可选的,所述方法还包括:根据网络侧发送的指示信息,确定部分带宽的发送位置索引序列,所述指示信息用于指示部分带宽的发送位置索引序列。
本申请实施例中,可选的,所述部分带宽的发送位置索引序列满足以下条件至少之一:
所述部分带宽的发送位置索引序列中的最大索引值等于M或M-1;
所述部分带宽的发送位置索引序列中索引个数不大于M;
所述部分带宽的发送位置索引序列中可配置相同的索引值;
所述部分带宽的发送位置索引序列中的索引值均不同。
本申请实施例中,可选的,所述部分带宽的发送位置索引序列的第y个索引值,用于指示部分带宽跳频使能之前的部分带宽的发送起始位置。
本申请实施例中,可选的,y为大于等于1的正整数,由协议约定或网络配置。
本申请实施例中,可选的,所述部分带宽的发送位置索引序列从部分带宽跳频使能后生效;或者所述部分带宽的发送位置索引序列配置后生效。
本申请实施例中,可选的,所述部分带宽的发送位置索引序列根据以下参数中的至少之一确定:频域位置索引N b、SRS发送位置计数器的值n SRS、用于确定是否跳频以及跳频次数的参数b hop、SRS在一个OFDM符号上的完整带宽m SRS,b、SRS带宽发送起始位置参数n RRC、跳频索引参数B SRS、部分带宽跳频周期内的部分带宽的发送位置索引的个数M、发送位置索引个数N、部分带宽系数和部分带宽的发送起始位置。
本申请实施例中,可选的,所述SRS为周期性SRS或半持续SRS。即终端不期望非周期SRS被配置或使能部分带宽跳频探测。
下面结合具体实施例,对本申请的上述SRS的发送方法进行说明。
实施例1:
请参考图3,图3为本申请实施例1的确定部分带宽的发送位置索引的方法。本申请实施例中,OFDM符号对应的一个完整带宽被划分为3个部分 带宽,终端确定部分带宽跳频周期内的部分带宽的发送位置索引的个数M等于2,另外,终端按照顺序增加索引值的方法确定部分带宽的发送位置索引序列(0、1),即当前跳频的部分带宽的发送位置索引=(上一次跳频的部分带宽的发送位置索引+n)mod(M),n=1。图3所示的实施例中,在每一个完整的跳频带宽周期内,执行4次现有的跳频(非部分带宽跳频),且在每一个完整带宽上,每次跳频的部分带宽的发送位置索引均相同,例如在第一个完整的跳频带宽周期内,执行4次跳频,每次跳频的部分带宽的发送位置索引为0,在第二个完整的跳频带宽周期内,执行4次跳频,每次跳频的部分带宽的发送位置索引为1。在相邻的完整跳频带宽周期内,跳频的部分带宽的发送位置索引不同。
实施例2:
请参考图4,图4为本申请实施例2的确定部分带宽的发送位置索引的方法。本申请实施例中,OFDM符号对应的一个完整带宽被划分为3个部分带宽,终端确定部分带宽跳频周期内的部分带宽的发送位置索引的个数M等于3,另外,终端按照倒序减索引值的方法确定部分带宽的发送位置索引序列(0、2、1),即当前跳频的部分带宽的发送位置索引=(上一次跳频的部分带宽的发送位置索引-n)mod(M),n=1。图4所示的实施例中,在每一个完整的跳频带宽周期内,执行4次现有的跳频(非部分带宽跳频),且在每一个完整带宽上,每次跳频的部分带宽的发送位置索引均相同,例如在第一个完整的跳频带宽周期内,执行4次跳频,每次跳频的部分带宽的发送位置索引为1,在第二个完整的跳频带宽周期内,执行4次跳频,每次跳频的部分带宽的发送位置索引为2。在相邻的完整跳频带宽周期内,跳频的部分带宽的发送位置索引不同。
实施例3:
请参考图5,图5为本申请实施例3的确定部分带宽的发送位置索引的方法。本申请实施例中,OFDM符号对应的一个完整带宽被划分为3个部分带宽,终端按照网络侧的指示确定部分带宽的发送位置索引序列(1,0,2)。 图5所示的实施例中,在每一个完整的跳频带宽周期内,执行4次现有的跳频(非部分带宽跳频),且在每一个完整带宽上,每次跳频的部分带宽的发送位置索引均相同,例如在第一个完整的跳频带宽周期内,执行4次跳频,每次跳频的部分带宽的发送位置索引为1,在第二个完整的跳频带宽周期内,执行4次跳频,每次跳频的部分带宽的发送位置索引为0,在第三个完整的跳频带宽周期内,执行4次跳频,每次跳频的部分带宽的发送位置索引为2。在相邻的完整跳频带宽周期内,跳频的部分带宽的发送位置索引不同。
实施例4:
请参考图6,图6为本申请实施例4的确定部分带宽的发送位置索引的方法。本申请实施例中,OFDM符号对应的一个完整带宽被划分为3个部分带宽,终端按照网络侧的指示确定部分带宽的发送位置索引序列(1,0)。图6所示的实施例中,在每一个完整的跳频带宽周期内,执行4次现有的跳频(非部分带宽跳频),且在每一个完整带宽上,每次跳频的部分带宽的发送位置索引均相同,例如在第一个完整的跳频带宽周期内,执行4次跳频,每次跳频的部分带宽的发送位置索引为1,在第二个完整的跳频带宽周期内,执行4次跳频,每次跳频的部分带宽的发送位置索引为0,在第三个完整的跳频带宽周期内,执行4次跳频,每次跳频的部分带宽的发送位置索引为1。在相邻的完整跳频带宽周期内,跳频的部分带宽的发送位置索引不同。
实施例5:
请参考图7,图7为本申请实施例5的确定部分带宽的发送位置索引的方法。本申请实施例中,OFDM符号对应的一个完整带宽被划分为3个部分带宽,终端按照网络侧的指示确定部分带宽的发送位置索引序列(1,0)。图7所示的实施例中,在每一个完整的跳频带宽周期内,执行4次跳频,且在每一个完整带宽上,相邻的跳频的部分带宽的发送位置索引不同,例如在第一个完整的跳频带宽周期内,执行4次跳频,第一次跳频的部分带宽的发送位置索引为1,第二次跳频的部分带宽的发送位置索引为0,第三次跳频的部分带宽的发送位置索引为1,第四次跳频的部分带宽的发送位置索引为0。
实施例6:
请参考图8,图8为本申请实施例6的确定部分带宽的发送位置索引的方法。本申请实施例中,OFDM符号对应的一个完整带宽被划分为3个部分带宽,终端按照网络侧的指示确定部分带宽的发送位置索引序列(1,0),部分带宽跳频的起始位置索引为1,从部分带宽跳频使能后开始生效。
实施例7:
请参考图9,图9为本申请实施例7的确定部分带宽的发送位置索引的方法。本申请实施例中,OFDM符号对应的一个完整带宽被划分为3个部分带宽,终端按照网络侧的指示确定部分带宽的发送位置索引序列(1,0),部分带宽跳频的起始位置索引为1,部分带宽跳频配置后就生效。
请参考图10,本申请实施例还提供一种SRS的接收方法,包括:
步骤101:网络侧设备在一个SRS资源集合或SRS资源的R个OFDM符号对应的完整带宽上,接收终端以部分带宽跳频方式发送的SRS,其中,所述部分带宽跳频方式中,所述SRS在每个完整带宽的部分带宽上发送,且存在至少两个所述完整带宽,所述至少两个所述完整带宽的部分带宽的发送位置索引不同,R为重复因子,为大于等于1的正整数。
请参考图11,本申请实施例还提供一种SRS的发送方法,包括:
步骤111:终端获取SRS资源集合或SRS资源的部分带宽相关参数的配置信息,所述部分带宽相关参数包括以下至少之一:部分带宽系数、部分带宽的取整方法、部分带宽的发送起始位置,每一所述部分带宽相关参数配置有至少一个参数值;
步骤112:所述终端根据所述配置信息,进行SRS的发送。
本申请实施例中,通过网络侧灵活指示部分带宽相关参数,从而根据指示的部分带宽相关参数进行SRS的发放。
本申请实施例中,通过网络侧灵活指示部分带宽相关参数,从而根据指示的部分带宽相关参数进行SRS的发放。
本申请实施例中,可选的,所述方法还包括:
所述终端接收第一指示信息,所述第一指示信息用于从为所述部分带宽相关参数配置的至少一个参数值中指示一个目标参数值;
其中,所述终端根据所述配置信息,进行SRS的发送包括:所述终端根据所述目标参数值,进行SRS的发送。
本申请实施例中,可选的,所述第一指示信息通过DCI携带。
在一些实施例中,可选的,所述SRS资源集合或SRS资源对应的时域类型为非周期类型,所述SRS资源集合或SRS资源包括至少一个触发状态(trigger state),每个所述trigger state能够关联至少一个所述部分带宽相关参数的至少一个参数值;
所述DCI通过SRS请求域选择触发对应的配置了目标trigger state的所述SRS资源集或所述SRS资源。
可选的,所述终端根据所述配置信息,进行SRS的发送包括:
若所述目标trigger state关联有所述部分带宽相关参数,所述终端根据所述trigger state关联的至少一个所述部分带宽相关参数的至少一个参数值,进行SRS的发送。
可选的,若所述目标trigger state关联的所述部分带宽相关参数配置有至少两个参数值;
所述DCI还用于通过第一域从所述部分带宽相关参数配置的至少两个参数值中指示一个目标参数值,所述第一域与所述SRS请求域为不同域;
或者
由协议约定所述部分带宽相关参数配置的至少两个参数值中一个作为目标参数值。
可选的,所述方法还包括:
若所述目标trigger state未关联所述部分带宽相关参数,所述终端确定部分带宽探测功能不使能。
在另外一些实施例中,可选的,所述SRS资源集合或SRS资源对应的时域类型为非周期类型;
所述DCI通过SRS请求域选择触发所述SRS资源集合或SRS资源中的目标非周期SRS;所述SRS请求域的每个码点能够关联至少一个所述部分带宽相关参数的至少一个参数值。
可选的,所述终端根据所述配置信息,进行SRS的发送包括:
若用于触发所述目标非周期SRS的所述SRS请求域关联有所述部分带宽相关参数,所述终端根据所述SRS请求域关联的至少一个所述部分带宽相关参数的至少一个参数值,进行SRS的发送。
可选的,若用于触发所述目标非周期SRS的所述SRS请求域关联的所述部分带宽相关参数配置有至少两个参数值;
