WO2022127898A1 - 消息传输方法、装置及设备 - Google Patents

消息传输方法、装置及设备 Download PDF

Info

Publication number
WO2022127898A1
WO2022127898A1 PCT/CN2021/139075 CN2021139075W WO2022127898A1 WO 2022127898 A1 WO2022127898 A1 WO 2022127898A1 CN 2021139075 W CN2021139075 W CN 2021139075W WO 2022127898 A1 WO2022127898 A1 WO 2022127898A1
Authority
WO
WIPO (PCT)
Prior art keywords
target
information
message
field
dci
Prior art date
Application number
PCT/CN2021/139075
Other languages
English (en)
French (fr)
Inventor
李娜
吴凯
Original Assignee
维沃移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 维沃移动通信有限公司 filed Critical 维沃移动通信有限公司
Publication of WO2022127898A1 publication Critical patent/WO2022127898A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/02Traffic management, e.g. flow control or congestion control
    • H04W28/0215Traffic management, e.g. flow control or congestion control based on user or device properties, e.g. MTC-capable devices
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/02Traffic management, e.g. flow control or congestion control
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/02Traffic management, e.g. flow control or congestion control
    • H04W28/06Optimizing the usage of the radio link, e.g. header compression, information sizing, discarding information
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/16Central resource management; Negotiation of resources or communication parameters, e.g. negotiating bandwidth or QoS [Quality of Service]
    • H04W28/18Negotiating wireless communication parameters
    • H04W28/22Negotiating communication rate
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access, e.g. scheduled or random access
    • H04W74/08Non-scheduled or contention based access, e.g. random access, ALOHA, CSMA [Carrier Sense Multiple Access]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access, e.g. scheduled or random access
    • H04W74/08Non-scheduled or contention based access, e.g. random access, ALOHA, CSMA [Carrier Sense Multiple Access]
    • H04W74/0833Non-scheduled or contention based access, e.g. random access, ALOHA, CSMA [Carrier Sense Multiple Access] using a random access procedure

