WO2022143875A1 - 信道的调度方法及通信设备 - Google Patents

信道的调度方法及通信设备 Download PDF

Info

Publication number
WO2022143875A1
WO2022143875A1 PCT/CN2021/142969 CN2021142969W WO2022143875A1 WO 2022143875 A1 WO2022143875 A1 WO 2022143875A1 CN 2021142969 W CN2021142969 W CN 2021142969W WO 2022143875 A1 WO2022143875 A1 WO 2022143875A1
Authority
WO
WIPO (PCT)
Prior art keywords
channel
slots
slot
target
occupied
Prior art date
Application number
PCT/CN2021/142969
Other languages
English (en)
French (fr)
Inventor
洪琪
李�根
Original Assignee
维沃移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 维沃移动通信有限公司 filed Critical 维沃移动通信有限公司
Publication of WO2022143875A1 publication Critical patent/WO2022143875A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0091Signaling for the administration of the divided path
    • H04L5/0094Indication of how sub-channels of the path are allocated
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0446Resources in time domain, e.g. slots or frames
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal

Definitions

  • the present application belongs to the field of communication technologies, and in particular relates to a channel scheduling method and a communication device.
  • SCS Sub-carrier Space
  • the purpose of the embodiments of the present application is to provide a channel scheduling method and a communication device, which can solve the problem of how to reduce the complexity of channel scheduling.
  • a method for scheduling channels includes:
  • the communication device determines the number of time slots and slot positions occupied by one or more target channels scheduled by the first channel
  • the communication device determines the number of symbols and symbol positions occupied by the target channel in each occupied slot.
  • a channel scheduling device comprising:
  • a time slot determination module configured to determine the number of time slots and slot positions occupied by one or more target channels scheduled by the first channel
  • a symbol determination module configured to determine the number of symbols and symbol positions occupied by the target channel in each occupied slot.
  • a communication device comprising a processor, a memory, and a program or instruction stored on the memory and executable on the processor, the program or instruction being executed by the processor When executed, the steps of the method as described in the first aspect are implemented.
  • a readable storage medium is provided, and a program or an instruction is stored on the readable storage medium, and when the program or instruction is executed by a processor, the steps of the method according to the first aspect are implemented.
  • a chip in a fifth aspect, includes a processor and a communication interface, the communication interface is coupled to the processor, and the processor is used to run a network-side device program or instruction, which implements the method described in the first aspect. method described.
  • a computer program product stored in a non-transitory storage medium, the computer program product being executed by at least one processor to implement the method of the first aspect.
  • channel scheduling method and communication device provided by the embodiments of the present application, since the first channel can schedule one or more target channels, compared with the technical solution in the prior art that only one channel can be scheduled at a time, channel scheduling can be significantly reduced complexity, thereby reducing the energy consumption of the communication device and improving the communication efficiency of the communication device.
  • FIG. 1 is a structural diagram of a wireless communication system provided by an embodiment of the present application.
  • FIG. 2 is a schematic flowchart of a channel scheduling method provided by an embodiment of the present application
  • FIG. 3 is one of the schematic diagrams of a target channel occupying a slot according to an embodiment of the present application
  • FIG. 4 is a second schematic diagram of a target channel occupying a slot according to an embodiment of the present application.
  • FIG. 5 is the third schematic diagram of a target channel occupying a slot according to an embodiment of the present application.
  • FIG. 6 is a fourth schematic diagram of a target channel occupying a slot according to an embodiment of the present application.
  • FIG. 7 is a fifth schematic diagram of a target channel occupying a slot according to an embodiment of the present application.
  • FIG. 8 is a sixth schematic diagram of a target channel occupying a slot according to an embodiment of the present application.
  • FIG. 9 is a seventh schematic diagram of a target channel occupying a slot according to an embodiment of the present application.
  • FIG. 10 is an eighth schematic diagram of a target channel occupying a slot according to an embodiment of the present application.
  • FIG. 11 is a ninth schematic diagram of a target channel occupying a slot according to an embodiment of the present application.
  • FIG. 12 is a schematic structural diagram of a channel scheduling apparatus provided by an embodiment of the present application.
  • FIG. 13 is a schematic structural diagram of a communication device implementing an embodiment of the present application.
  • FIG. 14 is a schematic diagram of a hardware structure of a terminal implementing an embodiment of the present application.
  • FIG. 15 is a schematic diagram of a hardware structure of a network side device implementing an embodiment of the present application.
  • first, second and the like in the description and claims of the present application are used to distinguish similar objects, and are not used to describe a specific order or sequence. It is to be understood that the data so used are interchangeable under appropriate circumstances so that the embodiments of the present application can be practiced in sequences other than those illustrated or described herein, and "first”, “second” distinguish what Usually it is a class, and the number of objects is not limited.
  • the first object may be one or multiple.
  • “and/or” in the description and claims indicates at least one of the connected objects, and the character “/" generally indicates that the associated objects are in an "or” relationship.
  • LTE Long Term Evolution
  • LTE-Advanced LTE-Advanced
  • LTE-A Long Term Evolution-Advanced
  • CDMA Code Division Multiple Access
  • TDMA Time Division Multiple Access
  • FDMA Frequency Division Multiple Access
  • OFDMA Orthogonal Frequency Division Multiple Access
  • SC-FDMA Single-carrier Frequency-Division Multiple Access
  • system and “network” in the embodiments of the present application are often used interchangeably, and the described technology can be used not only for the above-mentioned systems and radio technologies, but also for other systems and radio technologies.
  • NR New Radio
  • the following description describes a New Radio (NR) system for example purposes, and NR terminology is used in most of the description below, although these techniques are also applicable to applications other than NR system applications, such as 6th generation ( 6th Generation , 6G) communication system.
  • 6th generation 6th Generation
  • FIG. 1 shows a structural diagram of a wireless communication system to which an embodiment of the present application can be applied.
  • the wireless communication system includes a terminal 11 and a network-side device 12 .
  • the terminal 11 may also be called a terminal device or a user terminal (User Equipment, UE), and the terminal 11 may be a mobile phone, a tablet computer (Tablet Personal Computer), a laptop computer (Laptop Computer) or a notebook computer, a personal digital computer Assistant (Personal Digital Assistant, PDA), handheld computer, netbook, ultra-mobile personal computer (ultra-mobile personal computer, UMPC), mobile Internet device (Mobile Internet Device, MID), wearable device (Wearable Device) or vehicle-mounted device (VUE), pedestrian terminal (PUE) and other terminal-side devices, wearable devices include: bracelets, headphones, glasses, etc.
  • PDA Personal Digital Assistant
  • the network side device 12 may be a base station or a core network, wherein the base station may be referred to as a Node B, an evolved Node B, an access point, a Base Transceiver Station (BTS), a radio base station, a radio transceiver, a basic service Set (Basic Service Set, BSS), Extended Service Set (Extended Service Set, ESS), Node B, Evolved Node B (eNB), Home Node B, Home Evolved Node B, WLAN Access Point, WiFi Node, Send Transmitting Receiving Point (TRP) or some other suitable term in the field, as long as the same technical effect is achieved, the base station is not limited to specific technical terms.
  • the base station in the NR system is taken as an example, but the specific type of the base station is not limited.
  • NR New Radio, new air interface
  • a numerology corresponds to an SCS configuration (and cyclic prefix length) in the frequency domain.
  • N an integer of different numerologies
  • the Physical Downlink Control Channel is a downlink control channel that carries the downlink control information (Downlink) of the Physical Uplink Share Channel (PUSCH) and the Physical Downlink Share Channel (PDSCH). Control Information, DCI).
  • the PDCCH occupies the entire bandwidth in the frequency domain, and occupies the first 1-3 symbols of each subframe in the time domain.
  • the PDCCH continues to occupy the entire bandwidth in the LTE method, it will undoubtedly be a waste of resources, and it will put high requirements on the UE, which is not conducive to reducing the cost of the UE.
  • the PDCCH in NR will be in the subset bandwidth (Bandwidth Part , BWP), and the time domain does not occupy a fixed number of time slots.
  • BWP Bandwidth Part
  • one PDSCH is scheduled by one PDCCH so far.
  • the PDCCH time-frequency resources in NR are mainly determined by a control resource set (Control-resource set, CORESET) and a search space (Search Space, SS).
  • CORESET solves the problem of the existence range of PDCCH, such as time domain length and frequency domain range. Since the system bandwidth of NR is very large (maximum 400M), if the static configuration method of LTE is used (occupying the entire system bandwidth), the complexity of blind detection will be greatly increased. Therefore, NR adopts a configurable CORESET, and the time domain length and frequency domain range of the CORESET can be configured through system information or a dedicated radio resource control (Radio Resource Control, RRC) message.
  • RRC Radio Resource Control
  • Search space solves the problem of how UE searches.
  • LTE Long Term Evolution
  • the search space in NR is for a certain CORESET, and NR can configure different search spaces for different UEs, that is to say, different blind detection methods are configured for different UEs (such as monitoring period, monitoring symbol starting position, etc.).
  • the blind detection complexity of the UE can be further reduced.
  • the UE knows its own CORESET and Search space configuration, finds the PDCCH sent to itself, and then solves the content carried by the PDCCH channel, that is, the downlink control information DCI.
  • DCI is divided into different formats, as shown in Table 2:
  • DCI 1-0 Take DCI 1-0 as an example:
  • FIG. 2 is a schematic flowchart of a channel scheduling method provided by an embodiment of the present application. As shown in FIG. 2 , an embodiment of the present application provides a channel scheduling method, which may include:
  • the communication device determines the number of slots and slot positions occupied by one or more target channels scheduled by the first channel;
  • the communication device determines the number of symbols and symbol positions occupied by the target channel in each occupied slot.
  • the execution body of the above method may be a communication device, such as a terminal or a network side device.
  • a communication device such as a terminal or a network side device.
  • the technical solution of the present application will be described in detail below by taking a communication device performing the above method as an example.
  • the communication device may determine the number of slots and slot positions occupied by the target channel scheduled by the first channel; then, the communication device may determine the number of symbols and symbol positions occupied by the target channel in each slot occupied by the target channel.
  • the first channel may be a channel with a channel scheduling function, such as PDCCH or PUCCH.
  • PDCCH can schedule PDSCH
  • PUCCH can schedule PUSCH.
  • the target channel may be a channel scheduled by the first channel, for example, when the first channel is PDCCH, the target channel may be PDSCH, and when the first channel is PUCCH, the target channel may be PUSCH.
  • the complexity of channel scheduling can be significantly reduced compared to the technical solution in which only one channel can be scheduled at a time in the prior art , thereby reducing the energy consumption of the communication device and improving the communication efficiency of the communication device.
  • the manner in which the target channel occupies the slot may include any of the following:
  • a target channel occupies multiple slots
  • Each target channel in the multiple target channels occupies a slot.
  • the target channel may occupy multiple slots, such as 3, 5 and so on.
  • the number of slots occupied by the slot can be adjusted according to the actual situation, which is not specifically limited in this embodiment of the present application.
  • the number of slots it occupies can be, for example, 8; when the target channel needs to occupy smaller time domain resources, the number of slots it occupies can be, for example, 2 .
  • each of the multiple target channels occupies a slot respectively.
  • the 6 target channels occupy one slot respectively, occupying 6 slots in total.
  • the number of the multiple target channels may be adjusted according to the actual situation, which is not specifically limited in this embodiment of the present application.
  • determining the number of slots occupied by one or more target channels scheduled by the first channel may include any of the following methods:
  • Mode 1 Determine the number of slots according to the first number of slots indicated by the link control information
  • the link control information may include DCI or uplink control information (Uplink Control Information, UCI).
  • DCI Downlink Control Information
  • UCI Uplink Control Information
  • the communication device can parse out the first slot number information included in the relevant indication field of the DCI, and use the first slot number as the slot number.
  • the communication device can parse out the first slot number information included in the relevant indication field of the UCI, and use the first slot number as the slot number.
  • Mode 2 Determine the number of slots according to the second number of slots included in the time domain resource assignment (Time Domain Resource Assignment, TDRA) entry (configuration table) configured by the RRC;
  • TDRA Time Domain Resource Assignment
  • the communication device can identify the second slot number information contained in the TDRA entry configured by the RRC for the communication device, and use the second slot number as the slot number.
  • Mode 3 Determine the number of slots according to the third slot number predefined by the protocol or preconfigured by the network;
  • the communication device may use the third slot number predefined by the protocol or preconfigured by the network as the slot number.
