WO2022143970A1 - Ra-rnti的处理方法、装置、终端及可读存储介质 - Google Patents

Ra-rnti的处理方法、装置、终端及可读存储介质 Download PDF

Info

Publication number
WO2022143970A1
WO2022143970A1 PCT/CN2021/143505 CN2021143505W WO2022143970A1 WO 2022143970 A1 WO2022143970 A1 WO 2022143970A1 CN 2021143505 W CN2021143505 W CN 2021143505W WO 2022143970 A1 WO2022143970 A1 WO 2022143970A1
Authority
WO
WIPO (PCT)
Prior art keywords
slot
rnti
time
preamble
symbol
Prior art date
Application number
PCT/CN2021/143505
Other languages
English (en)
French (fr)
Inventor
李萍
莫毅韬
李�根
刘思綦
Original Assignee
维沃移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 维沃移动通信有限公司 filed Critical 维沃移动通信有限公司
Priority to EP21914699.0A priority Critical patent/EP4274324A4/en
Publication of WO2022143970A1 publication Critical patent/WO2022143970A1/zh
Priority to US18/216,540 priority patent/US20230345541A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/08Non-scheduled access, e.g. ALOHA
    • H04W74/0833Random access procedures, e.g. with 4-step access
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2602Signal structure
    • H04L27/26025Numerology, i.e. varying one or more of symbol duration, subcarrier spacing, Fourier transform size, sampling rate or down-clocking
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0091Signaling for the administration of the divided path
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W56/00Synchronisation arrangements
    • H04W56/001Synchronization between nodes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/002Transmission of channel access control information
    • H04W74/006Transmission of channel access control information in the downlink, i.e. towards the terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/08Non-scheduled access, e.g. ALOHA
    • H04W74/0866Non-scheduled access, e.g. ALOHA using a dedicated channel for access
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0026Division using four or more dimensions
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Definitions