Definitions

  • the present application belongs to the field of communication technologies, and in particular relates to a message transmission method, apparatus and device.
  • RedCap For the reduced terminal capability (Reduced Capability, RedCap for short) terminal, it needs to reduce the complexity in terms of receiving antennas, the number of transmitting antennas, the supported bandwidth, the time and ability of the terminal to process data and signals, etc., resulting in its downlink coverage. reduce. In order to ensure the performance of downlink coverage or information transmission, reducing the code rate of the transport block is an effective method.
  • the current method for reducing the code rate of a transport block cannot meet the needs of diversified services and terminal types, which further results in that the code rate of the transport block cannot be further reduced, resulting in limited coverage and/or low transmission reliability and efficiency.
  • the purpose of the embodiments of the present application is to provide a message transmission method, apparatus, and device, which can solve the problem that the code rate of a transmission block cannot be further reduced due to the current method for reducing the code rate of a transmission block, which is caused by a single scenario, resulting in limited coverage and/or Transmission reliability and low efficiency.
  • a first aspect provides a message transmission method, executed by a network side device, the method includes: determining first information according to target information, wherein the target information includes at least one of the following: capability information of the UE, channel information of the UE parameter, the UE type of the UE; the above-mentioned first information is used to indicate the target scaling parameter; the target message is sent to the UE according to the target scaling parameter; the above-mentioned target scaling parameter is used to adjust the code rate of the transport block of the target message.
  • a message transmission method executed by a UE, the method includes: reporting target information to a network side device; receiving a target message from the network side device; wherein the above target information includes at least one of the following: the capability of the UE information, the channel parameters of the UE, and the UE type of the UE; the target information is related to the target scaling parameter; the above-mentioned target scaling parameter is used to adjust the code rate of the transport block of the target message sent by the network side device to the UE.
  • a message transmission apparatus includes: a determination module configured to determine first information according to target information, wherein the target information includes at least one of the following: capability information of the UE, channel parameters of the UE , the UE type of the UE; the above-mentioned first information is used to indicate the target scaling parameter; the sending module is used to send the target message to the UE according to the target scaling parameter; the above-mentioned target scaling parameter is used to adjust the code rate of the transport block of the target message.
  • a message transmission device comprising: a reporting module for reporting target information to a network-side device; a receiving module for receiving a target message from the network-side device; wherein the target information includes at least the following Item 1: capability information of the UE, channel parameters of the UE, and UE type of the UE; the target information is related to the target scaling parameter; the target scaling parameter is used to adjust the code rate of the transport block of the target message sent by the network side device to the UE.
  • a network-side device in a fifth aspect, includes a processor, a memory, and a program or instruction stored on the memory and executable on the processor, the program or instruction being executed by the processor When executed, the steps of the method as described in the first aspect are implemented.
  • a UE in a sixth aspect, the network side device includes a processor, a memory, and a program or instruction stored on the memory and executable on the processor, the program or instruction being executed by the processor. The steps of the method as described in the second aspect are implemented when executed.
  • a readable storage medium is provided, and a program or an instruction is stored on the readable storage medium, and when the program or instruction is executed by a processor, the steps of the method described in the first aspect, or the The steps of the method of the second aspect.
  • a chip in an eighth aspect, includes a processor and a communication interface, the communication interface is coupled to the processor, and the processor is used to run a network-side device program or instruction, and implements the method described in the first aspect. the method described, or implement the method described in the second aspect.
  • an embodiment of the present application provides a computer program product, the program product is stored in a non-transitory storage medium, and the program product is executed by at least one processor to implement the method as described in the first aspect, or A method as described in the second aspect is implemented.
  • the network side device may determine the first information adapted to the UE according to the target information fed back by the UE (for example, the capability information of the UE, the channel parameters of the UE, and the UE type of the UE), and then , based on the target scaling parameter indicated by the first information, adjust the code rate of the transport block of the target message that the network side device needs to send to the UE, so as to ensure downlink coverage or information transmission performance in different UE scenarios.
  • the target information fed back by the UE for example, the capability information of the UE, the channel parameters of the UE, and the UE type of the UE
  • FIG. 1 is a schematic diagram of a system architecture of a wireless communication system provided by an embodiment of the present application
  • FIG. 4 is one of the schematic structural diagrams of a message transmission apparatus provided by an embodiment of the present application.
  • FIG. 5 is the second schematic structural diagram of a message transmission apparatus provided by an embodiment of the present application.
  • FIG. 6 is a schematic structural diagram of a communication device provided by an embodiment of the present application.
  • FIG. 7 is a schematic diagram of a hardware structure of a network side device provided by an embodiment of the present application.
  • FIG. 8 is a schematic diagram of a hardware structure of a terminal provided by an embodiment of the present application.
  • first, second and the like in the description and claims of the present application are used to distinguish similar objects, and are not used to describe a specific order or sequence. It is to be understood that the data so used are interchangeable under appropriate circumstances so that the embodiments of the present application can be practiced in sequences other than those illustrated or described herein, and "first”, “second” distinguishes Usually it is a class, and the number of objects is not limited.
  • the first object may be one or multiple.
  • “and/or” in the description and claims indicates at least one of the connected objects, and the character “/" generally indicates that the associated objects are in an "or” relationship.
  • LTE Long Term Evolution
  • LTE-Advanced LTE-Advanced
  • LTE-A Long Term Evolution
  • CDMA Code Division Multiple Access
  • TDMA Time Division Multiple Access
  • FDMA Frequency Division Multiple Access
  • OFDMA Orthogonal Frequency Division Multiple Access
  • SC-FDMA Single-carrier Frequency-Division Multiple Access
  • system and “network” in the embodiments of the present application are often used interchangeably, and the described technology can be used not only for the above-mentioned systems and radio technologies, but also for other systems and radio technologies.
  • NR New Radio
  • NR terminology is used in most of the following description, although these techniques are also applicable to applications other than NR system applications, such as 6th generation ( 6th Generation, 6G) communication system.
  • FIG. 1 shows a schematic diagram of a wireless communication system to which an embodiment of the present application can be applied.
  • the wireless communication system includes a terminal 11 and a network-side device 12 .
  • the terminal 11 may also be called a terminal device or a user terminal (User Equipment, UE), and the terminal 11 may be a mobile phone, a tablet computer (Tablet Personal Computer), a laptop computer (Laptop Computer) or a notebook computer, a personal digital computer Assistant (Personal Digital Assistant, PDA), handheld computer, netbook, ultra-mobile personal computer (ultra-mobile personal computer, UMPC), mobile Internet device (Mobile Internet Device, MID), wearable device (Wearable Device) or vehicle-mounted device (VUE), pedestrian terminal (PUE) and other terminal-side devices, wearable devices include: bracelets, headphones, glasses, etc.
  • PDA Personal Digital Assistant
  • the network side device 12 may be a base station or a core network, wherein the base station may be referred to as a Node B, an evolved Node B, an access point, a Base Transceiver Station (BTS), a radio base station, a radio transceiver, a basic service Set (Basic Service Set, BSS), Extended Service Set (Extended Service Set, ESS), Node B, Evolved Node B (eNB), Home Node B, Home Evolved Node B, WLAN Access Point, WiFi Node, Send Transmitting Receiving Point (TRP) or some other suitable term in the field, as long as the same technical effect is achieved, the base station is not limited to specific technical terms.
  • the base station in the NR system is taken as an example, but the specific type of the base station is not limited.
  • NR supports two types of random access procedures: 4-step RA type (4-step RACH) for MSG1 and 2-step RA type (2-step RACH) for MSGA.
  • the above two types of random access procedures both support contention based random access (Contention based, CBRA) and contention free random access (Contention free, CFRA).
  • the UE may select the type of random access according to the configuration information of the network configuration when the random access procedure is started. For example, when CFRA resources are not configured, the UE uses the RSRP threshold to choose between 2-step RA type and 4-step RA type; when CFRA resources for 4-step RA type are configured, the UE can use 4-step RA type Random access; when CFRA resources for 2-step RA type are configured, the UE performs random access using 2-step RA type.
  • 4-step RACH generally includes the following five steps:
  • Step 1 The UE sends Msg.1 (random access preamble).
  • Step 2 After receiving the Msg1, the network side will send a random access response (Random Access Response, RAR), also called Msg.2, to the UE.
  • RAR adopts random access wireless network temporary identity (Random Access Radio Network Tempory Identity, RA-RNTI) scrambling, which contains Backoff Indicator (BI), Uplink grant (UL grant), random access Enter the preamble identification code (Random Access preamble Identification, RAPID), temporary cell wireless network temporary identification (Temple Cell Radio Network Tempory Identity, TC-RNTI) and so on.
  • RAR Random Access Radio Network Tempory Identity
  • RA-RNTI random access wireless network temporary identity
  • BI Backoff Indicator
  • UL grant Uplink grant
  • RAPID Random Access preamble Identification
  • TC-RNTI temporary cell wireless network temporary identification
  • Step 3 The UE sends Msg.3.
  • Step 4 The network side sends a contention resolution message (contention resolution), also called Msg.4, and the Msg.4 contains a contention resolution identifier.
  • contention resolution also called Msg.4
  • Msg.4 contains a contention resolution identifier
  • Step 5 In general, the UE needs to send Msg.5. That is, the access complete message.
  • the so-called four-step access mainly refers to the process of completing the first four steps of contention resolution, and the first four steps usually represent the random access process of a conventional wireless network.
  • 2-step RACH specifically includes the following two steps:
  • Step 1 The UE triggers the 2-step RACH process and sends the request message (Msg.A) to the network device. For example, it is sent by PUSCH+preamble.
  • Msg.A request message
  • Step 2 The network side sends confirmation information (Msg.B) to the UE.
  • the UE If the UE fails to receive Msg.B (failure means that the RAPID or contention resolution ID corresponding to the UE's own sending of Msg.A has not been received), the UE will retransmit Msg.1 (also can retransmit Msg.A, Msg3 or Msg. 1, depending on the specific program).
  • TB scaling refers to the compression of the transmission block size of Msg.2 in the 4-step random access process and Msg.B in the 2-step random access process to reduce the code rate.
  • Rel-16 protocol TS 38.214 stipulates that for PDSCH scheduled by PDCCH DCI format 1_0 scrambled by P-RNTI or RA-RNTI or MsgB-RNTI, the determination of its transport block size (TBS) follows steps 1-4, but In the above steps 1-4, step 2 needs to be modified.
  • the calculation of Ninfo needs to be multiplied by a scaling factor S.
  • the scaling factor S is indicated based on the TB scaling field in the DCI, and the corresponding relationship between the scaling factor S and the TB scaling field may be as shown in Table 1 below.
  • the RedCap UE may not be able to access the cell.
  • reducing the code rate of the transport block is an effective method.
  • the current method for reducing the code rate of a transport block cannot meet the needs of diversified services and terminal types, thus resulting in a low efficiency of reducing the code rate of the transport block.
  • the network side device may determine the first information adapted to the UE according to the target information fed back by the UE (for example, the capability information of the UE, the channel parameters of the UE, and the UE type of the UE), and then , based on the target scaling parameter indicated by the first information, adjust the code rate of the transport block of the target message that the network side device needs to send to the UE, so as to ensure downlink coverage or information transmission performance in different UE scenarios.
  • the target information fed back by the UE for example, the capability information of the UE, the channel parameters of the UE, and the UE type of the UE
  • FIG. 2 shows a schematic flowchart of a message transmission method provided by an embodiment of the present invention. As shown in FIG. 2 , the message transmission method may include the following steps:
  • Step 201 The network side device determines the first information according to the target information.
  • the above target information is reported by the UE to the network side device.
  • the above target information includes at least one of the following: capability information of the UE, channel parameters of the UE, and UE type of the UE.
  • the above-mentioned first information is used to indicate the target scaling parameter, and the target scaling parameter may include the value of TB scaling.
  • Step 202 The network side device sends a target message to the UE according to the above target scaling parameter.
  • the network side device after acquiring the target scaling parameter, the network side device will use the target scaling parameter to compress the transport block of the target message, thereby reducing the code rate of the transport block of the target message.
  • Step 203 The UE receives the target message from the network side device.
  • FIG. 3 shows a schematic flowchart of a message transmission method provided by an embodiment of the present invention. As shown in FIG. 3 , the message transmission method may include the following steps:
  • Step 301 The UE reports the target information to the network side device.
  • the above target information includes at least one of the following: capability information of the UE, channel parameters of the UE, and UE type of the UE; the target information is related to the target scaling parameter.
  • Step 302 The UE acquires the first information.