  • Mode 4 Determine the number of slots according to the subcarrier spacing SCS of the first channel or the SCS of the target channel;
  • Mode 4 may include any of the following:
  • Mode 41 Determine the number of slots according to the SCS of the first channel or the preset correspondence between the SCS of the target channel and the number of slots;
  • the preset correspondence between the SCS of the first channel or the SCS of the target channel and the number of slots may be, for example:
  • the preset corresponding relationship may be adjusted according to actual needs, which is not specifically limited in this embodiment of the present application.
  • Manner 42 Determine the number of slots according to the SCS of the first channel or the quotient of the SCS of the target channel and the reference SCS.
  • the size of the reference SCS may be, for example, 120K, and its specific size may be adjusted according to actual needs, which is not specifically limited in this embodiment of the present application.
  • the number of slots can be determined to be 8.
  • Method 5 Determine the number of slots according to the second slot number and preset parameters
  • the preset parameter is a positive integer, which can be, for example, 3, and its specific size can be adjusted according to actual needs, which is not specifically limited in this embodiment of the present application.
  • the product or sum or quotient of the second slot number and the preset parameter may be used as the slot number.
  • Manner 6 The number of slots is determined according to the SCS of the first channel or the SCS of the target channel, and the number of the second slots.
  • way 6 may include:
  • the product of the above ratio and the second slot number 16 can be used as the slot number.
  • a correction parameter may also be set, and the correction parameter may be a positive integer or a negative integer, such as -2 or 2, and the sum of the product of the above ratio and the second slot number and the correction parameter is used as the slot number.
  • the correction parameter is -2
  • the product of the above ratio and the second slot number, 16, and the sum of the correction parameter -2, 14, can be used as the slot number.
  • the number of slots occupied by the target channel is determined through the above various methods, which can ensure that the determined number of slots occupied by the target channel is reasonable in various application scenarios, which effectively improves the The applicability of the channel scheduling method provided by the embodiment of the present application in various application scenarios is discussed.
  • the slots occupied by one or more target channels scheduled by the first channel are discontinuous, there are N slots in the M slots for target channel transmission, and the N slots are used for transmission of the target channel.
  • the location is predefined by the protocol, or preconfigured by the network side, or determined according to preset rules;
  • M is the number of slots that can currently be used for target channel transmission
  • N is the number of slots
  • M is greater than N.
  • the communication device After the communication device determines the number M of slots that can currently be used for target channel transmission, it can use N slots among the M slots as the slots occupied by the target channel according to the provisions of the protocol.
  • the protocol can stipulate that, for example, the first slot and the last slot in the M slots must be used as the slots occupied by the target channel, and the slots occupied by the remaining target channels can be randomly assigned to the M slots except the first slot. one slot and other slots other than the last slot; alternatively, the protocol may specify that, for example, one or two middle slots in the middle of the M slots must be used as the slots occupied by the target channel, and the remaining target The slot occupied by the channel can be randomly allocated to other slots except the middle slot among the M slots.
  • the communication device may also determine N slots among the M slots as the slots occupied by the target channel according to the pre-configuration of the network.
  • the communication device may also use N slots among the M slots as the slots occupied by the target channel according to an allocation result determined by the network according to a preset rule.
  • the preset rules can include, for example:
  • the first slot and the last slot in the M slots are used as the slots occupied by the target channel, and the slots occupied by the remaining target channels are randomly allocated to the M slots except the first slot and the last slot. in other slots of ;
  • one or two middle slots in the middle of the M slots are used as the slots occupied by the target channel, and the slots occupied by the remaining target channels are randomly allocated to the M slots except the middle slot. slot;
  • each slot in the M slots select the first N slots as the slots occupied by the target channel; , including the location determination in multiple slots), or determined by the current symbol occupancy rate of the slot, etc.
  • step S220 may include:
  • step S2201 may include any of the following:
  • Operation 1 According to the information of the start symbol carried by the link control information and the length of the continuous symbol of the entire target channel, determine the number of symbols and symbol positions occupied by the target channel in each occupied slot;
  • the link control information may carry the information of the start symbol, and the length of the continuation symbol of the entire target channel.
  • the communication device may determine the position of the start symbol occupied by the target channel according to the information of the start symbol.
  • the indication field in the link control information indicates that the start symbol of the target channel is 5, and the length of the continuation symbol of the entire target channel is 60. Then the target channel starts from the 5th symbol in the first slot, and occupies subsequent symbols in turn (if the symbols in the current slot are full, it continues to occupy the symbols in the next slot, and so on), until the occupied The number of symbols reaches 60, as shown in Figure 3.
  • the number of symbols and symbol positions occupied by the target channel in each slot can be directly determined by the information of the start symbol carried by the link control information and the length of the continuous symbol of the entire target channel.
  • Operation 2 According to the information of the start symbol and the information of the end symbol carried by the link control information, combined with the number of slots, determine the number of symbols and symbol positions occupied by the target channel in each occupied slot.
  • the indication field in the link control information indicates the start symbol of the target channel, such as the 5th symbol, and the end symbol of the target channel, such as the 9th symbol. Then the target channel starts from the 5th symbol in the first slot, and occupies subsequent symbols in turn (if the symbols in the current slot are full, it continues to occupy the symbols in the next slot, and so on); number, such as 5, the target channel occupies the 9th symbol in the 5th slot. As shown in Figure 3.
  • the number of symbols and symbol positions occupied by the target channel in each slot occupied by the target channel can be directly determined through the information of the start symbol and the information of the end symbol carried by the link control information, combined with the number of slots.
  • step S220 may include:
  • S2202. Determine the number of symbols and symbol positions occupied by the target channel in each occupied slot according to the link control information and the number of slots.
  • step S2202 may include any of the following:
  • Operation I According to the TDRA information of the first target channel carried in the link control information, combined with the number of slots, determine that the time domain resource positions of all the remaining target channels in their corresponding slots are consistent with the TDRA information of the first target channel ;
  • the link control information may only carry the TDRA information of the first target channel, combined with the number of slots, the subsequent default time domain resource positions of all remaining target channels in the corresponding slots and the TDRA information of the first target channel Consistent.
  • the TDRA information may include the number of symbols occupied by the target channel and location information. In the case where the slot position occupied by the target channel is determined, the target channel can occupy the corresponding symbol in the corresponding slot according to the TDRA information.
  • the link control information only needs to carry the TDRA information of the first target channel, and the time domain resource positions (the number of occupied symbols and symbols of the following 4 target channels in the corresponding slot) location) is consistent with the TDRA information of the first target channel.
  • Operation II According to the first number of TDRAs carried by the link control information, or the list entry containing the first number of TDRAs, determine that the first number of target channels follow the TDRA instruction, and all subsequent target channels are in the corresponding slot.
  • the time domain resource location is the same as one or more TDRAs in the first number of TDRAs, and the one or more TDRAs are predefined or preconfigured;
  • the first number may be, for example, 2, 3, etc., and the specific size may be adjusted according to the actual situation, which is not specifically limited in this embodiment of the present application.
  • the first 2 of the 5 target channels follow the instructions of the two TDRAs, that is, the first target channel can follow the instructions of the first TDRA, according to The number of symbols occupied by the target channel included in the first TDRA and the position information to occupy the symbols in the corresponding slot; while the second target channel can follow the instructions of the second TDRA, according to the target channel included in the second TDRA.
  • the subsequent 3-5 target channels can refer to the time-domain resource position (the number and position of occupied symbols) occupied by the first or second target channel, and occupy the corresponding slot with the first or second target channel.
  • the time domain resource location occupied by the target channel is the same as the time domain resource location.
  • the second target channel occupies the 3rd to 12th symbols in the corresponding slot
  • the third target channel, the fourth target channel and the fifth target channel also occupy the 3rd to 12th symbols in the corresponding slot.
  • FIG. 6 When the target channel is discontinuous (does not occupy all symbols in the corresponding slot), and the slots occupied by the target channel are continuous, an example of the target channel occupying the slot is shown in Figure 6; When the occupied slots are discontinuous, an example of the target channel occupying the slot is shown in Figure 7; when the target channel is continuous (occupying all symbols in the corresponding slot), and the target channel occupies continuous slots, the target channel occupies An example of a slot is shown in FIG. 8 ; when the target channel is continuous and the slots occupied by the target channel are discontinuous, an example of the slot occupied by the target channel is shown in FIG. 9 .
  • Operation III According to the information of the start symbol and the information of the end symbol carried by the link control information, combined with the number of slots, determine the number of symbols occupied by the target channel in each occupied slot.
  • the first channel schedules 5 target channels
  • the link control information carries the information of the start symbol and the information of the end symbol.
  • the start symbol information may indicate that the 5th symbol is the start symbol
  • the end symbol information may indicate the 9th symbol is the end symbol.
  • the first target channel is occupied from the 5th symbol of the corresponding slot until the last symbol of the slot, eg, the 14th symbol.
  • the subsequent second target channel, third target channel, and fourth target channel occupy all symbols in the corresponding slot
  • the final fifth target channel occupies the first symbol to the ninth symbol in the corresponding slot.
  • the number of symbols and symbol positions occupied by the target channel in the corresponding slot are determined in the above-mentioned various ways, which can ensure the number of symbols occupied by the determined target channel in various application scenarios. And the symbol position is reasonable, which effectively improves the applicability of the channel scheduling method provided by the embodiment of the present application in various application scenarios.
  • the execution subject may be a channel scheduling apparatus, or a control module in the channel scheduling apparatus for executing the channel scheduling method.
  • the channel scheduling method provided by the embodiment of the present application is described by taking the channel scheduling device for performing the channel scheduling method as an example.
  • FIG. 12 is a schematic structural diagram of a channel scheduling apparatus according to an embodiment of the present application. As shown in FIG. 12 , an embodiment of the present application provides a channel scheduling apparatus. The apparatus is applied to a communication device and may include:
  • a time slot determination module 1210 configured to determine the number of time slots and slot positions occupied by one or more target channels scheduled by the first channel
  • the symbol determination module 1220 is configured to determine the number of symbols and symbol positions occupied by the target channel in each occupied slot.
  • the complexity of channel scheduling can be significantly reduced compared to the technical solution in which only one channel can be scheduled at a time in the prior art , thereby reducing the energy consumption of the communication device and improving the communication efficiency of the communication device.
  • the manner in which the target channel occupies the slot includes any of the following:
  • a target channel occupies multiple slots
  • Each target channel in the multiple target channels occupies a slot.
  • the time slot determination module 1210 determines the number of slots occupied by one or more target channels scheduled by the first channel, including any of the following:
  • the number of slots is determined according to the SCS of the first channel or the SCS of the target channel and the second slot number.
  • the time slot determination module 1210 determines the number of slots according to the SCS of the first channel or the SCS of the target channel, including any of the following:
  • the time slot determination module 1210 determines the number of slots according to the second number of slots and preset parameters, including:
  • the number of slots is determined according to the sum or product of the second slot number and the preset parameter.
  • the time slot determination module 1210 determines the number of slots according to the SCS of the first channel or the SCS of the target channel and the number of the second slot, including:
  • the slots occupied by one or more target channels scheduled by the first channel are discontinuous, there are N slots in the M slots for target channel transmission, and the positions of the N slots are predetermined by the protocol. Defined, either preconfigured by the network or determined according to preset rules;