所述DCI还用于通过第一域从所述部分带宽相关参数配置的至少两个参数值中指示一个目标参数值,所述第一域与所述非周期SRS请求域为不同域;
或者
由协议约定所述部分带宽相关参数配置的至少两个参数值中一个作为目标参数值。
本申请实施例中,可选的,若所述SRS请求域的值等于0,则表示不激活非周期SRS的码点,不配置非周期SRS的码点与部分带宽相关参数的关联关系。
本申请实施例中,可选的,所述第一指示信息通过MAC CE携带。
本申请实施例中,可选的,所述SRS资源集合或SRS资源指示的SRS为半持续SRS时,所述MAC CE为激活或去激活半持续SRS的MAC CE。
本申请的上述各实施例中,可选的,所述方法还包括:
所述终端接收所述部分带宽相关参数的配置信息的更新信息,所述更新信息用于更新所述部分带宽相关参数的参数值。
本申请实施例中,可选的,所述更新信息通过MAC CE携带。
本申请的上述各实施例中,可选的,若所述部分带宽相关参数仅配置有一个参数值,所述终端根据所述配置信息,进行SRS的发送包括:所述终端按照所述配置信息中配置的所述部分带宽相关参数的参数值,进行SRS的发 送。
本申请实施例中,可选的,若至少两个SRS资源集合或SRS资源满足以下条件之一,所述至少两个SRS资源集合或SRS资源的至少一个部分带宽相关参数配置成相同的参数值:
所述至少两个SRS资源集合或SRS资源属于同一个小区;
所述至少两个SRS资源集合或SRS资源属于同一个载波;
所述至少两个SRS资源集合或SRS资源属于同一个终端;
所述至少两个SRS资源集合或SRS资源的带宽大小相同;
所述至少两个SRS资源集合或SRS资源的带宽频域起始位置相同;
所述至少两个SRS资源集合或SRS资源均支持部分带宽探测能力的终端。
可选的,所述至少两个SRS资源集合或SRS资源的部分带宽系数配置成相同的参数值。
请参考图12,本申请实施例还提供一种SRS的配置方法,包括:
步骤121:网络侧设备发送SRS资源集合或SRS资源的部分带宽相关参数的配置信息,所述部分带宽相关参数包括以下至少之一:部分带宽系数、部分带宽的取整方法、部分带宽的发送起始位置,每一所述部分带宽相关参数配置有至少一个参数值。
本申请实施例中,通过网络侧灵活指示部分带宽相关参数,从而根据指示的部分带宽相关参数进行SRS的发放。
本申请实施例中,可选的,所述方法还包括:所述网络侧设备发送第一指示信息,所述第一指示信息用于从为所述部分带宽相关参数配置的至少一个参数值中指示一个目标参数值。
本申请实施例中,可选的,所述第一指示信息通过DCI携带。
本申请实施例中,可选的,所述SRS资源集合或SRS资源对应的时域类型为非周期类型,所述SRS资源集合或SRS资源包括至少一个触发状态trigger state,每个所述trigger state能够关联至少一个所述部分带宽相关参数的至少一个参数值;
所述DCI通过SRS请求域选择触发对应的配置了目标trigger state的所述SRS资源集或所述SRS资源。
本申请实施例中,可选的,若所述目标trigger state关联的所述部分带宽相关参数配置有至少两个参数值;
所述DCI还用于通过第一域从所述部分带宽相关参数配置的至少两个参数值中指示一个目标参数值,所述第一域与所述SRS请求域为不同域;
或者
由协议约定所述部分带宽相关参数配置的至少两个参数值中一个作为目标参数值。
本申请实施例中,可选的,所述SRS资源集合或SRS资源对应的时域类型为非周期类型;
所述DCI通过SRS请求域选择触发所述SRS资源集合或SRS资源中的目标非周期SRS;所述SRS请求域的每个码点能够关联至少一个所述部分带宽相关参数的至少一个参数值。
本申请实施例中,可选的,若用于触发所述目标非周期SRS的所述SRS请求域关联的所述部分带宽相关参数配置有至少两个参数值;
所述DCI还用于通过第一域从所述部分带宽相关参数配置的至少两个参数值中指示一个目标参数值,所述第一域与所述非周期SRS请求域为不同域;
或者
由协议约定所述部分带宽相关参数配置的至少两个参数值中一个作为目标参数值。
本申请实施例中,可选的,所述第一指示信息通过MAC CE携带。
本申请实施例中,可选的,所述SRS资源集合或SRS资源指示的SRS为半持续SRS时,所述MAC CE为激活或去激活半持续SRS的MAC CE。
本申请实施例中,可选的,所述方法还包括:
所述网络侧设备发送所述部分带宽相关参数的配置信息的更新信息,所述更新信息用于更新所述部分带宽相关参数的参数值。
本申请实施例中,可选的,所述更新信息通过MAC CE携带。
本申请实施例中,可选的,若至少两个SRS资源集合或SRS资源满足以下条件之一,所述至少两个SRS资源集合或SRS资源的至少一个部分带宽相关参数配置成相同的参数值:
所述至少两个SRS资源集合或SRS资源属于同一个小区;
所述至少两个SRS资源集合或SRS资源属于同一个载波;
所述至少两个SRS资源集合或SRS资源属于同一个终端;
所述至少两个SRS资源集合或SRS资源的带宽大小相同;
所述至少两个SRS资源集合或SRS资源的带宽频域起始位置相同;
所述至少两个SRS资源集合或SRS资源均支持部分带宽探测能力的终端。
需要说明的是,本申请实施例提供的SRS的发送方法,执行主体可以为SRS的发送装置,或者,该SRS的发送装置中的用于执行SRS的发送的控制模块。本申请实施例中以SRS的发送装置执行SRS的发送方法为例,说明本申请实施例提供的SRS的发送装置。
请参考图13,本申请实施例还提供一种SRS的发送装置130,包括:
发送模块131,用于在一个SRS资源集合或SRS资源的R个OFDM符号对应的完整带宽上,以部分带宽跳频方式发送SRS,其中,所述部分带宽跳频方式中,所述SRS在每个完整带宽的部分带宽上发送,且存在至少两个所述完整带宽,所述至少两个所述完整带宽的部分带宽的发送位置索引不同,R为重复因子,为大于等于1的正整数。
本申请实施例中,终端能够在完整带宽的部分带宽上发送SRS,且至少两个完整带宽的部分带宽的发送位置索引不同,从而有利于终端获得完整的信道特性。
可选的,所述发送模块131,用于根据部分带宽的发送位置索引、部分带宽跳频周期内的部分带宽的发送位置索引的个数M、部分带宽跳频规则和部分带宽的发送位置索引序列中的至少之一,发送SRS,M小于或等于N。
可选的,所述M满足以下条件之一:
所述M等于N,其中,N为从所述R个OFDM符号对应的完整带宽中确定的部分带宽的发送位置索引的个数,N为大于等于1的正整数;
若所述N个部分带宽的发送位置索引对应的N个部分带宽大小相同,所述M等于N;
若所述N个部分带宽的发送位置索引对应的N个部分带宽大小不完全相同,所述M等于N 1,其中,N 1为所述N个部分带宽的发送位置索引对应的N个部分带宽中,最大的部分带宽大小对应的发送位置索引的个数;
若所述N个部分带宽的发送位置索引对应的N个部分带宽大小不完全相同,所述M等于N 2,其中,N 2为所述N个部分带宽的发送位置索引对应的N个部分带宽中,最小的部分带宽大小对应的发送位置索引的个数;
所述M小于等于N,由网络侧指示。
可选的,所述N由以下参数中的至少之一确定:部分带宽系数、所述完整带宽的大小和部分带宽大小。
可选的,所述SRS的发送装置130还包括:
获取模块,用于获取SRS资源集合或SRS资源的部分带宽相关参数的配置信息,所述部分带宽相关参数包括以下至少之一:部分带宽系数、部分带宽的取整方法、部分带宽的发送起始位置,每一所述部分带宽相关参数配置有至少一个参数值。
可选的,SRS的发送装置130还包括:
第一接收模块,用于接收第一指示信息,所述第一指示信息用于从为所述部分带宽相关参数配置的至少一个参数值中指示一个目标参数值。
可选的,在一个完整的跳频带宽周期内,每个参与跳频的部分带宽的发送位置索引相同。
可选的,一个完整的跳频带宽周期内的部分带宽的跳频起始位置是根据协议约定的第一次跳频的起始位置确定的频域位置;
或者
一个完整的跳频带宽周期内的部分带宽的跳频起始位置是根据部分带宽 跳频使能之后的X个符号或时隙确定的频域位置。
可选的,相邻的完整的跳频带宽周期的参与跳频的部分带宽的发送位置索引不同。
可选的,相邻的部分带宽的发送位置索引不同。
可选的,所述SRS的发送装置130还包括:
第二接收模块,用于接收部分带宽跳频使能信令,所述部分带宽跳频使能信令用于指示所述终端、一个SRS资源集合或者一个SRS资源是否使能部分带宽跳频。
可选的,所述部分带宽跳频使能信令为DCI、MAC CE或RRC信令。
可选的,在一个SRS资源的R个OFDM符号对应的完整带宽上,以部分带宽跳频方式发送SRS包括以下之一:
在接收部分带宽跳频使能信令之后的X个符号或时隙,以部分带宽跳频方式发送SRS。
在接收部分带宽跳频使能信令之后进行ACK或NACK反馈报告后的X个符号或时隙,以部分带宽跳频方式发送SRS。
可选的,所述部分带宽跳频规则为顺序增加索引值或者倒序减少索引值。
可选的,所述部分带宽跳频规则为:
当前跳频的部分带宽的发送位置索引=(上一次跳频的部分带宽的发送位置索引+n)mod(M);
或者
当前跳频的部分带宽的发送位置索引=(上一次跳频的部分带宽的发送位置索引+n)mod(N);
或者
当前跳频的部分带宽的发送位置索引=(上一次跳频的部分带宽的发送位置索引-n)mod(M);
或者
当前跳频的部分带宽的发送位置索引=(上一次跳频的部分带宽的发送位 置索引-n)mod(N);
其中,n为每个完整的跳频带宽周期或每次跳频时部分带宽的发送位置索引增加值。
可选的,所述SRS的发送装置130还包括:
第二确定模块,用于根据网络侧发送的指示信息,确定部分带宽的发送位置索引序列,所述指示信息用于指示部分带宽的发送位置索引序列。