  • the present application belongs to the technical field of wireless communication, and in particular relates to an RA-RNTI processing method, apparatus, terminal and readable storage medium.
  • a user terminal (User Equipment, UE) can establish a connection with a cell and obtain uplink synchronization through a random access procedure.
  • UE User Equipment
  • NR New Radio
  • the UE selects a random preamble for Random Access Channel (RACH) procedures to obtain uplink synchronization.
  • RACH Random Access Channel
  • Each preamble transmission is associated with a Random Access-Radio Network Tempory Identity (RA-RNTI).
  • RA-RNTI Random Access-Radio Network Tempory Identity
  • the RA-RNTI can represent the time-frequency resources used when the message 1 (Msg1) is sent.
  • the UE will calculate the RA-RNTI and save it when sending the Msg1; the NR node (NR Node B, gNB) will also calculate the RA-RNTI after receiving the Msg1.
  • RNTI and use the RA-RNTI to perform the cyclic redundancy check ( Cyclic Redundancy Check, CRC) for scrambling. Therefore, only the terminal that transmits the Msg1 in the time-frequency resource identified by the RA-RNTI can de-pair the DCI of this PDCCH.
  • CRC Cyclic Redundancy Check
  • the current Physical Random Access Channel supports 15/30/60/120KHz sub-carrier spacing (Sub-Carrier Spacing, SCS), and the existing calculation formula is applicable.
  • the existing calculation formula may lead to overflow or different time-frequency resources to calculate the same RA-RNTI.
  • Preamble index preamble index
  • RAR Random Access Response
  • the embodiments of the present application provide an RA-RNTI processing method, device, terminal, and readable storage medium, which can solve the problem that when the PRACH SCS exceeds 120 KHz, using the existing calculation formula to calculate, different time-frequency resources will obtain the same RA-RNTI, which leads to the problem of reduced access efficiency.
  • a method for processing RA-RNTI executed by a terminal, and the method includes:
  • the RA-RNTI is calculated based on the time-frequency resource information of the random access opportunity RO for sending the preamble Preamble, including:
  • t_id is the time slot number of the first time slot where the RO is occupied by sending the preamble within a first given time, or, the first time slot group (slot group (slot) where the RO is occupied by sending the preamble) group) number, or, sending the preamble to occupy the number of the first PRACH slot where the RO is located in the slot group.
  • an apparatus for processing RA-RNTI comprising:
  • the RA-RNTI determination module is used to calculate the RA-RNTI based on the time-frequency resource information of the random access opportunity RO for sending the preamble Preamble;
  • the RA-RNTI is calculated based on the time-frequency resource information of the random access opportunity RO for sending the preamble Preamble, including:
  • t_id is the time slot number of the first time slot where the RO is occupied by sending the preamble within a first given time, or, the first slot group number where the RO is occupied by sending the preamble, or , the number of the first PRACH slot where the RO is located in the slot group is occupied by sending the preamble.
  • a method for processing RA-RNTI which is applied to a terminal, and the method includes:
  • the target RO On the target CORESET and/or the search space associated with the target RO, monitor the downlink channel scrambled by the RA-RNTI; wherein the target RO is the RO from which the mobile terminal sends the preamble.
  • an apparatus for processing RA-RNTI comprising:
  • an association relationship obtaining module used to obtain the association relationship between the target CORESET and/or the search space and the target random access opportunity RO;
  • a downlink channel monitoring module configured to monitor the downlink channel scrambled by RA-RNTI on the target CORESET and/or search space associated with the target RO; wherein, the target RO is the RO where the terminal sends the preamble.
  • a terminal in a fifth aspect, includes a processor, a memory, and a program or instruction stored on the memory and executable on the processor, when the program or instruction is executed by the processor.
  • a readable storage medium on which a program or an instruction is stored, and when the program or instruction is executed by a processor, the steps of the method described in the first aspect are implemented, or the steps as described in the first aspect are implemented. The steps of the method described in the third aspect.
  • a chip in a seventh aspect, includes a processor and a communication interface, the communication interface is coupled to the processor, and the processor is configured to run a network-side device program or instruction, implementing the method as described in the first aspect. the method described above, or implement the method described in the third aspect.
  • a computer program product stored in a non-transitory storage medium, the computer program product being executed by at least one processor to implement the method of the first aspect, or A method as described in the third aspect is implemented.
  • the RA-RNTI is calculated by the group number or the number of the first PRACH slot in the slot group, which can avoid the problem of reduced access efficiency when the PRACH SCS exceeds 120KHz.
  • FIG. 1 is a structural diagram of a wireless communication system to which an embodiment of the present application can be applied;
  • FIG. 2 is one of the schematic flowcharts of the processing method of RA-RNTI provided by an embodiment of the present application
  • FIG. 3 is a schematic diagram of a partial RO mapping in a reference time slot provided by an embodiment of the present application.
  • Fig. 4 is the partial RO mapping schematic diagram in the slot group that the embodiment of the present application provides;
  • FIG. 5 is a schematic diagram of a slot grouping provided by an embodiment of the present application.
  • FIG. 6 is one of the schematic structural diagrams of the RA-RNTI processing apparatus provided by the embodiment of the present application.
  • FIG. 7 is the second schematic flow chart of the RA-RNTI processing method provided by the embodiment of the present application.
  • FIG. 8 is a second schematic structural diagram of an apparatus for processing an RA-RNTI provided by an embodiment of the present application.
  • FIG. 9 is a schematic structural diagram of a communication device provided by an embodiment of the present application.
  • FIG. 10 is a schematic diagram of a hardware structure of a terminal provided by an embodiment of the present application.
  • first, second and the like in the description and claims of the present application are used to distinguish similar objects, and are not used to describe a specific order or sequence. It is to be understood that the data so used are interchangeable under appropriate circumstances so that the embodiments of the present application can be practiced in sequences other than those illustrated or described herein, and "first”, “second” distinguishes Usually it is a class, and the number of objects is not limited.
  • the first object may be one or multiple.
  • “and/or” in the description and claims indicates at least one of the connected objects, and the character “/" generally indicates that the associated objects are in an "or” relationship.
  • LTE Long Term Evolution
  • LTE-Advanced LTE-Advanced
  • LTE-A Long Term Evolution-Advanced
  • CDMA Code Division Multiple Access
  • TDMA Time Division Multiple Access
  • FDMA Frequency Division Multiple Access
  • OFDMA Orthogonal Frequency Division Multiple Access
  • SC-FDMA Single-carrier Frequency-Division Multiple Access
  • system and “network” in the embodiments of the present application are often used interchangeably, and the described technology can be used not only for the above-mentioned systems and radio technologies, but also for other systems and radio technologies.
  • NR New Radio
  • the following description describes a New Radio (NR) system for example purposes, and NR terminology is used in most of the description below, although these techniques are also applicable to applications other than NR system applications, such as 6th generation ( 6th Generation , 6G) communication system.
  • 6th generation 6th Generation
  • FIG. 1 shows a structural diagram of a wireless communication system to which an embodiment of the present application can be applied.
  • the wireless communication system includes a terminal 11 and a network-side device 12 .
  • the terminal 11 may also be called a terminal device or a user terminal (User Equipment, UE), and the terminal 11 may be a mobile phone, a tablet computer (Tablet Personal Computer), a laptop computer (Laptop Computer) or a notebook computer, a personal digital computer Assistant (Personal Digital Assistant, PDA), handheld computer, netbook, ultra-mobile personal computer (ultra-mobile personal computer, UMPC), mobile Internet device (Mobile Internet Device, MID), wearable device (Wearable Device) or vehicle-mounted device (VUE), pedestrian terminal (PUE) and other terminal-side devices, wearable devices include: bracelets, headphones, glasses, etc.
  • PDA Personal Digital Assistant
  • the network side device 12 may be a base station or a core network, wherein the base station may be referred to as a Node B, an evolved Node B, an access point, a Base Transceiver Station (BTS), a radio base station, a radio transceiver, a basic service Set (Basic Service Set, BSS), Extended Service Set (Extended Service Set, ESS), Node B, Evolved Node B (eNB), Home Node B, Home Evolved Node B, WLAN Access Point, WiFi Node, Send Transmitting Receiving Point (TRP) or some other suitable term in the field, as long as the same technical effect is achieved, the base station is not limited to specific technical terms.
  • the base station in the NR system is taken as an example, but the specific type of the base station is not limited.
  • the existing communication system calculates the RA-RNTI related to the PRACH sending the random access preamble by the following formula:
  • RA-RNTI 1+s_id+14 ⁇ t_id+14 ⁇ 80 ⁇ f_id+14 ⁇ 80 ⁇ 8 ⁇ ul_carrier_id;
  • s_id The starting orthogonal frequency division multiplexing (Orthogonal Frequency Division Multiplexing, OFDM) symbol number (0 ⁇ s_id ⁇ 14) of the RO where the preamble is sent;
  • OFDM Orthogonal Frequency Division Multiplexing
  • t_id The first time slot number of RO occupied by the transmission preamble in a system frame, the time slot number is numbered based on the PRACH time slot subcarrier interval;
  • f_id The number of the RO in the frequency domain occupied by the sending preamble (0 ⁇ f_id ⁇ 8);
  • ul_carrier_id The uplink carrier used for random access preamble transmission ('0' represents the normal uplink carrier, and '1' represents the auxiliary uplink carrier).
  • the above calculation formula is applicable.
  • different time-frequency resources may be calculated to obtain the same RA-RNTI.
  • the UE does not know which RAR is its own, and needs to use the contention resolution mechanism to resolve the conflict. If the RA-RNTI calculation formula updated according to the definition is used to calculate , overflow will occur, both of the above-mentioned situations will reduce the access efficiency.
  • FIG. 2 is one of the schematic flowcharts of a method for processing an RA-RNTI provided by an embodiment of the present application. As shown in Figure 2, the method includes:
  • Step 201 Calculate RA-RNTI based on the time-frequency resource information of the random access opportunity RO for sending the preamble Preamble;
  • the RA-RNTI is calculated based on the time-frequency resource information of the random access opportunity RO for sending the preamble Preamble, including:
  • t_id is the time slot number of the first time slot where the RO is occupied by sending the preamble within a first given time, or, the first slot group number where the RO is occupied by sending the preamble, or , the number of the first PRACH slot where the RO is located in the slot group is occupied by sending the preamble.
  • the UE will calculate and save the RA-RNTI based on the time-frequency resource information of the random access opportunity RO for sending the preamble Preamble, so as to be based on the RA-RNTI
  • the RNTI determines the corresponding random access response RAR message.
  • the RA-RNTI can be calculated based on the parameter t_id, where t_id is the time slot number of the first time slot where the RO is occupied by sending the preamble within a first given time, or the number of the first time slot where the RO is occupied by sending the preamble.
  • a slot group number, or, the number of the first PRACH slot in the slot group where the preamble is occupied by the RO, and the RA-RNTI calculated based on t_id can be avoided when the PRACH SCS exceeds 120KHz. the problem of reduced efficiency. It can be understood that, in addition to the parameter t_id, the calculation of the RA-RNTI in this embodiment of the present application may also include other parameters corresponding to the time-frequency resource information of the random access opportunity RO for sending the preamble Preamble, which is not made in this embodiment of the present application. Specific restrictions.
  • the RA-RNTI processing method provided by the embodiment of the present application is based on the time slot number of the first time slot where the RO is occupied by sending the preamble within a first given time, or, the RO is occupied by sending the preamble
  • the RA-RNTI is calculated by the number of the first slot group or the number of the first PRACH slot in the slot group, which can avoid RA-RNTI overflow and reduce access efficiency when the PRACH SCS exceeds 120KHz.
  • the time slot number is obtained by numbering based on the reference time slot subcarrier spacing or the physical random access channel PRACH time slot subcarrier spacing;
  • the slot group is obtained by grouping the time slots in a first given time according to certain rules.
  • t_id is the time slot number of the first time slot where the RO is occupied by sending the preamble within a first given time, and the time slot number is obtained by numbering based on the subcarrier interval of the reference time slot, or, The number of the time slot where the first time slot of the RO is occupied by sending the preamble within a first given time, the time slot number is obtained by numbering the subcarrier interval of the PRACH time slot of the physical random access channel, or, A time slot in a first given time is divided into N time slot groups according to certain rules, and the preamble is sent to occupy the first slot group number where the RO is located, or, a time slot in a first given time The time slot is divided into N slot groups according to certain rules, and the number of the first PRACH slot in the slot group where the RO is occupied by the preamble is sent.
  • the RA-RNTI calculated based on the t_id defined above can further avoid the problem of reduced access efficiency when the PRACH SCS exceeds 120KHz
  • the time slot number is obtained by numbering based on the reference time slot subcarrier spacing or the physical random access channel PRACH time slot subcarrier spacing, and the slot group is a first
  • the time slots in a given time are grouped according to certain rules, which can avoid the reduction of access efficiency when the RA-RNTI corresponding to different time-frequency resources is the same or the RA-RNTI overflows when the PRACH SCS exceeds 120KHz. question.
  • the method further includes:
  • the physical downlink control channel PDCCH scrambled based on the RA-RNTI is monitored.
  • the UE After the UE sends the preamble, it will monitor the physical downlink control channel PDCCH scrambled based on the RA-RNTI during the operation of the random access response RAR window. Since the UE has calculated the RA-RNTI in advance, so , the physical downlink control channel PDCCH scrambled based on the RA-RNTI may be acquired during the operation of the random access response RAR window.
  • the random access response RAR message is received.
  • the UE can determine its corresponding random access response RAR message according to the downlink control message DCI and RA-RNTI in the PDCCH.
  • the RA-RNTI processing method provided by the embodiment of the present application, after calculating the RA-RNTI based on the time-frequency resource information of the random access opportunity RO for sending the preamble Preamble, during the operation of the random access response RAR window, the monitoring based on the The physical downlink control channel PDCCH scrambled by the RA-RNTI, receives the random access response RAR message according to the downlink control message DCI in the PDCCH, and the UE can accurately determine the corresponding RAR message based on the RA-RNTI.
  • the calculation of the RA-RNTI based on the parameter t_id includes:
  • the RA-RNTI is calculated and obtained according to the following formula:
  • RA-RNTI 1 ⁇ A1+s_id ⁇ A2+Symbol ⁇ t_id ⁇ A3+Symbol ⁇ X ⁇ f_id ⁇ A4 (1).
  • t_id is the time slot number of the first time slot where the RO is occupied by sending the preamble within a first given time, and the time slot number is numbered based on the PRACH time slot subcarrier interval; the first time slot number is obtained;
  • the given time is at least one time slot, at least 1 millisecond, at least one subframe, at least one time domain length of RO, at least one frame or at least one time window;
  • X is configured by the network side, or X is a preset value, or X is determined by the terminal, or X is the total number of time slots included in a first given time;
  • s_id is the starting orthogonal frequency division multiplexing OFDM symbol number for sending the preamble to occupy the RO;
  • f_id is the number in the frequency domain of the RO occupied by sending the preamble
  • Symbol is the number of symbols in a second given time, where the second given time is at least one slot, at least 1 millisecond, at least one subframe, at least one time domain length of RO, at least one frame or at least one time window;
  • A1, A2, A3, A4 are integers.
  • the maximum PRACH sub-carrier spacing supported in NR is 120 kHz. It is assumed that in the 52.6-71 GHz frequency band, the maximum supported PRACH sub-carrier spacing is 480 kHz, and the uplink auxiliary carrier is not introduced. It is assumed that the PRACH sub-carrier spacing is 480 kHz.
  • the RA-RNTI can be calculated using the above formula (1):
  • RA-RNTI 1 ⁇ A1+s_id ⁇ A2+Symbol ⁇ t_id ⁇ A3+Symbol ⁇ X ⁇ f_id ⁇ A4;
  • s_id indicates the starting OFDM symbol number that transmits the preamble occupying the RO, and its value range is 0 ⁇ s_id ⁇ 14;
  • t_id indicates the first RAR window time/system frame that transmits the preamble occupying the RO.
  • X indicates the time within a maximum RAR window time/system frame The number of slots, its value is 320.
  • the UE selects the RO to send the preamble, calculates the RA-RNTI according to the sent RO, and monitors the PUCCH scrambled by the calculated RA-RNTI in the configured CORESET/search space in the corresponding RAR window. If the DCI of the PUCCH scrambled by the calculated RA-RNTI is monitored, continue to accept the corresponding PDSCH; otherwise, continue to monitor in the RAR window.
  • the calculation of the RA-RNTI based on the parameter t_id includes:
  • the RA-RNTI is calculated and obtained according to the following formula:
  • RA-RNTI 1 ⁇ B1+s_id ⁇ B2+Symbol ⁇ t_id ⁇ B3+Symbol ⁇ X ⁇ f_id ⁇ B4+Symbol ⁇ X ⁇ Y ⁇ ul_carrier_id ⁇ B5 (2);
  • t_id is the time slot number of the first time slot where the RO is occupied by sending the preamble within a first given time, and the time slot number is numbered based on the subcarrier interval of the reference time slot;
  • the first given Time is at least one slot, at least 1 millisecond, at least one subframe, at least one time domain length of RO, at least one frame or at least one time window;
  • X is configured by the network side, or X is a preset value, or X is determined by the terminal, or X is the total number of reference time slots included in a first given time;
  • Y is configured by the network side, or, Y is a preset value, or, Y is determined by the terminal, or, Y is the RO of frequency division multiplexing (Frequency Division Multiplexing, FDM) on the PRACH resource number;
  • FDM Frequency Division Multiplexing
  • s_id is the starting orthogonal frequency division multiplexing OFDM symbol number for sending the preamble to occupy the RO;
  • f_id is the number in the frequency domain of the RO occupied by sending the preamble
  • Symbol is the number of symbols in a second given time, where the second given time is at least one slot, at least 1 millisecond, at least one subframe, at least one time domain length of RO, at least one frame or at least one time window;
  • ul_carrier_id is configured by the network side, or, ul_carrier_id is a preset value, or, ul_carrier_id is determined by the terminal, or, ul_carrier_id is the uplink carrier number used for sending the preamble;
  • B1, B2, B3, B4, B5 are integers.
  • FIG. 3 is a schematic diagram of a partial RO mapping in a reference time slot provided by an embodiment of the present application.
  • the SCS of PRACH is 480kHz
  • the SCS of the reference time slot is 120kHz, so there are 4 PRACH time slots in one reference time slot.
  • RA-RNTI can be calculated using equation (2) above:
  • RA-RNTI 1 ⁇ B1+s_id ⁇ B2+Symbol ⁇ t_id ⁇ B3+Symbol ⁇ X ⁇ f_id ⁇ B4+Symbol ⁇ X ⁇ Y ⁇ ul_carrier_id ⁇ B5;
  • RA-RNTI 1 ⁇ B1+s_id ⁇ B2+Symbol ⁇ t_id ⁇ B3+Symbol ⁇ X ⁇ f_id ⁇ B4+Symbol ⁇ X ⁇ Y ⁇ ul_carrier_id ⁇ B5
  • the calculation of the RA-RNTI based on the parameter t_id includes:
  • the RA-RNTI is calculated and obtained according to the following formula:
  • RA-RNTI Mod(1 ⁇ C1+s_id ⁇ C2+Symbol ⁇ t_id ⁇ C3+Symbol ⁇ X ⁇ f_id ⁇ C4+Symbol ⁇ X ⁇ Y ⁇ ul_carrier_id ⁇ C5, A) (3);
  • t_id is the time slot number of the first time slot where the RO is occupied by sending the preamble within a first given time, and the time slot number is numbered based on the PRACH time slot subcarrier interval;
  • the first given Time is at least one slot, at least 1 millisecond, at least one subframe, at least one time domain length of RO, at least one frame or at least one time window;
  • X is configured by the network side, or X is a preset value, or X is the total number of time slots included in a first given time;
  • Y is configured by the network side, or, Y is a preset value, or, Y is determined by the terminal, or, Y is the number of ROs that perform frequency division multiplexing FDM on the PRACH resource;
  • s_id is the starting orthogonal frequency division multiplexing OFDM symbol number for sending the preamble to occupy the RO;
  • f_id is the number in the frequency domain of the RO occupied by sending the preamble
  • ul_carrier_id is configured by the network side, or, ul_carrier_id is a preset value, or, ul_carrier_id is determined by the terminal, or, ul_carrier_id is the uplink carrier number used for sending the preamble;
  • Symbol is the number of symbols in a second given time, where the second given time is at least one slot, at least 1 millisecond, at least one subframe, at least one time domain length of RO, at least one frame or at least one time window;
  • C1, C2, C3, C4, C5 are integers
  • A is configured by the network side, or A is a preset value, or A is determined by the terminal.
  • the RA-RNTI can be calculated using Equation (3):
  • the calculating RA-RNTI based on the parameter t_id includes:
  • the RA-RNTI is calculated and obtained according to the following formula:
  • RA-RNTI 1 ⁇ D1+s_id ⁇ D2+Symbol ⁇ t_id ⁇ D3+Symbol ⁇ X ⁇ f_id ⁇ D4+Symbol ⁇ X ⁇ Y ⁇ slot_id ⁇ D5 (4);
  • t_id is the time slot number of the first time slot where the RO is occupied by sending the preamble within a first given time, and the time slot number is obtained by numbering based on the subcarrier interval of the reference time slot; the first time slot number is obtained;
  • the given time is at least one time slot, at least 1 millisecond, at least one subframe, at least one time domain length of RO, at least one frame or at least one time window;
  • X is configured by the network side, or X is a preset value, or X is the total number of reference time slots included in a first given time;
  • Y is configured by the network side, or, Y is a preset value, or, Y is determined by the terminal, or, Y is the number of ROs that perform frequency division multiplexing FDM on the PRACH resource;
  • s_id is the starting orthogonal frequency division multiplexing OFDM symbol number for sending the preamble to occupy the RO;
  • f_id is the number in the frequency domain of the RO occupied by sending the preamble
  • slot_id is the number in the reference time slot of the first PRACH slot that transmits the preamble to occupy the RO;
  • Symbol is the number of symbols in a second given time, where the second given time is at least one slot, at least 1 millisecond, at least one subframe, at least one time domain length of RO, at least one frame or at least one time window;
  • D1, D2, D3, D4, D5 are integers.
  • RA-RNTI can be calculated using the above formula (4):
  • RA-RNTI 1 ⁇ D1+s_id ⁇ D2+Symbol ⁇ t_id ⁇ D3+Symbol ⁇ X ⁇ f_id ⁇ D4+Symbol ⁇ X ⁇ Y ⁇ slot_id ⁇ D5
  • s_id indicates the starting OFDM symbol number of the RO occupied by the transmission preamble, and its value range is 0 ⁇ s_id ⁇ 14;
  • t_id indicates the transmission preamble in a maximum RAR window time/system frame occupies the first RO of the RO.
  • X indicates the total number of PRACH reference slots in a maximum RAR window time/system frame;
  • Y indicates the maximum number of FDM ROs, and its value is 8;
  • slot_id indicates the prach slot number in a reference slot, Its value range is 0 ⁇ slot_id ⁇ 4.
  • the UE selects the RO to send the preamble, calculates the RA-RNTI according to the sent RO, and monitors the PUCCH scrambled by the calculated RA-RNTI in the configured CORESET/search space in the corresponding RAR window. If the DCI of the PUCCH scrambled by the calculated RA-RNTI is monitored, continue to accept the corresponding PDSCH; otherwise, continue to monitor in the RAR window.
  • RA-RNTI can avoid the problem of reduced access efficiency when the PRACH SCS exceeds 120KHz.
  • the calculation of the RA-RNTI based on the parameter t_id includes:
  • the RA-RNTI is calculated and obtained according to the following formula:
  • RA-RNTI 1 ⁇ E1+s_id ⁇ E2+Symbol ⁇ t_id ⁇ E3+Symbol ⁇ X ⁇ f_id ⁇ E4+Symbol ⁇ X ⁇ Y ⁇ ul_carrier_id ⁇ E5 (5);
  • t_id is to divide the time slot in a first given time into N time slot groups according to certain rules, and send the preamble to occupy the first slot group number where the RO is located;
  • the first given time is At least one time slot, at least 1 millisecond, at least one subframe, at least one time domain length of RO, at least one frame or at least one time window;
  • X is configured by the network side, or X is a preset value, or X is the number of time slot groups included in a first given time;
  • Y is configured by the network side, or, Y is a preset value, or, Y is determined by the terminal, or, Y is the number of ROs that perform frequency division multiplexing FDM on the PRACH resource;
  • s_id is the starting orthogonal frequency division multiplexing OFDM symbol number for sending the preamble to occupy the RO;
  • f_id is the number in the frequency domain of the RO occupied by sending the preamble
  • ul_carrier_id is configured by the network side, or, ul_carrier_id is a preset value, or, ul_carrier_id is determined by the terminal, or, ul_carrier_id is the uplink carrier number used for sending the preamble;
  • Symbol is the number of symbols in a second given time, where the second given time is at least one slot, at least 1 millisecond, at least one subframe, at least one time domain length of RO, at least one frame or at least one time window;
  • E1, E2, E3, E4, E5 are integers.
  • FIG. 4 is a schematic diagram of a partial RO mapping in a slot group provided by an embodiment of the present application.
  • FIG. 4 it is assumed that there are 4 UEs that can be randomly selected from the 32 ROs on the time-frequency resources in FIG. 4 .
  • a preamble is sent, and the SCS of PRACH is 960 kHz.
  • RA-RNTI can be calculated using equation (5) above:
  • RA-RNTI 1 ⁇ E1+s_id ⁇ E2+Symbol ⁇ t_id ⁇ E3+Symbol ⁇ X ⁇ f_id ⁇ E4+Symbol ⁇ X ⁇ Y ⁇ ul_carrier_id ⁇ E5
  • RA-RNTI can avoid the problem of reduced access efficiency when the PRACH SCS exceeds 120KHz.
  • the calculation of the RA-RNTI based on the parameter t_id includes:
  • the RA-RNTI is calculated and obtained according to the following formula:
  • RA-RNTI 1 ⁇ F1+s_id ⁇ F2+Symbol ⁇ t_id ⁇ F3+Symbol ⁇ X ⁇ f_id ⁇ F4+Symbol ⁇ X ⁇ Y ⁇ slot_id ⁇ F5 (6);
  • t_id is to divide the time slot in a first given time into N time slot groups according to certain rules, and send the preamble to occupy the first slot group number where the RO is located;
  • the first given time is At least one time slot, at least 1 millisecond, at least one subframe, at least one time domain length of RO, at least one frame or at least one time window;
  • X is configured by the network side, or X is a preset value, or X is the number of time slot groups included in a first given time;
  • Y is configured by the network side, or, Y is a preset value, or, Y is determined by the terminal, or, Y is the number of ROs that perform frequency division multiplexing FDM on the PRACH resource;
  • s_id is the starting orthogonal frequency division multiplexing OFDM symbol number for sending the preamble to occupy the RO;
  • f_id is the number in the frequency domain of the RO occupied by sending the preamble
  • slot_id is the number in the slot group of the first PRACH slot that sends the preamble to occupy the RO;
  • Symbol is the number of symbols in a second given time, where the second given time is at least one slot, at least 1 millisecond, at least one subframe, at least one time domain length of RO, at least one frame or at least one time window;
  • F1, F2, F3, F4, F5 are integers.
  • the maximum supported PRACH subcarrier spacing is 480kHz, and no uplink auxiliary carrier is introduced.
  • the PRACH subcarrier spacing is 480kHz
  • a maximum RAR window time / slot in the system frame Divided into 80 groups, each group has 4 PRACH slots (assuming Symbol is 14, F1-F5 is 1), then use the above formula (6) to calculate RA-RNTI:
  • RA-RNTI 1 ⁇ F1+s_id ⁇ F2+Symbol ⁇ t_id ⁇ F3+Symbol ⁇ X ⁇ f_id ⁇ F4+Symbol ⁇ X ⁇ Y ⁇ slot_id ⁇ F5
  • s_id indicates the starting OFDM symbol number of RO occupied by the sending preamble, and its value range is 0 ⁇ s_id ⁇ 14;
  • t_id indicates that the slot within a RAR window time is divided into N slot groups according to certain rules, and the preamble is sent.
  • X indicates the number of groups in a maximum RAR window time/system frame, and its value is 80;
  • Y indicates the maximum number of ROs of FDM, and its value is 8;
  • slot_id indicates a slot_id
  • the number of the prach time slot in the group, and its value range is 0 ⁇ slot_id ⁇ 4.
  • the UE selects the RO to send the preamble, calculates the RA-RNTI according to the sent RO, and monitors the PUCCH scrambled by the calculated RA-RNTI in the configured CORESET/search space in the corresponding RAR window. If the DCI of the PUCCH scrambled by the calculated RA-RNTI is monitored, continue to accept the corresponding PDSCH; otherwise, continue to monitor in the RAR window.
  • RA-RNTI can avoid the problem of reduced access efficiency when the PRACH SCS exceeds 120KHz.
  • the calculation of the RA-RNTI based on the parameter t_id includes:
  • the RA-RNTI is calculated and obtained according to the following formula:
  • RA-RNTI 1 ⁇ G1+s_id ⁇ G2+Symbol ⁇ t_id ⁇ G3+Symbol ⁇ X ⁇ f_id ⁇ G4+Symbol ⁇ X ⁇ Y ⁇ ul_carrier_id ⁇ G5 (7);
  • t_id is to divide the time slot in a first given time into N slot groups according to certain rules, and send the number of the first PRACH slot in the slot group where the preamble occupies the RO;
  • the first given Time is at least one slot, at least 1 millisecond, at least one subframe, at least one time domain length of RO, at least one frame or at least one time window;
  • X is configured by the network side, or X is a preset value, or X is the number of PRACH time slots included in a slot group;
  • Y is configured by the network side, or, Y is a preset value, or, Y is determined by the terminal, or, Y is the number of ROs that perform frequency division multiplexing FDM on the PRACH resource;
  • s_id is the starting orthogonal frequency division multiplexing OFDM symbol number for sending the preamble to occupy the RO;
  • f_id is the number in the frequency domain of the RO occupied by sending the preamble
  • ul_carrier_id is configured by the network side, or, ul_carrier_id is a preset value, or, ul_carrier_id is determined by the terminal, or, ul_carrier_id is the uplink carrier number used for sending the preamble;
  • Symbol is the number of symbols in a second given time, where the second given time is at least one slot, at least 1 millisecond, at least one subframe, at least one time domain length of RO, at least one frame or at least one time window;
  • G1, G2, G3, G4, G5 are integers.
  • FIG. 5 is a schematic diagram of a slot grouping provided by an embodiment of the present application.
  • Equation (7) for calculating RA-RNTI can be used:
  • RA-RNTI 1 ⁇ G1+s_id ⁇ G2+Symbol ⁇ t_id ⁇ G3+Symbol ⁇ X ⁇ f_id ⁇ G4+Symbol ⁇ X ⁇ Y ⁇ ul_carrier_id ⁇ G5
  • RA-RNTI can avoid the problem of reduced access efficiency when the PRACH SCS exceeds 120KHz.
  • the calculation of the RA-RNTI based on the parameter t_id includes:
  • the RA-RNTI is calculated and obtained according to the following formula:
  • RA-RNTI 1 ⁇ H1+s_id ⁇ H2+Symbol ⁇ t_id ⁇ H3+Symbol ⁇ X ⁇ f_id ⁇ H4+Symbol ⁇ X ⁇ Y ⁇ group_id ⁇ H5 (8);
  • t_id is to divide the time slot in a first given time into N slot groups according to certain rules, and send the number of the first PRACH slot in the slot group where the preamble occupies the RO;
  • the first given Time is at least one slot, at least 1 millisecond, at least one subframe, at least one time domain length of RO, at least one frame or at least one time window;
  • X is configured by the network side, or X is a preset value, or X is the number of PRACH time slots included in a slot group;
  • Y is configured by the network side, or, Y is a preset value, or, Y is determined by the terminal, or, Y is the number of ROs that perform frequency division multiplexing FDM on the PRACH resource;
  • s_id is the starting orthogonal frequency division multiplexing OFDM symbol number for sending the preamble to occupy the RO;
  • f_id is the number in the frequency domain of the RO occupied by sending the preamble
  • group_id is the first slot group number where the RO is occupied by sending the preamble.
  • Symbol is the number of symbols in a second given time, where the second given time is at least one slot, at least 1 millisecond, at least one subframe, at least one time domain length of RO, at least one frame or at least one time window;
  • H1, H2, H3, H4, H5 are integers.
  • the maximum supported prach subcarrier spacing is 480kHz, and no uplink auxiliary carrier is introduced
  • the PRACH subcarrier spacing is 480kHz
  • a maximum RAR window time / slot in the system frame Divided into 4 groups, each group has 80 PRACH slots, then use the above formula (8) to calculate RA-RNTI:
  • RA-RNTI 1 ⁇ H1+s_id ⁇ H2+Symbol ⁇ t_id ⁇ H3+Symbol ⁇ X ⁇ f_id ⁇ H4+Symbol ⁇ X ⁇ Y ⁇ group_id ⁇ H5
  • s_id indicates the starting OFDM symbol number of the RO occupied by the sending preamble, and its value range is 0 ⁇ s_id ⁇ 14;
  • t_id indicates that the slot in a maximum RAR window time/system frame is divided into N slot groups according to certain rules.
  • the sending preamble occupies the number of the first PRACH slot where the RO is in a slot group;
  • X indicates the number of slots in a slot group, and its value is 80;
  • Y indicates the maximum number of ROs in FDM, and its value is 8 ;
  • group_id indicates the first slot group number in which the RO is occupied by the sending preamble, and its value range is 0 ⁇ slot_id ⁇ 4.
  • the UE selects the RO to send the preamble, calculates the RA-RNTI according to the sent RO, and monitors the PUCCH scrambled by the calculated RA-RNTI in the configured CORESET/search space in the corresponding RAR window. If the DCI of the PUCCH scrambled by the calculated RA-RNTI is monitored, continue to accept the corresponding PDSCH; otherwise, continue to monitor in the RAR window.
  • RA-RNTI can avoid the problem of reduced access efficiency when the PRACH SCS exceeds 120KHz.
  • the receiving a random access response RAR message according to the downlink control message DCI in the PDCCH includes:
  • a random access response RAR message is received; the first indication indicates the number in the reference time slot of the first PRACH slot where the preamble is sent to occupy the RO.
  • DCI requires 2-bit indication, which respectively indicate the 0th, 1st, 2nd, and 3rd PRACH slots in the reference time slot.
  • UE1 sends PRACH at RO1 in the 0th PRACH slot in reference time slot 10; UE1 calculates RA-RNTI according to RO1 as:
  • UE2 sends PRACH at RO3 in the 0th PRACH slot in reference time slot 10; UE2 calculates RA-RNTI according to RO3 as:
  • UE3 sends PRACH at RO5 in the first PRACH slot in reference time slot 10; UE3 calculates RA-RNTI according to RO5 as:
  • UE4 sends PRACH at RO13 in the third PRACH slot in reference time slot 10; UE4 calculates RA-RNTI according to RO13 as:
  • the UE can send the preamble indicated by the first indication to occupy the number of the first PRACH slot of the RO in the reference time slot. distinguish, so as to avoid the problem of reduced access efficiency.
  • the RA-RNTI processing method provided by the embodiment of the present application receives a random access response RAR message based on a first indication sent by a network side device, where the first indication indicates that sending the preamble occupies the first PRACH slot of the RO
  • the problem of reduced access efficiency can be avoided when the PRACH SCS exceeds 120KHz.
  • the receiving a random access response RAR message according to the downlink control message DCI in the PDCCH includes:
  • a random access response RAR message is received; the first indication indicates that sending the preamble occupies the number of the first PRACH slot where the RO is located in the slot group.
  • DCI requires 3-bit indication, indicating the 0th, 1st, 2nd, 3rd, 4th, 5th, 6th, 7 PRACH slots.
  • UE1 sends PRACH at RO1 in the 0th PRACH slot in slot group 1; UE1 calculates RA-RNTI according to RO1 as:
  • UE2 sends PRACH at RO3 in the 0th PRACH slot in slot group 1; UE2 calculates RA-RNTI according to RO3 as:
  • UE3 sends PRACH at RO5 in the first PRACH slot in slot group 1; UE3 calculates RA-RNTI according to RO5 as:
  • UE4 sends PRACH at RO13 in the third PRACH slot in slot group 1; UE4 calculates RA-RNTI according to RO13 as:
  • the UE can send the preamble indicated by the first indication to occupy the number of the first PRACH slot where the RO is located in the slot group. distinguish, so as to avoid the problem of reduced access efficiency.
  • the RA-RNTI processing method receives a random access response RAR message based on a first indication sent by a network side device, where the first indication indicates that sending the preamble occupies the first PRACH where the RO is located.
  • the number of the slot in the slot group can avoid the problem of reduced access efficiency when the PRACH SCS exceeds 120KHz.
  • the receiving a random access response RAR message according to the downlink control message DCI in the PDCCH includes:
  • a random access response RAR message is received; the first indication indicates that sending the preamble occupies the first slot group number where the RO is located.
  • DCI requires 3-bit indication, indicating the 0th, 1st, 2nd, 3rd, 4th, 5th, 6th, and 7th slot groups respectively.
  • UE1 sends PRACH at RO1 in the second PRACH slot in slot group 1; UE1 calculates RA-RNTI according to RO1 as:
  • UE2 sends PRACH at RO2 in the 40th PRACH slot in slot group 1; UE2 calculates RA-RNTI according to RO2 as:
  • UE3 sends PRACH at RO3 in the second PRACH slot in slot group 2; UE3 calculates RA-RNTI according to RO3 as:
  • UE4 sends PRACH at RO4 in the 40th PRACH slot in slot group 4; UE4 calculates RA-RNTI according to RO4 as:
  • the UE can distinguish the first slot group number where the RO is occupied by sending the preamble indicated by the first indication, thereby avoiding The problem of reduced access efficiency.
  • the RA-RNTI processing method receives a random access response RAR message based on a first indication sent by a network side device, where the first indication indicates that sending the preamble occupies the first slot where the RO is located.
  • the group number can avoid the problem of reduced access efficiency when the PRACH SCS exceeds 120KHz.
  • the receiving a random access response RAR message according to the downlink control message DCI in the PDCCH includes:
  • the first indication indicates (1 ⁇ C1+s_id ⁇ C2+Symbol ⁇ t_id ⁇ C3+Symbol ⁇ X ⁇ f_id ⁇ C4+Symbol ⁇ X ⁇ The value of Y ⁇ ul_carrier_id ⁇ C5)/A.
  • DCI requires 2 bits to indicate (1+s_id+14 ⁇ t_id+14 ⁇ 640 ⁇ f_id+14 ⁇ 640 ⁇ 8 ⁇ ul_carrier_id)/65522 value.
  • UE1 sends PRACH at RO1; UE1 calculates RA-RNTI according to RO1 as:
  • UE2 sends PRACH at RO2; UE2 calculates RA-RNTI according to RO2 as:
  • UE3 sends PRACH at RO3; UE3 calculates RA-RNTI according to RO3 as:
  • the UE can use the (1 ⁇ C1+s_id ⁇ C2+Symbol ⁇ t_id ⁇ C3+Symbol ⁇ X ⁇ f_id indicated by the first indication)
  • the value of ⁇ C4+Symbol ⁇ X ⁇ Y ⁇ ul_carrier_id ⁇ C5)/A is distinguished, so as to avoid the problem of reduced access efficiency.
  • the RA-RNTI processing method provided in this embodiment of the present application receives a random access response RAR message based on a first indication sent by a network side device, the first indication indicates (1 ⁇ C1+s_id ⁇ C2+Symbol ⁇ t_id ⁇
  • the value of C3+Symbol ⁇ X ⁇ f_id ⁇ C4+Symbol ⁇ X ⁇ Y ⁇ ul_carrier_id ⁇ C5)/A can avoid the problem of reduced access efficiency when the PRACH SCS exceeds 120KHz.
  • the first indication is carried in downlink control information DCI of the physical downlink control channel PDCCH, medium access control (Medium Access Control, MAC) control element (Control element, CE) or RAR information.
  • DCI downlink control information
  • PDCCH physical downlink control channel
  • MAC Medium Access Control
  • CE Control element
  • RAR information RAR information
