WO2022188745A1 - 随机接入方法、装置、终端及存储介质 - Google Patents

随机接入方法、装置、终端及存储介质 Download PDF

Info

Publication number
WO2022188745A1
WO2022188745A1 PCT/CN2022/079540 CN2022079540W WO2022188745A1 WO 2022188745 A1 WO2022188745 A1 WO 2022188745A1 CN 2022079540 W CN2022079540 W CN 2022079540W WO 2022188745 A1 WO2022188745 A1 WO 2022188745A1
Authority
WO
WIPO (PCT)
Prior art keywords
time slot
prach
number group
random access
slot number
Prior art date
Application number
PCT/CN2022/079540
Other languages
English (en)
French (fr)
Inventor
李萍
李�根
洪琪
Original Assignee
维沃移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 维沃移动通信有限公司 filed Critical 维沃移动通信有限公司
Priority to EP22766268.1A priority Critical patent/EP4307803A1/en
Publication of WO2022188745A1 publication Critical patent/WO2022188745A1/zh
Priority to US18/244,217 priority patent/US20230421338A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0091Signaling for the administration of the divided path
    • H04L5/0094Indication of how sub-channels of the path are allocated
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0446Resources in time domain, e.g. slots or frames
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0058Allocation criteria
    • H04L5/0064Rate requirement of the data, e.g. scalable bandwidth, data priority
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0078Timing of allocation
    • H04L5/0082Timing of allocation at predetermined intervals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0091Signaling for the administration of the divided path
    • H04L5/0092Indication of how the channel is divided
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/002Transmission of channel access control information
    • H04W74/006Transmission of channel access control information in the downlink, i.e. towards the terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/08Non-scheduled access, e.g. ALOHA
    • H04W74/0833Random access procedures, e.g. with 4-step access
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0014Three-dimensional division
    • H04L5/0016Time-frequency-code