可选的,所述部分带宽的发送位置索引序列满足以下条件至少之一:
所述部分带宽的发送位置索引序列中的最大索引值等于M或M-1;
所述部分带宽的发送位置索引序列中索引个数不大于M;
所述部分带宽的发送位置索引序列中可配置相同的索引值;
所述部分带宽的发送位置索引序列中的索引值均不同。
可选的,所述部分带宽的发送位置索引序列的第y个索引值,用于指示部分带宽跳频使能之前的部分带宽的发送起始位置。
可选的,y为大于等于1的正整数,由协议约定或网络配置。
可选的,所述部分带宽的发送位置索引序列从部分带宽跳频使能后生效;
或者
所述部分带宽的发送位置索引序列配置后生效。
可选的,所述部分带宽的发送位置索引序列根据以下参数中的至少之一确定:频域位置索引N b、SRS发送位置计数器的值n SRS、用于确定是否跳频以及跳频次数的参数b hop、SRS在一个OFDM符号上的完整带宽m SRS,b、SRS带宽发送起始位置参数n RRC、跳频索引参数B SRS、部分带宽跳频周期内的部分带宽的发送位置索引的个数M、发送位置索引个数N、部分带宽系数和部分带宽的发送起始位置。
可选的,所述SRS为周期性SRS或半持续SRS。
本申请实施例提供的SRS的发送装置能够实现图2的方法实施例实现的各个过程,并达到相同的技术效果,为避免重复,这里不再赘述。
请参考图14,本申请实施例还提供一种SRS的发送装置140,包括:
获取模块141,用于获取SRS资源集合或SRS资源的部分带宽相关参数的配置信息,所述部分带宽相关参数包括以下至少之一:部分带宽系数、部分带宽的取整方法、部分带宽的发送起始位置,每一所述部分带宽相关参数配置有至少一个参数值;
发送模块142,用于根据所述配置信息,进行SRS的发送。
本申请实施例中,通过网络侧灵活指示部分带宽相关参数,从而根据指示的部分带宽相关参数进行SRS的发放。
可选的,所述SRS的发送装置140还包括:
第一接收模块,用于接收第一指示信息,所述第一指示信息用于从为所述部分带宽相关参数配置的至少一个参数值中指示一个目标参数值;
其中,所述发送模块142,用于根据所述目标参数值,进行SRS的发送。
可选的,所述第一指示信息通过DCI携带。
可选的,所述SRS资源集合或SRS资源对应的时域类型为非周期类型,所述SRS资源集合或SRS资源包括至少一个触发状态trigger state,每个所述trigger state能够关联至少一个所述部分带宽相关参数的至少一个参数值;
所述DCI通过SRS请求域选择触发对应的配置了目标trigger state的所述SRS资源集或所述SRS资源。
可选的,所述发送模块142,用于若所述目标trigger state关联有所述部分带宽相关参数,所述终端根据所述trigger state关联的至少一个所述部分带宽相关参数的至少一个参数值,进行SRS的发送。
可选的,若所述目标trigger state关联的所述部分带宽相关参数配置有至少两个参数值;
所述DCI还用于通过第一域从所述部分带宽相关参数配置的至少两个参数值中指示一个目标参数值,所述第一域与所述SRS请求域为不同域;
或者
由协议约定所述部分带宽相关参数配置的至少两个参数值中一个作为目标参数值。
可选的,所述SRS的发送装置140还包括:
确定模块,用于若所述目标trigger state未关联所述部分带宽相关参数,确定部分带宽探测功能不使能。
可选的,所述SRS资源集合或SRS资源对应的时域类型为非周期类型;
所述DCI通过SRS请求域选择触发所述SRS资源集合或SRS资源中的目标非周期SRS;所述SRS请求域的每个码点能够关联至少一个所述部分带宽相关参数的至少一个参数值。
可选的,所述发送模块142,用于若用于触发所述目标非周期SRS的所述SRS请求域关联有所述部分带宽相关参数,根据所述SRS请求域关联的至少一个所述部分带宽相关参数的至少一个参数值,进行SRS的发送。
可选的,若用于触发所述目标非周期SRS的所述SRS请求域关联的所述部分带宽相关参数配置有至少两个参数值;
所述DCI还用于通过第一域从所述部分带宽相关参数配置的至少两个参数值中指示一个目标参数值,所述第一域与所述非周期SRS请求域为不同域;
或者
由协议约定所述部分带宽相关参数配置的至少两个参数值中一个作为目标参数值。
可选的,所述第一指示信息通过MAC CE携带。
可选的,所述SRS资源集合或SRS资源指示的SRS为半持续SRS时,所述MAC CE为激活或去激活半持续SRS的MAC CE。
可选的,所述SRS的发送装置140还包括:
第二接收模块,用于接收所述部分带宽相关参数的配置信息的更新信息,所述更新信息用于更新所述部分带宽相关参数的参数值。
可选的,所述更新信息通过MAC CE携带。
可选的,若所述部分带宽相关参数仅配置有一个参数值,所述发送模块142,用于按照所述配置信息中配置的所述部分带宽相关参数的参数值,进行SRS的发送。
可选的,若至少两个SRS资源集合或SRS资源满足以下条件之一,所述至少两个SRS资源集合或SRS资源的至少一个部分带宽相关参数配置成相同的参数值:
所述至少两个SRS资源集合或SRS资源属于同一个小区;
所述至少两个SRS资源集合或SRS资源属于同一个载波;
所述至少两个SRS资源集合或SRS资源属于同一个终端;
所述至少两个SRS资源集合或SRS资源的带宽大小相同;
所述至少两个SRS资源集合或SRS资源的带宽频域起始位置相同;
所述至少两个SRS资源集合或SRS资源均支持部分带宽探测能力的终端。
本申请实施例中的SRS的发送装置可以是装置,具有操作系统的装置或电子设备,也可以是终端中的部件、集成电路、或芯片。该装置或电子设备可以是移动终端,也可以为非移动终端。示例性的,移动终端可以包括但不限于上述所列举的终端11的类型,非移动终端可以为服务器、网络附属存储器(Network Attached Storage,NAS)、个人计算机(Personal Computer,PC)、电视机(Television,TV)、柜员机或者自助机等,本申请实施例不作具体限定。
本申请实施例提供的SRS的发送装置能够实现图4的方法实施例实现的各个过程,并达到相同的技术效果,为避免重复,这里不再赘述。
请参考图15,本申请实施例还提供一种SRS的接收装置150,包括:
接收模块151,用于在一个SRS资源集合或SRS资源的R个OFDM符号对应的完整带宽上,接收终端以部分带宽跳频方式发送的SRS,其中,所述部分带宽跳频方式中,所述SRS在每个完整带宽的部分带宽上发送,且存在至少两个所述完整带宽,所述至少两个所述完整带宽的部分带宽的发送位置索引不同,R为重复因子,为大于等于1的正整数。
本申请实施例中,终端能够在完整带宽的部分带宽上发送SRS,且至少两个完整带宽的部分带宽的发送位置索引不同,从而有利于终端获得完整的信道特性。
请参考图16,本申请实施例还提供一种SRS的配置装置160,包括:
第一发送模块161,用于发送SRS资源集合或SRS资源的部分带宽相关参数的配置信息,所述部分带宽相关参数包括以下至少之一:部分带宽系数、部分带宽的取整方法、部分带宽的发送起始位置,每一所述部分带宽相关参数配置有至少一个参数值。
本申请实施例中,通过网络侧灵活指示部分带宽相关参数,从而根据指示的部分带宽相关参数进行SRS的发放。
可选的,所述SRS的配置装置160还包括:
第二发送模块,用于发送第一指示信息,所述第一指示信息用于从为所述部分带宽相关参数配置的至少一个参数值中指示一个目标参数值。
可选的,所述第一指示信息通过DCI携带。
可选的,所述SRS资源集合或SRS资源对应的时域类型为非周期类型,所述SRS资源集合或SRS资源包括至少一个触发状态trigger state,每个所述trigger state能够关联至少一个所述部分带宽相关参数的至少一个参数值;
所述DCI通过SRS请求域选择触发对应的配置了目标trigger state的所述SRS资源集或所述SRS资源。
可选的,若所述目标trigger state关联的所述部分带宽相关参数配置有至少两个参数值;
所述DCI还用于通过第一域从所述部分带宽相关参数配置的至少两个参数值中指示一个目标参数值,所述第一域与所述SRS请求域为不同域;
或者
由协议约定所述部分带宽相关参数配置的至少两个参数值中一个作为目标参数值。
可选的,所述SRS资源集合或SRS资源对应的时域类型为非周期类型;
所述DCI通过SRS请求域选择触发所述SRS资源集合或SRS资源中的目标非周期SRS;所述SRS请求域的每个码点能够关联至少一个所述部分带宽相关参数的至少一个参数值。
可选的,若用于触发所述目标非周期SRS的所述SRS请求域关联的所述部分带宽相关参数配置有至少两个参数值;
所述DCI还用于通过第一域从所述部分带宽相关参数配置的至少两个参数值中指示一个目标参数值,所述第一域与所述非周期SRS请求域为不同域;
或者
由协议约定所述部分带宽相关参数配置的至少两个参数值中一个作为目标参数值。
可选的,所述第一指示信息通过MAC CE携带。
可选的,所述SRS资源集合或SRS资源指示的SRS为半持续SRS时,所述MAC CE为激活或去激活半持续SRS的MAC CE。
可选的,所述SRS的配置装置160还包括:
第三发送模块,用于发送所述部分带宽相关参数的配置信息的更新信息,所述更新信息用于更新所述部分带宽相关参数的参数值。
可选的,所述更新信息通过MAC CE携带。
可选的,若至少两个SRS资源集合或SRS资源满足以下条件之一,所述至少两个SRS资源集合或SRS资源的至少一个部分带宽相关参数配置成相同的参数值:
所述至少两个SRS资源集合或SRS资源属于同一个小区;
所述至少两个SRS资源集合或SRS资源属于同一个载波;