  • the above-mentioned first information is used to indicate the target scaling parameter.
  • Step 303 The UE receives and demodulates the information transmitted by the transport block of the target message sent by the network side device to the UE according to the target scaling parameter.
  • the above-mentioned target scaling parameter is used to adjust the code rate of the transmission block of the above-mentioned target message. It can be understood that the above target scaling parameter is used to adjust the code rate of the transport block of the target message sent by the network side device to the UE.
  • the method provided in this embodiment of the present application may be applicable to a scenario in which one TB is processed on multiple time slots, and the TBS of the TB is determined based on multiple time slots and is transmitted on multiple integer time slots.
  • the above-mentioned target information is related to a target scaling parameter, that is, the above-mentioned target information is used to indicate a selection range of the above-mentioned target scaling parameter.
  • UEs of different types of reduced terminal capabilities correspond to different target scaling parameters.
  • the above target message includes at least one of the following: Msg2 in the two-step random access, Msg4 in the four-step random access, and a user-specific message.
  • Msg2 in the two-step random access Msg4 in the four-step random access
  • Msg4 in the four-step random access Msg4 in the four-step random access
  • a user-specific message Msg2 in the two-step random access
  • the Msg.4 scrambled by the TC-RNTI does not support the code rate reduction (TB scaling) of the transport block.
  • parameters for further reducing the Msg.4 code rate are derived through semi-static configuration or dynamic indication or through other parameters, thereby solving this problem.
  • the above-mentioned target scaling parameter is the same as the scaling parameter of the initially transmitted target message.
  • the above-mentioned first information includes a target modulation and coding strategy (Modulation and Coding Scheme, MCS) table
  • MCS Modulation and Coding Scheme
  • the above-mentioned target scaling parameter or the above-mentioned target MCS table may be defined in a standard or configured by high-layer signaling.
  • the above-mentioned high-layer signaling may be UE-specific RRC signaling or cell-level signaling or system information.
  • terminals of different RedCap types may be configured with different values or defined in the standard.
  • Table 2 below is an MCS table, which may contain TB scaling factors (ie, scaling factors).
  • the network side device can determine the device adapted to the UE according to the target information (eg, capability information of the UE, channel parameters of the UE, and UE type of the UE) fed back by the UE. the first information, and then, based on the target scaling parameter indicated by the first information, adjust the code rate of the transport block of the target message that the network side device needs to send to the UE, so as to ensure downlink coverage or information in different UE scenarios transmission performance.
  • the target information eg, capability information of the UE, channel parameters of the UE, and UE type of the UE
  • the foregoing first information is agreed in a protocol or indicated by system information.
  • the network side device may determine the corresponding first information from the information indicated by the protocol or the system information based on the above target information.
  • At least one of the following information is broadcast through a protocol agreement or system information:
  • the value of TB scaling is the same for a RedCap terminal (no matter how many types of RedCap terminals there are); for example, for a RedCap terminal (no matter how many types of RedCap terminals there are), its TB
  • RedCap's terminal type 1 that is, high-end high-end RedCap devices
  • RedCap's terminal type 2 that is, low-end low-end RedCap devices
  • the network layer needs to know the type of UE before scheduling data.
  • the network passes Msg.1 (eg different PRACH resources/preamble and/or different initial access BWP) to distinguish different UE types.
  • Msg.1 eg different PRACH resources/preamble and/or different initial access BWP
  • the network can use Msg.1 (eg, different PRACH resources/preamble and/or different initial access BWPs), At least one of Msg.3 and Msg.A (the type of RedCap reported by the terminal in Msg.3/Msg.A) to distinguish different UE types.
  • Msg.1 eg, different PRACH resources/preamble and/or different initial access BWPs
  • Msg.3 and Msg.A the type of RedCap reported by the terminal in Msg.3/Msg.A
  • the UE may report the UE type through the UE capability report terminal capability report after the initial connection is established.
  • the message transmission method provided by the embodiment of the present application may further include the following steps A1 and A2:
  • Step A1 The network side device sends the first information to the UE.
  • Step A2 The UE receives the first information from the network side device.
  • the above-mentioned first information may be system information, where the system information carries the target scaling parameter, or the above-mentioned target MSC table.
  • the above-mentioned first information may be carried in DCI. That is, the message transmission method provided by the embodiment of the present application may further include the following steps B1 and B2:
  • Step B1 The network side device sends DCI to the UE.
  • Step B2 The UE receives the DCI from the network side device.
  • the above-mentioned first information is carried in the target field of the above-mentioned DCI.
  • the reserved field in the DCI can be used to indicate TB scaling (for example, x-bit can indicate 2x different values), or you can use the reserved field in DCI to indicate TB scaling.
  • a new field is introduced in DCI, which is specially used to indicate TB scaling, and existing fields can also be reused, so that in addition to indicating its existing function "F", the existing field can also indicate TB scaling.
  • the above-mentioned target field is any one of the following:
  • the first field in the above-mentioned DCI is used to indicate the target function.
  • the embodiment of the present application introduces a new field in the DCI to specifically indicate the target scaling parameter, so that the overall bit of the DCI can be increased without compressing the existing fields. number.
  • the embodiment of the present application uses the existing field to compress the existing field to indicate the target scaling parameter, so as to ensure that the DCI size remains unchanged.
  • the HARQ process number field can be compressed from 4bits to 2bits.
  • the high-layer signaling configures the target function in the first field (ie, the existing function indicated by the first field)
  • the above-mentioned first information may also be configured.
  • the above-mentioned reserved field may be a downlink assignment index (Downlink assignment index, DAI) field (2 bits) with TC-RNTI in DCI 1-0, through which the DAI field may be used to indicate whether to use TB scaling and TB.
  • DAI downlink assignment index
  • the value of scaling For example, the DCI used to schedule Msg.4 in Rel-16, the functions of each field in the DCI are shown in Table 3 below:
  • the first valid bit in the above-mentioned target field carries the first information
  • the second valid bit in the above-mentioned target field is used to indicate the target function
  • the above-mentioned second significant bits may be the remaining significant bits other than the first significant bits in the target field.
  • the above-mentioned first significant bit may be the x most significant bits (most significant bits, MSB) or the x least significant bits (low significant bits, LSB) in the target field, and the significant bits are used to indicate the TB scaling. value, the remaining (L-x) bits are the above-mentioned second significant bits, which can be used to indicate the existing function F of the target field, where x is a positive integer.
  • a 5-bit MCS table For example, referring to Table 4 below, a 5-bit MCS table, the MSB of the most significant bit is used to indicate the TB scaling, and the remaining 4-bits are used to indicate the MCS index.
  • step B1 may include the following steps:
  • Step B11 The network side device sends DCI to the UE according to the PDCCH.
  • step B2 may include the following steps:
  • Step B21 The UE detects the PDCCH and receives the DCI from the network side device.
  • DCI in PDSCH scheduled by PDCCH scrambled by different RNTI indicates different scaling parameters.
  • the above-mentioned first information is related to other parameters, that is, the above-mentioned first information may be derived based on other parameters.
  • the above process of acquiring the first information and determining the first information may include the following step C:
  • Step C The network side device/UE determines the first information according to the second information.
  • the second information includes at least one of the following: a scaling factor of the target message, and a repetition factor of the target message.
  • the second information is a time-frequency resource allocation TDRA table
  • the TDRA table includes at least one of the following: a scaling factor of the first message, and a repetition factor of the first message.
  • the above-mentioned first message may be any message in the two-step random access process, or may be any message in the four-step random access process.
  • Example A The value of the TB scaling of Msg.4 in the four-step random access procedure can be determined by the scaling factor of Msg.2 in the four-step random access procedure/Msg.B in the two-step random access procedure and/or The repetition factor is derived.
  • TB scaling for Msg.4 function(TB scaling and/or repetition factor for Msg.2/Msg.B).
  • the simplest TB scaling for Msg.4 TB scaling for Msg.2/Msg.B.
  • Example B The value of TB scaling for Msg.4 in a four-step random access procedure can be determined by the repetition of Msg.1 or Msg.3 in a four-step random access procedure or Msg.A in a two-step random access procedure Factors (such as repeated transmission 2, 4, 8, 16 times, etc.) are derived.
  • Factors such as repeated transmission 2, 4, 8, 16 times, etc.
  • TB scaling for Msg.4 function(repetition factor for Msg.1/Msg.3/Msg.A)
  • the simplest TB scaling for Msg.4 1/(repetition factor for Msg.1/Msg.3 /Msg.A).
  • the execution body may be a message transmission apparatus, or a control module in the message transmission apparatus for executing the message transmission method.
  • the message transmission device provided by the embodiment of the present application is described by taking the message transmission method performed by the message transmission device as an example.
  • the message transmission apparatus may include: a determining module 401 and a sending module 402, wherein:
  • the determining module 401 is configured to determine first information according to target information, wherein the target information includes at least one of the following: capability information of the UE, channel parameters of the UE, and UE type of the UE; the first information is used to indicate target scaling parameter; the sending module 402 is configured to send a target message to the UE according to the target scaling parameter obtained by the obtaining module 401 ; the target scaling parameter is used to adjust the code rate of the transport block of the target message.
  • the above target message includes at least one of the following: Msg2 in the two-step random access, Msg4 in the four-step random access, and a user-specific message.
  • the above-mentioned sending module 402 is further configured to send the first information to the UE.
  • the above-mentioned sending module 402 is further configured to send DCI, wherein the target field of the above-mentioned DCI carries the above-mentioned first information.
  • the target field is: a reserved field in the DCI, or a dedicated field in the DCI dedicated to carrying the first information, or a first field in the DCI for indicating the target function.
  • the first valid bit in the target field carries the first information
  • the second valid bit in the target field is used to indicate the target function
  • the above-mentioned sending module 402 is further configured to send DCI according to the PDCCH, wherein the DCI in the PDSCH scheduled by the PDCCH scrambled by different RNTIs indicates different scaling parameters.
  • the above-mentioned obtaining module 401 is specifically configured to: determine the first information according to the second information; wherein, the above-mentioned second information includes at least one of the following: a scaling factor of the above-mentioned first message, a repetition factor of the above-mentioned first message .
  • the second information is a TDRA table
  • the TDRA table includes at least one of the following items: a scaling factor of the first message, and a repetition factor of the first message.
  • the above-mentioned target scaling parameter is the same as the scaling parameter of the initially transmitted target message.
  • the above-mentioned first information is agreed in a protocol or indicated by system information.
  • the above-mentioned first information includes a target MCS table
  • the above-mentioned target MCS table includes the above-mentioned target scaling parameters.
  • UEs of different terminal capability reduction types correspond to different target scaling parameters.
  • the device may determine the first device adapted to the UE according to the target information (eg, capability information of the UE, channel parameters of the UE, and UE type of the UE) fed back by the UE. Then, based on the target scaling parameter indicated by the first information, the code rate of the transport block of the target message sent to the UE is adjusted, so as to ensure downlink coverage or information transmission performance in different UE scenarios.
  • target information eg, capability information of the UE, channel parameters of the UE, and UE type of the UE
  • the message transmission apparatus may include: a reporting module 501, an obtaining module 502, and a processing module 503, wherein: the reporting module 501 is used to report a target to a network-side device information; the above-mentioned target information includes at least one of the following: capability information of the UE, channel parameters of the UE, and UE type of the UE; the above-mentioned target information is related to the target scaling parameter; the obtaining module 502 is used to obtain the first information; the above-mentioned first information is used to indicate the above target scaling parameter; the processing module 503 is configured to receive and demodulate the information transmitted by the transport block of the target message sent by the network side device to the UE according to the target scaling parameter.
  • the message transmission apparatus further includes a receiving module 504, wherein: the above-mentioned receiving module 504 is configured to receive DCI; wherein, the above-mentioned first information is carried in the target field of the above-mentioned DCI.
  • the target field is: a reserved field in the DCI, or a dedicated field in the DCI dedicated to carrying the first information, or a first field in the DCI for indicating the target function.
  • the first valid bit in the target field carries the first information
  • the second valid bit in the target field is used to indicate the target function
  • the above-mentioned receiving module 504 is configured to detect the physical downlink control channel PDCCH and receive DCI; wherein, the DCI in the physical downlink shared channel PDSCH scheduled by the PDCCH scrambled by different wireless network temporary identifiers RNTI indicates different scaling. parameter.
  • the above-mentioned obtaining module 502 is specifically configured to determine the first information according to the target information and the second information; wherein, the above-mentioned second information includes at least one of the following: a scaling factor of the above-mentioned target message, a repetition factor of the above-mentioned target message .
  • the second information is a TDRA table
  • the TDRA table includes at least one of the following items: a scaling factor of the first message, and a repetition factor of the first message.