Definitions

  • the present application belongs to the field of communication technologies, and specifically relates to a random access method, device, terminal and storage medium.
  • the Physical Random Access Channel (PRACH) is used to transmit the preamble preamble, and each random access opportunity (PRACH occasion, RO) can only transmit one preamble preamble, but many Each UE can transmit different preambles using the same RO.
  • PRACH Physical Random Access Channel
  • high PRACH sub-carrier spacing may be supported, such as 480/960KHz.
  • the PRACH SCS supported by the RO time-frequency resource configuration of the current protocol is 15/30/60/120KHz.
  • the SCS is greater than 120kHz, even if the subcarrier spacing of the 60kHz reference time slot of FR2 is used, the number of PRACH time slots in one reference time slot will exceed 2, but the PRACH time slot in the reference time slot in the existing configuration table
  • the value of Number of PRACH slots within 60kHz slot can only be 1 or 2 and cannot be applied to higher subcarrier spacing.
  • the PRACH subcarrier spacing supported by the system is greater than 120 kHz, it is necessary to solve how to configure the RO time-frequency resources.
  • the embodiments of the present application provide a random access method, device, terminal, and storage medium, which can implement the configuration of RO time-frequency resources when the PRACH subcarrier interval supported by the system is greater than 120Khz.
  • a random access method comprising:
  • the terminal determines the random access opportunity RO time domain location group
  • the RO time domain location group includes at least one of the following:
  • the frame number group and the first time slot number group can be sent;
  • the transmittable frame number group is used to indicate a transmittable frame, and the transmittable frame is a radio frame where the RO that can be used to transmit the preamble is located;
  • the first time slot number group is used to indicate the first time slot based on the first subcarrier interval where the RO is located in the transmittable frame;
  • the second time slot number group is used to indicate the second time slot based on the second subcarrier interval where the RO is located in the first time slot.
  • a random access device including:
  • a calculation unit configured to select a first RO from the RO time domain location group, and calculate a random access wireless network temporary identifier RA-RNTI of the first RO;
  • the RO time domain location group includes at least one of the following:
  • the frame number group and the first time slot number group can be sent;
  • the transmittable frame number group is used to indicate a transmittable frame, and the transmittable frame is a radio frame where the RO that can be used to transmit the preamble is located;
  • the first time slot number group is used to indicate the first time slot based on the first subcarrier interval where the RO is located in the transmittable frame;
  • the second time slot number group is used to indicate the second time slot based on the second subcarrier interval where the RO is located in the first time slot.
  • a terminal in a third aspect, includes a processor, a memory, and a program or instruction stored on the memory and executable on the processor, when the program or instruction is executed by the processor.
  • a readable storage medium is provided, and a program or an instruction is stored on the readable storage medium, and when the program or instruction is executed by a processor, the steps of the method according to the first aspect are implemented.
  • a chip in a fifth aspect, includes a processor and a communication interface, the communication interface is coupled to the processor, and the processor is configured to run a program or an instruction to implement the method according to the first aspect .
  • the RO time domain location group includes at least one of the following: a transmittable frame number group and a first time slot number group; a second time slot number group, then the terminal selects an RO from the RO time domain location group, and calculates the random access wireless network temporary identifier RA-RNTI of the RO, which can be supported by the system when the PRACH subcarrier spacing is greater than 120kHz, Configure RO time-frequency resources.
  • FIG. 1 is a structural diagram of a wireless communication system to which an embodiment of the application can be applied;
  • Figure 2 is a schematic diagram of the RO time domain resource configuration in the case where the PRACH SCS is 120kHz and FR2;
  • FIG. 3 is a schematic flowchart of a random access method provided by an embodiment of the present application.
  • FIG. 4 is one of the schematic diagrams of M1 values of the first time slot number group provided by an embodiment of the present application.
  • FIG. 5 is the second schematic diagram of M1 values of the first time slot number group provided by an embodiment of the present application.
  • FIG. 6 is the third schematic diagram of M1 values of the first time slot number group provided by an embodiment of the present application.
  • FIG. 7 is a fourth schematic diagram of M1 values of a first time slot number group provided by an embodiment of the present application.
  • FIG. 8 is the fifth schematic diagram of M1 values of the first time slot number group provided by an embodiment of the present application.
  • FIG. 13 is one of schematic diagrams of a second time slot numbering group provided by an embodiment of the present application.
  • FIG. 14 is the second schematic diagram of the second time slot numbering group provided by the embodiment of the present application.
  • FIG. 15 is a third schematic diagram of a second time slot numbering group provided by an embodiment of the present application.
  • FIG. 16 is a fourth schematic diagram of a second time slot numbering group provided by an embodiment of the present application.
  • 17 is a fifth schematic diagram of a second time slot numbering group provided by an embodiment of the present application.
  • FIG. 24 is a schematic diagram of a time domain number t_id provided by an embodiment of the present application.
  • FIG. 25 is one of schematic diagrams of a first time slot set provided by an embodiment of the present application.
  • 26 is a sixth schematic diagram of a second time slot numbering group provided by an embodiment of the present application.
  • 27 is a seventh schematic diagram of a second time slot numbering group provided by an embodiment of the present application.
  • FIG. 28 is one of schematic diagrams of a second time slot set provided by an embodiment of the present application.
  • 29 is one of the schematic diagrams of a set of time slots in which ROs can be sent in a frame provided by an embodiment of the present application;
  • FIG. 30 is the eighth schematic diagram of the second time slot numbering group provided by the embodiment of the present application.
  • FIG. 31 is the ninth schematic diagram of the second time slot numbering group provided by the embodiment of the present application.
  • FIG. 32 is the second schematic diagram of the second time slot set provided by the embodiment of the present application.
  • FIG. 33 is the second schematic diagram of a time slot set in which ROs can be sent in a frame according to an embodiment of the present application
  • FIG. 34 is the second schematic diagram of the first time slot set provided by the embodiment of the present application.
  • FIG. 35 is the third schematic diagram of the second time slot set provided by the embodiment of the present application.
  • FIG. 36 is the third schematic diagram of a time slot set in which ROs can be sent in a frame according to an embodiment of the present application.
  • FIG. 37 is the fourth schematic diagram of a time slot set in which ROs can be sent in a frame according to an embodiment of the present application.
  • FIG. 39 is the second schematic diagram of the grouping of a set of time slots in which ROs can be sent in a frame according to an embodiment of the present application.
  • FIG. 40 is the third schematic diagram of the first time slot set provided by the embodiment of the present application.
  • FIG. 41 is the fourth schematic diagram of the second time slot set provided by the embodiment of the present application.
  • FIG. 42 is the fifth schematic diagram of a time slot set in which ROs can be sent in one frame according to an embodiment of the present application.
  • Figure 43 is the third schematic diagram of the grouping of a set of time slots in which ROs can be sent in a frame provided by an embodiment of the application;
  • FIG. 44 is the fourth schematic diagram of the grouping of a set of time slots in which ROs can be sent in a frame according to an embodiment of the present application;
  • FIG. 45 is a schematic structural diagram of a random access apparatus provided by an embodiment of the present application.
  • 46 is a schematic structural diagram of a communication device provided by an embodiment of the present application.
  • FIG. 47 is a schematic diagram of a hardware structure of a terminal implementing an embodiment of the present application.
  • first, second and the like in the description and claims of the present application are used to distinguish similar objects, and are not used to describe a specific order or sequence. It is to be understood that the data so used are interchangeable under appropriate circumstances so that the embodiments of the present application can be practiced in sequences other than those illustrated or described herein, and "first”, “second” distinguishes Usually it is a class, and the number of objects is not limited.
  • the first object may be one or multiple.
  • “and/or” in the description and claims indicates at least one of the connected objects, and the character “/" generally indicates that the associated objects are in an "or” relationship.
  • LTE Long Term Evolution
  • LTE-Advanced LTE-Advanced
  • LTE-A Long Term Evolution-Advanced
  • CDMA Code Division Multiple Access
  • TDMA Time Division Multiple Access
  • FDMA Frequency Division Multiple Access
  • OFDMA Orthogonal Frequency Division Multiple Access
  • SC-FDMA Single-carrier Frequency-Division Multiple Access
  • system and “network” in the embodiments of the present application are often used interchangeably, and the described technology can be used not only for the above-mentioned systems and radio technologies, but also for other systems and radio technologies.
  • NR New Radio
  • 6th Generation 6th Generation
  • 6G 6th Generation
  • FIG. 1 shows a structural diagram of a wireless communication system to which an embodiment of the present application can be applied.
  • the wireless communication system includes a terminal 11 and a network-side device 12 .
  • the terminal 11 may also be called a terminal device or a user terminal (User Equipment, UE), and the terminal 11 may be a mobile phone, a tablet computer (Tablet Computer), a laptop computer (Laptop Computer) or a notebook computer, a personal digital assistant (Personal Digital Assistant, PDA), PDA, netbook, ultra-mobile personal computer (ultra-mobile personal computer, UMPC), mobile Internet Device (Mobile Internet Device, MID), wearable device (Wearable Device) or vehicle-mounted device ( VUE), pedestrian terminal (PUE) and other terminal-side devices, wearable devices include: bracelets, earphones, glasses, etc.
  • the network side device 12 may be a base station or a core network, wherein the base station may be referred to as a Node B, an evolved Node B, an access point, a Base Transceiver Station (BTS), a radio base station, a radio transceiver, a basic service Set (Basic Service Set, BSS), Extended Service Set (Extended Service Set, ESS), Node B, Evolved Node B (eNB), Home Node B, Home Evolved Node B, WLAN Access Point, WiFi Node, Send Transmitting Receiving Point (TRP) or some other suitable term in the field, as long as the same technical effect is achieved, the base station is not limited to specific technical terms.
  • the base station in the NR system is taken as an example, but the specific type of the base station is not limited.
  • the preamble transmission of a cell is located on a group of PRACH time slots.
  • a PRACH slot may contain multiple ROs (PRACH occasion) in the time domain, and each RO is used to transmit a preamble of a specific format.
  • the time domain resources that the random access preamble can transmit is determined by the prach-Configuration field.
  • the terminal searches Table 6.3.3.2-2 of the corresponding configuration table TS38.211 through prach-ConfigurationIndex (the frequency range is FR1 and uses paired spectrum/supplementary uplink (SUL)), Table 6.3.3.2-3 (the frequency range is FR1 and use unpaired spectrum) or Table 6.3.3.2-4 (frequency range is FR2 and use unpaired spectrum) to obtain the preamble format used by the corresponding cell and the available PRACH time domain resources.
  • Table 6.3.3.2-2 Random access configurations for FR1 and paired spectrum/supplementary uplink.
  • Table 6.3.3.2-3 Random access configurations for FR1 and unpaired spectrum.
  • Table 6.3.3.2-4 Random access configurations for FR2 and unpaired spectrum.
  • the slot is referenced to the 15kHz subcarrier spacing.
  • the slot is referenced to the 60kHz subcarrier spacing.
  • PRACH Configuration Index The index value of RO configuration, which is configured by RRC signaling.
  • Preamble format The Preamble format used.
  • Subframe/slot number In the radio frame allowed to transmit, the subframe or slot number where the RO is located.
  • each subframe/60kHz slot containing RO the starting symbol number of the first RO in the time domain. Take the 60kHz slot as the reference slot.
  • Number of PRACH slots within a subframe/60kHz slot The number of PRACH slots contained within a subframe or 60kHz slot.
  • the number of ROs contained in a PRACH time slot that is, the number of time domain transmission opportunities of the Preamble.
  • the starting OFDM symbol position of each RO included in a PRACH slot in a reference slot can be calculated as:
  • a time slot contains 2 consecutive PRACH time slots (the value corresponding to Number of PRACH slots within a 60kHz slot is 2), and a PRACH time slot in the time domain contains ROs, each RO accounts for OFDM symbols, and the PRACH is transmitted from the 8th OFDM symbol (corresponding to the value of the Starting symbol) of each PRACH slot.
  • the starting OFDM symbol position of each RO included in a PRACH slot in a reference slot can be calculated as:
  • Figure 2 is a schematic diagram of the RO time domain resource configuration in the case where the PRACH SCS is 120 kHz and FR2.
  • the number of PRACH time slots in one reference time slot will exceed 2.
  • the reference time slot in the existing configuration table The value of the number of PRACH slots within 60kHz slot (Number of PRACH slots within 60kHz slot) can only be 1 or 2 and cannot be applied to higher subcarrier spacing.
  • the embodiment of the present application provides a new random access method.
  • FIG. 3 is a schematic flowchart of a random access method provided by an embodiment of the present application. As shown in FIG. 3 , the method includes:
  • Step 300 the terminal determines a random access opportunity RO time domain location group
  • the RO time domain location group includes at least one of the following:
  • the frame number group and the first time slot number group can be sent;
  • the described transmittable frame number group is used to indicate the transmittable frame, and the transmittable frame is the radio frame where the RO that can be used to transmit the preamble is located;
  • the first time slot number group is used to indicate the first time slot based on the first subcarrier interval where the RO is located in the transmittable frame;
  • the second time slot number group is used to indicate the second time slot based on the second subcarrier interval where the RO is located in the first time slot.
  • the second time slot number group is determined on the basis of the first time slot number group.
  • the first time slot based on the first subcarrier spacing is a reference time slot
  • the second time slot based on the second subcarrier spacing is a PRACH time slot
  • the terminal determines a random access opportunity RO time domain location group, where the RO time domain location group includes a transmittable frame number group and a first time slot number group.
  • the terminal determines a random access opportunity RO time domain location group, where the RO time domain location group includes a transmittable frame number group, a first time slot number group and a second time slot number group.
  • the terminal obtains the random access channel RACH configuration table according to at least one of the frequency range for sending the physical random access channel PRACH, the subcarrier spacing of the PRACH, and the frequency band characteristics for sending the PRACH; according to the PRACH configuration index indicated by the network , look up the RACH configuration table, and determine the random access opportunity RO time domain location group.
  • Step 301 Select a first RO from the RO time domain location group, and calculate a random access wireless network temporary identifier RA-RNTI of the first RO;
  • the terminal determines the random access opportunity RO time domain location group, selects an RO from the RO time domain location group, and calculates the random access wireless network temporary identity (Random Access Radio Network Temporary Identity, RA-RNTI) of the RO. .
  • RA-RNTI Random Access Radio Network Temporary Identity
  • the RO time domain location group includes at least one of the following: a transmittable frame number group and a first time slot number group; a second time slot number group, then the terminal selects an RO from the RO time domain location group, and calculates the random access wireless network temporary identifier RA-RNTI of the RO, which can be supported by the system when the PRACH subcarrier spacing is greater than 120kHz, Configure RO time-frequency resources.
  • the first subcarrier spacing or the second subcarrier spacing is related to at least one of the following:
  • Subcarrier spacing for sending PRACH is a subcarrier spacing for sending PRACH
  • the frequency range for sending PRACH is the frequency range for sending PRACH
  • the first time slot number group is related to at least one of the following:
  • Subcarrier spacing for sending PRACH is a subcarrier spacing for sending PRACH
  • the frequency range for sending PRACH is the frequency range for sending PRACH
  • the first slot number group configuration index The first slot number group configuration index.
  • the second time slot number group is related to at least one of the following:
  • Subcarrier spacing for sending PRACH is a subcarrier spacing for sending PRACH
  • the frequency range for sending PRACH is the frequency range for sending PRACH
  • the second slot number group configuration index is the second slot number group configuration index.
  • the terminal determines a random access opportunity RO time domain location group, including:
  • the PRACH configuration index indicated by the network look up the RACH configuration table, and obtain the size M1 of the transmittable frame number group and the first time slot number group where the RO is located;
  • L is the number of time slots based on the first subcarrier interval included in each radio frame
  • the M1 values of the first time slot number group are one or more combinations of M1 values from 0 to L-1.
  • the terminal obtains the random access channel RACH configuration table according to at least one of the frequency range for sending the physical random access channel PRACH, the subcarrier spacing of the PRACH, and the frequency band characteristics for sending the PRACH.
  • the parameters included in the random access channel RACH configuration table are the same as those in Table 6.3.3.2-2 (the frequency range is FR1 and paired spectrum/supplementary uplink (SUL) is used), Table 6.3.3.2-3 (Frequency range is FR1 and unpaired spectrum is used) or Table 6.3.3.2-4 (frequency range is FR2 and unpaired spectrum is used)
  • the parameter part is the same.
  • the terminal searches the RACH configuration table according to the PRACH configuration index PRACH Configuration Index indicated by the network, and can obtain the size M1 of the transmittable frame number group and the first time slot number group where the RO is located.
  • the method for the terminal to determine the first time slot number group is as follows:
  • L is the number of time slots based on the first subcarrier interval included in each radio frame
  • the M1 values of the first time slot number group are one or more combinations of M1 values from 0 to L-1.
  • the predefined M1 values of the first time slot number group are one or more combinations of M1 values from 0 to L-1, including one or more of the following:
  • the first M1 values from 0 to L-1;
  • each frame contains 320 timeslots L based on the first subcarrier spacing.
  • the UE searches for the PRACH configuration index indicated by the corresponding network in the RACH configuration table, and obtains the transmittable frame number group where the RO is located.
  • the UE determines the first slot number group:
  • the size M1 of the first time slot number group in the RACH configuration table may be 80 or 160.
  • the UE searches for the PRACH configuration index indicated by the corresponding network in the RACH configuration table and obtains that the size M1 of the first time slot number group is 160, the first time slot number group is 160 values predefined by the protocol between 0 and 319.
  • the M1 values of the first time slot number group predefined by the protocol are 160 values from 0 to 319, and one or more possible combinations are:
  • Example Y 1: the M1 values of the first time slot number group are 1, 3, . . . , 319, as shown in FIG. 6 .
  • Example Y 0, 1: M1 values of the first time slot number group are 2, 3, 6, 7, . . . as shown in FIG. 7 .
  • FIG. 6 is the third schematic diagram of M1 values of the first time slot number group provided by the embodiment of the present application
  • FIG. 7 is the fourth schematic diagram of the M1 values of the first time slot number group provided by the embodiment of the present application.
  • FIG. 8 is a fifth schematic diagram of M1 values of the first time slot number group provided by an embodiment of the present application.
  • the random access channel RACH configuration table is obtained according to at least one of the frequency range for sending PRACH, the subcarrier spacing of PRACH, and the frequency band characteristics for sending PRACH, and the PRACH configuration index indicated by the network is used to find all Describe the RACH configuration table, obtain the size M1 of the transmittable frame number group and the first time slot number group where the RO is located; then, determine that the first time slot number group is the predefined M1 values between 0 and L-1 , the RO time-frequency resources are configured when the PRACH subcarrier spacing is greater than 120 kHz.
  • the terminal determines the random access opportunity RO time domain location group, including the following steps:
  • the PRACH configuration index indicated by the network look up the RACH configuration table to obtain the transmittable frame number group where the RO is located, the size M1 of the first time slot number group, and the first time slot number group configuration index k1;
  • the first time slot number group is a predefined M1 value between 0 and L-1.
  • the parameters in the random access channel RACH configuration table obtained by the terminal according to at least one of the frequency range for sending the physical random access channel PRACH, the subcarrier spacing of the PRACH, and the frequency band characteristics for sending the PRACH also include the first parameter.
  • the terminal searches the RACH configuration table according to the PRACH configuration index PRACH Configuration Index indicated by the network, and can obtain the transmittable frame number group where the RO is located, the size M1 of the first time slot number group, and the first time slot number group configuration index k1.
  • the terminal determines that the first time slot number group includes:
  • the first time slot number group configuration index k1 determine that the first time slot number group is a predefined M1 value between 0 and L-1;
  • L is the number of time slots based on the first subcarrier interval included in each radio frame
  • the first time slot number group configuration index k1 is used to indicate M1 values of the first time slot number group
  • the M1 values of the first time slot number group are one or more combinations of M1 values from 0 to L-1.
  • the predefined M1 values of the first time slot number group are one or more combinations of M1 values from 0 to L-1, including one or more of the following:
  • the first M1 values from 0 to L-1;
  • the size M1 of the first time slot number group in the RACH configuration table may be 80 or 160.
  • the UE searches for the PRACH configuration index indicated by the corresponding network in the RACH configuration table, and obtains that the size M1 of the first slot number group is 80 and the first slot number group configuration index k1 is 0, indicating 160 values of the first slot number group .
  • the UE searches for the PRACH configuration index indicated by the corresponding network in the RACH configuration table, and obtains that the size M1 of the first slot number group is 80 and the first slot number group configuration index k1 is 1, indicating 160 values of the first slot number group .
  • the UE searches for the PRACH configuration index indicated by the corresponding network in the RACH configuration table, and obtains that the size M1 of the first slot number group is 160 and the first slot number group configuration index k1 is 0, indicating 160 values of the first slot number group .
  • the UE searches for the PRACH configuration index indicated by the corresponding network in the RACH configuration table, and obtains that the size M1 of the first slot number group is 160 and the first slot number group configuration index k1 is 1, indicating 160 values of the first slot number group .
  • the random access channel RACH configuration table is obtained according to at least one of the frequency range for sending PRACH, the subcarrier spacing of PRACH, and the frequency band characteristics for sending PRACH, and the PRACH configuration index indicated by the network is used to find all Describe the RACH configuration table, obtain the frame number group where RO is located, the size M1 of the first time slot number group and the first time slot number group configuration index k1; Then, determine the described according to the first time slot number group configuration index k1
  • the first time slot number group is a predefined M1 value between 0 and L-1, and the RO time-frequency resource is configured under the condition that the PRACH subcarrier interval is greater than 120 kHz.
  • the terminal determines a random access opportunity RO time domain location group, including:
  • the PRACH configuration index indicated by the network look up the RACH configuration table, and obtain the size M2 of the transmittable frame number group, the first time slot number group and the second time slot number group where the RO is located;
  • N is the ratio of the second subcarrier spacing to the first subcarrier spacing
  • the M2 values of the second time slot number group are one or more combinations of M2 values from 0 to N-1.
  • a random access channel RACH configuration table is obtained, the random access channel RACH configuration table.
  • PRACH Configuration Index PRACH Configuration Index preamble format Preamble format
  • transmittable frame N SFN mod x y
  • subframe or time slot number Subframe/slot number where RO is located in the radio frame, each containing RO The starting symbol number of the first RO in the time domain in the subframe/first slot, the starting symbol number, the size M2 of the second slot number group, the number of ROs contained in one PRACH slot, and the OFDM occupied by one RO number of symbols.
  • the terminal determines the RO time domain resource, searches the RACH configuration table according to the PRACH configuration index indicated by the network, and can directly obtain the transmittable frame number group, the first time slot number group and the second time slot where the RO is located.
  • the size of the numbered group is M2.
  • the first time slot number group can send the subframe or time slot number Subframe/slot number where the RO in the frame is located.
  • the terminal determines a second time slot number group, that is, determines that the second time slot number group is a predefined M2 value between 0 and N-1.
  • N is the ratio of the second subcarrier spacing to the first subcarrier spacing
  • the M2 values of the second time slot number group are one or more combinations of M2 values from 0 to N-1.
  • the M2 values of the second time slot number group are one or more combinations of M2 values from 0 to N-1, including one or more of the following:
  • the first M2 values from 0 to N-1;
  • each frame contains 40 time slots L based on the first subcarrier spacing, and the second subcarrier spacing is 40.
  • the ratio N of the interval to the first subcarrier interval is 8.
  • the terminal searches for the PRACH configuration index indicated by the corresponding network in the RACH configuration table, and obtains the transmittable frame number group where the RO is located and the first time slot number group in the transmittable frame of the RO based on the first subcarrier interval.
  • the method for the terminal to determine the second time slot number group :
  • the size M of the second slot number group may be 2 or 4.
  • the terminal searches for the PRACH configuration index indicated by the corresponding network in the RACH configuration table, and obtains that the size M2 of the second time slot number group is 4, and the second time slot number group is 4 values predefined by the protocol between 0 and 7.
  • the M2 values of the second time slot number group predefined by the protocol are 4 values from 0 to 7, and one or more possible combinations are:
  • Example Y 1, the second time slot number group is ⁇ 1, 3, 5, 7 ⁇ .
  • FIG. 15 is the third schematic diagram of the second time slot number group provided by this embodiment of the present application.
  • Example Y 0, 1, the second time slot number group is ⁇ 2, 3, 6, 7 ⁇ , see FIG. 16 , FIG. 16 is the fourth schematic diagram of the second time slot number group provided by the embodiment of the present application.
  • the second time slot number group is ⁇ 2, 3, 4, 5 ⁇ , see FIG. 17 , FIG.
  • the random access channel RACH configuration table is obtained according to at least one of the frequency range for sending PRACH, the subcarrier spacing of PRACH, and the frequency band characteristics for sending PRACH, and the PRACH configuration index indicated by the network is used to find all
  • the RACH configuration table is used to obtain the size of the transmittable frame number group, the first time slot number group and the second time slot number group where the RO is located; then, it is determined that the second time slot number group is between 0 and N-1
  • the predefined M2 values enable the configuration of RO time-frequency resources when the PRACH subcarrier spacing is greater than 120 kHz.
  • the terminal determines a random access opportunity RO time domain location group, including:
  • the PRACH configuration index indicated by the network look up the RACH configuration table to obtain the transmittable frame number group where the RO is located, the first time slot number group, the size M2 of the second time slot number group, and the configuration of the second time slot number group index k2;
  • the second time slot number group is determined to be M2 predefined values between 0 and N-1.
  • the parameters in the random access channel RACH configuration table obtained by the terminal according to at least one of the frequency range for sending the physical random access channel PRACH, the subcarrier spacing of the PRACH, and the frequency band characteristics for sending the PRACH also include the second parameter.
  • the second time slot number group configuration index k2 is used to indicate M2 values of the second time slot number group.
  • the terminal searches the RACH configuration table according to the PRACH configuration index indicated by the network, and can directly obtain the size M2 and
  • the second slot number group is configured with an index k2.
  • the method for the terminal to determine the second time slot number group is:
  • the second time slot number group is a predefined M2 value between 0 and N-1.
  • N is the ratio of the second subcarrier spacing to the first subcarrier spacing
  • the second time slot number group configuration index k2 is used to indicate M2 values of the second time slot number group
  • the M2 values of the second time slot number group are one or more combinations of M2 values from 0 to N-1.
  • the M2 values of the second time slot number group are one or more combinations of M2 values from 0 to N-1, including one or more of the following:
  • the first M2 values from 0 to N-1;
  • the size M2 of the second slot number group may be 2 or 4.
  • the UE searches for the PRACH configuration index indicated by the corresponding network in the RACH configuration table, and obtains that the size M2 of the second slot number group is 2 and the second slot number group configuration index k1 is 0, indicating 2 values of the second slot number group , as shown in FIG. 18 , the second time slot number group is ⁇ 3,7 ⁇ .
  • the UE searches for the PRACH configuration index indicated by the corresponding network in the RACH configuration table, and obtains that the size M2 of the second slot number group is 2 and the second slot number group configuration index k2 is 1, indicating 2 values of the second slot number group , as shown in FIG. 19 , the second time slot number group is ⁇ 1,5 ⁇ .
  • the UE searches for the PRACH configuration index indicated by the corresponding network in the RACH configuration table, and obtains that the size M2 of the second slot number group is 4 and the second slot number group configuration index k1 is 0, indicating 4 values of the second slot number group , as shown in FIG. 20 , the second time slot number group is ⁇ 4, 5, 6, 7 ⁇ .
  • the UE searches for the PRACH configuration index indicated by the corresponding network in the RACH configuration table, and obtains that the size M2 of the second slot number group is 4 and the second slot number group configuration index k2 is 1, indicating 4 values of the second slot number group , as shown in FIG. 21 , the second time slot number group is ⁇ 2, 3, 6, 7 ⁇ .
  • the random access channel RACH configuration table is obtained according to at least one of the frequency range for sending PRACH, the subcarrier spacing of PRACH, and the frequency band characteristics for sending PRACH, and the PRACH configuration index indicated by the network is used to find all Describe the RACH configuration table, obtain the transmittable frame number group, the first time slot number group, the size of the second time slot number group and the configuration index of the second time slot number group where the RO is located; then, determine the second time slot number
  • the group is a predefined M2 value between 0 and N-1, which implements the configuration of the RO time-frequency resource when the PRACH subcarrier spacing is greater than 120 kHz.
  • the terminal After determining the random access opportunity RO time domain location group, the terminal selects a first RO from the RO time domain location group, and calculates the random access wireless network temporary identifier RA-RNTI of the first RO.
  • RA-RNTI is only applicable to the case where the PRACH SCS is less than 120KHz. If the original RA-TNTI calculation is used, the same RA-RNTI will be calculated for different RO time-frequency resources.
  • the calculation formula of RNTI is extended to a high PRACH SCS, and there will be an overflow of 16-bit RA-RNTI data. Therefore, it is also necessary to design a corresponding RA-RNTI calculation method for a high RO time domain resource configuration of PRACH SCS.
  • the embodiment of the present application provides a new RA-TNTI calculation method, which can avoid data overflow.
  • the calculating the random access wireless network temporary identifier RA-RNTI of the first RO includes:
  • the RA-RNTI of the first RO is calculated based on the time domain number.
  • the terminal when calculating the RA-TNTI, the terminal first needs to determine the time domain number corresponding to the first RO.
  • the time domain numbering is a third time slot numbering based on a third subcarrier spacing, where the third subcarrier spacing is determined by one of the following:
  • the subcarrier spacing of PRACH satisfies the first condition or belongs to the first set, it is the second subcarrier spacing or the subcarrier spacing of PRACH, otherwise, it is the first subcarrier spacing or the fourth subcarrier spacing, where all The fourth subcarrier interval is a predefined subcarrier interval.
  • the first time slot can be configured in any way, and the second time slot is configured as follows:
  • the UE selects an RO from the above-mentioned RO time-domain location group, determines a time-domain number t_id corresponding to the selected RO, and calculates an RA-RNTI based on the time-domain number.
  • the time domain number t_id is the third time slot number based on the third subcarrier spacing, and the method for determining the third subcarrier is: when the PRACH subcarrier spacing is 15KHz, 30KHz, 60KHz or 120KHz, the third subcarrier spacing is the second Subcarrier spacing or PRACH subcarrier spacing, otherwise, the third subcarrier spacing is the first subcarrier spacing (60KHz) or the fourth subcarrier spacing (120KHz, predefined by the protocol).