所述至少两个SRS资源集合或SRS资源属于同一个终端;
所述至少两个SRS资源集合或SRS资源的带宽大小相同;
所述至少两个SRS资源集合或SRS资源的带宽频域起始位置相同;
所述至少两个SRS资源集合或SRS资源均支持部分带宽探测能力的终端。
如图17所示,本申请实施例还提供一种通信设备170,包括处理器171,存储器172,存储在存储器172上并可在所述处理器171上运行的程序或指令,例如,该通信设备170为终端时,该程序或指令被处理器171执行时实现上述SRS的发送方法实施例的各个过程,且能达到相同的技术效果。该通 信设备170为网络侧设备时,该程序或指令被处理器171执行时实现上述SRS的接收方法或者SRS的配置方法实施例的各个过程,且能达到相同的技术效果,为避免重复,这里不再赘述。
本申请实施例还提供一种终端,包括处理器和通信接口,通信接口用于在一个SRS资源集合或SRS资源的R个OFDM符号对应的完整带宽上,以部分带宽跳频方式发送SRS,其中,所述部分带宽跳频方式中,所述SRS在每个完整带宽的部分带宽上发送,且存在至少两个所述完整带宽,所述至少两个所述完整带宽的部分带宽的发送位置索引不同,R为重复因子,为大于等于1的正整数。或者,通信接口用于获取SRS资源集合或SRS资源的部分带宽相关参数的配置信息,所述部分带宽相关参数包括以下至少之一:部分带宽系数、部分带宽的取整方法、部分带宽的发送起始位置,每一所述部分带宽相关参数配置有至少一个参数值;根据所述配置信息,进行SRS的发送。该终端实施例是与上述终端侧方法实施例对应的,上述方法实施例的各个实施过程和实现方式均可适用于该终端实施例中,且能达到相同的技术效果。具体地,图18为实现本申请实施例的一种终端的硬件结构示意图。
该终端180包括但不限于:射频单元181、网络模块182、音频输出单元183、输入单元184、传感器185、显示单元186、用户输入单元187、接口单元188、存储器189、以及处理器1810等中的至少部分部件。
本领域技术人员可以理解,终端180还可以包括给各个部件供电的电源(比如电池),电源可以通过电源管理系统与处理器1810逻辑相连,从而通过电源管理系统实现管理充电、放电、以及功耗管理等功能。图18中示出的终端结构并不构成对终端的限定,终端可以包括比图示更多或更少的部件,或者组合某些部件,或者不同的部件布置,在此不再赘述。
应理解的是,本申请实施例中,输入单元184可以包括图形处理器(Graphics Processing Unit,GPU)1841和麦克风1842,图形处理器1841对在视频捕获模式或图像捕获模式中由图像捕获装置(如摄像头)获得的静态图片或视频的图像数据进行处理。显示单元186可包括显示面板1861,可以 采用液晶显示器、有机发光二极管等形式来配置显示面板1861。用户输入单元187包括触控面板1871以及其他输入设备1872。触控面板1871,也称为触摸屏。触控面板1871可包括触摸检测装置和触摸控制器两个部分。其他输入设备1872可以包括但不限于物理键盘、功能键(比如音量控制按键、开关按键等)、轨迹球、鼠标、操作杆,在此不再赘述。
本申请实施例中,射频单元181将来自网络侧设备的下行数据接收后,给处理器1810处理;另外,将上行的数据发送给网络侧设备。通常,射频单元181包括但不限于天线、至少一个放大器、收发信机、耦合器、低噪声放大器、双工器等。
存储器189可用于存储软件程序或指令以及各种数据。存储器189可主要包括存储程序或指令区和存储数据区,其中,存储程序或指令区可存储操作系统、至少一个功能所需的应用程序或指令(比如声音播放功能、图像播放功能等)等。此外,存储器189可以包括高速随机存取存储器,还可以包括非易失性存储器,其中,非易失性存储器可以是只读存储器(Read-Only Memory,ROM)、可编程只读存储器(Programmable ROM,PROM)、可擦除可编程只读存储器(Erasable PROM,EPROM)、电可擦除可编程只读存储器(Electrically EPROM,EEPROM)或闪存。例如至少一个磁盘存储器件、闪存器件、或其他非易失性固态存储器件。
处理器1810可包括一个或多个处理单元;可选的,处理器1810可集成应用处理器和调制解调处理器,其中,应用处理器主要处理操作系统、用户界面和应用程序或指令等,调制解调处理器主要处理无线通信,如基带处理器。可以理解的是,上述调制解调处理器也可以不集成到处理器1810中。
其中,在一个实施例中,所述射频单元181,用于在一个SRS资源集合或SRS资源的R个OFDM符号对应的完整带宽上,以部分带宽跳频方式发送SRS,其中,所述部分带宽跳频方式中,所述SRS在每个完整带宽的部分带宽上发送,且存在至少两个所述完整带宽,所述至少两个所述完整带宽的部分带宽的发送位置索引不同,R为重复因子,为大于等于1的正整数。
本申请实施例中,终端能够在完整带宽的部分带宽上发送SRS,且至少两个完整带宽的部分带宽的发送位置索引不同,从而有利于终端获得完整的信道特性。
可选的,所述射频单元181,用于根据部分带宽的发送位置索引、部分带宽跳频周期内的部分带宽的发送位置索引的个数M、部分带宽跳频规则和部分带宽的发送位置索引序列中的至少之一,发送SRS,M小于或等于N。
可选的,所述M满足以下条件之一:
所述M等于N;
若所述N个部分带宽的发送位置索引对应的N个部分带宽大小相同,所述M等于N;
若所述N个部分带宽的发送位置索引对应的N个部分带宽大小不完全相同,所述M等于N 1,其中,N 1为所述N个部分带宽的发送位置索引对应的N个部分带宽中,最大的部分带宽大小对应的发送位置索引的个数;
若所述N个部分带宽的发送位置索引对应的N个部分带宽大小不完全相同,所述M等于N 2,其中,N 2为所述N个部分带宽的发送位置索引对应的N个部分带宽中,最小的部分带宽大小对应的发送位置索引的个数;
所述M小于等于N,由网络侧指示。
可选的,所述N由以下参数中的至少之一确定:部分带宽系数、所述完整带宽的大小和部分带宽大小。
可选的,所述射频单元181,用于获取SRS资源集合或SRS资源的部分带宽相关参数的配置信息,所述部分带宽相关参数包括以下至少之一:部分带宽系数、部分带宽的取整方法、部分带宽的发送起始位置,每一所述部分带宽相关参数配置有至少一个参数值。
可选的,所述射频单元181,用于接收第一指示信息,所述第一指示信息用于从为所述部分带宽相关参数配置的至少一个参数值中指示一个目标参数值。
可选的,在一个完整的跳频带宽周期内,每个参与跳频的部分带宽的发 送位置索引相同。
可选的,一个完整的跳频带宽周期内的部分带宽的跳频起始位置是根据协议约定的第一次跳频的起始位置确定的频域位置;
或者
一个完整的跳频带宽周期内的部分带宽的跳频起始位置是根据部分带宽跳频使能之后的X个符号或时隙确定的频域位置。
可选的,相邻的完整的跳频带宽周期的参与跳频的部分带宽的发送位置索引不同。
可选的,相邻的部分带宽的发送位置索引不同。
可选的,所述射频单元181,用于接收部分带宽跳频使能信令,所述部分带宽跳频使能信令用于指示所述终端、一个SRS资源集合或者一个SRS资源是否使能部分带宽跳频。
可选的,所述部分带宽跳频使能信令为DCI、MAC CE或RRC信令。
可选的,所述射频单元181,用于执行以下之一:
在接收部分带宽跳频使能信令之后的X个符号或时隙,以部分带宽跳频方式发送SRS;
在接收部分带宽跳频使能信令之后进行ACK或NACK反馈报告后的X个符号或时隙,以部分带宽跳频方式发送SRS。
可选的,所述部分带宽跳频规则为顺序增加索引值或者倒序减少索引值。
可选的,所述部分带宽跳频规则为:
当前跳频的部分带宽的发送位置索引=(上一次跳频的部分带宽的发送位置索引+n)mod(M);
或者
当前跳频的部分带宽的发送位置索引=(上一次跳频的部分带宽的发送位置索引+n)mod(N);
或者
当前跳频的部分带宽的发送位置索引=(上一次跳频的部分带宽的发送位 置索引-n)mod(M);
或者
当前跳频的部分带宽的发送位置索引=(上一次跳频的部分带宽的发送位置索引-n)mod(N);
其中,n为每个完整的跳频带宽周期或每次跳频时部分带宽的发送位置索引增加值。
可选的,所述处理器1810,用于根据网络侧发送的指示信息,确定部分带宽的发送位置索引序列,所述指示信息用于指示部分带宽的发送位置索引序列。
可选的,所述部分带宽的发送位置索引序列满足以下条件至少之一:
所述部分带宽的发送位置索引序列中的最大索引值等于M或M-1;
所述部分带宽的发送位置索引序列中索引个数不大于M;
所述部分带宽的发送位置索引序列中可配置相同的索引值;
所述部分带宽的发送位置索引序列中的索引值均不同。
可选的,所述部分带宽的发送位置索引序列的第y个索引值,用于指示部分带宽跳频使能之前的部分带宽的发送起始位置。
可选的,y为大于等于1的正整数,由协议约定或网络配置。
可选的,所述部分带宽的发送位置索引序列从部分带宽跳频使能后生效;
或者
所述部分带宽的发送位置索引序列配置后生效。
可选的,所述部分带宽的发送位置索引序列根据以下参数中的至少之一确定:频域位置索引N b、SRS发送位置计数器的值n SRS、用于确定是否跳频以及跳频次数的参数b hop、SRS在一个OFDM符号上的完整带宽m SRS,b、SRS带宽发送起始位置参数n RRC、跳频索引参数B SRS、部分带宽跳频周期内的部分带宽的发送位置索引的个数M、发送位置索引个数N、部分带宽系数和部分带宽的发送起始位置。
可选的,所述SRS为周期性SRS或半持续SRS。