  • the transmission mode of the first indication can be selected according to actual application requirements, for example, the first indication is carried in the downlink control information DCI, MAC CE or RAR information of the physical downlink control channel PDCCH.
  • the first indication is carried in the downlink control information DCI, MAC CE or RAR information of the physical downlink control channel PDCCH, which can improve the transmission flexibility of the first indication.
  • a reference time slot only one PRACH time slot is configured with RO, and the PRACH time slot in which the RO is configured is predefined by the protocol or configured by the radio resource control protocol RRC or MAC CE.
  • RA-RNTI For the case of calculating RA-RNTI by using formulas (2) and (4), it can be obtained by configuring RO in only one PRACH time slot in a reference time slot to ensure that different time-frequency resources are calculated.
  • the RA-RNTI is different.
  • formula (2) when formula (2) is used for calculation, even if the first indication information is not used, the UE can accurately determine the RAR message corresponding to it.
  • RA-RNTI processing method provided by the embodiment of the present application, by configuring RO in only one PRACH time slot in a reference time slot, it is possible to avoid repeated RA-RNTI when the PRACH SCS exceeds 120KHz, Thus, the problem of reduced access efficiency is avoided.
  • a slot group only one PRACH time slot is configured with RO, and the PRACH time slot of the described configuration RO is predefined by the protocol or the radio resource control protocol RRC configuration or MAC CE configuration.
  • RA-RNTI For the case of calculating RA-RNTI by using formulas (5) and (6), it can be obtained by configuring RO in only one PRACH time slot in a slot group to ensure that different time-frequency resources are calculated.
  • the RA-RNTI is different.
  • formula (5) when formula (5) is used for calculation, even if the first indication information is not used, the UE can accurately determine the RAR message corresponding to it.
  • RA-RNTI processing method provided by the embodiment of the present application, by configuring RO in only one PRACH time slot in a slot group, it is possible to avoid repeated RA-RNTI when the PRACH SCS exceeds 120KHz, and further Avoid the problem of reduced access efficiency.
  • the RA-RNTI processing method provided by the embodiment of the present application by configuring the RO in only one slot group, can avoid the occurrence of repeated RA-RNTI when the PRACH SCS exceeds 120KHz, thereby avoiding the problem of reduced access efficiency.
  • the slot group is divided according to the following rules:
  • the division method of the slot group may be to divide the slots in a first given time into N slot groups on average, and each group has M slots; the M slots may be continuous or non-continuous. If it is a continuous M slot, then each M slot is a group according to the time series; if it is a non-continuous M slot, then each slot with the same value of (slot index) mod N is in the same group, where slot index For the time slot number, it can be understood that the division of the slot group may also adopt any other feasible grouping manner, which is not specifically limited in this embodiment of the present application.
  • the RA-RNTI processing method provided by the embodiment of the present application, by dividing a slot in a first given time into N slot groups on average, there are M slots in each group, and calculating the RA based on the number in the group -RNTI, which can avoid the problem of reduced access efficiency when the PRACH SCS exceeds 120KHz.
  • the subcarrier interval of the reference time slot is configured by the network side or predefined by the protocol.
  • the subcarrier spacing of the reference time slot is configured by the network side or predefined by the protocol. It can be understood that the subcarrier spacing of the reference time slot can also be configured in any other feasible manner. This application implements This example is not specifically limited.
  • the subcarrier interval of the reference time slot is set by the network side configuration or the protocol predefined manner, which can ensure the flexibility of parameter setting.
  • the method is applied to a preset frequency range and/or physical random access channel subcarrier spacing PRACH SCS.
  • the preset frequency range is 52.6-71 GHz
  • the physical random access channel subcarrier spacing PRACH SCS is 480 kHz or 960 kHz.
  • the RA-RNTI processing method provided by the embodiment of the present application can be applied to the preset frequency range and/or the physical random access channel subcarrier spacing PRACH SCS, so as to avoid the reduction of the access efficiency of the communication system supporting higher PRACH SCS. question.
  • RA-RNTI processing methods proposed in the embodiments of this application are not only applicable to the RA-RNTI processing in the above four-step (4-step) RACH, but also applicable to the two-step (2-step) RACH
  • the processing of message B(MSGB)-RNTI can be calculated according to one of the following formulas:
  • MSGB-RNTI 1 ⁇ A1+s_id ⁇ A2+Symbol ⁇ t_id ⁇ A3+Symbol ⁇ X ⁇ f_id ⁇ A4+Symbol ⁇ X ⁇ Y ⁇ A5; (9)
  • MSGB-RNTI 1 ⁇ B1+s_id ⁇ B2+Symbol ⁇ t_id ⁇ B3+Symbol ⁇ X ⁇ f_id ⁇ B4+Symbol ⁇ X ⁇ Y ⁇ ul_carrier_id ⁇ B5+Symbol ⁇ X ⁇ Y ⁇ B6; (10)
  • MSGB-RNTI Mod(1 ⁇ C1+s_id ⁇ C2+Symbol ⁇ t_id ⁇ C3+Symbol ⁇ X ⁇ f_id ⁇ C4+Symbol ⁇ X ⁇ Y ⁇ ul_carrier_id ⁇ C5+Symbol ⁇ X ⁇ Y ⁇ C6,A);( 11)
  • MSGB-RNTI 1 ⁇ D1+s_id ⁇ D2+Symbol ⁇ t_id ⁇ D3+Symbol ⁇ X ⁇ f_id ⁇ D4+Symbol ⁇ X ⁇ Y ⁇ slot_id ⁇ D5+Symbol ⁇ X ⁇ Y ⁇ D6; (12)
  • MSGB-RNTI 1 ⁇ E1+s_id ⁇ E2+Symbol ⁇ t_id ⁇ E3+Symbol ⁇ X ⁇ f_id ⁇ E4+Symbol ⁇ X ⁇ Y ⁇ ul_carrier_id ⁇ E5+Symbol ⁇ X ⁇ Y ⁇ E6; (13)
  • MSGB-RNTI 1 ⁇ F1+s_id ⁇ F2+Symbol ⁇ t_id ⁇ F3+Symbol ⁇ X ⁇ f_id ⁇ F4+Symbol ⁇ X ⁇ Y ⁇ slot_id ⁇ F5+Symbol ⁇ X ⁇ Y ⁇ F6; (14)
  • MSGB-RNTI 1 ⁇ G1+s_id ⁇ G2+Symbol ⁇ t_id ⁇ G3+Symbol ⁇ X ⁇ f_id ⁇ G4+Symbol ⁇ X ⁇ Y ⁇ ul_carrier_id ⁇ G5+Symbol ⁇ X ⁇ Y ⁇ G6; (15)
  • MSGB-RNTI 1 ⁇ H1+s_id ⁇ H2+Symbol ⁇ t_id ⁇ H3+Symbol ⁇ X ⁇ f_id ⁇ H4+Symbol ⁇ X ⁇ Y ⁇ group_id ⁇ H5+Symbol ⁇ X ⁇ Y ⁇ H6; (16)
  • A1-A5, B1-B6, C1-C6, D1-D6, E1-E6, F1-F6, G1-G6, H1-H6 are all integers.
  • the execution subject may be an RA-RNTI processing apparatus, or, in the RA-RNTI processing apparatus, a method for executing the RA-RNTI processing method may be executed. control module.
  • an RA-RNTI processing method performed by an RA-RNTI processing apparatus is used as an example to describe the RA-RNTI processing apparatus provided in the embodiments of the present application.
  • FIG. 6 is a schematic structural diagram of an apparatus for processing RA-RNTI provided by an embodiment of the present application. As shown in FIG. 6 , the apparatus includes:
  • the RA-RNTI determination module 601 is configured to calculate the RA-RNTI based on the time-frequency resource information of the random access opportunity RO for sending the preamble Preamble;
  • the RA-RNTI is calculated based on the time-frequency resource information of the random access opportunity RO for sending the preamble Preamble, including:
  • t_id is the time slot number of the first time slot where the RO is occupied by sending the preamble within a first given time, or, the first slot group number where the RO is occupied by sending the preamble, or , the number of the first PRACH slot where the RO is located in the slot group is occupied by sending the preamble.
  • the time slot numbering is obtained based on the reference time slot subcarrier spacing or the physical random access channel PRACH time slot subcarrier spacing and numbering;
  • the slot group is obtained by grouping the time slots in a first given time according to certain rules.
  • the PDCCH monitoring module is configured to monitor the physical downlink control channel PDCCH scrambled based on the RA-RNTI during the operation of the random access response RAR window;
  • the RAR message receiving module is configured to receive the random access response RAR message according to the downlink control message DCI in the PDCCH.
  • the calculation of the RA-RNTI based on the parameter t_id includes:
  • the RA-RNTI is calculated and obtained according to the following formula:
  • RA-RNTI 1 ⁇ A1+s_id ⁇ A2+Symbol ⁇ t_id ⁇ A3+Symbol ⁇ X ⁇ f_id ⁇ A4.
  • t_id is the time slot number of the first time slot where the RO is occupied by sending the preamble within a first given time, and the time slot number is numbered based on the PRACH time slot subcarrier interval; the first time slot number is obtained;
  • the given time is at least one time slot, at least 1 millisecond, at least one subframe, at least one time domain length of RO, at least one frame or at least one time window;
  • X is configured by the network side, or X is a preset value, or X is determined by the terminal, or X is the total number of time slots included in a first given time;
  • s_id is the starting orthogonal frequency division multiplexing OFDM symbol number for sending the preamble to occupy the RO;
  • f_id is the number in the frequency domain of the RO occupied by sending the preamble
  • Symbol is the number of symbols in a second given time, where the second given time is at least one slot, at least 1 millisecond, at least one subframe, at least one time domain length of RO, at least one frame or at least one time window;
  • A1, A2, A3, A4 are integers.
  • the calculation of the RA-RNTI based on the parameter t_id includes:
  • the RA-RNTI is calculated and obtained according to the following formula:
  • RA-RNTI 1 ⁇ B1+s_id ⁇ B2+Symbol ⁇ t_id ⁇ B3+Symbol ⁇ X ⁇ f_id ⁇ B4+Symbol ⁇ X ⁇ Y ⁇ ul_carrier_id ⁇ B5;
  • t_id is the time slot number of the first time slot where the RO is occupied by sending the preamble within a first given time, and the time slot number is numbered based on the subcarrier interval of the reference time slot;
  • the first given Time is at least one slot, at least 1 millisecond, at least one subframe, at least one time domain length of RO, at least one frame or at least one time window;
  • X is configured by the network side, or X is a preset value, or X is determined by the terminal, or X is the total number of reference time slots included in a first given time;
  • Y is configured by the network side, or, Y is a preset value, or, Y is determined by the terminal, or, Y is the number of ROs that perform frequency division multiplexing FDM on the PRACH resource;
  • s_id is the starting orthogonal frequency division multiplexing OFDM symbol number for sending the preamble to occupy the RO;
  • f_id is the number in the frequency domain of the RO occupied by sending the preamble
  • Symbol is the number of symbols in a second given time, where the second given time is at least one slot, at least 1 millisecond, at least one subframe, at least one time domain length of RO, at least one frame or at least one time window;
  • ul_carrier_id is configured by the network side, or, ul_carrier_id is a preset value, or, ul_carrier_id is determined by the terminal, or, ul_carrier_id is the uplink carrier number used for sending the preamble;
  • B1, B2, B3, B4, B5 are integers.
  • the calculation of the RA-RNTI based on the parameter t_id includes:
  • the RA-RNTI is calculated and obtained according to the following formula:
  • RA-RNTI Mod(1 ⁇ C1+s_id ⁇ C2+Symbol ⁇ t_id ⁇ C3+Symbol ⁇ X ⁇ f_id ⁇ C4+Symbol ⁇ X ⁇ Y ⁇ ul_carrier_id ⁇ C5, A);
  • t_id is the time slot number of the first time slot where the RO is occupied by sending the preamble within a first given time, and the time slot number is numbered based on the PRACH time slot subcarrier interval;
  • the first given Time is at least one slot, at least 1 millisecond, at least one subframe, at least one time domain length of RO, at least one frame or at least one time window;
  • X is configured by the network side, or X is a preset value, or X is the total number of time slots included in a first given time;
  • Y is configured by the network side, or, Y is a preset value, or, Y is determined by the terminal, or, Y is the number of ROs that perform frequency division multiplexing FDM on the PRACH resource;
  • s_id is the starting orthogonal frequency division multiplexing OFDM symbol number for sending the preamble to occupy the RO;
  • f_id is the number in the frequency domain of the RO occupied by sending the preamble
  • ul_carrier_id is configured by the network side, or, ul_carrier_id is a preset value, or, ul_carrier_id is determined by the terminal, or, ul_carrier_id is the uplink carrier number used for sending the preamble;
  • Symbol is the number of symbols in a second given time, where the second given time is at least one slot, at least 1 millisecond, at least one subframe, at least one time domain length of RO, at least one frame or at least one time window;
  • C1, C2, C3, C4, C5 are integers
  • A is configured by the network side, or A is a preset value, or A is determined by the terminal.
  • the calculating RA-RNTI based on the parameter t_id includes:
  • the RA-RNTI is calculated and obtained according to the following formula:
  • RA-RNTI 1 ⁇ D1+s_id ⁇ D2+Symbol ⁇ t_id ⁇ D3+Symbol ⁇ X ⁇ f_id ⁇ D4+Symbol ⁇ X ⁇ Y ⁇ slot_id ⁇ D5;
  • t_id is the time slot number of the first time slot where the RO is occupied by sending the preamble within a first given time, and the time slot number is obtained by numbering based on the subcarrier interval of the reference time slot; the first time slot number is obtained;
  • the given time is at least one time slot, at least 1 millisecond, at least one subframe, at least one time domain length of RO, at least one frame or at least one time window;
  • X is configured by the network side, or X is a preset value, or X is the total number of reference time slots included in a first given time;
  • Y is configured by the network side, or, Y is a preset value, or, Y is determined by the terminal, or, Y is the number of ROs that perform frequency division multiplexing FDM on the PRACH resource;
  • s_id is the starting orthogonal frequency division multiplexing OFDM symbol number for sending the preamble to occupy the RO;
  • f_id is the number in the frequency domain of the RO occupied by sending the preamble
  • slot_id is the number in the reference time slot of the first PRACH slot that transmits the preamble to occupy the RO;
  • Symbol is the number of symbols in a second given time, where the second given time is at least one slot, at least 1 millisecond, at least one subframe, at least one time domain length of RO, at least one frame or at least one time window;
  • D1, D2, D3, D4, D5 are integers.
  • the calculation of the RA-RNTI based on the parameter t_id includes:
  • the RA-RNTI is calculated and obtained according to the following formula:
  • RA-RNTI 1 ⁇ E1+s_id ⁇ E2+Symbol ⁇ t_id ⁇ E3+Symbol ⁇ X ⁇ f_id ⁇ E4+Symbol ⁇ X ⁇ Y ⁇ ul_carrier_id ⁇ E5;
  • t_id is to divide the time slot in a first given time into N time slot groups according to certain rules, and send the preamble to occupy the first slot group number where the RO is located;
  • the first given time is At least one time slot, at least 1 millisecond, at least one subframe, at least one time domain length of RO, at least one frame or at least one time window;
  • X is configured by the network side, or X is a preset value, or X is the number of time slot groups included in a first given time;
  • Y is configured by the network side, or, Y is a preset value, or, Y is determined by the terminal, or, Y is the number of ROs that perform frequency division multiplexing FDM on the PRACH resource;
  • s_id is the starting orthogonal frequency division multiplexing OFDM symbol number for sending the preamble to occupy the RO;
  • f_id is the number in the frequency domain of the RO occupied by sending the preamble
  • ul_carrier_id is configured by the network side, or, ul_carrier_id is a preset value, or, ul_carrier_id is determined by the terminal, or, ul_carrier_id is the uplink carrier number used for sending the preamble;
  • Symbol is the number of symbols in a second given time, where the second given time is at least one slot, at least 1 millisecond, at least one subframe, at least one time domain length of RO, at least one frame or at least one time window;
  • E1, E2, E3, E4, E5 are integers.
  • the calculation of the RA-RNTI based on the parameter t_id includes:
  • the RA-RNTI is calculated and obtained according to the following formula:
  • RA-RNTI 1 ⁇ F1+s_id ⁇ F2+Symbol ⁇ t_id ⁇ F3+Symbol ⁇ X ⁇ f_id ⁇ F4+Symbol ⁇ X ⁇ Y ⁇ slot_id ⁇ F5;
  • t_id is to divide the time slot in a first given time into N time slot groups according to certain rules, and send the preamble to occupy the first slot group number where the RO is located;
  • the first given time is At least one time slot, at least 1 millisecond, at least one subframe, at least one time domain length of RO, at least one frame or at least one time window;
  • X is configured by the network side, or X is a preset value, or X is the number of time slot groups included in a first given time;
  • Y is configured by the network side, or, Y is a preset value, or, Y is determined by the terminal, or, Y is the number of ROs that perform frequency division multiplexing FDM on the PRACH resource;
  • s_id is the starting orthogonal frequency division multiplexing OFDM symbol number for sending the preamble to occupy the RO;
  • f_id is the number in the frequency domain of the RO occupied by sending the preamble
  • slot_id is the number in the slot group of the first PRACH slot that sends the preamble to occupy the RO;
  • Symbol is the number of symbols in a second given time, where the second given time is at least one slot, at least 1 millisecond, at least one subframe, at least one time domain length of RO, at least one frame or at least one time window;
  • F1, F2, F3, F4, F5 are integers.
  • the calculation of the RA-RNTI based on the parameter t_id includes:
  • the RA-RNTI is calculated and obtained according to the following formula:
  • RA-RNTI 1 ⁇ G1+s_id ⁇ G2+Symbol ⁇ t_id ⁇ G3+Symbol ⁇ X ⁇ f_id ⁇ G4+Symbol ⁇ X ⁇ Y ⁇ ul_carrier_id ⁇ G5;
  • t_id is to divide the time slot in a first given time into N slot groups according to certain rules, and send the number of the first PRACH slot in the slot group where the preamble occupies the RO;
  • the first given Time is at least one slot, at least 1 millisecond, at least one subframe, at least one time domain length of RO, at least one frame or at least one time window;
  • X is configured by the network side, or X is a preset value, or X is the number of PRACH time slots included in a slot group;
  • Y is configured by the network side, or, Y is a preset value, or, Y is determined by the terminal, or, Y is the number of ROs that perform frequency division multiplexing FDM on the PRACH resource;
  • s_id is the starting orthogonal frequency division multiplexing OFDM symbol number for sending the preamble to occupy the RO;
  • f_id is the number in the frequency domain of the RO occupied by sending the preamble
  • ul_carrier_id is configured by the network side, or, ul_carrier_id is a preset value, or, ul_carrier_id is determined by the terminal, or, ul_carrier_id is the uplink carrier number used for sending the preamble;
  • Symbol is the number of symbols in a second given time, where the second given time is at least one slot, at least 1 millisecond, at least one subframe, at least one time domain length of RO, at least one frame or at least one time window;
  • G1, G2, G3, G4, G5 are integers.
  • the calculation of the RA-RNTI based on the parameter t_id includes:
  • the RA-RNTI is calculated and obtained according to the following formula:
  • RA-RNTI 1 ⁇ H1+s_id ⁇ H2+Symbol ⁇ t_id ⁇ H3+Symbol ⁇ X ⁇ f_id ⁇ H4+Symbol ⁇ X ⁇ Y ⁇ group_id ⁇ H5;
  • t_id is to divide the time slot in a first given time into N slot groups according to certain rules, and send the number of the first PRACH slot in the slot group where the preamble occupies the RO;
  • the first given Time is at least one slot, at least 1 millisecond, at least one subframe, at least one time domain length of RO, at least one frame or at least one time window;
  • X is configured by the network side, or X is a preset value, or X is the number of PRACH time slots included in a slot group;
  • Y is configured by the network side, or, Y is a preset value, or, Y is determined by the terminal, or, Y is the number of ROs that perform frequency division multiplexing FDM on the PRACH resource;
  • s_id is the starting orthogonal frequency division multiplexing OFDM symbol number for sending the preamble to occupy the RO;
  • f_id is the number in the frequency domain of the RO occupied by sending the preamble
  • group_id is the first slot group number where the RO is occupied by sending the preamble.
  • Symbol is the number of symbols in a second given time, where the second given time is at least one slot, at least 1 millisecond, at least one subframe, at least one time domain length of RO, at least one frame or at least one time window;
  • H1, H2, H3, H4, H5 are integers.
  • the receiving a random access response RAR message according to the downlink control message DCI in the PDCCH includes:
  • a random access response RAR message is received; the first indication indicates the number in the reference time slot of the first PRACH slot where the preamble is sent to occupy the RO.
  • the receiving a random access response RAR message according to the downlink control message DCI in the PDCCH includes:
  • a random access response RAR message is received; the first indication indicates that sending the preamble occupies the number of the first PRACH slot where the RO is located in the slot group.
  • the receiving a random access response RAR message according to the downlink control message DCI in the PDCCH includes:
  • a random access response RAR message is received; the first indication indicates that sending the preamble occupies the first slot group number where the RO is located.
  • the receiving a random access response RAR message according to the downlink control message DCI in the PDCCH includes:
  • the first indication indicates (1 ⁇ C1+s_id ⁇ C2+Symbol ⁇ t_id ⁇ C3+Symbol ⁇ X ⁇ f_id ⁇ C4+Symbol ⁇ X
  • the first indication is carried in downlink control information DCI, MAC CE or RAR information of the physical downlink control channel PDCCH.
  • a reference time slot only one PRACH time slot is configured with RO, and the PRACH time slot in which the RO is configured is predefined by the protocol or configured by the radio resource control protocol RRC or MAC CE.
  • a slot group only one PRACH time slot is configured with RO, and the PRACH time slot of the described configuration RO is predefined by the protocol or the radio resource control protocol RRC configuration or MAC CE configuration.
  • the slot group is divided according to the following rules:
  • the subcarrier interval of the reference time slot is configured by the network side or predefined by the protocol.
  • the apparatus is applied in a preset frequency range and/or a physical random access channel subcarrier spacing PRACH SCS.
  • the above-mentioned RA-RNTI processing apparatus provided in the embodiment of the present application can implement all the method steps implemented by the above-mentioned method embodiments, and can achieve the same technical effect, and the method in this embodiment will not be implemented here.
  • the same parts and beneficial effects of the examples will be described in detail.
  • FIG. 7 is a second schematic flowchart of a method for processing an RA-RNTI provided by an embodiment of the present application. As shown in FIG. 7 , the method includes:
  • Step 701 Obtain the association relationship between the target CORESET and/or the search space and the target random access opportunity RO.
  • Step 702 Monitor the downlink channel scrambled by the RA-RNTI on the target CORESET and/or the search space associated with the target RO; wherein the target RO is the RO through which the terminal sends the preamble.
  • the target CORESET/search space is associated with the target RO
  • the UE monitors the PDCCH and/or PDSCH scrambled by RA-RNTI on the target CORESET/search space associated with the target RO, where the target RO is the RO where the UE sends the preamble .
  • UE1 sending a preamble on a first target RO monitors PDCCH on RA-SS1
  • UE2 sending a preamble on a second target RO monitors PDCCH on RA-SS2.
  • RO1 corresponds to CORESET1/search space 1
  • RO2 corresponds to CORESET1/search space 2
  • UE1 sends PRACH on the selected RO1, calculates the RA-RNTI according to the RO1, and monitors the PDCCH scrambled by the calculated RA-RNTI in the corresponding CORESET1/search space 1;
  • the UE2 sends PRACH on the selected RO2, calculates the RA-RNTI according to the RO2, and monitors the PDCCH scrambled by the calculated RA-RNTI in the corresponding CORESET2/search space 2. In this way, even if the same RA-RNTI is calculated from different time-frequency resources, the UE can monitor the RA-RNTI on the target CORESET and/or search space through the association between the target CORESET and/or search space and the target random access opportunity RO.
  • the downlink channel scrambled by the RNTI is used to determine the corresponding RAR message, thereby avoiding the problem of reduced access efficiency.
  • the RA-RNTI processing method provided by the embodiment of the present application monitors the downlink channel scrambled by the RA-RNTI, which can prevent the PRACH SCS from exceeding 120KHz when the PRACH SCS exceeds 120KHz.
  • the problem of reduced access efficiency is a problem of reduced access efficiency.
  • the association relationship is predefined by the protocol or configured by the radio resource control protocol RRC.
  • association relationship may be predefined by the protocol or configured by the radio resource control protocol RRC. It can be understood that the setting mode of the association relationship may also be any other feasible setting mode, which is not made in this embodiment of the present application. Specific restrictions.
  • the association relationship is predefined by the protocol or configured by the radio resource control protocol RRC, which can ensure the flexibility of the association relationship configuration.
  • the execution subject may be an RA-RNTI processing apparatus, or, in the RA-RNTI processing apparatus, a method for executing the RA-RNTI processing method may be executed. control module.
  • an RA-RNTI processing method performed by an RA-RNTI processing apparatus is used as an example to describe the RA-RNTI processing apparatus provided in the embodiments of the present application.
  • FIG. 8 is a second schematic structural diagram of an apparatus for processing RA-RNTI provided by an embodiment of the present application. As shown in FIG. 8 , the apparatus includes:
  • an association relationship obtaining module 801, configured to obtain the association relationship between the target CORESET and/or the search space and the target random access opportunity RO;
  • a downlink channel monitoring module 802 configured to monitor the downlink channel scrambled by RA-RNTI on the target CORESET and/or search space associated with the target RO; wherein, the target RO is the RO that the terminal sends the preamble .
  • the association relationship is predefined by the protocol or configured by the radio resource control protocol RRC.
  • the above-mentioned RA-RNTI processing apparatus provided in the embodiment of the present application can implement all the method steps implemented by the above-mentioned method embodiments, and can achieve the same technical effect, and the method in this embodiment will not be implemented here.
  • the same parts and beneficial effects of the examples will be described in detail.
  • the processing device of the RA-RNTI in this embodiment of the present application may be a device, or may be a component, an integrated circuit, or a chip in a terminal.
  • the device may be a mobile terminal or a non-mobile terminal.
  • the mobile terminal may include, but is not limited to, the types of terminals 11 listed above, and the non-mobile terminal may be a server, a network attached storage (NAS), a personal computer (personal computer, PC), a television ( television, TV), teller machine, or self-service machine, etc., which are not specifically limited in the embodiments of the present application.
  • the apparatus for processing the RA-RNTI in this embodiment of the present application may be an apparatus having an operating system.
  • the operating system may be an Android (Android) operating system, an ios operating system, or other possible operating systems, which are not specifically limited in the embodiments of the present application.
  • the RA-RNTI processing apparatus provided in the embodiment of the present application can implement each process implemented by the method embodiment of FIG. 2 or FIG. 7 , and achieve the same technical effect. To avoid repetition, details are not described here.
  • an embodiment of the present application further provides a communication device 900, including a processor 901, a memory 902, a program or instruction stored in the memory 902 and executable on the processor 901,
  • a communication device 900 including a processor 901, a memory 902, a program or instruction stored in the memory 902 and executable on the processor 901
  • the communication device 900 is a terminal
  • the program or instruction is executed by the processor 901
  • each process of the above-mentioned RA-RNTI processing method embodiment is implemented, and the same technical effect can be achieved.
  • the communication device 900 is a network-side device
  • the program or instruction is executed by the processor 901
  • each process of the above-mentioned RA-RNTI processing method embodiment can be realized, and the same technical effect can be achieved. To avoid repetition, details are not repeated here. .
  • FIG. 10 is a schematic diagram of a hardware structure of a terminal implementing an embodiment of the present application.
  • the terminal 1000 includes but is not limited to: a radio frequency unit 1001, a network module 1002, an audio output unit 1003, an input unit 1004, a sensor 1005, a display unit 1006, a user input unit 1007, an interface unit 1008, a memory 1009, a processor 1010 and other components .
  • the terminal 1000 may also include a power supply (such as a battery) for supplying power to various components, and the power supply may be logically connected to the processor 1010 through a power management system, so as to manage charging, discharging, and power consumption through the power management system management and other functions.
  • a power supply such as a battery
  • the terminal structure shown in FIG. 10 does not constitute a limitation on the terminal, and the terminal may include more or less components than shown, or combine some components, or arrange different components, which will not be repeated here.
  • the input unit 1004 may include a graphics processor (Graphics Processing Unit, GPU) 10041 and a microphone 10042. Such as camera) to obtain still pictures or video image data for processing.
  • the display unit 1006 may include a display panel 10061, which may be configured in the form of a liquid crystal display, an organic light emitting diode, or the like.
  • the user input unit 1007 includes a touch panel 10071 and other input devices 10072 .
  • the touch panel 10071 is also called a touch screen.
  • the touch panel 10071 may include two parts, a touch detection device and a touch controller.
  • Other input devices 10072 may include, but are not limited to, physical keyboards, function keys (such as volume control keys, switch keys, etc.), trackballs, mice, and joysticks, which will not be repeated here.
  • the radio frequency unit 1001 receives the downlink data from the network side device, and then processes it to the processor 1010; in addition, sends the uplink data to the network side device.
  • the radio frequency unit 1001 includes, but is not limited to, an antenna, at least one amplifier, a transceiver, a coupler, a low noise amplifier, a duplexer, and the like.
  • Memory 1009 may be used to store software programs or instructions as well as various data.
  • the memory 1009 may mainly include a stored program or instruction area and a storage data area, wherein the stored program or instruction area may store an operating system, an application program or instruction required for at least one function (such as a sound playback function, an image playback function, etc.) and the like.
  • the memory 1009 may include a high-speed random access memory, and may also include a non-volatile memory, wherein the non-volatile memory may be a read-only memory (Read-Only Memory, ROM), a programmable read-only memory (Programmable ROM) , PROM), erasable programmable read-only memory (Erasable PROM, EPROM), electrically erasable programmable read-only memory (Electrically EPROM, EEPROM) or flash memory.
  • ROM Read-Only Memory
  • PROM programmable read-only memory
  • PROM erasable programmable read-only memory
  • Erasable PROM Erasable PROM
  • EPROM electrically erasable programmable read-only memory
  • EEPROM electrically erasable programmable read-only memory
  • flash memory for example at least one magnetic disk storage device, flash memory device, or other non-volatile solid state storage device.
  • the processor 1010 may include one or more processing units; optionally, the processor 1010 may integrate an application processor and a modem processor, wherein the application processor mainly processes the operating system, user interface, and application programs or instructions, etc. Modem processors mainly deal with wireless communications, such as baseband processors. It can be understood that, the above-mentioned modulation and demodulation processor may not be integrated into the processor 1010.
  • the processor 1010 may be configured to: calculate the RA-RNTI based on the time-frequency resource information of the random access opportunity RO for sending the preamble Preamble;
  • the described time-frequency resource information based on the random access opportunity RO of sending the preamble Preamble calculate the RA-RNTI, including:
  • t_id is the time slot number of the first time slot where the RO is occupied by sending the preamble within a first given time, or, the first slot group number where the RO is occupied by sending the preamble, or , the number of the first PRACH slot where the RO is located in the slot group is occupied by sending the preamble.
  • the terminal provided by the embodiment of the present application, based on the time slot number of the first time slot where the RO is occupied by sending the preamble in a first given time, or the first time slot where the RO is occupied by sending the preamble
  • the RA-RNTI can be calculated by the slot group number or the number of the first PRACH slot in the slot group.
  • the PRACH SCS exceeds 120KHz, the RA-RNTI corresponding to different time-frequency resources is the same or the RA-RNTI overflows. , to avoid the problem of reduced access efficiency.
  • the radio frequency unit 1001 is configured to monitor the physical downlink control channel PDCCH scrambled based on the RA-RNTI during the operation of the random access response RAR window;
  • the random access response RAR message is received.
  • the terminal monitors the physical downlink control channel PDCCH scrambled based on the RA-RNTI during the operation of the random access response RAR window, and receives the random access response RAR message according to the downlink control message DCI in the PDCCH. , the corresponding RAR message can be accurately determined based on the RA-RNTI, and the problem of reduced access efficiency can be avoided.
  • the radio frequency unit 1001 is further configured to receive a random access response RAR message based on the first indication sent by the network side device; the first indication indicates that sending the preamble occupies the first PRACH slot of the RO in the reference The number in the time slot, or, send the preamble to occupy the number of the first PRACH slot where the RO is located in the slot group, or, send the preamble to occupy the first slot group number where the RO is located or (1 ⁇ The value of C1+s_id ⁇ C2+Symbol ⁇ t_id ⁇ C3+Symbol ⁇ X ⁇ f_id ⁇ C4+Symbol ⁇ X ⁇ Y ⁇ ul_carrier_id ⁇ C5)/A.
  • the terminal provided by the embodiment of the present application, based on the first indication sent by the network side device, receives the random access response RAR message, and can avoid the problem of reduced access efficiency when the PRACH SCS exceeds 120KHz.
  • the radio frequency unit 1001 is configured to monitor the downlink channel scrambled by RA-RNTI on the target CORESET and/or search space associated with the target RO; wherein, the target RO sends the preamble to the terminal the RO.
  • the processor 1010 is configured to acquire the association relationship between the target CORESET and/or the search space and the target random access opportunity RO.
  • the terminal monitors the downlink channel scrambled by RA-RNTI on the target CORESET and/or search space associated with the target RO, and can avoid the reduction of access efficiency when the PRACH SCS exceeds 120KHz. question.
  • Embodiments of the present application further provide a readable storage medium, where a program or an instruction is stored on the readable storage medium, and when the program or instruction is executed by a processor, each process of the foregoing RA-RNTI processing method embodiment is implemented, and The same technical effect can be achieved, and in order to avoid repetition, details are not repeated here.
  • the processor is the processor in the terminal described in the foregoing embodiment.
  • the readable storage medium includes a computer-readable storage medium, such as a computer read-only memory (Read-Only Memory, ROM), a random access memory (Random Access Memory, RAM), a magnetic disk or an optical disk, and the like.
  • An embodiment of the present application further provides a chip, where the chip includes a processor and a communication interface, the communication interface is coupled to the processor, and the processor is used to run a network-side device program or instruction to implement the above-mentioned RA-RNTI
  • the chip includes a processor and a communication interface
  • the communication interface is coupled to the processor
  • the processor is used to run a network-side device program or instruction to implement the above-mentioned RA-RNTI
  • An embodiment of the present application further provides a computer program product, the computer program product is stored in a non-transitory storage medium, and the computer program product is executed by at least one processor to implement the above-mentioned RA-RNTI processing method embodiment and can achieve the same technical effect, in order to avoid repetition, it will not be repeated here.
  • the chip mentioned in the embodiments of the present application may also be referred to as a system-on-chip, a system-on-chip, a system-on-chip, or a system-on-a-chip, or the like.
  • the method of the above embodiment can be implemented by means of software plus a necessary general hardware platform, and of course can also be implemented by hardware, but in many cases the former is better implementation.
  • the technical solution of the present application can be embodied in the form of a software product in essence or in a part that contributes to the prior art, and the computer software product is stored in a storage medium (such as ROM/RAM, magnetic disk, CD-ROM), including several instructions to make a terminal (which may be a mobile phone, a computer, a server, an air conditioner, or a network device, etc.) execute the methods described in the various embodiments of this application.
  • a storage medium such as ROM/RAM, magnetic disk, CD-ROM
  • the disclosed apparatus and method may be implemented in other manners.
  • the apparatus embodiments described above are only illustrative.
  • the division of the units is only a logical function division. In actual implementation, there may be other division methods.
  • multiple units or components may be combined or Can be integrated into another system, or some features can be ignored, or not implemented.
  • the shown or discussed mutual coupling or direct coupling or communication connection may be through some interfaces, indirect coupling or communication connection of devices or units, and may be in electrical, mechanical or other forms.
  • the units described as separate components may or may not be physically separated, and components displayed as units may or may not be physical units, that is, may be located in one place, or may be distributed to multiple network units. Some or all of the units may be selected according to actual needs to achieve the purpose of the solution in this embodiment.
  • each functional unit in each embodiment of the present disclosure may be integrated into one processing unit, or each unit may exist physically alone, or two or more units may be integrated into one unit.
  • the functions, if implemented in the form of software functional units and sold or used as independent products, may be stored in a computer-readable storage medium. Based on such understanding, the technical solutions of the present disclosure can be embodied in the form of software products in essence, or the parts that contribute to the prior art or the parts of the technical solutions.
  • the computer software products are stored in a storage medium, including Several instructions are used to cause a computer device (which may be a personal computer, a server, or a network device, etc.) to execute all or part of the steps of the methods described in various embodiments of the present disclosure.
  • the aforementioned storage medium includes: a U disk, a removable hard disk, a ROM, a RAM, a magnetic disk, or an optical disk and other mediums that can store program codes.
  • the realization of all or part of the processes in the methods of the above embodiments can be accomplished by controlling the relevant hardware through a computer program, and the program can be stored in a computer-readable storage medium. During execution, the processes of the embodiments of the above-mentioned methods may be included.
  • the storage medium may be a magnetic disk, an optical disk, a ROM or a RAM, and the like.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Physics & Mathematics (AREA)
  • Mathematical Physics (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请公开了一种RA-RNTI的处理方法、装置、终端及可读存储介质,属于无线通信技术领域。所述方法包括:基于发送前导码Preamble的随机接入时机RO的时频资源信息,计算RA-RNTI,所述基于发送前导码Preamble的随机接入时机RO的时频资源信息,计算RA-RNTI,包括:基于参数t_id计算RA-RNTI,其中,t_id是一个第一给定时间内的发送所述前导码占用RO的第一个时隙所在的时隙编号,或,发送所述前导码占用RO所在的第一个slot group编号,或,发送所述前导码占用RO所在的第一个PRACH slot在slot group中的编号。

