WO2023083290A1 - 随机接入方法、装置、终端及网络侧设备 - Google Patents

随机接入方法、装置、终端及网络侧设备 Download PDF

Info

Publication number
WO2023083290A1
WO2023083290A1 PCT/CN2022/131308 CN2022131308W WO2023083290A1 WO 2023083290 A1 WO2023083290 A1 WO 2023083290A1 CN 2022131308 W CN2022131308 W CN 2022131308W WO 2023083290 A1 WO2023083290 A1 WO 2023083290A1
Authority
WO
WIPO (PCT)
Prior art keywords
index
downlink reference
signal
quasi
prach
Prior art date
Application number
PCT/CN2022/131308
Other languages
English (en)
French (fr)
Inventor
杨坤
吴凯
Original Assignee
维沃移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 维沃移动通信有限公司 filed Critical 维沃移动通信有限公司
Publication of WO2023083290A1 publication Critical patent/WO2023083290A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access, e.g. scheduled or random access
    • H04W74/08Non-scheduled or contention based access, e.g. random access, ALOHA, CSMA [Carrier Sense Multiple Access]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access, e.g. scheduled or random access
    • H04W74/08Non-scheduled or contention based access, e.g. random access, ALOHA, CSMA [Carrier Sense Multiple Access]
    • H04W74/0833Non-scheduled or contention based access, e.g. random access, ALOHA, CSMA [Carrier Sense Multiple Access] using a random access procedure

Definitions

  • the present application belongs to the technical field of communication, and specifically relates to a random access method, device, terminal and network side equipment.
  • PRACH Physical Random Access Channel
  • each PRACH signal can be associated with a different downlink reference signal or synchronization signal block (Synchronization Signal Block, SSB), that is, each PRACH signal is based on RO resources corresponding to different SSBs (time-frequency resources or preamble code preamble resource), the terminal and the network side device need to determine the retransmission scheduling information of the downlink signal Msg2 or Msg3 (that is, DCI 0-0 scrambled by TC-RNTI) or the quasi-coloated (QCL) of Msg4 ) signal, if the terminal and the network side equipment do not understand the alignment co-location signal inconsistently, the downlink signal transmission will fail.
  • SSB Synchron Generation
  • Msg2 or Msg3 that is, DCI 0-0 scrambled by TC-RNTI
  • QCL quasi-coloated
  • the embodiments of the present application provide a random access method, device, terminal, and network-side equipment, which can solve the problem that when the PRACH signal is transmitted multiple times, the terminal and the network-side equipment have inconsistent understanding of the aligned co-location signal, which leads to the failure of downlink signal transmission. .
  • a random access method which is applied to a terminal, and the method includes:
  • the terminal device sends multiple physical random access channel PRACH signals, and the multiple PRACH resources used by the multiple PRACH signals respectively correspond to multiple different downlink reference signals;
  • the target PRACH resources among the multiple PRACH resources used by the multiple PRACH signals are associated with quasi-co-located signals;
  • the quasi-co-located signals are one or more of the multiple different downlink reference signals;
  • the quasi-co-located signal is used for the terminal device to receive a first downlink signal, and the first downlink signal is a Msg2 message or Msg3 retransmission scheduling information or a Msg4 message.
  • a random access method which is applied to a network side device, and the method includes:
  • the network side device receives multiple PRACH signals, and the multiple PRACH resources used by the multiple PRACH signals are respectively associated with multiple different downlink reference signals; wherein, the target PRACH resource among the multiple PRACH resources is related to the quasi-co-located signal Link; the quasi-co-located signal is one or more of the multiple different downlink reference signals;
  • the network side device determines the quasi-co-located signal of the first downlink signal based on the target PRACH resource
  • the first downlink signal is Msg2 message or Msg3 retransmission scheduling information or Msg4 message.
  • a random access device in a third aspect, includes:
  • the first sending module is configured to send a plurality of physical random access channel PRACH signals, and the plurality of PRACH resources used by the plurality of PRACH signals respectively correspond to a plurality of different downlink reference signals;
  • the target PRACH resources among the multiple PRACH resources used by the multiple PRACH signals are associated with quasi-co-located signals;
  • the quasi-co-located signals are one or more of the multiple different downlink reference signals;
  • the quasi-co-located signal is used for the terminal device to receive a first downlink signal, and the first downlink signal is a Msg2 message or Msg3 retransmission scheduling information or a Msg4 message.
  • a random access device in a fourth aspect, includes:
  • the first receiving module is configured to receive a plurality of PRACH signals, and the plurality of PRACH resources used by the plurality of PRACH signals are respectively associated with a plurality of different downlink reference signals; wherein, the target PRACH resource in the plurality of PRACH resources is related to the standard Co-located signals are associated; the quasi-co-located signal is one or more of the plurality of different downlink reference signals;
  • a fourth determining module configured to determine the quasi-co-located signal of the first downlink signal based on the target PRACH resource
  • the first downlink signal is Msg2 message or Msg3 retransmission scheduling information or Msg4 message.
  • a terminal includes a processor, a memory, and a program or instruction stored in the memory and operable on the processor.
  • the program or instruction is executed by the processor The steps of the method described in the first aspect are realized.
  • a terminal including a processor and a communication interface, wherein the communication interface is used for:
  • the target PRACH resources among the multiple PRACH resources used by the multiple PRACH signals are associated with quasi-co-located signals;
  • the quasi-co-located signals are one or more of the multiple different downlink reference signals;
  • the quasi-co-located signal is used for the terminal device to receive a first downlink signal, and the first downlink signal is a Msg2 message or Msg3 retransmission scheduling information or a Msg4 message.
  • a network-side device includes a processor, a memory, and a program or instruction stored in the memory and operable on the processor, and the program or instruction is executed by the The processor implements the steps of the method described in the second aspect when executed.
  • a network side device including a processor and a communication interface, wherein the communication interface is used for:
  • Receive multiple PRACH signals, and the multiple PRACH resources used by the multiple PRACH signals are respectively associated with multiple different downlink reference signals; wherein, the target PRACH resources among the multiple PRACH resources are associated with quasi-co-located signals;
  • the quasi-co-located signal is one or more of the plurality of different downlink reference signals;
  • the processor is used to:
  • the first downlink signal is Msg2 message or Msg3 retransmission scheduling information or Msg4 message.
  • a readable storage medium is provided, and programs or instructions are stored on the readable storage medium, and when the programs or instructions are executed by a processor, the steps of the method described in the first aspect are realized, or the steps of the method described in the first aspect are realized, or The steps of the method described in the second aspect.
  • a chip in a tenth aspect, includes a processor and a communication interface, the communication interface is coupled to the processor, and the processor is used to run programs or instructions to implement the method as described in the first aspect steps, or realize the steps of the method as described in the second aspect.
  • a computer program/program product is provided, the computer program/program product is stored in a non-transitory storage medium, and the program/program product is executed by at least one processor to implement the first The steps of the method described in the first aspect, or the steps of the method described in the second aspect.
  • multiple PRACHs can be sent by using the target PRACH resource to indicate that the target PRACH
  • the quasi-co-location signal associated with resources ensures that the terminal and the network-side device have a consistent understanding of the quasi-co-location signal, thereby effectively ensuring the successful transmission of downlink signals.
  • FIG. 1 shows a structural diagram of a wireless communication system to which an embodiment of the present application is applicable
  • FIG. 2 is one of the schematic diagrams of the random access process provided by the embodiment of the present application.
  • FIG. 3 is the second schematic diagram of the random access process provided by the embodiment of the present application.
  • FIG. 4 is the third schematic diagram of the random access process provided by the embodiment of the present application.
  • FIG. 5 is the fourth schematic diagram of the random access process provided by the embodiment of the present application.
  • FIG. 6 is one of the schematic diagrams of the transmission beam of the PRACH signal provided by the embodiment of the present application.
  • FIG. 7 is the second schematic diagram of the transmission beam of the PRACH signal provided by the embodiment of the present application.
  • FIG. 8 is a schematic diagram of the signal quality corresponding to the transmission beam of the PRACH signal provided by the embodiment of the present application.
  • FIG. 9 is one of the schematic flowcharts of the random access method provided by the embodiment of the present application.
  • FIG. 10 is the second schematic flow diagram of the random access method provided by the embodiment of the present application.
  • FIG. 11 is one of the structural schematic diagrams of the random access device provided by the embodiment of the present application.
  • FIG. 12 is the second structural schematic diagram of the random access device provided by the embodiment of the present application.
  • FIG. 13 is a schematic structural diagram of a communication device provided by an embodiment of the present application.
  • FIG. 14 is a schematic diagram of a hardware structure of a terminal device implementing an embodiment of the present application.
  • FIG. 15 is a schematic diagram of a hardware structure of a network side device implementing an embodiment of the present application.
  • first, second and the like in the specification and claims of the present application are used to distinguish similar objects, and are not used to describe a specific order or sequence. It is to be understood that the terms so used are interchangeable under appropriate circumstances such that the embodiments of the application are capable of operation in sequences other than those illustrated or described herein and that "first" and “second” distinguish objects. It is usually one category, and the number of objects is not limited. For example, there may be one or more first objects.
  • “and/or” in the description and claims means at least one of the connected objects, and the character “/” generally means that the related objects are an "or” relationship.
  • LTE Long Term Evolution
  • LTE-Advanced LTE-Advanced
  • LTE-A Long Term Evolution-Advanced
  • CDMA Code Division Multiple Access
  • TDMA Time Division Multiple Access
  • FDMA Frequency Division Multiple Access
  • OFDMA Orthogonal Frequency Division Multiple Access
  • SC-FDMA Single-carrier Frequency-Division Multiple Access
  • system and “network” in the embodiments of the present application are often used interchangeably, and the described technology can be used for the above-mentioned system and radio technology, and can also be used for other systems and radio technologies.
  • the following description describes the New Radio (New Radio, NR) system for example purposes, and uses NR terminology in most of the following descriptions, but these techniques can also be applied to applications other than NR system applications, such as the 6th Generation (6th Generation , 6G) communication system.
  • 6th Generation 6th Generation
  • FIG. 1 shows a structural diagram of a wireless communication system to which this embodiment of the present application is applicable.
  • the wireless communication system includes a terminal 11 and a network side device 12 .
  • the terminal 11 can also be called a terminal device or a user terminal (User Equipment, UE), and the terminal 11 can be a mobile phone, a tablet computer (Tablet Personal Computer), a laptop computer (Laptop Computer) or a notebook computer, a personal digital Assistant (Personal Digital Assistant, PDA), handheld computer, netbook, ultra-mobile personal computer (ultra-mobile personal computer, UMPC), mobile internet device (Mobile Internet Device, MID), wearable device (Wearable Device) or vehicle-mounted device (VUE), Pedestrian Terminal (PUE) and other terminal-side devices, wearable devices include: smart watches, bracelets, earphones, glasses, etc.