其中,在另外一个实施例中,所述射频单元181,用于获取SRS资源集合或SRS资源的部分带宽相关参数的配置信息,所述部分带宽相关参数包括以下至少之一:部分带宽系数、部分带宽的取整方法、部分带宽的发送起始位置,每一所述部分带宽相关参数配置有至少一个参数值;根据所述配置信息,进行SRS的发送。
本申请实施例中,通过网络侧灵活指示部分带宽相关参数,从而根据指示的部分带宽相关参数进行SRS的发放。
可选的,所述射频单元181,用于接收第一指示信息,所述第一指示信息用于从为所述部分带宽相关参数配置的至少一个参数值中指示一个目标参数值;根据所述目标参数值,进行SRS的发送。
可选的,所述第一指示信息通过DCI携带。
可选的,所述SRS资源集合或SRS资源对应的时域类型为非周期类型,所述SRS资源集合或SRS资源包括至少一个触发状态trigger state,每个所述trigger state能够关联至少一个所述部分带宽相关参数的至少一个参数值;
所述DCI通过SRS请求域选择触发对应的配置了目标trigger state的所述SRS资源集或所述SRS资源。
可选的,所述射频单元181,用于若所述目标trigger state关联有所述部分带宽相关参数,所述终端根据所述trigger state关联的至少一个所述部分带宽相关参数的至少一个参数值,进行SRS的发送。
可选的,若所述目标trigger state关联的所述部分带宽相关参数配置有至少两个参数值;
所述DCI还用于通过第一域从所述部分带宽相关参数配置的至少两个参数值中指示一个目标参数值,所述第一域与所述SRS请求域为不同域;
或者
由协议约定所述部分带宽相关参数配置的至少两个参数值中一个作为目标参数值。
可选的,所述处理器1810,用于若所述目标trigger state未关联所述部分 带宽相关参数,确定部分带宽探测功能不使能。
可选的,所述SRS资源集合或SRS资源对应的时域类型为非周期类型;
所述DCI通过SRS请求域选择触发所述SRS资源集合或SRS资源中的目标非周期SRS;所述SRS请求域的每个码点能够关联至少一个所述部分带宽相关参数的至少一个参数值。
可选的,所述射频单元181,用于若用于触发所述目标非周期SRS的所述SRS请求域关联有所述部分带宽相关参数,根据所述SRS请求域关联的至少一个所述部分带宽相关参数的至少一个参数值,进行SRS的发送。
可选的,若用于触发所述目标非周期SRS的所述SRS请求域关联的所述部分带宽相关参数配置有至少两个参数值;
所述DCI还用于通过第一域从所述部分带宽相关参数配置的至少两个参数值中指示一个目标参数值,所述第一域与所述非周期SRS请求域为不同域;
或者
由协议约定所述部分带宽相关参数配置的至少两个参数值中一个作为目标参数值。
可选的,所述第一指示信息通过MAC CE携带。
可选的,所述SRS资源集合或SRS资源指示的SRS为半持续SRS时,所述MAC CE为激活或去激活半持续SRS的MAC CE。
可选的,所述射频单元181,用于接收所述部分带宽相关参数的配置信息的更新信息,所述更新信息用于更新所述部分带宽相关参数的参数值。
可选的,所述更新信息通过MAC CE携带。
可选的,若所述部分带宽相关参数仅配置有一个参数值,所述射频单元181,用于按照所述配置信息中配置的所述部分带宽相关参数的参数值,进行SRS的发送。
可选的,若至少两个SRS资源集合或SRS资源满足以下条件之一,所述至少两个SRS资源集合或SRS资源的至少一个部分带宽相关参数配置成相同的参数值:
所述至少两个SRS资源集合或SRS资源属于同一个小区;
所述至少两个SRS资源集合或SRS资源属于同一个载波;
所述至少两个SRS资源集合或SRS资源属于同一个终端;
所述至少两个SRS资源集合或SRS资源的带宽大小相同;
所述至少两个SRS资源集合或SRS资源的带宽频域起始位置相同;
所述至少两个SRS资源集合或SRS资源均支持部分带宽探测能力的终端。
本申请实施例还提供一种网络侧设备,包括处理器和通信接口,通信接口用于在一个SRS资源集合或SRS资源的R个OFDM符号对应的完整带宽上,接收终端以部分带宽跳频方式发送的SRS,其中,所述部分带宽跳频方式中,所述SRS在每个完整带宽的部分带宽上发送,且存在至少两个所述完整带宽,所述至少两个所述完整带宽的部分带宽的发送位置索引不同,R为重复因子,为大于等于1的正整数。或者,所述通信接口,用于发送SRS资源集合或SRS资源的部分带宽相关参数的配置信息,所述部分带宽相关参数包括以下至少之一:部分带宽系数、部分带宽的取整方法、部分带宽的发送起始位置,每一所述部分带宽相关参数配置有至少一个参数值。该网络侧设备实施例是与上述网络侧设备方法实施例对应的,上述方法实施例的各个实施过程和实现方式均可适用于该网络侧设备实施例中,且能达到相同的技术效果。
本申请实施例还提供了一种网络侧设备。如图19所示,该网络设备190包括:天线191、射频装置192、基带装置193。天线191与射频装置192连接。在上行方向上,射频装置192通过天线191接收信息,将接收的信息发送给基带装置193进行处理。在下行方向上,基带装置193对要发送的信息进行处理,并发送给射频装置192,射频装置192对收到的信息进行处理后经过天线191发送出去。
上述频带处理装置可以位于基带装置193中,以上实施例中网络侧设备执行的方法可以在基带装置193中实现,该基带装置193包括处理器194和存储器195。
基带装置193例如可以包括至少一个基带板,该基带板上设置有多个芯片,如图19所示,其中一个芯片例如为处理器194,与存储器195连接,以调用存储器195中的程序,执行以上方法实施例中所示的网络设备操作。
该基带装置193还可以包括网络接口196,用于与射频装置192交互信息,该接口例如为通用公共无线接口(Common Public Radio Interface,CPRI)。
具体地,本发明实施例的网络侧设备还包括:存储在存储器195上并可在处理器194上运行的指令或程序,处理器194调用存储器195中的指令或程序执行图15或图16所示各模块执行的方法,并达到相同的技术效果,为避免重复,故不在此赘述。
本申请实施例还提供一种可读存储介质,所述可读存储介质上存储有程序或指令,该程序或指令被处理器执行时实现上述SRS的发送方法、SRS的接收方法或者SRS的配置方法实施例的各个过程,且能达到相同的技术效果,为避免重复,这里不再赘述。
其中,所述处理器为上述实施例中所述的终端中的处理器。所述可读存储介质,包括计算机可读存储介质,如计算机只读存储器(Read-Only Memory,ROM)、随机存取存储器(Random Access Memory,RAM)、磁碟或者光盘等。
本申请实施例另提供了一种芯片,所述芯片包括处理器和通信接口,所述通信接口和所述处理器耦合,所述处理器用于运行程序或指令,实现上述SRS的发送方法、SRS的接收方法或者SRS的配置方法实施例的各个过程,且能达到相同的技术效果,为避免重复,这里不再赘述。
应理解,本申请实施例提到的芯片还可以称为系统级芯片,系统芯片,芯片系统或片上系统芯片等。
本申请实施例还提供一种计算机程序产品,所述计算机程序产品被存储在非瞬态的存储介质中,所述计算机程序产品被至少一个处理器执行以实现上述SRS的发送方法、SRS的接收方法或者SRS的配置方法实施例的各个过程,且能达到相同的技术效果,为避免重复,这里不再赘述。
需要说明的是,在本文中,术语“包括”、“包含”或者其任何其他变体 意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者装置不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者装置所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括该要素的过程、方法、物品或者装置中还存在另外的相同要素。此外,需要指出的是,本申请实施方式中的方法和装置的范围不限按示出或讨论的顺序来执行功能,还可包括根据所涉及的功能按基本同时的方式或按相反的顺序来执行功能,例如,可以按不同于所描述的次序来执行所描述的方法,并且还可以添加、省去、或组合各种步骤。另外,参照某些示例所描述的特征可在其他示例中被组合。
通过以上的实施方式的描述,本领域的技术人员可以清楚地了解到上述实施例方法可借助软件加必需的通用硬件平台的方式来实现,当然也可以通过硬件,但很多情况下前者是更佳的实施方式。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分可以以计算机软件产品的形式体现出来,该计算机软件产品存储在一个存储介质(如ROM/RAM、磁碟、光盘)中,包括若干指令用以使得一台终端(可以是手机,计算机,服务器,空调器,或者网络设备等)执行本申请各个实施例所述的方法。
在本申请所提供的实施例中,应该理解到,所揭露的装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方, 或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
所述功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对相关技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、ROM、RAM、磁碟或者光盘等各种可以存储程序代码的介质。
上面结合附图对本申请的实施例进行了描述,但是本申请并不局限于上述的具体实施方式,上述的具体实施方式仅仅是示意性的,而不是限制性的,本领域的普通技术人员在本申请的启示下,在不脱离本申请宗旨和权利要求所保护的范围情况下,还可做出很多形式,均属于本申请的保护之内。