Description

RA-RNTI的处理方法、装置、终端及可读存储介质
相关申请的交叉引用
本申请主张在2020年12月31日在中国提交的中国专利申请No.202011629341.7的优先权,其全部内容通过引用包含于此。
技术领域
本申请属于无线通信技术领域,具体涉及一种RA-RNTI的处理方法、装置、终端及可读存储介质。
背景技术
在大多数通信系统中,需要在发送端和接收端之间建立定时同步。用户终端(User Equipment,UE)可以通过随机接入过程与小区建立连接并取得上行同步。在新空口(New Radio,NR)中,UE为随机接入信道(Random Access Channel,RACH)过程选择随机前导码以获取上行链路同步。每个前同步码传输与一个随机接入-无线网络临时标识符(Radom Access-Radio Network Tempory Identity,RA-RNTI)相关联。
RA-RNTI可以表征消息1(Msg1)发送时使用的时频资源,UE发送Msg1时会计算RA-RNTI并保存;NR节点(NR Node B,gNB)收到该Msg1后,同样会计算RA-RNTI,并使用该RA-RNTI对消息2(Msg2)的物理下行控制信道(Physical Downlink Control Channel,PDCCH)下行控制信息(Downlink Control Information,DCI)格式1_0(format 1_0)的循环冗余校验(Cyclic Redundancy Check,CRC)进行扰码。因此只有在RA-RNTI标识的时频资源发送Msg1的终端才能解对这个PDCCH的DCI。
目前的物理随机接入信道(Physical Random Access Channel,PRACH)支持15/30/60/120KHz的子载波间隔(Sub-Carrier Spacing,SCS),现有的计算公式是适用的。对于支持更高的PRACH SCS的通信系统,现有的计算公 式可能导致溢出或不同的时频资源计算得到相同的RA-RNTI。当不同的UE在这些时频资源上使用相同的导码索引(Preamble index)发送msg1时,UE不知道哪个随机接入响应(Random Access Response,RAR)是自己的,需要通过竞争解决机制来解决冲突,上述两种情况均会导致接入效率降低。
发明内容
本申请实施例提供一种RA-RNTI的处理方法、装置、终端及可读存储介质,能够解决在PRACH SCS超过120KHz的情况下,采用现有计算公式计算,不同的时频资源会得到相同的RA-RNTI,导致接入效率降低的问题。
第一方面,提供了一种RA-RNTI的处理方法,由终端执行,该方法包括:
基于发送前导码Preamble的随机接入时机(random access occasion,RO)的时频资源信息,计算RA-RNTI;
所述基于发送前导码Preamble的随机接入时机RO的时频资源信息,计算RA-RNTI,包括:
基于参数t_id计算RA-RNTI;
其中,t_id是一个第一给定时间内的发送所述前导码占用RO的第一个时隙所在的时隙编号,或,发送所述前导码占用RO所在的第一个时隙组(slot group)编号,或,发送所述前导码占用RO所在的第一个PRACH slot在slot group中的编号。
第二方面,提供了一种RA-RNTI的处理装置,该装置包括:
RA-RNTI确定模块,用于基于发送前导码Preamble的随机接入时机RO的时频资源信息,计算RA-RNTI;
所述基于发送前导码Preamble的随机接入时机RO的时频资源信息,计算RA-RNTI,包括:
基于参数t_id计算RA-RNTI;
其中,t_id是一个第一给定时间内的发送所述前导码占用RO的第一个时隙所在的时隙编号,或,发送所述前导码占用RO所在的第一个slot group编号,或,发送所述前导码占用RO所在的第一个PRACH slot在slot group中的编号。
第三方面,提供了一种RA-RNTI的处理方法,应用于终端,该方法包括:
获取目标控制资源集(Control Resource Set,CORESET)和/或搜索空间与目标随机接入时机RO的关联关系;
在与目标RO关联的目标CORESET和/或搜索空间上,监听RA-RNTI加扰的下行信道;其中,所述目标RO为所述移动终端发送所述前导码的RO。
第四方面,提供了一种RA-RNTI的处理装置,该装置包括:
关联关系获取模块,用于获取目标CORESET和/或搜索空间与目标随机接入时机RO的关联关系;
下行信道监听模块,用于在与目标RO关联的目标CORESET和/或搜索空间上,监听RA-RNTI加扰的下行信道;其中,所述目标RO为所述终端发送所述前导码的RO。
第五方面,提供了一种终端,该终端包括处理器、存储器及存储在所述存储器上并可在所述处理器上运行的程序或指令,所述程序或指令被所述处理器执行时实现如第一方面所述的方法的步骤,或者实现如第三方面所述的方法的步骤。
第六方面,提供了一种可读存储介质,所述可读存储介质上存储程序或指令,所述程序或指令被处理器执行时实现如第一方面所述的方法的步骤,或者实现如第三方面所述的方法的步骤。
第七方面,提供了一种芯片,所述芯片包括处理器和通信接口,所述通信接口和所述处理器耦合,所述处理器用于运行网络侧设备程序或指令,实现如第一方面所述的方法,或实现如第三方面所述的方法。
第八方面,提供了一种计算机程序产品,所述计算机程序产品被存储在非瞬态存储介质中,所述计算机程序产品被至少一个处理器执行以实现如第一方面所述的方法,或实现如第三方面所述的方法。
在本申请实施例中,基于一个第一给定时间内的发送所述前导码占用RO的第一个时隙所在的时隙编号,或,发送所述前导码占用RO所在的第一个slot group编号或所在的第一个PRACH slot在slot group中的编号计算RA-RNTI,能够在PRACH SCS超过120KHz时,避免接入效率降低的问题。
附图说明
图1是本申请实施例可应用的一种无线通信系统的结构图;
图2是本申请实施例提供的RA-RNTI的处理方法的流程示意图之一;
图3是本申请实施例提供的参考时隙中的部分RO映射示意图;
图4是本申请实施例提供的slot group中的部分RO映射示意图;
图5是本申请实施例提供的slot分组示意图;
图6是本申请实施例提供的RA-RNTI的处理装置结构示意图之一;
图7是本申请实施例提供的RA-RNTI的处理方法的流程示意图之二;
图8是本申请实施例提供的RA-RNTI的处理装置结构示意图之二;
图9是本申请实施例提供的通信设备的结构示意图;
图10是本申请实施例提供的一种终端的硬件结构示意图。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
本申请的说明书和权利要求书中的术语“第一”、“第二”等是用于区别类似的对象,而不用于描述特定的顺序或先后次序。应该理解这样使用的数据在适当情况下可以互换,以便本申请的实施例能够以除了在这里图示或描述的那些以外的顺序实施,且“第一”、“第二”所区别的对象通常为一类,并不限定对象的个数,例如第一对象可以是一个,也可以是多个。此外,说明书以及权利要求中“和/或”表示所连接对象的至少其中之一,字符“/”一般表示前后关联对象是一种“或”的关系。
值得指出的是,本申请实施例所描述的技术不限于长期演进型(Long Term Evolution,LTE)/LTE的演进(LTE-Advanced,LTE-A)系统,还可用于其他无线通信系统,诸如码分多址(Code Division Multiple Access,CDMA)、时分多址(Time Division Multiple Access,TDMA)、频分多址(Frequency Division Multiple Access,FDMA)、正交频分多址(Orthogonal Frequency  Division Multiple Access,OFDMA)、单载波频分多址(Single-carrier Frequency-Division Multiple Access,SC-FDMA)和其他系统。本申请实施例中的术语“系统”和“网络”常被可互换地使用,所描述的技术既可用于以上提及的系统和无线电技术,也可用于其他系统和无线电技术。然而,以下描述出于示例目的描述了新空口(New Radio,NR)系统,并且在以下大部分描述中使用NR术语,尽管这些技术也可应用于NR系统应用以外的应用,如第6代(6 th Generation,6G)通信系统。
图1示出本申请实施例可应用的一种无线通信系统的结构图。无线通信系统包括终端11和网络侧设备12。其中,终端11也可以称作终端设备或者用户终端(User Equipment,UE),终端11可以是手机、平板电脑(Tablet Personal Computer)、膝上型电脑(Laptop Computer)或称为笔记本电脑、个人数字助理(Personal Digital Assistant,PDA)、掌上电脑、上网本、超级移动个人计算机(ultra-mobile personal computer,UMPC)、移动上网装置(Mobile Internet Device,MID)、可穿戴式设备(Wearable Device)或车载设备(VUE)、行人终端(PUE)等终端侧设备,可穿戴式设备包括:手环、耳机、眼镜等。需要说明的是,在本申请实施例并不限定终端11的具体类型。网络侧设备12可以是基站或核心网,其中,基站可被称为节点B、演进节点B、接入点、基收发机站(Base Transceiver Station,BTS)、无线电基站、无线电收发机、基本服务集(Basic Service Set,BSS)、扩展服务集(Extended Service Set,ESS)、B节点、演进型B节点(eNB)、家用B节点、家用演进型B节点、WLAN接入点、WiFi节点、发送接收点(Transmitting Receiving Point,TRP)或所述领域中其他某个合适的术语,只要达到相同的技术效果,所述基站不限于特定技术词汇,需要说明的是,在本申请实施例中仅以NR系统中的基站为例,但是并不限定基站的具体类型。
现有通信系统通过以下公式计算与发送随机接入前导码的PRACH相关的RA-RNTI:
RA-RNTI=1+s_id+14×t_id+14×80×f_id+14×80×8×ul_carrier_id;
其中,
s_id:发送前导码占用RO的起始正交频分复用(Orthogonal Frequency  Division Multiplexing,OFDM)符号编号(0≤s_id<14);
t_id:一个系统帧内的发送前导码占用RO的第一个时隙编号,该时隙编号基于PRACH时隙子载波间隔进行编号得到;
f_id:发送前导码占用RO在频域的编号(0≤f_id<8);
ul_carrier_id:随机接入前导码传输所使用的上行载波(‘0’表示普通上行载波,‘1’表示辅助上行载波)。
对于目前的PRACH支持15/30/60/120KHz的SCS,上述计算公式是适用的。对于支持更高的PRACH SCS的通信系统,采用上述计算公式,不同的时频资源可能计算得到相同的RA-RNTI。当不同的UE在这些时频资源上使用相同的Preamble index发送msg1时,UE不知道哪个RAR是自己的,需要通过竞争解决机制来解决冲突,如果采用根据定义更新后的RA-RNTI计算公式计算,会产生溢出,上述两种情况均会导致接入效率降低。
基于此,下面结合附图,通过具体的实施例及其应用场景对本申请实施例提供的RA-RNTI的处理方法、装置、终端及可读存储介质进行详细地说明。
图2为本申请实施例提供的RA-RNTI的处理方法的流程示意图之一。如图2所示,所述方法包括:
步骤201,基于发送前导码Preamble的随机接入时机RO的时频资源信息,计算RA-RNTI;
所述基于发送前导码Preamble的随机接入时机RO的时频资源信息,计算RA-RNTI,包括:
基于参数t_id计算RA-RNTI;
其中,t_id是一个第一给定时间内的发送所述前导码占用RO的第一个时隙所在的时隙编号,或,发送所述前导码占用RO所在的第一个slot group编号,或,发送所述前导码占用RO所在的第一个PRACH slot在slot group中的编号。
具体来说,UE在发送前导码Preamble以获取上行链路同步的过程中,会基于发送前导码Preamble的随机接入时机RO的时频资源信息计算RA-RNTI并保存,以基于所述RA-RNTI确定对应的随机接入响应RAR消息。可基于参数t_id计算RA-RNTI,t_id是一个第一给定时间内的发送所述前导 码占用RO的第一个时隙所在的时隙编号,或,发送所述前导码占用RO所在的第一个slot group编号,或,发送所述前导码占用RO所在的第一个PRACH slot在slot group中的编号,基于t_id计算得到的RA-RNTI,可在PRACH SCS超过120KHz的情况下,避免接入效率降低的问题。可以理解的是,本申请实施例计算RA-RNTI除了基于参数t_id之外,还可以包括其它发送前导码Preamble的随机接入时机RO的时频资源信息对应的参数,本申请实施例对此不作具体限定。
本申请实施例提供的RA-RNTI的处理方法,基于一个第一给定时间内的发送所述前导码占用RO的第一个时隙所在的时隙编号,或,发送所述前导码占用RO所在的第一个slot group编号或所在的第一个PRACH slot在slot group中的编号计算RA-RNTI,能够在PRACH SCS超过120KHz时,避免RA-RNTI溢出,避免接入效率降低。
基于上述实施例,所述时隙编号是基于参考时隙子载波间隔或物理随机接入信道PRACH时隙子载波间隔进行编号得到的;
所述slot group是将一个第一给定时间内的时隙slot按照一定规则进行分组得到的。
具体来说,t_id是一个第一给定时间内的发送所述前导码占用RO的第一个时隙所在的时隙编号,该时隙编号基于参考时隙子载波间隔进行编号得到,或,一个第一给定时间内的发送所述前导码占用RO的第一个时隙所在的时隙编号,该时隙编号基于物理随机接入信道PRACH时隙子载波间隔进行编号得到,或,将一个第一给定时间内的时隙slot按照一定规则分成N个时隙分组slot group,发送所述前导码占用RO所在的第一个slot group编号,或,将一个第一给定时间内的时隙slot按照一定规则分成N个slot group,发送所述前导码占用RO所在的第一个PRACH slot在slot group中的编号。基于上述定义的t_id计算得到的RA-RNTI,可在PRACH SCS超过120KHz的情况下,进一步避免接入效率降低的问题。
本申请实施例提供的RA-RNTI的处理方法,所述时隙编号基于参考时隙子载波间隔或物理随机接入信道PRACH时隙子载波间隔进行编号得到,所述slot group是将一个第一给定时间内的时隙slot按照一定规则进行分组得到, 能够在PRACH SCS超过120KHz时,出现不同的时频资源对应的RA-RNTI相同或RA-RNTI溢出的情况下,避免接入效率降低的问题。
基于上述实施例,在基于发送前导码Preamble的随机接入时机RO的时频资源信息,计算RA-RNTI之后,还包括:
在随机接入响应RAR窗口运行期间,监听基于所述RA-RNTI加扰的物理下行控制信道PDCCH。
具体来说,UE发送前导码Preamble之后,会在随机接入响应RAR窗口运行期间,监听基于所述RA-RNTI加扰的物理下行控制信道PDCCH,由于UE事先已经计算得到了RA-RNTI,因此,可以在随机接入响应RAR窗口运行期间,获取基于所述RA-RNTI加扰的物理下行控制信道PDCCH。
根据PDCCH中的下行控制消息DCI,接收随机接入响应RAR消息。
具体来说,UE根据PDCCH中的下行控制消息DCI以及RA-RNTI,可以确定其对应的随机接入响应RAR消息。本申请实施例提供的RA-RNTI的处理方法,在基于发送前导码Preamble的随机接入时机RO的时频资源信息,计算RA-RNTI之后,在随机接入响应RAR窗口运行期间,监听基于所述RA-RNTI加扰的物理下行控制信道PDCCH,根据PDCCH中的下行控制消息DCI,接收随机接入响应RAR消息,UE能够基于RA-RNTI准确确定对应的RAR消息。
基于上述实施例,所述基于参数t_id计算RA-RNTI,包括:
根据如下公式计算获得所述RA-RNTI:
RA-RNTI=1×A1+s_id×A2+Symbol×t_id×A3+Symbol×X×f_id×A4  (1)。
其中,t_id是一个第一给定时间内的发送所述前导码占用RO的第一个时隙所在的时隙编号,该时隙编号基于PRACH时隙子载波间隔进行编号得到;所述第一给定时间是至少一个时隙,至少1毫秒,至少一个子帧,至少一个RO的时域长度,至少一个帧或至少一个时间窗;
X由网络侧配置,或者,X是预设值,或者,X由所述终端确定,或者,X是一个第一给定时间内包含的时隙总数;
s_id是发送所述前导码占用RO的起始正交频分复用OFDM符号编号;
f_id是发送所述前导码占用RO在频域上的编号;
Symbol是一个第二给定时间内的符号数目,所述第二给定时间是至少一个时隙,至少1毫秒,至少一个子帧,至少一个RO的时域长度,至少一个帧或至少一个时间窗;
A1,A2,A3,A4为整数。
具体来说,在NR中支持的最大PRACH子载波间隔为120kHz,假设在52.6-71GHz频段范围内,最大支持的PRACH子载波间隔为480kHz,且不引入上行辅助载波,假设PRACH子载波间隔为480kHz,可以使用上述公式(1)计算RA-RNTI:
RA-RNTI=1×A1+s_id×A2+Symbol×t_id×A3+Symbol×X×f_id×A4;
式中,s_id指示发送前导码占用RO的起始OFDM符号编号,其取值范围为0≤s_id<14;t_id指示在一个最大RAR窗口时间/系统帧内的发送所述前导码占用RO的第一个时隙所在的时隙编号,该时隙编号基于PRACH时隙子载波间隔进行编号得到,其取值范围为0≤t_id<320;X指示在一个最大RAR窗口时间/系统帧内的时隙数,其值为320。
在实际应用中,UE选择RO发送前导码,根据发送的RO计算RA-RNTI,并在对应的RAR窗口(window)中在配置的CORESET/搜索空间监测计算得到的RA-RNTI加扰的PUCCH。如果监测到由计算得到的RA-RNTI加扰的PUCCH的DCI,则继续接受对应PDSCH;否则继续在RAR window进行监测。
本申请实施例提供的RA-RNTI的处理方法,基于公式RA-RNTI=1×A1+s_id×A2+Symbol×t_id×A3+Symbol×X×f_id×A4计算RA-RNTI,能够在PRACH SCS超过120KHz的情况下,避免接入效率降低的问题。
基于上述实施例,所述基于参数t_id计算RA-RNTI,包括:
根据如下公式计算获得所述RA-RNTI:
RA-RNTI=1×B1+s_id×B2+Symbol×t_id×B3+Symbol×X×f_id×B4+Symbol×X×Y×ul_carrier_id×B5  (2);
其中,
t_id是一个第一给定时间内的发送所述前导码占用RO的第一个时隙所 在的时隙编号,该时隙编号基于参考时隙子载波间隔进行编号得到;所述第一给定时间是至少一个时隙,至少1毫秒,至少一个子帧,至少一个RO的时域长度,至少一个帧或至少一个时间窗;
X由网络侧配置,或者,X是预设值,或者,X由所述终端确定,或者,X是一个第一给定时间内包含的参考时隙总数;
Y由网络侧配置,或者,Y是预设值,或者,Y由所述终端确定,或者,Y是在所述PRACH资源上进行频分多路复用(Frequency Division Multiplexing,FDM)的RO的个数;
s_id是发送所述前导码占用RO的起始正交频分复用OFDM符号编号;
f_id是发送所述前导码占用RO在频域上的编号;
Symbol是一个第二给定时间内的符号数目,所述第二给定时间是至少一个时隙,至少1毫秒,至少一个子帧,至少一个RO的时域长度,至少一个帧或至少一个时间窗;
ul_carrier_id由网络侧配置,或者,ul_carrier_id是预设值,或者,ul_carrier_id由所述终端确定,或者,ul_carrier_id是发送所述前导码所使用的上行载波编号;
B1,B2,B3,B4,B5为整数。
具体来说,图3为本申请实施例提供的参考时隙中的部分RO映射示意图,如图3所示,假设有4个UE可以在图4中时频资源上的16个RO分别随机选择一个发送Preamble,PRACH的SCS是480kHz,参考时隙的SCS是120kHz,所以在一个参考时隙内包含4个PRACH时隙。(假设使用普通上行载波,ul_carrier_id=0,Symbol为14,B1-B5均为1)
可以使用上述公式(2)计算RA-RNTI:
RA-RNTI=1×B1+s_id×B2+Symbol×t_id×B3+Symbol×X×f_id×B4+Symbol×X×Y×ul_carrier_id×B5;
=1+s_id+14×t_id+14×80×f_id+14×80×8×ul_carrier_id。
本申请实施例提供的RA-RNTI的处理方法,基于公式RA-RNTI=1×B1+s_id×B2+Symbol×t_id×B3+Symbol×X×f_id×B4+Symbol×X×Y×ul_carrier_id×B5计算RA-RNTI,能够在PRACH SCS超过120KHz的情况下, 避免接入效率降低的问题。
基于上述实施例,所述基于参数t_id计算RA-RNTI,包括:
根据如下公式计算获得所述RA-RNTI:
RA-RNTI=Mod(1×C1+s_id×C2+Symbol×t_id×C3+Symbol×X×f_id×C4+Symbol×X×Y×ul_carrier_id×C5,A)  (3);
其中,
t_id是一个第一给定时间内的发送所述前导码占用RO的第一个时隙所在的时隙编号,该时隙编号基于PRACH时隙子载波间隔进行编号得到;所述第一给定时间是至少一个时隙,至少1毫秒,至少一个子帧,至少一个RO的时域长度,至少一个帧或至少一个时间窗;
X由网络侧配置,或者,X是预设值,或者,X是一个第一给定时间内包含的时隙总数;
Y由网络侧配置,或者,Y是预设值,或者,Y由所述终端确定,或者,Y是在所述PRACH资源上进行频分多路复用FDM的RO的个数;
s_id是发送所述前导码占用RO的起始正交频分复用OFDM符号编号;
f_id是发送所述前导码占用RO在频域上的编号;
ul_carrier_id由网络侧配置,或者,ul_carrier_id是预设值,或者,ul_carrier_id由所述终端确定,或者,ul_carrier_id是发送所述前导码所使用的上行载波编号;
Symbol是一个第二给定时间内的符号数目,所述第二给定时间是至少一个时隙,至少1毫秒,至少一个子帧,至少一个RO的时域长度,至少一个帧或至少一个时间窗;
C1,C2,C3,C4,C5为整数;
A由网络侧配置,或者,A是预设值,或者,A由所述终端确定。
具体来说,假设有3个UE可以在时频资源上的有效RO分别随机选择一个发送Preamble,PRACH的SCS是960kHz。(假设使用普通上行载波,ul_carrier_id=0,Symbol为14,C1-C5均为1,A=65522)
可以使用公式(3)计算RA-RNTI的:
RA-RNTI=Mod(1×C1+s_id×C2+Symbol×t_id×C3+Symbol×X×f_id ×C4+Symbol×X×Y×ul_carrier_id×C5,A)=Mod(1+s_id+14×t_id+14×640×f_id+14×640×8×ul_carrier_id,65522)。
本申请实施例提供的RA-RNTI的处理方法,基于公式RA-RNTI=Mod(1×C1+s_id×C2+Symbol×t_id×C3+Symbol×X×f_id×C4+Symbol×X×Y×ul_carrier_id×C5计算RA-RNTI,能够在PRACH SCS超过120KHz的情况下,避免接入效率降低的问题。
基于上述实施例,所述基于参数t_id计算RA-RNTI包括:
根据如下公式计算获得所述RA-RNTI:
RA-RNTI=1×D1+s_id×D2+Symbol×t_id×D3+Symbol×X×f_id×D4+Symbol×X×Y×slot_id×D5  (4);
其中,t_id是一个第一给定时间内的发送所述前导码占用RO的第一个时隙所在的时隙编号,该时隙编号基于参考时隙子载波间隔进行编号得到;所述第一给定时间是至少一个时隙,至少1毫秒,至少一个子帧,至少一个RO的时域长度,至少一个帧或至少一个时间窗;
X由网络侧配置,或者,X是预设值,或者,X是一个第一给定时间内包含的参考时隙总数;
Y由网络侧配置,或者,Y是预设值,或者,Y由所述终端确定,或者,Y是在所述PRACH资源上进行频分多路复用FDM的RO的个数;
s_id是发送所述前导码占用RO的起始正交频分复用OFDM符号编号;
f_id是发送所述前导码占用RO在频域上的编号;
slot_id是发送前导码占用RO的第一个PRACH slot在参考时隙中的编号;
Symbol是一个第二给定时间内的符号数目,所述第二给定时间是至少一个时隙,至少1毫秒,至少一个子帧,至少一个RO的时域长度,至少一个帧或至少一个时间窗;
D1,D2,D3,D4,D5为整数。
具体来说,假设在52.6-71GHz频段范围内,最大支持的PRACH子载波间隔为480kHz,且不引入上行辅助载波,假设PRACH子载波间隔为480kHz,参考时隙的SCS为120kHz(假设Symbol为14,D1-D5均为1),可以使用上述公式(4)计算RA-RNTI:
RA-RNTI=1×D1+s_id×D2+Symbol×t_id×D3+Symbol×X×f_id×D4+Symbol×X×Y×slot_id×D5
=1+s_id+14×t_id+14×80×f_id+14×80×8×slot_id
式中,s_id指示发送前导码占用RO的起始OFDM符号编号,其取值范围为0≤s_id<14;t_id指示在一个最大RAR窗口时间/系统帧内的发送前导码占用RO的第一个时隙编号;X指示在一个最大RAR窗口时间/系统帧内的PRACH参考时隙总数;Y指示FDM的最大RO数,其值为8;slot_id指示在一个参考时隙中的prach时隙编号,其取值范围为0≤slot_id<4。
在实际应用中,UE选择RO发送前导码,根据发送的RO计算RA-RNTI,并在对应的RAR window中在配置的CORESET/搜索空间监测计算得到的RA-RNTI加扰的PUCCH。如果监测到由计算得到的RA-RNTI加扰的PUCCH的DCI,则继续接受对应PDSCH;否则继续在RAR window进行监测。
本申请实施例提供的RA-RNTI的处理方法,基于公式RA-RNTI=1×D1+s_id×D2+Symbol×t_id×D3+Symbol×X×f_id×D4+Symbol×X×Y×slot_id×D5计算RA-RNTI,能够在PRACH SCS超过120KHz的情况下,避免接入效率降低的问题。
基于上述实施例,所述基于参数t_id计算RA-RNTI,包括:
根据如下公式计算获得所述RA-RNTI:
RA-RNTI=1×E1+s_id×E2+Symbol×t_id×E3+Symbol×X×f_id×E4+Symbol×X×Y×ul_carrier_id×E5  (5);
其中,
t_id是将一个第一给定时间内的时隙slot按照一定规则分成N个时隙分组slot group,发送所述前导码占用RO所在的第一个slot group编号;所述第一给定时间是至少一个时隙,至少1毫秒,至少一个子帧,至少一个RO的时域长度,至少一个帧或至少一个时间窗;
X由网络侧配置,或者,X是预设值,或者,X是一个第一给定时间内包含的时隙分组数;
Y由网络侧配置,或者,Y是预设值,或者,Y由所述终端确定,或者,Y是在所述PRACH资源上进行频分多路复用FDM的RO的个数;
s_id是发送所述前导码占用RO的起始正交频分复用OFDM符号编号;
f_id是发送所述前导码占用RO在频域上的编号;
ul_carrier_id由网络侧配置,或者,ul_carrier_id是预设值,或者,ul_carrier_id由所述终端确定,或者,ul_carrier_id是发送所述前导码所使用的上行载波编号;
Symbol是一个第二给定时间内的符号数目,所述第二给定时间是至少一个时隙,至少1毫秒,至少一个子帧,至少一个RO的时域长度,至少一个帧或至少一个时间窗;
E1,E2,E3,E4,E5为整数。
具体来说,图4是本申请实施例提供的slot group中的部分RO映射示意图,如图4所示,假设有4个UE可以在图4中的时频资源上的32个RO分别随机选择一个发送Preamble,PRACH的SCS是960kHz,将一个最大RAR窗口时间/系统帧内的slot分成80组,每组有8个slot。(假设使用普通上行载波,ul_carrier_id=0,Symbol为14,E1-E5为1。)
可以使用上述公式(5)计算RA-RNTI:
RA-RNTI=1×E1+s_id×E2+Symbol×t_id×E3+Symbol×X×f_id×E4+Symbol×X×Y×ul_carrier_id×E5
=1+s_id+14×t_id+14×80×f_id+14×80×8×ul_carrier_id。
本申请实施例提供的RA-RNTI的处理方法,基于公式RA-RNTI=1×E1+s_id×E2+Symbol×t_id×E3+Symbol×X×f_id×E4+Symbol×X×Y×ul_carrier_id×E5计算RA-RNTI,能够在PRACH SCS超过120KHz的情况下,避免接入效率降低的问题。