  • M is the number of slots that can currently be used for target channel transmission
  • N is the number of slots
  • M is greater than N.
  • the symbol determination module 1220 may be specifically configured to:
  • the number of symbols and symbol positions occupied by the target channel in each occupied slot are determined.
  • the symbol determination module 1220 determines the number of symbols and symbol positions occupied by the target channel in each occupied slot according to the link control information and/or the number of slots, including any of the following:
  • the link control information According to the information of the start symbol and the information of the end symbol carried by the link control information, combined with the number of slots, determine the number of symbols and symbol positions occupied by the target channel in each occupied slot.
  • the symbol determination module 1220 may be specifically used for:
  • the number of symbols and symbol positions occupied by the target channel in each occupied slot are determined.
  • the symbol determination module 1220 determines the number of symbols and symbol positions occupied by the target channel in each occupied slot according to the link control information and the number of slots, including any of the following:
  • the TDRA information of the first target channel carried in the link control information combined with the number of slots, determine that the time domain resource positions of all the remaining target channels in their corresponding slots are consistent with the TDRA information of the first target channel;
  • the first number of TDRAs carried in the link control information, or the list entry that indicates the list containing the first number of TDRAs it is determined that the first number of target channels follow the TDRA instruction, and the time domain resources of all subsequent target channels in the corresponding slot the location is the same as one or more TDRAs in the first number of TDRAs, the one or more TDRAs being predefined or preconfigured;
  • the link control information According to the information of the start symbol and the information of the end symbol carried by the link control information, combined with the number of slots, determine the number of symbols occupied by the target channel in each occupied slot.
  • the first channel is PDCCH or PUCCH; the target channel is PDSCH or PUSCH.
  • the channel scheduling apparatus in this embodiment of the present application may be an apparatus, or may be a component, an integrated circuit, or a chip in a terminal.
  • the device may be a mobile terminal or a non-mobile terminal.
  • the mobile terminal may include, but is not limited to, the types of terminals 11 listed above, and the non-mobile terminal may be a server, a network attached storage (NAS), a personal computer (personal computer, PC), a television ( television, TV), teller machine, or self-service machine, etc., which are not specifically limited in the embodiments of the present application.
  • the channel scheduling apparatus in this embodiment of the present application may be an apparatus having an operating system.
  • the operating system may be an Android (Android) operating system, an ios operating system, or other possible operating systems, which are not specifically limited in the embodiments of the present application.
  • the channel scheduling apparatus provided in this embodiment of the present application can implement each process implemented by the method embodiments in FIG. 2 to FIG. 11 , and achieve the same technical effect. To avoid repetition, details are not described here.
  • an embodiment of the present application further provides a communication device 1300, including a processor 1301, a memory 1302, a program or instruction stored in the memory 1302 and executable on the processor 1301,
  • a communication device 1300 including a processor 1301, a memory 1302, a program or instruction stored in the memory 1302 and executable on the processor 1301,
  • the communication device 1300 is a terminal
  • the program or instruction is executed by the processor 1301
  • each process of the above channel scheduling method embodiment can be implemented, and the same technical effect can be achieved.
  • the communication device 1300 is a network side device, when the program or instruction is executed by the processor 1301, each process of the above channel scheduling method embodiment can be achieved, and the same technical effect can be achieved.
  • FIG. 14 is a schematic diagram of a hardware structure of a terminal implementing an embodiment of the present application.
  • the terminal 1400 includes but is not limited to: a radio frequency unit 1401, a network module 1402, an audio output unit 1403, an input unit 1404, a sensor 1405, a display unit 1406, a user input unit 1407, an interface unit 1408, a memory 1409, a processor 1410 and other components .
  • the terminal 1400 may also include a power source (such as a battery) for supplying power to various components, and the power source may be logically connected to the processor 1410 through a power management system, so as to manage charging, discharging, and power consumption through the power management system management and other functions.
  • a power source such as a battery
  • the terminal structure shown in FIG. 14 does not constitute a limitation on the terminal, and the terminal may include more or less components than shown, or combine some components, or arrange different components, which will not be repeated here.
  • the input unit 1404 may include a graphics processor (Graphics Processing Unit, GPU) 14041 and a microphone 14042. Such as camera) to obtain still pictures or video image data for processing.
  • the display unit 1406 may include a display panel 14061, which may be configured in the form of a liquid crystal display, an organic light emitting diode, or the like.
  • the user input unit 1407 includes a touch panel 14071 and other input devices 14072 .
  • the touch panel 14071 is also called a touch screen.
  • the touch panel 14071 may include two parts, a touch detection device and a touch controller.
  • Other input devices 14072 may include, but are not limited to, physical keyboards, function keys (such as volume control keys, switch keys, etc.), trackballs, mice, and joysticks, which will not be described herein again.
  • the radio frequency unit 1401 receives the downlink data from the network side device, and then processes it to the processor 1410; in addition, sends the uplink data to the network side device.
  • the radio frequency unit 1401 includes, but is not limited to, an antenna, at least one amplifier, a transceiver, a coupler, a low noise amplifier, a duplexer, and the like.
  • Memory 1409 may be used to store software programs or instructions as well as various data.
  • the memory 1409 may mainly include a storage program or instruction area and a storage data area, wherein the stored program or instruction area may store an operating system, an application program or instruction required for at least one function (such as a sound playback function, an image playback function, etc.) and the like.
  • the memory 1409 may include a high-speed random access memory, and may also include a non-volatile memory, wherein the non-volatile memory may be a read-only memory (Read-Only Memory, ROM), a programmable read-only memory (Programmable ROM) , PROM), erasable programmable read-only memory (Erasable PROM, EPROM), electrically erasable programmable read-only memory (Electrically EPROM, EEPROM) or flash memory.
  • ROM Read-Only Memory
  • PROM programmable read-only memory
  • PROM erasable programmable read-only memory
  • Erasable PROM Erasable PROM
  • EPROM electrically erasable programmable read-only memory
  • EEPROM electrically erasable programmable read-only memory
  • flash memory for example at least one magnetic disk storage device, flash memory device, or other non-volatile solid state storage device.
  • the processor 1410 may include one or more processing units; optionally, the processor 1410 may integrate an application processor and a modem processor, wherein the application processor mainly processes the operating system, user interface, and application programs or instructions, etc. Modem processors mainly deal with wireless communications, such as baseband processors. It can be understood that, the above-mentioned modulation and demodulation processor may not be integrated into the processor 1410.
  • the processor 1410 is used to determine the time slot number and slot position occupied by one or more target channels scheduled by the first channel;
  • the first channel can schedule one or more target channels, compared with the technical solution in the prior art that only one channel can be scheduled at a time, the complexity of channel scheduling can be significantly reduced, Thus, the energy consumption of the communication device is reduced and the communication efficiency of the communication device is improved.
  • the processor 1410 is further configured to determine the number of slots occupied by one or more target channels scheduled by the first channel, including any of the following:
  • the number of slots is determined according to the SCS of the first channel or the SCS of the target channel and the second slot number.
  • the processor 1410 is further configured to determine the number of slots according to the SCS of the first channel or the SCS of the target channel, including any of the following:
  • the processor 1410 is further configured to determine the number of slots according to the second number of slots and preset parameters, including:
  • the number of slots is determined according to the sum or product of the second slot number and the preset parameter.
  • the processor 1410 is further configured to determine the number of slots according to the SCS of the first channel or the SCS of the target channel, and the number of the second slots, including:
  • the processor 1410 is further configured to:
  • the number of symbols and symbol positions occupied by the target channel in each occupied slot are determined.
  • the processor 1410 is further configured to determine, according to the link control information and/or the number of slots, the number of symbols and symbol positions occupied by the target channel in each occupied slot, including any of the following:
  • the link control information According to the information of the start symbol and the information of the end symbol carried by the link control information, combined with the number of slots, determine the number of symbols and symbol positions occupied by the target channel in each occupied slot.
  • the processor 1410 is further configured to:
  • the number of symbols and symbol positions occupied by the target channel in each occupied slot are determined.
  • the processor 1410 is further configured to determine, according to the link control information and the number of slots, the number of symbols and symbol positions occupied by the target channel in each occupied slot, including any of the following:
  • the TDRA information of the first target channel carried in the link control information combined with the number of slots, determine that the time domain resource positions of all the remaining target channels in their corresponding slots are consistent with the TDRA information of the first target channel;
  • the first number of TDRAs carried in the link control information, or the list entry that indicates the list containing the first number of TDRAs it is determined that the first number of target channels follow the TDRA instruction, and the time domain resources of all subsequent target channels in the corresponding slot the location is the same as one or more TDRAs in the first number of TDRAs, the one or more TDRAs being predefined or preconfigured;
  • the link control information According to the information of the start symbol and the information of the end symbol carried by the link control information, combined with the number of slots, determine the number of symbols occupied by the target channel in each occupied slot.
  • the network side device 1500 includes: an antenna 1501 , a radio frequency device 1502 , and a baseband device 1503 .
  • the antenna 1501 is connected to the radio frequency device 1502 .
  • the radio frequency device 1502 receives information through the antenna 1501, and sends the received information to the baseband device 1503 for processing.
  • the baseband device 1503 processes the information to be sent and sends it to the radio frequency device 1502
  • the radio frequency device 1502 processes the received information and sends it out through the antenna 1501 .
  • the above-mentioned frequency band processing apparatus may be located in the baseband apparatus 1503 , and the method performed by the communication device in the above embodiment may be implemented in the baseband apparatus 1503 , and the baseband apparatus 1503 includes a processor 1504 and a memory 1505 .
  • the baseband device 1503 may include, for example, at least one baseband board on which multiple chips are arranged, as shown in FIG. 15 , one of the chips is, for example, the processor 1504 , which is connected to the memory 1505 to call the program in the memory 1505 to execute
  • the network-side device shown in the above method embodiments operates.
  • the baseband device 1503 may further include a network interface 1506 for exchanging information with the radio frequency device 1502, and the interface is, for example, a common public radio interface (CPRI for short).
  • CPRI common public radio interface
  • the network-side device in this embodiment of the present application further includes: instructions or programs that are stored in the memory 1505 and run on the processor 1504, and the processor 1504 invokes the instructions or programs in the memory 1505 to execute the modules shown in FIG. 12 .
  • Embodiments of the present application further provide a readable storage medium, where a program or an instruction is stored on the readable storage medium, and when the program or instruction is executed by a processor, each process of the above channel scheduling method embodiment can be achieved, and can achieve The same technical effect, in order to avoid repetition, will not be repeated here.
  • the processor is the processor in the terminal described in the foregoing embodiment.
  • the readable storage medium includes a computer-readable storage medium, such as a computer read-only memory (Read-Only Memory, ROM), a random access memory (Random Access Memory, RAM), a magnetic disk or an optical disk, and the like.
  • An embodiment of the present application further provides a chip, where the chip includes a processor and a communication interface, the communication interface is coupled to the processor, and the processor is used for running network-side device programs or instructions to implement the above-mentioned channel scheduling
  • the chip includes a processor and a communication interface
  • the communication interface is coupled to the processor
  • the processor is used for running network-side device programs or instructions to implement the above-mentioned channel scheduling
  • the chip mentioned in the embodiments of the present application may also be referred to as a system-on-chip, a system-on-chip, a system-on-chip, or a system-on-a-chip, or the like.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请公开了一种信道的调度方法及通信设备,属于通信技术领域。所述方法包括:通信设备确定第一信道所调度的一个或者多个目标信道所占据的时隙slot数以及slot位置;所述通信设备确定所述目标信道在所占据的每个slot中占据的符号数以及符号位置。