  • the above-mentioned target scaling parameter is the same as the scaling parameter of the initially transmitted target message.
  • the above-mentioned first information is agreed in a protocol or indicated by system information.
  • the above-mentioned first information includes a target MCS table
  • the above-mentioned target MCS table includes the above-mentioned target scaling parameters.
  • UEs of different terminal capability reduction types correspond to different target scaling parameters.
  • the above target message includes at least one of the following: Msg2 in the two-step random access, Msg4 in the four-step random access, and a user-specific message.
  • the apparatus feeds back target information (eg, capability information of the UE, channel parameters of the UE, and UE type of the UE) to the network-side device, so that the network-side device can base on the target information to determine the first information adapted to the UE, and then, based on the target scaling parameter indicated by the first information, adjust the code rate of the transport block of the target message sent to the UE, so as to ensure the optimal performance in different UE scenarios.
  • target information eg, capability information of the UE, channel parameters of the UE, and UE type of the UE
  • the modules that must be included in the message transmission device are indicated by solid line boxes, such as the reporting module 501, the acquisition module 502 and the processing module 503; the message transmission device may or may not include modules. It is indicated by a dashed box, such as the receiving module 504 .
  • the message transmission apparatus in this embodiment of the present application may be an apparatus, and may also be a component, an integrated circuit, or a chip in a terminal.
  • the device may be a mobile terminal or a non-mobile terminal.
  • the mobile terminal may include, but is not limited to, the types of terminals 11 listed above, and the non-mobile terminal may be a server, a network attached storage (NAS), a personal computer (personal computer, PC), a television ( television, TV), teller machine, or self-service machine, etc., which are not specifically limited in the embodiments of the present application.
  • the message transmission device in the embodiment of the present application may be a device with an operating system.
  • the operating system may be an Android (Android) operating system, an iOS operating system, or other possible operating systems, which are not specifically limited in the embodiments of the present application.
  • the message transmission apparatus provided in the embodiment of the present application can implement each process implemented by the foregoing method embodiment, and achieve the same technical effect. To avoid repetition, details are not repeated here.
  • an embodiment of the present application further provides a communication device 600, including a processor 601, a memory 602, a program or instruction stored in the memory 602 and executable on the processor 601,
  • a communication device 600 including a processor 601, a memory 602, a program or instruction stored in the memory 602 and executable on the processor 601
  • the communication device 600 is a network-side device
  • the program or instruction is executed by the processor 601
  • each process of the foregoing message transmission method embodiments can be implemented, and the same technical effect can be achieved.
  • the communication device 600 is a UE, when the program or instruction is executed by the processor 601, each process of the above message transmission method embodiment can be implemented, and the same technical effect can be achieved. To avoid repetition, details are not repeated here.
  • the network side device 700 includes: an antenna 71 , a radio frequency device 72 , and a baseband device 73 .
  • the antenna 71 is connected to the radio frequency device 72 .
  • the radio frequency device 72 receives information through the antenna 71, and sends the received information to the baseband device 73 for processing.
  • the baseband device 73 processes the information to be sent and sends it to the radio frequency device 72
  • the radio frequency device 72 processes the received information and sends it out through the antenna 71 .
  • the above-mentioned frequency band processing apparatus may be located in the baseband apparatus 73 , and the method performed by the network side device in the above embodiments may be implemented in the baseband apparatus 73 .
  • the baseband apparatus 73 includes a processor 74 and a memory 77 .
  • the baseband device 73 may include, for example, at least one baseband board on which a plurality of chips are arranged. As shown in FIG. 7 , one of the chips is, for example, the processor 74 , which is connected to the memory 75 to call the program in the memory 75 and execute it.
  • the network-side device shown in the above method embodiments operates.
  • the baseband device 73 may further include a network interface 76 for exchanging information with the radio frequency device 72, and the interface is, for example, a common public radio interface (CPRI for short).
  • CPRI common public radio interface
  • the network-side device in this embodiment of the present invention further includes: an instruction or program stored in the memory 75 and executable on the processor 74, and the processor 74 invokes the instruction or program in the memory 75 to perform the determination shown in FIG. 4 .
  • All the methods performed by the module 401 achieve the same technical effect, and are not repeated here in order to avoid repetition.
  • the radio frequency device 72 can perform all the methods performed by the sending module 402 shown in FIG. 4 (for example, the radio frequency device 72 can send a target message to the UE, and the radio frequency device 72 can also send DCI to the UE), and achieve the same technical effect , in order to avoid repetition, it is not repeated here.
  • FIG. 8 is a schematic diagram of a hardware structure of a terminal implementing an embodiment of the present application.
  • the terminal 100 includes but is not limited to: a radio frequency unit 101, a network module 102, an audio output unit 103, an input unit 104, a sensor 105, a display unit 106, a user input unit 107, an interface unit 108, a memory 109, a processor 110 and other components .
  • the terminal 100 may also include a power source (such as a battery) for supplying power to various components, and the power source may be logically connected to the processor 110 through a power management system, so as to manage charging, discharging, and power consumption through the power management system management and other functions.
  • a power source such as a battery
  • the terminal structure shown in FIG. 8 does not constitute a limitation on the terminal, and the terminal may include more or less components than shown, or combine some components, or arrange different components, which will not be repeated here.
  • the input unit 104 may include a graphics processor (Graphics Processing Unit, GPU) 1041 and a microphone 1042. Such as camera) to obtain still pictures or video image data for processing.
  • the display unit 106 may include a display panel 1061, which may be configured in the form of a liquid crystal display, an organic light emitting diode, or the like.
  • the user input unit 107 includes a touch panel 1071 and other input devices 1072 .
  • the touch panel 1071 is also called a touch screen.
  • the touch panel 1071 may include two parts, a touch detection device and a touch controller.
  • Other input devices 1072 may include, but are not limited to, physical keyboards, function keys (such as volume control keys, switch keys, etc.), trackballs, mice, and joysticks, which will not be repeated here.
  • the radio frequency unit 101 receives the downlink data from the network side device, and then processes it to the processor 110; in addition, sends the uplink data to the network side device.
  • the radio frequency unit 101 includes, but is not limited to, an antenna, at least one amplifier, a transceiver, a coupler, a low noise amplifier, a duplexer, and the like.
  • Memory 109 may be used to store software programs or instructions as well as various data.
  • the memory 109 may mainly include a storage program or instruction area and a storage data area, wherein the stored program or instruction area may store an operating system, an application program or instruction required for at least one function (such as a sound playback function, an image playback function, etc.) and the like.
  • the memory 109 may include a high-speed random access memory, and may also include a non-volatile memory, wherein the non-volatile memory may be a read-only memory (Read-Only Memory, ROM), a programmable read-only memory (Programmable ROM) , PROM), erasable programmable read-only memory (Erasable PROM, EPROM), electrically erasable programmable read-only memory (Electrically EPROM, EEPROM) or flash memory.
  • ROM Read-Only Memory
  • PROM programmable read-only memory
  • PROM erasable programmable read-only memory
  • Erasable PROM Erasable PROM
  • EPROM electrically erasable programmable read-only memory
  • EEPROM electrically erasable programmable read-only memory
  • flash memory for example at least one magnetic disk storage device, flash memory device, or other non-volatile solid state storage device.
  • the processor 110 may include one or more processing units; optionally, the processor 110 may integrate an application processor and a modem processor, wherein the application processor mainly processes the operating system, user interface, application programs or instructions, etc., Modem processors mainly deal with wireless communications, such as baseband processors. It can be understood that, the above-mentioned modulation and demodulation processor may not be integrated into the processor 110 .
  • the above-mentioned radio frequency unit 101 is used to report target information to the network side device; the above-mentioned radio frequency unit 101 is also used to receive the target message from the network side device; wherein, the above-mentioned target information includes at least one of the following: the above-mentioned UE capability information, The channel parameter of the above-mentioned UE, the UE type of the above-mentioned UE; the above-mentioned target information is related to the target scaling parameter; the processor 110 is used to obtain the first information; the above-mentioned first information is used to indicate the above-mentioned target scaling parameter; according to the target scaling parameter, receiving and demodulating the information transmitted by the transport block of the target message sent by the network side device to the UE.
  • the above-mentioned target information includes at least one of the following: the above-mentioned UE capability information, The channel parameter of the above-mentioned UE, the UE type of the above-mentioned UE
  • the above-mentioned radio frequency unit 101 is further configured to receive DCI; wherein, the above-mentioned first information is carried in the target field of the above-mentioned DCI.
  • the target field is: a reserved field in the DCI, or a dedicated field in the DCI dedicated to carrying the first information, or a first field in the DCI for indicating the target function.
  • the first valid bit in the above-mentioned target field carries the above-mentioned first information
  • the second valid bit in the above-mentioned target field is used to indicate the above-mentioned target function.
  • the above-mentioned radio frequency unit 101 is further configured to detect the physical downlink control channel PDCCH, and receive DCI; wherein, the DCI in the physical downlink shared channel PDSCH scheduled by the PDCCH scrambled by the different wireless network temporary identifier RNTI indicates different. scaling parameters.
  • the above-mentioned processor 110 is further configured to determine the first information according to the target information and the second information; wherein, the above-mentioned second information includes at least one of the following: a scaling factor of the above-mentioned target message, a repetition factor of the above-mentioned target message .
  • the second information is a TDRA table
  • the TDRA table includes at least one of the following items: a scaling factor of the first message, and a repetition factor of the first message.
  • the above-mentioned target scaling parameter is the same as the scaling parameter of the initially transmitted target message.
  • the above target information is agreed in a protocol or indicated by system information.
  • the first information includes a target modulation and coding strategy MCS table
  • the target MCS table includes the target scaling parameter
  • UEs of different terminal capability reduction types correspond to different target scaling parameters.
  • the above target message includes at least one of the following: Msg2 in the two-step random access, Msg4 in the four-step random access, and a user-specific message.
  • the terminal feeds back target information (eg, capability information of the UE, channel parameters of the UE, and UE type of the UE) to the network-side device, so that the network-side device can determine the target information based on the target information.
  • target information eg, capability information of the UE, channel parameters of the UE, and UE type of the UE
  • First information adapted to the UE is obtained, and then, based on the target scaling parameter indicated by the first information, the code rate of the transport block of the target message sent to the UE is adjusted, so as to ensure downlink coverage in different UE scenarios or the performance of information transmission.
  • Embodiments of the present application further provide a readable storage medium, where a program or an instruction is stored on the readable storage medium, and when the program or instruction is executed by a processor, each process of the foregoing message transmission method embodiment can be achieved, and the same can be achieved. In order to avoid repetition, the technical effect will not be repeated here.
  • the processor is the processor in the terminal described in the foregoing embodiment.
  • the readable storage medium includes a computer-readable storage medium, such as a computer read-only memory (Read-Only Memory, ROM), a random access memory (Random Access Memory, RAM), a magnetic disk or an optical disk, and the like.
  • An embodiment of the present application further provides a chip, where the chip includes a processor and a communication interface, the communication interface is coupled to the processor, and the processor is used for running network-side device programs or instructions to implement the above message transmission method
  • the chip includes a processor and a communication interface
  • the communication interface is coupled to the processor
  • the processor is used for running network-side device programs or instructions to implement the above message transmission method
  • the chip mentioned in the embodiments of the present application may also be referred to as a system-on-chip, a system-on-chip, a system-on-chip, or a system-on-a-chip, or the like.
  • the embodiments of the present application provide a computer program product, the program product is stored in a non-transitory storage medium, and the program product is executed by at least one processor to implement the various processes of the above method embodiments of the message transmission method, and can To achieve the same technical effect, in order to avoid repetition, details are not repeated here.
  • the method of the above embodiment can be implemented by means of software plus a necessary general hardware platform, and of course can also be implemented by hardware, but in many cases the former is better implementation.
  • the technical solution of the present application can be embodied in the form of a software product in essence or in a part that contributes to the prior art, and the computer software product is stored in a storage medium (such as ROM/RAM, magnetic disk, CD-ROM), including several instructions to make a terminal (which may be a mobile phone, a computer, a server, an air conditioner, or a network device, etc.) execute the methods described in the various embodiments of this application.
  • a storage medium such as ROM/RAM, magnetic disk, CD-ROM