基于上述实施例,所述基于参数t_id计算RA-RNTI,包括:
根据如下公式计算获得所述RA-RNTI:
RA-RNTI=1×F1+s_id×F2+Symbol×t_id×F3+Symbol×X×f_id×F4+Symbol×X×Y×slot_id×F5  (6);
其中,
t_id是将一个第一给定时间内的时隙slot按照一定规则分成N个时隙分组slot group,发送所述前导码占用RO所在的第一个slot group编号;所述第 一给定时间是至少一个时隙,至少1毫秒,至少一个子帧,至少一个RO的时域长度,至少一个帧或至少一个时间窗;
X由网络侧配置,或者,X是预设值,或者,X是一个第一给定时间内包含的时隙分组数;
Y由网络侧配置,或者,Y是预设值,或者,Y由所述终端确定,或者,Y是在所述PRACH资源上进行频分多路复用FDM的RO的个数;
s_id是发送所述前导码占用RO的起始正交频分复用OFDM符号编号;
f_id是发送所述前导码占用RO在频域上的编号;
slot_id是发送所述前导码占用RO的第一个PRACH slot在slot group中的编号;
Symbol是一个第二给定时间内的符号数目,所述第二给定时间是至少一个时隙,至少1毫秒,至少一个子帧,至少一个RO的时域长度,至少一个帧或至少一个时间窗;
F1,F2,F3,F4,F5为整数。
具体来说,假设在52.6-71GHz频段范围内,最大支持的PRACH子载波间隔为480kHz,且不引入上行辅助载波,假设PRACH子载波间隔为480kHz,将一个最大RAR窗口时间/系统帧内的slot分成80组,每组有4个PRACH slot(假设Symbol为14,F1-F5为1),则使用上述公式(6)计算RA-RNTI:
RA-RNTI=1×F1+s_id×F2+Symbol×t_id×F3+Symbol×X×f_id×F4+Symbol×X×Y×slot_id×F5
=1+s_id+14×t_id+14×80×f_id+14×80×Y×slot_id
式中,s_id指示发送前导码占用RO的起始OFDM符号编号,其取值范围为0≤s_id<14;t_id指示将一个RAR窗口时间内的slot按照一定规则分成N个slot group,发送前导码占用RO在的第一个slot group编号;X指示在一个最大RAR窗口时间/系统帧内的group数,其值为80;Y指示FDM的最大RO数,其值为8;slot_id指示在一个slot group中的prach时隙编号,其取值范围为0≤slot_id<4。
实际应用中,UE选择RO发送前导码,根据发送的RO计算RA-RNTI,并在对应的RAR window中在配置的CORESET/搜索空间监测计算得到的 RA-RNTI加扰的PUCCH。如果监测到由计算得到的RA-RNTI加扰的PUCCH的DCI,则继续接受对应PDSCH;否则继续在RAR window进行监测。
本申请实施例提供的RA-RNTI的处理方法,基于公式RA-RNTI=1×F1+s_id×F2+Symbol×t_id×F3+Symbol×X×f_id×F4+Symbol×X×Y×slot_id×F5计算RA-RNTI,能够在PRACH SCS超过120KHz的情况下,避免接入效率降低的问题。
基于上述实施例,所述基于参数t_id计算RA-RNTI,包括:
根据如下公式计算获得所述RA-RNTI:
RA-RNTI=1×G1+s_id×G2+Symbol×t_id×G3+Symbol×X×f_id×G4+Symbol×X×Y×ul_carrier_id×G5  (7);
其中,
t_id是将一个第一给定时间内的时隙slot按照一定规则分成N个slot group,发送所述前导码占用RO所在的第一个PRACH slot在slot group中的编号;所述第一给定时间是至少一个时隙,至少1毫秒,至少一个子帧,至少一个RO的时域长度,至少一个帧或至少一个时间窗;
X由网络侧配置,或者,X是预设值,或者,X是一个slot group内包含的PRACH时隙个数;
Y由网络侧配置,或者,Y是预设值,或者,Y由所述终端确定,或者,Y是在所述PRACH资源上进行频分多路复用FDM的RO的个数;
s_id是发送所述前导码占用RO的起始正交频分复用OFDM符号编号;
f_id是发送所述前导码占用RO在频域上的编号;
ul_carrier_id由网络侧配置,或者,ul_carrier_id是预设值,或者,ul_carrier_id由所述终端确定,或者,ul_carrier_id是发送所述前导码所使用的上行载波编号;
Symbol是一个第二给定时间内的符号数目,所述第二给定时间是至少一个时隙,至少1毫秒,至少一个子帧,至少一个RO的时域长度,至少一个帧或至少一个时间窗;
G1,G2,G3,G4,G5为整数。
具体来说,图5是本申请实施例提供的slot分组示意图,如图5所示, 假设有4个UE可以在下面的时频资源上的32个RO分别随机选择一个发送Preamble,PRACH的SCS是960kHz,将一个最大RAR窗口时间/系统帧内的slot分成8组,每组有80个slot。(假设使用普通上行载波,ul_carrier_id=0,Symbol为14,G1-G5为1)
可以使用计算RA-RNTI的公式(7):
RA-RNTI=1×G1+s_id×G2+Symbol×t_id×G3+Symbol×X×f_id×G4+Symbol×X×Y×ul_carrier_id×G5
=1+s_id+14×t_id+14×80×f_id+14×80×8×ul_carrier_id。
本申请实施例提供的RA-RNTI的处理方法,基于公式RA-RNTI=1×G1+s_id×G2+Symbol×t_id×G3+Symbol×X×f_id×G4+Symbol×X×Y×ul_carrier_id×G5计算RA-RNTI,能够在PRACH SCS超过120KHz的情况下,避免接入效率降低的问题。
基于上述实施例,所述基于参数t_id计算RA-RNTI,包括:
根据如下公式计算获得所述RA-RNTI:
RA-RNTI=1×H1+s_id×H2+Symbol×t_id×H3+Symbol×X×f_id×H4+Symbol×X×Y×group_id×H5  (8);
其中,
t_id是将一个第一给定时间内的时隙slot按照一定规则分成N个slot group,发送所述前导码占用RO所在的第一个PRACH slot在slot group中的编号;所述第一给定时间是至少一个时隙,至少1毫秒,至少一个子帧,至少一个RO的时域长度,至少一个帧或至少一个时间窗;
X由网络侧配置,或者,X是预设值,或者,X是一个slot group内包含的PRACH时隙个数;
Y由网络侧配置,或者,Y是预设值,或者,Y由所述终端确定,或者,Y是在所述PRACH资源上进行频分多路复用FDM的RO的个数;
s_id是发送所述前导码占用RO的起始正交频分复用OFDM符号编号;
f_id是发送所述前导码占用RO在频域上的编号;
group_id是发送所述前导码占用RO所在的第一个slot group编号。
Symbol是一个第二给定时间内的符号数目,所述第二给定时间是至少一 个时隙,至少1毫秒,至少一个子帧,至少一个RO的时域长度,至少一个帧或至少一个时间窗;
H1,H2,H3,H4,H5为整数。
具体来说,假设在52.6-71GHz频段范围内,最大支持的prach子载波间隔为480kHz,且不引入上行辅助载波,假设PRACH子载波间隔为480kHz,将一个最大RAR窗口时间/系统帧内的slot分成4组,每组有80个PRACH slot,则使用上述公式(8)计算RA-RNTI:
RA-RNTI=1×H1+s_id×H2+Symbol×t_id×H3+Symbol×X×f_id×H4+Symbol×X×Y×group_id×H5
=1+s_id+14×t_id+14×80×f_id+14×80×Y×group_id
式中,s_id指示发送前导码占用RO的起始OFDM符号编号,其取值范围为0≤s_id<14;t_id指示将一个最大RAR窗口时间/系统帧内的slot按照一定规则分成N个slot group,发送前导码占用RO在的第一个PRACH slot在一个slot group内的编号;X指示在一个slot group内的slot个数,其值为80;Y指示FDM的最大RO数,其值为8;group_id指示发送前导码占用RO在的第一个slot group编号,其取值范围为0≤slot_id<4。
在实际应用中,UE选择RO发送前导码,根据发送的RO计算RA-RNTI,并在对应的RAR window中在配置的CORESET/搜索空间监测计算得到的RA-RNTI加扰的PUCCH。如果监测到由计算得到的RA-RNTI加扰的PUCCH的DCI,则继续接受对应PDSCH;否则继续在RAR window进行监测。
本申请实施例提供的RA-RNTI的处理方法,基于公式RA-RNTI=1×H1+s_id×H2+Symbol×t_id×H3+Symbol×X×f_id×H4+Symbol×X×Y×group_id×H5计算RA-RNTI,能够在PRACH SCS超过120KHz的情况下,避免接入效率降低的问题。
基于上述实施例,所述根据PDCCH中的下行控制消息DCI,接收随机接入响应RAR消息,包括:
基于网络侧设备发送的第一指示,接收随机接入响应RAR消息;所述第一指示指示发送所述前导码占用RO的第一个PRACH slot在参考时隙中的编号。
具体来说,对于利用公式(2)计算RA-RNTI的情形,如图3所示,DCI需要2bit指示,分别指示参考时隙中的第0,1,2,3个PRACH slot。
UE1在参考时隙10中的第0个PRACH slot中的RO1发送PRACH;UE1根据RO1计算RA-RNTI为:
RA-RNT1=1+4+14×10+14×80×4+14×80×8×0=4625;
并在对应的RAR window中在配置的CORESET/搜索空间监测计算得到的RA-RNTI加扰的PDCCH的DCI,检查DCI中的第一指示域是否为0,如果为0则继续接收该PDSCH并解码;否则继续在RAR window进行监测。
UE2在参考时隙10中的第0个PRACH slot中的RO3发送PRACH;UE2根据RO3计算RA-RNTI为:
RA-RNT2=1+8+14×10+14×80×4+14×80×8×0=4629;
并在对应的RAR window中在配置的CORESET/搜索空间监测计算得到的RA-RNTI加扰的PDCCH的DCI,检查DCI中的第一指示域是否为0,如果为0则继续接收该PDSCH并解码;否则继续在RAR window进行监测。
UE3在参考时隙10中的第1个PRACH slot中的RO5发送PRACH;UE3根据RO5计算RA-RNTI为:
RA-RNT3=1+4+14×10+14×80×4+14×80×8×0=4625;
并在对应的RAR window中在配置的CORESET/搜索空间监测计算得到的RA-RNTI加扰的PDCCH的DCI,检查DCI中的第一指示域是否为1,如果为1则继续接收该PDSCH并解码;否则继续在RAR window进行监测。
UE4在参考时隙10中的第3个PRACH slot中的RO13发送PRACH;UE4根据RO13计算RA-RNTI为:
RA-RNT4=1+4+14×10+14×80×4+14×80×8×0=4625;
并在对应的RAR window中在配置的CORESET/搜索空间监测计算得到的RA-RNTI加扰的PDCCH的DCI,检查DCI中的第一指示域是否为3,如果为3则继续接收该PDSCH并解码;否则继续在RAR window进行监测。
由上述示例可知,即使不同的时频资源计算得到相同的RA-RNTI,UE也可以通过所述第一指示指示的发送所述前导码占用RO的第一个PRACH slot在参考时隙中的编号进行区分,从而避免接入效率降低的问题。
本申请实施例提供的RA-RNTI的处理方法,基于网络侧设备发送的第一指示,接收随机接入响应RAR消息,所述第一指示指示发送所述前导码占用RO的第一个PRACH slot在参考时隙中的编号,能够在PRACH SCS超过120KHz的情况下,避免接入效率降低的问题。
基于上述实施例,所述根据PDCCH中的下行控制消息DCI,接收随机接入响应RAR消息,包括:
基于网络侧设备发送的第一指示,接收随机接入响应RAR消息;所述第一指示指示发送所述前导码占用RO所在的第一个PRACH slot在slot group中的编号。
具体来说,对于利用公式(5)计算RA-RNTI的情形,如图4所示,DCI需要3bit指示,分别指示一个slot group中的第0,1,2,3,4,5,6,7个PRACH slot。
UE1在slot group 1中的第0个PRACH slot中的RO1发送PRACH;UE1根据RO1计算RA-RNTI为:
RA-RNT1=1+4+14×1+14×80×4+14×80×8×0=4499
并在对应的RAR window中在配置的CORESET/搜索空间监测计算得到的RA-RNTI加扰的PDCCH的DCI,检查DCI中的第一指示域是否为0,如果为0则继续接收该PDSCH并解码;否则继续在RAR window进行监测。
UE2在slot group 1中的第0个PRACH slot中的RO3发送PRACH;UE2根据RO3计算RA-RNTI为:
RA-RNT2=1+8+14×1+14×80×4+14×80×8×0=4503
并在对应的RAR window中在配置的CORESET/搜索空间监测计算得到的RA-RNTI加扰的PDCCH的DCI,检查DCI中的第一指示域是否为0,如果为0则继续接收该PDSCH并解码;否则继续在RAR window进行监测。
UE3在slot group 1中的第1个PRACH slot中的RO5发送PRACH;UE3根据RO5计算RA-RNTI为:
RA-RNT3=1+4+14×1+14×80×4+14×80×8×0=4499
并在对应的RAR window中在配置的CORESET/搜索空间监测计算得到的RA-RNTI加扰的PDCCH的DCI,检查DCI中的第一指示域是否为1,如果为1则继续接收该PDSCH并解码;否则继续在RAR window进行监测。
UE4在slot group 1中的第3个PRACH slot中的RO13发送PRACH;UE4根据RO13计算RA-RNTI为:
RA-RNT4=1+4+14×1+14×80×4+14×80×8×0=4499
并在对应的RAR window中在配置的CORESET/搜索空间监测计算得到的RA-RNTI加扰的PDCCH的DCI,检查DCI中的第一指示域是否为3,如果为3则继续接收该PDSCH并解码;否则继续在RAR window进行监测。
由上述示例可知,即使不同的时频资源计算得到相同的RA-RNTI,UE也可以通过所述第一指示指示的发送所述前导码占用RO所在的第一个PRACH slot在slot group中的编号进行区分,从而避免接入效率降低的问题。
本申请实施例提供的RA-RNTI的处理方法,基于网络侧设备发送的第一指示,接收随机接入响应RAR消息,所述第一指示指示发送所述前导码占用RO所在的第一个PRACH slot在slot group中的编号,能够在PRACH SCS超过120KHz的情况下,避免接入效率降低的问题。
基于上述实施例,所述根据PDCCH中的下行控制消息DCI,接收随机接入响应RAR消息,包括:
基于网络侧设备发送的第一指示,接收随机接入响应RAR消息;所述第一指示指示发送所述前导码占用RO所在的第一个slot group编号。
具体来说,对于利用公式(7)计算RA-RNTI的情形,如图5所示,DCI需要3bit指示,分别指示第0,1,2,3,4,5,6,7个slot group。
UE1在slot group 1中的第2个PRACH slot中的RO1发送PRACH;UE1根据RO1计算RA-RNTI为:
RA-RNT1=1+4+14×2+14×80×4+14×80×8×0=4513(RO1:s_id=4,f_id=4);
并在对应的RAR window中在配置的CORESET/搜索空间监测计算得到的RA-RNTI加扰的PDCCH的DCI,检查DCI中的第一指示域是否为1,如果为1则继续接收该PDSCH并解码;否则继续在RAR window进行监测。
UE2在slot group 1中的第40个PRACH slot中的RO2发送PRACH;UE2根据RO2计算RA-RNTI为:
RA-RNT2=1+8+14×40+14×80×4+14×80×8×0=5049(RO2:s_id=8, f_id=4);
并在对应的RAR window中在配置的CORESET/搜索空间监测计算得到的RA-RNTI加扰的PDCCH的DCI,检查DCI中的第一指示域是否为1,如果为1则继续接收该PDSCH并解码;否则继续在RAR window进行监测。
UE3在slot group 2中的第2个PRACH slot中的RO3发送PRACH;UE3根据RO3计算RA-RNTI为:
RA-RNT3=1+4+14×2+14×80×4+14×80×8×0=4513(RO3:s_id=4,f_id=4);
并在对应的RAR window中在配置的CORESET/搜索空间监测计算得到的RA-RNTI加扰的PDCCH的DCI,检查DCI中的第一指示域是否为2,如果为2则继续接收该PDSCH并解码;否则继续在RAR window进行监测。
UE4在slot group 4中的第40个PRACH slot中的RO4发送PRACH;UE4根据RO4计算RA-RNTI为:
RA-RNT4=1+4+14×40+14×80×4+14×80×8×0=5045(RO4:s_id=4,f_id=4);
并在对应的RAR window中在配置的CORESET/搜索空间监测计算得到的RA-RNTI加扰的PDCCH的DCI,检查DCI中的第一指示域是否为4,如果为4则继续接收该PDSCH并解码;否则继续在RAR window进行监测。
由上述示例可知,即使不同的时频资源计算得到相同的RA-RNTI,UE也可以通过所述第一指示指示的发送所述前导码占用RO所在的第一个slot group编号进行区分,从而避免接入效率降低的问题。
本申请实施例提供的RA-RNTI的处理方法,基于网络侧设备发送的第一指示,接收随机接入响应RAR消息,所述第一指示指示发送所述前导码占用RO所在的第一个slot group编号,能够在PRACH SCS超过120KHz的情况下,避免接入效率降低的问题。
基于上述实施例,所述根据PDCCH中的下行控制消息DCI,接收随机接入响应RAR消息,包括:
基于网络侧设备发送的第一指示,接收随机接入响应RAR消息;所述第一指示指示(1×C1+s_id×C2+Symbol×t_id×C3+Symbol×X×f_id×C4+ Symbol×X×Y×ul_carrier_id×C5)/A的值。
具体来说,对于利用公式(3)计算RA-RNTI的情形,DCI需要2bit,用以指示(1+s_id+14×t_id+14×640×f_id+14×640×8×ul_carrier_id)/65522的值。
UE1在RO1发送PRACH;UE1根据RO1计算RA-RNTI为:
RA-RNT1=Mod(1+4+14×620+14×640×7+14×640×8×0,65522)=5883(RO1:s_id=4,t_id=620,f_id=7);
DCI指示:(1+4+14×620+14×640×7+14×640×8×0)/65522=1
并在对应的RAR window中在配置的CORESET/搜索空间监测计算得到的RA-RNTI加扰的PDCCH的DCI,检查DCI中的第一指示域是否为1,如果为1则继续接收该PDSCH并解码;否则继续在RAR window进行监测。
UE2在RO2发送PRACH;UE2根据RO2计算RA-RNTI为:
RA-RNT2=Mod(1+2+14×420+14×640×0+14×640×8×0,65522)=5883(RO2:s_id=2,t_id=420,f_id=0);
DCI指示:(1+2+14×420+14×640×7+14×640×8×0)/65522=0
并在对应的RAR window中在配置的CORESET/搜索空间监测计算得到的RA-RNTI加扰的PDCCH的DCI,检查DCI中的第一指示域是否为0,如果为0则继续接收该PDSCH并解码;否则继续在RAR window进行监测。
UE3在RO3发送PRACH;UE3根据RO3计算RA-RNTI为:
RA-RNT3=Mod(1+2+14×420+14×640×5+14×640×8×0,1792065522)=50683(RO3:s_id=2,t_id=420,f_id=5);
DCI指示:(1+2+14×420+14×640×7+14×640×8×0)/65522=0
并在对应的RAR window中在配置的CORESET/搜索空间监测计算得到的RA-RNTI加扰的PDCCH的DCI,检查DCI中的第一指示域是否为0,如果为0则继续接收该PDSCH并解码;否则继续在RAR window进行监测。
由上述示例可知,即使不同的时频资源计算得到相同的RA-RNTI,UE也可以通过所述第一指示指示的(1×C1+s_id×C2+Symbol×t_id×C3+Symbol×X×f_id×C4+Symbol×X×Y×ul_carrier_id×C5)/A的值进行区分,从而避免接入效率降低的问题。
本申请实施例提供的RA-RNTI的处理方法,基于网络侧设备发送的第一指示,接收随机接入响应RAR消息,所述第一指示指示(1×C1+s_id×C2+Symbol×t_id×C3+Symbol×X×f_id×C4+Symbol×X×Y×ul_carrier_id×C5)/A的值,能够在PRACH SCS超过120KHz的情况下,避免接入效率降低的问题。
基于上述实施例,所述第一指示承载在物理下行控制信道PDCCH的下行控制信息DCI,媒体接入控制(Medium Access Control,MAC)控制单元(Control element,CE)或者RAR信息中。
具体来说,可以根据实际应用需要选择第一指示的发送方式,例如第一指示承载在物理下行控制信道PDCCH的下行控制信息DCI,MAC CE或者RAR信息中。
本申请实施例提供的RA-RNTI的处理方法,所述第一指示承载在物理下行控制信道PDCCH的下行控制信息DCI,MAC CE或者RAR信息中,能够提高第一指示的传输灵活性。
基于上述实施例,在一个参考时隙中,仅在其中的一个PRACH时隙配置RO,且所述配置RO的PRACH时隙由协议预定义或无线资源控制协议RRC配置或MAC CE配置。
具体来说,对于利用公式(2)和(4)计算RA-RNTI的情形,可以通过在一个参考时隙中,仅在其中的一个PRACH时隙配置RO的方式保证不同的时频资源计算得到的RA-RNTI不同,在此基础上,采用公式(2)计算时,即使不采用第一指示信息,UE也能准确确定与其对应的RAR消息。
本申请实施例提供的RA-RNTI的处理方法,通过在一个参考时隙中,仅在其中的一个PRACH时隙配置RO,能够在PRACH SCS超过120KHz的情况下,避免出现重复的RA-RNTI,进而避免接入效率降低的问题。
基于上述实施例,在一个slot group中,仅在其中的一个PRACH时隙配置RO,所述配置RO的PRACH时隙由协议预定义或无线资源控制协议RRC配置或MAC CE配置。
具体来说,对于利用公式(5)和(6)计算RA-RNTI的情形,可以通过在一个slot group中,仅在其中的一个PRACH时隙配置RO的方式保证不同 的时频资源计算得到的RA-RNTI不同,在此基础上,采用公式(5)计算时,即使不采用第一指示信息,UE也能准确确定与其对应的RAR消息。
本申请实施例提供的RA-RNTI的处理方法,通过在一个slot group中,仅在其中的一个PRACH时隙配置RO,能够在PRACH SCS超过120KHz的情况下,避免出现重复的RA-RNTI,进而避免接入效率降低的问题。
基于上述实施例,只在一个slot group中配置RO,所述配置RO的slot group由协议预定义或无线资源控制协议RRC配置或MAC CE配置。
具体来说,对于利用公式(7)和(8)计算RA-RNTI的情形,可以通过只在一个slot group中配置RO的方式保证不同的时频资源计算得到的RA-RNTI不同,在此基础上,采用公式(7)计算时,即使不采用第一指示信息,UE也能准确确定与其对应的RAR消息。
本申请实施例提供的RA-RNTI的处理方法,通过只在一个slot group中配置RO,能够在PRACH SCS超过120KHz的情况下,避免出现重复的RA-RNTI,进而避免接入效率降低的问题。
基于上述实施例,按照如下规则划分slot group:
将一个第一给定时间内的slot平均分成N个slot group,每个group中有M个slot;所述M个slot可以为连续或非连续的;如果是连续的M个slot,则按照时序每M个slot是一组;如果是非连续的M个slot,则每个(slot index)mod N的值相等的slot在同一组,其中slot index为时隙编号。
具体来说,所述slot group的划分方式可以是将一个第一给定时间内的slot平均分成N个slot group,每个group中有M个slot;所述M个slot可以为连续或非连续的;如果是连续的M个slot,则按照时序每M个slot是一组;如果是非连续的M个slot,则每个(slot index)mod N的值相等的slot在同一组,其中slot index为时隙编号,可以理解的是,所述slot group的划分也可以采用其它任意可行的分组方式,本申请实施例对此不作具体限定。
本申请实施例提供的RA-RNTI的处理方法,通过将一个第一给定时间内的slot平均分成N个slot group,每个group中有M个slot,并基于所述分组中的编号计算RA-RNTI,能够在PRACH SCS超过120KHz的情况下,避免接入效率降低的问题。
基于上述实施例,所述参考时隙的子载波间隔由网络侧配置或协议预定义。
具体来说,所述参考时隙的子载波间隔由网络侧配置或协议预定义,可以理解的是,所述参考时隙的子载波间隔也可以采用其它任意可行的方式进行配置,本申请实施例对此不作具体限定。
本申请实施例提供的RA-RNTI的处理方法,通过网络侧配置或协议预定义的方式设置参考时隙的子载波间隔,能够保证参数设置的灵活性。
基于上述实施例,所述方法应用于预设频率范围和/或物理随机接入信道子载波间隔PRACH SCS中。
具体来说,所述预设频率范围为52.6-71GHz,所述物理随机接入信道子载波间隔PRACH SCS为480kHz或960kHz。
本申请实施例提供的RA-RNTI的处理方法,可应用于预设频率范围和/或物理随机接入信道子载波间隔PRACH SCS中,避免支持更高的PRACH SCS的通信系统接入效率降低的问题。
值得注意的是,本申请实施例提出的所有RA-RNTI的处理方法,不仅适用于上述四步(4-step)RACH中的RA-RNTI处理,也适用于两步(2-step)RACH中的消息B(MSGB)-RNTI的处理。例如:在2-step RACH中,MSGB-RNTI可以根据如下公式之一计算获得:
MSGB-RNTI=1×A1+s_id×A2+Symbol×t_id×A3+Symbol×X×f_id×A4+Symbol×X×Y×A5;  (9)
MSGB-RNTI=1×B1+s_id×B2+Symbol×t_id×B3+Symbol×X×f_id×B4+Symbol×X×Y×ul_carrier_id×B5+Symbol×X×Y×B6;  (10)
MSGB-RNTI=Mod(1×C1+s_id×C2+Symbol×t_id×C3+Symbol×X×f_id×C4+Symbol×X×Y×ul_carrier_id×C5+Symbol×X×Y×C6,A);(11)
MSGB-RNTI=1×D1+s_id×D2+Symbol×t_id×D3+Symbol×X×f_id×D4+Symbol×X×Y×slot_id×D5+Symbol×X×Y×D6;  (12)
MSGB-RNTI=1×E1+s_id×E2+Symbol×t_id×E3+Symbol×X×f_id×E4+Symbol×X×Y×ul_carrier_id×E5+Symbol×X×Y×E6;  (13)
MSGB-RNTI=1×F1+s_id×F2+Symbol×t_id×F3+Symbol×X×f_id× F4+Symbol×X×Y×slot_id×F5+Symbol×X×Y×F6;  (14)
MSGB-RNTI=1×G1+s_id×G2+Symbol×t_id×G3+Symbol×X×f_id×G4+Symbol×X×Y×ul_carrier_id×G5+Symbol×X×Y×G6;  (15)
MSGB-RNTI=1×H1+s_id×H2+Symbol×t_id×H3+Symbol×X×f_id×H4+Symbol×X×Y×group_id×H5+Symbol×X×Y×H6;  (16)
其中,A1-A5,B1-B6,C1-C6,D1-D6,E1-E6,F1-F6,G1-G6,H1-H6均为整数。
上述公式(9)-(16)中,除了公式(11)的第一指示指示(1×C1+s_id×C2+Symbol×t_id×C3+Symbol×X×f_id×C4+Symbol×X×Y×ul_carrier_id×C5+Symbol×X×Y×C6)/A)的值,与公式(3)的指示内容略有不同,其余公式的参数定义以及处理方法均可与RA-RNTI的计算公式(1)-(8)一一对应。