Claims (61)

  1. 一种SRS的发送方法,包括:
    终端在一个SRS资源集合或SRS资源的R个OFDM符号对应的完整带宽上,以部分带宽跳频方式发送SRS,其中,所述部分带宽跳频方式中,所述SRS在每个完整带宽的部分带宽上发送,且存在至少两个所述完整带宽,所述至少两个所述完整带宽的部分带宽的发送位置索引不同,R为重复因子,为大于等于1的正整数。
  2. 根据权利要求1所述的方法,其中,终端在一个SRS资源的R个OFDM符号对应的完整带宽上,以部分带宽跳频方式发送SRS包括:
    所述终端根据部分带宽的发送位置索引、部分带宽跳频周期内的部分带宽的发送位置索引的个数M、部分带宽跳频规则和部分带宽的发送位置索引序列中的至少之一,发送SRS,M小于或等于N。
  3. 根据权利要求2所述的方法,其中,所述M满足以下条件之一:
    所述M等于N;其中,N为从所述R个OFDM符号对应的完整带宽中确定的部分带宽的发送位置索引的个数,N为大于等于1的正整数;
    若所述N个部分带宽的发送位置索引对应的N个部分带宽大小相同,所述M等于N;
    若所述N个部分带宽的发送位置索引对应的N个部分带宽大小不完全相同,所述M等于N 1,其中,N 1为所述N个部分带宽的发送位置索引对应的N个部分带宽中,最大的部分带宽大小对应的发送位置索引的个数;
    若所述N个部分带宽的发送位置索引对应的N个部分带宽大小不完全相同,所述M等于N 2,其中,N 2为所述N个部分带宽的发送位置索引对应的N个部分带宽中,最小的部分带宽大小对应的发送位置索引的个数;
    所述M小于等于N,由网络侧指示。
  4. 根据权利要求3所述的方法,其中,所述N由以下参数中的至少之一确定:部分带宽系数、所述完整带宽的大小和部分带宽大小。
  5. 根据权利要求4所述的方法,还包括:
    所述终端获取SRS资源集合或SRS资源的部分带宽相关参数的配置信息,所述部分带宽相关参数包括以下至少之一:部分带宽系数、部分带宽的取整方法、部分带宽的发送起始位置,每一所述部分带宽相关参数配置有至少一个参数值。
  6. 根据权利要求5所述的方法,还包括:
    所述终端接收第一指示信息,所述第一指示信息用于从为所述部分带宽相关参数配置的至少一个参数值中指示一个目标参数值。
  7. 根据权利要求2所述的方法,其中,在一个完整的跳频带宽周期内,每个参与跳频的部分带宽的发送位置索引相同。
  8. 根据权利要求7所述的方法,其中,
    一个完整的跳频带宽周期内的部分带宽的跳频起始位置是根据协议约定的第一次跳频的起始位置确定的频域位置;
    或者
    一个完整的跳频带宽周期内的部分带宽的跳频起始位置是根据部分带宽跳频使能之后的X个符号或时隙确定的频域位置。
  9. 根据权利要求2所述的方法,其中,相邻的完整的跳频带宽周期的参与跳频的部分带宽的发送位置索引不同。
  10. 根据权利要求2所述的方法,其中,相邻的部分带宽的发送位置索引不同。
  11. 根据权利要求1所述的方法,还包括:
    所述终端接收部分带宽跳频使能信令,所述部分带宽跳频使能信令用于指示所述终端、一个SRS资源集合或者一个SRS资源是否使能部分带宽跳频。
  12. 根据权利要求11所述的方法,其中,所述部分带宽跳频使能信令为DCI、MAC CE或RRC信令。
  13. 根据权利要求11所述的方法,其中,终端在一个SRS资源的R个OFDM符号对应的完整带宽上,以部分带宽跳频方式发送SRS包括以下之一:
    所述终端在接收部分带宽跳频使能信令之后的X个符号或时隙,以部分带宽跳频方式发送SRS;
    所述终端在接收部分带宽跳频使能信令之后进行ACK或NACK反馈报告后的X个符号或时隙,以部分带宽跳频方式发送SRS。
  14. 根据权利要求2所述的方法,其中,
    所述部分带宽跳频规则为顺序增加索引值或者倒序减少索引值。
  15. 根据权利要求14所述的方法,其中,所述部分带宽跳频规则为:
    当前跳频的部分带宽的发送位置索引=(上一次跳频的部分带宽的发送位置索引+n)mod(M);
    或者
    当前跳频的部分带宽的发送位置索引=(上一次跳频的部分带宽的发送位置索引+n)mod(N);
    或者
    当前跳频的部分带宽的发送位置索引=(上一次跳频的部分带宽的发送位置索引-n)mod(M);
    或者
    当前跳频的部分带宽的发送位置索引=(上一次跳频的部分带宽的发送位置索引-n)mod(N);
    其中,n为每个完整的跳频带宽周期或每次跳频时部分带宽的发送位置索引增加值。
  16. 根据权利要求2所述的方法,还包括:
    根据网络侧发送的指示信息,确定部分带宽的发送位置索引序列,所述指示信息用于指示部分带宽的发送位置索引序列。
  17. 根据权利要求16所述的方法,其中,所述部分带宽的发送位置索引序列满足以下条件至少之一:
    所述部分带宽的发送位置索引序列中的最大索引值等于M或M-1;
    所述部分带宽的发送位置索引序列中索引个数不大于M;
    所述部分带宽的发送位置索引序列中可配置相同的索引值;
    所述部分带宽的发送位置索引序列中的索引值均不同。
  18. 根据权利要求16所述的方法,其中,所述部分带宽的发送位置索引序列的第y个索引值,用于指示部分带宽跳频使能之前的部分带宽的发送起始位置。
  19. 根据权利要求18所述的方法,其中,y为大于等于1的正整数,由协议约定或网络配置。
  20. 根据权利要求16所述的方法,其中,
    所述部分带宽的发送位置索引序列从部分带宽跳频使能后生效;
    或者
    所述部分带宽的发送位置索引序列配置后生效。
  21. 根据权利要求2所述的方法,其中,所述部分带宽的发送位置索引序列根据以下参数中的至少之一确定:频域位置索引N b、SRS发送位置计数器的值n SRS、用于确定是否跳频以及跳频次数的参数b hop、SRS在一个OFDM符号上的完整带宽m SRS,b、SRS带宽发送起始位置参数n RRC、跳频索引参数B SRS、部分带宽跳频周期内的部分带宽的发送位置索引的个数M、发送位置索引个数N、部分带宽系数和部分带宽的发送起始位置。
  22. 根据权利要求1所述的方法,其中,所述SRS为周期性SRS或半持续SRS。
  23. 一种SRS的发送方法,包括:
    终端获取SRS资源集合或SRS资源的部分带宽相关参数的配置信息,所述部分带宽相关参数包括以下至少之一:部分带宽系数、部分带宽的取整方法、部分带宽的发送起始位置,每一所述部分带宽相关参数配置有至少一个参数值;
    所述终端根据所述配置信息,进行SRS的发送。
  24. 根据权利要求23所述的方法,还包括:
    所述终端接收第一指示信息,所述第一指示信息用于从为所述部分带宽 相关参数配置的至少一个参数值中指示一个目标参数值;
    其中,所述终端根据所述配置信息,进行SRS的发送包括:所述终端根据所述目标参数值,进行SRS的发送。
  25. 根据权利要求24所述的方法,其中,所述第一指示信息通过DCI携带。
  26. 根据权利要求25所述的方法,其中,所述SRS资源集合或SRS资源对应的时域类型为非周期类型,所述SRS资源集合或SRS资源包括至少一个触发状态trigger state,每个所述trigger state能够关联至少一个所述部分带宽相关参数的至少一个参数值;
    所述DCI通过SRS请求域选择触发对应的配置了目标trigger state的所述SRS资源集或所述SRS资源。
  27. 根据权利要求26所述的方法,其中,所述终端根据所述配置信息,进行SRS的发送包括:
    若所述目标trigger state关联有所述部分带宽相关参数,所述终端根据所述trigger state关联的至少一个所述部分带宽相关参数的至少一个参数值,进行SRS的发送。
  28. 根据权利要求27所述的方法,其中,若所述目标trigger state关联的所述部分带宽相关参数配置有至少两个参数值;
    所述DCI还用于通过第一域从所述部分带宽相关参数配置的至少两个参数值中指示一个目标参数值,所述第一域与所述SRS请求域为不同域;
    或者
    由协议约定所述部分带宽相关参数配置的至少两个参数值中一个作为目标参数值。
  29. 根据权利要求26所述的方法,还包括:
    若所述目标trigger state未关联所述部分带宽相关参数,所述终端确定部分带宽探测功能不使能。
  30. 根据权利要求25所述的方法,其中,所述SRS资源集合或SRS资 源对应的时域类型为非周期类型;
    所述DCI通过SRS请求域选择触发所述SRS资源集合或SRS资源中的目标非周期SRS;所述SRS请求域的每个码点能够关联至少一个所述部分带宽相关参数的至少一个参数值。
  31. 根据权利要求30所述的方法,其中,所述终端根据所述配置信息,进行SRS的发送包括:
    若用于触发所述目标非周期SRS的所述SRS请求域关联有所述部分带宽相关参数,所述终端根据所述SRS请求域关联的至少一个所述部分带宽相关参数的至少一个参数值,进行SRS的发送。
  32. 根据权利要求31所述的方法,其中,若用于触发所述目标非周期SRS的所述SRS请求域关联的所述部分带宽相关参数配置有至少两个参数值;
    所述DCI还用于通过第一域从所述部分带宽相关参数配置的至少两个参数值中指示一个目标参数值,所述第一域与所述非周期SRS请求域为不同域;
    或者
    由协议约定所述部分带宽相关参数配置的至少两个参数值中一个作为目标参数值。
  33. 根据权利要求24所述的方法,其中,所述第一指示信息通过MAC CE携带。
  34. 根据权利要求33所述的方法,其中,所述SRS资源集合或SRS资源指示的SRS为半持续SRS时,所述MAC CE为激活或去激活半持续SRS的MAC CE。
  35. 根据权利要求23-34任一项所述的方法,还包括:
    所述终端接收所述部分带宽相关参数的配置信息的更新信息,所述更新信息用于更新所述部分带宽相关参数的参数值。
  36. 根据权利要求35所述的方法,其中,所述更新信息通过MAC CE携带。