Abstract

本申请公开了一种消息传输方法、装置及设备,该方法包括:根据目标信息,确定第一信息,其中,上述目标信息包括以下至少一项:用户设备UE的能力信息,UE的信道参数,UE的UE类型;上述第一信息用于指示目标缩放参数;上述目标缩放参数用于调节该目标消息的传输块的码率;根据上述目标缩放参数,向UE发送目标消息。

Description

消息传输方法、装置及设备
相关申请的交叉引用
本申请主张在2020年12月18日在中国提交的中国专利申请号202011511675.4的优先权,其全部内容通过引用包含于此。
技术领域
本申请属于通信技术领域,具体涉及一种消息传输方法、装置及设备。
背景技术
对于降低终端能力(Reduced Capability,简称RedCap)终端,由于其需要在接收天线、发射天线的数目、支持的带宽、终端处理数据和信号的时间及能力等方面降低复杂度,从而导致其的下行覆盖降低。为了保证下行覆盖或信息传输的性能,降低传输块的码率是一种行之有效的方法。
然而,目前的传输块码率的降低方法并不能适应业务和终端类型多样化的需求,进而导致传输块的码率不能进一步降低导致覆盖受限和/或传输可靠性、效率较低。
发明内容
本申请实施例的目的是提供一种消息传输方法、装置及设备,能够解决目前的传输块码率的降低方法适应场景单一所导致的传输块的码率不能进一步降低导致覆盖受限和/或传输可靠性、效率较低的问题。
为了解决上述技术问题,本申请是这样实现的:
第一方面,提供了一种消息传输方法,由网络侧设备执行,该方法包括:根据目标信息,确定第一信息,其中,上述目标信息包括以下至少一项:UE的能力信息,UE的信道参数,UE的UE类型;上述第一信息用于指示目标缩放参数;根据目标缩放参数,向UE发送目标消息;上述目标缩放参数用于调节目标消息的传输块的码率。
第二方面,提供了一种消息传输方法,由UE执行,该方法包括:向网络侧设备上报目标信息;从网络侧设备接收目标消息;其中,上述目标信息包括以下至少一项:UE的能力信息,UE的信道参数,UE的UE类型;目标信息与目标缩放参数相关;上述目标缩放参数用于调节所述网络侧设备向所述UE发送的目标消息的传输块的码率。
第三方面,提供了一种消息传输装置,该装置包括:确定模块,用于根据目标信息,确定第一信息,其中,上述目标信息包括以下至少一项:UE的能力信息,UE的信道参数,UE的UE类型;上述第一信息用于指示目标缩放参数;发送模块,用于根据目标缩放参数,向UE发送目标消息;上述目标缩放参数用于调节目标消息的传输块的码率。
第四方面,提供了一种消息传输装置,该装置包括:上报模块,用于向网络侧设备上报目标信息;接收模块,用于从网络侧设备接收目标消息;其中,上述目标信息包括以下至少一项:UE的能力信息,UE的信道参数,UE的UE类型;上述目标信息 与目标缩放参数相关;上述目标缩放参数用于调节网络侧设备向UE发送的目标消息的传输块的码率。
第五方面,提供了一种网络侧设备,该终端包括处理器、存储器及存储在所述存储器上并可在所述处理器上运行的程序或指令,所述程序或指令被所述处理器执行时实现如第一方面所述的方法的步骤。
第六方面,提供了一种UE,该网络侧设备包括处理器、存储器及存储在所述存储器上并可在所述处理器上运行的程序或指令,所述程序或指令被所述处理器执行时实现如第二方面所述的方法的步骤。
第七方面,提供了一种可读存储介质,所述可读存储介质上存储程序或指令,所述程序或指令被处理器执行时实现如第一方面所述的方法的步骤,或者实现如第二方面所述的方法的步骤。
第八方面,提供了一种芯片,所述芯片包括处理器和通信接口,所述通信接口和所述处理器耦合,所述处理器用于运行网络侧设备程序或指令,实现如第一方面所述的方法,或实现如第二方面所述的方法。
第九方面,本申请实施例提供了一种计算机程序产品,该程序产品被存储在非瞬态存储介质中,该程序产品被至少一个处理器执行以实现如第一方面所述的方法,或实现如第二方面所述的方法。
在本申请实施例中,网络侧设备可以根据UE反馈的目标信息(如,UE的能力信息,UE的信道参数,UE的UE类型),来确定出与该UE适配的第一信息,然后,基于该第一信息所指示的目标缩放参数,调节该网络侧设备需要向该UE发送的目标消息的传输块的码率,从而能够保证不同UE场景下的下行覆盖或信息传输的性能。
附图说明
图1是本申请实施例提供的一种无线通信系统的系统架构示意图;
图2是本申请实施例提供的一种消息传输方法的方法流程图之一;
图3是本申请实施例提供的一种消息传输方法的方法流程图之二;
图4是本申请实施例提供的一种消息传输装置的结构示意图之一;
图5是本申请实施例提供的一种消息传输装置的结构示意图之二;
图6是本申请实施例提供的一种通信设备的结构示意图;
图7是本申请实施例提供的一种网络侧设备的硬件结构示意图;
图8是本申请实施例提供的一种终端的硬件结构示意图。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚地描述,显然,所描述的实施例是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
本申请的说明书和权利要求书中的术语“第一”、“第二”等是用于区别类似的对象,而不用于描述特定的顺序或先后次序。应该理解这样使用的数据在适当情况下 可以互换,以便本申请的实施例能够以除了在这里图示或描述的那些以外的顺序实施,且“第一”、“第二”所区别的对象通常为一类,并不限定对象的个数,例如第一对象可以是一个,也可以是多个。此外,说明书以及权利要求中“和/或”表示所连接对象的至少其中之一,字符“/”一般表示前后关联对象是一种“或”的关系。
值得指出的是,本申请实施例所描述的技术不限于长期演进型(Long Term Evolution,LTE)/LTE的演进(LTE-Advanced,LTE-A)系统,还可用于其他无线通信系统,诸如码分多址(Code Division Multiple Access,CDMA)、时分多址(Time Division Multiple Access,TDMA)、频分多址(Frequency Division Multiple Access,FDMA)、正交频分多址(Orthogonal Frequency Division Multiple Access,OFDMA)、单载波频分多址(Single-carrier Frequency-Division Multiple Access,SC-FDMA)和其他系统。本申请实施例中的术语“系统”和“网络”常被可互换地使用,所描述的技术既可用于以上提及的系统和无线电技术,也可用于其他系统和无线电技术。然而,以下描述出于示例目的描述了新空口(New Radio,NR)系统,并且在以下大部分描述中使用NR术语,尽管这些技术也可应用于NR系统应用以外的应用,如第6代(6th Generation,6G)通信系统。
图1示出本申请实施例可应用的一种无线通信系统的示意图。无线通信系统包括终端11和网络侧设备12。其中,终端11也可以称作终端设备或者用户终端(User Equipment,UE),终端11可以是手机、平板电脑(Tablet Personal Computer)、膝上型电脑(Laptop Computer)或称为笔记本电脑、个人数字助理(Personal Digital Assistant,PDA)、掌上电脑、上网本、超级移动个人计算机(ultra-mobile personal computer,UMPC)、移动上网装置(Mobile Internet Device,MID)、可穿戴式设备(Wearable Device)或车载设备(VUE)、行人终端(PUE)等终端侧设备,可穿戴式设备包括:手环、耳机、眼镜等。需要说明的是,在本申请实施例并不限定终端11的具体类型。网络侧设备12可以是基站或核心网,其中,基站可被称为节点B、演进节点B、接入点、基收发机站(Base Transceiver Station,BTS)、无线电基站、无线电收发机、基本服务集(Basic Service Set,BSS)、扩展服务集(Extended Service Set,ESS)、B节点、演进型B节点(eNB)、家用B节点、家用演进型B节点、WLAN接入点、WiFi节点、发送接收点(Transmitting Receiving Point,TRP)或所述领域中其他某个合适的术语,只要达到相同的技术效果,所述基站不限于特定技术词汇,需要说明的是,在本申请实施例中仅以NR系统中的基站为例,但是并不限定基站的具体类型。
以下将对本申请提供的技术方案中所涉及的技术术语进行解释说明,以方便读者理解:
1、随机接入
NR支持两种类型的随机访问过程:MSG1的4步RA类型(4-step RACH)和MSGA的2步RA类型(2-step RACH)。其中,上述两种类型的随机接入过程都支持基于竞争的随机访问(Contention based,CBRA)和无竞争的随机访问(Contention free,CFRA)。
示例性的,UE可以根据网络配置在随机接入过程启动时的配置信息选择随机接入 的类型。例如,当未配置CFRA资源时,UE使用RSRP阈值在2步RA类型和4步RA类型之间进行选择;当配置了用于4步RA类型的CFRA资源时,UE可以以4步RA类型进行随机接入;当配置了用于2步RA类型的CFRA资源时,UE使用2步RA类型执行随机访问。
2、4步随机接入(4-step RACH)
4-step RACH一般包括如下五个步骤:
步骤1:UE发送Msg.1(随机接入前导(preamble))。
步骤2:网络侧在接收到Msg1后,会向UE发送随机接入响应(Random Access Response,RAR),也称为Msg.2。其中,RAR采用随机接入无线网络临时标识(Random Access Radio Network Tempory Identity,RA-RNTI)加扰,内含回退指示(Backoff Indicator,BI)、上行授权(Uplink grant,UL grant)、随机接入前导码身份识别码(Random Access preamble Identification,RAPID)、临时小区无线网络临时标识(Temple Cell Radio Network Tempory Identity,TC-RNTI)等。
步骤3:UE发送Msg.3。
步骤4:网络侧发送冲突解决消息(contention resolution),也称为Msg.4,该Msg.4中包含竞争解决标识。
步骤5:一般情况下,UE需要发送Msg.5。即,接入完成消息。
需要说明的是,通常所说的四步接入主要指前四步竞争解决完成的过程,前四步通常代表了常规无线网络随机接入过程。
3、2步随机接入(2-step RACH)
2-step RACH具体包括如下两个步骤:
步骤1:UE触发2-step RACH过程,将请求信息(Msg.A)发送至网络设备。例如,通过PUSCH+preamble发送。
步骤2:网络侧发送确认信息(Msg.B)给UE。
如果UE接收Msg.B失败(失败指未接收到对应于UE自己发送Msg.A中的RAPID或者竞争解决ID),则UE重新发送Msg.1(也可重发Msg.A,Msg3或者Msg.1,视具体方案)。
4、传输块大小的缩放(TB scaling)
TB scaling,是指4步随机接入过程中的Msg.2以及2步随机接入过程中的Msg.B的传输块大小的压缩,用以降低码率。
Rel-16协议TS 38.214规定,对于由P-RNTI或RA-RNTI或MsgB-RNTI加扰的PDCCH DCI format 1_0所调度的PDSCH,其传输块大小(TBS)的确定遵循的步骤1-4,但在上述步骤1-4中的步骤2中需要进行修改,Ninfo的计算需要乘一个缩放因子S,其修改Ninfo的计算公式为:N info=S*N RE*R*Q m*v
其中,缩放因子S是基于DCI中的TB缩放字段进行指示的,该缩放因子S与TB缩放字段间的对应关系可以如下表1所示。
表1
TB缩放字段(TB scaling field) 缩放因子S
00 1
01 0.5
10 0.25
11 0
示例性的,由于随机接入过程中的下行覆盖的降低,会导致RedCap UE不能接入小区。为了保证随机接入过程中的下行覆盖或信息传输的性能,降低传输块的码率是一种行之有效的方法。然而,目前的传输块码率的降低方法并不能适应业务和终端类型多样化的需求,进而导致传输块的码率降低效率较低。
在本申请实施例中,网络侧设备可以根据UE反馈的目标信息(如,UE的能力信息,UE的信道参数,UE的UE类型),来确定出与该UE适配的第一信息,然后,基于该第一信息所指示的目标缩放参数,调节该网络侧设备需要向该UE发送的目标消息的传输块的码率,从而能够保证不同UE场景下的下行覆盖或信息传输的性能。
下面结合附图,通过具体的实施例及其应用场景对本申请实施例提供的消息传输方法进行详细地说明。
图2示出了本发明实施例提供的一种消息传输方法的流程示意图,如图2所示,该消息传输方法可以包括如下步骤:
步骤201:网络侧设备根据目标信息,确定第一信息。
其中,上述目标信息是UE向网络侧设备上报的。
其中,上述目标信息包括以下至少一项:UE的能力信息,UE的信道参数,UE的UE类型。上述第一信息用于指示目标缩放参数,该目标缩放参数可以包括TB scaling的值。
步骤202:网络侧设备根据上述目标缩放参数,向UE发送目标消息。