Description

信道的调度方法及通信设备
相关申请的交叉引用
本申请主张在2020年12月31日在中国提交的中国专利申请No.202011622137.2的优先权,其全部内容通过引用包含于此。
技术领域
本申请属于通信技术领域,具体涉及一种信道的调度方法及通信设备。
背景技术
在B52.6GHz系统中,会引入大的子载波间隔(Sub-carrier Space,SCS),比如SCS=480K/960K。因此,会出现一个子帧里面所包含的时隙(slot)数量增加,而每个slot占用的时间很小。在大SCS的情况下,信道调度的复杂度将会成倍上升,不利于通信设备(例如终端、网络侧设备等)对信道的处理。
发明内容
本申请实施例的目的是提供一种信道的调度方法及通信设备,能够解决如何降低信道调度的复杂度的问题。
为了解决上述技术问题,本申请是这样实现的:
第一方面,提供了一种信道的调度方法,该方法包括:
通信设备确定第一信道所调度的一个或者多个目标信道所占据的时隙slot数以及slot位置;
所述通信设备确定所述目标信道在所占据的每个slot中占据的符号数以及符号位置。
第二方面,提供了一种信道的调度装置,该装置包括:
时隙确定模块,用于确定第一信道所调度的一个或者多个目标信道所占据的时隙slot数以及slot位置;
符号确定模块,用于确定所述目标信道在所占据的每个slot中占据的符号数以及符号位置。
第三方面,提供了一种通信设备,该通信设备包括处理器、存储器及存储在所述存储器上并可在所述处理器上运行的程序或指令,所述程序或指令被所述处理器执行时实现如第一方面所述的方法的步骤。
第四方面,提供了一种可读存储介质,所述可读存储介质上存储程序或指令,所述程序或指令被处理器执行时实现如第一方面所述的方法的步骤。
第五方面,提供了一种芯片,所述芯片包括处理器和通信接口,所述通信接口和所述处理器耦合,所述处理器用于运行网络侧设备程序或指令,实现如第一方面所述的方法。
第六方面,提供了一种计算机程序产品,所述计算机程序产品被存储在非瞬态存储介质中,所述计算机程序产品被至少一个处理器执行以实现如第一方面所述的方法。
本申请实施例提供的信道的调度方法及通信设备,由于第一信道可以调度一个或多个目标信道,因此相比于现有技术中一次只能调度一个信道的技术方案,可以显著降低信道调度的复杂度,从而降低通信设备的能耗并提高通信设备的通信效率。
附图说明
图1为本申请实施例提供的无线通信系统的结构图;
图2为本申请实施例提供的信道的调度方法的流程示意图;
图3为根据本申请实施例的目标信道占据slot的示意图之一;
图4为根据本申请实施例的目标信道占据slot的示意图之二;
图5为根据本申请实施例的目标信道占据slot的示意图之三;
图6为根据本申请实施例的目标信道占据slot的示意图之四;
图7为根据本申请实施例的目标信道占据slot的示意图之五;
图8为根据本申请实施例的目标信道占据slot的示意图之六;
图9为根据本申请实施例的目标信道占据slot的示意图之七;
图10为根据本申请实施例的目标信道占据slot的示意图之八;
图11为根据本申请实施例的目标信道占据slot的示意图之九;
图12为本申请实施例提供的信道的调度装置的结构示意图;
图13为实现本申请实施例的一种通信设备的结构示意图;
图14为实现本申请实施例的一种终端的硬件结构示意图;
图15为实现本申请实施例的一种网络侧设备的硬件结构示意图。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
本申请的说明书和权利要求书中的术语“第一”、“第二”等是用于区别类似的对象,而不用于描述特定的顺序或先后次序。应该理解这样使用的数据在适当情况下可以互换,以便本申请的实施例能够以除了在这里图示或描述的那些以外的顺序实施,且“第一”、“第二”所区别的对象通常为一类,并不限定对象的个数,例如第一对象可以是一个,也可以是多个。此外,说明书以及权利要求中“和/或”表示所连接对象的至少其中之一,字符“/”一般表示前后关联对象是一种“或”的关系。
值得指出的是,本申请实施例所描述的技术不限于长期演进型(Long Term Evolution,LTE)/LTE的演进(LTE-Advanced,LTE-A)系统,还可用于其他无线通信系统,诸如码分多址(Code Division Multiple Access,CDMA)、时分多址(Time Division Multiple Access,TDMA)、频分多址(Frequency Division Multiple Access,FDMA)、正交频分多址(Orthogonal Frequency Division Multiple Access,OFDMA)、单载波频分多址(Single-carrier Frequency-Division Multiple Access,SC-FDMA)和其他系统。本申请实施例 中的术语“系统”和“网络”常被可互换地使用,所描述的技术既可用于以上提及的系统和无线电技术,也可用于其他系统和无线电技术。然而,以下描述出于示例目的描述了新空口(New Radio,NR)系统,并且在以下大部分描述中使用NR术语,尽管这些技术也可应用于NR系统应用以外的应用,如第6代(6 th Generation,6G)通信系统。
图1示出本申请实施例可应用的一种无线通信系统的结构图。无线通信系统包括终端11和网络侧设备12。其中,终端11也可以称作终端设备或者用户终端(User Equipment,UE),终端11可以是手机、平板电脑(Tablet Personal Computer)、膝上型电脑(Laptop Computer)或称为笔记本电脑、个人数字助理(Personal Digital Assistant,PDA)、掌上电脑、上网本、超级移动个人计算机(ultra-mobile personal computer,UMPC)、移动上网装置(Mobile Internet Device,MID)、可穿戴式设备(Wearable Device)或车载设备(VUE)、行人终端(PUE)等终端侧设备,可穿戴式设备包括:手环、耳机、眼镜等。需要说明的是,在本申请实施例并不限定终端11的具体类型。网络侧设备12可以是基站或核心网,其中,基站可被称为节点B、演进节点B、接入点、基收发机站(Base Transceiver Station,BTS)、无线电基站、无线电收发机、基本服务集(Basic Service Set,BSS)、扩展服务集(Extended Service Set,ESS)、B节点、演进型B节点(eNB)、家用B节点、家用演进型B节点、WLAN接入点、WiFi节点、发送接收点(Transmitting Receiving Point,TRP)或所述领域中其他某个合适的术语,只要达到相同的技术效果,所述基站不限于特定技术词汇,需要说明的是,在本申请实施例中仅以NR系统中的基站为例,但是并不限定基站的具体类型。
为便于更加充分地理解本申请实施例提供的技术方案,现对以下内容进行介绍:
1.1帧结构
为了支持各种频带和部署场景,NR(New Radio,新空口)支持灵活的numerology配置。一个numerology(使用μ表示)对应频域上的一个SCS配 置(以及循环前缀长度)。在NR中,通过将基础SCS(15kHz)乘以整数N(即扩大N倍。N=2 n,n为整数),定义了多种不同的numerology。如表一所示:
表一
Figure PCTCN2021142969-appb-000001
如表一所示,随着SCS的增加,每个子帧上包含的slot(时隙)数量成倍增加,而每个slot占用的时间成倍减少。
1.2PDCCH
物理下行控制信道(Physical Downlink Control Channel,PDCCH)是下行控制信道,承载着物理上行共享信道(Physical Uplink Share Channel,PUSCH)和物理下行共享信道(Physical Downlink Share Channel,PDSCH)的下行控制信息(Downlink Control Information,DCI)。在LTE中,PDCCH频域上占据全部带宽,时域上占据每个子帧的前1-3个符号。在NR中,PDCCH若沿用LTE的方式,继续占据全部带宽,无疑是资源的浪费,而且会对UE提出很高的要求,不利于降低UE成本,所以NR中PDCCH会在子集带宽(Bandwidth Part,BWP)内,而且时域也不是占据固定的一些时隙。NR中,目前为止是一个PDCCH调度一个PDSCH。NR中的PDCCH时频资源主要由控制资源集(Control-resource set,CORESET)和搜索空间(Search Space,SS)决定。
1.2.1 CORESET
CORESET解决的是PDCCH的存在范围问题,比如时域长度和频域范 围。由于NR的系统带宽很大(最大400M),如果沿用LTE的静态配置方式(占据整个系统带宽),将会大大增加盲检复杂度。因此,NR采用了可配置的CORESET,CORESET的时域长度和频域范围可以通过系统信息或者专用无线资源控制(Radio Resource Control,RRC)消息配置。
1.2.2 Search space
Search space解决的是UE如何搜索的问题。在LTE中有类似概念,其目的是为了尽可能的降低UE的盲检复杂度。与LTE不同的是,NR中的search space针对某一个CORESET,NR可以为不同的UE配置不同的search space,也就是说,对于不同UE配置不同的盲检方式(比如监控周期、监控的符号起始位置等)。由此,可以进一步地降低UE的盲检复杂度。
1.2.3 DCI
UE知道了自己的CORESET和Search space配置,找到了发送给自己的PDCCH,从而解出了PDCCH信道承载的内容,即下行控制信息DCI。DCI分为不同的格式,如表二所示:
表二
Figure PCTCN2021142969-appb-000002
Figure PCTCN2021142969-appb-000003
不同DCI格式所包含的内容不一致,以DCI 1-0为例:
1区别标记:1bit
2频域资源分配域
3时域资源分配域:4bits
4虚拟资源块(Virtual resource block,VRB)到物理资源块(Physical Resource Block,PRB)的映射:1bits
5调制编码方案:5bits
6新数据指示:1bits
7冗余版本:2bits
8混合自动重传请求(Hybrid Automatic Repeat reQuest,HARQ)进程指示:4bits
9下行分配指示:2bits
10 PUCCH功控信令:2bits
11 PUCCH资源指示:3bits
12 HARQ反馈定时指示:3bits
下面结合附图,通过具体的实施例及其应用场景对本申请实施例提供的信道的调度方法进行详细地说明。
图2是本申请实施例提供的信道的调度方法的流程示意图。如图2所示,本申请实施例提供一种信道的调度方法,可以包括:
S210、通信设备确定第一信道所调度的一个或者多个目标信道所占据的 slot数以及slot位置;
S220、通信设备确定目标信道在所占据的每个slot中占据的符号数以及符号位置。
需要说明的是,上述方法的执行主体可以是通信设备,例如终端或网络侧设备。下面以通信设备执行上述方法为例,详细说明本申请的技术方案。
首先,通信设备可以确定第一信道所调度的目标信道所占据的slot数以及slot位置;之后,通信设备可以确定目标信道在所占据的每个slot中占据的符号数以及符号位置。
第一信道可以是具有信道调度功能的信道,例如PDCCH或PUCCH。其中,PDCCH可以调度PDSCH,而PUCCH可以调度PUSCH。
目标信道可以是被第一信道调度的信道,例如,当第一信道为PDCCH时,目标信道可以是PDSCH,而当第一信道为PUCCH时,目标信道可以是PUSCH。
本申请实施例提供的信道的调度方法,由于第一信道可以调度一个或多个目标信道,因此相比于现有技术中一次只能调度一个信道的技术方案,可以显著降低信道调度的复杂度,从而降低通信设备的能耗并提高通信设备的通信效率。
在一个实施例中,目标信道占据slot的方式可以包括如下任一种:
一个目标信道占据多个slot;
多个目标信道中每个目标信道占据一个slot。
当被第一信道调度的目标信道为一个时,该目标信道可以占据多个slot,例如3个、5个等。其占据的slot的数量可以根据实际情况进行调整,本申请实施例对此不作具体限定。
例如,当目标信道需要占据较大时域资源时,其占据的slot的数量可以为,例如8个;当目标信道需要占据较小时域资源时,其占据的slot的数量可以为,例如2个。
当被第一信道调度的目标信道为多个时,该多个目标信道中的每一个目 标信道分别占据一个slot。例如,当第一信道调度6个目标信道时,该6个目标信道分别占据一个slot,总共占据6个slot。
该多个目标信道的数量可以根据实际情况进行调整,本申请实施例对此不作具体限定。
在一个实施例中,确定第一信道所调度的一个或者多个目标信道所占据的slot数,可以包括以下任一种方式:
方式1:根据链路控制信息指示的第一slot数确定slot数;
链路控制信息可以包括DCI或上行控制信息(Uplink Control Information,UCI)。
当第一信道为PDCCH时,通信设备可以解析出DCI的相关指示域中包括的第一slot数信息,并将第一slot数作为slot数。
而当第一信道为PUCCH时,通信设备可以解析出UCI的相关指示域中包括的第一slot数信息,并将第一slot数作为slot数。
方式2:根据无线资源控制RRC配置的时域资源分配(Time Domain Resource Assignment,TDRA)entry(配置表)中包含的第二slot数确定slot数;