  37. 根据权利要求23-34任一项所述的方法,其中,若所述部分带宽相关 参数仅配置有一个参数值,所述终端根据所述配置信息,进行SRS的发送包括:
    所述终端按照所述配置信息中配置的所述部分带宽相关参数的参数值,进行SRS的发送。
  38. 根据权利要求23所述的方法,其中,若至少两个SRS资源集合或SRS资源满足以下条件之一,所述至少两个SRS资源集合或SRS资源的至少一个部分带宽相关参数配置成相同的参数值:
    所述至少两个SRS资源集合或SRS资源属于同一个小区;
    所述至少两个SRS资源集合或SRS资源属于同一个载波;
    所述至少两个SRS资源集合或SRS资源属于同一个终端;
    所述至少两个SRS资源集合或SRS资源的带宽大小相同;
    所述至少两个SRS资源集合或SRS资源的带宽频域起始位置相同;
    所述至少两个SRS资源集合或SRS资源均支持部分带宽探测能力的终端。
  39. 一种SRS的接收方法,包括:
    网络侧设备在一个SRS资源集合或SRS资源的R个OFDM符号对应的完整带宽上,接收终端以部分带宽跳频方式发送的SRS,其中,所述部分带宽跳频方式中,所述SRS在每个完整带宽的部分带宽上发送,且存在至少两个所述完整带宽,所述至少两个所述完整带宽的部分带宽的发送位置索引不同,R为重复因子,为大于等于1的正整数。
  40. 一种SRS的配置方法,包括:
    网络侧设备发送SRS资源集合或SRS资源的部分带宽相关参数的配置信息,所述部分带宽相关参数包括以下至少之一:部分带宽系数、部分带宽的取整方法、部分带宽的发送起始位置,每一所述部分带宽相关参数配置有至少一个参数值。
  41. 根据权利要求40所述的方法,还包括:
    所述网络侧设备发送第一指示信息,所述第一指示信息用于从为所述部分带宽相关参数配置的至少一个参数值中指示一个目标参数值。
  42. 根据权利要求41所述的方法,其中,所述第一指示信息通过DCI携带。
  43. 根据权利要求42所述的方法,其中,所述SRS资源集合或SRS资源对应的时域类型为非周期类型,所述SRS资源集合或SRS资源包括至少一个触发状态trigger state,每个所述trigger state能够关联至少一个所述部分带宽相关参数的至少一个参数值;
    所述DCI通过SRS请求域选择触发对应的配置了目标trigger state的所述SRS资源集或所述SRS资源。
  44. 根据权利要求43所述的方法,其中,若所述目标trigger state关联的所述部分带宽相关参数配置有至少两个参数值;
    所述DCI还用于通过第一域从所述部分带宽相关参数配置的至少两个参数值中指示一个目标参数值,所述第一域与所述SRS请求域为不同域;
    或者
    由协议约定所述部分带宽相关参数配置的至少两个参数值中一个作为目标参数值。
  45. 根据权利要求42所述的方法,其中,所述SRS资源集合或SRS资源对应的时域类型为非周期类型;
    所述DCI通过SRS请求域选择触发所述SRS资源集合或SRS资源中的目标非周期SRS;所述SRS请求域的每个码点能够关联至少一个所述部分带宽相关参数的至少一个参数值。
  46. 根据权利要求45所述的方法,其中,若用于触发所述目标非周期SRS的所述SRS请求域关联的所述部分带宽相关参数配置有至少两个参数值;
    所述DCI还用于通过第一域从所述部分带宽相关参数配置的至少两个参数值中指示一个目标参数值,所述第一域与所述非周期SRS请求域为不同域;
    或者
    由协议约定所述部分带宽相关参数配置的至少两个参数值中一个作为目标参数值。
  47. 根据权利要求41所述的方法,其中,所述第一指示信息通过MAC CE携带。
  48. 根据权利要求47所述的方法,其中,所述SRS资源集合或SRS资源指示的SRS为半持续SRS时,所述MAC CE为激活或去激活半持续SRS的MAC CE。
  49. 根据权利要求40-48任一项所述的方法,还包括:
    所述网络侧设备发送所述部分带宽相关参数的配置信息的更新信息,所述更新信息用于更新所述部分带宽相关参数的参数值。
  50. 根据权利要求49所述的方法,其中,所述更新信息通过MAC CE携带。
  51. 根据权利要求40所述的方法,其中,若至少两个SRS资源集合或SRS资源满足以下条件之一,所述至少两个SRS资源集合或SRS资源的至少一个部分带宽相关参数配置成相同的参数值:
    所述至少两个SRS资源集合或SRS资源属于同一个小区;
    所述至少两个SRS资源集合或SRS资源属于同一个载波;
    所述至少两个SRS资源集合或SRS资源属于同一个终端;
    所述至少两个SRS资源集合或SRS资源的带宽大小相同;
    所述至少两个SRS资源集合或SRS资源的带宽频域起始位置相同;
    所述至少两个SRS资源集合或SRS资源均支持部分带宽探测能力的终端。
  52. 一种SRS的发送装置,包括:
    发送模块,用于在一个SRS资源集合或SRS资源的R个OFDM符号对应的完整带宽上,以部分带宽跳频方式发送SRS,其中,所述部分带宽跳频方式中,所述SRS在每个完整带宽的部分带宽上发送,且存在至少两个所述完整带宽,所述至少两个所述完整带宽的部分带宽的发送位置索引不同,R为重复因子,为大于等于1的正整数。
  53. 一种SRS的发送装置,包括:
    获取模块,用于获取SRS资源集合或SRS资源的部分带宽相关参数的配 置信息,所述部分带宽相关参数包括以下至少之一:部分带宽系数、部分带宽的取整方法、部分带宽的发送起始位置,每一所述部分带宽相关参数配置有至少一个参数值;
    发送模块,用于根据所述配置信息,进行SRS的发送。
  54. 一种SRS的接收装置,包括:
    接收模块,用于在一个SRS资源集合或SRS资源的R个OFDM符号对应的完整带宽上,接收终端以部分带宽跳频方式发送的SRS,其中,所述部分带宽跳频方式中,所述SRS在每个完整带宽的部分带宽上发送,且存在至少两个所述完整带宽,所述至少两个所述完整带宽的部分带宽的发送位置索引不同,R为重复因子,为大于等于1的正整数。
  55. 一种SRS的配置装置,包括:
    第一发送模块,用于发送SRS资源集合或SRS资源的部分带宽相关参数的配置信息,所述部分带宽相关参数包括以下至少之一:部分带宽系数、部分带宽的取整方法、部分带宽的发送起始位置,每一所述部分带宽相关参数配置有至少一个参数值。
  56. 一种终端,包括处理器,存储器及存储在所述存储器上并可在所述处理器上运行的程序或指令,其中,所述程序或指令被所述处理器执行时实现如权利要求1至22中任一项所述的SRS的发送方法的步骤,或者,所述程序或指令被所述处理器执行时实现如权利要求23至38中任一项所述的SRS的发送方法的步骤。
  57. 一种网络侧设备,包括处理器,存储器及存储在所述存储器上并可在所述处理器上运行的程序或指令,其中,所述程序或指令被所述处理器执行时实现如权利要求39所述的SRS的接收方法的步骤,或者,所述程序或指令被所述处理器执行时实现如权利要求40至51中任一项所述的SRS的配置方法的步骤。
  58. 一种可读存储介质,所述可读存储介质上存储程序或指令,其中,所述程序或指令被处理器执行时实现如权利要求1至22中任一项所述的SRS 的发送方法,或者实现如权利要求23至38中任一项所述的SRS的发送方法的步骤,或者实现如权利要求39所述的SRS的接收方法的步骤,或者实现如权利要求40至51中任一项所述的SRS的配置方法的步骤。
  59. 一种芯片,包括处理器和通信接口,其中,所述通信接口和所述处理器耦合,所述处理器用于运行程序或指令,实现如权利要求1至22中任一项所述的SRS的发送方法,或者实现如权利要求23至38中任一项所述的SRS的发送方法的步骤,或者实现如权利要求39所述的SRS的接收方法的步骤,或者实现如权利要求40至51中任一项所述的SRS的配置方法的步骤。
  60. 一种计算机程序产品,其中,所述计算机程序产品被存储在非瞬态的存储介质中,所述计算机程序产品被至少一个处理器执行以实现如权利要求1至22中任一项所述的SRS的发送方法,或者实现如权利要求23至38中任一项所述的SRS的发送方法的步骤,或者实现如权利要求39所述的SRS的接收方法的步骤,或者实现如权利要求40至51中任一项所述的SRS的配置方法的步骤。
  61. 一种通信设备,被配置为执行如权利要求1至22中任一项所述的SRS的发送方法的步骤,或者,执行如权利要求23至38中任一项所述的SRS的发送方法的步骤,或者,执行如权利要求39所述的SRS的接收方法的步骤,或者,执行如权利要求40至51中任一项所述的SRS的配置方法的步骤。
PCT/CN2022/083669 2021-03-29 2022-03-29 Srs的发送方法、接收方法、配置方法及装置 WO2022206754A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP22778936.9A EP4300901A1 (en) 2021-03-29 2022-03-29 Srs sending method and apparatus, srs receiving method and apparatus, and srs configuration method and apparatus
US18/374,631 US20240022378A1 (en) 2021-03-29 2023-09-28 Srs sending method and apparatus, srs receiving method and apparatus, and srs configuration method and apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110336680.4A CN115134199A (zh) 2021-03-29 2021-03-29 Srs的发送方法、接收方法、配置方法及装置
CN202110336680.4 2021-03-29