在本申请实施例中,网络侧设备在获取到目标缩放参数后,会使用目标缩放参数对目标消息的传输块进行压缩,从而降低该目标消息的传输块的码率。
步骤203:UE从网络侧设备接收目标消息。
图3示出了本发明实施例提供的一种消息传输方法的流程示意图,如图3所示,该消息传输方法可以包括如下步骤:
步骤301:UE向网络侧设备上报目标信息。
其中,上述目标信息包括以下至少一项:UE的能力信息,UE的信道参数,UE的UE类型;该目标信息与目标缩放参数相关。
步骤302:UE获取第一信息。
其中,上述第一信息用于指示目标缩放参数。
步骤303:UE根据目标缩放参数,接收并解调网络侧设备向UE发送的目标消息的传输块所传输的信息。
在本申请实施例中,上述目标缩放参数用于调节上述目标消息的传输块的码率。 可以理解,上述目标缩放参数用于调节网络侧设备向UE发送的目标消息的传输块的码率。
需要说明的是,本申请实施例提供的方法可以适用于在多个时隙上处理一个TB的场景,该TB的TBS是基于多个时隙确定的,并在多个整数时隙上传输。
在本申请实施例中,上述目标信息与目标缩放参数相关,即上述目标信息用于指示上述目标缩放参数的选择范围。
可选地,在本申请实施例中,不同降低终端能力类型的UE对应不同的目标缩放参数。
可选地,在本申请实施例中,上述目标消息包括以下至少一项:两步随机接入中的Msg2,四步随机接入中的Msg4,用户特定消息。具体的,在随机接入过程中,由TC-RNTI加扰的Msg.4并不支持传输块的码率降低(TB scaling)。而本申请通过半静态配置或动态指示或通过其他参数推导得出进一步降低Msg.4码率的参数,从而解决了这一问题。
可选地,在本申请实施例中,在上述目标消息为重传消息的情况下,上述目标缩放参数与初传的目标消息的缩放参数相同。
可选地,在本申请实施例中,上述第一信息中包含目标调制与编码策略(Modulation and Coding Scheme,MCS)表,上述目标MCS表中包含上述目标缩放参数。
可选地,在本申请实施例中,上述目标缩放参数或者上述目标MCS表可以定义在标准中或由高层信令配置。其中,上述高层信令可以是UE特定的RRC信令或者是小区级别的信令或者是系统信息。此外,需要说明的是,针对目标缩放参数或者上述目标MCS表,不同RedCap类型的终端可以配置或者在标准中定义不同的值。
示例性的,下表2为一种MCS table,该表可以包含TB scaling因子(即缩放因子)。
表2
Figure PCTCN2021139075-appb-000001
Figure PCTCN2021139075-appb-000002
Figure PCTCN2021139075-appb-000003
在本申请实施例提供的消息传输方法中,网络侧设备可以根据UE反馈的目标信息(如,UE的能力信息,UE的信道参数,UE的UE类型),来确定出与该UE适配的第一信息,然后,基于该第一信息所指示的目标缩放参数,调节该网络侧设备需要向该UE发送的目标消息的传输块的码率,从而能够保证不同UE场景下的下行覆盖或信息传输的性能。
可选地,在本申请实施例中,上述第一信息是协议约定的或系统信息指示的。进一步的,网络侧设备可以基于上述目标信息从协议约定或系统信息指示的信息中,确定出对应的第一信息。
示例性的,通过协议约定或者系统信息广播以下至少一项信息:
1)指示是否应用TB scaling。
2)如果应用TB scaling,则对于RedCap的终端(无论有多少种RedCap终端的类型),其TB scaling的值均相同;例如,对于RedCap的终端(无论有多少种RedCap终端的类型),其TB scaling的值为Y,比如Y=0.5。
3)如果应用TB scaling,则对于不同RedCap的终端,其TB scaling的值不同。示例1:对于RedCap的终端类型1,即高端的high-end RedCap devices,其TB scaling的值为Y1,比如Y1=0.5;对于RedCap的终端类型2,即低端的low-end RedCap devices,其TB scaling的值为Y2,比如Y2=0.25。示例2:对于RedCap的终端,若其接收天线为2,其TB scaling的值为Y1,比如Y1=0.5;若其接收天线为1,其TB scaling的值为Y2,比如Y2=0.25。
示例性的,当TB scaling的值和UE的类型相关,则网络层在调度数据前需要知道UE的类型。
在一种示例中,若TB scaling至少应用于基于竞争的随机接入的Msg.2、Msg.B或Msg.3,则网络通过Msg.1(如不同的PRACH资源/preamble和/或不同的初始接入BWP)来区分不同的UE类型。
在另一种示例中,若TB scaling至少应用于基于竞争的随机接入的Msg.4,则网络可以通过Msg.1(如不同的PRACH资源/preamble和/或不同的初始接入BWP)、Msg.3以及Msg.A(终端在Msg.3/Msg.A中上报RedCap的类型)中的至少一种来区分不同的UE类型。
在另一种示例中,若TB scaling至少应用于RRC链接建立后的数据传输,则UE在初始连接建立后,可以通过UE capability report终端能力报告中上报UE类型。
可选地,在本申请实施例中,本申请实施例提供的消息传输方法还可以包括如下步骤A1和步骤A2:
步骤A1:网络侧设备向UE发送第一信息。
步骤A2:UE从网络侧设备接收第一信息。
示例性的,上述第一信息可以为系统信息,该系统信息中携带有目标缩放参数,或者,上述目标MSC表。
可选地,在本申请实施例中,上述第一信息可以承载在DCI中。即,本申请实施例提供的消息传输方法还可以包括如下步骤B1和步骤B2:
步骤B1:网络侧设备向UE发送DCI。
步骤B2:UE从网络侧设备接收DCI。
其中,上述DCI的目标字段中携带上述第一信息。
需要说明的是,在利用DCI中的目标字段进行TB scaling的指示时,可以利用DCI中的保留字段进行TB scaling的指示(如,x-bit可以指示2x个不同的取值),也可以在DCI中引入新的字段,专门用来指示TB scaling,还可以重用现有字段,使得现有字段除了指示其现有的功能“F”外,还可以指示TB scaling。
进一步可选地,在本申请实施例中,上述目标字段为以下任一项:
上述DCI中的保留字段,
上述DCI中专用于携带第一信息的专用字段,
上述DCI中的用于指示目标功能的第一字段。
示例性的,针对上述专用字段,本申请实施例通过在DCI中引入新的字段,来专门用于来指示目标缩放参数,从而可以在不压缩现有字段的情况下,增加了DCI整体的bit数。
示例性的,针对上述第一字段,本申请实施例通过重用现有字段,压缩现有字段来指示目标缩放参数,保证DCI size不变。例如,可以压缩HARQ process number字段,使其从4bits变为2bits。
示例性的,高层信令配置该第一字段中的目标功能(即该第一字段所指示的现有功能)时,也可以配置上述第一信息。
示例性的,上述保留字段可以为DCI 1-0中带有TC-RNTI的下行分配索引(Downlink assignment index,DAI)字段(2位),通过该DAI字段可以用来指示是否使用TB scaling以及TB scaling的值。例如,Rel-16中用来调度Msg.4的DCI,该DCI中各个字段的功能如下表3所示:
表3
Figure PCTCN2021139075-appb-000004
Figure PCTCN2021139075-appb-000005
Figure PCTCN2021139075-appb-000006
进一步可选地,在本申请实施例中,在上述目标字段为上述第一字段的情况下,上述目标字段中的第一有效位上携带第一信息,上述目标字段中的第二有效位用于指示该目标功能。
示例性的,上述第二有效位可以为目标字段中除第一有效位以外的剩余有效位。
示例性的,上述第一有效位可以为目标字段中的x个最高有效位(most significant bit,MSB)或者x个最低有效位(low significant bit,LSB),通过该有效位来指示TB scaling的值,剩余的(L-x)个bit即上述第二有效位,可以用来指示该目标字段现有的功能F,其中x为正整数。
举例说明,参照下表4,5-bit MCS table,其最高有效位MSB用来指示TB scaling,剩余4-bit用来指示MCS索引。
表4
Figure PCTCN2021139075-appb-000007
例如,上表4中的b4=0,TB scaling=0.25或者0.5,b4=1,TB scaling=0.5或者1。
进一步可选地,在本申请实施例中,上述步骤B1可以包括如下步骤:
步骤B11:网络侧设备根据PDCCH,向UE发送DCI。
进一步可选地,在本申请实施例中,上述步骤B2可以包括如下步骤:
步骤B21:UE检测PDCCH,从网络侧设备接收DCI。
其中,由不同的RNTI加扰的PDCCH调度的PDSCH中的DCI指示不同的缩放参数。
举例说明,SCA1-C-RNTI加扰的PDCCH调度的PDSCH,TB scaling=0.25;SCA2-C-RNTI加扰的PDCCH调度的PDSCH,TB scaling=0.5;TC-RNTI和/或C-RNTI和/或MCS-C-RNTI加扰的PDCCH调度的PDSCH,TB scaling=1。
可选地,在本申请实施例中,上述第一信息和其他参数相关,即,上述第一信息可以基于其他参数推导得到。
示例性的,上述获取第一信息及确定第一信息的过程可以包括如下步骤C:
步骤C:网络侧设备/UE根据第二信息,确定第一信息。
其中,上述第二信息包括以下至少一项:上述目标消息的缩放因子,上述目标消息的重复因子。
进一步可选地,在本申请实施例中,上述第二信息为时频资源分配TDRA表,该TDRA表中包含以下至少一项:上述第一消息的缩放因子,上述第一消息的重复因子。其中,上述第一消息可以为二步随机接入过程中的任一消息,也可以为四步随机接入过程中的任一消息。
示例A:四步随机接入过程中的Msg.4的TB scaling的值可以由四步随机接入过程中的Msg.2/二步随机接入过程中的Msg.B的缩放因子和/或重复因子得出。如,TB  scaling for Msg.4=function(TB scaling and/or repetition factor for Msg.2/Msg.B)。最简单的TB scaling for Msg.4=TB scaling for Msg.2/Msg.B。
示例B:四步随机接入过程中的Msg.4的TB scaling的值可以由四步随机接入过程中的Msg.1或Msg.3或二步随机接入过程中的Msg.A的重复因子(如重复传输2,4,8,16次等)得出。如,TB scaling for Msg.4=function(repetition factor for Msg.1/Msg.3/Msg.A),最简单的TB scaling for Msg.4=1/(repetition factor for Msg.1/Msg.3/Msg.A)。
需要说明的是,本申请实施例提供的消息传输方法,执行主体可以为消息传输装置,或者,该消息传输装置中的用于执行消息传输方法的控制模块。本申请实施例中以消息传输装置执行消息传输方法为例,说明本申请实施例提供的消息传输装置。
本申请实施例提供一种消息传输装置,如图4所示,该消息传输装置可以包括:确定模块401和发送模块402,其中:
确定模块401,用于根据目标信息,确定第一信息,其中,上述目标信息包括以下至少一项:UE的能力信息,上述UE的信道参数,上述UE的UE类型;上述第一信息用于指示目标缩放参数;发送模块402,用于根据上述获取模块401获取的上述目标缩放参数,向上述UE发送目标消息;上述目标缩放参数用于调节上述目标消息的传输块的码率。
可选地,上述目标消息包括以下至少一项:两步随机接入中的Msg2,四步随机接入中的Msg4,用户特定消息。
可选地,上述发送模块402,还用于向UE发送第一信息。
可选地,上述发送模块402,还用于发送DCI;其中,上述DCI的目标字段中携带上述第一信息。
可选地,上述目标字段为:上述DCI中的保留字段,或者,上述DCI中专用于携带上述第一信息的专用字段,或者,上述DCI中的用于指示目标功能的第一字段。
可选地,在上述目标字段为上述第一字段的情况下,上述目标字段中的第一有效位上携带上述第一信息,上述目标字段中的第二有效位用于指示上述目标功能。
可选地,上述发送模块402,还用于根据PDCCH,发送DCI;其中,由不同的RNTI加扰的PDCCH调度的PDSCH中的DCI指示不同的缩放参数。
可选地,上述获取模块401,具体用于:根据第二信息,确定第一信息;其中,上述第二信息包括以下至少一项:上述第一消息的缩放因子,上述第一消息的重复因子。
可选地,上述第二信息为TDRA表,上述TDRA表中包含以下至少一项:第一消息的缩放因子,上述第一消息的重复因子。
可选地,在上述目标消息为重传消息的情况下,上述目标缩放参数与初传的目标消息的缩放参数相同。
可选地,上述第一信息是协议约定的或系统信息指示的。
可选地,上述第一信息中包含目标MCS表,上述目标MCS表中包含上述目标缩放参数。
可选地,不同降低终端能力类型的UE对应不同的目标缩放参数。
在本申请实施例提供的消息传输装置中,该装置可以根据UE反馈的目标信息(如,UE的能力信息,UE的信道参数,UE的UE类型),来确定出与该UE适配的第一信息,然后,基于该第一信息所指示的目标缩放参数,调节向该UE发送的目标消息的传输块的码率,从而能够保证不同UE场景下的下行覆盖或信息传输的性能。