  • FIG. 24 is a schematic diagram of a time domain number t_id provided by an embodiment of the present application.
  • RA-RNTI can be calculated according to the following formula:
  • RA-RNTI 1+s_id+14 ⁇ t_id+14 ⁇ X ⁇ f_id+14 ⁇ X ⁇ 8 ⁇ ul_carrier_id;
  • the time domain number is the sequence number of the first RO in the time slot set that can send RO in the sendable frame, and the time slot set that can send RO is based on the first time slot number.
  • the group and/or the second slot number group is obtained.
  • RO can be configured in some time slots in the transmittable frame, and these time slots are called the time slot set that can transmit RO, that is, the time slot set that can transmit RO refers to the time slot set that can be configured with RO Time slot, this time slot set may contain multiple ROs that can be sent, from which one is selected as the first RO.
  • the set of timeslots in which the RO can be sent is obtained based on the first group of timeslot numbers and/or the second group of timeslot numbers.
  • the random access opportunity RO time domain location group determined by the terminal includes a transmittable frame number group and a first time slot number group
  • the time slot set for which RO can be transmitted is obtained based on the first time slot number group.
  • the random access opportunity RO time domain location group determined by the terminal includes a transmittable frame number group, a first time slot number group and a second time slot number group
  • the time slot set for which RO can be transmitted is based on the first time slot number group.
  • a time slot number group and a second time slot number group are obtained.
  • the time domain number is a sequence number of the first RO in a group of a time slot set that can send an RO in a sendable frame, wherein the time slot set is based on the first time slot.
  • the numbered group and/or the second slot numbered group is obtained.
  • time slot sets are grouped according to one of the following:
  • the value of the R time slots that are connected before and after is a group
  • the time slots spaced by R time slot values are grouped.
  • calculating the RA-RNTI of the first RO based on the time domain number including:
  • RA-RNTI 1+s_id+14 ⁇ t_id+14 ⁇ X ⁇ f_id+14 ⁇ X ⁇ 8 ⁇ ul_carrier_id Formula 1;
  • RA-RNTI (1+s_id+14 ⁇ t_id+14 ⁇ X ⁇ f_id+14 ⁇ X ⁇ 8 ⁇ ul_carrier_id)mod A Formula 2;
  • the maximum value of the time slot set size in which RO can be sent in a configurable frame in the RACH configuration table obtained according to at least one of the frequency range for sending PRACH, the subcarrier spacing of PRACH, and the frequency band characteristics for sending PRACH;
  • the maximum value of a packet size of a set of time slots that can send ROs in a configurable frame in the RACH configuration table obtained according to at least one of the frequency range for sending PRACH, the subcarrier spacing of PRACH, and the frequency band characteristics for sending PRACH;
  • s_id is the first OFDM symbol index of the first RO
  • t_id is the time domain number corresponding to the first RO
  • f_id is the frequency domain number corresponding to the first RO
  • ul_carrier_id is the uplink carrier used to transmit the preamble, 0 represents the normal uplink carrier, and 1 represents the supplementary uplink carrier;
  • A is a preset integer, or A is configured by the network side, or A is determined by the terminal.
  • the size of the time slot set in which the RO can be sent in the one frame is the first time slot set size or the first time slot set size*the second time slot set size.
  • the size of the first set of time slots refers to the size of the set of first time slots based on the first subcarrier interval that can transmit ROs in the frame.
  • the size of the second set of time slots refers to the size of the set of second time slots based on the second subcarrier interval that can transmit ROs in the frame.
  • the random access method provided in this embodiment of the present application further includes:
  • the terminal determines whether it needs to combine the first indication of the network to determine whether to receive the random access response RAR scheduled by the physical downlink control channel PDCCH according to the size of X, or the terminal determines the size of the first indication according to the size of X.
  • the terminal determines the size of the first indication according to the size of X, so that the terminal obtains the first indication in the downlink control information (Downlink Control Information, DCI) carried in the physical downlink control channel (Physical Downlink Control Channel, PDCCH).
  • DCI Downlink Control Information
  • PDCCH Physical Downlink Control Channel
  • the first indication includes at least one of the following:
  • the group ID of the set of time slots in which RO can be sent in a configurable frame in the RACH configuration table obtained according to at least one of the frequency range for sending PRACH, the subcarrier spacing of PRACH, and the frequency band characteristics for sending PRACH;
  • RA-RNTI calculation method provided by the embodiments of the present application is further described below with reference to specific embodiments.
  • FIG. 25 is one of the schematic diagrams of the first time slot set provided by this embodiment of the present application.
  • the second time slot numbering group is ⁇ 3,7 ⁇ ;
  • the second time slot numbering group is ⁇ 2, 3, 6, 7 ⁇ ;
  • FIG. 26 is the sixth schematic diagram of the second time slot number group provided by the embodiment of the present application
  • FIG. 27 is the seventh schematic diagram of the second time slot number group provided by the embodiment of the present application.
  • FIG. 28 is one of the schematic diagrams of the second time slot set provided by the embodiment of the present application.
  • FIG. 29 is one of the schematic diagrams of a time slot set in which an RO can be sent in a frame according to an embodiment of the present application.
  • RA-RNTI is calculated according to the following formula:
  • RA-RNTI 1+s_id+14 ⁇ t_id+14 ⁇ X ⁇ f_id+14 ⁇ X ⁇ 8 ⁇ ul_carrier_id;
  • the UE does not need to determine the RAR scheduled by the PDCCH in combination with the first indication of the network.
  • the second time slot is configured as follows:
  • the second time slot number group is ⁇ 0,4 ⁇ ;
  • the second time slot numbering group is ⁇ 2, 3, 6, 7 ⁇ ;
  • FIG. 30 is the eighth schematic diagram of the second time slot numbering group provided by the embodiment of the present application
  • FIG. 31 is the ninth schematic diagram of the second time slot numbering group provided by the embodiment of the present application.
  • FIG. 32 is the second schematic diagram of the second time slot set provided by the embodiment of the present application.
  • FIG. 33 is the second schematic diagram of a time slot set in which an RO can be sent in a frame according to an embodiment of the present application.
  • the configurable first time slot set in the RACH configuration table obtained according to at least one of the frequency range for sending PRACH, the subcarrier spacing of PRACH, and the frequency band characteristics for sending PRACH is ⁇ 1, 3, 5, 7,...,37,39 ⁇ , the size is 20, the configurable second time slot set is: ⁇ 3,7 ⁇ , the size is 2.
  • FIG. 34 is the second schematic diagram of the first time slot set provided by the embodiment of the present application.
  • the configurable second time slot set that can send RO in one frame is ⁇ 3, 7 ⁇ , as shown in FIG. 35 .
  • FIG. 35 is the third schematic diagram of the second time slot set provided by this embodiment of the application.
  • the size of the two-slot set is two.
  • FIG. 36 is the third schematic diagram of a time slot set in which an RO can be sent in a frame provided by an embodiment of the present application.
  • FIG. 37 is the fourth schematic diagram of a time slot set in which ROs can be sent in a frame provided by an embodiment of the present application. Assuming that the time slot set that can send RO in one frame is shown in Figure 37, the size is 320,
  • the set of time slots can be divided into 4 groups as follows:
  • FIG. 38 is a schematic diagram of a grouping of a set of time slots in which ROs can be sent in a frame according to an embodiment of the present application. As shown in FIG. 38, 80 consecutive time slot values are one set.
  • FIG. 39 is the second schematic diagram of the grouping of a set of time slots in which ROs can be sent in a frame according to an embodiment of the present application. As shown in Fig. 39, time slots separated by 4 slot values are grouped.
  • RA-RNTI is calculated according to the following formula:
  • RA-RNTI 1+s_id+14 ⁇ t_id+14 ⁇ X ⁇ f_id+14 ⁇ X ⁇ 8 ⁇ ul_carrier_id;
  • the UE determines to receive the RAR scheduled by the PDCCH in combination with the first indication of the network, where the first indication is a configurable packet ID in a set of timeslots in which ROs can be sent in a frame.
  • the PRACH subcarrier interval be 960KHz
  • the first subcarrier interval be 60KHz
  • the second subcarrier interval be 960KHz
  • the first configurable time slot set in the RACH configuration table obtained by sending at least one of the frequency band characteristics of the PRACH is ⁇ 1, 2, 3, 4, . . . , 38, 39 ⁇ , and the size is 40.
  • FIG. 40 is the third schematic diagram of the first time slot set provided by the embodiment of the present application.
  • the configurable second time slot set in which RO can be sent in the sendable frame is ⁇ 4, 5, 6, 7, 12, 13, 14, 15 ⁇
  • FIG. 41 is the second time slot set provided by this embodiment of the application
  • the fourth schematic diagram of , as shown in FIG. 41 the size of the second time slot set is 8.
  • FIG. 42 is the fifth schematic diagram of a time slot set in which an RO can be sent in one frame according to an embodiment of the present application.
  • the set of time slots can be divided into 4 groups as follows:
  • FIG. 43 is the third schematic diagram of the grouping of a set of time slots in which ROs can be sent in a frame according to an embodiment of the present application. As shown in Fig. 43, 80 consecutive timeslot values are one group.
  • FIG. 44 is a fourth schematic diagram of grouping of a set of time slots in which ROs can be sent in a frame according to an embodiment of the present application. As shown in Fig. 44, time slots separated by 4 slot values are grouped.
  • RA-RNTI is calculated according to the following formula:
  • RA-RNTI 1+s_id+14 ⁇ t_id+14 ⁇ X ⁇ f_id+14 ⁇ X ⁇ 8 ⁇ ul_carrier_id;
  • the UE determines to receive the RAR scheduled by the PDCCH in combination with the first indication of the network, where the first indication is obtained according to at least one of the frequency range for transmitting PRACH, the subcarrier spacing for PRACH, and the frequency band characteristics for transmitting PRACH
  • the random access method provided by the embodiment of the present application realizes that when the PRACH subcarrier spacing is greater than 120 kHz, while configuring the RO time-frequency resources, it also proposes to design the corresponding RO time-domain resource configuration for high PRACH SCS.
  • the calculation method of RA-RNTI can avoid data overflow and improve the random access performance of the terminal.
  • the execution subject may be a random access device, or a control module in the random access device for executing the random access method.
  • the random access device provided by the embodiment of the present application is described by taking the random access method performed by the random access device as an example.
  • FIG. 45 is a schematic structural diagram of a random access apparatus provided by an embodiment of the present application. As shown in FIG. 45 , the apparatus includes:
  • a determining unit 4510 configured to determine a random access opportunity RO time domain location group
  • a calculation unit 4520 configured to select a first RO from the RO time domain location group, and calculate the random access wireless network temporary identifier RA-RNTI of the first RO;
  • the RO time domain location group includes at least one of the following:
  • the frame number group and the first time slot number group can be sent;
  • the transmittable frame number group is used to indicate a transmittable frame, and the transmittable frame is a radio frame where the RO that can be used to transmit the preamble is located;
  • the first time slot number group is used to indicate the first time slot based on the first subcarrier interval where the RO is located in the transmittable frame;
  • the second time slot number group is used to indicate the second time slot based on the second subcarrier interval where the RO is located in the first time slot.
  • the RO time domain location group includes at least one of the following: a transmittable frame number group and a first time slot number group; a second time slot number group, and then the terminal selects an RO from the RO time domain location group, and calculates the random access wireless network temporary identifier RA-RNTI of the RO, which can be supported by the system when the PRACH subcarrier spacing is greater than 120kHz, Configure the RO time-frequency resources.
  • the first subcarrier spacing or the second subcarrier spacing is related to at least one of the following:
  • Subcarrier spacing for sending PRACH is a subcarrier spacing for sending PRACH
  • the frequency range for sending PRACH is the frequency range for sending PRACH
  • the first time slot number group is related to at least one of the following:
  • Subcarrier spacing for sending PRACH is a subcarrier spacing for sending PRACH
  • the frequency range for sending PRACH is the frequency range for sending PRACH
  • the first slot number group configuration index The first slot number group configuration index.
  • the second time slot number group is related to at least one of the following:
  • Subcarrier spacing for sending PRACH is a subcarrier spacing for sending PRACH
  • the frequency range for sending PRACH is the frequency range for sending PRACH
  • the second slot number group configuration index is the second slot number group configuration index.
  • the determining unit is used for:
  • the PRACH configuration index indicated by the network look up the RACH configuration table, and obtain the size M1 of the transmittable frame number group and the first time slot number group where the RO is located;
  • L is the number of time slots based on the first subcarrier interval included in each radio frame
  • the M1 values of the first time slot number group are one or more combinations of M1 values from 0 to L-1.
  • the determining unit is used for:
  • the PRACH configuration index indicated by the network look up the RACH configuration table, and obtain the size M2 of the transmittable frame number group, the first time slot number group and the second time slot number group where the RO is located;
  • N is the ratio of the second subcarrier spacing to the first subcarrier spacing
  • the M2 values of the second time slot number group are one or more combinations of M2 values from 0 to N-1.
  • the determining unit is used for:
  • the PRACH configuration index indicated by the network look up the RACH configuration table to obtain the transmittable frame number group where the RO is located, the size M1 of the first time slot number group, and the first time slot number group configuration index k1;
  • the first time slot number group configuration index k1 determine that the first time slot number group is a predefined M1 value between 0 and L-1;
  • L is the number of time slots based on the first subcarrier interval included in each radio frame
  • the first time slot number group configuration index k1 is used to indicate M1 values of the first time slot number group
  • the M1 values of the first time slot number group are one or more combinations of M1 values from 0 to L-1.
  • the determining unit is used for:
  • the PRACH configuration index indicated by the network look up the RACH configuration table to obtain the transmittable frame number group where the RO is located, the first time slot number group, the size M2 of the second time slot number group, and the configuration of the second time slot number group index k2;
  • the configuration index k2 of the second time slot number group determine that the second time slot number group is a predefined M2 value between 0 and N-1;
  • N is the ratio of the second subcarrier spacing to the first subcarrier spacing
  • the second time slot number group configuration index k2 is used to indicate M2 values of the second time slot number group
  • the M2 values of the second time slot number group are one or more combinations of M2 values from 0 to N-1.
  • the M1 values of the first time slot number group are one or more combinations of M1 values from 0 to L-1, including one or more of the following:
  • the first M1 values from 0 to L-1;
  • the M2 values of the second time slot number group are one or more combinations of M2 values from 0 to N-1, including one or more of the following:
  • the first M2 values from 0 to N-1;
  • the computing unit includes:
  • a time-domain number determination subunit configured to determine a time-domain number corresponding to the first RO
  • a calculation subunit configured to calculate the RA-RNTI of the first RO based on the time domain number.
  • the time domain numbering is a third time slot number based on a third subcarrier spacing, where the third subcarrier spacing is determined by one of the following:
  • the subcarrier spacing of PRACH satisfies the first condition or belongs to the first set, it is the second subcarrier spacing or the subcarrier spacing of PRACH, otherwise, it is the first subcarrier spacing or the fourth subcarrier spacing, where all The fourth subcarrier interval is a predefined subcarrier interval.
  • the time domain number is the sequence number of the first RO in the time slot set that can send RO in the sendable frame, and the time slot set that can send RO is based on the first time slot number.
  • the group and/or the second slot number group is obtained.
  • the time domain number is a sequence number of the first RO in a group of a time slot set that can send an RO in a sendable frame, wherein the time slot set is based on the first time slot.
  • the numbered group and/or the second slot numbered group is obtained.
  • time slot sets are grouped according to one of the following:
  • the value of the R time slots that are connected before and after is a group
  • the time slots spaced by R time slot values are grouped.
  • the computing subunit is used for:
  • RA-RNTI 1+s_id+14 ⁇ t_id+14 ⁇ X ⁇ f_id+14 ⁇ X ⁇ 8 ⁇ ul_carrier_id Formula 1;
  • RA-RNTI (1+s_id+14 ⁇ t_id+14 ⁇ X ⁇ f_id+14 ⁇ X ⁇ 8 ⁇ ul_carrier_id)mod A Formula 2;
  • the maximum value of the time slot set size in which RO can be sent in a configurable frame in the RACH configuration table obtained according to at least one of the frequency range for sending PRACH, the subcarrier spacing of PRACH and the frequency band characteristics for sending PRACH;
  • the maximum value of a packet size of a set of time slots that can send ROs in a configurable frame in the RACH configuration table obtained according to at least one of the frequency range for sending PRACH, the subcarrier spacing of PRACH, and the frequency band characteristics for sending PRACH;
  • s_id is the first OFDM symbol index of the first RO
  • t_id is the time domain number corresponding to the first RO
  • f_id is the frequency domain number corresponding to the first RO
  • ul_carrier_id is the uplink carrier used to transmit the preamble, 0 represents the normal uplink carrier, and 1 represents the supplementary uplink carrier;
  • A is a preset integer, or A is configured by the network side, or A is determined by the terminal.
  • the size of the time slot set in which the RO can be sent in the one frame is the first time slot set size or the first time slot set size*the second time slot set size.
  • the judging unit is used for the terminal to determine whether it needs to combine the first indication of the network to judge the random access response RAR scheduled by the physical downlink control channel PDCCH according to the size of X, or the terminal to determine the size of the first indication according to the size of X.
  • the first indication includes at least one of the following:
  • the group ID of the set of time slots in which RO can be sent in a configurable frame in the RACH configuration table obtained according to at least one of the frequency range for sending PRACH, the subcarrier spacing of PRACH, and the frequency band characteristics for sending PRACH;
  • the random access device provided by the embodiment of the present application realizes that when the PRACH subcarrier spacing is greater than 120 kHz, while configuring the RO time-frequency resources, it also proposes to design the corresponding RO time-domain resource configuration for the high PRACH SCS.
  • the calculation method of RA-RNTI can avoid data overflow and improve the random access performance of the terminal.
  • the random access in this embodiment of the present application may be an apparatus or electronic device having an operating system, or may be a component, an integrated circuit, or a chip in a terminal.
  • the electronic device may be a mobile electronic device or a non-mobile electronic device.
  • the mobile electronic device may include, but is not limited to, the types of terminals 11 listed above, and the non-mobile electronic device may be a server, a network attached storage (NAS), a personal computer (PC), a television A TV (television, TV), a teller machine, or a self-service machine, etc., are not specifically limited in this embodiment of the present application.
  • the random access apparatus provided in the embodiments of the present application can implement the various processes implemented by the method embodiments in FIG. 3 to FIG. 44 , and achieve the same technical effect. To avoid repetition, details are not repeated here.
  • an embodiment of the present application further provides a communication device 4600, including a processor 4601, a memory 4602, a program or instruction stored in the memory 4602 and executable on the processor 4601,
  • a communication device 4600 including a processor 4601, a memory 4602, a program or instruction stored in the memory 4602 and executable on the processor 4601,
  • the communication device 4600 is a terminal
  • the program or instruction is executed by the processor 4601
  • each process of the foregoing random access method embodiment can be implemented, and the same technical effect can be achieved.
  • the communication device 4600 is a network side device
  • the program or instruction is executed by the processor 4601
  • each process of the above random access method embodiment can be achieved, and the same technical effect can be achieved. To avoid repetition, details are not repeated here.
  • FIG. 47 is a schematic diagram of a hardware structure of a terminal implementing an embodiment of the present application.
  • the terminal 4700 includes but is not limited to: a radio frequency unit 4701, a network module 4702, an audio output unit 4703, an input unit 4704, a sensor 4705, a display unit 4706, a user input unit 4707, an interface unit 4708, a memory 4709, and a processor 4710, etc. at least part of the components.
  • the terminal 4700 may also include a power source (such as a battery) for supplying power to various components, and the power source may be logically connected to the processor 4710 through a power management system, so as to manage charging, discharging, and power consumption through the power management system management and other functions.
  • a power source such as a battery
  • the terminal structure shown in FIG. 47 does not constitute a limitation on the terminal, and the terminal may include more or less components than the one shown, or combine some components, or arrange different components, which will not be repeated here.
  • the input unit 4704 may include a graphics processor (Graphics Processing Unit, GPU) 47041 and a microphone 47042. Such as camera) to obtain still pictures or video image data for processing.
  • the display unit 4706 may include a display panel 47061, which may be configured in the form of a liquid crystal display, an organic light emitting diode, or the like.
  • the user input unit 4707 includes a touch panel 47071 and other input devices 47072. Touch panel 47071, also called touch screen.
  • the touch panel 47071 may include two parts, a touch detection device and a touch controller.
  • Other input devices 47072 may include, but are not limited to, physical keyboards, function keys (such as volume control keys, switch keys, etc.), trackballs, mice, and joysticks, which will not be repeated here.
  • the radio frequency unit 4701 receives the downlink data from the network side device, and then processes it to the processor 4710; in addition, sends the uplink data to the network side device.
  • the radio frequency unit 4701 includes, but is not limited to, an antenna, at least one amplifier, a transceiver, a coupler, a low noise amplifier, a duplexer, and the like.
  • Memory 4709 may be used to store software programs or instructions as well as various data.
  • the memory 4709 may mainly include a stored program or instruction area and a storage data area, wherein the stored program or instruction area may store an operating system, an application program or instruction required for at least one function (such as a sound playback function, an image playback function, etc.) and the like.
  • the memory 4709 may include a high-speed random access memory, and may also include a non-volatile memory, wherein the non-volatile memory may be a read-only memory (Read-Only Memory, ROM), a programmable read-only memory (Programmable ROM) , PROM), erasable programmable read-only memory (Erasable PROM, EPROM), electrically erasable programmable read-only memory (Electrically EPROM, EEPROM) or flash memory.
  • ROM Read-Only Memory
  • PROM programmable read-only memory
  • PROM erasable programmable read-only memory
  • Erasable PROM Erasable PROM
  • EPROM electrically erasable programmable read-only memory
  • EEPROM electrically erasable programmable read-only memory
  • flash memory for example at least one magnetic disk storage device, flash memory device, or other non-volatile solid state storage device.
  • the processor 4710 may include one or more processing units; optionally, the processor 4710 may integrate an application processor and a modem processor, wherein the application processor mainly processes the operating system, user interface, and application programs or instructions, etc. Modem processors mainly deal with wireless communications, such as baseband processors. It can be understood that the above-mentioned modulation and demodulation processor may not be integrated into the processor 4710.
  • the processor 4710 is used for:
  • the RO time domain location group includes at least one of the following:
  • the frame number group and the first time slot number group can be sent;
  • the transmittable frame number group is used to indicate a transmittable frame, and the transmittable frame is a radio frame where the RO that can be used to transmit the preamble is located;
  • the first time slot number group is used to indicate the first time slot based on the first subcarrier interval where the RO is located in the transmittable frame;
  • the second time slot number group is used to indicate the second time slot based on the second subcarrier interval where the RO is located in the first time slot.
  • the RO time domain location group includes at least one of the following: a transmittable frame number group and a first time slot number group; a second time slot number group, then the terminal selects an RO from the RO time domain location group, and calculates the random access wireless network temporary identifier RA-RNTI of the RO, which can be supported by the system when the PRACH subcarrier spacing is greater than 120kHz, Configure RO time-frequency resources.
  • the first subcarrier spacing or the second subcarrier spacing is related to at least one of the following:
  • Subcarrier spacing for sending PRACH is a subcarrier spacing for sending PRACH
  • the frequency range for sending PRACH is the frequency range for sending PRACH
  • the first time slot number group is related to at least one of the following:
  • Subcarrier spacing for sending PRACH is a subcarrier spacing for sending PRACH
  • the frequency range for sending PRACH is the frequency range for sending PRACH
  • the first slot number group configuration index The first slot number group configuration index.
  • the second time slot number group is related to at least one of the following:
  • Subcarrier spacing for sending PRACH is a subcarrier spacing for sending PRACH
  • the frequency range for sending PRACH is the frequency range for sending PRACH
  • the second slot number group configuration index is the second slot number group configuration index.
  • processor 4710 is further configured to:
  • the PRACH configuration index indicated by the network look up the RACH configuration table, and obtain the size M1 of the transmittable frame number group and the first time slot number group where the RO is located;
  • L is the number of time slots based on the first subcarrier interval included in each radio frame
  • the M1 values of the first time slot number group are one or more combinations of M1 values from 0 to L-1.
  • processor 4710 is further configured to:
  • the PRACH configuration index indicated by the network look up the RACH configuration table, and obtain the size M2 of the transmittable frame number group, the first time slot number group and the second time slot number group where the RO is located;
  • N is the ratio of the second subcarrier spacing to the first subcarrier spacing
  • the M2 values of the second time slot number group are one or more combinations of M2 values from 0 to N-1.
  • processor 4710 is further configured to:
  • the PRACH configuration index indicated by the network look up the RACH configuration table to obtain the transmittable frame number group where the RO is located, the size M1 of the first time slot number group, and the first time slot number group configuration index k1;
  • the first time slot number group configuration index k1 determine that the first time slot number group is a predefined M1 value between 0 and L-1;
  • L is the number of time slots based on the first subcarrier interval included in each radio frame
  • the first time slot number group configuration index k1 is used to indicate M1 values of the first time slot number group
  • the M1 values of the first time slot number group are one or more combinations of M1 values from 0 to L-1.
  • processor 4710 is further configured to:
  • the PRACH configuration index indicated by the network look up the RACH configuration table to obtain the transmittable frame number group where the RO is located, the first time slot number group, the size M2 of the second time slot number group, and the configuration of the second time slot number group index k2;
  • the configuration index k2 of the second time slot number group determine that the second time slot number group is a predefined M2 value between 0 and N-1;
  • N is the ratio of the second subcarrier spacing to the first subcarrier spacing
  • the second time slot number group configuration index k2 is used to indicate M2 values of the second time slot number group
  • the M2 values of the second time slot number group are one or more combinations of M2 values from 0 to N-1.
  • the M1 values of the first time slot number group are one or more combinations of M1 values from 0 to L-1, including one or more of the following:
  • the first M1 values from 0 to L-1;
  • the M2 values of the second time slot number group are one or more combinations of M2 values from 0 to N-1, including one or more of the following:
  • the first M2 values from 0 to N-1;
  • the processor 110 is further configured to:
  • the RA-RNTI of the first RO is calculated based on the time domain number.
  • the time domain numbering is a third time slot number based on a third subcarrier spacing, where the third subcarrier spacing is determined by one of the following:
  • the subcarrier spacing of PRACH satisfies the first condition or belongs to the first set, it is the second subcarrier spacing or the subcarrier spacing of PRACH, otherwise, it is the first subcarrier spacing or the fourth subcarrier spacing, where all The fourth subcarrier interval is a predefined subcarrier interval.
  • the time domain number is the sequence number of the first RO in the time slot set that can send RO in the sendable frame, and the time slot set that can send RO is based on the first time slot number.
  • the group and/or the second slot number group is obtained.
  • the time domain number is a sequence number of the first RO in a group of a time slot set that can send an RO in a sendable frame, wherein the time slot set is based on the first time slot.
  • the numbered group and/or the second slot numbered group is obtained.
  • time slot sets are grouped according to one of the following:
  • the value of the R time slots that are connected before and after is a group
  • the time slots spaced by R time slot values are grouped.
  • processor 4710 is further configured to:
  • RA-RNTI 1+s_id+14 ⁇ t_id+14 ⁇ X ⁇ f_id+14 ⁇ X ⁇ 8 ⁇ ul_carrier_id Formula 1;
  • RA-RNTI (1+s_id+14 ⁇ t_id+14 ⁇ X ⁇ f_id+14 ⁇ X ⁇ 8 ⁇ ul_carrier_id)mod A Formula 2;
  • the maximum value of the time slot set size in which RO can be sent in a configurable frame in the RACH configuration table obtained according to at least one of the frequency range for sending PRACH, the subcarrier spacing of PRACH, and the frequency band characteristics for sending PRACH;
  • the maximum value of a packet size of a set of time slots that can send ROs in a configurable frame in the RACH configuration table obtained according to at least one of the frequency range for sending PRACH, the subcarrier spacing of PRACH, and the frequency band characteristics for sending PRACH;
  • s_id is the first OFDM symbol index of the first RO
  • t_id is the time domain number corresponding to the first RO
  • f_id is the frequency domain number corresponding to the first RO
  • ul_carrier_id is the uplink carrier used to transmit the preamble, 0 represents the normal uplink carrier, and 1 represents the supplementary uplink carrier;
  • A is a preset integer, or A is configured by the network side, or A is determined by the terminal.
  • the size of the time slot set in which the RO can be sent in the one frame is the first time slot set size or the first time slot set size*the second time slot set size.
  • processor 4710 is further configured to:
  • the terminal determines whether it needs to combine the first indication of the network to determine whether to receive the random access response RAR scheduled by the physical downlink control channel PDCCH according to the size of X, or the terminal determines the size of the first indication according to the size of X.
  • the first indication includes at least one of the following:
  • the group ID of the time slot set in which RO can be sent in a configurable frame in the RACH configuration table obtained according to at least one of the frequency range of sending PRACH, the subcarrier spacing of PRACH and the frequency band characteristics of sending PRACH;
  • the terminal provided by the embodiments of the present application realizes that when the PRACH subcarrier spacing is greater than 120 kHz, while configuring the RO time-frequency resources, it is also proposed to design the corresponding RA-RNTI for the RO time-domain resource configuration of the high PRACH SCS.
  • the calculation method can avoid data overflow and improve the random access performance of the terminal.
  • terminal embodiments in the embodiments of the present application are product embodiments corresponding to the foregoing method embodiments, and all implementation manners in the foregoing method embodiments are applicable to the terminal embodiments, and the same or similar technical effects can also be achieved. This will not be repeated here.
  • Embodiments of the present application further provide a readable storage medium, where a program or an instruction is stored on the readable storage medium.
  • a program or an instruction is stored on the readable storage medium.
  • the processor is the processor in the terminal described in the foregoing embodiment.
  • the readable storage medium includes a computer-readable storage medium, such as a computer read-only memory (Read-Only Memory, ROM), a random access memory (Random Access Memory, RAM), a magnetic disk or an optical disk, and the like.
  • An embodiment of the present application further provides a chip, where the chip includes a processor and a communication interface, the communication interface is coupled to the processor, and the processor is configured to run a program or an instruction to implement the foregoing random access method embodiment and can achieve the same technical effect, in order to avoid repetition, it will not be repeated here.
  • the chip mentioned in the embodiments of the present application may also be referred to as a system-on-chip, a system-on-chip, a system-on-chip, or a system-on-a-chip, or the like.
  • the method of the above embodiment can be implemented by means of software plus a necessary general hardware platform, and of course can also be implemented by hardware, but in many cases the former is better implementation.
  • the technical solution of the present application can be embodied in the form of a software product in essence or in a part that contributes to the prior art, and the computer software product is stored in a storage medium (such as ROM/RAM, magnetic disk, CD-ROM), including several instructions to make a terminal (which may be a mobile phone, a computer, a server, or a network device, etc.) execute the methods described in the various embodiments of this application.
  • a storage medium such as ROM/RAM, magnetic disk, CD-ROM