通信设备可以识别出RRC为通信设备配置的TDRA entry中包含的第二slot数信息,并将第二slot数作为slot数。
方式3:根据协议预定义或者网络预配置的第三slot数确定slot数;
通信设备可以将协议预定义或者网络预配置的第三slot数作为slot数。
方式4:根据第一信道的子载波间隔SCS,或者目标信道的SCS确定slot数;
可选地,方式4可以包括如下任一项:
方式41:根据第一信道的SCS或者目标信道的SCS与slot数的预设对应关系,确定slot数;
第一信道的SCS或者目标信道的SCS与slot数的预设对应关系可以为例如:
SCS=480K时,slot数为4;SCS=960K时,slot数为8;或者,
SCS=480K时,slot数为6;SCS=960K时,slot数为12等。
该预设对应关系可以根据实际需要进行调整,本申请实施例对此不作具体限定。
方式42:根据第一信道的SCS或者目标信道的SCS与基准SCS之商,确定slot数。
基准SCS的大小可以为例如120K,其具体大小可以根据实际需要进行调整,本申请实施例对此不作具体限定。
例如,当第一信道的SCS为960K时,其与基准SCS之商为960/120=8,则可以将slot数确定为8。
当然,还可以将第一信道的SCS或者目标信道的SCS与基准SCS之商乘以一定系数,或加上一定系数,并将计算之后的结果作为slot数。
例如,该系数可以为正整数,例如2,则当第一信道的SCS为960K时,slot数可以为8×2=16,或者8+2=10。
方式5:根据第二slot数以及预设参数确定slot数;
预设参数为正整数,其可以为例如3,其具体大小可以根据实际需要进行调整,本申请实施例对此不作具体限定。
在确定第二slot数以及预设参数后,则可以将第二slot数与预设参数之积或之和或之商作为slot数。
例如,当第二slot数为6,预设参数为3时,则当第二slot数与预设参数之积为slot数时,slot数为6×3=18;当第二slot数与预设参数之和为slot数时,slot数为6+3=9;当第二slot数与预设参数之商为slot数时,slot数为6÷3=2。
方式6:根据第一信道的SCS或者目标信道的SCS,以及第二slot数确定slot数。
可选的,方式6可以包括:
确定第一信道的SCS或者目标信道的SCS与基准SCS的比值;根据比 值与第二slot数之积,确定slot数。
例如,当第一信道的SCS或者目标信道的SCS为480K,基准SCS为120K时,则第一信道的SCS或者目标信道的SCS与基准SCS的比值为480:120=4。
若第二slot数为4,则上述比值与第二slot数之积上述为4×4=16。可以将上述比值与第二slot数之积16作为slot数。
可选地,还可以设置校正参数,该校正参数可以为正整数或负整数,例如-2或者2,并将上述比值与第二slot数之积,与该校正参数之和作为slot数。
例如,当校正参数为-2时,可以将上述比值与第二slot数之积16,与校正参数-2之和14作为slot数。
本申请实施例提供的信道的调度方法,通过上述各种方式确定目标信道所占据的slot数,可以保证在各种应用场景下,所确定的目标信道所占据的slot数是合理的,有效提高了本申请实施例提供的信道的调度方法在各种应用场景下的适用性。
在一个实施例中,在第一信道所调度的一个或者多个目标信道所占据的slot不连续的情况下,在M个slot内有N个slot用于目标信道传输,所述N个slot的位置由协议预定义,或者由网络侧预配置,或者根据预设规则确定;
其中,M为当前能够用于目标信道传输的slot数量,N为slot数;M大于N。
当通信设备确定当前能够用于目标信道传输的slot数量M后,则可以根据协议的规定,将M个slot中的N个slot作为目标信道所占据的slot。其中,协议可以规定例如,必须将M个slot中的第一个slot以及最后一个slot作为目标信道所占据的slot,而其余的目标信道所占据的slot则可以随机分配到M个slot中除第一个slot和最后一个slot之外的其他slot中;或者,协议可以规定例如,必须将M个slot中的位于中间位置的一个或两个中间slot作为目标信道所占据的slot,而其余的目标信道所占据的slot则可以随机分配到M 个slot中除中间slot之外的其他slot中。
通信设备还可以按照网络的预配置,在M个slot中确定N个slot作为目标信道所占据的slot。
通信设备还可以按照网络根据预设规则确定的分配结果,将M个slot中的N个slot作为目标信道所占据的slot。该预设规则可以包括,例如:
将M个slot中的第一个slot以及最后一个slot作为目标信道所占据的slot,而其余的目标信道所占据的slot则随机分配到M个slot中除第一个slot和最后一个slot之外的其他slot中;
或者,将M个slot中的位于中间位置的一个或两个中间slot作为目标信道所占据的slot,而其余的目标信道所占据的slot则随机分配到M个slot中除中间slot之外的其他slot中;
或者,按照M个slot中每个slot的优先级的大小,选择前N个slot作为目标信道所占据的slot;该优先级可以由slot在无线帧或无线子帧或时隙绑定(slot bundling,包括多个slot)中的位置确定,或者由slot当前的符号占用率确定等。
上述仅作为预设规则的举例,预设规则的具体内容可以根据实际需要进行调整,本申请实施例对此不作具体限定。
在一个实施例中,在第一信道调度一个目标信道的情况下,步骤S220可以包括:
S2201、根据链路控制信息和/或slot数,确定目标信道在所占据的每个slot中占据的符号数以及符号位置。
可选地,步骤S2201的具体操作可以包括如下任一:
操作1:根据链路控制信息携带的开始符号的信息以及整个目标信道持续符号的长度,确定目标信道在所占据的每个slot中占据的符号数以及符号位置;
链路控制信息可以携带开始符号(start symbol)的信息,以及整个目标信道持续符号的长度。
通信设备可以根据开始符号的信息,确定目标信道占据的起始符号的位置。
例如,链路控制信息中的指示域指示目标信道的起始符号为5,整个目标信道持续符号的长度为60。则目标信道从第一个slot中的第5个符号开始,依次占据后续的符号(若当前slot内的符号已占满,则继续占据下一个slot内的符号,以此类推),直至占据的符号数量达到60,如图3所示。
由图3可知,通过链路控制信息携带的开始符号的信息以及整个目标信道持续符号的长度,可以直接确定目标信道在每个slot中占据的符号数以及符号位置。
操作2:根据链路控制信息携带的开始符号的信息以及结束符号的信息,结合slot数,确定目标信道在所占据的每个slot中占据的符号数以及符号位置。
例如,链路控制信息中的指示域指示目标信道的开始符号,例如第5个符号,以及目标信道的结束符号,例如第9个符号。则目标信道从第一个slot中的第5个符号开始,依次占据后续的符号(若当前slot内的符号已占满,则继续占据下一个slot内的符号,以此类推);再结合slot数,比如5个,则目标信道在占据到第5个slot内的第9个符号为止。如图3所示。
由图3可知,通过链路控制信息携带的开始符号的信息以及结束符号的信息,结合slot数,可以直接确定目标信道在所占据的每个slot中占据的符号数以及符号位置。
在一个实施例中,在确定第一信道所调度的多个目标信道所占据的slot数以及slot位置的情况下,步骤S220可以包括:
S2202、根据链路控制信息以及slot数,确定目标信道在所占据的每个slot中占据的符号数以及符号位置。
可选地,步骤S2202的具体操作可以包括如下任一:
操作I:根据链路控制信息中携带的第一个目标信道的TDRA信息,结合slot数,确定其余所有目标信道在其相应的slot中的时域资源位置与第一 个目标信道的TDRA信息一致;
在操作I中,链路控制信息可以只携带第一个目标信道的TDRA信息,结合slot数,后续默认其余所有目标信道在相应的slot中的时域资源位置与第一个目标信道的TDRA信息一致。
其中,TDRA信息可以包括目标信道占据的符号数量以及位置信息。在确定了目标信道所占据的slot位置的情况下,目标信道即可根据TDRA信息,在对应的slot中占据相应的符号。
例如,第一信道调度5个目标信道,则链路控制信息只需要携带第一个目标信道的TDRA信息,后续4个目标信道在相应的slot中的时域资源位置(占据的符号数以及符号位置)与第一个目标信道的TDRA信息一致。
在目标信道所占据的slot连续的情况下,目标信道占据slot的示例如图4所示;在目标信道所占据的slot不连续的情况下,目标信道占据slot的示例如图5所示。
操作II:根据链路控制信息携带的第一数量个TDRA,或者指示包含第一数量个TDRA的列表list entry,确定前第一数量个目标信道遵循TDRA指示,后续所有目标信道在相应slot中的时域资源位置与第一数量个TDRA中的一个或多个TDRA相同,一个或多个TDRA是预定义的或者预配置的;
第一数量可以为例如2、3个等,其具体大小可以根据实际情况进行调整,本申请实施例对此不作具体限定。
假设第一信道调度5个目标信道,第一数量为2个,则5个目标信道中的前2个遵循2个TDRA的指示,即第一个目标信道可以遵循第一个TDRA的指示,根据第一个TDRA中包括的目标信道占据的符号数量以及位置信息来占据相应slot内的符号;而第二个目标信道可以遵循第二个TDRA的指示,根据第二个TDRA中包括的目标信道占据的符号数量以及位置信息来占据相应slot内的符号。
后续第3-5个目标信道则可以参照第一个或者第二个目标信道所占据的时域资源位置(占据的符号数量以及位置),在相应的slot中占据与第一个或 者第二个目标信道所占据的时域资源位置相同的时域资源位置。
例如,第二个目标信道占据相应slot内的第3-12个符号,则第三个目标信道、第四个目标信道以及第五个目标信道也占据相应slot内的第3-12个符号。
在目标信道不连续(未占据相应slot内的所有符号),且目标信道所占据的slot连续的情况下,目标信道占据slot的示例如图6所示;在目标信道不连续,且目标信道所占据的slot不连续的情况下,目标信道占据slot的示例如图7所示;在目标信道连续(占据相应slot内的所有符号),且目标信道所占据的slot连续的情况下,目标信道占据slot的示例如图8所示;在目标信道连续,且目标信道所占据的slot不连续的情况下,目标信道占据slot的示例如图9所示。
操作III:根据链路控制信息携带的开始符号的信息以及结束符号的信息,结合slot数,确定目标信道在所占据的每个slot中占据的符号数。
例如,第一信道调度5个目标信道,链路控制信息携带开始符号的信息以及结束符号的信息,例如,开始符号信息可以指示第5个符号为开始符号,结束符号信息可以指示第9个符号为结束符号。第一个目标信道从相应slot的第5个符号开始占据,直到占据该slot的最后一个符号,例如第14个符号。后续的第二目标信道、第三目标信道以及第四目标信道占据相应slot内的所有符号,最后的第五目标信道占据相应slot内的第1个符号至第9个符号。
在目标信道所占据的slot连续的情况下,目标信道占据slot的示例如图10所示;在目标信道所占据的slot不连续的情况下,目标信道占据slot的示例如图11所示。
本申请实施例提供的信道的调度方法,通过上述各种方式确定目标信道在对应slot内占据的符号数以及符号位置,可以保证在各种应用场景下,所确定的目标信道所占据的符号数以及符号位置是合理的,有效提高了本申请实施例提供的信道的调度方法在各种应用场景下的适用性。
需要说明的是,本申请实施例提供的信道的调度方法,执行主体可以为 信道的调度装置,或者,该信道的调度装置中的用于执行信道的调度方法的控制模块。本申请实施例中以信道的调度装置执行信道的调度方法为例,说明本申请实施例提供的信道的调度装置。
图12为本申请实施例提供的信道的调度装置的结构示意图。如图12所示,本申请实施例提供一种信道的调度装置,该装置应用于通信设备,可以包括:
时隙确定模块1210,用于确定第一信道所调度的一个或者多个目标信道所占据的时隙slot数以及slot位置;
符号确定模块1220,用于确定目标信道在所占据的每个slot中占据的符号数以及符号位置。
本申请实施例提供的信道的调度装置,由于第一信道可以调度一个或多个目标信道,因此相比于现有技术中一次只能调度一个信道的技术方案,可以显著降低信道调度的复杂度,从而降低通信设备的能耗并提高通信设备的通信效率。
可选地,目标信道占据slot的方式包括如下任一种:
一个目标信道占据多个slot;
多个目标信道中每个目标信道占据一个slot。
可选地,时隙确定模块1210确定第一信道所调度的一个或者多个目标信道所占据的slot数,包括以下任一种:
根据链路控制信息指示的第一slot数确定slot数;
根据无线资源控制RRC配置的时域资源分配配置表TDRA entry中包含的第二slot数确定slot数;
根据协议预定义或者网络预配置的第三slot数确定slot数;
根据第一信道的子载波间隔SCS,或者目标信道的SCS确定slot数;
根据第二slot数以及预设参数确定slot数;
根据第一信道的SCS或者目标信道的SCS,以及第二slot数确定slot数。
可选地,时隙确定模块1210根据第一信道的SCS,或者目标信道的SCS 确定slot数包括如下任一:
根据第一信道的SCS或者目标信道的SCS与slot数的预设对应关系,确定slot数;
将第一信道的SCS或者目标信道的SCS与基准SCS之商,作为slot数。
可选地,所述时隙确定模块1210根据第二slot数以及预设参数确定slot数包括:
根据第二slot数与预设参数之和或之积,确定slot数。
可选地,所述时隙确定模块1210根据第一信道的SCS或者目标信道的SCS,以及第二slot数,确定slot数包括:
确定第一信道的SCS或者目标信道的SCS与基准SCS的比值;