需要说明的是,本申请实施例提供的RA-RNTI的处理方法,执行主体可以为RA-RNTI的处理装置,或者,该RA-RNTI的处理装置中的用于执行RA-RNTI的处理方法的控制模块。本申请实施例中以RA-RNTI的处理装置执行RA-RNTI的处理方法为例,说明本申请实施例提供的RA-RNTI的处理装置。
图6是本申请实施例提供的RA-RNTI的处理装置结构示意图之一,如图6所示,所述装置包括:
RA-RNTI确定模块601,用于基于发送前导码Preamble的随机接入时机RO的时频资源信息,计算RA-RNTI;
所述基于发送前导码Preamble的随机接入时机RO的时频资源信息,计算RA-RNTI,包括:
基于参数t_id计算RA-RNTI;
其中,t_id是一个第一给定时间内的发送所述前导码占用RO的第一个时隙所在的时隙编号,或,发送所述前导码占用RO所在的第一个slot group编号,或,发送所述前导码占用RO所在的第一个PRACH slot在slot group中的编号。
基于上述实施例,所述时隙编号是基于参考时隙子载波间隔或物理随机 接入信道PRACH时隙子载波间隔进行编号得到的;
所述slot group是将一个第一给定时间内的时隙slot按照一定规则进行分组得到的。
基于上述实施例,还包括:
PDCCH监听模块,用于在随机接入响应RAR窗口运行期间,监听基于所述RA-RNTI加扰的物理下行控制信道PDCCH;
RAR消息接收模块,用于根据PDCCH中的下行控制消息DCI,接收随机接入响应RAR消息。
基于上述实施例,所述基于参数t_id计算RA-RNTI,包括:
根据如下公式计算获得所述RA-RNTI:
RA-RNTI=1×A1+s_id×A2+Symbol×t_id×A3+Symbol×X×f_id×A4。
其中,t_id是一个第一给定时间内的发送所述前导码占用RO的第一个时隙所在的时隙编号,该时隙编号基于PRACH时隙子载波间隔进行编号得到;所述第一给定时间是至少一个时隙,至少1毫秒,至少一个子帧,至少一个RO的时域长度,至少一个帧或至少一个时间窗;
X由网络侧配置,或者,X是预设值,或者,X由所述终端确定,或者,X是一个第一给定时间内包含的时隙总数;
s_id是发送所述前导码占用RO的起始正交频分复用OFDM符号编号;
f_id是发送所述前导码占用RO在频域上的编号;
Symbol是一个第二给定时间内的符号数目,所述第二给定时间是至少一个时隙,至少1毫秒,至少一个子帧,至少一个RO的时域长度,至少一个帧或至少一个时间窗;
A1,A2,A3,A4为整数。
基于上述实施例,所述基于参数t_id计算RA-RNTI,包括:
根据如下公式计算获得所述RA-RNTI:
RA-RNTI=1×B1+s_id×B2+Symbol×t_id×B3+Symbol×X×f_id×B4+Symbol×X×Y×ul_carrier_id×B5;
其中,
t_id是一个第一给定时间内的发送所述前导码占用RO的第一个时隙所在的时隙编号,该时隙编号基于参考时隙子载波间隔进行编号得到;所述第一给定时间是至少一个时隙,至少1毫秒,至少一个子帧,至少一个RO的时域长度,至少一个帧或至少一个时间窗;
X由网络侧配置,或者,X是预设值,或者,X由所述终端确定,或者,X是一个第一给定时间内包含的参考时隙总数;
Y由网络侧配置,或者,Y是预设值,或者,Y由所述终端确定,或者,Y是在所述PRACH资源上进行频分多路复用FDM的RO的个数;
s_id是发送所述前导码占用RO的起始正交频分复用OFDM符号编号;
f_id是发送所述前导码占用RO在频域上的编号;
Symbol是一个第二给定时间内的符号数目,所述第二给定时间是至少一个时隙,至少1毫秒,至少一个子帧,至少一个RO的时域长度,至少一个帧或至少一个时间窗;
ul_carrier_id由网络侧配置,或者,ul_carrier_id是预设值,或者,ul_carrier_id由所述终端确定,或者,ul_carrier_id是发送所述前导码所使用的上行载波编号;
B1,B2,B3,B4,B5为整数。
基于上述实施例,所述基于参数t_id计算RA-RNTI,包括:
根据如下公式计算获得所述RA-RNTI:
RA-RNTI=Mod(1×C1+s_id×C2+Symbol×t_id×C3+Symbol×X×f_id×C4+Symbol×X×Y×ul_carrier_id×C5,A);
其中,
t_id是一个第一给定时间内的发送所述前导码占用RO的第一个时隙所在的时隙编号,该时隙编号基于PRACH时隙子载波间隔进行编号得到;所述第一给定时间是至少一个时隙,至少1毫秒,至少一个子帧,至少一个RO的时域长度,至少一个帧或至少一个时间窗;
X由网络侧配置,或者,X是预设值,或者,X是一个第一给定时间内包含的时隙总数;
Y由网络侧配置,或者,Y是预设值,或者,Y由所述终端确定,或者, Y是在所述PRACH资源上进行频分多路复用FDM的RO的个数;
s_id是发送所述前导码占用RO的起始正交频分复用OFDM符号编号;
f_id是发送所述前导码占用RO在频域上的编号;
ul_carrier_id由网络侧配置,或者,ul_carrier_id是预设值,或者,ul_carrier_id由所述终端确定,或者,ul_carrier_id是发送所述前导码所使用的上行载波编号;
Symbol是一个第二给定时间内的符号数目,所述第二给定时间是至少一个时隙,至少1毫秒,至少一个子帧,至少一个RO的时域长度,至少一个帧或至少一个时间窗;
C1,C2,C3,C4,C5为整数;
A由网络侧配置,或者,A是预设值,或者,A由所述终端确定。
基于上述实施例,所述基于参数t_id计算RA-RNTI包括:
根据如下公式计算获得所述RA-RNTI:
RA-RNTI=1×D1+s_id×D2+Symbol×t_id×D3+Symbol×X×f_id×D4+Symbol×X×Y×slot_id×D5;
其中,t_id是一个第一给定时间内的发送所述前导码占用RO的第一个时隙所在的时隙编号,该时隙编号基于参考时隙子载波间隔进行编号得到;所述第一给定时间是至少一个时隙,至少1毫秒,至少一个子帧,至少一个RO的时域长度,至少一个帧或至少一个时间窗;
X由网络侧配置,或者,X是预设值,或者,X是一个第一给定时间内包含的参考时隙总数;
Y由网络侧配置,或者,Y是预设值,或者,Y由所述终端确定,或者,Y是在所述PRACH资源上进行频分多路复用FDM的RO的个数;
s_id是发送所述前导码占用RO的起始正交频分复用OFDM符号编号;
f_id是发送所述前导码占用RO在频域上的编号;
slot_id是发送前导码占用RO的第一个PRACH slot在参考时隙中的编号;
Symbol是一个第二给定时间内的符号数目,所述第二给定时间是至少一个时隙,至少1毫秒,至少一个子帧,至少一个RO的时域长度,至少一个帧或至少一个时间窗;
D1,D2,D3,D4,D5为整数。
基于上述实施例,所述基于参数t_id计算RA-RNTI,包括:
根据如下公式计算获得所述RA-RNTI:
RA-RNTI=1×E1+s_id×E2+Symbol×t_id×E3+Symbol×X×f_id×E4+Symbol×X×Y×ul_carrier_id×E5;
其中,
t_id是将一个第一给定时间内的时隙slot按照一定规则分成N个时隙分组slot group,发送所述前导码占用RO所在的第一个slot group编号;所述第一给定时间是至少一个时隙,至少1毫秒,至少一个子帧,至少一个RO的时域长度,至少一个帧或至少一个时间窗;
X由网络侧配置,或者,X是预设值,或者,X是一个第一给定时间内包含的时隙分组数;
Y由网络侧配置,或者,Y是预设值,或者,Y由所述终端确定,或者,Y是在所述PRACH资源上进行频分多路复用FDM的RO的个数;
s_id是发送所述前导码占用RO的起始正交频分复用OFDM符号编号;
f_id是发送所述前导码占用RO在频域上的编号;
ul_carrier_id由网络侧配置,或者,ul_carrier_id是预设值,或者,ul_carrier_id由所述终端确定,或者,ul_carrier_id是发送所述前导码所使用的上行载波编号;
Symbol是一个第二给定时间内的符号数目,所述第二给定时间是至少一个时隙,至少1毫秒,至少一个子帧,至少一个RO的时域长度,至少一个帧或至少一个时间窗;
E1,E2,E3,E4,E5为整数。
基于上述实施例,所述基于参数t_id计算RA-RNTI,包括:
根据如下公式计算获得所述RA-RNTI:
RA-RNTI=1×F1+s_id×F2+Symbol×t_id×F3+Symbol×X×f_id×F4+Symbol×X×Y×slot_id×F5;
其中,
t_id是将一个第一给定时间内的时隙slot按照一定规则分成N个时隙分 组slot group,发送所述前导码占用RO所在的第一个slot group编号;所述第一给定时间是至少一个时隙,至少1毫秒,至少一个子帧,至少一个RO的时域长度,至少一个帧或至少一个时间窗;
X由网络侧配置,或者,X是预设值,或者,X是一个第一给定时间内包含的时隙分组数;
Y由网络侧配置,或者,Y是预设值,或者,Y由所述终端确定,或者,Y是在所述PRACH资源上进行频分多路复用FDM的RO的个数;
s_id是发送所述前导码占用RO的起始正交频分复用OFDM符号编号;
f_id是发送所述前导码占用RO在频域上的编号;
slot_id是发送所述前导码占用RO的第一个PRACH slot在slot group中的编号;
Symbol是一个第二给定时间内的符号数目,所述第二给定时间是至少一个时隙,至少1毫秒,至少一个子帧,至少一个RO的时域长度,至少一个帧或至少一个时间窗;
F1,F2,F3,F4,F5为整数。
基于上述实施例,所述基于参数t_id计算RA-RNTI,包括:
根据如下公式计算获得所述RA-RNTI:
RA-RNTI=1×G1+s_id×G2+Symbol×t_id×G3+Symbol×X×f_id×G4+Symbol×X×Y×ul_carrier_id×G5;
其中,
t_id是将一个第一给定时间内的时隙slot按照一定规则分成N个slot group,发送所述前导码占用RO所在的第一个PRACH slot在slot group中的编号;所述第一给定时间是至少一个时隙,至少1毫秒,至少一个子帧,至少一个RO的时域长度,至少一个帧或至少一个时间窗;
X由网络侧配置,或者,X是预设值,或者,X是一个slot group内包含的PRACH时隙个数;
Y由网络侧配置,或者,Y是预设值,或者,Y由所述终端确定,或者,Y是在所述PRACH资源上进行频分多路复用FDM的RO的个数;
s_id是发送所述前导码占用RO的起始正交频分复用OFDM符号编号;
f_id是发送所述前导码占用RO在频域上的编号;
ul_carrier_id由网络侧配置,或者,ul_carrier_id是预设值,或者,ul_carrier_id由所述终端确定,或者,ul_carrier_id是发送所述前导码所使用的上行载波编号;
Symbol是一个第二给定时间内的符号数目,所述第二给定时间是至少一个时隙,至少1毫秒,至少一个子帧,至少一个RO的时域长度,至少一个帧或至少一个时间窗;
G1,G2,G3,G4,G5为整数。
基于上述实施例,所述基于参数t_id计算RA-RNTI,包括:
根据如下公式计算获得所述RA-RNTI:
RA-RNTI=1×H1+s_id×H2+Symbol×t_id×H3+Symbol×X×f_id×H4+Symbol×X×Y×group_id×H5;
其中,
t_id是将一个第一给定时间内的时隙slot按照一定规则分成N个slot group,发送所述前导码占用RO所在的第一个PRACH slot在slot group中的编号;所述第一给定时间是至少一个时隙,至少1毫秒,至少一个子帧,至少一个RO的时域长度,至少一个帧或至少一个时间窗;
X由网络侧配置,或者,X是预设值,或者,X是一个slot group内包含的PRACH时隙个数;
Y由网络侧配置,或者,Y是预设值,或者,Y由所述终端确定,或者,Y是在所述PRACH资源上进行频分多路复用FDM的RO的个数;
s_id是发送所述前导码占用RO的起始正交频分复用OFDM符号编号;
f_id是发送所述前导码占用RO在频域上的编号;
group_id是发送所述前导码占用RO所在的第一个slot group编号。
Symbol是一个第二给定时间内的符号数目,所述第二给定时间是至少一个时隙,至少1毫秒,至少一个子帧,至少一个RO的时域长度,至少一个帧或至少一个时间窗;
H1,H2,H3,H4,H5为整数。
基于上述实施例,所述根据PDCCH中的下行控制消息DCI,接收随机 接入响应RAR消息,包括:
基于网络侧设备发送的第一指示,接收随机接入响应RAR消息;所述第一指示指示发送所述前导码占用RO的第一个PRACH slot在参考时隙中的编号。
基于上述实施例,所述根据PDCCH中的下行控制消息DCI,接收随机接入响应RAR消息,包括:
基于网络侧设备发送的第一指示,接收随机接入响应RAR消息;所述第一指示指示发送所述前导码占用RO所在的第一个PRACH slot在slot group中的编号。
基于上述实施例,所述根据PDCCH中的下行控制消息DCI,接收随机接入响应RAR消息,包括:
基于网络侧设备发送的第一指示,接收随机接入响应RAR消息;所述第一指示指示发送所述前导码占用RO所在的第一个slot group编号。
基于上述实施例,所述根据PDCCH中的下行控制消息DCI,接收随机接入响应RAR消息,包括:
基于网络侧设备发送的第一指示,接收随机接入响应RAR消息;所述第一指示指示(1×C1+s_id×C2+Symbol×t_id×C3+Symbol×X×f_id×C4+Symbol×X×Y×ul_carrier_id×C5)/A的值。
基于上述实施例,所述第一指示承载在物理下行控制信道PDCCH的下行控制信息DCI,MAC CE或者RAR信息中。
基于上述实施例,在一个参考时隙中,仅在其中的一个PRACH时隙配置RO,且所述配置RO的PRACH时隙由协议预定义或无线资源控制协议RRC配置或MAC CE配置。
基于上述实施例,在一个slot group中,仅在其中的一个PRACH时隙配置RO,所述配置RO的PRACH时隙由协议预定义或无线资源控制协议RRC配置或MAC CE配置。
基于上述实施例,只在一个slot group中配置RO,所述配置RO的slot group由协议预定义或无线资源控制协议RRC配置或MAC CE配置。
基于上述实施例,按照如下规则划分slot group:
将一个第一给定时间内的slot平均分成N个slot group,每个group中有M个slot;所述M个slot可以为连续或非连续的;如果是连续的M个slot,则按照时序每M个slot是一组;如果是非连续的M个slot,则每个(slot index)mod N的值相等的slot在同一组,其中slot index为时隙编号。
基于上述实施例,所述参考时隙的子载波间隔由网络侧配置或协议预定义。
基于上述实施例,所述装置应用于预设频率范围和/或物理随机接入信道子载波间隔PRACH SCS中。
具体来说,本申请实施例提供的上述RA-RNTI的处理装置,能够实现上述方法实施例所实现的所有方法步骤,且能够达到相同的技术效果,在此不再对本实施例中与方法实施例相同的部分及有益效果进行具体赘述。
图7是本申请实施例提供的RA-RNTI的处理方法的流程示意图之二,如图7所示,所述方法包括:
步骤701,获取目标CORESET和/或搜索空间与目标随机接入时机RO的关联关系。
步骤702,在与目标RO关联的目标CORESET和/或搜索空间上,监听RA-RNTI加扰的下行信道;其中,所述目标RO为所述终端发送所述前导码的RO。
具体来说,目标CORESET/搜索空间与目标RO关联,UE在与目标RO关联的目标CORESET/搜索空间上监听RA-RNTI加扰的PDCCH和/或PDSCH,其中目标RO为UE发送前导码的RO。例如,在某第一目标RO上发前导码的UE1在RA-SS1上监听PDCCH,在第二目标RO上发前导码的UE2在RA-SS 2上监听PDCCH。
假设RO1对应CORESET1/搜索空间1,RO2对应CORESET1/搜索空间2
UE1在选择的RO1上发送PRACH,根据RO1计算RA-RNTI,并在对应的CORESET1/搜索空间1监测计算得到的RA-RNTI加扰的PDCCH;
UE2在选择的RO2上发送PRACH,根据RO2计算RA-RNTI,并在对应的CORESET2/搜索空间2监测计算得到的RA-RNTI加扰的PDCCH。这样, 即使不同的时频资源计算得到相同的RA-RNTI,UE也可以通过目标CORESET和/或搜索空间与目标随机接入时机RO的关联关系,到目标CORESET和/或搜索空间上监听RA-RNTI加扰的下行信道,以确定与其对应的RAR消息,从而避免接入效率降低的问题。
本申请实施例提供的RA-RNTI的处理方法,在与目标RO关联的目标CORESET和/或搜索空间上,监听RA-RNTI加扰的下行信道,能够在在PRACH SCS超过120KHz的情况下,避免接入效率降低的问题。
基于上述实施例,所述关联关系由协议预定义或无线资源控制协议RRC配置。
具体来说,所述关联关系可以由协议预定义或无线资源控制协议RRC配置,可以理解的是,所述关联关系的设置方式也可以为其它任意可行的设置方式,本申请实施例对此不作具体限定。
本申请实施例提供的RA-RNTI的处理方法,关联关系由协议预定义或无线资源控制协议RRC配置,能够保证关联关系配置的灵活性。
需要说明的是,本申请实施例提供的RA-RNTI的处理方法,执行主体可以为RA-RNTI的处理装置,或者,该RA-RNTI的处理装置中的用于执行RA-RNTI的处理方法的控制模块。本申请实施例中以RA-RNTI的处理装置执行RA-RNTI的处理方法为例,说明本申请实施例提供的RA-RNTI的处理装置。
图8是本申请实施例提供的RA-RNTI的处理装置结构示意图之二,如图8所示,所述装置包括:
关联关系获取模块801,用于获取目标CORESET和/或搜索空间与目标随机接入时机RO的关联关系;
下行信道监听模块802,用于在与目标RO关联的目标CORESET和/或搜索空间上,监听RA-RNTI加扰的下行信道;其中,所述目标RO为所述终端发送所述前导码的RO。
基于上述实施例,所述关联关系由协议预定义或无线资源控制协议RRC配置。
具体来说,本申请实施例提供的上述RA-RNTI的处理装置,能够实现上 述方法实施例所实现的所有方法步骤,且能够达到相同的技术效果,在此不再对本实施例中与方法实施例相同的部分及有益效果进行具体赘述。
本申请实施例中的RA-RNTI的处理装置可以是装置,也可以是终端中的部件、集成电路、或芯片。该装置可以是移动终端,也可以为非移动终端。示例性的,移动终端可以包括但不限于上述所列举的终端11的类型,非移动终端可以为服务器、网络附属存储器(Network Attached Storage,NAS)、个人计算机(personal computer,PC)、电视机(television,TV)、柜员机或者自助机等,本申请实施例不作具体限定。
本申请实施例中的RA-RNTI的处理装置可以为具有操作系统的装置。该操作系统可以为安卓(Android)操作系统,可以为ios操作系统,还可以为其他可能的操作系统,本申请实施例不作具体限定。
本申请实施例提供的RA-RNTI的处理装置能够实现图2或图7的方法实施例实现的各个过程,并达到相同的技术效果,为避免重复,这里不再赘述。
可选的,如图9所示,本申请实施例还提供一种通信设备900,包括处理器901,存储器902,存储在存储器902上并可在所述处理器901上运行的程序或指令,例如,该通信设备900为终端时,该程序或指令被处理器901执行时实现上述RA-RNTI的处理方法实施例的各个过程,且能达到相同的技术效果。该通信设备900为网络侧设备时,该程序或指令被处理器901执行时实现上述RA-RNTI的处理方法实施例的各个过程,且能达到相同的技术效果,为避免重复,这里不再赘述。
图10为实现本申请实施例的一种终端的硬件结构示意图。
该终端1000包括但不限于:射频单元1001、网络模块1002、音频输出单元1003、输入单元1004、传感器1005、显示单元1006、用户输入单元1007、接口单元1008、存储器1009、以及处理器1010等部件。
本领域技术人员可以理解,终端1000还可以包括给各个部件供电的电源(比如电池),电源可以通过电源管理系统与处理器1010逻辑相连,从而通过电源管理系统实现管理充电、放电、以及功耗管理等功能。图10中示出的终端结构并不构成对终端的限定,终端可以包括比图示更多或更少的部件,或者组合某些部件,或者不同的部件布置,在此不再赘述。
应理解的是,本申请实施例中,输入单元1004可以包括图形处理器(Graphics Processing Unit,GPU)10041和麦克风10042,图形处理器10041对在视频捕获模式或图像捕获模式中由图像捕获装置(如摄像头)获得的静态图片或视频的图像数据进行处理。显示单元1006可包括显示面板10061,可以采用液晶显示器、有机发光二极管等形式来配置显示面板10061。用户输入单元1007包括触控面板10071以及其他输入设备10072。触控面板10071,也称为触摸屏。触控面板10071可包括触摸检测装置和触摸控制器两个部分。其他输入设备10072可以包括但不限于物理键盘、功能键(比如音量控制按键、开关按键等)、轨迹球、鼠标、操作杆,在此不再赘述。
本申请实施例中,射频单元1001将来自网络侧设备的下行数据接收后,给处理器1010处理;另外,将上行的数据发送给网络侧设备。通常,射频单元1001包括但不限于天线、至少一个放大器、收发信机、耦合器、低噪声放大器、双工器等。
存储器1009可用于存储软件程序或指令以及各种数据。存储器1009可主要包括存储程序或指令区和存储数据区,其中,存储程序或指令区可存储操作系统、至少一个功能所需的应用程序或指令(比如声音播放功能、图像播放功能等)等。此外,存储器1009可以包括高速随机存取存储器,还可以包括非易失性存储器,其中,非易失性存储器可以是只读存储器(Read-Only Memory,ROM)、可编程只读存储器(Programmable ROM,PROM)、可擦除可编程只读存储器(Erasable PROM,EPROM)、电可擦除可编程只读存储器(Electrically EPROM,EEPROM)或闪存。例如至少一个磁盘存储器件、闪存器件、或其他非易失性固态存储器件。
处理器1010可包括一个或多个处理单元;可选的,处理器1010可集成应用处理器和调制解调处理器,其中,应用处理器主要处理操作系统、用户界面和应用程序或指令等,调制解调处理器主要处理无线通信,如基带处理器。可以理解的是,上述调制解调处理器也可以不集成到处理器1010中。
其中,处理器1010可以用于:基于发送前导码Preamble的随机接入时机RO的时频资源信息,计算RA-RNTI;
所述基于发送前导码Preamble的随机接入时机RO的时频资源信息,计 算RA-RNTI,包括:
基于参数t_id计算RA-RNTI;
其中,t_id是一个第一给定时间内的发送所述前导码占用RO的第一个时隙所在的时隙编号,或,发送所述前导码占用RO所在的第一个slot group编号,或,发送所述前导码占用RO所在的第一个PRACH slot在slot group中的编号。
本申请实施例提供的终端,基于一个第一给定时间内的发送所述前导码占用RO的第一个时隙所在的时隙编号,或,发送所述前导码占用RO所在的第一个slot group编号或所在的第一个PRACH slot在slot group中的编号计算RA-RNTI,能够在PRACH SCS超过120KHz时,出现不同的时频资源对应的RA-RNTI相同或RA-RNTI溢出的情况下,避免接入效率降低的问题。
可选的,射频单元1001,用于在随机接入响应RAR窗口运行期间,监听基于所述RA-RNTI加扰的物理下行控制信道PDCCH;
根据PDCCH中的下行控制消息DCI,接收随机接入响应RAR消息。
本申请实施例提供的终端,在随机接入响应RAR窗口运行期间,监听基于所述RA-RNTI加扰的物理下行控制信道PDCCH,根据PDCCH中的下行控制消息DCI,接收随机接入响应RAR消息,能够基于RA-RNTI准确确定对应的RAR消息,避免接入效率降低的问题。
可选的,射频单元1001,还用于基于网络侧设备发送的第一指示,接收随机接入响应RAR消息;所述第一指示指示发送所述前导码占用RO的第一个PRACH slot在参考时隙中的编号,或,发送所述前导码占用RO所在的第一个PRACH slot在slot group中的编号,或,发送所述前导码占用RO所在的第一个slot group编号或(1×C1+s_id×C2+Symbol×t_id×C3+Symbol×X×f_id×C4+Symbol×X×Y×ul_carrier_id×C5)/A的值。
本申请实施例提供的终端,基于网络侧设备发送的第一指示,接收随机接入响应RAR消息,能够在PRACH SCS超过120KHz的情况下,避免接入效率降低的问题。
另一方面,射频单元1001,用于在与目标RO关联的目标CORESET和/或搜索空间上,监听RA-RNTI加扰的下行信道;其中,所述目标RO为所述 终端发送所述前导码的RO。
处理器1010,用于获取目标CORESET和/或搜索空间与目标随机接入时机RO的关联关系。
本申请实施例提供的终端,在与目标RO关联的目标CORESET和/或搜索空间上,监听RA-RNTI加扰的下行信道,能够在在PRACH SCS超过120KHz的情况下,避免接入效率降低的问题。
本申请实施例还提供一种可读存储介质,所述可读存储介质上存储有程序或指令,该程序或指令被处理器执行时实现上述RA-RNTI的处理方法实施例的各个过程,且能达到相同的技术效果,为避免重复,这里不再赘述。
其中,所述处理器为上述实施例中所述的终端中的处理器。所述可读存储介质,包括计算机可读存储介质,如计算机只读存储器(Read-Only Memory,ROM)、随机存取存储器(Random Access Memory,RAM)、磁碟或者光盘等。
本申请实施例另提供了一种芯片,所述芯片包括处理器和通信接口,所述通信接口和所述处理器耦合,所述处理器用于运行网络侧设备程序或指令,实现上述RA-RNTI的处理方法实施例的各个过程,且能达到相同的技术效果,为避免重复,这里不再赘述。
本申请实施例另提供了一种计算机程序产品,所述计算机程序产品被存储在非瞬态存储介质中,所述计算机程序产品被至少一个处理器执行以实现上述RA-RNTI的处理方法实施例的各个步骤,且能达到相同的技术效果,为避免重复,这里不再赘述。
应理解,本申请实施例提到的芯片还可以称为系统级芯片,系统芯片,芯片系统或片上系统芯片等。
需要说明的是,在本文中,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者装置不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者装置所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括该要素的过程、方法、物品或者装置中还存在另外的相同要素。此外,需要指出的是,本申请实施方式中的方法和装置的范围不限按示出或讨论的顺序来执行功能,还 可包括根据所涉及的功能按基本同时的方式或按相反的顺序来执行功能,例如,可以按不同于所描述的次序来执行所描述的方法,并且还可以添加、省去、或组合各种步骤。另外,参照某些示例所描述的特征可在其他示例中被组合。
通过以上的实施方式的描述,本领域的技术人员可以清楚地了解到上述实施例方法可借助软件加必需的通用硬件平台的方式来实现,当然也可以通过硬件,但很多情况下前者是更佳的实施方式。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质(如ROM/RAM、磁碟、光盘)中,包括若干指令用以使得一台终端(可以是手机,计算机,服务器,空调器,或者网络设备等)执行本申请各个实施例所述的方法。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本公开的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的实施例中,应该理解到,所揭露的装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或 者全部单元来实现本实施例方案的目的。
另外,在本公开各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
所述功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本公开的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本公开各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、ROM、RAM、磁碟或者光盘等各种可以存储程序代码的介质。
本领域普通技术人员可以理解实现上述实施例方法中的全部或部分流程,是可以通过计算机程序来控制相关的硬件来完成,所述的程序可存储于一计算机可读取存储介质中,该程序在执行时,可包括如上述各方法的实施例的流程。其中,所述的存储介质可为磁碟、光盘、ROM或RAM等。
上面结合附图对本申请的实施例进行了描述,但是本申请并不局限于上述的具体实施方式,上述的具体实施方式仅仅是示意性的,而不是限制性的,本领域的普通技术人员在本申请的启示下,在不脱离本申请宗旨和权利要求所保护的范围情况下,还可做出很多形式,均属于本申请的保护之内。