本申请实施例提供一种消息传输装置,如图5所示,该消息传输装置可以包括:上报模块501、获取模块502以及处理模块503,其中:上报模块501,用于向网络侧设备上报目标信息;上述目标信息包括以下至少一项:UE的能力信息,UE的信道参数,UE的UE类型;上述目标信息与目标缩放参数相关;获取模块502,用于获取第一信息;上述第一信息用于指示上述目标缩放参数;处理模块503,用于根据目标缩放参数,接收并解调网络侧设备向UE发送的目标消息的传输块所传输的信息。
可选地,如图5所示,该消息传输装置还包括接收模块504,其中:上述接收模块504,用于接收DCI;其中,上述DCI的目标字段中携带上述第一信息。
可选地,上述目标字段为:上述DCI中的保留字段,或者,上述DCI中专用于携带上述第一信息的专用字段,或者,上述DCI中的用于指示目标功能的第一字段。
可选地,在上述目标字段为上述第一字段的情况下,上述目标字段中的第一有效位上携带上述第一信息,上述目标字段中的第二有效位用于指示上述目标功能。
可选地,上述接收模块504,用于检测物理下行控制信道PDCCH,接收DCI;其中,由不同的无线网络临时标识符RNTI加扰的PDCCH调度的物理下行共享信道PDSCH中的DCI指示不同的缩放参数。
可选地,上述获取模块502,具体用于根据目标信息以及第二信息,确定第一信息;其中,上述第二信息包括以下至少一项:上述目标消息的缩放因子,上述目标消息的重复因子。
可选地,上述第二信息为TDRA表,上述TDRA表中包含以下至少一项:第一消息的缩放因子,上述第一消息的重复因子。
可选地,在上述目标消息为重传消息的情况下,上述目标缩放参数与初传的目标消息的缩放参数相同。
可选地,上述第一信息是协议约定的或系统信息指示的。
可选地,上述第一信息中包含目标MCS表,上述目标MCS表中包含上述目标缩放参数。
可选地,不同降低终端能力类型的UE对应不同的目标缩放参数。
可选地,上述目标消息包括以下至少一项:两步随机接入中的Msg2,四步随机接入中的Msg4,用户特定消息。
在本申请实施例提供的消息传输装置中,该装置通过向网络侧设备反馈目标信息(如,UE的能力信息,UE的信道参数,UE的UE类型),使得网络侧设备可以基于该目标信息来确定出与该UE适配的第一信息,然后,基于该第一信息所指示的目标缩放参数,调节向该UE发送的目标消息的传输块的码率,从而能够保证不同UE场景下的下行覆盖或信息传输的性能。
需要说明的是,如图5所示,消息传输装置中一定包括的模块用实线框示意,如上报模块501、获取模块502以及处理模块503;消息传输装置中可以包括也可以不包 括的模块用虚线框示意,如接收模块504。
本申请实施例中的消息传输装置可以是装置,也可以是终端中的部件、集成电路、或芯片。该装置可以是移动终端,也可以为非移动终端。示例性的,移动终端可以包括但不限于上述所列举的终端11的类型,非移动终端可以为服务器、网络附属存储器(Network Attached Storage,NAS)、个人计算机(personal computer,PC)、电视机(television,TV)、柜员机或者自助机等,本申请实施例不作具体限定。
本申请实施例中的消息传输装置可以为具有操作系统的装置。该操作系统可以为安卓(Android)操作系统,可以为iOS操作系统,还可以为其他可能的操作系统,本申请实施例不作具体限定。
本申请实施例提供的消息传输装置能够实现上述方法实施例实现的各个过程,并达到相同的技术效果,为避免重复,这里不再赘述。
可选的,如图6所示,本申请实施例还提供一种通信设备600,包括处理器601,存储器602,存储在存储器602上并可在所述处理器601上运行的程序或指令,例如,该通信设备600为网络侧设备时,该程序或指令被处理器601执行时实现上述消息传输方法实施例的各个过程,且能达到相同的技术效果。该通信设备600为UE时,该程序或指令被处理器601执行时实现上述消息传输方法实施例的各个过程,且能达到相同的技术效果,为避免重复,这里不再赘述。
本申请实施例还提供了一种网络侧设备。如图7所示,该网络侧设备700包括:天线71、射频装置72、基带装置73。天线71与射频装置72连接。在上行方向上,射频装置72通过天线71接收信息,将接收的信息发送给基带装置73进行处理。在下行方向上,基带装置73对要发送的信息进行处理,并发送给射频装置72,射频装置72对收到的信息进行处理后经过天线71发送出去。
上述频带处理装置可以位于基带装置73中,以上实施例中网络侧设备执行的方法可以在基带装置73中实现,该基带装置73包括处理器74和存储器77。
基带装置73例如可以包括至少一个基带板,该基带板上设置有多个芯片,如图7所示,其中一个芯片例如为处理器74,与存储器75连接,以调用存储器75中的程序,执行以上方法实施例中所示的网络侧设备操作。
该基带装置73还可以包括网络接口76,用于与射频装置72交互信息,该接口例如为通用公共无线接口(common public radio interface,简称CPRI)。
具体地,本发明实施例的网络侧设备还包括:存储在存储器75上并可在处理器74上运行的指令或程序,处理器74调用存储器75中的指令或程序执行图4所示的确定模块401所执行的所有方法,并达到相同的技术效果,为避免重复,故不在此赘述。同时,射频装置72可以执行图4所示的发送模块402所执行的所有方法(例如,射频装置72可以向UE发送目标消息,射频装置72还可以向UE发送DCI),并达到相同的技术效果,为避免重复,故不在此赘述。
图8为实现本申请实施例的一种终端的硬件结构示意图。
该终端100包括但不限于:射频单元101、网络模块102、音频输出单元103、输入单元104、传感器105、显示单元106、用户输入单元107、接口单元108、存储器109、以及处理器110等部件。
本领域技术人员可以理解,终端100还可以包括给各个部件供电的电源(比如电池),电源可以通过电源管理系统与处理器110逻辑相连,从而通过电源管理系统实现管理充电、放电、以及功耗管理等功能。图8中示出的终端结构并不构成对终端的限定,终端可以包括比图示更多或更少的部件,或者组合某些部件,或者不同的部件布置,在此不再赘述。
应理解的是,本申请实施例中,输入单元104可以包括图形处理器(Graphics Processing Unit,GPU)1041和麦克风1042,图形处理器1041对在视频捕获模式或图像捕获模式中由图像捕获装置(如摄像头)获得的静态图片或视频的图像数据进行处理。显示单元106可包括显示面板1061,可以采用液晶显示器、有机发光二极管等形式来配置显示面板1061。用户输入单元107包括触控面板1071以及其他输入设备1072。触控面板1071,也称为触摸屏。触控面板1071可包括触摸检测装置和触摸控制器两个部分。其他输入设备1072可以包括但不限于物理键盘、功能键(比如音量控制按键、开关按键等)、轨迹球、鼠标、操作杆,在此不再赘述。
本申请实施例中,射频单元101将来自网络侧设备的下行数据接收后,给处理器110处理;另外,将上行的数据发送给网络侧设备。通常,射频单元101包括但不限于天线、至少一个放大器、收发信机、耦合器、低噪声放大器、双工器等。
存储器109可用于存储软件程序或指令以及各种数据。存储器109可主要包括存储程序或指令区和存储数据区,其中,存储程序或指令区可存储操作系统、至少一个功能所需的应用程序或指令(比如声音播放功能、图像播放功能等)等。此外,存储器109可以包括高速随机存取存储器,还可以包括非易失性存储器,其中,非易失性存储器可以是只读存储器(Read-Only Memory,ROM)、可编程只读存储器(Programmable ROM,PROM)、可擦除可编程只读存储器(Erasable PROM,EPROM)、电可擦除可编程只读存储器(Electrically EPROM,EEPROM)或闪存。例如至少一个磁盘存储器件、闪存器件、或其他非易失性固态存储器件。
处理器110可包括一个或多个处理单元;可选的,处理器110可集成应用处理器和调制解调处理器,其中,应用处理器主要处理操作系统、用户界面和应用程序或指令等,调制解调处理器主要处理无线通信,如基带处理器。可以理解的是,上述调制解调处理器也可以不集成到处理器110中。
其中,上述射频单元101,用于向网络侧设备上报目标信息;上述射频单元101,还用于从网络侧设备接收目标消息;其中,上述目标信息包括以下至少一项:上述UE的能力信息,上述UE的信道参数,上述UE的UE类型;上述目标信息与目标缩放参数相关;处理器110,用于获取第一信息;上述第一信息用于指示上述目标缩放参数;处理器110,还用于根据目标缩放参数,接收并解调网络侧设备向UE发送的目标消息的传输块所传输的信息。
可选地,上述射频单元101,还用于接收DCI;其中,上述DCI的目标字段中携带上述第一信息。
可选地,上述目标字段为:上述DCI中的保留字段,或者,上述DCI中专用于携带上述第一信息的专用字段,或者,上述DCI中的用于指示目标功能的第一字段。
可选地,在上述目标字段为上述第一字段的情况下,上述目标字段中的第一有效 位上携带上述第一信息,上述目标字段中的第二有效位用于指示上述目标功能。
可选地,上述射频单元101,还用于检测物理下行控制信道PDCCH,接收DCI;其中,由不同的无线网络临时标识符RNTI加扰的PDCCH调度的物理下行共享信道PDSCH中的DCI指示不同的缩放参数。
可选地,上述处理器110,还用于根据目标信息以及第二信息,确定第一信息;其中,上述第二信息包括以下至少一项:上述目标消息的缩放因子,上述目标消息的重复因子。
可选地,上述第二信息为TDRA表,上述TDRA表中包含以下至少一项:第一消息的缩放因子,上述第一消息的重复因子。
可选地,在上述目标消息为重传消息的情况下,上述目标缩放参数与初传的目标消息的缩放参数相同。
可选地,上述目标信息是协议约定的或系统信息指示的。
可选地,上述第一信息中包含目标调制与编码策略MCS表,上述目标MCS表中包含上述目标缩放参数。
可选地,不同降低终端能力类型的UE对应不同的目标缩放参数。
可选地,上述目标消息包括以下至少一项:两步随机接入中的Msg2,四步随机接入中的Msg4,用户特定消息。
在本申请实施例提供的终端中,该终端通过向网络侧设备反馈目标信息(如,UE的能力信息,UE的信道参数,UE的UE类型),使得网络侧设备可以基于该目标信息来确定出与该UE适配的第一信息,然后,基于该第一信息所指示的目标缩放参数,调节向该UE发送的目标消息的传输块的码率,从而能够保证不同UE场景下的下行覆盖或信息传输的性能。
本申请实施例还提供一种可读存储介质,所述可读存储介质上存储有程序或指令,该程序或指令被处理器执行时实现上述消息传输方法实施例的各个过程,且能达到相同的技术效果,为避免重复,这里不再赘述。
其中,所述处理器为上述实施例中所述的终端中的处理器。所述可读存储介质,包括计算机可读存储介质,如计算机只读存储器(Read-Only Memory,ROM)、随机存取存储器(Random Access Memory,RAM)、磁碟或者光盘等。
本申请实施例另提供了一种芯片,所述芯片包括处理器和通信接口,所述通信接口和所述处理器耦合,所述处理器用于运行网络侧设备程序或指令,实现上述消息传输方法的方法实施例的各个过程,且能达到相同的技术效果,为避免重复,这里不再赘述。
应理解,本申请实施例提到的芯片还可以称为系统级芯片,系统芯片,芯片系统或片上系统芯片等。
本申请实施例提供了一种计算机程序产品,该程序产品被存储在非瞬态存储介质中,该程序产品被至少一个处理器执行以实现上述消息传输方法的方法实施例的各个过程,且能达到相同的技术效果,为避免重复,这里不再赘述。
需要说明的是,在本文中,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者装置不仅包括 那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者装置所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括该要素的过程、方法、物品或者装置中还存在另外的相同要素。此外,需要指出的是,本申请实施方式中的方法和装置的范围不限按示出或讨论的顺序来执行功能,还可包括根据所涉及的功能按基本同时的方式或按相反的顺序来执行功能,例如,可以按不同于所描述的次序来执行所描述的方法,并且还可以添加、省去、或组合各种步骤。另外,参照某些示例所描述的特征可在其他示例中被组合。
通过以上的实施方式的描述,本领域的技术人员可以清楚地了解到上述实施例方法可借助软件加必需的通用硬件平台的方式来实现,当然也可以通过硬件,但很多情况下前者是更佳的实施方式。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质(如ROM/RAM、磁碟、光盘)中,包括若干指令用以使得一台终端(可以是手机,计算机,服务器,空调器,或者网络设备等)执行本申请各个实施例所述的方法。
上面结合附图对本申请的实施例进行了描述,但是本申请并不局限于上述的具体实施方式,上述的具体实施方式仅仅是示意性的,而不是限制性的,本领域的普通技术人员在本申请的启示下,在不脱离本申请宗旨和权利要求所保护的范围情况下,还可做出很多形式,均属于本申请的保护之内。