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请公开了一种随机接入方法、装置、终端及存储介质。所述方法包括:终端确定随机接入时机RO时域位置组;从RO时域位置组中选择第一RO,并计算第一RO的随机接入无线网络临时标识RA-RNTI;其中,RO时域位置组包括以下至少一项:可发送帧编号组和第一时隙编号组;第二时隙编号组。

Description

随机接入方法、装置、终端及存储介质
相关申请的交叉引用
本申请要求于2021年03月09日提交的申请号为2021102586099,发明名称为“随机接入方法、装置、终端及存储介质”的中国专利申请的优先权,其通过引用方式全部并入本申请。
技术领域
本申请属于通信技术领域,具体涉及一种随机接入方法、装置、终端及存储介质。
背景技术
在现有的通信系统中,物理随机接入信道(Physical Random Access Channel,PRACH)用于传输前导码preamble,每个随机接入时机(PRACH occasion,RO)只能传输一个前导码preamble,但多个UE可以使用同一RO传输不同的preamble。
在B52.6GHz系统中,可能会支持高的PRACH子载波间隔(sub-carrier spacing,SCS),例如480/960KHz。当前协议的RO时频资源配置支持的PRACH SCS为15/30/60/120KHz。当SCS大于120kHz时,即使采用FR2的60kHz的参考时隙的子载波间隔,在一个参考时隙中的PRACH时隙数量将会超过2个,然而现有配置表中的参考时隙中的PRACH时隙数量(Number of PRACH slots within 60kHz slot)的值只能为1或2,不能应用于更高的子载波间隔。
因此,在系统支持的PRACH子载波间隔大于120kHz的情况下,如何对RO时频资源进行配置是需要解决的。
发明内容
本申请实施例提供一种随机接入方法、装置、终端及存储介质,能够实现在系统支持的PRACH子载波间隔大于120Khz的情况下,对RO时频资源进行配置。
第一方面,提供了一种随机接入方法方法,该方法包括:
终端确定随机接入时机RO时域位置组;
从所述RO时域位置组中选择第一RO,并计算所述第一RO的随机接入无线网络临时标识RA-RNTI;
其中,所述RO时域位置组包括以下至少一项:
可发送帧编号组和第一时隙编号组;
第二时隙编号组;
其中,所述可发送帧编号组用于指示可发送帧,所述可发送帧为可用于传输前导码的RO所在的无线帧;
所述第一时隙编号组用于指示在所述可发送帧中RO所在的基于第一子载波间隔的第一时隙;
所述第二时隙编号组用于指示在所述第一时隙中RO所在的基于第二子载波间隔的第二时隙。
第二方面,提供了一种随机接入装置,包括:
确定单元,用于确定随机接入时机RO时域位置组;
计算单元,用于从所述RO时域位置组中选择第一RO,并计算所述第一RO的随机接入无线网络临时标识RA-RNTI;
其中,所述RO时域位置组包括以下至少一项:
可发送帧编号组和第一时隙编号组;
第二时隙编号组;
其中,所述可发送帧编号组用于指示可发送帧,所述可发送帧为可用于传输前导码的RO所在的无线帧;
所述第一时隙编号组用于指示在所述可发送帧中RO所在的基于第一子载波间隔的第一时隙;
所述第二时隙编号组用于指示在所述第一时隙中RO所在的基于第二子载波间隔的第二时隙。
第三方面,提供了一种终端,该终端包括处理器、存储器及存储在所述存储器上并可在所述处理器上运行的程序或指令,所述程序或指令被所述处理器执行时实现如第一方面所述的方法的步骤。
第四方面,提供了一种可读存储介质,所述可读存储介质上存储程序或指令,所述程序或指令被处理器执行时实现如第一方面所述的方法的步骤。
第五方面,提供了一种芯片,所述芯片包括处理器和通信接口,所述通信接口和所述处理器耦合,所述处理器用于运行程序或指令,实现如第一方面所述的方法。
第六方面,提供了一种计算机程序产品,所述程序产品被存储在可读存储介质中,所述程序产品被至少一个处理器执行时实现如第一方面所述的方法。在本申请实施例中,通过确定随机接入时机RO时域位置组,所述RO时域位置组包括以下至少一项:可发送帧编号组和第一时隙编号组;第二时隙编号组,然后终端从所述RO时域位置组中选择一个RO,并计算所述该RO的随机接入无线网络临时标识RA-RNTI,可以在系统支持的PRACH子载波间隔大于120kHz的情况下,对RO时频资源进行配置。
附图说明
图1为本申请实施例可应用的一种无线通信系统的结构图;
图2为PRACH SCS为120kHz,FR2情况下的RO时域资源配置示意图;
图3为本申请实施例提供的随机接入方法的流程示意图;
图4为本申请实施例提供的第一时隙编号组的M1个值的示意图之一;
图5为本申请实施例提供的第一时隙编号组的M1个值的示意图之二;
图6为本申请实施例提供的第一时隙编号组的M1个值的示意图之三;
图7为本申请实施例提供的第一时隙编号组的M1个值的示意图之四;
图8为本申请实施例提供的第一时隙编号组的M1个值的示意图之五;
图9为本申请实施例提供的M1=80且候选k1=0时第一时隙编号组的示意图;
图10为本申请实施例提供的M1=80且候选k1=1时第一时隙编号组的示意图;
图11为本申请实施例提供的M1=160且候选k1=0时第一时隙编号组的示意图;
图12为本申请实施例提供的M1=160且候选k1=1时第一时隙编号组的示意图;
图13为本申请实施例提供的第二时隙编号组的示意图之一;
图14为本申请实施例提供的第二时隙编号组的示意图之二;
图15为本申请实施例提供的第二时隙编号组的示意图之三;
图16为本申请实施例提供的第二时隙编号组的示意图之四;
图17为本申请实施例提供的第二时隙编号组的示意图之五;
图18为本申请实施例提供的M2=2且候选k2=0时第二时隙编号组的示意图;
图19为本申请实施例提供的M2=2且候选k2=1时第二时隙编号组的示意图;
图20为本申请实施例提供的M2=4且候选k2=0时第二时隙编号组的示意图;
图21为本申请实施例提供的M2=4且候选k2=1时第二时隙编号组的示意图;
图22为本申请实施例提供的M2=1时第二时隙编号组的示意图;
图23为本申请实施例提供的M2=2时第二时隙编号组的示意图;
图24为本申请实施例提供的时域编号t_id的示意图;
图25为本申请实施例提供的第一时隙集合的示意图之一;
图26为本申请实施例提供的第二时隙编号组的示意图之六;
图27为本申请实施例提供的第二时隙编号组的示意图之七;
图28为本申请实施例提供的第二时隙集合的示意图之一;
图29为本申请实施例提供的一个帧内可发送RO的时隙集合的示意图之一;
图30为本申请实施例提供的第二时隙编号组的示意图之八;
图31为本申请实施例提供的第二时隙编号组的示意图之九;
图32为本申请实施例提供的第二时隙集合的示意图之二;
图33为本申请实施例提供的一个帧内可发送RO的时隙集合的示意图之二;
图34为本申请实施例提供的第一时隙集合的示意图之二;
图35为本申请实施例提供的第二时隙集合的示意图之三;
图36为本申请实施例提供的一个帧内可发送RO的时隙集合的示意图之三;
图37为本申请实施例提供的一个帧内可发送RO的时隙集合的示意图之四;
图38为本申请实施例提供的一帧中可发送RO的时隙集合的分组示意图之一;
图39为本申请实施例提供的一帧中可发送RO的时隙集合的分组示意图之二;
图40为本申请实施例提供的第一时隙集合的示意图之三;
图41为本申请实施例提供的第二时隙集合的示意图之四;
图42为本申请实施例提供的在一个帧内可发送RO的时隙集合的示意图之五;
图43为本申请实施例提供的一帧中可发送RO的时隙集合的分组示 意图之三;
图44为本申请实施例提供的一帧中可发送RO的时隙集合的分组示意图之四;
图45为本申请实施例提供的随机接入装置的结构示意图;
图46为本申请实施例提供的通信设备的结构示意图;
图47为实现本申请实施例的一种终端的硬件结构示意图。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚地描述,显然,所描述的实施例是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员所获得的所有其他实施例,都属于本申请保护的范围。
本申请的说明书和权利要求书中的术语“第一”、“第二”等是用于区别类似的对象,而不用于描述特定的顺序或先后次序。应该理解这样使用的数据在适当情况下可以互换,以便本申请的实施例能够以除了在这里图示或描述的那些以外的顺序实施,且“第一”、“第二”所区别的对象通常为一类,并不限定对象的个数,例如第一对象可以是一个,也可以是多个。此外,说明书以及权利要求中“和/或”表示所连接对象的至少其中之一,字符“/”一般表示前后关联对象是一种“或”的关系。
值得指出的是,本申请实施例所描述的技术不限于长期演进型(Long Term Evolution,LTE)/LTE的演进(LTE-Advanced,LTE-A)系统,还可用于其他无线通信系统,诸如码分多址(Code Division Multiple Access,CDMA)、时分多址(Time Division Multiple Access,TDMA)、频分多址(Frequency Division Multiple Access,FDMA)、正交频分多址(Orthogonal Frequency Division Multiple Access,OFDMA)、单载波频分多址(Single-carrier Frequency-Division Multiple Access,SC-FDMA)和其他系统。本申请实施例中的术语“系统”和“网络”常被可互换地使用,所描 述的技术既可用于以上提及的系统和无线电技术,也可用于其他系统和无线电技术。然而,以下描述出于示例目的描述了新空口(New Radio,NR)系统,并且在以下大部分描述中使用NR术语,但是这些技术也可应用于NR系统应用以外的应用,如第6代(6 th Generation,6G)通信系统。
图1示出本申请实施例可应用的一种无线通信系统的结构图。无线通信系统包括终端11和网络侧设备12。其中,终端11也可以称作终端设备或者用户终端(User Equipment,UE),终端11可以是手机、平板电脑(Tablet Computer)、膝上型电脑(Laptop Computer)或称为笔记本电脑、个人数字助理(Personal Digital Assistant,PDA)、掌上电脑、上网本、超级移动个人计算机(ultra-mobile personal computer,UMPC)、移动上网装置(Mobile Internet Device,MID)、可穿戴式设备(Wearable Device)或车载设备(VUE)、行人终端(PUE)等终端侧设备,可穿戴式设备包括:手环、耳机、眼镜等。需要说明的是,在本申请实施例并不限定终端11的具体类型。网络侧设备12可以是基站或核心网,其中,基站可被称为节点B、演进节点B、接入点、基收发机站(Base Transceiver Station,BTS)、无线电基站、无线电收发机、基本服务集(Basic Service Set,BSS)、扩展服务集(Extended Service Set,ESS)、B节点、演进型B节点(eNB)、家用B节点、家用演进型B节点、WLAN接入点、WiFi节点、发送接收点(Transmitting Receiving Point,TRP)或所述领域中其他某个合适的术语,只要达到相同的技术效果,所述基站不限于特定技术词汇,需要说明的是,在本申请实施例中仅以NR系统中的基站为例,但是并不限定基站的具体类型。
下面结合附图,通过一些实施例及其应用场景对本申请实施例提供的随机接入方法、装置、终端及存储介质进行详细地说明。
一个小区的前导码preamble传输位于一组PRACH时隙slot上,一个PRACH slot在时域上可能包含多个RO(PRACH occasion),每个RO用于传输一个特定格式的preamble。随机接入preamble能够传输的时域资 源由prach-Configuration字段决定。终端通过prach-ConfigurationIndex查找对应配置表格TS38.211的Table 6.3.3.2-2(频率范围为FR1且使用成对频谱/增补上行(supplementary uplink,SUL))、Table 6.3.3.2-3(频率范围为FR1且使用非成对频谱)或Table 6.3.3.2-4(频率范围为FR2且使用非成对频谱)得到对应小区使用的preamble format和可用的PRACH时域资源。
Table 6.3.3.2-2:Random access configurations for FR1 and paired spectrum/supplementary uplink.
Figure PCTCN2022079540-appb-000001
Table 6.3.3.2-3:Random access configurations for FR1 and unpaired spectrum.
Figure PCTCN2022079540-appb-000002
Table 6.3.3.2-4:Random access configurations for FR2 and unpaired spectrum.
Figure PCTCN2022079540-appb-000003
对于FR1,其slot是以15kHz子载波间隔为参考的。对于FR2,其slot是以60kHz子载波间隔为参考的。
上述三个表中参数的具体含义如下:
PRACH Configuration Index:RO配置的索引值,由RRC信令配置。
Preamble format:使用的Preamble格式。
n SFN mod x=y:RO所在的无线帧位置,x为PRACH周期,以SFN0 作为起点,y用来计算RO所在无线帧在PRACH周期内的位置,比如n SFN mod 1=0表示每个无线帧都可以发送Preamble。
Subframe/slot number:在允许发送的无线帧内,RO所在的子帧或时隙编号。
Starting symbol:每个包含RO的子帧/60kHz slot内,时域上第一个RO的起始符号数编号。以60kHz slot作为参考时隙。
Number of PRACH slots within a subframe/60kHz slot:在一个子帧或60kHz slot内包含的PRACH时隙的数量。
Figure PCTCN2022079540-appb-000004
在一个PRACH时隙内包含的RO个数,也即Preamble的时域发送机会数。
Figure PCTCN2022079540-appb-000005
一个RO占用的OFDM符号数。
根据上面的参数集可以计算在一个参考时隙内的PRACH时隙包含的每个RO的起始OFDM符号位置为:
Figure PCTCN2022079540-appb-000006
其中:
l 0为Starting symbol;
Figure PCTCN2022079540-appb-000007
为一个PRACH slot内的第
Figure PCTCN2022079540-appb-000008
个PRACH occasion,其编号按顺序从0到
Figure PCTCN2022079540-appb-000009
Figure PCTCN2022079540-appb-000010
为一个PRACH occasion在时域上占用的OFDM符号数;
如果PRACH的子载波间隔Δf RA∈{1.25,5,15,60}kHz,则在一个参考时隙内的PRACH时隙的时隙编号
Figure PCTCN2022079540-appb-000011
如果Δf RA∈{30,120}kHz,且在一个子帧或60kHz slot内包含的PRACH时隙的个数=1,则在一个参考时隙内的PRACH时隙的时隙编号
Figure PCTCN2022079540-appb-000012
否则在一个参考时隙内的PRACH时隙的时隙编号
Figure PCTCN2022079540-appb-000013
示例性的,假设使用FR2和非成对频谱/SUL,且preamble的子载波间距为120kHz,当指示的PRACH Configuration Index=74时,查表Table6.3.3.2-4得到此配置下,UE只能在满足N SFN%1=0的系统帧(即所有系 统帧)的slot{9,19,29,39}(对于FR2,使用子载波间距60kHz为参考来为slot编号)上传输format A3的preamble。一个时隙包含2个连续的PRACH时隙(对应Number of PRACH slots within a 60kHz slot的值为2),一个PRACH时隙在时域上包含
Figure PCTCN2022079540-appb-000014
个RO,每个RO占
Figure PCTCN2022079540-appb-000015
个OFDM符号,并从每个PRACH时隙的第8个OFDM符号(对应Starting symbol的值为7)开始传输PRACH。
因为Δf RA=120kHz,且Number of PRACH slots within 60kHz slot=2,则在一个参考时隙内的PRACH时隙的时隙编号
Figure PCTCN2022079540-appb-000016
根据上面的参数集可以计算在一个参考时隙内的PRACH时隙包含的每个RO的起始OFDM符号位置为:
Figure PCTCN2022079540-appb-000017
图2为PRACH SCS为120kHz,FR2情况下的RO时域资源配置示意图。
可以理解,当SCS大于120kHz时,即使采用FR2的60kHz的参考时隙的子载波间隔,在一个参考时隙中的PRACH时隙数量将会超过2个,然而现有配置表中的参考时隙中的PRACH时隙数量(Number of PRACH slots within 60kHz slot)的值只能为1或2,不能应用于更高的子载波间隔。
因此,在系统支持的PRACH子载波间隔大于120kHz的情况下,如何对RO时频资源进行配置是需要解决的。为了解决上述问题,本申请实施例提供一种新的随机接入方法。
图3为本申请实施例提供的随机接入方法的流程示意图,如图3所示,该方法包括:
步骤300、终端确定随机接入时机RO时域位置组;
其中,所述RO时域位置组包括以下至少一项:
可发送帧编号组和第一时隙编号组;
第二时隙编号组;
其中,所述可发送帧编号组用于指示可发送帧,所述可发送帧为可用 于传输前导码的RO所在的无线帧;
所述第一时隙编号组用于指示在所述可发送帧中RO所在的基于第一子载波间隔的第一时隙;
所述第二时隙编号组用于指示在所述第一时隙中RO所在的基于第二子载波间隔的第二时隙。
可以理解的是,第二时隙编号组是在第一时隙编号组的基础上确定的。
可选地,基于第一子载波间隔的第一时隙为参考时隙,基于第二子载波间隔的第二时隙为PRACH时隙。
可选地,终端确定随机接入时机RO时域位置组,所述RO时域位置组包括可发送帧编号组和第一时隙编号组。
可选地,终端确定随机接入时机RO时域位置组,所述RO时域位置组包括可发送帧编号组、第一时隙编号组和第二时隙编号组。
可选地,终端根据发送物理随机接入信道PRACH的频率范围、PRACH的子载波间隔和发送PRACH的频段特征中的至少一项,得到随机接入信道RACH配置表格;根据网络指示的PRACH配置索引,查找所述RACH配置表格,确定随机接入时机RO时域位置组。
步骤301、从所述RO时域位置组中选择第一RO,并计算所述第一RO的随机接入无线网络临时标识RA-RNTI;
终端确定随机接入时机RO时域位置组之后,从所述RO时域位置组中选择一个RO,并计算该RO的随机接入无线网络临时标识(Random Access Radio Network Temporary Identity,RA-RNTI)。
在本申请实施例中,通过确定随机接入时机RO时域位置组,所述RO时域位置组包括以下至少一项:可发送帧编号组和第一时隙编号组;第二时隙编号组,然后终端从所述RO时域位置组中选择一个RO,并计算所述该RO的随机接入无线网络临时标识RA-RNTI,可以在系统支持的PRACH子载波间隔大于120kHz的情况下,对RO时频资源进行配置。
可选地,所述第一子载波间隔或第二子载波间隔与以下至少一项有关:
发送PRACH的子载波间隔;
发送PRACH的频率范围;
发送PRACH的格式;
发送PRACH的序列长度。
可选地,所述第一时隙编号组与以下至少一项有关:
发送PRACH的子载波间隔;
发送PRACH的频率范围;
发送PRACH的频段特征;
发送PRACH的格式;
发送PRACH的序列长度;
PRACH配置索引;
第一子载波间隔;
每个无线帧中包含的基于所述第一子载波间隔的时隙个数L;
第一时隙编号组的大小M1;
第一时隙编号组配置索引。
可选地,所述第二时隙编号组与以下至少一项有关:
发送PRACH的子载波间隔;
发送PRACH的频率范围;
发送PRACH的频段特征;
发送PRACH的格式;
发送PRACH的序列长度;
PRACH配置索引;
第一子载波间隔;
第二子载波间隔;
每个无线帧中包含的基于所述第一子载波间隔的时隙个数L;
第二子载波间隔与第一子载波间隔的比值N;
第一时隙编号组的大小M1;
第二时隙编号组的大小M2;
第一时隙编号组配置索引;
第二时隙编号组配置索引。
在一些可选的实施例中,所述终端确定随机接入时机RO时域位置组,包括:
根据发送物理随机接入信道PRACH的频率范围、PRACH的子载波间隔和发送PRACH的频段特征中的至少一项,得到随机接入信道RACH配置表格;
根据网络指示的PRACH配置索引,查找所述RACH配置表格,得到RO所在的可发送帧编号组和第一时隙编号组的大小M1;
确定所述第一时隙编号组为0到L-1之间预定义的M1个值;
其中,L为每个无线帧中包含的基于所述第一子载波间隔的时隙个数;
其中,第一时隙编号组的M1个值为从0到L-1之间取M1个值的一个或多个组合。
可选地,终端根据发送物理随机接入信道PRACH的频率范围、PRACH的子载波间隔和发送PRACH的频段特征中的至少一项,得到随机接入信道RACH配置表格。
可选地,所述随机接入信道RACH配置表格包含的参数与Table 6.3.3.2-2(频率范围为FR1且使用成对频谱/增补上行(supplementary uplink,SUL))、Table 6.3.3.2-3(频率范围为FR1且使用非成对频谱)或Table 6.3.3.2-4(频率范围为FR2且使用非成对频谱)的参数部分相同。
可选地,终端根据网络指示的PRACH配置索引PRACH Configuration Index,查找所述RACH配置表格,可以得到RO所在的可发送帧编号组和第一时隙编号组的大小M1。
在本申请实施例中,终端确定第一时隙编号组的方法如下:
确定所述第一时隙编号组为0到L-1之间预定义的M1个值;
其中,L为每个无线帧中包含的基于所述第一子载波间隔的时隙个数;
其中,第一时隙编号组的M1个值为从0到L-1之间取M1个值的一个或多个组合。
可选地,所述第一时隙编号组的预定义的M1个值为从0到L-1之间取M1个值的一个或多个组合,包括以下一项或多项:
0到L-1的前M1个值;
0到L-1的后M1个值;
满足X mod(L/M1的上取整或下取值)=Y的所有或部分X,其中,X为0到L-1之间的整数值,Y为预定义的一个值或多个值;
0到L-1之间连续的M1个值;
多个0到L-1之间连续的M1个值。
下面通过一个具体的例子来进行说明终端如何确定第一时隙编号组。
在52.6GHz-71GHz的系统中,令第一子载波间隔为480KHz,则每帧中包含基于第一子载波间隔的时隙个数L为320。
UE查找RACH配置表格中对应网络指示的PRACH配置索引,得到RO所在的可发送帧编号组。
然后UE确定第一时隙编号组:
可选地,RACH配置表格中第一时隙编号组的大小M1可为80或160。
若UE查找RACH配置表格中对应网络指示的PRACH配置索引,得到第一时隙编号组的大小M1为160,则第一时隙编号组为0到319之间协议预定义的160个值。
协议预定义的第一时隙编号组的M1个值为从0到319之间的160个值,可能的一个或多个组合有:
a)0-319之间的前160个值,如图4所示,或0-319之间的后160个值,如图5所示。其中,图4为本申请实施例提供的第一时隙编号组的M1个值的示意图之一,图5为本申请实施例提供的第一时隙编号组的M1个值的示意图之二。
b)满足X mod 2(L/M1=2)等于特定值Y的所有或部分X,其中,Y 为协议预定义的一个值或多个值,
例Y=1:第一时隙编号组的M1个值为1,3,...,319,如图6所示。