  • the network side device 12 may be a base station or a core network, where a base station may be called a node B, an evolved node B, an access point, a base transceiver station (Base Transceiver Station, BTS), a radio base station, a radio transceiver, a basic service Basic Service Set (BSS), Extended Service Set (ESS), Node B, Evolved Node B (eNB), Home Node B, Home Evolved Node B, WLAN access point, WiFi node, transmission Receiving point (Transmitting Receiving Point, TRP) or some other suitable term in the field, as long as the same technical effect is achieved, the base station is not limited to specific technical terms. It should be noted that in the embodiment of this application, only The base station in the NR system is taken as an example, but the specific type of the base station is not limited.
  • NR supports two types of random access procedures: Msg1's 4-step random access (Random Access, RA) type (4-step physical random access channel (Physical Random Access Channel, RACH)) and MsgA's 2-step RA type (2-step RACH).
  • RA Random Access
  • RACH Physical Random Access Channel
  • Figure 2 is one of the schematic diagrams of the random access process provided by the embodiment of the present application
  • Figure 3 is the second schematic diagram of the random access process provided by the embodiment of the present application
  • Figure 4 is the third schematic diagram of the random access process provided by the embodiment of the present application
  • Fig. 5 is the fourth schematic diagram of the random access process provided by the embodiment of the present application, as shown in Fig. Random access (Contention free RA, CFRA).
  • the 2-step RACH process is generally applied to areas with better coverage to shorten the terminal access time.
  • the terminal should use the 4-step RACH process to access the cell.
  • the user terminal (User Equipment, UE) first sends Msg1 to the network side device, including the preamble; Listening to the Physical Downlink Control Channel (PDCCH), receiving DCI format 1_0 scheduled random access response ( Random Access Response, RAR).
  • PDCCH Physical Downlink Control Channel
  • RAR Random Access Response
  • the UE can stop monitoring the RAR and send Msg3 according to the instruction of the UL grant carried in the RAR; Msg3 is transmitted on the uplink shared channel (Uplink Shared Channel, UL-SCH), and uses hybrid automatic repeat request (Hybrid Automatic Repeat Request, HARQ), scrambles PDCCH with TC-RNTI indicated by RAR, and uses DCI format 0_0 to schedule Retransmission of Msg3.
  • Msg3 contains the unique identifier of the UE, which will be used for conflict resolution in step 4.
  • the network side device After receiving Msg3, the network side device will use the TC-RNTI scrambled PDCCH to schedule Msg4.
  • the UE successfully decodes that the UE Contention Resolution Identity MAC control element contained in Msg4 matches the UE Contention Resolution Identity sent by Msg3, the UE confirms the random The access is successful and the C-RNTI is set to TC-RNTI, that is, the 4-step random access is completed.
  • PRACH signal associated SSB selection method After the terminal completes the synchronization process, the terminal receives and detects all SSB signals in the initial downlink BWP (Bandwidth Part), and obtains the signal quality of different SSBs (Synchronization Signal Reference Signal Received Power, SS-RSRP ). The terminal selects the SSB according to the threshold RSRP-Threshold SSB indicated in the system information (System Information Block#1, SIB1).
  • the terminal selects one SSB from the SSBs higher than the threshold as the associated SSB of the random access procedure; if the signal quality of all SSBs is lower than the threshold, Then the terminal can select any SSB as the associated SSB of the random access procedure, and the specific SSB selection scheme can be realized based on the terminal.
  • SSB which can be multiple SSBs
  • the terminal uses the selected SSB to determine the time-frequency resource or preamble resource of the PRACH signal.
  • the transmission beam/QCL parameters of the downlink signals Msg2 and Msg4 are guaranteed to be the same as the selected SSB.
  • the PRACH signal is not repeatedly transmitted.
  • the terminal After sending the PRACH signal, the terminal performs RAR (Msg2) and schedules the PDCCH for RAR, schedules the PDCCH for retransmission of Msg3, and Msg4 (including Physical Downlink Shared Channel (Physical Downlink Shared Channel) , PDSCH) and the reception of the physical downlink control channel (Physical Downlink Control Channel, PDCCH)) that schedules the PDSCH, assuming that the antenna port of the demodulation reference signal (Demodulation Reference Signal, DMRS) and the UE are used to send the SSB or CSI associated with the PRACH-
  • DMRS Demodulation Reference Signal
  • the PDCCH is determined in the above-mentioned manner (the format of the above-mentioned PDCCH is DCI format 1-0) quasi-co-location.
  • the terminal assumes that in this CORESET, the antenna port of the DMRS received by the PDCCH and the downlink signal are quasi-co-located.
  • One or more downlink reference signals configured by the TCI state where the TCI state is indicated to the CORESET through the MAC CE activation command, or if the MAC CE has not received the TCI state indicating the CORESET after the latest random access procedure , the SSB determined by the terminal in the latest random access process and the DMRS are quasi-co-located, and the random access process is not a non-contention random access process triggered by the PDCCH order.
  • the uplink signal coverage of the terminal is worse than the downlink signal coverage, and the coverage performance of Msg1 and Msg3 is worse than that of Msg2 and Msg4 in the random access process.
  • the gap between the coverage performance of the uplink and downlink channels is more obvious.
  • a manner of repeatedly sending the uplink signal is considered.
  • the repeated transmission mechanism of Msg3 is introduced to improve the coverage performance of Msg3, and the repeated transmission of Msg1 (PRACH) can also be introduced to improve the coverage performance.
  • PRACH repeated transmission of Msg1
  • Figure 6 is one of the schematic diagrams of the transmission beams of the PRACH signal provided by the embodiment of the application
  • Figure 7 is the second schematic diagram of the transmission beam of the PRACH signal provided by the embodiment of the application, as shown in Figures 6 and 7, the transmission in Figure 6
  • the beam SSB corresponds to the transmission beam SSB in Figure 7.
  • Figure 8 is a schematic diagram of the signal quality corresponding to the transmission beam of the PRACH signal provided by the embodiment of the present application.
  • the signal quality SS-RSRP of multiple SSBs detected by the terminal may be similar, and the selection The random access of one of the SSB beams means that other possible SSB beams are abandoned.
  • the probability that the network side device can successfully detect Msg1 can be improved.
  • the measurement of SS-RSRP is only determined based on the single measurement result of SSB, there may be measurement deviation in the measurement result of SS-RSRP, so selecting multiple SSBs to send Msg1 can also reduce the measurement deviation of SSB to SSB The impact of choice.
  • the description of PDCCH, PDSCH and SSB/CSI-RS quasi-co-location has the same meaning as the description of PDCCH, PDSCH DMRS (antenna port) and SSB/CSI-RS quasi-co-location, or the description of both The quasi-co-location property is the same.
  • TCI state means that the network indicates that the downlink channel PDCCH, PDSCH (DMRS antenna port) and a downlink RS (SSB/CSI-RS) are quasi-co-located.
  • Quasi-co-location attributes include: Doppler shift, Doppler spread, average delay, delay spread, and spatial RX parameters .
  • FIG. 9 is one of the schematic flow diagrams of the random access method provided by the embodiment of the present application. As shown in FIG. 9, the method includes:
  • Step 900 the terminal device sends multiple physical random access channel PRACH signals, and the multiple PRACH resources used by the multiple PRACH signals respectively correspond to multiple different downlink reference signals;
  • the target PRACH resources among the multiple PRACH resources used by the multiple PRACH signals are associated with quasi-co-located signals;
  • the quasi-co-located signals are one or more of the multiple different downlink reference signals;
  • the quasi-co-located signal is used for the terminal device to receive a first downlink signal, and the first downlink signal is a Msg2 message or Msg3 retransmission scheduling information or a Msg4 message.
  • the multiple different downlink reference signals may be a subset of the SSB set or the CSI-RS set, and are determined by the terminal according to protocol predefined rules or rules indicated by system messages, and the multiple different downlink reference signals are used for The transmission resources of multiple PRACH signals are respectively determined.
  • the terminal device may send multiple physical random access channel PRACH signals to the network side device.
  • the multiple PRACH resources used by the multiple PRACH signals may respectively correspond to multiple different downlink reference signals, and the downlink reference signals may be SSBs or CSI-RSs configured in advance.
  • a target PRACH resource among the multiple PRACH resources may be associated with a quasi-co-located signal.
  • the network side device may determine the quasi-co-located signal associated with the target PRACH resource among the multiple PRACH resources based on the target PRACH resource among the multiple PRACH resources.
  • the quasi-co-located signal may be one or more of the multiple different downlink reference signals.
  • the quasi-co-located signal can be SSB0 or SSB1 or SSB2 or SSB3, or a combination of multiple SSBs, SSB0 and SSB1, or SSB1 and SSB3, Or SSB0, SSB1 and SSB2 etc.
  • the quasi-co-located signal may be used by the terminal device to receive the first downlink signal.
  • the understanding of the quasi-co-located signal by the terminal device and the network-side device is consistent, accurate detection and reception of the first downlink signal can be realized, and detection efficiency can be improved.
  • the first downlink signal may be a Msg2 message or a Msg3 retransmission scheduling information or a Msg4 message.
  • the random access method provided in the embodiment of the present application is not only applicable to Msg2 and Msg4, but also applicable to the downlink control signaling DC for scheduling the retransmission of Msg3.
  • the embodiment of the present application uses multiple PRACH signals sent by the terminal.
  • the target PRACH resource among the PRACH resources is associated with the quasi-co-located signal, so that the network side device can determine the target PRACH resource after receiving multiple PRACH resources, and can determine the target PRACH resource according to the target PRACH resource and the target PRACH resource and the quasi-co-located signal.
  • the association relationship between determines the quasi-co-location signal so as to ensure that the terminal and the network-side device have a consistent understanding of the quasi-co-location signal, thereby effectively ensuring the successful transmission of the downlink signal.
  • multiple PRACHs can be sent by using the target PRACH resource to indicate that the target PRACH
  • the quasi-co-location signal associated with resources ensures that the terminal and the network-side device have a consistent understanding of the quasi-co-location signal, thereby effectively ensuring the successful transmission of downlink signals.
  • the PRACH resources include at least one of the following:
  • the PRACH resources may include at least one of the following:
  • mapping period between downlink reference signals and RO resources The mapping period between downlink reference signals and RO resources.
  • a target RO resource among a plurality of RO resources may be associated with a quasi-co-located signal.
  • a target preamble among multiple preamble resources may be associated with a quasi-co-located signal.
  • a target mapping period of the plurality of mapping periods may be associated with a quasi-co-located signal.
  • the first indexes of all target PRACH resources associated with a quasi-co-located signal are the same.
  • the respective first indexes of the target PRACH resources may all be the same.
  • the corresponding first indexes of the at least one RO resource may be the same.
  • the corresponding first indexes of the at least one preamble resource may be the same.
  • all of the multiple PRACH resources may be used as target PRACH resources, or part of them may be used as target PRACH resources.
  • the network side device may determine the multiple PRACH resources, and then determine the respective first indexes of the multiple PRACH resources, when the network side device determines that there are a large number of the same first indexes based on all the first indexes, it can determine that the PRACH resources corresponding to these same first indexes are the target PRACH resources, and then it can be determined based on these same first indexes.
  • the quasi-co-located signal associated with the first index is not limited to the first index.