Claims (52)

  1. 一种随机接入-无线网络临时标识符RA-RNTI的处理方法,由终端执行,所述方法包括:
    基于发送前导码Preamble的随机接入时机RO的时频资源信息,计算RA-RNTI;
    所述基于发送前导码Preamble的随机接入时机RO的时频资源信息,计算RA-RNTI,包括:
    基于参数t_id计算RA-RNTI;
    其中,t_id是一个第一给定时间内的发送所述前导码占用RO的第一个时隙所在的时隙编号,或,发送所述前导码占用RO所在的第一个时隙组slotgroup编号,或,发送所述前导码占用RO所在的第一个物理随机接入信道时隙PRACH slot在slot group中的编号。
  2. 根据权利要求1所述的RA-RNTI的处理方法,其中,所述时隙编号是基于参考时隙子载波间隔或物理随机接入信道PRACH时隙子载波间隔进行编号得到的;
    所述slot group是将一个第一给定时间内的时隙slot按照一定规则进行分组得到的。
  3. 根据权利要求2所述的RA-RNTI的处理方法,其中,在基于发送前导码Preamble的随机接入时机RO的时频资源信息,计算RA-RNTI之后,还包括:
    在随机接入响应RAR窗口运行期间,监听基于所述RA-RNTI加扰的物理下行控制信道PDCCH;
    根据PDCCH中的下行控制消息DCI,接收随机接入响应RAR消息。
  4. 根据权利要求1所述的RA-RNTI的处理方法,其中,所述基于参数t_id计算RA-RNTI,包括:
    根据如下公式计算获得所述RA-RNTI:
    RA-RNTI=1×A1+s_id×A2+Symbol×t_id×A3+Symbol×X×f_id×A4;
    其中,t_id是一个第一给定时间内的发送所述前导码占用RO的第一个时隙所在的时隙编号,该时隙编号基于PRACH时隙子载波间隔进行编号得到;所述第一给定时间是至少一个时隙,至少1毫秒,至少一个子帧,至少一个RO的时域长度,至少一个帧或至少一个时间窗;
    X由网络侧配置,或者,X是预设值,或者,X由所述终端确定,或者,X是一个第一给定时间内包含的时隙总数;
    s_id是发送所述前导码占用RO的起始正交频分复用OFDM符号编号;
    f_id是发送所述前导码占用RO在频域上的编号;
    Symbol是一个第二给定时间内的符号数目,所述第二给定时间是至少一个时隙,至少1毫秒,至少一个子帧,至少一个RO的时域长度,至少一个帧或至少一个时间窗;
    A1,A2,A3,A4为整数。
  5. 根据权利要求3所述的RA-RNTI的处理方法,其中,所述基于参数t_id计算RA-RNTI,包括:
    根据如下公式计算获得所述RA-RNTI:
    RA-RNTI=1×B1+s_id×B2+Symbol×t_id×B3+Symbol×X×f_id×B4+Symbol×X×Y×ul_carrier_id×B5;
    其中,
    t_id是一个第一给定时间内的发送所述前导码占用RO的第一个时隙所在的时隙编号,该时隙编号基于参考时隙子载波间隔进行编号得到;所述第一给定时间是至少一个时隙,至少1毫秒,至少一个子帧,至少一个RO的时域长度,至少一个帧或至少一个时间窗;
    X由网络侧配置,或者,X是预设值,或者,X由所述终端确定,或者,X是一个第一给定时间内包含的参考时隙总数;
    Y由网络侧配置,或者,Y是预设值,或者,Y由所述终端确定,或者,Y是在所述PRACH资源上进行频分多路复用FDM的RO的个数;
    s_id是发送所述前导码占用RO的起始正交频分复用OFDM符号编号;
    f_id是发送所述前导码占用RO在频域上的编号;
    Symbol是一个第二给定时间内的符号数目,所述第二给定时间是至少一个时隙,至少1毫秒,至少一个子帧,至少一个RO的时域长度,至少一个帧或至少一个时间窗;
    ul_carrier_id由网络侧配置,或者,ul_carrier_id是预设值,或者,ul_carrier_id由所述终端确定,或者,ul_carrier_id是发送所述前导码所使用的上行载波编号;
    B1,B2,B3,B4,B5为整数。
  6. 根据权利要求3所述的RA-RNTI的处理方法,其中,所述基于参数t_id计算RA-RNTI,包括:
    根据如下公式计算获得所述RA-RNTI:
    RA-RNTI=Mod(1×C1+s_id×C2+Symbol×t_id×C3+Symbol×X×f_id×C4+Symbol×X×Y×ul_carrier_id×C5,A);
    其中,
    t_id是一个第一给定时间内的发送所述前导码占用RO的第一个时隙所在的时隙编号,该时隙编号基于PRACH时隙子载波间隔进行编号得到;所述第一给定时间是至少一个时隙,至少1毫秒,至少一个子帧,至少一个RO的时域长度,至少一个帧或至少一个时间窗;
    X由网络侧配置,或者,X是预设值,或者,X是一个第一给定时间内包含的时隙总数;
    Y由网络侧配置,或者,Y是预设值,或者,Y由所述终端确定,或者,Y是在所述PRACH资源上进行频分多路复用FDM的RO的个数;
    s_id是发送所述前导码占用RO的起始正交频分复用OFDM符号编号;
    f_id是发送所述前导码占用RO在频域上的编号;
    ul_carrier_id由网络侧配置,或者,ul_carrier_id是预设值,或者,ul_carrier_id由所述终端确定,或者,ul_carrier_id是发送所述前导码所使用 的上行载波编号;
    Symbol是一个第二给定时间内的符号数目,所述第二给定时间是至少一个时隙,至少1毫秒,至少一个子帧,至少一个RO的时域长度,至少一个帧或至少一个时间窗;
    C1,C2,C3,C4,C5为整数;
    A由网络侧配置,或者,A是预设值,或者,A由所述终端确定。
  7. 根据权利要求1所述的RA-RNTI的处理方法,其中,所述基于参数t_id计算RA-RNTI包括:
    根据如下公式计算获得所述RA-RNTI:
    RA-RNTI=1×D1+s_id×D2+Symbol×t_id×D3+Symbol×X×f_id×D4+Symbol×X×Y×slot_id×D5;
    其中,t_id是一个第一给定时间内的发送所述前导码占用RO的第一个时隙所在的时隙编号,该时隙编号基于参考时隙子载波间隔进行编号得到;所述第一给定时间是至少一个时隙,至少1毫秒,至少一个子帧,至少一个RO的时域长度,至少一个帧或至少一个时间窗;
    X由网络侧配置,或者,X是预设值,或者,X是一个第一给定时间内包含的参考时隙总数;
    Y由网络侧配置,或者,Y是预设值,或者,Y由所述终端确定,或者,Y是在所述PRACH资源上进行频分多路复用FDM的RO的个数;
    s_id是发送所述前导码占用RO的起始正交频分复用OFDM符号编号;
    f_id是发送所述前导码占用RO在频域上的编号;
    slot_id是发送前导码占用RO的第一个PRACH slot在参考时隙中的编号;
    Symbol是一个第二给定时间内的符号数目,所述第二给定时间是至少一个时隙,至少1毫秒,至少一个子帧,至少一个RO的时域长度,至少一个帧或至少一个时间窗;
    D1,D2,D3,D4,D5为整数。
  8. 根据权利要求3所述的RA-RNTI的处理方法,其中,所述基于参数 t_id计算RA-RNTI,包括:
    根据如下公式计算获得所述RA-RNTI:
    RA-RNTI=1×E1+s_id×E2+Symbol×t_id×E3+Symbol×X×f_id×E4+Symbol×X×Y×ul_carrier_id×E5;
    其中,
    t_id是将一个第一给定时间内的时隙slot按照一定规则分成N个时隙分组slot group,发送所述前导码占用RO所在的第一个slot group编号;所述第一给定时间是至少一个时隙,至少1毫秒,至少一个子帧,至少一个RO的时域长度,至少一个帧或至少一个时间窗;
    X由网络侧配置,或者,X是预设值,或者,X是一个第一给定时间内包含的时隙分组数;
    Y由网络侧配置,或者,Y是预设值,或者,Y由所述终端确定,或者,Y是在所述PRACH资源上进行频分多路复用FDM的RO的个数;
    s_id是发送所述前导码占用RO的起始正交频分复用OFDM符号编号;
    f_id是发送所述前导码占用RO在频域上的编号;
    ul_carrier_id由网络侧配置,或者,ul_carrier_id是预设值,或者,ul_carrier_id由所述终端确定,或者,ul_carrier_id是发送所述前导码所使用的上行载波编号;
    Symbol是一个第二给定时间内的符号数目,所述第二给定时间是至少一个时隙,至少1毫秒,至少一个子帧,至少一个RO的时域长度,至少一个帧或至少一个时间窗;
    E1,E2,E3,E4,E5为整数。
  9. 根据权利要求1所述的RA-RNTI的处理方法,其中,所述基于参数t_id计算RA-RNTI,包括:
    根据如下公式计算获得所述RA-RNTI:
    RA-RNTI=1×F1+s_id×F2+Symbol×t_id×F3+Symbol×X×f_id×F4+Symbol×X×Y×slot_id×F5;
    其中,
    t_id是将一个第一给定时间内的时隙slot按照一定规则分成N个时隙分组slot group,发送所述前导码占用RO所在的第一个slot group编号;所述第一给定时间是至少一个时隙,至少1毫秒,至少一个子帧,至少一个RO的时域长度,至少一个帧或至少一个时间窗;
    X由网络侧配置,或者,X是预设值,或者,X是一个第一给定时间内包含的时隙分组数;
    Y由网络侧配置,或者,Y是预设值,或者,Y由所述终端确定,或者,Y是在所述PRACH资源上进行频分多路复用FDM的RO的个数;
    s_id是发送所述前导码占用RO的起始正交频分复用OFDM符号编号;
    f_id是发送所述前导码占用RO在频域上的编号;
    slot_id是发送所述前导码占用RO的第一个PRACH slot在slot group中的编号;
    Symbol是一个第二给定时间内的符号数目,所述第二给定时间是至少一个时隙,至少1毫秒,至少一个子帧,至少一个RO的时域长度,至少一个帧或至少一个时间窗;
    F1,F2,F3,F4,F5为整数。
  10. 根据权利要求3所述的RA-RNTI的处理方法,其中,所述基于参数t_id计算RA-RNTI,包括:
    根据如下公式计算获得所述RA-RNTI:
    RA-RNTI=1×G1+s_id×G2+Symbol×t_id×G3+Symbol×X×f_id×G4+Symbol×X×Y×ul_carrier_id×G5;
    其中,
    t_id是将一个第一给定时间内的时隙slot按照一定规则分成N个slotgroup,发送所述前导码占用RO所在的第一个PRACH slot在slot group中的编号;所述第一给定时间是至少一个时隙,至少1毫秒,至少一个子帧,至少一个RO的时域长度,至少一个帧或至少一个时间窗;
    X由网络侧配置,或者,X是预设值,或者,X是一个slot group内包含的PRACH时隙个数;
    Y由网络侧配置,或者,Y是预设值,或者,Y由所述终端确定,或者,Y是在所述PRACH资源上进行频分多路复用FDM的RO的个数;
    s_id是发送所述前导码占用RO的起始正交频分复用OFDM符号编号;
    f_id是发送所述前导码占用RO在频域上的编号;
    ul_carrier_id由网络侧配置,或者,ul_carrier_id是预设值,或者,ul_carrier_id由所述终端确定,或者,ul_carrier_id是发送所述前导码所使用的上行载波编号;
    Symbol是一个第二给定时间内的符号数目,所述第二给定时间是至少一个时隙,至少1毫秒,至少一个子帧,至少一个RO的时域长度,至少一个帧或至少一个时间窗;
    G1,G2,G3,G4,G5为整数。
  11. 根据权利要求1所述的RA-RNTI的处理方法,其中,所述基于参数t_id计算RA-RNTI,包括:
    根据如下公式计算获得所述RA-RNTI:
    RA-RNTI=1×H1+s_id×H2+Symbol×t_id×H3+Symbol×X×f_id×H4+Symbol×X×Y×group_id×H5;
    其中,
    t_id是将一个第一给定时间内的时隙slot按照一定规则分成N个slotgroup,发送所述前导码占用RO所在的第一个PRACH slot在slot group中的编号;所述第一给定时间是至少一个时隙,至少1毫秒,至少一个子帧,至少一个RO的时域长度,至少一个帧或至少一个时间窗;
    X由网络侧配置,或者,X是预设值,或者,X是一个slot group内包含的PRACH时隙个数;
    Y由网络侧配置,或者,Y是预设值,或者,Y由所述终端确定,或者,Y是在所述PRACH资源上进行频分多路复用FDM的RO的个数;
    s_id是发送所述前导码占用RO的起始正交频分复用OFDM符号编号;
    f_id是发送所述前导码占用RO在频域上的编号;
    group_id是发送所述前导码占用RO所在的第一个slot group编号;
    Symbol是一个第二给定时间内的符号数目,所述第二给定时间是至少一个时隙,至少1毫秒,至少一个子帧,至少一个RO的时域长度,至少一个帧或至少一个时间窗;
    H1,H2,H3,H4,H5为整数。
  12. 根据权利要求5所述的RA-RNTI的处理方法,其中,所述根据PDCCH中的下行控制消息DCI,接收随机接入响应RAR消息,包括:
    基于网络侧设备发送的第一指示,接收随机接入响应RAR消息;所述第一指示指示发送所述前导码占用RO的第一个PRACH slot在参考时隙中的编号。
  13. 根据权利要求8所述的RA-RNTI的处理方法,其中,所述根据PDCCH中的下行控制消息DCI,接收随机接入响应RAR消息,包括:
    基于网络侧设备发送的第一指示,接收随机接入响应RAR消息;所述第一指示指示发送所述前导码占用RO所在的第一个PRACH slot在slot group中的编号。
  14. 根据权利要求10所述的RA-RNTI的处理方法,其中,所述根据PDCCH中的下行控制消息DCI,接收随机接入响应RAR消息,包括:
    基于网络侧设备发送的第一指示,接收随机接入响应RAR消息;所述第一指示指示发送所述前导码占用RO所在的第一个slot group编号。
  15. 根据权利要求6所述的RA-RNTI的处理方法,其中,所述根据PDCCH中的下行控制消息DCI,接收随机接入响应RAR消息,包括:
    基于网络侧设备发送的第一指示,接收随机接入响应RAR消息;所述第一指示指示(1×C1+s_id×C2+Symbol×t_id×C3+Symbol×X×f_id×C4+Symbol×X×Y×ul_carrier_id×C5)/A的值。
  16. 根据权利要求12至15任一所述的RA-RNTI的处理方法,其中,所 述第一指示承载在物理下行控制信道PDCCH的下行控制信息DCI,MAC CE或者RAR信息中。
  17. 根据权利要求5或7所述的RA-RNTI的处理方法,其中,在一个参考时隙中,仅在其中的一个PRACH时隙配置RO,且所述配置RO的PRACH时隙由协议预定义或无线资源控制协议RRC配置或MAC CE配置。
  18. 根据权利要求8或9所述的RA-RNTI的处理方法,其中,在一个slotgroup中,仅在其中的一个PRACH时隙配置RO,所述配置RO的PRACH时隙由协议预定义或无线资源控制协议RRC配置或媒体接入控制单元MACCE配置。
  19. 根据权利要求10或11所述的RA-RNTI的处理方法,其中,只在一个slot group中配置RO,所述配置RO的slot group由协议预定义或无线资源控制协议RRC配置或MAC CE配置。
  20. 根据权利要求2所述的RA-RNTI的处理方法,其中,按照如下规则划分slot group:
    将一个第一给定时间内的slot平均分成N个slot group,每个group中有M个slot;所述M个slot可以为连续或非连续的;如果是连续的M个slot,则按照时序每M个slot是一组;如果是非连续的M个slot,则每个(slot index)mod N的值相等的slot在同一组,其中slot index为时隙编号。
  21. 根据权利要求2所述的RA-RNTI的处理方法,其中,所述参考时隙的子载波间隔由网络侧配置或协议预定义。
  22. 根据权利要求1所述的RA-RNTI的处理方法,其中,所述方法应用于预设频率范围和/或物理随机接入信道子载波间隔PRACH SCS中。
  23. 一种随机接入-无线网络临时标识符RA-RNTI的处理方法,应用于终端,所述方法包括:
    获取目标控制资源集CORESET和/或搜索空间与目标随机接入时机RO的关联关系;
    在与目标RO关联的目标CORESET和/或搜索空间上,监听RA-RNTI 加扰的下行信道;其中,所述目标RO为所述终端发送前导码的RO。
  24. 根据权利要求23所述的RA-RNTI的处理方法,其中,所述关联关系由协议预定义或无线资源控制协议RRC配置。
  25. 一种随机接入-无线网络临时标识符RA-RNTI的处理装置,应用于终端,所述装置包括:
    RA-RNTI确定模块,用于基于发送前导码Preamble的随机接入时机RO的时频资源信息,计算RA-RNTI;
    所述基于发送前导码Preamble的随机接入时机RO的时频资源信息,计算RA-RNTI,包括:
    基于参数t_id计算RA-RNTI;
    其中,t_id是一个第一给定时间内的发送所述前导码占用RO的第一个时隙所在的时隙编号,或,发送所述前导码占用RO所在的第一个时隙组slot group编号,或,发送所述前导码占用RO所在的第一个物理随机接入信道时隙PRACH slot在slot group中的编号。
  26. 根据权利要求25所述的RA-RNTI的处理装置,其中,所述时隙编号是基于参考时隙子载波间隔或物理随机接入信道PRACH时隙子载波间隔进行编号得到的;
    所述slot group是将一个第一给定时间内的时隙slot按照一定规则进行分组得到的。
  27. 根据权利要求26所述的RA-RNTI的处理装置,其中,还包括:
    PDCCH监听模块,用于在随机接入响应RAR窗口运行期间,监听基于所述RA-RNTI加扰的物理下行控制信道PDCCH;
    RAR消息接收模块,用于根据PDCCH中的下行控制消息DCI,接收随机接入响应RAR消息。
  28. 根据权利要求25所述的RA-RNTI的处理装置,其中,所述基于参数t_id计算RA-RNTI,包括:
    根据如下公式计算获得所述RA-RNTI:
    RA-RNTI=1×A1+s_id×A2+Symbol×t_id×A3+Symbol×X×f_id×A4;
    其中,t_id是一个第一给定时间内的发送所述前导码占用RO的第一个时隙所在的时隙编号,该时隙编号基于PRACH时隙子载波间隔进行编号得到;所述第一给定时间是至少一个时隙,至少1毫秒,至少一个子帧,至少一个RO的时域长度,至少一个帧或至少一个时间窗;
    X由网络侧配置,或者,X是预设值,或者,X由所述终端确定,或者,X是一个第一给定时间内包含的时隙总数;
    s_id是发送所述前导码占用RO的起始正交频分复用OFDM符号编号;
    f_id是发送所述前导码占用RO在频域上的编号;
    Symbol是一个第二给定时间内的符号数目,所述第二给定时间是至少一个时隙,至少1毫秒,至少一个子帧,至少一个RO的时域长度,至少一个帧或至少一个时间窗;
    A1,A2,A3,A4为整数。
  29. 根据权利要求27所述的RA-RNTI的处理装置,其中,所述基于参数t_id计算RA-RNTI,包括:
    根据如下公式计算获得所述RA-RNTI:
    RA-RNTI=1×B1+s_id×B2+Symbol×t_id×B3+Symbol×X×f_id×B4+Symbol×X×Y×ul_carrier_id×B5;
    其中,
    t_id是一个第一给定时间内的发送所述前导码占用RO的第一个时隙所在的时隙编号,该时隙编号基于参考时隙子载波间隔进行编号得到;所述第一给定时间是至少一个时隙,至少1毫秒,至少一个子帧,至少一个RO的时域长度,至少一个帧或至少一个时间窗;
    X由网络侧配置,或者,X是预设值,或者,X由所述终端确定,或者,X是一个第一给定时间内包含的参考时隙总数;
    Y由网络侧配置,或者,Y是预设值,或者,Y由所述终端确定,或者, Y是在所述PRACH资源上进行频分多路复用FDM的RO的个数;
    s_id是发送所述前导码占用RO的起始正交频分复用OFDM符号编号;
    f_id是发送所述前导码占用RO在频域上的编号;
    Symbol是一个第二给定时间内的符号数目,所述第二给定时间是至少一个时隙,至少1毫秒,至少一个子帧,至少一个RO的时域长度,至少一个帧或至少一个时间窗;
    ul_carrier_id由网络侧配置,或者,ul_carrier_id是预设值,或者,ul_carrier_id由所述终端确定,或者,ul_carrier_id是发送所述前导码所使用的上行载波编号;
    B1,B2,B3,B4,B5为整数。
  30. 根据权利要求27所述的RA-RNTI的处理装置,其中,所述基于参数t_id计算RA-RNTI,包括:
    根据如下公式计算获得所述RA-RNTI:
    RA-RNTI=Mod(1×C1+s_id×C2+Symbol×t_id×C3+Symbol×X×f_id×C4+Symbol×X×Y×ul_carrier_id×C5,A);
    其中,
    t_id是一个第一给定时间内的发送所述前导码占用RO的第一个时隙所在的时隙编号,该时隙编号基于PRACH时隙子载波间隔进行编号得到;所述第一给定时间是至少一个时隙,至少1毫秒,至少一个子帧,至少一个RO的时域长度,至少一个帧或至少一个时间窗;
    X由网络侧配置,或者,X是预设值,或者,X是一个第一给定时间内包含的时隙总数;
    Y由网络侧配置,或者,Y是预设值,或者,Y由所述终端确定,或者,Y是在所述PRACH资源上进行频分多路复用FDM的RO的个数;
    s_id是发送所述前导码占用RO的起始正交频分复用OFDM符号编号;
    f_id是发送所述前导码占用RO在频域上的编号;
    ul_carrier_id由网络侧配置,或者,ul_carrier_id是预设值,或者, ul_carrier_id由所述终端确定,或者,ul_carrier_id是发送所述前导码所使用的上行载波编号;
    Symbol是一个第二给定时间内的符号数目,所述第二给定时间是至少一个时隙,至少1毫秒,至少一个子帧,至少一个RO的时域长度,至少一个帧或至少一个时间窗;
    C1,C2,C3,C4,C5为整数;
    A由网络侧配置,或者,A是预设值,或者,A由所述终端确定。
  31. 根据权利要求25所述的RA-RNTI的处理装置,其中,所述基于参数t_id计算RA-RNTI包括:
    根据如下公式计算获得所述RA-RNTI:
    RA-RNTI=1×D1+s_id×D2+Symbol×t_id×D3+Symbol×X×f_id×D4+Symbol×X×Y×slot_id×D5;
    其中,t_id是一个第一给定时间内的发送所述前导码占用RO的第一个时隙所在的时隙编号,该时隙编号基于参考时隙子载波间隔进行编号得到;所述第一给定时间是至少一个时隙,至少1毫秒,至少一个子帧,至少一个RO的时域长度,至少一个帧或至少一个时间窗;
    X由网络侧配置,或者,X是预设值,或者,X是一个第一给定时间内包含的参考时隙总数;
    Y由网络侧配置,或者,Y是预设值,或者,Y由所述终端确定,或者,Y是在所述PRACH资源上进行频分多路复用FDM的RO的个数;
    s_id是发送所述前导码占用RO的起始正交频分复用OFDM符号编号;
    f_id是发送所述前导码占用RO在频域上的编号;
    slot_id是发送前导码占用RO的第一个PRACH slot在参考时隙中的编号;
    Symbol是一个第二给定时间内的符号数目,所述第二给定时间是至少一个时隙,至少1毫秒,至少一个子帧,至少一个RO的时域长度,至少一个帧或至少一个时间窗;
    D1,D2,D3,D4,D5为整数。
  32. 根据权利要求27所述的RA-RNTI的处理装置,其中,所述基于参数t_id计算RA-RNTI,包括:
    根据如下公式计算获得所述RA-RNTI:
    RA-RNTI=1×E1+s_id×E2+Symbol×t_id×E3+Symbol×X×f_id×E4+Symbol×X×Y×ul_carrier_id×E5;
    其中,
    t_id是将一个第一给定时间内的时隙slot按照一定规则分成N个时隙分组slot group,发送所述前导码占用RO所在的第一个slot group编号;所述第一给定时间是至少一个时隙,至少1毫秒,至少一个子帧,至少一个RO的时域长度,至少一个帧或至少一个时间窗;
    X由网络侧配置,或者,X是预设值,或者,X是一个第一给定时间内包含的时隙分组数;
    Y由网络侧配置,或者,Y是预设值,或者,Y由所述终端确定,或者,Y是在所述PRACH资源上进行频分多路复用FDM的RO的个数;
    s_id是发送所述前导码占用RO的起始正交频分复用OFDM符号编号;
    f_id是发送所述前导码占用RO在频域上的编号;
    ul_carrier_id由网络侧配置,或者,ul_carrier_id是预设值,或者,ul_carrier_id由所述终端确定,或者,ul_carrier_id是发送所述前导码所使用的上行载波编号;
    Symbol是一个第二给定时间内的符号数目,所述第二给定时间是至少一个时隙,至少1毫秒,至少一个子帧,至少一个RO的时域长度,至少一个帧或至少一个时间窗;
    E1,E2,E3,E4,E5为整数。
  33. 根据权利要求25所述的RA-RNTI的处理装置,其中,所述基于参数t_id计算RA-RNTI,包括:
    根据如下公式计算获得所述RA-RNTI:
    RA-RNTI=1×F1+s_id×F2+Symbol×t_id×F3+Symbol×X×f_id× F4+Symbol×X×Y×slot_id×F5;
    其中,
    t_id是将一个第一给定时间内的时隙slot按照一定规则分成N个时隙分组slot group,发送所述前导码占用RO所在的第一个slot group编号;所述第一给定时间是至少一个时隙,至少1毫秒,至少一个子帧,至少一个RO的时域长度,至少一个帧或至少一个时间窗;
    X由网络侧配置,或者,X是预设值,或者,X是一个第一给定时间内包含的时隙分组数;
    Y由网络侧配置,或者,Y是预设值,或者,Y由所述终端确定,或者,Y是在所述PRACH资源上进行频分多路复用FDM的RO的个数;
    s_id是发送所述前导码占用RO的起始正交频分复用OFDM符号编号;
    f_id是发送所述前导码占用RO在频域上的编号;
    slot_id是发送所述前导码占用RO的第一个PRACH slot在slot group中的编号;
    Symbol是一个第二给定时间内的符号数目,所述第二给定时间是至少一个时隙,至少1毫秒,至少一个子帧,至少一个RO的时域长度,至少一个帧或至少一个时间窗;
    F1,F2,F3,F4,F5为整数。
  34. 根据权利要求27所述的RA-RNTI的处理装置,其中,所述基于参数t_id计算RA-RNTI,包括:
    根据如下公式计算获得所述RA-RNTI:
    RA-RNTI=1×G1+s_id×G2+Symbol×t_id×G3+Symbol×X×f_id×G4+Symbol×X×Y×ul_carrier_id×G5;
    其中,
    t_id是将一个第一给定时间内的时隙slot按照一定规则分成N个slotgroup,发送所述前导码占用RO所在的第一个PRACH slot在slot group中的编号;所述第一给定时间是至少一个时隙,至少1毫秒,至少一个子帧,至 少一个RO的时域长度,至少一个帧或至少一个时间窗;
    X由网络侧配置,或者,X是预设值,或者,X是一个slot group内包含的PRACH时隙个数;
    Y由网络侧配置,或者,Y是预设值,或者,Y由所述终端确定,或者,Y是在所述PRACH资源上进行频分多路复用FDM的RO的个数;
    s_id是发送所述前导码占用RO的起始正交频分复用OFDM符号编号;
    f_id是发送所述前导码占用RO在频域上的编号;
    ul_carrier_id由网络侧配置,或者,ul_carrier_id是预设值,或者,ul_carrier_id由所述终端确定,或者,ul_carrier_id是发送所述前导码所使用的上行载波编号;
    Symbol是一个第二给定时间内的符号数目,所述第二给定时间是至少一个时隙,至少1毫秒,至少一个子帧,至少一个RO的时域长度,至少一个帧或至少一个时间窗;
    G1,G2,G3,G4,G5为整数。
  35. 根据权利要求25所述的RA-RNTI的处理装置,其中,所述基于参数t_id计算RA-RNTI,包括:
    根据如下公式计算获得所述RA-RNTI:
    RA-RNTI=1×H1+s_id×H2+Symbol×t_id×H3+Symbol×X×f_id×H4+Symbol×X×Y×group_id×H5;
    其中,
    t_id是将一个第一给定时间内的时隙slot按照一定规则分成N个slotgroup,发送所述前导码占用RO所在的第一个PRACH slot在slot group中的编号;所述第一给定时间是至少一个时隙,至少1毫秒,至少一个子帧,至少一个RO的时域长度,至少一个帧或至少一个时间窗;
    X由网络侧配置,或者,X是预设值,或者,X是一个slot group内包含的PRACH时隙个数;
    Y由网络侧配置,或者,Y是预设值,或者,Y由所述终端确定,或者, Y是在所述PRACH资源上进行频分多路复用FDM的RO的个数;
    s_id是发送所述前导码占用RO的起始正交频分复用OFDM符号编号;
    f_id是发送所述前导码占用RO在频域上的编号;
    group_id是发送所述前导码占用RO所在的第一个slot group编号;
    Symbol是一个第二给定时间内的符号数目,所述第二给定时间是至少一个时隙,至少1毫秒,至少一个子帧,至少一个RO的时域长度,至少一个帧或至少一个时间窗;
    H1,H2,H3,H4,H5为整数。
  36. 根据权利要求29所述的RA-RNTI的处理装置,其中,所述根据PDCCH中的下行控制消息DCI,接收随机接入响应RAR消息,包括:
    基于网络侧设备发送的第一指示,接收随机接入响应RAR消息;所述第一指示指示发送所述前导码占用RO的第一个PRACH slot在参考时隙中的编号。
  37. 根据权利要求32所述的RA-RNTI的处理装置,其中,所述根据PDCCH中的下行控制消息DCI,接收随机接入响应RAR消息,包括:
    基于网络侧设备发送的第一指示,接收随机接入响应RAR消息;所述第一指示指示发送所述前导码占用RO所在的第一个PRACH slot在slot group中的编号。
  38. 根据权利要求34所述的RA-RNTI的处理装置,其中,所述根据PDCCH中的下行控制消息DCI,接收随机接入响应RAR消息,包括:
    基于网络侧设备发送的第一指示,接收随机接入响应RAR消息;所述第一指示指示发送所述前导码占用RO所在的第一个slot group编号。
  39. 根据权利要求30所述的RA-RNTI的处理装置,其中,所述根据PDCCH中的下行控制消息DCI,接收随机接入响应RAR消息,包括:
    基于网络侧设备发送的第一指示,接收随机接入响应RAR消息;所述第一指示指示(1×C1+s_id×C2+Symbol×t_id×C3+Symbol×X×f_id×C4+Symbol×X×Y×ul_carrier_id×C5)/A的值。
  40. 根据权利要求36至39任一所述的RA-RNTI的处理装置,其中,所述第一指示承载在物理下行控制信道PDCCH的下行控制信息DCI,媒体接入控制单元MAC CE或者RAR信息中。
  41. 根据权利要求29或31所述的RA-RNTI的处理装置,其中,在一个参考时隙中,仅在其中的一个PRACH时隙配置RO,且所述配置RO的PRACH时隙由协议预定义或无线资源控制协议RRC配置或MAC CE配置。
  42. 根据权利要求32或33所述的RA-RNTI的处理装置,其中,在一个slot group中,仅在其中的一个PRACH时隙配置RO,所述配置RO的PRACH时隙由协议预定义或无线资源控制协议RRC配置或MAC CE配置。
  43. 根据权利要求34或35所述的RA-RNTI的处理装置,其中,只在一个slot group中配置RO,所述配置RO的slot group由协议预定义或无线资源控制协议RRC配置或MAC CE配置。
  44. 根据权利要求26所述的RA-RNTI的处理装置,其中,按照如下规则划分slot group:
    将一个第一给定时间内的slot平均分成N个slot group,每个group中有M个slot;所述M个slot可以为连续或非连续的;如果是连续的M个slot,则按照时序每M个slot是一组;如果是非连续的M个slot,则每个(slot index)mod N的值相等的slot在同一组,其中slot index为时隙编号。
  45. 根据权利要求26所述的RA-RNTI的处理装置,其中,所述参考时隙的子载波间隔由网络侧配置或协议预定义。
  46. 根据权利要求25所述的RA-RNTI的处理装置,其中,所述装置应用于预设频率范围和/或物理随机接入信道子载波间隔PRACH SCS中。
  47. 一种随机接入-无线网络临时标识符RA-RNTI的处理装置,应用于终端,所述装置包括:
    关联关系获取模块,用于获取目标控制资源集CORESET和/或搜索空间与目标随机接入时机RO的关联关系;
    下行信道监听模块,用于在与目标RO关联的目标CORESET和/或搜索 空间上,监听RA-RNTI加扰的下行信道;其中,所述目标RO为所述终端发送前导码的RO。
  48. 根据权利要求47所述的RA-RNTI的处理装置,其中,所述关联关系由协议预定义或无线资源控制协议RRC配置。
  49. 一种终端,其中,包括处理器,存储器及存储在所述存储器上并可在所述处理器上运行的程序或指令,所述程序或指令被所述处理器执行时实现如权利要求1至22任一项所述的随机接入-无线网络临时标识符RA-RNTI的处理方法的步骤,或者实现如权利要求23至24任一项所述的RA-RNTI的处理方法的步骤。
  50. 一种可读存储介质,其中,所述可读存储介质上存储程序或指令,所述程序或指令被所述处理器执行时实现如权利要求1至22任一项所述的随机接入-无线网络临时标识符RA-RNTI的处理方法的步骤,或者实现如权利要求23至24任一项所述的RA-RNTI的处理方法的步骤。
  51. 一种芯片,包括处理器和通信接口,其中,所述通信接口和所述处理器耦合,所述处理器用于运行程序或指令,实现如权利要求1至22任一项所述的随机接入-无线网络临时标识符RA-RNTI的处理方法的步骤,或者实现如权利要求23至24任一项所述的RA-RNTI的处理方法的步骤。
  52. 一种计算机程序产品,其中,所述计算机程序产品被存储在非瞬态存储介质中,所述计算机程序产品被至少一个处理器执行以实现如权利要求1至22任一项所述的随机接入-无线网络临时标识符RA-RNTI的处理方法的步骤,或者实现如权利要求23至24任一项所述的RA-RNTI的处理方法的步骤。
PCT/CN2021/143505 2020-12-31 2021-12-31 Ra-rnti的处理方法、装置、终端及可读存储介质 WO2022143970A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP21914699.0A EP4274324A4 (en) 2020-12-31 2021-12-31 RA-RNTI PROCESSING METHOD AND APPARATUS, TERMINAL AND READABLE STORAGE MEDIUM
US18/216,540 US20230345541A1 (en) 2020-12-31 2023-06-29 Ra-rnti processing method and apparatus, terminal, and readable storage medium