例Y=0,1:第一时隙编号组的M1个值为2,3,6,7,…,如图7所示。
其中,图6为本申请实施例提供的第一时隙编号组的M1个值的示意图之三,图7为本申请实施例提供的第一时隙编号组的M1个值的示意图之四。
c)0-319之间连续的160个值中的一个或多个,如图8所示。图8为本申请实施例提供的第一时隙编号组的M1个值的示意图之五。
在本申请实施例中,根据发送PRACH的频率范围、PRACH的子载波间隔和发送PRACH的频段特征中的至少一项,得到随机接入信道RACH配置表格,根据网络指示的PRACH配置索引,查找所述RACH配置表格,得到RO所在的可发送帧编号组和第一时隙编号组的大小M1;然后,确定所述第一时隙编号组为0到L-1之间预定义的M1个值,实现了PRACH子载波间隔大于120kHz的情况下,对RO时频资源进行配置。
在一些可选的实施例中,所述终端确定随机接入时机RO时域位置组,包括以下步骤:
根据发送物理随机接入信道PRACH的频率范围、PRACH的子载波间隔和发送PRACH的频段特征中的至少一项,得到随机接入信道RACH配置表格;
根据网络指示的PRACH配置索引,查找所述RACH配置表格,得到RO所在的可发送帧编号组、第一时隙编号组的大小M1和第一时隙编号组配置索引k1;
确定所述第一时隙编号组为0到L-1之间预定义的M1个值。
可选地,终端根据发送物理随机接入信道PRACH的频率范围、PRACH的子载波间隔和发送PRACH的频段特征中的至少一项,得到的随机接入信道RACH配置表格中的参数还包括第一时隙编号组配置索引k1。
终端根据网络指示的PRACH配置索引PRACH Configuration Index,查找该RACH配置表格,可以得到RO所在的可发送帧编号组、第一时隙编号组的大小M1和第一时隙编号组配置索引k1。
可选地,终端确定第一时隙编号组包括:
根据第一时隙编号组配置索引k1,确定所述第一时隙编号组为0到L-1之间预定义的M1个值;
其中,L为每个无线帧中包含的基于所述第一子载波间隔的时隙个数;
其中,第一时隙编号组配置索引k1用于指示第一时隙编号组的M1个值;
其中,第一时隙编号组的M1个值为从0到L-1之间取M1个值的一个或多个组合。
可选地,所述第一时隙编号组的预定义的M1个值为从0到L-1之间取M1个值的一个或多个组合,包括以下一项或多项:
0到L-1的前M1个值;
0到L-1的后M1个值;
满足X mod(L/M1的上取整或下取值)=Y的所有或部分X,其中,X为0到L-1之间的整数值,Y为预定义的一个值或多个值;
0到L-1之间连续的M1个值;
多个0到L-1之间连续的M1个值。
下面通过一个具体的例子来进行说明终端如何确定第一时隙编号组。
例如:RACH配置表格中第一时隙编号组的大小M1可为80或160。
对于M1=80,协议预定义K1=2个候选:
UE查找RACH配置表格中对应网络指示的PRACH配置索引,得到第一时隙编号组的大小M1为80和第一时隙编号组配置索引k1为0,指示第一时隙编号组的160个值。
UE查找RACH配置表格中对应网络指示的PRACH配置索引,得到第一时隙编号组的大小M1为80和第一时隙编号组配置索引k1为1,指 示第一时隙编号组的160个值。
图9为本申请实施例提供的M1=80且候选k1=0时第一时隙编号组的示意图;图10为本申请实施例提供的M1=80且候选k1=1时第一时隙编号组的示意图。
对于M1=160,协议预定义K1=2个候选:
UE查找RACH配置表格中对应网络指示的PRACH配置索引,得到第一时隙编号组的大小M1为160和第一时隙编号组配置索引k1为0,指示第一时隙编号组的160个值。
UE查找RACH配置表格中对应网络指示的PRACH配置索引,得到第一时隙编号组的大小M1为160和第一时隙编号组配置索引k1为1,指示第一时隙编号组的160个值。
图11为本申请实施例提供的M1=160且候选k1=0时第一时隙编号组的示意图;图12为本申请实施例提供的M1=160且候选k1=1时第一时隙编号组的示意图。
在本申请实施例中,根据发送PRACH的频率范围、PRACH的子载波间隔和发送PRACH的频段特征中的至少一项,得到随机接入信道RACH配置表格,根据网络指示的PRACH配置索引,查找所述RACH配置表格,得到RO所在的可发送帧编号组、第一时隙编号组的大小M1和第一时隙编号组配置索引k1;然后,根据第一时隙编号组配置索引k1确定所述第一时隙编号组为0到L-1之间预定义的M1个值,实现了PRACH子载波间隔大于120kHz的情况下,对RO时频资源进行配置。
在一些可选的实施例中,所述终端确定随机接入时机RO时域位置组,包括:
根据发送物理随机接入信道PRACH的频率范围、PRACH的子载波间隔和发送PRACH的频段特征中的至少一项,得到随机接入信道RACH配置表格;
根据网络指示的PRACH配置索引,查找所述RACH配置表格,得到 RO所在的可发送帧编号组、第一时隙编号组和第二时隙编号组的大小M2;
确定所述第二时隙编号组为0到N-1之间预定义的M2个值;
其中,N为所述第二子载波间隔与第一子载波间隔的比值;
其中,第二时隙编号组的M2个值为从0到N-1之间取M2个值的一个或多个组合。
可选地,根据发送物理随机接入信道PRACH的频率范围、PRACH的子载波间隔和发送PRACH的频段特征中的至少一项,得到随机接入信道RACH配置表格,该随机接入信道RACH配置表格包括以下参数:PRACH配置索引PRACH Configuration Index、前导码格式Preamble format、可发送帧N SFN mod x=y、在无线帧内RO所在的子帧或时隙编号Subframe/slot number、每个包含RO的子帧/第一时隙内时域上第一个RO的起始符号数编号Starting symbol、第二时隙编号组的大小M2、一个PRACH时隙内包含的RO的数量、一个RO占用的OFDM符号数。
可以理解的是,终端确定RO时域资源,根据网络指示的PRACH配置索引,查找所述RACH配置表格,可以直接得到RO所在的可发送帧编号组、第一时隙编号组和第二时隙编号组的大小M2。
其中,第一时隙编号组即可发送帧内RO所在的子帧或时隙编号Subframe/slot number。
然后,终端确定第二时隙编号组,即确定所述第二时隙编号组为0到N-1之间预定义的M2个值。
其中,N为所述第二子载波间隔与第一子载波间隔的比值;
其中,第二时隙编号组的M2个值为从0到N-1之间取M2个值的一个或多个组合。
可选地,所述第二时隙编号组的M2个值为从0到N-1之间取M2个值的一个或多个组合,包括以下一项或多项:
0到N-1的前M2个值;
0到N-1的后M2个值;
满足X mod(N/M2的上取整或下取整)=Y的所有或部分X,其中,X为0到N-1之间的整数值,Y为预定义的一个值或多个值;
0到N-1之间连续的M2个值;
多个0到N-1之间连续的M2个值。
下面通过一个具体的例子来进行说明终端如何确定第二时隙编号组。
在52.6GHz-71GHz的系统中,令第一子载波间隔为60KHz,第二子载波间隔为480KHz,则每帧中包含基于第一子载波间隔的时隙个数L为40,第二子载波间隔和第一子载波间隔的比值N为8。
终端查找RACH配置表格中对应网络指示的PRACH配置索引,得到RO所在的可发送帧编号组和RO在可发送帧中基于第一子载波间隔的第一时隙编号组。
终端确定第二时隙编号组的方法:
可选地,第二时隙编号组的大小M可为2或4。
终端查找RACH配置表格中对应网络指示的PRACH配置索引,得到第二时隙编号组的大小M2为4,则第二时隙编号组为0到7之间协议预定义的4个值。
协议预定义的第二时隙编号组的M2个值为从0到7之间4个值,可能的一个或多个组合有:
a)0-7之间的前4个值或后4个值:{0,1,2,3}或{4,5,6,7},参见图13和图14,其中,图13为本申请实施例提供的第二时隙编号组的示意图之一,图14为本申请实施例提供的第二时隙编号组的示意图之二。
b)满足X mod 2(N/M2=2)等于特定值Y的所有或部分X,其中,Y为协议预定义的一个值或多个值,
例Y=1,第二时隙编号组为{1,3,5,7},参见图15,图15为本申请实施例提供的第二时隙编号组的示意图之三。
例Y=0,1,第二时隙编号组为{2,3,6,7},参见图16,图16为本申请实施例提供的第二时隙编号组的示意图之四。
c)0-8之间连续的4个值中的一个或多个,第二时隙编号组为{2,3,4,5},参见图17,图17为本申请实施例提供的第二时隙编号组的示意图之五。
在本申请实施例中,根据发送PRACH的频率范围、PRACH的子载波间隔和发送PRACH的频段特征中的至少一项,得到随机接入信道RACH配置表格,根据网络指示的PRACH配置索引,查找所述RACH配置表格,得到RO所在的可发送帧编号组、第一时隙编号组和第二时隙编号组的大小;然后,确定所述第二时隙编号组为0到N-1之间预定义的M2个值,实现了PRACH子载波间隔大于120kHz的情况下,对RO时频资源进行配置。
在一些可选的实施例中,所述终端确定随机接入时机RO时域位置组,包括:
根据发送物理随机接入信道PRACH的频率范围PRACH的子载波间隔和发送PRACH的频段特征中的至少一项,得到随机接入信道RACH配置表格;
根据网络指示的PRACH配置索引,查找所述RACH配置表格,得到RO所在的可发送帧编号组、第一时隙编号组,以及第二时隙编号组的大小M2和第二时隙编号组配置索引k2;
确定所述第二时隙编号组为0到N-1之间预定义的M2个值。
可选地,终端根据发送物理随机接入信道PRACH的频率范围、PRACH的子载波间隔和发送PRACH的频段特征中的至少一项,得到的随机接入信道RACH配置表格中的参数还包括第二时隙编号组配置索引k2。其中,所述第二时隙编号组配置索引k2用于指示第二时隙编号组的M2个值。
可以理解的是,终端根据网络指示的PRACH配置索引,查找所述RACH配置表格,可以直接得到RO所在的可发送帧编号组、第一时隙编号组、第二时隙编号组的大小M2和第二时隙编号组配置索引k2。
可选地,终端确定第二时隙编号组的方法为:
根据所述第二时隙编号组配置索引k2,确定所述第二时隙编号组为0到N-1之间预定义的M2个值。
其中,N为所述第二子载波间隔和第一子载波间隔的比值;
其中,第二时隙编号组配置索引k2用于指示第二时隙编号组的M2个值;
其中,第二时隙编号组的M2个值为从0到N-1之间取M2个值的一个或多个组合。
可选地,所述第二时隙编号组的M2个值为从0到N-1之间取M2个值的一个或多个组合,包括以下一项或多项:
0到N-1的前M2个值;
0到N-1的后M2个值;
满足X mod(N/M2的上取整或下取整)=Y的所有或部分X,其中,X为0到N-1之间的整数值,Y为预定义的一个值或多个值;
0到N-1之间连续的M2个值;
多个0到N-1之间连续的M2个值。
下面通过一个具体的例子来进行说明终端如何确定第二时隙编号组。
可选地,第二时隙编号组的大小M2可为2或4。
对于M2=2,协议预定义K2=2个候选:
UE查找RACH配置表格中对应网络指示的PRACH配置索引,得到第二时隙编号组的大小M2为2和第二时隙编号组配置索引k1为0,指示第二时隙编号组的2个值,如图18所示,第二时隙编号组为{3,7}。
UE查找RACH配置表格中对应网络指示的PRACH配置索引,得到第二时隙编号组的大小M2为2和第二时隙编号组配置索引k2为1,指示第二时隙编号组的2个值,如图19所示,第二时隙编号组为{1,5}。
其中,图18为本申请实施例提供的M2=2且候选k2=0时第二时隙编号组的示意图;图19为本申请实施例提供的M2=2且候选k2=1时第二时隙编号组的示意图。
对于M2=4,协议预定义K2=2个候选:
UE查找RACH配置表格中对应网络指示的PRACH配置索引,得到第二时隙编号组的大小M2为4和第二时隙编号组配置索引k1为0,指示第二时隙编号组的4个值,如图20所示,第二时隙编号组为{4,5,6,7}。
UE查找RACH配置表格中对应网络指示的PRACH配置索引,得到第二时隙编号组的大小M2为4和第二时隙编号组配置索引k2为1,指示第二时隙编号组的4个值,如图21所示,第二时隙编号组为{2,3,6,7}。
其中,图20为本申请实施例提供的M2=4且候选k2=0时第二时隙编号组的示意图;图21为本申请实施例提供的M2=4且候选k2=1时第二时隙编号组的示意图。
在本申请实施例中,根据发送PRACH的频率范围、PRACH的子载波间隔和发送PRACH的频段特征中的至少一项,得到随机接入信道RACH配置表格,根据网络指示的PRACH配置索引,查找所述RACH配置表格,得到RO所在的可发送帧编号组、第一时隙编号组、第二时隙编号组的大小和第二时隙编号组配置索引;然后,确定所述第二时隙编号组为0到N-1之间预定义的M2个值,实现了PRACH子载波间隔大于120kHz的情况下,对RO时频资源进行配置。
终端确定了随机接入时机RO时域位置组之后,从所述RO时域位置组中选择第一RO,并计算所述第一RO的随机接入无线网络临时标识RA-RNTI。
但是目前对于RA-RNTI的计算只适用于PRACH SCS小于120KHz的情况,如果沿用原来的RA-TNTI计算,会导致不同的RO时频资源计算得到相同的RA-RNTI,如果只是简单的将RA-RNTI的计算公式扩展到高的PRACH SCS,会出现16bit的RA-RNTI数据溢出的情况。因此,也需要针对高的PRACH SCS的RO时域资源配置设计相应的RA-RNTI的计算方法,本申请实施例提供了一种新的RA-TNTI计算方法,可以避免数据溢出。
可选地,所述计算所述第一RO的随机接入无线网络临时标识RA-RNTI,包括:
确定所述第一RO对应的时域编号;
基于所述时域编号计算所述第一RO的RA-RNTI。
可以理解的是,本申请实施例中,计算RA-TNTI时,终端首先需要确定所述第一RO对应的时域编号。
在一些可选的实施例中,所述时域编号为基于第三子载波间隔的第三时隙编号,其中,所述第三子载波间隔由以下之一确定:
为第一子载波间隔;
为第二子载波间隔或PRACH的子载波间隔;
在PRACH的子载波间隔满足第一条件或属于第一集合的情况下,为第二子载波间隔或PRACH的子载波间隔,否则,为第一子载波间隔或第四子载波间隔,其中,所述第四子载波间隔为预定义的子载波间隔。
例如,在52.6GHz-71GHz的系统中,令第一子载波间隔为60KHz,第二子载波间隔为480KHz,第一时隙可按任意方式配置,第二时隙按如下方式配置:
对于M2=1,如图22所示,为本申请实施例提供的M2=1时第二时隙编号组的示意图,此时第二时隙编号组为{7}。
对于M2=2,如图23所示,为本申请实施例提供的M2=2时第二时隙编号组的示意图,此时第二时隙编号组为{3,7}。
UE从上述RO时域位置组中选择一个RO,确定选择的一个RO对应的时域编号t_id,并基于该时域编号计算RA-RNTI。
时域编号t_id为基于第三子载波间隔的第三时隙编号,确定第三子载波的方法为:当PRACH子载波间隔为15KHz,30KHz,60KHz或120KHz时,第三子载波间隔为第二子载波间隔或PRACH子载波间隔,否则,第三子载波间隔为第一子载波间隔(60KHz)或第四子载波间隔(120KHz,协议预定义)。
当PRACH子载波间隔为480KHz时,第三子载波间隔为120KHz,t_id为基于120KHz的第三时隙编号。图24为本申请实施例提供的时域编号t_id的示意图。
则RA-RNTI可以按照如下公式计算:
RA-RNTI=1+s_id+14×t_id+14×X×f_id+14×X×8×ul_carrier_id;
其中X=80。
可选地,所述时域编号为所述第一RO在可发送帧内可发送RO的时隙集合中按先后顺序排列的序号,所述可发送RO的时隙集合基于第一时隙编号组和/或第二时隙编号组获得。
需要说明的是,在可发送帧内的一些时隙可以配置RO,将这些时隙称为可发送RO的时隙集合,即可发送RO的时隙集合是指可发送帧内可以配置RO的时隙,这个时隙集合中可能包含多个可发送RO,从中选择一个作为第一RO。
所述可发送RO的时隙集合基于第一时隙编号组和/或第二时隙编号组获得。
可选地,若终端确定的随机接入时机RO时域位置组包括可发送帧编号组和第一时隙编号组,则所述可发送RO的时隙集合基于第一时隙编号组获得。
可选地,若终端确定的随机接入时机RO时域位置组包括可发送帧编号组、第一时隙编号组和第二时隙编号组,则所述可发送RO的时隙集合基于第一时隙编号组和第二时隙编号组获得。
可选地,所述时域编号为所述第一RO在可发送帧内可发送RO的时隙集合的一个分组中按先后顺序排列的序号,其中,所述时隙集合基于第一时隙编号组和/或第二时隙编号组获得。
可选地,所述时隙集合按照以下之一进行分组:
前后相接的R个时隙值为一组;
间隔R个时隙值的时隙为一组。
可选地,基于所述时域编号计算所述第一RO的RA-RNTI,包括:
基于所述时域编号,采用以下公式之一计算所述第一RO的RA-RNTI:
RA-RNTI=1+s_id+14×t_id+14×X×f_id+14×X×8×ul_carrier_id  公式一;
RA-RNTI=(1+s_id+14×t_id+14×X×f_id+14×X×8×ul_carrier_id)mod A  公式二;
其中,X采用以下方法之一获得:
一个帧内可发送RO的时隙集合大小;
一个帧内可发送RO的时隙集合的一个分组大小;
根据发送PRACH的频率范围、PRACH的子载波间隔和发送PRACH的频段特征中的至少一项得到的RACH配置表格中可配置的一个帧中可发送RO的时隙集合大小的最大值;
根据发送PRACH的频率范围、PRACH的子载波间隔和发送PRACH的频段特征中的至少一项得到的RACH配置表格中可配置的一个帧中可发送RO的时隙集合的一个分组大小的最大值;
其中,s_id为所述第一RO的第一个OFDM符号索引;
t_id为所述第一RO对应的时域编号;
f_id为所述第一RO对应的频域编号;
ul_carrier_id为用于传输前导码的上行载波,0表示正常上行载波,1表示增补上行载波;
A为预设整数,或A由网络侧配置,或A由所述终端确定。
可选地,所述一个帧内可发送RO的时隙集合大小为第一时隙集合大小或第一时隙集合大小*第二时隙集合大小。
其中,第一时隙集合大小是指可发送帧内可发送RO的基于第一子载波间隔的第一时隙的集合的大小。
其中,第二时隙集合大小是指可发送帧内可发送RO的基于第二子载波间隔的第二时隙的集合的大小。
可选地,本申请实施例提供的随机接入方法还包括:
终端根据X的大小确定是否需要结合网络的第一指示判断接收物理下行控制信道PDCCH调度的随机接入响应RAR或终端根据X的大小确定第一指示的大小。
其中,终端根据X的大小确定第一指示的大小,以便于终端获取物理下行控制信道(Physical Downlink Control Channel,PDCCH)中承载的下行控制信息(Downlink Control Information,DCI)中的第一指示。
可选地,所述第一指示包括以下至少一项:
一个帧内可发送RO的时隙集合中的分组ID;
根据发送PRACH的频率范围、PRACH的子载波间隔和发送PRACH的频段特征中的至少一项得到的RACH配置表格中可配置的一个帧中可发送RO的时隙集合的分组ID;
(1+s_id+14×t_id+14×X×f_id+14×X×8×ul_carrier_id)/A的上取整值。
下面结合具体的实施例,进一步说明本申请实施例提供的RA-RNTI计算方法。
假设在可发送帧内可发送RO的第一时隙集合大小为40,图25为本申请实施例提供的第一时隙集合的示意图之一。
若第二时隙按照如下方式进行配置:
对于M2=2,如图26所示,第二时隙编号组为{3,7};
对于M2=4,如图27所示,第二时隙编号组为{2,3,6,7};
其中,图26为本申请实施例提供的第二时隙编号组的示意图之六,图27为本申请实施例提供的第二时隙编号组的示意图之七。
则在可发送帧内可发送RO的第二时隙集合为{3,7}和{2,3,6,7}的并集,即第二时隙集合为{2,3,6,7},图28为本申请实施例提供的第二时隙集合的示意图之一。
则在一个帧内可发送RO的时隙集合的大小为第一时隙集合的大小* 第二时隙集合的大小,即40*4=160。
图29为本申请实施例提供的一个帧内可发送RO的时隙集合的示意图之一。
则RA-RNTI按照如下公式计算:
RA-RNTI=1+s_id+14×t_id+14×X×f_id+14×X×8×ul_carrier_id;
其中X=160,此时UE不需要结合网络的第一指示判断接收PDCCH调度的RAR。
可选地,若第二时隙按照如下方式进行配置:
对于M2=2,如图30所示,第二时隙编号组为{0,4};
对于M2=4,如图31所示,第二时隙编号组为{2,3,6,7};
其中,图30为本申请实施例提供的第二时隙编号组的示意图之八,图31为本申请实施例提供的第二时隙编号组的示意图之九。
则在可发送帧内可发送RO的第二时隙集合为{0,4}和{2,3,6,7}的并集,即第二时隙集合为{0,2,3,4,6,7},第二时隙集合的大小为6,图32为本申请实施例提供的第二时隙集合的示意图之二。
则在一个帧内可发送RO的时隙集合的大小为第一时隙集合的大小*第二时隙集合的大小,即40*6=240。
图33为本申请实施例提供的一个帧内可发送RO的时隙集合的示意图之二。
可选地,假设根据发送PRACH的频率范围、PRACH的子载波间隔和发送PRACH的频段特征中的至少一项得到的RACH配置表格中可配置的第一时隙集合为{1,3,5,7,…,37,39},大小为20,可配置的第二时隙集合为:{3,7},大小为2。
则可配置的在一个帧内可发送RO的时隙集合如图34所示,大小为40。图34为本申请实施例提供的第一时隙集合的示意图之二。
可配置的在一个帧内可发送RO的第二时隙集合为{3,7},如图35所示,图35为本申请实施例提供的第二时隙集合的示意图之三,该第二时 隙集合的大小为2。
则可配置的在一个帧内可发送RO的时隙集合如图36所示,大小为40。其中,图36为本申请实施例提供的一个帧内可发送RO的时隙集合的示意图之三。
可选地,图37为本申请实施例提供的一个帧内可发送RO的时隙集合的示意图之四。假设在一个帧内可发送RO的时隙集合如图37所示,大小为320,
将该时隙集合可按照如下方式分成4组:
图38为本申请实施例提供的一帧中可发送RO的时隙集合的分组示意图之一。如图38所示,前后相接的80个时隙值为一组。
图39为本申请实施例提供的一帧中可发送RO的时隙集合的分组示意图之二。如图39所示,间隔4个时隙值的时隙为一组。
则RA-RNTI按照如下公式计算:
RA-RNTI=1+s_id+14×t_id+14×X×f_id+14×X×8×ul_carrier_id;
其中,X=80,UE结合网络的第一指示判断接收PDCCH调度的RAR,其中第一指示为可配置的一个帧内可发送RO的时隙集合中的分组ID。
可选地,在52.6GHz-71GHz的系统中,令PRACH子载波间隔为960KHz,第一子载波间隔为60KHz,第二子载波间隔为960KHz,假设根据发送PRACH的频率范围、PRACH的子载波间隔和发送PRACH的频段特征中的至少一项得到的RACH配置表格中可配置的第一时隙集合为{1,2,3,4,…,38,39},大小为40。图40为本申请实施例提供的第一时隙集合的示意图之三。可配置的在可发送帧内可发送RO的第二时隙集合为{4,5,6,7,12,13,14,15},图41为本申请实施例提供的第二时隙集合的示意图之四,如图41所示,第二时隙集合大小为8。
则可配置的在一个帧内可发送RO的时隙集合如图42所示,大小为320。其中,图42为本申请实施例提供的在一个帧内可发送RO的时隙集合的示意图之五。
将该时隙集合可按照如下方式分成4组:
图43为本申请实施例提供的一帧中可发送RO的时隙集合的分组示意图之三。如图43所示,前后相接的80个时隙值为一组。
图44为本申请实施例提供的一帧中可发送RO的时隙集合的分组示意图之四。如图44所示,间隔4个时隙值的时隙为一组。
RA-RNTI按照如下公式计算:
RA-RNTI=1+s_id+14×t_id+14×X×f_id+14×X×8×ul_carrier_id;
其中,X=80,UE结合网络的第一指示判断接收PDCCH调度的RAR,其中第一指示为根据发送PRACH的频率范围、PRACH的子载波间隔和发送PRACH的频段特征中的至少一项得到的RACH配置表格中可配置的一个帧中可发送RO的时隙集合的分组ID。
本申请实施例提供的随机接入方法,实现了PRACH子载波间隔大于120kHz的情况下,对RO时频资源进行配置的同时,也提出了针对高的PRACH SCS的RO时域资源配置设计相应的RA-RNTI的计算方法,可以避免数据溢出,提升终端随机接入性能。