  • the network side device may determine the multiple PRACH resources, and then determine the respective first indexes of these PRACH resources, Since these first indexes are all the same, that is, the quasi-co-located signal associated with the first index can be determined based on these same first indexes.
  • the subset in which the target RO resource is located may include the first index being Multiple RO resources of a and multiple RO resources whose first indexes are all b, wherein multiple RO resources whose first indexes are all a may be associated with SSB1, and multiple RO resources whose first indexes are all b may be associated with SSB2 is associated; after the network side device receives multiple PRACHs, it can determine multiple PRACH resources, and then can determine the respective first indexes of these PRACH resources.
  • the SSB1 associated with a is a quasi-co-located signal
  • the SSB2 associated with the first index b is determined to be a quasi-co-located signal.
  • the first index of the target PRACH resource includes at least one of the following:
  • the first index of the target PRACH resource is: in the first RO set corresponding to each of the multiple different downlink reference signals, the An index of an RO resource, wherein the first RO set includes all RO resources mapped to one downlink reference signal;
  • the first index of the target PRACH resource is: in the first preamble set respectively corresponding to each of the multiple different downlink reference signals, the An index of a preamble, wherein the first preamble set includes an available preamble in any RO resource mapped to the one downlink reference signal, and the available preamble is determined through system message configuration;
  • the first index of the target PRACH resource is: in the first mapping period pattern respectively corresponding to each of the multiple different downlink reference signals, The index of the mapping period, wherein the first mapping period pattern corresponding to a downlink reference signal is a mapping period pattern between the downlink reference signal and any RO resource to which it is mapped.
  • the first index of the target PRACH resource is: the first RO set corresponding to each downlink reference signal in the plurality of different downlink reference signals , the index of the RO resource, wherein the first RO set includes all the RO resources mapped by the one downlink reference signal, that is, through system message configuration, when one downlink reference signal can be associated with multiple consecutive ROs, the first An index expresses the index values of the multiple consecutive ROs determined according to frequency or time sequence.
  • the PRACH resource is an RO resource
  • the association order of the quasi-co-located signal in the downlink reference signal repeatedly transmitted on the PRACH it can be determined from the RO resource set associated with the SSB that a RO subset is associated with the quasi-co-located signal. address signal to send Msg1.
  • the terminal device may base on the order of the quasi-co-located signal in multiple different downlink reference signals repeatedly sent by Msg1, that is, the second index corresponding to the quasi-co-located signal, and based on the RO resource
  • the association relationship between the first index and the second index determines the first index of the RO resource.
  • the first index of the target PRACH resource is: the first preamble set corresponding to each downlink reference signal in the plurality of different downlink reference signals , the index of the preamble, wherein the first set of preambles includes all available preambles in any RO resource mapped by the one downlink reference signal, the available preambles are determined through system message configuration, and the available preambles are A preamble that can be used for repeated transmission of Msg1.
  • a preamble subset associated with the quasi-co-location may be determined from the preamble set used for repeated transmission of Msg1 according to the association order of the quasi-co-location signals in the repeatedly transmitted reference signal signal to send Msg1.
  • the terminal device may base on the order of the quasi-co-located signal in multiple different downlink reference signals repeatedly sent by Msg1, that is, the second index corresponding to the quasi-co-located signal, and based on the order of the quasi-co-located signal
  • Msg1 downlink reference signals repeatedly sent by Msg1
  • the association relationship between the first index and the second index determines the first index of the preamble.
  • the first index of the target PRACH resource is: the first mapping corresponding to each of the multiple different downlink reference signals In the periodic pattern, the index of the mapping period, wherein the first mapping period pattern (association pattern period) includes a plurality of consecutive mapping periods, wherein the starting moment and time length of the first mapping period pattern are defined by the protocol or System message configuration.
  • mapping period of SSBs to RO resources different time ranges or mapping periods correspond to different quasi-co-located signals.
  • the PRACH resource is an RO resource
  • the RO resource whose index is the first index in the RO set mapped to the SSB can be determined as the target resource, that is, For each SSB in multiple SSBs, a RO resource with the index of the first index is determined as the target resource for sending Msg1; when the PRACH resource is a preamble or a mapping period, it can be referred to that the PRACH resource is an RO resource The situation will not be repeated here.
  • a second index of the quasi-co-located signal is associated with the first index
  • the second index is an index of the quasi-co-located signal in the plurality of different downlink reference signals.
  • the second index of the quasi-co-located signal may be associated with the first index of the target PRACH resource.
  • the second index of the quasi-co-located signal may be an index of the quasi-co-located signal in multiple different downlink reference signals.
  • the terminal chooses to use a set of SSBs to send Msg1 multiple times, and the set of SSBs (multiple different downlink reference signals) selected by the terminal are SSB(i_0), SSB(i_1), ... SSB(i_N-1), and the terminal selects SSB (j)
  • the second index of the quasi-co-located signal may be j.
  • j represents the position of SSB(j) in the set SSB(i_0), SSB(i_1), ... SSB(i_N-1) in ascending order of SSB numbers.
  • association relationship between the second index and the first index includes a mathematical relationship.
  • association relationship between the second index and the first index may include a mathematical relationship.
  • the mathematical relationship may be predefined by a protocol or configured by a system message.
  • each SSB is used for Msg1 to send associated M RO resources , and M>1 (the size of M can be determined by system message configuration, in this case, each SSB uses M resources for sending Msg1 to be different from each other), according to predefined rules or rules configured by system messages, M
  • M There may be a mathematical mapping relationship between RO resources and the order (second index) of the quasi-co-located signal SSB(j), and a subset of M ROs may be used to transmit the SSB set ⁇ SSB(i_0), SSB( i_1), ...
  • the quasi-co-located signal of the downlink signal selects a subset to send Msg1.
  • the preamble index set in the RO resource associated with an SSB is p_0 ⁇ p_K-1, according to the predefined rules, there may be a mathematical mapping relationship between the K preambles and the order (second index) of the quasi-co-located signal SSB(j),
  • a subset of K preambles can be used to send the SSB set ⁇ SSB(i_1), SSB(i_2), ... SSB(i_N) ⁇ of PRACH multiple times and the quasi-co-located signal SSB(j) of the first downlink signal Msg1 is transmitted repeatedly.
  • the association periods of SSB and RO resources may correspond to different quasi-co-located signals SSB(j).
  • consecutive x*N (x is a positive integer, defined by the protocol or configured by the system message) association period and SSB set ⁇ SSB(i_1) of SSB and RO for Msg1 transmission , SSB(i_2), ... N SSBs in SSB(i_N) ⁇ are associated.
  • the target PRACH resource and the quasi-co-location signal are associated through a mathematical mapping relationship, so that the quasi-co-location signal can be determined according to the relationship between the two, so as to ensure that the terminal and the network side device are effectively aligned with the co-location signal.
  • a consistent understanding can effectively ensure the successful transmission of downlink signals.
  • the method before the terminal device sends multiple physical random access channel PRACH signals, the method further includes:
  • the terminal device determines the quasi-co-located signal from the plurality of different downlink reference signals
  • the terminal device determines the target PRACH resources of the multiple PRACH signals based on the first index.
  • the terminal device may determine the quasi-co-located signal from multiple different downlink reference signals.
  • the terminal device may determine the first index associated with the second index based on the second index of the quasi-co-located signal.
  • the terminal device may determine the first index associated with the second index based on the second index of the quasi-co-located signal and based on a mathematical relationship between the second index and the first index.
  • the terminal device may determine target PRACH resources of multiple PRACH signals based on the first index.
  • the terminal device may determine target RO resources corresponding to the first index of multiple PRACH signals, and select a target RO resource from the target RO resources The resource sends the resource as Msg1.
  • the terminal device may determine target preamble resources corresponding to the first index of multiple PRACH signals, and select a target preamble resource from the target preamble resources
  • the resource sends the resource as Msg1.
  • the terminal device may determine target mapping periods of multiple PRACH signals based on the second index and based on the mathematical relationship between the first index and the second index.
  • the terminal device determining the quasi-co-located signal from the multiple different downlink reference signals includes:
  • the terminal device determines, from the plurality of different downlink reference signals, a downlink reference signal having a maximum value of the reference signal reception quality as the quasi-co-located signal based on the reference signal reception quality.
  • the terminal device may determine, from multiple different downlink reference signals, the downlink reference signal with the largest value of the reference signal reception quality as the quasi-co-located signal based on the reference signal reception quality.
  • the reference signal reception quality may include reference signal received power (RSRP) or reference signal reception quality (Reference Signal Receiving Quality, RSRQ) or signal to noise ratio (Signal to Interference plus Noise Ratio, SINR).
  • RSRP reference signal received power
  • RSRQ Reference Signal Receiving Quality
  • SINR signal to noise ratio
  • the terminal device may select one SSB from the SSB set as the quasi-co-located signal of Msg2 and Msg4. Selection methods may include at least one of the following:
  • the terminal device may select a preamble from a dedicated preamble set to send Msg1.
  • the dedicated preamble set is not used for association of quasi-co-located signals and is configured by a system message.
  • the terminal device can monitor the RARs corresponding to the RO resources associated with all SSBs according to the preset rules, that is, the terminal device monitors the RARs corresponding to multiple beams; correspondingly, if the network side device detects the preamble in the dedicated preamble set, it will follow the preset rules , using multiple SSBs associated with repeated transmission of Msg1 to send downlink signals respectively.
  • the terminal device determining the quasi-co-located signal from the multiple different downlink reference signals includes:
  • the terminal device randomly determines a downlink reference signal from the first downlink reference signals as the quasi-co-located signal, or The terminal device determines, from the first downlink reference signals, the first downlink reference signal with the largest value of the reference signal reception quality as the quasi-co-located signal;
  • the terminal device randomly determines a downlink reference signal from the multiple different downlink reference signals as the quasi-co-located signal, or the terminal device determines from the plurality of different downlink reference signals the downlink reference signal with the largest value of the reference signal reception quality as the quasi-co-located signal;
  • the first downlink reference signal is a downlink reference signal whose value of the received quality of the reference signal is greater than a first threshold.
  • the terminal device may randomly determine one downlink reference signal from the first downlink reference signals as the quasi-co-located signal.
  • the terminal device may determine the first downlink reference signal with the largest value of the received quality of the reference signal from the first downlink reference signals as the quasi-co-located signal.
  • the terminal device may randomly determine one downlink reference signal from the multiple different downlink reference signals as the quasi-co-located signal.
  • the terminal device may determine the downlink reference signal with the largest value of the received quality of the reference signal from the multiple different downlink reference signals as the quasi-common address signal.
  • the first downlink reference signal may be a downlink reference signal whose value of the received quality of the reference signal is greater than a first threshold.
  • the first threshold may be a threshold configured by the network side device, or may be a preset threshold, which is not specifically limited in this embodiment of the present application.
  • the size of the first threshold may be configured or set arbitrarily according to requirements, which is not specifically limited in this embodiment of the present application.
  • the terminal device sends multiple physical random access channel PRACH signals, including:
  • the terminal device randomly determines multiple PRACH resources, and sends the multiple PRACH signals;
  • the method also includes:
  • the terminal device determines the quasi-co-located signal based on a target PRACH resource among the plurality of randomly determined PRACH resources.