根据比值与第二slot数之积,确定slot数。
可选地,在第一信道所调度的一个或者多个目标信道所占据的slot不连续的情况下,在M个slot内有N个slot用于目标信道传输,N个slot的位置由协议预定义,或者由网络预配置或根据预设规则确定;
其中,M为当前能够用于目标信道传输的slot数量,N为slot数;M大于N。
可选地,在确定第一信道调度一个目标信道的情况下,符号确定模块1220可以具体用于:
根据链路控制信息和/或slot数,确定目标信道在所占据的每个slot中占据的符号数以及符号位置。
可选地,符号确定模块1220根据链路控制信息和/或slot数,确定目标信道在所占据的每个slot中占据的符号数以及符号位置,包括如下任一:
根据链路控制信息携带的开始符号的信息以及整个目标信道持续符号的长度,确定目标信道在所占据的每个slot中占据的符号数以及符号位置;
根据链路控制信息携带的开始符号的信息以及结束符号的信息,结合slot数,确定目标信道在所占据的每个slot中占据的符号数以及符号位置。
可选地,在确定第一信道所调度的多个目标信道所占据的slot数以及slot 位置的情况下,符号确定模块1220可以具体用于:
根据链路控制信息以及slot数,确定目标信道在所占据的每个slot中占据的符号数以及符号位置。
可选地,符号确定模块1220根据链路控制信息以及slot数,确定目标信道在所占据的每个slot中占据的符号数以及符号位置,包括以下任一:
根据链路控制信息中携带的第一个目标信道的TDRA信息,结合slot数,确定其余所有目标信道在其相应的slot中的时域资源位置与第一个目标信道的TDRA信息一致;
根据链路控制信息携带的第一数量个TDRA,或者指示包含第一数量个TDRA的列表list entry,确定前第一数量个目标信道遵循TDRA指示,后续所有目标信道在相应slot中的时域资源位置与第一数量个TDRA中的一个或多个TDRA相同,一个或多个TDRA是预定义的或者预配置的;
根据链路控制信息携带的开始符号的信息以及结束符号的信息,结合slot数,确定目标信道在所占据的每个slot中占据的符号数。
可选地,第一信道为PDCCH或PUCCH;目标信道为PDSCH或PUSCH。
本申请实施例中的信道的调度装置可以是装置,也可以是终端中的部件、集成电路、或芯片。该装置可以是移动终端,也可以为非移动终端。示例性的,移动终端可以包括但不限于上述所列举的终端11的类型,非移动终端可以为服务器、网络附属存储器(Network Attached Storage,NAS)、个人计算机(personal computer,PC)、电视机(television,TV)、柜员机或者自助机等,本申请实施例不作具体限定。
本申请实施例中的信道的调度装置可以为具有操作系统的装置。该操作系统可以为安卓(Android)操作系统,可以为ios操作系统,还可以为其他可能的操作系统,本申请实施例不作具体限定。
本申请实施例提供的信道的调度装置能够实现图2至图11的方法实施例实现的各个过程,并达到相同的技术效果,为避免重复,这里不再赘述。
可选的,如图13所示,本申请实施例还提供一种通信设备1300,包括 处理器1301,存储器1302,存储在存储器1302上并可在所述处理器1301上运行的程序或指令,例如,该通信设备1300为终端时,该程序或指令被处理器1301执行时实现上述信道的调度方法实施例的各个过程,且能达到相同的技术效果。该通信设备1300为网络侧设备时,该程序或指令被处理器1301执行时实现上述信道的调度方法实施例的各个过程,且能达到相同的技术效果,为避免重复,这里不再赘述。
图14为实现本申请实施例的一种终端的硬件结构示意图。
该终端1400包括但不限于:射频单元1401、网络模块1402、音频输出单元1403、输入单元1404、传感器1405、显示单元1406、用户输入单元1407、接口单元1408、存储器1409、以及处理器1410等部件。
本领域技术人员可以理解,终端1400还可以包括给各个部件供电的电源(比如电池),电源可以通过电源管理系统与处理器1410逻辑相连,从而通过电源管理系统实现管理充电、放电、以及功耗管理等功能。图14中示出的终端结构并不构成对终端的限定,终端可以包括比图示更多或更少的部件,或者组合某些部件,或者不同的部件布置,在此不再赘述。
应理解的是,本申请实施例中,输入单元1404可以包括图形处理器(Graphics Processing Unit,GPU)14041和麦克风14042,图形处理器14041对在视频捕获模式或图像捕获模式中由图像捕获装置(如摄像头)获得的静态图片或视频的图像数据进行处理。显示单元1406可包括显示面板14061,可以采用液晶显示器、有机发光二极管等形式来配置显示面板14061。用户输入单元1407包括触控面板14071以及其他输入设备14072。触控面板14071,也称为触摸屏。触控面板14071可包括触摸检测装置和触摸控制器两个部分。其他输入设备14072可以包括但不限于物理键盘、功能键(比如音量控制按键、开关按键等)、轨迹球、鼠标、操作杆,在此不再赘述。
本申请实施例中,射频单元1401将来自网络侧设备的下行数据接收后,给处理器1410处理;另外,将上行的数据发送给网络侧设备。通常,射频单元1401包括但不限于天线、至少一个放大器、收发信机、耦合器、低噪声放 大器、双工器等。
存储器1409可用于存储软件程序或指令以及各种数据。存储器1409可主要包括存储程序或指令区和存储数据区,其中,存储程序或指令区可存储操作系统、至少一个功能所需的应用程序或指令(比如声音播放功能、图像播放功能等)等。此外,存储器1409可以包括高速随机存取存储器,还可以包括非易失性存储器,其中,非易失性存储器可以是只读存储器(Read-Only Memory,ROM)、可编程只读存储器(Programmable ROM,PROM)、可擦除可编程只读存储器(Erasable PROM,EPROM)、电可擦除可编程只读存储器(Electrically EPROM,EEPROM)或闪存。例如至少一个磁盘存储器件、闪存器件、或其他非易失性固态存储器件。
处理器1410可包括一个或多个处理单元;可选的,处理器1410可集成应用处理器和调制解调处理器,其中,应用处理器主要处理操作系统、用户界面和应用程序或指令等,调制解调处理器主要处理无线通信,如基带处理器。可以理解的是,上述调制解调处理器也可以不集成到处理器1410中。
其中,处理器1410,用于确定第一信道所调度的一个或者多个目标信道所占据的时隙slot数以及slot位置;
确定目标信道在所占据的每个slot中占据的符号数以及符号位置。
本申请实施例提供的信道的终端,由于第一信道可以调度一个或多个目标信道,因此相比于现有技术中一次只能调度一个信道的技术方案,可以显著降低信道调度的复杂度,从而降低通信设备的能耗并提高通信设备的通信效率。
可选地,处理器1410,还用于确定第一信道所调度的一个或者多个目标信道所占据的slot数,包括以下任一种:
根据链路控制信息指示的第一slot数确定slot数;
根据无线资源控制RRC配置的时域资源分配配置表TDRA entry中包含的第二slot数确定slot数;
根据协议预定义或者网络预配置的第三slot数确定slot数;
根据第一信道的子载波间隔SCS,或者目标信道的SCS确定slot数;
根据第二slot数以及预设参数确定slot数;
根据第一信道的SCS或者目标信道的SCS,以及第二slot数确定slot数。
可选地,处理器1410,还用于根据第一信道的SCS,或者目标信道的SCS确定slot数,包括如下任一:
根据第一信道的SCS或者目标信道的SCS与slot数的预设对应关系,确定slot数;
将第一信道的SCS或者目标信道的SCS与基准SCS之商,作为slot数。
可选地,处理器1410,还用于根据第二slot数以及预设参数确定slot数,包括:
根据第二slot数与预设参数之和或之积,确定slot数。
可选地,处理器1410,还用于根据第一信道的SCS或者目标信道的SCS,以及第二slot数,确定slot数,包括:
确定第一信道的SCS或者目标信道的SCS与基准SCS的比值;
根据比值与第二slot数之积,确定slot数。
可选地,在确定第一信道调度一个目标信道的情况下,处理器1410,还用于:
根据链路控制信息和/或slot数,确定目标信道在所占据的每个slot中占据的符号数以及符号位置。
可选地,处理器1410,还用于根据链路控制信息和/或slot数,确定目标信道在所占据的每个slot中占据的符号数以及符号位置,包括如下任一:
根据链路控制信息携带的开始符号的信息以及整个目标信道持续符号的长度,确定目标信道在所占据的每个slot中占据的符号数以及符号位置;
根据链路控制信息携带的开始符号的信息以及结束符号的信息,结合slot数,确定目标信道在所占据的每个slot中占据的符号数以及符号位置。
可选地,在确定第一信道所调度的多个目标信道所占据的slot数以及slot位置的情况下,处理器1410,还用于:
根据链路控制信息以及slot数,确定目标信道在所占据的每个slot中占据的符号数以及符号位置。
可选地,处理器1410,还用于根据链路控制信息以及slot数,确定目标信道在所占据的每个slot中占据的符号数以及符号位置,包括以下任一:
根据链路控制信息中携带的第一个目标信道的TDRA信息,结合slot数,确定其余所有目标信道在其相应的slot中的时域资源位置与第一个目标信道的TDRA信息一致;
根据链路控制信息携带的第一数量个TDRA,或者指示包含第一数量个TDRA的列表list entry,确定前第一数量个目标信道遵循TDRA指示,后续所有目标信道在相应slot中的时域资源位置与第一数量个TDRA中的一个或多个TDRA相同,一个或多个TDRA是预定义的或者预配置的;
根据链路控制信息携带的开始符号的信息以及结束符号的信息,结合slot数,确定目标信道在所占据的每个slot中占据的符号数。
本申请实施例还提供了一种网络侧设备。如图15所示,该网络侧设备1500包括:天线1501、射频装置1502、基带装置1503。天线1501与射频装置1502连接。在上行方向上,射频装置1502通过天线1501接收信息,将接收的信息发送给基带装置1503进行处理。在下行方向上,基带装置1503对要发送的信息进行处理,并发送给射频装置1502,射频装置1502对收到的信息进行处理后经过天线1501发送出去。
上述频带处理装置可以位于基带装置1503中,以上实施例中通信设备执行的方法可以在基带装置1503中实现,该基带装置1503包括处理器1504和存储器1505。
基带装置1503例如可以包括至少一个基带板,该基带板上设置有多个芯片,如图15所示,其中一个芯片例如为处理器1504,与存储器1505连接,以调用存储器1505中的程序,执行以上方法实施例中所示的网络侧设备操作。
该基带装置1503还可以包括网络接口1506,用于与射频装置1502交互信息,该接口例如为通用公共无线接口(common public radio interface,简称 CPRI)。
具体地,本申请实施例的网络侧设备还包括:存储在存储器1505上并可在处理器1504上运行的指令或程序,处理器1504调用存储器1505中的指令或程序执行图12所示各模块执行的方法,并达到相同的技术效果,为避免重复,故不在此赘述。
本申请实施例还提供一种可读存储介质,所述可读存储介质上存储有程序或指令,该程序或指令被处理器执行时实现上述信道的调度方法实施例的各个过程,且能达到相同的技术效果,为避免重复,这里不再赘述。
其中,所述处理器为上述实施例中所述的终端中的处理器。所述可读存储介质,包括计算机可读存储介质,如计算机只读存储器(Read-Only Memory,ROM)、随机存取存储器(Random Access Memory,RAM)、磁碟或者光盘等。
本申请实施例另提供了一种芯片,所述芯片包括处理器和通信接口,所述通信接口和所述处理器耦合,所述处理器用于运行网络侧设备程序或指令,实现上述信道的调度方法实施例的各个过程,且能达到相同的技术效果,为避免重复,这里不再赘述。
应理解,本申请实施例提到的芯片还可以称为系统级芯片,系统芯片,芯片系统或片上系统芯片等。
需要说明的是,在本文中,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者装置不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者装置所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括该要素的过程、方法、物品或者装置中还存在另外的相同要素。此外,需要指出的是,本申请实施方式中的方法和装置的范围不限按示出或讨论的顺序来执行功能,还可包括根据所涉及的功能按基本同时的方式或按相反的顺序来执行功能,例如,可以按不同于所描述的次序来执行所描述的方法,并且还可以添加、省 去、或组合各种步骤。另外,参照某些示例所描述的特征可在其他示例中被组合。
通过以上的实施方式的描述,本领域的技术人员可以清楚地了解到上述实施例方法可借助软件加必需的通用硬件平台的方式来实现,当然也可以通过硬件,但很多情况下前者是更佳的实施方式。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质(如ROM/RAM、磁碟、光盘)中,包括若干指令用以使得一台终端(可以是手机,计算机,服务器,空调器,或者网络设备等)执行本申请各个实施例所述的方法。
上面结合附图对本申请的实施例进行了描述,但是本申请并不局限于上述的具体实施方式,上述的具体实施方式仅仅是示意性的,而不是限制性的,本领域的普通技术人员在本申请的启示下,在不脱离本申请宗旨和权利要求所保护的范围情况下,还可做出很多形式,均属于本申请的保护之内。