需要说明的是,本申请实施例提供的随机接入方法,执行主体可以为随机接入装置,或者,该随机接入装置中的用于执行随机接入方法的控制模块。本申请实施例中以随机接入装置执行随机接入方法为例,说明本申请实施例提供的随机接入装置。
图45为本申请实施例提供的随机接入装置的结构示意图,如图45所示,该装置包括:
确定单元4510,用于确定随机接入时机RO时域位置组;
计算单元4520,用于从所述RO时域位置组中选择第一RO,并计算所述第一RO的随机接入无线网络临时标识RA-RNTI;
其中,所述RO时域位置组包括以下至少一项:
可发送帧编号组和第一时隙编号组;
第二时隙编号组;
其中,所述可发送帧编号组用于指示可发送帧,所述可发送帧为可用于传输前导码的RO所在的无线帧;
所述第一时隙编号组用于指示在所述可发送帧中RO所在的基于第一子载波间隔的第一时隙;
所述第二时隙编号组用于指示在所述第一时隙中RO所在的基于第二子载波间隔的第二时隙。
在本申请实施例中,通过确定随机接入时机RO时域位置组,所述RO时域位置组包括以下至少一项:可发送帧编号组和第一时隙编号组;第二时隙编号组,然后终端从所述RO时域位置组中选择一个RO,并计算所述该RO的随机接入无线网络临时标识RA-RNTI,可以在系统支持的PRACH子载波间隔大于120kHz的情况下,对RO时频资源进行配置。
可选地,所述第一子载波间隔或第二子载波间隔与以下至少一项有关:
发送PRACH的子载波间隔;
发送PRACH的频率范围;
发送PRACH的格式;
发送PRACH的序列长度。
可选地,所述第一时隙编号组与以下至少一项有关:
发送PRACH的子载波间隔;
发送PRACH的频率范围;
发送PRACH的频段特征;
发送PRACH的格式;
发送PRACH的序列长度;
PRACH配置索引;
第一子载波间隔;
每个无线帧中包含的基于所述第一子载波间隔的时隙个数L;
第一时隙编号组的大小M1;
第一时隙编号组配置索引。
可选地,所述第二时隙编号组与以下至少一项有关:
发送PRACH的子载波间隔;
发送PRACH的频率范围;
发送PRACH的频段特征;
发送PRACH的格式;
发送PRACH的序列长度;
PRACH配置索引;
第一子载波间隔;
第二子载波间隔;
每个无线帧中包含的基于所述第一子载波间隔的时隙个数L;
第二子载波间隔与第一子载波间隔的比值N;
第一时隙编号组的大小M1;
第二时隙编号组的大小M2;
第一时隙编号组配置索引;
第二时隙编号组配置索引。
可选地,所述确定单元用于:
根据发送物理随机接入信道PRACH的频率范围、PRACH的子载波间隔和发送PRACH的频段特征中的至少一项,得到随机接入信道RACH配置表格;
根据网络指示的PRACH配置索引,查找所述RACH配置表格,得到RO所在的可发送帧编号组和第一时隙编号组的大小M1;
确定所述第一时隙编号组为0到L-1之间预定义的M1个值;
其中,L为每个无线帧中包含的基于所述第一子载波间隔的时隙个数;
其中,第一时隙编号组的M1个值为从0到L-1之间取M1个值的一个或多个组合。
可选地,所述确定单元用于:
根据发送物理随机接入信道PRACH的频率范围、PRACH的子载波 间隔和发送PRACH的频段特征中的至少一项,得到随机接入信道RACH配置表格;
根据网络指示的PRACH配置索引,查找所述RACH配置表格,得到RO所在的可发送帧编号组、第一时隙编号组和第二时隙编号组的大小M2;
确定所述第二时隙编号组为0到N-1之间预定义的M2个值;
其中,N为所述第二子载波间隔与第一子载波间隔的比值;
其中,第二时隙编号组的M2个值为从0到N-1之间取M2个值的一个或多个组合。
可选地,所述确定单元用于:
根据发送物理随机接入信道PRACH的频率范围、PRACH的子载波间隔和发送PRACH的频段特征中的至少一项,得到随机接入信道RACH配置表格;
根据网络指示的PRACH配置索引,查找所述RACH配置表格,得到RO所在的可发送帧编号组、第一时隙编号组的大小M1和第一时隙编号组配置索引k1;
根据第一时隙编号组配置索引k1,确定所述第一时隙编号组为0到L-1之间预定义的M1个值;
其中,L为每个无线帧中包含的基于所述第一子载波间隔的时隙个数;
其中,第一时隙编号组配置索引k1用于指示第一时隙编号组的M1个值;
其中,第一时隙编号组的M1个值为从0到L-1之间取M1个值的一个或多个组合。
可选地,所述确定单元用于:
根据发送物理随机接入信道PRACH的频率范围PRACH的子载波间隔和发送PRACH的频段特征中的至少一项,得到随机接入信道RACH配置表格;
根据网络指示的PRACH配置索引,查找所述RACH配置表格,得到 RO所在的可发送帧编号组、第一时隙编号组,以及第二时隙编号组的大小M2和第二时隙编号组配置索引k2;
根据所述第二时隙编号组配置索引k2,确定所述第二时隙编号组为0到N-1之间预定义的M2个值;
其中,N为所述第二子载波间隔和第一子载波间隔的比值;
其中,第二时隙编号组配置索引k2用于指示第二时隙编号组的M2个值;
其中,第二时隙编号组的M2个值为从0到N-1之间取M2个值的一个或多个组合。
可选地,所述第一时隙编号组的M1个值为从0到L-1之间取M1个值的一个或多个组合,包括以下一项或多项:
0到L-1的前M1个值;
0到L-1的后M1个值;
满足X mod(L/M1的上取整或下取值)=Y的所有或部分X,其中,X为0到L-1之间的整数值,Y为预定义的一个值或多个值;
0到L-1之间连续的M1个值;
多个0到L-1之间连续的M1个值。
可选地,所述第二时隙编号组的M2个值为从0到N-1之间取M2个值的一个或多个组合,包括以下一项或多项:
0到N-1的前M2个值;
0到N-1的或后M2个值;
满足X mod(N/M2的上取整或下取整)=Y的所有或部分X,其中,X为0到N-1之间的整数值,Y为预定义的一个值或多个值;
0到N-1之间连续的M2个值;
多个0到N-1之间连续的M2个值。
可选地,所述计算单元包括:
时域编号确定子单元,用于确定所述第一RO对应的时域编号;
计算子单元,用于基于所述时域编号计算所述第一RO的RA-RNTI。
可选地,所述时域编号为基于第三子载波间隔的第三时隙编号,其中,所述第三子载波间隔由以下之一确定:
为第一子载波间隔;
为第二子载波间隔或PRACH的子载波间隔;
在PRACH的子载波间隔满足第一条件或属于第一集合的情况下,为第二子载波间隔或PRACH的子载波间隔,否则,为第一子载波间隔或第四子载波间隔,其中,所述第四子载波间隔为预定义的子载波间隔。
可选地,所述时域编号为所述第一RO在可发送帧内可发送RO的时隙集合中按先后顺序排列的序号,所述可发送RO的时隙集合基于第一时隙编号组和/或第二时隙编号组获得。
可选地,所述时域编号为所述第一RO在可发送帧内可发送RO的时隙集合的一个分组中按先后顺序排列的序号,其中,所述时隙集合基于第一时隙编号组和/或第二时隙编号组获得。
可选地,所述时隙集合按照以下之一进行分组:
前后相接的R个时隙值为一组;
间隔R个时隙值的时隙为一组。
可选地,所述计算子单元用于:
基于所述时域编号,采用以下公式之一计算所述第一RO的RA-RNTI:
RA-RNTI=1+s_id+14×t_id+14×X×f_id+14×X×8×ul_carrier_id  公式一;
RA-RNTI=(1+s_id+14×t_id+14×X×f_id+14×X×8×ul_carrier_id)mod A  公式二;
其中,X采用以下方法之一获得:
一个帧内可发送RO的时隙集合大小;
一个帧内可发送RO的时隙集合的一个分组大小;
根据发送PRACH的频率范围、PRACH的子载波间隔和发送PRACH 的频段特征中的至少一项得到的RACH配置表格中可配置的一个帧中可发送RO的时隙集合大小的最大值;
根据发送PRACH的频率范围、PRACH的子载波间隔和发送PRACH的频段特征中的至少一项得到的RACH配置表格中可配置的一个帧中可发送RO的时隙集合的一个分组大小的最大值;
其中,s_id为所述第一RO的第一个OFDM符号索引;
t_id为所述第一RO对应的时域编号;
f_id为所述第一RO对应的频域编号;
ul_carrier_id为用于传输前导码的上行载波,0表示正常上行载波,1表示增补上行载波;
A为预设整数,或A由网络侧配置,或A由所述终端确定。
可选地,所述一个帧内可发送RO的时隙集合大小为第一时隙集合大小或第一时隙集合大小*第二时隙集合大小。
可选地,还包括:
判断单元,用于终端根据X的大小确定是否需要结合网络的第一指示判断接收物理下行控制信道PDCCH调度的随机接入响应RAR或终端根据X的大小确定第一指示的大小。
可选地,所述第一指示包括以下至少一项:
一个帧内可发送RO的时隙集合中的分组ID;
根据发送PRACH的频率范围、PRACH的子载波间隔和发送PRACH的频段特征中的至少一项得到的RACH配置表格中可配置的一个帧中可发送RO的时隙集合的分组ID;
(1+s_id+14×t_id+14×X×f_id+14×X×8×ul_carrier_id)/A的上取整值。
本申请实施例提供的随机接入装置,实现了PRACH子载波间隔大于120kHz的情况下,对RO时频资源进行配置的同时,也提出了针对高的PRACH SCS的RO时域资源配置设计相应的RA-RNTI的计算方法,可以 避免数据溢出,提升终端随机接入性能。
本申请实施例中的随机接入可以是具有操作系统的装置或电子设备,也可以是终端中的部件、集成电路、或芯片。该电子设备可以是移动电子设备,也可以为非移动电子设备。示例性的,移动电子设备可以包括但不限于上述所列举的终端11的类型,非移动电子设备可以为服务器、网络附属存储器(Network Attached Storage,NAS)、个人计算机(personal computer,PC)、电视机(television,TV)、柜员机或者自助机等,本申请实施例不作具体限定。
本申请实施例提供的随机接入装置能够实现图3至图44的方法实施例实现的各个过程,并达到相同的技术效果,为避免重复,这里不再赘述。
可选的,如图46所示,本申请实施例还提供一种通信设备4600,包括处理器4601,存储器4602,存储在存储器4602上并可在所述处理器4601上运行的程序或指令,例如,该通信设备4600为终端时,该程序或指令被处理器4601执行时实现上述随机接入方法实施例的各个过程,且能达到相同的技术效果。该通信设备4600为网络侧设备时,该程序或指令被处理器4601执行时实现上述随机接入方法实施例的各个过程,且能达到相同的技术效果,为避免重复,这里不再赘述。
图47为实现本申请实施例的一种终端的硬件结构示意图。
该终端4700包括但不限于:射频单元4701、网络模块4702、音频输出单元4703、输入单元4704、传感器4705、显示单元4706、用户输入单元4707、接口单元4708、存储器4709、以及处理器4710等中的至少部分部件。
本领域技术人员可以理解,终端4700还可以包括给各个部件供电的电源(比如电池),电源可以通过电源管理系统与处理器4710逻辑相连,从而通过电源管理系统实现管理充电、放电、以及功耗管理等功能。图47中示出的终端结构并不构成对终端的限定,终端可以包括比图示更多或更少的部件,或者组合某些部件,或者不同的部件布置,在此不再赘述。
应理解的是,本申请实施例中,输入单元4704可以包括图形处理器(Graphics Processing Unit,GPU)47041和麦克风47042,图形处理器47041对在视频捕获模式或图像捕获模式中由图像捕获装置(如摄像头)获得的静态图片或视频的图像数据进行处理。显示单元4706可包括显示面板47061,可以采用液晶显示器、有机发光二极管等形式来配置显示面板47061。用户输入单元4707包括触控面板47071以及其他输入设备47072。触控面板47071,也称为触摸屏。触控面板47071可包括触摸检测装置和触摸控制器两个部分。其他输入设备47072可以包括但不限于物理键盘、功能键(比如音量控制按键、开关按键等)、轨迹球、鼠标、操作杆,在此不再赘述。
本申请实施例中,射频单元4701将来自网络侧设备的下行数据接收后,给处理器4710处理;另外,将上行的数据发送给网络侧设备。通常,射频单元4701包括但不限于天线、至少一个放大器、收发信机、耦合器、低噪声放大器、双工器等。
存储器4709可用于存储软件程序或指令以及各种数据。存储器4709可主要包括存储程序或指令区和存储数据区,其中,存储程序或指令区可存储操作系统、至少一个功能所需的应用程序或指令(比如声音播放功能、图像播放功能等)等。此外,存储器4709可以包括高速随机存取存储器,还可以包括非易失性存储器,其中,非易失性存储器可以是只读存储器(Read-Only Memory,ROM)、可编程只读存储器(Programmable ROM,PROM)、可擦除可编程只读存储器(Erasable PROM,EPROM)、电可擦除可编程只读存储器(Electrically EPROM,EEPROM)或闪存。例如至少一个磁盘存储器件、闪存器件、或其他非易失性固态存储器件。
处理器4710可包括一个或多个处理单元;可选的,处理器4710可集成应用处理器和调制解调处理器,其中,应用处理器主要处理操作系统、用户界面和应用程序或指令等,调制解调处理器主要处理无线通信,如基带处理器。可以理解的是,上述调制解调处理器也可以不集成到处理器 4710中。
其中,处理器4710,用于:
确定随机接入时机RO时域位置组;
从所述RO时域位置组中选择第一RO,并计算所述第一RO的随机接入无线网络临时标识RA-RNTI;
其中,所述RO时域位置组包括以下至少一项:
可发送帧编号组和第一时隙编号组;
第二时隙编号组;
其中,所述可发送帧编号组用于指示可发送帧,所述可发送帧为可用于传输前导码的RO所在的无线帧;
所述第一时隙编号组用于指示在所述可发送帧中RO所在的基于第一子载波间隔的第一时隙;
所述第二时隙编号组用于指示在所述第一时隙中RO所在的基于第二子载波间隔的第二时隙。
在本申请实施例中,通过确定随机接入时机RO时域位置组,所述RO时域位置组包括以下至少一项:可发送帧编号组和第一时隙编号组;第二时隙编号组,然后终端从所述RO时域位置组中选择一个RO,并计算所述该RO的随机接入无线网络临时标识RA-RNTI,可以在系统支持的PRACH子载波间隔大于120kHz的情况下,对RO时频资源进行配置。
可选地,所述第一子载波间隔或第二子载波间隔与以下至少一项有关:
发送PRACH的子载波间隔;
发送PRACH的频率范围;
发送PRACH的格式;
发送PRACH的序列长度。
可选地,所述第一时隙编号组与以下至少一项有关:
发送PRACH的子载波间隔;
发送PRACH的频率范围;
发送PRACH的频段特征;
发送PRACH的格式;
发送PRACH的序列长度;
PRACH配置索引;
第一子载波间隔;
每个无线帧中包含的基于所述第一子载波间隔的时隙个数L;
第一时隙编号组的大小M1;
第一时隙编号组配置索引。
可选地,所述第二时隙编号组与以下至少一项有关:
发送PRACH的子载波间隔;
发送PRACH的频率范围;
发送PRACH的频段特征;
发送PRACH的格式;
发送PRACH的序列长度;
PRACH配置索引;
第一子载波间隔;
第二子载波间隔;
每个无线帧中包含的基于所述第一子载波间隔的时隙个数L;
第二子载波间隔与第一子载波间隔的比值N;
第一时隙编号组的大小M1;
第二时隙编号组的大小M2;
第一时隙编号组配置索引;
第二时隙编号组配置索引。
可选地,处理器4710,还用于:
根据发送物理随机接入信道PRACH的频率范围、PRACH的子载波间隔和发送PRACH的频段特征中的至少一项,得到随机接入信道RACH配置表格;
根据网络指示的PRACH配置索引,查找所述RACH配置表格,得到RO所在的可发送帧编号组和第一时隙编号组的大小M1;
确定所述第一时隙编号组为0到L-1之间预定义的M1个值;
其中,L为每个无线帧中包含的基于所述第一子载波间隔的时隙个数;
其中,第一时隙编号组的M1个值为从0到L-1之间取M1个值的一个或多个组合。
可选地,处理器4710,还用于:
根据发送物理随机接入信道PRACH的频率范围、PRACH的子载波间隔和发送PRACH的频段特征中的至少一项,得到随机接入信道RACH配置表格;
根据网络指示的PRACH配置索引,查找所述RACH配置表格,得到RO所在的可发送帧编号组、第一时隙编号组和第二时隙编号组的大小M2;
确定所述第二时隙编号组为0到N-1之间预定义的M2个值;
其中,N为所述第二子载波间隔与第一子载波间隔的比值;
其中,第二时隙编号组的M2个值为从0到N-1之间取M2个值的一个或多个组合。
可选地,处理器4710,还用于:
根据发送物理随机接入信道PRACH的频率范围、PRACH的子载波间隔和发送PRACH的频段特征中的至少一项,得到随机接入信道RACH配置表格;
根据网络指示的PRACH配置索引,查找所述RACH配置表格,得到RO所在的可发送帧编号组、第一时隙编号组的大小M1和第一时隙编号组配置索引k1;
根据第一时隙编号组配置索引k1,确定所述第一时隙编号组为0到L-1之间预定义的M1个值;
其中,L为每个无线帧中包含的基于所述第一子载波间隔的时隙个数;
其中,第一时隙编号组配置索引k1用于指示第一时隙编号组的M1 个值;
其中,第一时隙编号组的M1个值为从0到L-1之间取M1个值的一个或多个组合。
可选地,处理器4710,还用于:
送PRACH的频段特征中的至少一项,得到随机接入信道RACH配置表格;
根据网络指示的PRACH配置索引,查找所述RACH配置表格,得到RO所在的可发送帧编号组、第一时隙编号组,以及第二时隙编号组的大小M2和第二时隙编号组配置索引k2;
根据所述第二时隙编号组配置索引k2,确定所述第二时隙编号组为0到N-1之间预定义的M2个值;
其中,N为所述第二子载波间隔和第一子载波间隔的比值;
其中,第二时隙编号组配置索引k2用于指示第二时隙编号组的M2个值;
其中,第二时隙编号组的M2个值为从0到N-1之间取M2个值的一个或多个组合。
可选地,所述第一时隙编号组的M1个值为从0到L-1之间取M1个值的一个或多个组合,包括以下一项或多项:
0到L-1的前M1个值;
0到L-1的后M1个值;
满足X mod(L/M1的上取整或下取值)=Y的所有或部分X,其中,X为0到L-1之间的整数值,Y为预定义的一个值或多个值;
0到L-1之间连续的M1个值;
多个0到L-1之间连续的M1个值。
可选地,所述第二时隙编号组的M2个值为从0到N-1之间取M2个值的一个或多个组合,包括以下一项或多项:
0到N-1的前M2个值;
0到N-1的或后M2个值;
满足X mod(N/M2的上取整或下取整)=Y的所有或部分X,其中,X为0到N-1之间的整数值,Y为预定义的一个值或多个值;
0到N-1之间连续的M2个值;
多个0到N-1之间连续的M2个值。
可选地,处理器110,还用于:
确定所述第一RO对应的时域编号;
基于所述时域编号计算所述第一RO的RA-RNTI。
可选地,所述时域编号为基于第三子载波间隔的第三时隙编号,其中,所述第三子载波间隔由以下之一确定:
为第一子载波间隔;
为第二子载波间隔或PRACH的子载波间隔;
在PRACH的子载波间隔满足第一条件或属于第一集合的情况下,为第二子载波间隔或PRACH的子载波间隔,否则,为第一子载波间隔或第四子载波间隔,其中,所述第四子载波间隔为预定义的子载波间隔。
可选地,所述时域编号为所述第一RO在可发送帧内可发送RO的时隙集合中按先后顺序排列的序号,所述可发送RO的时隙集合基于第一时隙编号组和/或第二时隙编号组获得。
可选地,所述时域编号为所述第一RO在可发送帧内可发送RO的时隙集合的一个分组中按先后顺序排列的序号,其中,所述时隙集合基于第一时隙编号组和/或第二时隙编号组获得。
可选地,所述时隙集合按照以下之一进行分组:
前后相接的R个时隙值为一组;
间隔R个时隙值的时隙为一组。
可选地,处理器4710,还用于:
基于所述时域编号,采用以下公式之一计算所述第一RO的RA-RNTI:
RA-RNTI=1+s_id+14×t_id+14×X×f_id+14×X×8×ul_carrier_id  公式 一;
RA-RNTI=(1+s_id+14×t_id+14×X×f_id+14×X×8×ul_carrier_id)mod A  公式二;
其中,X采用以下方法之一获得:
一个帧内可发送RO的时隙集合大小;
一个帧内可发送RO的时隙集合的一个分组大小;
根据发送PRACH的频率范围、PRACH的子载波间隔和发送PRACH的频段特征中的至少一项得到的RACH配置表格中可配置的一个帧中可发送RO的时隙集合大小的最大值;
根据发送PRACH的频率范围、PRACH的子载波间隔和发送PRACH的频段特征中的至少一项得到的RACH配置表格中可配置的一个帧中可发送RO的时隙集合的一个分组大小的最大值;
其中,s_id为所述第一RO的第一个OFDM符号索引;
t_id为所述第一RO对应的时域编号;
f_id为所述第一RO对应的频域编号;
ul_carrier_id为用于传输前导码的上行载波,0表示正常上行载波,1表示增补上行载波;
A为预设整数,或A由网络侧配置,或A由所述终端确定。
可选地,所述一个帧内可发送RO的时隙集合大小为第一时隙集合大小或第一时隙集合大小*第二时隙集合大小。
可选地,处理器4710还用于:
终端根据X的大小确定是否需要结合网络的第一指示判断接收物理下行控制信道PDCCH调度的随机接入响应RAR或终端根据X的大小确定第一指示的大小。
可选地,所述第一指示包括以下至少一项:
一个帧内可发送RO的时隙集合中的分组ID;
根据发送PRACH的频率范围、PRACH的子载波间隔和发送PRACH 的频段特征中的至少一项得到的RACH配置表格中可配置的一个帧中可发送RO的时隙集合的分组ID;
(1+s_id+14×t_id+14×X×f_id+14×X×8×ul_carrier_id)/A的上取整值。
本申请实施例提供的终端,实现了PRACH子载波间隔大于120kHz的情况下,对RO时频资源进行配置的同时,也提出了针对高的PRACH SCS的RO时域资源配置设计相应的RA-RNTI的计算方法,可以避免数据溢出,提升终端随机接入性能。
本申请实施例中的终端实施例是与上述方法实施例对应的产品实施例,上述方法实施例中的所有实现方式均适用于该终端实施例,亦可达到相同或相似的技术效果,故在此不再赘述。
本申请实施例还提供一种可读存储介质,所述可读存储介质上存储有程序或指令,该程序或指令被处理器执行时实现上述随机接入方法实施例的各个过程,且能达到相同的技术效果,为避免重复,这里不再赘述。
其中,所述处理器为上述实施例中所述的终端中的处理器。所述可读存储介质,包括计算机可读存储介质,如计算机只读存储器(Read-Only Memory,ROM)、随机存取存储器(Random Access Memory,RAM)、磁碟或者光盘等。
本申请实施例另提供了一种芯片,所述芯片包括处理器和通信接口,所述通信接口和所述处理器耦合,所述处理器用于运行程序或指令,实现上述随机接入方法实施例的各个过程,且能达到相同的技术效果,为避免重复,这里不再赘述。
应理解,本申请实施例提到的芯片还可以称为系统级芯片,系统芯片,芯片系统或片上系统芯片等。
需要说明的是,在本文中,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者装置不仅包括那些要素,而且还包括没有明确列出的其他要素, 或者是还包括为这种过程、方法、物品或者装置所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括该要素的过程、方法、物品或者装置中还存在另外的要素。此外,需要指出的是,本申请实施方式中的方法和装置的范围不限按示出或讨论的顺序来执行功能,还可包括根据所涉及的功能按基本同时的方式或按相反的顺序来执行,例如,可以按不同于所描述的次序来执行所描述的方法,并且还可以添加、省去、或组合各种步骤。另外,参照某些示例所描述的特征可在其他示例中被组合。
通过以上的实施方式的描述,本领域的技术人员可以清楚地了解到上述实施例方法可借助软件加必需的通用硬件平台的方式来实现,当然也可以通过硬件,但很多情况下前者是更佳的实施方式。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质(如ROM/RAM、磁碟、光盘)中,包括若干指令用以使得一台终端(可以是手机,计算机,服务器,或者网络设备等)执行本申请各个实施例所述的方法。
上面结合附图对本申请的实施例进行了描述,但是本申请并不局限于上述的具体实施方式,上述的具体实施方式仅仅是示意性的,而不是限制性的,本领域的普通技术人员在本申请的启示下,在不脱离本申请宗旨和权利要求所保护的范围情况下,还可做出很多形式,均属于本申请的保护之内。