  • the terminal device may randomly determine multiple PRACH resources and send multiple PRACH signals.
  • the terminal device may randomly determine multiple RO resources and send multiple PRACH signals.
  • the terminal device may randomly determine multiple preamble resources and send multiple PRACH signals.
  • the terminal device may determine the quasi-co-located signal based on a target PRACH resource among the randomly determined multiple PRACH resources.
  • the terminal device may determine the sending resource of Msg1 (for example, the RO index or preamble or the sending time of Msg1) based on the reference signal association sequence of the selected quasi-co-located signal repeatedly sent in Msg1.
  • Msg1 for example, the RO index or preamble or the sending time of Msg1
  • the terminal device may determine an RO subset from the multiple RO resources associated with the SSB to send Msg1 according to the reference signal association sequence of the quasi-co-located signal repeatedly sent in Msg1.
  • the terminal device determines a preamble subset from the preamble set contained in each RO resource according to the reference signal association sequence of the quasi-co-located signal repeatedly sent in Msg1 and sends Msg1.
  • mapping periods may correspond to different quasi-co-located signals.
  • the terminal device may select the quasi-co-located signal based on a rule predefined in the protocol or a rule configured in a system message.
  • the rule may be the aforementioned association relationship between the first index and the second index.
  • the terminal device determines the receiving beam of the first downlink signal according to the quasi-co-located signal.
  • the following describes the random access method provided by the embodiment of the present application through a specific embodiment.
  • the terminal device randomly selects the target resource from the resources (RO and preamble) of Msg1, and sends Msg1.
  • the network side device and the terminal can determine the quasi-co-located signal (SSB/CSI-RS) of Msg2 and Msg4 according to the resources of Msg1.
  • the terminal determines the receiving beams of Msg2 and Msg4 according to the quasi-co-located signal.
  • preamble I corresponds to the SSB(J) associated with the Msg1 sent for the Jth time when Msg1 is repeatedly sent. Then the network side device and The terminal equipment uses SSB(J) as a quasi-co-located signal for Msg2 and Msg4.
  • the terminal device selects SSB0 and SSB1 as associated SSBs for repeated transmission of Msg1.
  • the terminal device sends Msg1 respectively on the RO resource associated with SSB0 and the RO resource associated with SSB1, and the preamble index is the same. If the preamble index is an even number, the network side device and the terminal device can use SSB0 as the quasi-co-location signal transmitted by Msg2 and Msg4; if it is an odd number, SSB1 can be used as the quasi-co-location signal.
  • multiple PRACHs can be sent by using the target PRACH resource to indicate that the target PRACH
  • the quasi-co-location signal associated with resources ensures that the terminal and the network-side device have a consistent understanding of the quasi-co-location signal, thereby effectively ensuring the successful transmission of downlink signals.
  • FIG. 10 is the second schematic flow diagram of the random access method provided by the embodiment of the present application. As shown in FIG. 10, the method includes:
  • the network side equipment receives multiple PRACH signals, and the multiple PRACH resources used by the multiple PRACH signals are respectively associated with multiple different downlink reference signals; wherein, the target PRACH resource among the multiple PRACH resources and the quasi-common address signals; the quasi-co-address signal is one or more of the plurality of different downlink reference signals;
  • Step 1010 the network side device determines the quasi-co-located signal of the first downlink signal based on the target PRACH resource
  • the first downlink signal is Msg2 message or Msg3 retransmission scheduling information or Msg4 message.
  • the network side device may receive multiple PRACH signals sent by the terminal device.
  • the multiple different downlink reference signals may be a subset of the SSB set or the CSI-RS set, and are determined by the terminal according to protocol predefined rules or rules indicated by system messages, and the multiple different downlink reference signals are used for The transmission resources of multiple PRACH signals are respectively determined.
  • a target PRACH resource among the multiple PRACH resources may be associated with a quasi-co-located signal.
  • a target resource of multiple RO resources may be associated with a quasi-co-located signal.
  • a target preamble among multiple preamble resources may be associated with a quasi-co-located signal.
  • a target mapping period of the plurality of mapping periods may be associated with a quasi-co-located signal.
  • the network side device may determine the quasi-co-located signal associated with the target PRACH resource among the multiple PRACH resources based on the target PRACH resource among the multiple PRACH resources.
  • the quasi-co-located signal may be one or more of multiple different downlink reference signals.
  • the quasi-co-located signal can be SSB0 or SSB1 or SSB2 or SSB3, or SSB0 and SSB1, or SSB1 and SSB3, or SSB0, SSB1 and SSB2 wait.
  • the network side device may determine the quasi-co-located signal of the first downlink signal based on the target PRACH resource.
  • the first downlink signal may be a Msg2 message or a Msg3 retransmission scheduling information or a Msg4 message.
  • the terminal when sending Msg1, the terminal selects the target resource according to the pre-defined rules of the protocol. After the network side device detects Msg1, it can determine the quasi-co-located signal (SSB/CSI -RS).
  • SSB/CSI -RS quasi-co-located signal
  • the terminal selects the preamble resource according to the pre-defined rules of the protocol, and the network side device determines the quasi-co-located signals of Msg2 and Msg4 according to the preamble index.
  • the random access method provided in the embodiment of the present application is not only applicable to Msg2 and Msg4, but also applicable to the quasi-co-located signal of the PDCCH for scheduling the retransmission of Msg3.
  • the terminal device chooses to use a group of SSBs to send Msg1 multiple times.
  • the group of SSBs selected by the terminal is SSB(i_0), SSB(i_1), ... SSB(i_N-1), and the corresponding signal quality is SS-RSRP(i_0), SS-RSRP(i_1), ... SS-RSRP(i_N-1).
  • the terminal device may select one SSB from the SSB set as the quasi-co-located signal of Msg2 and Msg4.
  • Selection methods may include at least one of the following:
  • the terminal device may select a preamble from a dedicated preamble set to send Msg1.
  • the dedicated preamble set is not used for association of quasi-co-located signals and is configured by a system message.
  • the terminal device can monitor the RARs corresponding to the RO resources associated with all SSBs according to the preset rules, that is, the terminal device monitors the RARs corresponding to multiple beams; correspondingly, if the network side device detects the preamble in the dedicated preamble set, it will follow the preset rules , using multiple SSBs associated with repeated transmission of Msg1 to send downlink signals respectively.
  • the terminal selects SSB(j) as the quasi-co-located signal of Msg2 and Msg4, and SSB(j) belongs to the SSB set ⁇ SSB(i_0), SSB(i_1), ... SSB(i_N-1) ⁇ .
  • the order of SSB(j) in the SSB set may be j.
  • the terminal device may determine the RO resource or preamble or time period sent by Msg1 according to the order of the quasi-co-located signals SSB(j).
  • each SSB is used for Msg1 to send associated M RO resources , and M>1 (the size of M can be determined by system message configuration, in this case, each SSB uses M resources for sending Msg1 to be different from each other), according to predefined rules or rules configured by system messages, M
  • M There may be a mathematical mapping relationship between RO resources and the order (second index) of the quasi-co-located signal SSB(j), and a subset of M ROs may be used to transmit the SSB set ⁇ SSB(i_0), SSB( i_1), ...
  • the quasi-co-located signal of the downlink signal selects a subset to send Msg1.
  • the set of preamble numbers in the associated RO resources of an SSB is p_0 ⁇ p_K-1.
  • the association periods of SSB and RO resources correspond to different quasi-co-located signals SSB(j).
  • consecutive x*N (x is a positive integer, defined by the protocol or configured by the system message) association period and SSB set ⁇ SSB(i_1) of SSB and RO for Msg1 transmission , SSB(i_2), ... N SSBs in SSB(i_N) ⁇ are associated.
  • the association between SSB and RO resources used for Msg1 transmission is mapped from radio frame 0.
  • Co-location signal SSB(j i_1), and so on.
  • the terminal device may select the RO resource and the preamble resource from the foregoing set to send Msg1.
  • the network side device may determine the quasi-co-located reference signals of Msg2 and Msg4 according to the RO resource and the preamble resource.
  • the network-side device determines the quasi-co-located signal based on the association relationship between the target PRACH resource and the quasi-co-located signal among the multiple PRACH resources used by the received multiple PRACH signals, so as to ensure that the network-side device and The terminal has a consistent understanding of the quasi-co-located signal, thereby effectively ensuring the successful transmission of the downlink signal.
  • the PRACH resources include at least one of the following:
  • the PRACH resources may include at least one of the following:
  • a target RO resource among a plurality of RO resources may be associated with a quasi-co-located signal.
  • a target preamble among multiple preamble resources may be associated with a quasi-co-located signal.
  • a target mapping period of the plurality of mapping periods may be associated with a quasi-co-located signal.
  • the first indexes of all target PRACH resources associated with a quasi-co-located signal are the same.
  • the respective first indexes of the target PRACH resources may be the same.
  • the first index corresponding to the at least one RO resource may be the same.
  • the first indexes corresponding to at least one preamble resource may be the same.
  • all of the multiple PRACH resources may be used as target PRACH resources, or part of them may be used as target PRACH resources.
  • the network side device may determine the multiple PRACH resources, and then determine the respective first indexes of the multiple PRACH resources, when the network side device determines that there are a large number of the same first indexes based on all the first indexes, it can determine that the PRACH resources corresponding to these same first indexes are the target PRACH resources, and then it can be determined based on these same first indexes.
  • the quasi-co-located signal associated with the first index is not limited to the first index.
  • the network side device may determine the multiple PRACH resources, and then determine the respective first indexes of these PRACH resources, Since these first indexes are all the same, that is, the quasi-co-located signal associated with the first index can be determined based on these same first indexes.
  • the subset in which the target RO resource is located may include the first index being Multiple RO resources of a and multiple RO resources whose first indexes are all b, wherein multiple RO resources whose first indexes are all a may be associated with SSB1, and multiple RO resources whose first indexes are all b may be associated with SSB2 is associated; after the network side device receives multiple PRACHs, it can determine multiple PRACH resources, and then can determine the respective first indexes of these PRACH resources.
  • the SSB1 associated with a is a quasi-co-located signal
  • the SSB2 associated with the first index b is determined to be a quasi-co-located signal.
  • the first index of the target PRACH resource includes at least one of the following:
  • the first index of the target PRACH resource is: in the first RO set corresponding to each of the multiple different downlink reference signals, the An index of an RO resource, wherein the first RO set includes all RO resources mapped to one downlink reference signal;
  • the first index of the target PRACH resource is: in the first preamble set respectively corresponding to each of the multiple different downlink reference signals, the An index of a preamble, wherein the first preamble set includes an available preamble in any RO resource mapped to the one downlink reference signal, and the available preamble is determined through system message configuration;
  • the first index of the target PRACH resource is: within the first mapping pattern period corresponding to each of the multiple different downlink reference signals, The index of the mapping period, wherein the first mapping pattern period includes a plurality of consecutive mapping periods, wherein the start time and time length of the first mapping pattern period are defined by a protocol or configured by a system message.
  • the terminal device can determine an RO subset from the RO resource set associated with the SSB to be associated with the quasi-co-located signal to send Msg1.