Claims (29)

  1. 一种信道的调度方法,包括:
    通信设备确定第一信道所调度的一个或者多个目标信道所占据的时隙slot数以及slot位置;
    所述通信设备确定所述目标信道在所占据的每个slot中占据的符号数以及符号位置。
  2. 根据权利要求1所述的信道的调度方法,其中,所述目标信道占据slot的方式包括如下任一种:
    一个目标信道占据多个slot;
    多个目标信道中每个目标信道占据一个slot。
  3. 根据权利要求2所述的信道的调度方法,其中,所述确定第一信道所调度的一个或者多个目标信道所占据的slot数,包括以下任一种:
    根据链路控制信息指示的第一slot数确定所述slot数;
    根据无线资源控制RRC配置的时域资源分配配置表TDRA entry中包含的第二slot数确定所述slot数;
    根据协议预定义或者网络预配置的第三slot数确定所述slot数;
    根据所述第一信道的子载波间隔SCS,或者所述目标信道的SCS确定所述slot数;
    根据所述第二slot数以及预设参数确定所述slot数;
    根据所述第一信道的SCS或者所述目标信道的SCS,以及所述第二slot数确定所述slot数。
  4. 根据权利要求3所述的信道的调度方法,其中,所述根据所述第一信道的SCS,或者所述目标信道的SCS确定所述slot数包括如下任一:
    根据所述第一信道的SCS或者所述目标信道的SCS与所述slot数的预设对应关系,确定所述slot数;
    根据所述第一信道的SCS或者所述目标信道的SCS与基准SCS之商, 确定所述slot数。
  5. 根据权利要求3所述的信道的调度方法,其中,所述根据所述第二slot数以及预设参数确定所述slot数包括:
    根据所述第二slot数与所述预设参数之和或之积,确定所述slot数。
  6. 根据权利要求3所述的信道的调度方法,其中,所述根据所述第一信道的SCS或者所述目标信道的SCS,以及所述第二slot数,确定所述slot数包括:
    确定所述第一信道的SCS或者所述目标信道的SCS与基准SCS的比值;
    根据所述比值与所述第二slot数之积,确定所述slot数。
  7. 根据权利要求3所述的信道的调度方法,其中:
    在所述第一信道所调度的一个或者多个目标信道所占据的slot不连续的情况下,在M个slot内有N个slot用于目标信道传输,所述N个slot的位置由协议预定义,或者由网络预配置或根据预设规则确定;
    其中,M为当前能够用于目标信道传输的slot数量,N为所述slot数;
    M大于N。
  8. 根据权利要求3所述的信道的调度方法,其中,在所述第一信道调度一个目标信道的情况下,所述确定所述目标信道在所占据的每个slot中占据的符号数以及符号位置,包括:
    根据所述链路控制信息和/或所述slot数,确定所述目标信道在所占据的每个slot中占据的符号数以及符号位置。
  9. 根据权利要求8所述的信道的调度方法,其中,所述根据所述链路控制信息和/或所述slot数,确定所述目标信道在所占据的每个slot中占据的符号数以及符号位置,包括如下任一:
    根据所述链路控制信息携带的开始符号的信息以及整个目标信道持续符号的长度,确定所述目标信道在所占据的每个slot中占据的符号数以及符号位置;
    根据所述链路控制信息携带的开始符号的信息以及结束符号的信息,结 合所述slot数,确定所述目标信道在所占据的每个slot中占据的符号数以及符号位置。
  10. 根据权利要求3所述的信道的调度方法,其中,在确定第一信道所调度的多个目标信道所占据的slot数以及slot位置的情况下,所述确定所述目标信道在所占据的每个slot中占据的符号数以及符号位置,包括:
    根据所述链路控制信息以及所述slot数,确定所述目标信道在所占据的每个slot中占据的符号数以及符号位置。
  11. 根据权利要求10所述的信道的调度方法,其中,所述根据所述链路控制信息以及所述slot数,确定所述目标信道在所占据的每个slot中占据的符号数以及符号位置,包括以下任一:
    根据所述链路控制信息中携带的第一个目标信道的TDRA信息,结合所述slot数,确定其余所有目标信道在其相应的slot中的时域资源位置与第一个目标信道的TDRA信息一致;
    根据所述链路控制信息携带的第一数量个TDRA,或者指示包含第一数量个TDRA的列表list entry,确定前第一数量个目标信道遵循TDRA指示,后续所有目标信道在相应slot中的时域资源位置与第一数量个TDRA中的一个或多个TDRA相同,所述一个或多个TDRA是预定义的或者预配置的;
    根据所述链路控制信息携带的开始符号的信息以及结束符号的信息,结合所述slot数,确定所述目标信道在所占据的每个slot中占据的符号数。
  12. 根据权利要求1至11任一项所述的信道的调度方法,其中,所述第一信道为物理下行控制信道PDCCH或物理上行控制信道PUCCH;
    所述目标信道为物理下行共享信道PDSCH或物理上行共享信道PUSCH。
  13. 一种信道的调度装置,包括:
    时隙确定模块,用于确定第一信道所调度的一个或者多个目标信道所占据的时隙slot数以及slot位置;
    符号确定模块,用于确定所述目标信道在所占据的每个slot中占据的符号数以及符号位置。
  14. 根据权利要求13所述的信道的调度装置,其中,所述目标信道占据slot的方式包括如下任一种:
    一个目标信道占据多个slot;
    多个目标信道中每个目标信道占据一个slot。
  15. 根据权利要求14所述的信道的调度装置,其中,所述时隙确定模块确定第一信道所调度的一个或者多个目标信道所占据的slot数,包括以下任一种:
    根据链路控制信息指示的第一slot数确定所述slot数;
    根据无线资源控制RRC配置的时域资源分配配置表TDRA entry中包含的第二slot数确定所述slot数;
    根据协议预定义或者网络预配置的第三slot数确定所述slot数;
    根据所述第一信道的子载波间隔SCS,或者所述目标信道的SCS确定所述slot数;
    根据所述第二slot数以及预设参数确定所述slot数;
    根据所述第一信道的SCS或者所述目标信道的SCS,以及所述第二slot数确定所述slot数。
  16. 根据权利要求15所述的信道的调度装置,其中,所述时隙确定模块根据所述第一信道的SCS,或者所述目标信道的SCS确定所述slot数包括如下任一:
    根据所述第一信道的SCS或者所述目标信道的SCS与所述slot数的预设对应关系,确定所述slot数;
    将所述第一信道的SCS或者所述目标信道的SCS与基准SCS之商,作为所述slot数。
  17. 根据权利要求15所述的信道的调度装置,其中,所述时隙确定模块根据所述第二slot数以及预设参数确定所述slot数包括:
    根据所述第二slot数与所述预设参数之和或之积,确定所述slot数。
  18. 根据权利要求15所述的信道的调度装置,其中,所述时隙确定模块 根据所述第一信道的SCS或者所述目标信道的SCS,以及所述第二slot数,确定所述slot数包括:
    确定所述第一信道的SCS或者所述目标信道的SCS与基准SCS的比值;
    根据所述比值与所述第二slot数之积,确定所述slot数。
  19. 根据权利要求15所述的信道的调度装置,其中,在所述第一信道所调度的一个或者多个目标信道所占据的slot不连续的情况下,在M个slot内有N个slot用于目标信道传输,所述N个slot的位置由协议预定义,或者由网络预配置或根据预设规则确定;
    其中,M为当前能够用于目标信道传输的slot数量,N为所述slot数;
    M大于N。
  20. 根据权利要求15所述的信道的调度装置,其中,在确定所述第一信道调度一个目标信道的情况下,所述符号确定模块具体用于:
    根据所述链路控制信息和/或所述slot数,确定所述目标信道在所占据的每个slot中占据的符号数以及符号位置。
  21. 根据权利要求20所述的信道的调度装置,其中,所述符号确定模块根据所述链路控制信息和/或所述slot数,确定所述目标信道在所占据的每个slot中占据的符号数以及符号位置,包括如下任一:
    根据所述链路控制信息携带的开始符号的信息以及整个目标信道持续符号的长度,确定所述目标信道在所占据的每个slot中占据的符号数以及符号位置;
    根据所述链路控制信息携带的开始符号的信息以及结束符号的信息,结合所述slot数,确定所述目标信道在所占据的每个slot中占据的符号数以及符号位置。
  22. 根据权利要求15所述的信道的调度装置,其中,在确定第一信道所调度的多个目标信道所占据的slot数以及slot位置的情况下,所述符号确定模块具体用于:
    根据所述链路控制信息以及所述slot数,确定所述目标信道在所占据的 每个slot中占据的符号数以及符号位置。
  23. 根据权利要求22所述的信道的调度装置,其中,所述符号确定模块根据所述链路控制信息以及所述slot数,确定所述目标信道在所占据的每个slot中占据的符号数以及符号位置,包括以下任一:
    根据所述链路控制信息中携带的第一个目标信道的TDRA信息,结合所述slot数,确定其余所有目标信道在其相应的slot中的时域资源位置与第一个目标信道的TDRA信息一致;
    根据所述链路控制信息携带的第一数量个TDRA,或者指示包含第一数量个TDRA的列表list entry,确定前第一数量个目标信道遵循TDRA指示,后续所有目标信道在相应slot中的时域资源位置与第一数量个TDRA中的一个或多个TDRA相同,所述一个或多个TDRA是预定义的或者预配置的;
    根据所述链路控制信息携带的开始符号的信息以及结束符号的信息,结合所述slot数,确定所述目标信道在所占据的每个slot中占据的符号数。
  24. 根据权利要求13至23任一项所述的信道的调度装置,其中,所述第一信道为物理下行控制信道PDCCH或物理上行控制信道PUCCH;
    所述目标信道为物理下行共享信道PDSCH或物理上行共享信道PUSCH。
  25. 一种通信设备,包括处理器,存储器及存储在所述存储器上并可在所述处理器上运行的程序或指令,其中,所述程序或指令被所述处理器执行时实现如权利要求1至12任一项所述的信道的调度方法的步骤。
  26. 一种可读存储介质,所述可读存储介质上存储程序或指令,其中,所述程序或指令被所述处理器执行时实现如权利要求1至12任一项所述的信道的调度方法的步骤。
  27. 一种芯片,包括处理器和通信接口,其中,所述通信接口和所述处理器耦合,所述处理器用于运行程序或指令,实现如权利要求1-12中任一项所述的信道的调度方法的步骤。
  28. 一种计算机程序产品,其中,所述计算机程序产品被存储在非瞬态存储介质中,所述程序产品被至少一个处理器执行以实现如权利要求1-12中 任一项所述的信道的调度方法的步骤。
  29. 一种通信设备,所述通信设备被配置为用于执行如权利要求1至12任一项所述的信道的调度方法的步骤。
PCT/CN2021/142969 2020-12-31 2021-12-30 信道的调度方法及通信设备 WO2022143875A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202011622137.2 2020-12-31
CN202011622137.2A CN114696979A (zh) 2020-12-31 2020-12-31 信道的调度方法及通信设备