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202011629341.7 2020-12-31
CN202011629341.7A CN114698087A (zh) 2020-12-31 2020-12-31 Ra-rnti的处理方法、装置、终端及可读存储介质

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/216,540 Continuation US20230345541A1 (en) 2020-12-31 2023-06-29 Ra-rnti processing method and apparatus, terminal, and readable storage medium

Publications (1)

Publication Number Publication Date
WO2022143970A1 true WO2022143970A1 (zh) 2022-07-07

Family

ID=82134761

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/143505 WO2022143970A1 (zh) 2020-12-31 2021-12-31 Ra-rnti的处理方法、装置、终端及可读存储介质

Country Status (4)

Country Link
US (1) US20230345541A1 (zh)
EP (1) EP4274324A4 (zh)
CN (1) CN114698087A (zh)
WO (1) WO2022143970A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220225429A1 (en) * 2021-01-12 2022-07-14 Samsung Electronics Co., Ltd. User equipment for random access and method thereof, base station for random access and method thereof
WO2024044907A1 (en) * 2022-08-29 2024-03-07 Nec Corporation Methods, devices, and computer readable medium for communication

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108738134A (zh) * 2017-04-13 2018-11-02 普天信息技术有限公司 一种时分复用随机接入资源选择方法
US20190116613A1 (en) * 2017-06-08 2019-04-18 Qualcomm Incorporated Random access procedure in a wireless backhaul network
CN109997405A (zh) * 2017-08-11 2019-07-09 联发科技股份有限公司 新无线电物理随机接入信道多个消息1传输
CN111478757A (zh) * 2019-01-24 2020-07-31 华为技术有限公司 一种ra-rnti处理方法和装置

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020226387A1 (ko) * 2019-05-03 2020-11-12 엘지전자 주식회사 무선 통신 시스템에서 단말이 임의 접속 과정을 수행하기 위한 신호를 송수신하는 방법 및 이를 위한 장치

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108738134A (zh) * 2017-04-13 2018-11-02 普天信息技术有限公司 一种时分复用随机接入资源选择方法
US20190116613A1 (en) * 2017-06-08 2019-04-18 Qualcomm Incorporated Random access procedure in a wireless backhaul network
CN109997405A (zh) * 2017-08-11 2019-07-09 联发科技股份有限公司 新无线电物理随机接入信道多个消息1传输
CN111478757A (zh) * 2019-01-24 2020-07-31 华为技术有限公司 一种ra-rnti处理方法和装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4274324A4 *

Also Published As

Publication number Publication date
EP4274324A1 (en) 2023-11-08
EP4274324A4 (en) 2024-05-22
US20230345541A1 (en) 2023-10-26
CN114698087A (zh) 2022-07-01

Similar Documents

Publication Publication Date Title
EP3654706B1 (en) Resource determining method, and base station
EP3768016A1 (en) Communication method and device
CN106851822B (zh) 传输方法和用户终端
TW201914348A (zh) 一種ra-rnti確定方法及裝置
WO2022143970A1 (zh) Ra-rnti的处理方法、装置、终端及可读存储介质
US20210219341A1 (en) Method and apparatus for transmitting indication information
WO2020164639A1 (zh) 一种随机接入方法、设备及系统
WO2022199616A1 (zh) Pdcch盲检测方法、装置及设备
CN113545153A (zh) 用于随机接入过程的方法、终端设备和基站
CN114616911A (zh) 信息指示方法及装置
WO2022017490A1 (zh) 随机接入方法、配置方法及相关设备
US20240155580A1 (en) Method for obtaining initial bandwidth part configuration, terminal, and network-side device
WO2022002199A1 (zh) Pusch信号的映射方法、终端及网络侧设备
US20230421338A1 (en) Random access method and apparatus, terminal and storage medium
WO2022152254A1 (zh) 上行传输的方法、终端及网络侧设备
WO2022143654A1 (zh) Pdcch监测能力的处理方法、终端及网络侧设备
EP4362596A1 (en) Random access method and communication apparatus
WO2022143742A1 (zh) 数据传输方法、装置及通信设备
CN113396630A (zh) 用户装置及控制方法
WO2023056973A1 (zh) Prach重复传输方法、终端及网络侧设备
WO2022194275A1 (zh) 物理上行控制信道资源的确定方法、终端及网络侧设备
WO2023083227A1 (zh) Prach重复传输方法、终端及网络侧设备
WO2022143875A1 (zh) 信道的调度方法及通信设备
WO2022127898A1 (zh) 消息传输方法、装置及设备
WO2022022593A1 (zh) 副链路反馈资源配置方法、装置及设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21914699

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2021914699

Country of ref document: EP

Effective date: 20230731