  • the terminal device may base on the order of the quasi-co-located signal in multiple different downlink reference signals repeatedly sent by Msg1, that is, the second index corresponding to the quasi-co-located signal, and based on the RO resource
  • the association relationship between the first index and the second index determines the first index of the RO resource.
  • the first index of the target PRACH resource may be: in the first preamble set corresponding to each downlink reference signal in the plurality of different downlink reference signals, the preamble index, wherein the first preamble set corresponding to a downlink reference signal includes all preambles in any RO resource mapped to the downlink reference signal.
  • the terminal device may determine a preamble subset from the preamble set used for repeated transmission of Msg1 to be associated with the quasi-co-located signal according to the association sequence of the quasi-co-located signal in the repeatedly transmitted reference signal. Co-located signal to send Msg1.
  • the terminal device may base on the order of the quasi-co-located signal in multiple different downlink reference signals repeatedly sent by Msg1, that is, the second index corresponding to the quasi-co-located signal, and based on the order of the quasi-co-located signal
  • Msg1 downlink reference signals repeatedly sent by Msg1
  • the association relationship between the first index and the second index determines the first index of the preamble.
  • the first index of the target PRACH resource may be: in the first mapping period pattern corresponding to each of the multiple different downlink reference signals, the An index of the mapping period, wherein the first mapping period pattern corresponding to a downlink reference signal is a mapping period pattern between the downlink reference signal and any RO resource to which it is mapped.
  • mapping period of SSBs to RO resources different time ranges or mapping periods correspond to different quasi-co-located signals.
  • the terminal device may determine the RO resource whose index is the first index in the RO set mapped to the SSB as the target resource , that is, for each SSB among multiple SSBs, a RO resource whose index is the first index is determined as the target resource for sending Msg1; when the PRACH resource is a preamble or a mapping period, it can be referred to as the PRACH resource is RO The situation of resources will not be repeated here.
  • a second index of the quasi-co-located signal is associated with the first index
  • the second index is an index of the quasi-co-located signal in the plurality of different downlink reference signals.
  • the second index of the quasi-co-located signal may be associated with the first index of the target PRACH resource.
  • the second index may be an index of the quasi-co-located signal in multiple different downlink reference signals.
  • the terminal chooses to use a set of SSBs to send Msg1 multiple times, and the set of SSBs (multiple different downlink reference signals) selected by the terminal are SSB(i_0), SSB(i_1), ... SSB(i_N-1), and the terminal selects SSB (j)
  • the second index of the quasi-co-located signal is j.
  • j represents the position of SSB(j) in the set SSB(i_0), SSB(i_1), ... SSB(i_N-1) in ascending order of SSB numbers.
  • association relationship between the second index and the first index includes a mathematical relationship.
  • association relationship between the second index and the first index may include a mathematical relationship.
  • the mathematical relationship may be predefined by a protocol or configured by a system message.
  • a protocol for example, in a group of SSBs selected by the terminal for sending PRACH signals multiple times, that is, ⁇ SSB(i_0), SSB(i_1), ...
  • each SSB is used for Msg1 to send associated M RO resources , and M>1 (the size of M can be determined by system message configuration, in this case, each SSB uses M resources for sending Msg1 to be different from each other), according to predefined rules or rules configured by system messages, M
  • M There may be a mathematical mapping relationship between RO resources and the order (second index) of the quasi-co-located signal SSB(j), and a subset of M ROs may be used to transmit the SSB set ⁇ SSB(i_0), SSB( i_1), ...
  • the quasi-co-located signal of the downlink signal selects a subset to send Msg1.
  • the preamble index set in the RO resource associated with an SSB is p_0 ⁇ p_K-1, according to the predefined rules, there may be a mathematical mapping relationship between the K preambles and the order (second index) of the quasi-co-located signal SSB(j),
  • a subset of K preambles can be used to send the SSB set ⁇ SSB(i_1), SSB(i_2), ... SSB(i_N) ⁇ of PRACH multiple times and the quasi-co-located signal SSB(j) of the first downlink signal Msg1 is transmitted repeatedly.
  • the association periods of SSB and RO resources may correspond to different quasi-co-located signals SSB(j).
  • consecutive x*N (x is a positive integer, defined by the protocol or configured by the system message) association period and SSB set ⁇ SSB(i_1) of SSB and RO for Msg1 transmission , SSB(i_2), ... N SSBs in SSB(i_N) ⁇ are associated.
  • the network-side device determines the quasi-co-located signal based on the association relationship between the target PRACH resource and the quasi-co-located signal among the multiple PRACH resources used by the received multiple PRACH signals, so as to ensure that the network-side device and The terminal has a consistent understanding of the quasi-co-located signal, thereby effectively ensuring the successful transmission of the downlink signal.
  • the random access method provided in the embodiment of the present application may be executed by a random access device, or a control module in the random access device for executing the random access method.
  • the random access device provided in the embodiment of the present application is described by taking the method for performing random access by the random access device as an example.
  • Fig. 11 is one of the structural schematic diagrams of the random access device provided by the embodiment of the present application, as shown in Fig. 11, including: a first sending module 1110; where:
  • the first sending module 1110 is configured to send multiple physical random access channel PRACH signals, and the multiple PRACH resources used by the multiple PRACH signals respectively correspond to multiple different downlink reference signals;
  • the target PRACH resources among the multiple PRACH resources used by the multiple PRACH signals are associated with quasi-co-located signals;
  • the quasi-co-located signals are one or more of the multiple different downlink reference signals;
  • the quasi-co-located signal is used for the terminal device to receive a first downlink signal, and the first downlink signal is a Msg2 message or Msg3 retransmission scheduling information or a Msg4 message.
  • multiple PRACHs can be sent by using the target PRACH resource to indicate that the target PRACH
  • the quasi-co-location signal associated with resources ensures that the terminal and the network-side device have a consistent understanding of the quasi-co-location signal, thereby effectively ensuring the successful transmission of downlink signals.
  • the PRACH resources include at least one of the following:
  • the first indexes of all target PRACH resources associated with a quasi-co-located signal are the same.
  • the first index of the target PRACH resource includes at least one of the following:
  • the first index of the target PRACH resource is: in the first RO set corresponding to each of the multiple different downlink reference signals, the An index of an RO resource, wherein the first RO set includes all RO resources mapped to one downlink reference signal;
  • the first index of the target PRACH resource is: in the first preamble set respectively corresponding to each of the multiple different downlink reference signals, the An index of a preamble, wherein the first preamble set includes an available preamble in any RO resource mapped to the one downlink reference signal, and the available preamble is determined through system message configuration;
  • the first index of the target PRACH resource is: within the first mapping pattern period corresponding to each of the multiple different downlink reference signals, The index of the mapping period, wherein the first mapping pattern period includes a plurality of consecutive mapping periods, wherein the start time and time length of the first mapping pattern period are defined by a protocol or configured by a system message.
  • a second index of the quasi-co-located signal is associated with the first index
  • the second index is an index of the quasi-co-located signal in the plurality of different downlink reference signals.
  • association relationship between the second index and the first index includes a mathematical relationship.
  • the device further includes: a first determination module, a second determination module, and a third determination module, wherein:
  • the first determining module is configured to determine, by the terminal device, the quasi-co-located signal from the multiple different downlink reference signals before the terminal device sends multiple physical random access channel PRACH signals;
  • the second determining module is configured to determine, by the terminal device based on the second index of the quasi-co-located signal, the number associated with the second index before the terminal device sends a plurality of physical random access channel PRACH signals said first index;
  • the third determining module is configured to determine, by the terminal device, the target PRACH resources of the multiple PRACH signals based on the first index before the terminal device sends the multiple PRACH signals.
  • the first determination module is also used for:
  • the first determination module is also used for:
  • the terminal device randomly determines a downlink reference signal from the first downlink reference signals as the quasi-co-located signal, or The terminal device determines, from the first downlink reference signals, the first downlink reference signal with the largest value of the reference signal received power quality as the quasi-co-located signal;
  • the terminal device randomly determines a downlink reference signal from the multiple different downlink reference signals as the quasi-co-located signal, or the terminal device determines from the plurality of different downlink reference signals the downlink reference signal with the largest value of the reference signal received power quality as the quasi-co-located signal;
  • the first downlink reference signal is a downlink reference signal whose received power quality value of the reference signal is greater than a first threshold.
  • the first sending module is also used for:
  • the quasi-co-located signal is determined based on a target PRACH resource among the plurality of randomly determined PRACH resources.
  • multiple PRACHs can be sent by using the target PRACH resource to indicate that the target PRACH
  • the quasi-co-location signal associated with resources ensures that the terminal and the network-side device have a consistent understanding of the quasi-co-location signal, thereby effectively ensuring the successful transmission of downlink signals.
  • Fig. 12 is the second schematic flow diagram of the random access device provided by the embodiment of the present application. As shown in Fig. 12, it includes: a first receiving module 1210 and a fourth determining module 1220; where:
  • the first receiving module 1210 is configured to receive multiple PRACH signals, and the multiple PRACH resources used by the multiple PRACH signals are respectively associated with multiple different downlink reference signals; wherein, the target PRACH resource in the multiple PRACH resources is related to the quasi Co-located signals are associated; the quasi-co-located signal is one or more of the plurality of different downlink reference signals;
  • the fourth determination module 1220 is configured to determine the quasi-co-located signal of the first downlink signal based on the target PRACH resource;
  • the first downlink signal is Msg2 message or Msg3 retransmission scheduling information or Msg4 message.
  • the random access apparatus may receive multiple PRACH signals through the first receiving module 1210; then, based on the target PRACH resource, determine the quasi-co-located signal of the first downlink signal through the fourth determining module 1220.
  • the network-side device determines the quasi-co-located signal based on the association relationship between the target PRACH resource and the quasi-co-located signal among the multiple PRACH resources used by the received multiple PRACH signals, so as to ensure that the network-side device and The terminal has a consistent understanding of the quasi-co-located signal, thereby effectively ensuring the successful transmission of the downlink signal.
  • the PRACH resources include at least one of the following:
  • the first indexes of all target PRACH resources associated with a quasi-co-located signal are the same.
  • the first index of the target PRACH resource includes at least one of the following:
  • the first index of the target PRACH resource is: in the first RO set corresponding to each of the multiple different downlink reference signals, the An index of an RO resource, wherein the first RO set includes all RO resources mapped to one downlink reference signal;
  • the first index of the target PRACH resource is: in the first preamble set respectively corresponding to each of the multiple different downlink reference signals, the An index of a preamble, wherein the first preamble set includes an available preamble in any RO resource mapped to the one downlink reference signal, and the available preamble is determined through system message configuration;
  • the first index of the target PRACH resource is: within the first mapping pattern period corresponding to each of the multiple different downlink reference signals, The index of the mapping period, wherein the first mapping pattern period includes a plurality of consecutive mapping periods, wherein the start time and time length of the first mapping pattern period are defined by a protocol or configured by a system message.
  • a second index of the quasi-co-located signal is associated with the first index
  • the second index is an index of the quasi-co-located signal in the plurality of different downlink reference signals.