Claims (42)

  1. 一种随机接入方法,包括:
    终端确定随机接入时机RO时域位置组;
    从所述RO时域位置组中选择第一RO,并计算所述第一RO的随机接入无线网络临时标识RA-RNTI;
    其中,所述RO时域位置组包括以下至少一项:
    可发送帧编号组和第一时隙编号组;
    第二时隙编号组;
    其中,所述可发送帧编号组用于指示可发送帧,所述可发送帧为可用于传输前导码的RO所在的无线帧;
    所述第一时隙编号组用于指示在所述可发送帧中RO所在的基于第一子载波间隔的第一时隙;
    所述第二时隙编号组用于指示在所述第一时隙中RO所在的基于第二子载波间隔的第二时隙。
  2. 根据权利要求1所述的随机接入方法,其中,所述第一子载波间隔或第二子载波间隔与以下至少一项有关:
    发送PRACH的子载波间隔;
    发送PRACH的频率范围;
    发送PRACH的格式;
    发送PRACH的序列长度。
  3. 根据权利要求1或2所述的随机接入方法,其中,所述第一时隙编号组与以下至少一项有关:
    发送PRACH的子载波间隔;
    发送PRACH的频率范围;
    发送PRACH的频段特征;
    发送PRACH的格式;
    发送PRACH的序列长度;
    PRACH配置索引;
    第一子载波间隔;
    每个无线帧中包含的基于所述第一子载波间隔的时隙个数L;
    第一时隙编号组的大小M1;
    第一时隙编号组配置索引。
  4. 根据权利要求1或2所述的随机接入方法,其中,所述第二时隙编号组与以下至少一项有关:
    发送PRACH的子载波间隔;
    发送PRACH的频率范围;
    发送PRACH的频段特征;
    发送PRACH的格式;
    发送PRACH的序列长度;
    PRACH配置索引;
    第一子载波间隔;
    第二子载波间隔;
    每个无线帧中包含的基于所述第一子载波间隔的时隙个数L;
    第二子载波间隔与第一子载波间隔的比值N;
    第一时隙编号组的大小M1;
    第二时隙编号组的大小M2;
    第一时隙编号组配置索引;
    第二时隙编号组配置索引。
  5. 根据权利要求1所述的随机接入方法,其中,所述终端确定随机接入时机RO时域位置组,包括:
    根据发送物理随机接入信道PRACH的频率范围、PRACH的子载波间隔和发送PRACH的频段特征中的至少一项,得到随机接入信道RACH配置表格;
    根据网络指示的PRACH配置索引,查找所述RACH配置表格,得到RO所在的可发送帧编号组和第一时隙编号组的大小M1;
    确定所述第一时隙编号组为0到L-1之间预定义的M1个值;
    其中,L为每个无线帧中包含的基于所述第一子载波间隔的时隙个数;
    其中,第一时隙编号组的M1个值为从0到L-1之间取M1个值的一个或多个组合。
  6. 根据权利要求1所述的随机接入方法,其中,所述终端确定随机接入时机RO时域位置组,包括:
    根据发送物理随机接入信道PRACH的频率范围、PRACH的子载波间隔和发送PRACH的频段特征中的至少一项,得到随机接入信道RACH配置表格;
    根据网络指示的PRACH配置索引,查找所述RACH配置表格,得到RO所在的可发送帧编号组、第一时隙编号组和第二时隙编号组的大小M2;
    确定所述第二时隙编号组为0到N-1之间预定义的M2个值;
    其中,N为所述第二子载波间隔与第一子载波间隔的比值;
    其中,第二时隙编号组的M2个值为从0到N-1之间取M2个值的一个或多个组合。
  7. 根据权利要求1所述的随机接入方法,其中,所述终端确定随机接入时机RO时域位置组,包括:
    根据发送物理随机接入信道PRACH的频率范围、PRACH的子载波间隔和发送PRACH的频段特征中的至少一项,得到随机接入信道RACH配置表格;
    根据网络指示的PRACH配置索引,查找所述RACH配置表格,得到RO所在的可发送帧编号组、第一时隙编号组的大小M1和第一时隙编号组配置索引k1;
    根据第一时隙编号组配置索引k1,确定所述第一时隙编号组为0到L-1之间预定义的M1个值;
    其中,L为每个无线帧中包含的基于所述第一子载波间隔的时隙个数;
    其中,第一时隙编号组配置索引k1用于指示第一时隙编号组的M1个值;
    其中,第一时隙编号组的M1个值为从0到L-1之间取M1个值的一个或多个组合。
  8. 根据权利要求1所述的随机接入方法,其中,所述终端确定随机接入时机RO时域位置组,包括:
    根据发送物理随机接入信道PRACH的频率范围PRACH的子载波间隔和发送PRACH的频段特征中的至少一项,得到随机接入信道RACH配置表格;
    根据网络指示的PRACH配置索引,查找所述RACH配置表格,得到RO所在的可发送帧编号组、第一时隙编号组,以及第二时隙编号组的大小M2和第二时隙编号组配置索引k2;
    根据所述第二时隙编号组配置索引k2,确定所述第二时隙编号组为0到N-1之间预定义的M2个值;
    其中,N为所述第二子载波间隔和第一子载波间隔的比值;
    其中,第二时隙编号组配置索引k2用于指示第二时隙编号组的M2个值;
    其中,第二时隙编号组的M2个值为从0到N-1之间取M2个值的一个或多个组合。
  9. 根据权利要求5或7所述的随机接入方法,其中,所述第一时隙编号组的M1个值为从0到L-1之间取M1个值的一个或多个组合,包括以下一项或多项:
    0到L-1的前M1个值;
    0到L-1的后M1个值;
    满足X mod(L/M1的上取整或下取值)=Y的所有或部分X,其中,X为0到L-1之间的整数值,Y为预定义的一个值或多个值;
    0到L-1之间连续的M1个值;
    多个0到L-1之间连续的M1个值。
  10. 根据权利要求6或8所述的随机接入方法,其中,所述第二时隙编号组的M2个值为从0到N-1之间取M2个值的一个或多个组合,包括以下一项或多项:
    0到N-1的前M2个值;
    0到N-1的后M2个值;
    满足X mod(N/M2的上取整或下取整)=Y的所有或部分X,其中,X为0到N-1之间的整数值,Y为预定义的一个值或多个值;
    0到N-1之间连续的M2个值;
    多个0到N-1之间连续的M2个值。
  11. 根据权利要求1所述的随机接入方法,其中,所述计算所述第一RO的随机接入无线网络临时标识RA-RNTI,包括:
    确定所述第一RO对应的时域编号;
    基于所述时域编号计算所述第一RO的RA-RNTI。
  12. 根据权利要求11所述的随机接入方法,其中,所述时域编号为基于第三子载波间隔的第三时隙编号,其中,所述第三子载波间隔由以下之一确定:
    为第一子载波间隔;
    为第二子载波间隔或PRACH的子载波间隔;
    在PRACH的子载波间隔满足第一条件或属于第一集合的情况下,为第二子载波间隔或PRACH的子载波间隔,否则,为第一子载波间隔或第四子载波间隔,其中,所述第四子载波间隔为预定义的子载波间隔。
  13. 根据权利要求11所述的随机接入方法,其中,所述时域编号为所述第一RO在可发送帧内可发送RO的时隙集合中按先后顺序排列的序号,所述可发送RO的时隙集合基于第一时隙编号组和/或第二时隙编号组获得。
  14. 根据权利要求11所述的随机接入方法,其中,所述时域编号为所述第一RO在可发送帧内可发送RO的时隙集合的一个分组中按先后顺序排列的序号,其中,所述时隙集合基于第一时隙编号组和/或第二时隙编号组获得。
  15. 根据权利要求14所述的随机接入方法,其中,所述时隙集合按照以下之一进行分组:
    前后相接的R个时隙值为一组;
    间隔R个时隙值的时隙为一组。
  16. 根据权利要求11-15中任一项所述的随机接入方法,其中,所述基于所述时域编号计算所述第一RO的RA-RNTI,包括:
    基于所述时域编号,采用以下公式之一计算所述第一RO的RA-RNTI:
    RA-RNTI=1+s_id+14×t_id+14×X×f_id+14×X×8×ul_carrier_id   公式一;
    RA-RNTI=(1+s_id+14×t_id+14×X×f_id+14×X×8×ul_carrier_id)mod A公式二;
    其中,X采用以下方法之一获得:
    一个帧内可发送RO的时隙集合大小;
    一个帧内可发送RO的时隙集合的一个分组大小;
    根据发送PRACH的频率范围、PRACH的子载波间隔和发送PRACH的频段特征中的至少一项得到的RACH配置表格中可配置的一个帧中可发送RO的时隙集合大小的最大值;
    根据发送PRACH的频率范围、PRACH的子载波间隔和发送PRACH的频段特征中的至少一项得到的RACH配置表格中可配置的一个帧中可发送RO的时隙集合的一个分组大小的最大值;
    其中,s_id为所述第一RO的第一个OFDM符号索引;
    t_id为所述第一RO对应的时域编号;
    f_id为所述第一RO对应的频域编号;
    ul_carrier_id为用于传输前导码的上行载波,0表示正常上行载波,1表示增补上行载波;
    A为预设整数,或A由网络侧配置,或A由所述终端确定。
  17. 根据权利要求16所述的随机接入方法,其中,所述一个帧内可发送RO的时隙集合大小为第一时隙集合大小或第一时隙集合大小*第二时隙集合大小。
  18. 根据权利要求16所述的随机接入方法,其中,还包括:
    终端根据X的大小确定是否需要结合网络的第一指示判断接收物理下行控制信道PDCCH调度的随机接入响应RAR或终端根据X的大小确定第一指示的大小。
  19. 根据权利要求18所述的随机接入方法,其中,所述第一指示包括以下至少一项:
    一个帧内可发送RO的时隙集合中的分组ID;
    根据发送PRACH的频率范围、PRACH的子载波间隔和发送PRACH的频段特征中的至少一项得到的RACH配置表格中可配置的一个帧中可发送RO的时隙集合的分组ID;
    (1+s_id+14×t_id+14×X×f_id+14×X×8×ul_carrier_id)/A的上取整值。
  20. 一种随机接入装置,包括:
    确定单元,用于确定随机接入时机RO时域位置组;
    计算单元,用于从所述RO时域位置组中选择第一RO,并计算所述第一RO的随机接入无线网络临时标识RA-RNTI;
    其中,所述RO时域位置组包括以下至少一项:
    可发送帧编号组和第一时隙编号组;
    第二时隙编号组;
    其中,所述可发送帧编号组用于指示可发送帧,所述可发送帧为可用 于传输前导码的RO所在的无线帧;
    所述第一时隙编号组用于指示在所述可发送帧中RO所在的基于第一子载波间隔的第一时隙;
    所述第二时隙编号组用于指示在所述第一时隙中RO所在的基于第二子载波间隔的第二时隙。
  21. 根据权利要求20所述的随机接入装置,其中,所述第一子载波间隔或第二子载波间隔与以下至少一项有关:
    发送PRACH的子载波间隔;
    发送PRACH的频率范围;
    发送PRACH的格式;
    发送PRACH的序列长度。
  22. 根据权利要求20或21所述的随机接入装置,其中,所述第一时隙编号组与以下至少一项有关:
    发送PRACH的子载波间隔;
    发送PRACH的频率范围;
    发送PRACH的频段特征;
    发送PRACH的格式;
    发送PRACH的序列长度;
    PRACH配置索引;
    第一子载波间隔;
    每个无线帧中包含的基于所述第一子载波间隔的时隙个数L;
    第一时隙编号组的大小M1;
    第一时隙编号组配置索引。
  23. 根据权利要求20或21所述的随机接入装置,其中,所述第二时隙编号组与以下至少一项有关:
    发送PRACH的子载波间隔;
    发送PRACH的频率范围;
    发送PRACH的频段特征;
    发送PRACH的格式;
    发送PRACH的序列长度;
    PRACH配置索引;
    第一子载波间隔;
    第二子载波间隔;
    每个无线帧中包含的基于所述第一子载波间隔的时隙个数L;
    第二子载波间隔与第一子载波间隔的比值N;
    第一时隙编号组的大小M1;
    第二时隙编号组的大小M2;
    第一时隙编号组配置索引;
    第二时隙编号组配置索引。
  24. 根据权利要求20所述的随机接入装置,其中,所述确定单元用于:
    根据发送物理随机接入信道PRACH的频率范围、PRACH的子载波间隔和发送PRACH的频段特征中的至少一项,得到随机接入信道RACH配置表格;
    根据网络指示的PRACH配置索引,查找所述RACH配置表格,得到RO所在的可发送帧编号组和第一时隙编号组的大小M1;
    确定所述第一时隙编号组为0到L-1之间预定义的M1个值;
    其中,L为每个无线帧中包含的基于所述第一子载波间隔的时隙个数;
    其中,第一时隙编号组的M1个值为从0到L-1之间取M1个值的一个或多个组合。
  25. 根据权利要求20所述的随机接入装置,其中,所述确定单元用于:
    根据发送物理随机接入信道PRACH的频率范围、PRACH的子载波间隔和发送PRACH的频段特征中的至少一项,得到随机接入信道RACH配置表格;
    根据网络指示的PRACH配置索引,查找所述RACH配置表格,得到 RO所在的可发送帧编号组、第一时隙编号组和第二时隙编号组的大小M2;
    确定所述第二时隙编号组为0到N-1之间预定义的M2个值;
    其中,N为所述第二子载波间隔与第一子载波间隔的比值;
    其中,第二时隙编号组的M2个值为从0到N-1之间取M2个值的一个或多个组合。
  26. 根据权利要求20所述的随机接入装置,其中,所述确定单元用于:
    根据发送物理随机接入信道PRACH的频率范围、PRACH的子载波间隔和发送PRACH的频段特征中的至少一项,得到随机接入信道RACH配置表格;
    根据网络指示的PRACH配置索引,查找所述RACH配置表格,得到RO所在的可发送帧编号组、第一时隙编号组的大小M1和第一时隙编号组配置索引k1;
    根据第一时隙编号组配置索引k1,确定所述第一时隙编号组为0到L-1之间预定义的M1个值;
    其中,L为每个无线帧中包含的基于所述第一子载波间隔的时隙个数;
    其中,第一时隙编号组配置索引k1用于指示第一时隙编号组的M1个值;
    其中,第一时隙编号组的M1个值为从0到L-1之间取M1个值的一个或多个组合。
  27. 根据权利要求20所述的随机接入装置,其中,所述确定单元用于:
    根据发送物理随机接入信道PRACH的频率范围PRACH的子载波间隔和发送PRACH的频段特征中的至少一项,得到随机接入信道RACH配置表格;
    根据网络指示的PRACH配置索引,查找所述RACH配置表格,得到RO所在的可发送帧编号组、第一时隙编号组,以及第二时隙编号组的大小M2和第二时隙编号组配置索引k2;
    根据所述第二时隙编号组配置索引k2,确定所述第二时隙编号组为0 到N-1之间预定义的M2个值;
    其中,N为所述第二子载波间隔和第一子载波间隔的比值;
    其中,第二时隙编号组配置索引k2用于指示第二时隙编号组的M2个值;
    其中,第二时隙编号组的M2个值为从0到N-1之间取M2个值的一个或多个组合。
  28. 根据权利要求24或26所述的随机接入装置,其中,所述第一时隙编号组的M1个值为从0到L-1之间取M1个值的一个或多个组合,包括以下一项或多项:
    0到L-1的前M1个值;
    0到L-1的后M1个值;
    满足X mod(L/M1的上取整或下取值)=Y的所有或部分X,其中,X为0到L-1之间的整数值,Y为预定义的一个值或多个值;
    0到L-1之间连续的M1个值;
    多个0到L-1之间连续的M1个值。
  29. 根据权利要求25或27所述的随机接入装置,其中,所述第二时隙编号组的M2个值为从0到N-1之间取M2个值的一个或多个组合,包括以下一项或多项:
    0到N-1的前M2个值;
    0到N-1的后M2个值;
    满足X mod(N/M2的上取整或下取整)=Y的所有或部分X,其中,X为0到N-1之间的整数值,Y为预定义的一个值或多个值;
    0到N-1之间连续的M2个值;
    多个0到N-1之间连续的M2个值。
  30. 根据权利要求20所述的随机接入装置,其中,所述计算单元包括:
    时域编号确定子单元,用于确定所述第一RO对应的时域编号;
    计算子单元,用于基于所述时域编号计算所述第一RO的RA-RNTI。
  31. 根据权利要求30所述的随机接入装置,其中,所述时域编号为基于第三子载波间隔的第三时隙编号,其中,所述第三子载波间隔由以下之一确定:
    为第一子载波间隔;
    为第二子载波间隔或PRACH的子载波间隔;
    在PRACH的子载波间隔满足第一条件或属于第一集合的情况下,为第二子载波间隔或PRACH的子载波间隔,否则,为第一子载波间隔或第四子载波间隔,其中,所述第四子载波间隔为预定义的子载波间隔。
  32. 根据权利要求30所述的随机接入装置,其中,所述时域编号为所述第一RO在可发送帧内可发送RO的时隙集合中按先后顺序排列的序号,所述可发送RO的时隙集合基于第一时隙编号组和/或第二时隙编号组获得。
  33. 根据权利要求30所述的随机接入装置,其中,所述时域编号为所述第一RO在可发送帧内可发送RO的时隙集合的一个分组中按先后顺序排列的序号,其中,所述时隙集合基于第一时隙编号组和/或第二时隙编号组获得。
  34. 根据权利要求33所述的随机接入装置,其中,所述时隙集合按照以下之一进行分组:
    前后相接的R个时隙值为一组;
    间隔R个时隙值的时隙为一组。
  35. 根据权利要求30-34中任一项所述的随机接入装置,其中,所述计算子单元用于:
    基于所述时域编号,采用以下公式之一计算所述第一RO的RA-RNTI:
    RA-RNTI=1+s_id+14×t_id+14×X×f_id+14×X×8×ul_carrier_id   公式一;
    RA-RNTI=(1+s_id+14×t_id+14×X×f_id+14×X×8×ul_carrier_id)mod A公式二;
    其中,X采用以下方法之一获得:
    一个帧内可发送RO的时隙集合大小;
    一个帧内可发送RO的时隙集合的一个分组大小;
    根据发送PRACH的频率范围、PRACH的子载波间隔和发送PRACH的频段特征中的至少一项得到的RACH配置表格中可配置的一个帧中可发送RO的时隙集合大小的最大值;
    根据发送PRACH的频率范围、PRACH的子载波间隔和发送PRACH的频段特征中的至少一项得到的RACH配置表格中可配置的一个帧中可发送RO的时隙集合的一个分组大小的最大值;
    其中,s_id为所述第一RO的第一个OFDM符号索引;
    t_id为所述第一RO对应的时域编号;
    f_id为所述第一RO对应的频域编号;
    ul_carrier_id为用于传输前导码的上行载波,0表示正常上行载波,1表示增补上行载波;
    A为预设整数,或A由网络侧配置,或A由所述终端确定。
  36. 根据权利要求35所述的随机接入装置,其中,所述一个帧内可发送RO的时隙集合大小为第一时隙集合大小或第一时隙集合大小*第二时隙集合大小。
  37. 根据权利要求35所述的随机接入装置,其中,还包括:
    判断单元,用于终端根据X的大小确定是否需要结合网络的第一指示判断接收物理下行控制信道PDCCH调度的随机接入响应RAR或终端根据X的大小确定第一指示的大小。
  38. 根据权利要求37所述的随机接入装置,其中,所述第一指示包括以下至少一项:
    一个帧内可发送RO的时隙集合中的分组ID;
    根据发送PRACH的频率范围、PRACH的子载波间隔和发送PRACH的频段特征中的至少一项得到的RACH配置表格中可配置的一个帧中可 发送RO的时隙集合的分组ID;
    (1+s_id+14×t_id+14×X×f_id+14×X×8×ul_carrier_id)/A的上取整值。
  39. 一种终端,包括处理器,存储器及存储在所述存储器上并可在所述处理器上运行的程序或指令,所述程序或指令被所述处理器执行时实现如权利要求1至19中任一项所述的随机接入方法的步骤。
  40. 一种可读存储介质,所述可读存储介质上存储程序或指令,所述程序或指令被处理器执行时实现如权利要求1至19中任一项所述的随机接入方法的步骤。
  41. 一种芯片,所述芯片包括处理器和通信接口,所述通信接口和所述处理器耦合,所述处理器用于运行程序或指令,如权利要求1至19中任一项所述的随机接入方法。
  42. 一种计算机程序产品,所述程序产品被存储在可读存储介质中,所述程序产品被至少一个处理器执行时实现如权利要求1至19中任一项所述的随机接入方法。
PCT/CN2022/079540 2021-03-09 2022-03-07 随机接入方法、装置、终端及存储介质 WO2022188745A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP22766268.1A EP4307803A1 (en) 2021-03-09 2022-03-07 Random access method and device, terminal, and storage medium
US18/244,217 US20230421338A1 (en) 2021-03-09 2023-09-09 Random access method and apparatus, terminal and storage medium