Publications (1)

Publication Number Publication Date
WO2022143875A1 true WO2022143875A1 (zh) 2022-07-07

Family

ID=82134052

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/142969 WO2022143875A1 (zh) 2020-12-31 2021-12-30 信道的调度方法及通信设备

Country Status (2)

Country Link
CN (1) CN114696979A (zh)
WO (1) WO2022143875A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109714825A (zh) * 2017-10-25 2019-05-03 普天信息技术有限公司 资源调度的时域指示方法及装置
CN110622453A (zh) * 2017-03-24 2019-12-27 瑞典爱立信有限公司 用于时隙聚合的资源分配信令
WO2020022650A1 (ko) * 2018-07-26 2020-01-30 삼성전자주식회사 무선 통신 시스템에서 자원을 할당하는 방법, 장치 및 시스템
WO2020062011A1 (en) * 2018-09-28 2020-04-02 Lenovo (Beijing) Limited Multi-slot scheduling on unlicensed spectrum
US20200162208A1 (en) * 2018-11-21 2020-05-21 Electronics And Telecommunications Research Institute Method for transmitting and receiving data channel in communication system and apparatus for the same

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA3088211C (en) * 2018-01-12 2024-02-13 Guangdong Oppo Mobile Telecommunications Corp., Ltd. Method, terminal device and network device for transmitting channels

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110622453A (zh) * 2017-03-24 2019-12-27 瑞典爱立信有限公司 用于时隙聚合的资源分配信令
CN109714825A (zh) * 2017-10-25 2019-05-03 普天信息技术有限公司 资源调度的时域指示方法及装置
WO2020022650A1 (ko) * 2018-07-26 2020-01-30 삼성전자주식회사 무선 통신 시스템에서 자원을 할당하는 방법, 장치 및 시스템
WO2020062011A1 (en) * 2018-09-28 2020-04-02 Lenovo (Beijing) Limited Multi-slot scheduling on unlicensed spectrum
US20200162208A1 (en) * 2018-11-21 2020-05-21 Electronics And Telecommunications Research Institute Method for transmitting and receiving data channel in communication system and apparatus for the same

Also Published As

Publication number Publication date
CN114696979A (zh) 2022-07-01

Similar Documents

Publication Publication Date Title
WO2022007930A1 (zh) 一种载波切换处理方法、装置及终端
CN115118381B (zh) Pdcch盲检测方法、装置及设备
WO2022152176A1 (zh) 传输处理方法及相关设备
WO2022100678A1 (zh) 节能指示方法、装置、设备及可读存储介质
WO2022001815A1 (zh) 信道监听、传输方法、终端及网络侧设备
WO2022143655A1 (zh) Pdcch盲检的限制方法、终端及网络侧设备
WO2022218368A1 (zh) 旁链路反馈资源的确定方法、装置、终端及存储介质
WO2022083634A1 (zh) 资源配置方法、装置、设备及可读存储介质
WO2022063072A1 (zh) 上行信道传输方法、装置及终端
WO2022127702A1 (zh) 信息确定方法、装置及通信设备
EP4307803A1 (en) Random access method and device, terminal, and storage medium
WO2022028521A1 (zh) Sps pdsch的类型指示方法、装置、终端及网络侧设备
WO2022143875A1 (zh) 信道的调度方法及通信设备
WO2022017409A1 (zh) 上行传输方法、装置及相关设备
WO2022007715A1 (zh) 信道监听、传输方法、装置、终端及网络侧设备
WO2022188836A1 (zh) Cot确定方法、上行传输方法和设备
WO2022206593A1 (zh) Pdcch监听处理方法、监听配置方法及相关设备
WO2022188794A1 (zh) 半静态harq-ack码本的生成方法及终端
WO2022143659A1 (zh) 信号配置方法、装置、设备及存储介质
WO2022143862A1 (zh) 控制信道的配置方法、装置、通信设备
CN115085870B (zh) 半静态harq-ack码本的生成方法及终端
WO2023051525A1 (zh) 行为确定方法、装置及相关设备
WO2023001297A1 (zh) 反馈harq-ack信息的方法、装置及终端
WO2022218326A1 (zh) 候选pdcch的分配方法、终端及网络侧设备
WO2022033424A1 (zh) 资源传输方法、装置及通信设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21914606

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21914606

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 13.02.2024)