  • association relationship between the second index and the first index includes a mathematical relationship.
  • the network-side device determines the quasi-co-located signal based on the association relationship between the target PRACH resource and the quasi-co-located signal among the multiple PRACH resources used by the received multiple PRACH signals, so as to ensure that the network-side device and The terminal has a consistent understanding of the quasi-co-located signal, thereby effectively ensuring the successful transmission of the downlink signal.
  • the random access device in this embodiment of the present application may be a device, a device with an operating system or an electronic device, or may be a component, an integrated circuit, or a chip in a terminal.
  • the apparatus or electronic equipment may be a mobile terminal or a non-mobile terminal.
  • the mobile terminal may include but not limited to the types of terminals 11 listed above, and the non-mobile terminal may be a server, a network attached storage (Network Attached Storage, NAS), a personal computer (personal computer, PC), a television ( television, TV), teller machines or self-service machines, etc., are not specifically limited in this embodiment of the present application.
  • the random access device provided in the embodiment of the present application can realize various processes implemented by the method embodiments in FIG. 9 and FIG. 10 , and achieve the same technical effect. To avoid repetition, details are not repeated here.
  • FIG. 13 is a schematic structural diagram of a communication device provided in an embodiment of the present application.
  • the embodiment of the present application also provides a communication device 1300, including a processor 1301, a memory 1302, and programs or instructions stored in the memory 1302 and operable on the processor 1301, for example, the communication
  • the device 1300 is a terminal
  • the program or instruction is executed by the processor 1301
  • each process of the above random access method embodiment can be realized, and the same technical effect can be achieved.
  • the terminal device 1300 is a network-side device
  • the program or instruction is executed by the processor 1301
  • each process of the random access method embodiment described above can be achieved, and the same technical effect can be achieved. To avoid repetition, details are not repeated here.
  • the embodiment of the present application also provides a terminal, including a processor and a communication interface, and the communication interface is used to: send multiple physical random access channel PRACH signals, and the multiple PRACH resources used by the multiple PRACH signals correspond to multiple Different downlink reference signals; wherein, the target PRACH resources among the multiple PRACH resources used by the multiple PRACH signals are associated with quasi-co-located signals; the quasi-co-located signals are one of the multiple different downlink reference signals or multiple; the quasi-co-located signal is used for the terminal device to receive a first downlink signal, and the first downlink signal is a Msg2 message or Msg3 retransmission scheduling information or a Msg4 message.
  • FIG. 14 is a schematic diagram of a hardware structure of a terminal device implementing an embodiment of the present application.
  • the terminal device 1400 includes, but is not limited to: a radio frequency unit 1401, a network module 1402, an audio output unit 1403, an input unit 1404, a sensor 1405, a display unit 1406, a user input unit 1407, an interface unit 1408, a memory 1409, and a processor 1410, etc. at least some of the components.
  • the terminal device 1400 can also include a power supply (such as a battery) for supplying power to various components, and the power supply can be logically connected to the processor 1410 through the power management system, so that the management of charging, discharging, and function can be realized through the power management system. Consumption management and other functions.
  • a power supply such as a battery
  • the structure of the terminal device shown in FIG. 14 does not constitute a limitation on the terminal device.
  • the terminal device may include more or less components than shown in the figure, or combine some components, or arrange different components, which will not be repeated here. .
  • the input unit 1404 may include a graphics processor (Graphics Processing Unit, GPU) 14041 and a microphone 14042, and the graphics processor 14041 is used for the image capture device (such as the image data of the still picture or video obtained by the camera) for processing.
  • the display unit 1406 may include a display panel 14061, and the display panel 14061 may be configured in the form of a liquid crystal display, an organic light emitting diode, or the like.
  • the user input unit 1407 includes a touch panel 14071 and other input devices 14072 . Touch panel 14071, also called touch screen.
  • the touch panel 12071 may include two parts, a touch detection device and a touch controller.
  • Other input devices 14072 may include, but are not limited to, physical keyboards, function keys (such as volume control keys, switch keys, etc.), trackballs, mice, and joysticks, which will not be repeated here.
  • the radio frequency unit 1401 receives the downlink data from the network side device, and processes it to the processor 1410; in addition, sends the uplink data to the network side device.
  • the radio frequency unit 1401 includes, but is not limited to, an antenna, at least one amplifier, a transceiver, a coupler, a low noise amplifier, a duplexer, and the like.
  • the memory 1409 can be used to store software programs or instructions as well as various data.
  • the memory 1409 may mainly include a program or instruction storage area and a data storage area, wherein the program or instruction storage area may store an operating system, an application program or instructions required by at least one function (such as a sound playback function, an image playback function, etc.) and the like.
  • the memory 1409 may include a high-speed random access memory, and may also include a nonvolatile memory, wherein the nonvolatile memory may be a read-only memory (Read-Only Memory, ROM), a programmable read-only memory (Programmable ROM) , PROM), erasable programmable read-only memory (Erasable PROM, EPROM), electrically erasable programmable read-only memory (Electrically EPROM, EEPROM) or flash memory.
  • ROM Read-Only Memory
  • PROM programmable read-only memory
  • PROM erasable programmable read-only memory
  • Erasable PROM Erasable PROM
  • EPROM electrically erasable programmable read-only memory
  • EEPROM electrically erasable programmable read-only memory
  • flash memory for example at least one magnetic disk storage device, flash memory device, or other non-volatile solid-state storage device.
  • the processor 1410 may include one or more processing units; optionally, the processor 1410 may integrate an application processor and a modem processor, wherein the application processor mainly processes the operating system, user interface, application programs or instructions, etc., Modem processors mainly handle wireless communications, such as baseband processors. It can be understood that the foregoing modem processor may not be integrated into the processor 1410 .
  • processor 1410 is used for:
  • the target PRACH resources among the multiple PRACH resources used by the multiple PRACH signals are associated with quasi-co-located signals;
  • the quasi-co-located signals are one or more of the multiple different downlink reference signals;
  • the quasi-co-located signal is used for the terminal device to receive a first downlink signal, and the first downlink signal is a Msg2 message or Msg3 retransmission scheduling information or a Msg4 message.
  • multiple PRACHs can be sent by using the target PRACH resource to indicate that the target PRACH
  • the quasi-co-location signal associated with resources ensures that the terminal and the network-side device have a consistent understanding of the quasi-co-location signal, thereby effectively ensuring the successful transmission of downlink signals.
  • the PRACH resources include at least one of the following:
  • the first indexes of all target PRACH resources associated with a quasi-co-located signal are the same.
  • the first index of the target PRACH resource includes at least one of the following:
  • the PRACH resource is the RO resource
  • the index of the RO resource in the first RO set corresponding to each of the multiple different downlink reference signals, the index of the RO resource, wherein the first The RO set includes all RO resources mapped to the downlink reference signal;
  • the first index of the target PRACH resource is: in the first preamble set respectively corresponding to each of the multiple different downlink reference signals, the An index of a preamble, wherein the first preamble set includes an available preamble in any RO resource mapped to the one downlink reference signal, and the available preamble is determined through system message configuration;
  • the first index of the target PRACH resource is: within the first mapping pattern period corresponding to each of the multiple different downlink reference signals, The index of the mapping period, wherein the first mapping pattern period includes a plurality of consecutive mapping periods, wherein the start time and time length of the first mapping pattern period are defined by a protocol or configured by a system message.
  • a second index of the quasi-co-located signal is associated with the first index
  • the second index is an index of the quasi-co-located signal in the plurality of different downlink reference signals.
  • association relationship between the second index and the first index includes a mathematical relationship.
  • the processor 1410 is further configured to: before the terminal device sends multiple physical random access channel PRACH signals, the terminal device determines the quasi-co-located signal from the multiple different downlink reference signals;
  • the terminal device determines the target PRACH resources of the multiple PRACH signals based on the first index.
  • processor 1410 is also used for:
  • processor 1410 is also used for:
  • the terminal device randomly determines a downlink reference signal from the first downlink reference signals as the quasi-co-located signal, or The terminal device determines, from the first downlink reference signals, the first downlink reference signal with the largest value of the reference signal received power quality as the quasi-co-located signal;
  • the terminal device randomly determines a downlink reference signal from the multiple different downlink reference signals as the quasi-co-located signal, or the terminal device determines from the plurality of different downlink reference signals the downlink reference signal with the largest value of the reference signal received power quality as the quasi-co-located signal;
  • the first downlink reference signal is a downlink reference signal whose received power quality value of the reference signal is greater than a first threshold.
  • processor 1410 is also used for:
  • the method also includes:
  • the terminal device determines the quasi-co-located signal based on a target PRACH resource among the plurality of randomly determined PRACH resources.
  • the embodiment of the present application also provides a network side device, including a processor and a communication interface, and the processor is used for:
  • the first downlink signal is a Msg2 message or a Msg3 retransmission scheduling information or a Msg4 message;
  • Receive multiple PRACH signals, and the multiple PRACH resources used by the multiple PRACH signals are respectively associated with multiple different downlink reference signals; wherein, the target PRACH resources among the multiple PRACH resources are associated with quasi-co-located signals;
  • the quasi-co-located signal is one or more of the plurality of different downlink reference signals.
  • the network-side device embodiment corresponds to the above-mentioned network-side device method embodiment, and each implementation process and implementation mode of the above-mentioned method embodiment can be applied to this network-side device embodiment, and can achieve the same technical effect.
  • FIG. 15 is a schematic diagram of a hardware structure of the network side device implementing the embodiment of the present application.
  • the network device 1500 includes: an antenna 1501 , a radio frequency device 1502 , and a baseband device 1503 .
  • the antenna 1501 is connected to the radio frequency device 1502.
  • the radio frequency device 1502 receives information through the antenna 1501, and sends the received information to the baseband device 1503 for processing.
  • the baseband device 1503 processes the information to be sent and sends it to the radio frequency device 1502
  • the radio frequency device 1502 processes the received information and sends it out through the antenna 1501 .
  • the foregoing frequency band processing device may be located in the baseband device 1503 , and the method performed by the network side device in the above embodiments may be implemented in the baseband device 1503 , and the baseband device 1503 includes a processor 1504 and a memory 1505 .
  • the baseband device 1503 may include, for example, at least one baseband board, and the baseband board is provided with a plurality of chips, as shown in FIG. The network device operations shown in the above method embodiments.
  • the baseband device 1503 may also include a network interface 1506 for exchanging information with the radio frequency device 1502, such as a common public radio interface (common public radio interface, CPRI for short).
  • a network interface 1506 for exchanging information with the radio frequency device 1502, such as a common public radio interface (common public radio interface, CPRI for short).
  • the network side device in this embodiment of the present invention also includes: instructions or programs stored in the memory 1505 and operable on the processor 1504, and the processor 1504 calls the instructions or programs in the memory 1505 to execute the modules shown in FIG. 12 To avoid duplication, the method of implementation and to achieve the same technical effect will not be repeated here.