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110258609.9A CN115052348A (zh) 2021-03-09 2021-03-09 随机接入方法、装置、终端及存储介质
CN202110258609.9 2021-03-09

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/244,217 Continuation US20230421338A1 (en) 2021-03-09 2023-09-09 Random access method and apparatus, terminal and storage medium

Publications (1)

Publication Number Publication Date
WO2022188745A1 true WO2022188745A1 (zh) 2022-09-15

Family

ID=83156276

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/079540 WO2022188745A1 (zh) 2021-03-09 2022-03-07 随机接入方法、装置、终端及存储介质

Country Status (4)

Country Link
US (1) US20230421338A1 (zh)
EP (1) EP4307803A1 (zh)
CN (1) CN115052348A (zh)
WO (1) WO2022188745A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN118139202A (zh) * 2022-12-02 2024-06-04 华为技术有限公司 一种随机接入资源的确定方法及通信装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109803445A (zh) * 2017-11-17 2019-05-24 华为技术有限公司 通信方法及装置
CN110167164A (zh) * 2018-02-14 2019-08-23 华为技术有限公司 随机接入资源配置的方法和通信设备
CN110876205A (zh) * 2018-08-31 2020-03-10 展讯通信(上海)有限公司 Ro的指示、确定方法及装置、存储介质、基站、终端
WO2020167083A1 (ko) * 2019-02-15 2020-08-20 엘지전자 주식회사 무선 통신 시스템에서 단말이 임의 접속 과정을 수행하는 방법 및 이를 위한 장치
CN113811016A (zh) * 2020-06-16 2021-12-17 大唐移动通信设备有限公司 一种随机接入方法和用户终端ue及网络侧设备

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109803445A (zh) * 2017-11-17 2019-05-24 华为技术有限公司 通信方法及装置
CN110167164A (zh) * 2018-02-14 2019-08-23 华为技术有限公司 随机接入资源配置的方法和通信设备
CN110876205A (zh) * 2018-08-31 2020-03-10 展讯通信(上海)有限公司 Ro的指示、确定方法及装置、存储介质、基站、终端
WO2020167083A1 (ko) * 2019-02-15 2020-08-20 엘지전자 주식회사 무선 통신 시스템에서 단말이 임의 접속 과정을 수행하는 방법 및 이를 위한 장치
CN113811016A (zh) * 2020-06-16 2021-12-17 大唐移动通信设备有限公司 一种随机接入方法和用户终端ue及网络侧设备

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
QUALCOMM INCORPORATED: "Initial access aspects for NR to support operation between 52.6 GHz and 71 GHz", 3GPP DRAFT; R1-2101453, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, no. e-Meeting; 20210125 - 20210205, 19 January 2021 (2021-01-19), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , XP051971618 *
QUALCOMM INCORPORATED: "Initial access aspects for NR to support operation between 52.6 GHz and 71 GHz", 3GPP DRAFT; R1-2110172, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, no. e-Meeting; 20211011 - 20211019, 2 October 2021 (2021-10-02), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France, XP052059108 *

Also Published As

Publication number Publication date
EP4307803A1 (en) 2024-01-17
CN115052348A (zh) 2022-09-13
US20230421338A1 (en) 2023-12-28

Similar Documents

Publication Publication Date Title
WO2022214013A1 (zh) 资源确定方法、装置、终端、网络侧设备及存储介质
WO2022007930A1 (zh) 一种载波切换处理方法、装置及终端
WO2022143970A1 (zh) Ra-rnti的处理方法、装置、终端及可读存储介质
WO2022199616A1 (zh) Pdcch盲检测方法、装置及设备
WO2022214060A1 (zh) 传输资源确定方法和设备
WO2022100678A1 (zh) 节能指示方法、装置、设备及可读存储介质
WO2022121826A1 (zh) Ro的时域资源配置方法、装置及电子设备
WO2022218368A1 (zh) 旁链路反馈资源的确定方法、装置、终端及存储介质
WO2022206554A1 (zh) 传输方向的确定方法、装置、终端及网络侧设备
WO2022143655A1 (zh) Pdcch盲检的限制方法、终端及网络侧设备
WO2022002199A1 (zh) Pusch信号的映射方法、终端及网络侧设备
US20230421338A1 (en) Random access method and apparatus, terminal and storage medium
WO2022121881A1 (zh) Ro的时域资源配置方法、装置及电子设备
WO2022117039A1 (zh) Srs的功控指示方法、资源集簇的划分方法和设备
WO2021249476A1 (zh) Srs资源指示方法、srs资源确定方法及相关设备
WO2022214070A1 (zh) 上行功率确定方法和设备
WO2022078399A1 (zh) 前导序列的映射方法、装置及终端
WO2022033424A1 (zh) 资源传输方法、装置及通信设备
WO2022152254A1 (zh) 上行传输的方法、终端及网络侧设备
WO2022143491A1 (zh) Uci复用的方法、装置、设备及可读存储介质
WO2022127679A1 (zh) 信息传输方法、装置、终端及网络侧设备
WO2022017492A1 (zh) 定位处理方法、装置及设备
CN115315016A (zh) Msg1传输资源的确定方法、终端及网络侧设备
WO2022143875A1 (zh) 信道的调度方法及通信设备
WO2022206593A1 (zh) Pdcch监听处理方法、监听配置方法及相关设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22766268

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2022766268

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2022766268

Country of ref document: EP

Effective date: 20231009