Claims (58)

  1. 一种消息传输方法,所述方法包括:
    网络侧设备根据目标信息,确定第一信息,其中,所述目标信息包括以下至少一项:用户设备UE的能力信息,所述UE的信道参数,所述UE的UE类型;所述第一信息用于指示目标缩放参数;
    所述网络侧设备根据所述目标缩放参数,向所述UE发送目标消息;所述目标缩放参数用于调节所述目标消息的传输块的码率。
  2. 根据权利要求1所述的方法,其中,所述目标消息包括以下至少一项:两步随机接入中的Msg2,四步随机接入中的Msg4,用户特定消息。
  3. 根据权利要求1或2所述的方法,其中,所述方法还包括:
    所述网络侧设备向UE发送所述第一信息。
  4. 根据权利要求3所述的方法,其中,所述网络侧设备向UE发送所述第一信息,包括:
    所述网络侧设备发送下行控制信息DCI;
    其中,所述DCI的目标字段中携带所述第一信息。
  5. 根据权利要求4所述的方法,其中,所述目标字段为:所述DCI中的保留字段,或者,所述DCI中专用于携带所述第一信息的专用字段,或者,所述DCI中的用于指示目标功能的第一字段。
  6. 根据权利要求5所述的方法,其中,在所述目标字段为所述第一字段的情况下,所述目标字段中的第一有效位上携带所述第一信息,所述目标字段中的第二有效位用于指示所述目标功能。
  7. 根据权利要求4所述的方法,其中,所述网络侧设备发送DCI,包括:
    所述网络侧设备根据物理下行控制信道PDCCH,发送DCI;
    其中,由不同的无线网络临时标识符RNTI加扰的PDCCH调度的物理下行共享信道PDSCH中的DCI指示不同的缩放参数。
  8. 根据权利要求1所述的方法,其中,所述网络侧设备根据目标信息,确定第一信息,包括:
    所述网络侧设备根据目标信息以及第二信息,确定第一信息;
    其中,所述第二信息包括以下至少一项:所述目标消息的缩放因子,所述目标消息的重复因子。
  9. 根据权利要求8所述的方法,其中,所述第二信息为时频资源分配TDRA表,所述TDRA表中包含以下至少一项:第一消息的缩放因子,所述第一消息的重复因子。
  10. 根据权利要求1所述的方法,其中,在所述目标消息为重传消息的情况下,所述目标缩放参数与初传的目标消息的缩放参数相同。
  11. 根据权利要求1所述的方法,其中,所述第一信息是协议约定的或系统信息指示的。
  12. 根据权利要求1所述的方法,其中,所述第一信息中包含目标调制与编码策略MCS表,所述目标MCS表中包含所述目标缩放参数。
  13. 根据权利要求1所述的方法,其中,不同降低终端能力类型的UE对应不同的 目标缩放参数。
  14. 一种消息传输方法,所述方法包括:
    UE向网络侧设备上报目标信息;所述目标信息包括以下至少一项:所述UE的能力信息,所述UE的信道参数,所述UE的UE类型;所述目标信息与目标缩放参数相关;
    所述UE获取第一信息;所述第一信息用于指示所述目标缩放参数;
    所述UE根据目标缩放参数,接收并解调所述网络侧设备向所述UE发送的目标消息的传输块所传输的信息。
  15. 根据权利要求14所述的方法,其中,所述UE获取第一信息,包括:
    所述UE接收DCI;
    其中,所述DCI的目标字段中携带所述第一信息。
  16. 根据权利要求15所述的方法,其中,所述目标字段为:所述DCI中的保留字段,或者,所述DCI中专用于携带所述第一信息的专用字段,或者,所述DCI中的用于指示目标功能的第一字段。
  17. 根据权利要求16所述的方法,其中,在所述目标字段为所述第一字段的情况下,所述目标字段中的第一有效位上携带所述第一信息,所述目标字段中的第二有效位用于指示所述目标功能。
  18. 根据权利要求15所述的方法,其中,所述UE接收DCI,包括:
    所述UE检测物理下行控制信道PDCCH,接收DCI;
    其中,由不同的无线网络临时标识符RNTI加扰的PDCCH调度的物理下行共享信道PDSCH中的DCI指示不同的缩放参数。
  19. 根据权利要求14所述的方法,其中,所述UE获取第一信息,包括:
    所述UE根据目标信息以及第二信息,确定第一信息;
    其中,所述第二信息包括以下至少一项:所述目标消息的缩放因子,所述目标消息的重复因子。
  20. 根据权利要求19所述的方法,其中,所述第二信息为TDRA表,所述TDRA表中包含以下至少一项:第一消息的缩放因子,所述第一消息的重复因子。
  21. 根据权利要求14所述的方法,其中,在所述目标消息为重传消息的情况下,所述目标缩放参数与初传的目标消息的缩放参数相同。
  22. 根据权利要求14所述的方法,其中,所述第一信息是协议约定的或系统信息指示的。
  23. 根据权利要求14所述的方法,其中,所述第一信息中包含目标调制与编码策略MCS表,所述目标MCS表中包含所述目标缩放参数。
  24. 根据权利要求14所述的方法,其中,不同降低终端能力类型的UE对应不同的目标缩放参数。
  25. 根据权利要求14所述的方法,其中,所述目标消息包括以下至少一项:两步随机接入中的Msg2,四步随机接入中的Msg4,用户特定消息。
  26. 一种消息传输装置,其中,所述装置包括:
    确定模块,用于根据目标信息,确定第一信息,其中,所述目标信息包括以下至 少一项:UE的能力信息,所述UE的信道参数,所述UE的UE类型;所述第一信息用于指示目标缩放参数;
    发送模块,用于根据所述目标缩放参数,向所述UE发送目标消息;所述目标缩放参数用于调节所述目标消息的传输块的码率。
  27. 根据权利要求26所述的装置,其中,所述目标消息包括以下至少一项:两步随机接入中的Msg2,四步随机接入中的Msg4,用户特定消息。
  28. 根据权利要求26或27所述的装置,其中,所述发送模块,还用于向UE发送所述第一信息。
  29. 根据权利要求28所述的装置,其中,所述发送模块具体用于:
    发送下行控制信息DCI;
    其中,所述DCI的目标字段中携带所述第一信息。
  30. 根据权利要求29所述的装置,其中,所述目标字段为:所述DCI中的保留字段,或者,所述DCI中专用于携带所述第一信息的专用字段,或者,所述DCI中的用于指示目标功能的第一字段。
  31. 根据权利要求30所述的装置,其中,在所述目标字段为所述第一字段的情况下,所述目标字段中的第一有效位上携带所述第一信息,所述目标字段中的第二有效位用于指示所述目标功能。
  32. 根据权利要求29所述的装置,其中,所述发送模块具体用于:
    根据物理下行控制信道PDCCH,发送DCI;
    其中,由不同的无线网络临时标识符RNTI加扰的PDCCH调度的物理下行共享信道PDSCH中的DCI指示不同的缩放参数。
  33. 根据权利要求26所述的装置,其中,所述确定模块,具体用于:
    根据目标信息以及第二信息,确定第一信息;
    其中,所述第二信息包括以下至少一项:所述目标消息的缩放因子,所述目标消息的重复因子。
  34. 根据权利要求33所述的装置,其中,所述第二信息为时频资源分配TDRA表,所述TDRA表中包含以下至少一项:第一消息的缩放因子,所述第一消息的重复因子。
  35. 根据权利要求26所述的装置,其中,在所述目标消息为重传消息的情况下,所述目标缩放参数与初传的目标消息的缩放参数相同。
  36. 根据权利要求26所述的装置,其中,所述第一信息是协议约定的或系统信息指示的。
  37. 根据权利要求26所述的装置,其中,所述第一信息中包含目标调制与编码策略MCS表,所述目标MCS表中包含所述目标缩放参数。
  38. 根据权利要求26所述的装置,其中,不同降低终端能力类型的UE对应不同的目标缩放参数。
  39. 一种消息传输装置,所述装置包括:
    上报模块,用于向网络侧设备上报目标信息;所述目标信息包括以下至少一项:所述UE的能力信息,所述UE的信道参数,所述UE的UE类型;所述目标信息与目标缩放参数相关;
    获取模块,用于获取第一信息;所述第一信息用于指示所述目标缩放参数;
    处理模块,用于根据所述获取模块获取的目标缩放参数,接收并解调所述网络侧设备向所述UE发送的目标消息的传输块所传输的信息。
  40. 根据权利要求39所述的装置,其中,所述装置,还包括:
    接收模块,用于接收DCI;
    其中,所述DCI的目标字段中携带所述第一信息。
  41. 根据权利要求40所述的装置,其中,所述目标字段为:所述DCI中的保留字段,或者,所述DCI中专用于携带所述第一信息的专用字段,或者,所述DCI中的用于指示目标功能的第一字段。
  42. 根据权利要求41所述的装置,其中,在所述目标字段为所述第一字段的情况下,所述目标字段中的第一有效位上携带所述第一信息,所述目标字段中的第二有效位用于指示所述目标功能。
  43. 根据权利要求40所述的装置,其中,所述接收模块,具体用于:
    检测物理下行控制信道PDCCH,接收DCI;
    其中,由不同的无线网络临时标识符RNTI加扰的PDCCH调度的物理下行共享信道PDSCH中的DCI指示不同的缩放参数。
  44. 根据权利要求39所述的装置,其中,所述获取模块,具体用于:
    根据目标信息以及第二信息,确定第一信息;
    其中,所述第二信息包括以下至少一项:所述目标消息的缩放因子,所述目标消息的重复因子。
  45. 根据权利要求44所述的装置,其中,所述第二信息为TDRA表,所述TDRA表中包含以下至少一项:第一消息的缩放因子,所述第一消息的重复因子。
  46. 根据权利要求39所述的装置,其中,在所述目标消息为重传消息的情况下,所述目标缩放参数与初传的目标消息的缩放参数相同。
  47. 根据权利要求39所述的装置,其中,所述第一信息是协议约定的或系统信息指示的。
  48. 根据权利要求39所述的装置,其中,所述第一信息中包含目标调制与编码策略MCS表,所述目标MCS表中包含所述目标缩放参数。
  49. 根据权利要求39所述的装置,其中,不同降低终端能力类型的UE对应不同的目标缩放参数。
  50. 根据权利要求39所述的装置,其中,所述目标消息包括以下至少一项:两步随机接入中的Msg2,四步随机接入中的Msg4,用户特定消息。
  51. 一种网络侧设备,包括处理器,存储器及存储在所述存储器上并可在所述处理器上运行的程序或指令,所述程序或指令被所述处理器执行时实现如权利要求1至13任一项所述的消息传输方法的步骤。
  52. 一种UE,包括处理器,存储器及存储在所述存储器上并可在所述处理器上运行的程序或指令,所述程序或指令被所述处理器执行时实现如权利要求14至25任一项所述的消息传输方法的步骤。
  53. 一种可读存储介质,所述可读存储介质上存储程序或指令,所述程序或指令 被所述处理器执行时实现如权利要求1至13任一项所述的消息传输方法,或者实现如权利要求14至25任一项所述的消息传输方法的步骤。
  54. 一种消息传输装置,被配置成用于执行如权利要求1至13任一项所述的消息传输方法的步骤,或者,如权利要求14至25任一项所述的消息传输方法的步骤。
  55. 一种网络侧设备,被配置成用于执行如权利要求1至13任一项所述的消息传输方法的步骤。
  56. 一种UE,被配置成用于执行如权利要求14至25任一项所述的消息传输方法的步骤。
  57. 一种芯片,所述芯片包括处理器和通信接口,所述通信接口和所述处理器耦合,所述处理器用于运行程序或指令,实现如权利要求1至13任一项所述的消息传输方法的步骤,或者,如权利要求14至25任一项所述的消息传输方法的步骤。
  58. 一种计算机程序产品,所述程序产品被存储在非瞬态的存储介质中,所述程序产品被至少一个处理器执行时实现如权利要求1至13任一项所述的消息传输方法的步骤,或者,如权利要求14至25任一项所述的消息传输方法的步骤。
PCT/CN2021/139075 2020-12-18 2021-12-17 消息传输方法、装置及设备 WO2022127898A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202011511675.4 2020-12-18
CN202011511675.4A CN114650560A (zh) 2020-12-18 2020-12-18 消息传输方法、装置及设备

Publications (1)

Publication Number Publication Date
WO2022127898A1 true WO2022127898A1 (zh) 2022-06-23

Family

ID=81991142

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/139075 WO2022127898A1 (zh) 2020-12-18 2021-12-17 消息传输方法、装置及设备

Country Status (2)

Country Link
CN (1) CN114650560A (zh)
WO (1) WO2022127898A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110115096A (zh) * 2019-03-29 2019-08-09 北京小米移动软件有限公司 随机接入方法、装置及计算机可读存储介质
US20190349116A1 (en) * 2018-05-11 2019-11-14 Qualcomm Incorporated Transport block size scaling factor indication for ultra-reliable low-latency communication
CN111357379A (zh) * 2017-11-17 2020-06-30 高通股份有限公司 用于早期数据传输的物理层增强
CN111937334A (zh) * 2018-04-05 2020-11-13 高通股份有限公司 使用缩放因子的替代的调制编码方案的信令

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111357379A (zh) * 2017-11-17 2020-06-30 高通股份有限公司 用于早期数据传输的物理层增强
CN111937334A (zh) * 2018-04-05 2020-11-13 高通股份有限公司 使用缩放因子的替代的调制编码方案的信令
US20190349116A1 (en) * 2018-05-11 2019-11-14 Qualcomm Incorporated Transport block size scaling factor indication for ultra-reliable low-latency communication
CN110115096A (zh) * 2019-03-29 2019-08-09 北京小米移动软件有限公司 随机接入方法、装置及计算机可读存储介质

Also Published As

Publication number Publication date
CN114650560A (zh) 2022-06-21

Similar Documents

Publication Publication Date Title
US11096221B2 (en) Transmission of early data in message 3 (MSG3) via a dual grant
US11751245B2 (en) Method and wireless communication system for handling timer operation
WO2020221264A1 (zh) 一种随机接入方法、装置及存储介质
EP3490276A1 (en) System information transmission method, user terminal, network side device, system and storage medium
WO2018212699A1 (en) Wireless device, network node, and methods performed thereby for handling grant use
US10560979B2 (en) Measurement result reporting method, method for counting by timer, apparatus, and user equipment
WO2022152275A1 (zh) Msg3传输方法、装置、设备及存储介质
CN111586881B (zh) 随机接入的方法和装置
US20230138775A1 (en) Method for mapping pusch signal, terminal, and network-side device
US20210235506A1 (en) Information processing method and apparatus
US20230262664A1 (en) Data transmission method and apparatus, terminal, network-side device, and storage medium
AU2020247230B2 (en) Method and apparatus for determining radio network temporary identifier in two-step random access procedure
US20230163814A1 (en) Auxiliary information transmission method, terminal device, and network device
WO2022127702A1 (zh) 信息确定方法、装置及通信设备
WO2022143808A1 (zh) 速率匹配方法和设备
WO2022127898A1 (zh) 消息传输方法、装置及设备
US20240057153A1 (en) System and method for scheduling an uplink transmission assignment
WO2022194216A1 (zh) 信息确定方法和设备
WO2023083304A1 (zh) 随机接入的方法、终端及网络侧设备
EP4101234B1 (en) Method and apparatus for random access
WO2023066129A1 (zh) 信息上报方法、设备及可读存储介质
WO2023083290A1 (zh) 随机接入方法、装置、终端及网络侧设备
US20230291611A1 (en) Reference signal determining method, reference signal processing method, and related device
CN113972964A (zh) 反馈信息的传输方法、终端及网络侧设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21905824

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21905824

Country of ref document: EP

Kind code of ref document: A1