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/374,631 Continuation US20240022378A1 (en) 2021-03-29 2023-09-28 Srs sending method and apparatus, srs receiving method and apparatus, and srs configuration method and apparatus

Publications (1)

Publication Number Publication Date
WO2022206754A1 true WO2022206754A1 (zh) 2022-10-06

Family

ID=83375372

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/083669 WO2022206754A1 (zh) 2021-03-29 2022-03-29 Srs的发送方法、接收方法、配置方法及装置

Country Status (4)

Country Link
US (1) US20240022378A1 (zh)
EP (1) EP4300901A1 (zh)
CN (1) CN115134199A (zh)
WO (1) WO2022206754A1 (zh)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111277389A (zh) * 2020-01-14 2020-06-12 北京紫光展锐通信技术有限公司 探测参考信号传输方法及相关产品
CN111314039A (zh) * 2020-02-14 2020-06-19 展讯通信(上海)有限公司 部分带宽探测时的带宽指示方法、系统、设备及介质

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104283581B (zh) * 2013-07-01 2019-01-15 中兴通讯股份有限公司 一种确定探测参考信号跳频图案的方法及系统
CN108631976B (zh) * 2017-03-23 2021-07-16 华为技术有限公司 一种通信方法及装置
CN109152019A (zh) * 2017-06-16 2019-01-04 华为技术有限公司 资源映射的方法和装置
CN109495232B (zh) * 2017-08-11 2020-04-14 华为技术有限公司 发送和接收参考信号的方法、网络设备、终端设备和系统
CN115021879A (zh) * 2017-08-21 2022-09-06 中兴通讯股份有限公司 参考信号传输方法及装置、终端、基站和存储介质
CN109429346B (zh) * 2017-08-31 2023-01-06 华为技术有限公司 一种探测参考信号的发送方法、接收方法、装置及系统
CN109474400B (zh) * 2017-09-08 2021-07-20 华为技术有限公司 一种通信方法、网络设备及终端设备
WO2019074267A1 (ko) * 2017-10-11 2019-04-18 엘지전자 주식회사 Srs를 전송 및 수신하는 방법과 이를 위한 통신 장치
CN109802810B (zh) * 2017-11-17 2021-07-09 华为技术有限公司 发送探测参考信号srs的方法和装置

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111277389A (zh) * 2020-01-14 2020-06-12 北京紫光展锐通信技术有限公司 探测参考信号传输方法及相关产品
CN111314039A (zh) * 2020-02-14 2020-06-19 展讯通信(上海)有限公司 部分带宽探测时的带宽指示方法、系统、设备及介质

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
MODERATOR (ZTE): "FL summary #1 on SRS enhancements", 3GPP DRAFT; R1-2101783, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, no. e-Meeting; 20210125 - 20210205, 27 January 2021 (2021-01-27), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , XP051975885 *
MODERATOR (ZTE): "FL summary #2 on SRS enhancements", 3GPP DRAFT; R1-2101914, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, no. e-Meeting; 20210125 - 20210205, 2 February 2021 (2021-02-02), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , XP051975993 *

Also Published As

Publication number Publication date
US20240022378A1 (en) 2024-01-18
CN115134199A (zh) 2022-09-30
EP4300901A1 (en) 2024-01-03

Similar Documents

Publication Publication Date Title
WO2022037664A1 (zh) 非连续接收drx配置方法、装置和设备
WO2022007930A1 (zh) 一种载波切换处理方法、装置及终端
WO2022152176A1 (zh) 传输处理方法及相关设备
WO2022002250A1 (zh) Pdcch监听方法、发送方法及相关设备
WO2022100678A1 (zh) 节能指示方法、装置、设备及可读存储介质
WO2022135267A1 (zh) 定位测量方法、装置、设备及可读存储介质
WO2022218368A1 (zh) 旁链路反馈资源的确定方法、装置、终端及存储介质
WO2022083634A1 (zh) 资源配置方法、装置、设备及可读存储介质
WO2022194056A1 (zh) 跳频处理方法、装置及终端
WO2022143742A1 (zh) 数据传输方法、装置及通信设备
WO2022206754A1 (zh) Srs的发送方法、接收方法、配置方法及装置
WO2022188794A1 (zh) 半静态harq-ack码本的生成方法及终端
WO2022152254A1 (zh) 上行传输的方法、终端及网络侧设备
WO2022143868A1 (zh) 资源映射方法、装置及设备
WO2022017409A1 (zh) 上行传输方法、装置及相关设备
WO2022007715A1 (zh) 信道监听、传输方法、装置、终端及网络侧设备
WO2023051525A1 (zh) 行为确定方法、装置及相关设备
WO2023134668A1 (zh) Srs端口映射方法、装置及终端
WO2022253312A1 (zh) 上行数据传输方法、装置、终端及介质
WO2022143659A1 (zh) 信号配置方法、装置、设备及存储介质
WO2022206593A1 (zh) Pdcch监听处理方法、监听配置方法及相关设备
WO2022206909A1 (zh) 信息确定方法、装置及终端
WO2022237680A1 (zh) 上行传输时间窗的确定方法、装置、终端及网络侧设备
WO2023036151A1 (zh) 时隙配置方法、终端及网络侧设备
WO2022194055A1 (zh) 跳频处理方法、装置及终端

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22778936

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2022778936

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2022778936

Country of ref document: EP

Effective date: 20230926

NENP Non-entry into the national phase

Ref country code: DE