  • processor 1504 is used for:
  • the first downlink signal is a Msg2 message or a Msg3 retransmission scheduling information or a Msg4 message;
  • the communication interface 1504 is used for:
  • Receive multiple PRACH signals, and the multiple PRACH resources used by the multiple PRACH signals are respectively associated with multiple different downlink reference signals; wherein, the target PRACH resources among the multiple PRACH resources are associated with quasi-co-located signals;
  • the quasi-co-located signal is one or more of the plurality of different downlink reference signals.
  • the network-side device determines the quasi-co-located signal based on the association relationship between the target PRACH resource and the quasi-co-located signal among the multiple PRACH resources used by the received multiple PRACH signals, so as to ensure that the network-side device and The terminal has a consistent understanding of the quasi-co-located signal, thereby effectively ensuring the successful transmission of the downlink signal.
  • the PRACH resources include at least one of the following:
  • the first indexes of all target PRACH resources associated with a quasi-co-located signal are the same.
  • the first index of the target PRACH resource includes at least one of the following:
  • the first index of the target PRACH resource is: in the first RO set corresponding to each of the multiple different downlink reference signals, the An index of an RO resource, wherein the first RO set includes all RO resources mapped to one downlink reference signal;
  • the first index of the target PRACH resource is: in the first preamble set respectively corresponding to each of the multiple different downlink reference signals, the An index of a preamble, wherein the first preamble set includes an available preamble in any RO resource mapped to the one downlink reference signal, and the available preamble is determined through system message configuration;
  • the first index of the target PRACH resource is: within the first mapping pattern period corresponding to each of the multiple different downlink reference signals, The index of the mapping period, wherein the first mapping pattern period includes a plurality of consecutive mapping periods, wherein the start time and time length of the first mapping pattern period are defined by a protocol or configured by a system message.
  • a second index of the quasi-co-located signal is associated with the first index
  • the second index is an index of the quasi-co-located signal in the plurality of different downlink reference signals.
  • association relationship between the second index and the first index includes a mathematical relationship.
  • the network-side device determines the quasi-co-located signal based on the association relationship between the target PRACH resource and the quasi-co-located signal among the multiple PRACH resources used by the received multiple PRACH signals, so as to ensure that the network-side device and The terminal has a consistent understanding of the quasi-co-located signal, thereby effectively ensuring the successful transmission of the downlink signal.
  • the embodiment of the present application also provides a readable storage medium, the readable storage medium stores a program or an instruction, and when the program or instruction is executed by a processor, each process of the above random access method embodiment is implemented, and can achieve The same technical effects are not repeated here to avoid repetition.
  • the processor is the processor in the terminal device described in the foregoing embodiments.
  • the readable storage medium includes computer readable storage medium, such as computer read-only memory (Read-Only Memory, ROM), random access memory (Random Access Memory, RAM), magnetic disk or optical disk, etc.
  • the embodiment of the present application further provides a chip, the chip includes a processor and a communication interface, the communication interface is coupled to the processor, and the processor is used to run programs or instructions to implement the above random access method embodiment Each process, and can achieve the same technical effect, in order to avoid repetition, will not repeat them here.
  • the chip mentioned in the embodiment of the present application may also be called a system-on-chip, a system-on-chip, a system-on-a-chip, or a system-on-a-chip.
  • the embodiment of the present application also provides a computer program/program product, the computer program/program product is stored in a non-transitory storage medium, and the program/program product is executed by at least one processor to realize the above random access
  • the computer program/program product is stored in a non-transitory storage medium, and the program/program product is executed by at least one processor to realize the above random access
  • the term “comprising”, “comprising” or any other variation thereof is intended to cover a non-exclusive inclusion such that a process, method, article or apparatus comprising a set of elements includes not only those elements, It also includes other elements not expressly listed, or elements inherent in the process, method, article, or device. Without further limitations, an element defined by the phrase “comprising a " does not preclude the presence of additional identical elements in the process, method, article, or apparatus comprising that element.
  • the scope of the methods and devices in the embodiments of the present application is not limited to performing functions in the order shown or discussed, and may also include performing functions in a substantially simultaneous manner or in reverse order according to the functions involved. Functions are performed, for example, the described methods may be performed in an order different from that described, and various steps may also be added, omitted, or combined. Additionally, features described with reference to certain examples may be combined in other examples.

Abstract

本申请公开了一种随机接入方法、装置、终端及网络侧设备,属于通信技术领域,所述随机接入方法包括:终端设备发送多个物理随机接入信道PRACH信号,所述多个PRACH信号使用的多个PRACH资源分别对应于多个不同下行参考信号;其中,所述多个PRACH信号使用的多个PRACH资源中的目标PRACH资源与准共址信号相关联;所述准共址信号是所述多个不同下行参考信号的其中一个或者多个;所述准共址信号用于所述终端设备对第一下行信号的接收,所述第一下行信号为Msg2消息或者Msg3重传调度信息或者Msg4消息。

Description

随机接入方法、装置、终端及网络侧设备
相关申请的交叉引用
本申请要求于2021年11月11日提交的申请号为202111334667.1,发明名称为“随机接入方法、装置、终端及网络侧设备”的中国专利申请的优先权,其通过引用方式全部并入本申请。
技术领域
本申请属于通信技术领域,具体涉及一种随机接入方法、装置、终端及网络侧设备。
背景技术
为了增强物理随机接入信道(Physical Random Access Channel,PRACH)信号的覆盖性能,可以引入PRACH信号多次发送的技术方案。
当PRACH信号多次发送时,每个PRACH信号可以关联于不同的下行参考信号或同步信号块(Synchronization Signal Block,SSB),即每个PRACH信号基于不同SSB对应的RO资源(时频资源或者前导码preamble资源)来发送,则终端和网络侧设备需要确定下行信号Msg2或者Msg3重传调度信息(即,TC-RNTI加扰的DCI 0-0)或Msg4的准共址(quasi-coloated,QCL)信号,若是终端和网络侧设备对准共址信号理解不一致,会导致下行信号传输失败。
发明内容
本申请实施例提供一种随机接入方法、装置、终端及网络侧设备,能够解决PRACH信号多次传输时,终端和网络侧设备出现对准共址信号 理解不一致而导致下行信号传输失败的问题。
第一方面,提供了一种随机接入方法,应用于终端,该方法包括:
终端设备发送多个物理随机接入信道PRACH信号,所述多个PRACH信号使用的多个PRACH资源分别对应于多个不同下行参考信号;
其中,所述多个PRACH信号使用的多个PRACH资源中的目标PRACH资源与准共址信号相关联;所述准共址信号是所述多个不同下行参考信号的其中一个或者多个;所述准共址信号用于所述终端设备对第一下行信号的接收,所述第一下行信号为Msg2消息或者Msg3重传调度信息或者Msg4消息。
第二方面,提供了一种随机接入方法,应用于网络侧设备,该方法包括:
网络侧设备接收多个PRACH信号,所述多个PRACH信号使用的多个PRACH资源分别关联于多个不同下行参考信号;其中,所述多个PRACH资源中的目标PRACH资源与准共址信号相关联;所述准共址信号是所述多个不同下行参考信号的其中一个或者多个;
所述网络侧设备基于所述目标PRACH资源,确定第一下行信号的准共址信号;
其中,所述第一下行信号为Msg2消息或者Msg3重传调度信息或者Msg4消息。
第三方面,提供了一种随机接入装置,该装置包括:
第一发送模块,用于发送多个物理随机接入信道PRACH信号,所述多个PRACH信号使用的多个PRACH资源分别对应于多个不同下行参考信号;
其中,所述多个PRACH信号使用的多个PRACH资源中的目标PRACH资源与准共址信号相关联;所述准共址信号是所述多个不同下行 参考信号的其中一个或者多个;所述准共址信号用于所述终端设备对第一下行信号的接收,所述第一下行信号为Msg2消息或者Msg3重传调度信息或者Msg4消息。
第四方面,提供了一种随机接入装置,该装置包括:
第一接收模块,用于接收多个PRACH信号,所述多个PRACH信号使用的多个PRACH资源分别关联于多个不同下行参考信号;其中,所述多个PRACH资源中的目标PRACH资源与准共址信号相关联;所述准共址信号是所述多个不同下行参考信号的其中一个或者多个;
第四确定模块,用于基于所述目标PRACH资源,确定第一下行信号的准共址信号;
其中,所述第一下行信号为Msg2消息或者Msg3重传调度信息或者Msg4消息。
第五方面,提供了一种终端,该终端包括处理器、存储器及存储在所述存储器上并可在所述处理器上运行的程序或指令,所述程序或指令被所述处理器执行时实现如第一方面所述的方法的步骤。
第六方面,提供了一种终端,包括处理器及通信接口,其中,所述通信接口用于:
发送多个物理随机接入信道PRACH信号,所述多个PRACH信号使用的多个PRACH资源分别对应于多个不同下行参考信号;
其中,所述多个PRACH信号使用的多个PRACH资源中的目标PRACH资源与准共址信号相关联;所述准共址信号是所述多个不同下行参考信号的其中一个或者多个;所述准共址信号用于所述终端设备对第一下行信号的接收,所述第一下行信号为Msg2消息或者Msg3重传调度信息或者Msg4消息。
第七方面,提供了一种网络侧设备,该网络侧设备包括处理器、存储器及存储在所述存储器上并可在所述处理器上运行的程序或指令,所 述程序或指令被所述处理器执行时实现如第二方面所述的方法的步骤。
第八方面,提供了一种网络侧设备,包括处理器及通信接口,其中,所述通信接口用于:
接收多个PRACH信号,所述多个PRACH信号使用的多个PRACH资源分别关联于多个不同下行参考信号;其中,所述多个PRACH资源中的目标PRACH资源与准共址信号相关联;所述准共址信号是所述多个不同下行参考信号的其中一个或者多个;
所述处理器用于:
基于所述目标PRACH资源,确定第一下行信号的准共址信号;
其中,所述第一下行信号为Msg2消息或者Msg3重传调度信息或者Msg4消息。
第九方面,提供了一种可读存储介质,所述可读存储介质上存储程序或指令,所述程序或指令被处理器执行时实现如第一方面所述的方法的步骤,或者实现如第二方面所述的方法的步骤。
第十方面,提供了一种芯片,所述芯片包括处理器和通信接口,所述通信接口和所述处理器耦合,所述处理器用于运行程序或指令,实现如第一方面所述的方法的步骤,或者实现如第二方面所述的方法的步骤。
第十一方面,提供了一种计算机程序/程序产品,所述计算机程序/程序产品被存储在非瞬态的存储介质中,所述程序/程序产品被至少一个处理器执行以实现如第一方面所述的方法的步骤,或者实现如第二方面所述的方法的步骤。
在本申请实施例中,通过将发送的多个PRACH信号使用的多个PRACH资源中的目标PRACH资源与准共址信号相关联,从而可以通过使用目标PRACH资源发送多个PRACH以指示与目标PRACH资源相关联的准共址信号,以保证终端和网络侧设备对准共址信号有一致的理 解,进而有效保证下行信号的成功传输。
附图说明
图1示出本申请实施例可应用的一种无线通信系统的结构图;
图2是本申请实施例提供的随机接入流程示意图之一;
图3是本申请实施例提供的随机接入流程示意图之二;
图4是本申请实施例提供的随机接入流程示意图之三;
图5是本申请实施例提供的随机接入流程示意图之四;
图6是本申请实施例提供的PRACH信号的传输波束示意图之一;
图7是本申请实施例提供的PRACH信号的传输波束示意图之二;
图8是本申请实施例提供的PRACH信号的传输波束对应的信号质量示意图;
图9是本申请实施例提供的随机接入方法的流程示意图之一;
图10是本申请实施例提供的随机接入方法的流程示意图之二;
图11是本申请实施例提供的随机接入装置的结构示意图之一;
图12是本申请实施例提供的随机接入装置的结构示意图之二;
图13是本申请实施例提供的通信设备的结构示意图;
图14为实现本申请实施例的终端设备的硬件结构示意图;
图15为实现本申请实施例的网络侧设备的硬件结构示意图。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚描述,显然,所描述的实施例是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员所获得的所有其他实施例,都属于本申请保护的范围。
本申请的说明书和权利要求书中的术语“第一”、“第二”等是用 于区别类似的对象,而不用于描述特定的顺序或先后次序。应该理解这样使用的术语在适当情况下可以互换,以便本申请的实施例能够以除了在这里图示或描述的那些以外的顺序实施,且“第一”、“第二”所区别的对象通常为一类,并不限定对象的个数,例如第一对象可以是一个,也可以是多个。此外,说明书以及权利要求中“和/或”表示所连接对象的至少其中之一,字符“/”一般表示前后关联对象是一种“或”的关系。
值得指出的是,本申请实施例所描述的技术不限于长期演进型(Long Term Evolution,LTE)/LTE的演进(LTE-Advanced,LTE-A)系统,还可用于其他无线通信系统,诸如码分多址(Code Division Multiple Access,CDMA)、时分多址(Time Division Multiple Access,TDMA)、频分多址(Frequency Division Multiple Access,FDMA)、正交频分多址(Orthogonal Frequency Division Multiple Access,OFDMA)、单载波频分多址(Single-carrier Frequency-Division Multiple Access,SC-FDMA)和其他系统。本申请实施例中的术语“系统”和“网络”常被可互换地使用,所描述的技术既可用于以上提及的系统和无线电技术,也可用于其他系统和无线电技术。以下描述出于示例目的描述了新空口(New Radio,NR)系统,并且在以下大部分描述中使用NR术语,但是这些技术也可应用于NR系统应用以外的应用,如第6代(6th Generation,6G)通信系统。
图1示出本申请实施例可应用的一种无线通信系统的结构图。无线通信系统包括终端11和网络侧设备12。其中,终端11也可以称作终端设备或者用户终端(User Equipment,UE),终端11可以是手机、平板电脑(Tablet Personal Computer)、膝上型电脑(Laptop Computer)或称为笔记本电脑、个人数字助理(Personal Digital Assistant,PDA)、掌上电脑、上网本、超级移动个人计算机(ultra-mobile personal computer, UMPC)、移动上网装置(Mobile Internet Device,MID)、可穿戴式设备(Wearable Device)或车载设备(VUE)、行人终端(PUE)等终端侧设备,可穿戴式设备包括:智能手表、手环、耳机、眼镜等。需要说明的是,在本申请实施例并不限定终端11的具体类型。网络侧设备12可以是基站或核心网,其中,基站可被称为节点B、演进节点B、接入点、基收发机站(Base Transceiver Station,BTS)、无线电基站、无线电收发机、基本服务集(Basic Service Set,BSS)、扩展服务集(Extended Service Set,ESS)、B节点、演进型B节点(eNB)、家用B节点、家用演进型B节点、WLAN接入点、WiFi节点、发送接收点(Transmitting Receiving Point,TRP)或所述领域中其他某个合适的术语,只要达到相同的技术效果,所述基站不限于特定技术词汇,需要说明的是,在本申请实施例中仅以NR系统中的基站为例,但是并不限定基站的具体类型。
为了便于更加清晰地理解本申请各实施例,首先对一些相关的背景知识进行如下介绍。
(1)随机接入流程;
现有技术中,NR支持两种类型的随机访问流程:Msg1的4步随机接入(Random Access,RA)类型(4-step物理随机接入信道(Physical Random Access Channel,RACH))和MsgA的2步RA类型(2-step RACH)。
图2是本申请实施例提供的随机接入流程示意图之一,图3是本申请实施例提供的随机接入流程示意图之二,图4是本申请实施例提供的随机接入流程示意图之三,图5是本申请实施例提供的随机接入流程示意图之四,如图2-5所示,上述两种类型的RA过程都支持基于竞争的随机访问(Contention based RA,CBRA)和无竞争的随机访问(Contention free RA,CFRA)。其中,2-step RACH流程一般应用于覆盖较好的区 域,缩短终端接入时间。而对于信号覆盖差的区域中,终端应该使用4-step RACH流程接入小区。
在4-step RACH中,用户终端(User Equipment,UE)首先向网络侧设备发送Msg1,包含前导码preamble;UE发送了preamble之后,将在随机接入响应时间窗(RA Response window,RAR)内监听物理下行控制信道(Physical Downlink Control Channel,PDCCH),接收DCI format 1_0调度的用随机接入-无线网络临时标识符(RA-Radio Network Temporary Identifier,RA-RNTI)加扰的随机接入响应(Random Access Response,RAR)。若该RAR中的前导码索引(preamble index)与UE发送Msg1的preamble index相同时,则认为成功接收了RAR,此时UE就可以停止监听RAR并根据RAR中携带的UL grant的指示发送Msg3;Msg3在上行共享信道(Uplink Shared Channel,UL-SCH)上传输,并使用混合自动重传请求(Hybrid Automatic Repeat Request,HARQ),用RAR指示的TC-RNTI加扰PDCCH,用DCI format 0_0来调度Msg3的重传。Msg3中包含UE唯一的标志,该标志将用于步骤4的冲突解决。网络侧设备收到Msg3后,将用TC-RNTI加扰的PDCCH调度Msg4,当UE成功解码出Msg4中包含的UE Contention Resolution Identity MAC control element与Msg3发送的UE Contention Resolution Identity匹配时,UE确认随机接入成功并将C-RNTI设置成TC-RNTI,即完成4步随机接入。
(2)PRACH信号关联SSB的选择方法;
PRACH信号关联SSB的选择方法:在终端在完成同步流程之后,终端接收并检测初始下行BWP(Bandwidth Part)中的所有SSB信号,获得不同SSB的信号质量(Synchronization Signal Reference Signal Received Power,SS-RSRP)。终端根据系统消息(System Information Block#1,SIB1)中指示的门限RSRP-Threshold SSB来进行SSB选择。 如果存在SS-RSRP高于门限的SSB(可以是多个SSB),则终端从高于门限的SSB中选择一个SSB作为随机接入流程的关联SSB;如果所有SSB的信号质量都低于门限,则终端可以选择任意一个SSB作为随机接入流程的关联SSB,具体的SSB选择方案可以基于终端实现。
终端利用被选中的SSB确定PRACH信号的时频资源或preamble资源。随机接入过程中下行信号Msg2和Msg4的传输波束/QCL参数保证与被选中的SSB相同。
(3)终端的接收波束信息;
在现有机制下,PRACH信号不进行重复传输,在发送PRACH信号后,终端进行RAR(Msg2)及调度RAR的PDCCH,调度Msg3重传的PDCCH,Msg4(包括物理下行共享信道(Physical Downlink Shared Channel,PDSCH)和调度PDSCH的物理下行控制信道(Physical Downlink Control Channel,PDCCH))的接收,假设解调参考信号(Demodulation Reference Signal,DMRS)的天线端口和UE用于发送PRACH关联的SSB或者CSI-RS是准共址的,无论终端是否由网络指示了接收DCI format 1-0的CORESET的传输配置指示状态(Transmission Configuration Indicator state,TCI state),都按上述方式确定PDCCH(上述PDCCH的格式都是DCI format 1-0)准共址。
另外,对于CORESET#0,终端假设在该CORESET中PDCCH接收的DMRS的天线端口和下行信号是准共址的。
通过TCI state配置的一个或者多个下行的参考信号,其中,TCI state是对CORESET通过MAC CE激活命令指示的,或者,如果在最近的随机接入过程之后没有收到MAC CE指示CORESET的TCI state,终端在最近的随机接入过程中确定的SSB和该DMRS是准共址的,该随机接入过程不是PDCCH order触发的非竞争的随机接入流程。
(4)多SSB关联的随机接入流程。
在小区边缘区域或者覆盖受限的区域内,终端的上行信号覆盖性能劣于下行信号覆盖,在随机接入过程中Msg1和Msg3的覆盖性能劣于Msg2和Msg4的覆盖性能。并且,在高频频段FR2上,上下行信道的覆盖性能差距更加明显。
为了提升上行信号的覆盖性能,考虑将上行信号进行重复发送的方式。引入Msg3的重复发送机制来提升Msg3覆盖性能,也可以引入Msg1(PRACH)的重复发送来提升覆盖性能。
图6是本申请实施例提供的PRACH信号的传输波束示意图之一,图7是本申请实施例提供的PRACH信号的传输波束示意图之二,如图6和图7所示,图6中的传输波束SSB与图7中的传输波束SSB相对应,在覆盖受限的场景中,由于SSB波束通常是固定的波束,所以SSB波束之间可能存在波束交叠的区域。图8是本申请实施例提供的PRACH信号的传输波束对应的信号质量示意图,如图8所示,在这种情况下,终端检测的多个SSB的信号质量SS-RSRP可能是相近的,选择其中一个SSB波束进行随机接入,也就表示放弃了其他可能的SSB波束。而如果可以选择多个SSB发送Msg1,则可以提升网络侧设备成功检测Msg1的概率。此外,由于在随机接入阶段,SS-RSRP的测量仅根据SSB的单次测量结果确定,所以SS-RSRP测量结果可能存在测量偏差,因此选择多个SSB发送Msg1也可以降低SSB测量偏差对SSB选择的影响。
下面对准共址的相关描述进行如下解释:
在本申请实施例中,PDCCH、PDSCH和SSB/CSI-RS准共址的描述与PDCCH、PDSCH的DMRS(天线端口)和SSB/CSI-RS准共址的描述含义相同,或者说两者的准共址属性相同。
TCI state是指网络指示下行信道PDCCH、PDSCH(的DMRS天线端口)和某个下行RS(SSB/CSI-RS)是准共址的。
准共址的属性包括:多普勒频移(Doppler shift)、多普勒扩展 (Doppler spread)、平均时延(average delay)、时延扩展(delay spread)和空间接收参数(spatial RX parameters)。
下面结合附图,通过一些实施例及其应用场景对本申请实施例提供的随机接入方法及装置进行说明。
图9是本申请实施例提供的随机接入方法的流程示意图之一,如图9所示,该方法包括:
步骤900,终端设备发送多个物理随机接入信道PRACH信号,所述多个PRACH信号使用的多个PRACH资源分别对应于多个不同下行参考信号;
其中,所述多个PRACH信号使用的多个PRACH资源中的目标PRACH资源与准共址信号相关联;所述准共址信号是所述多个不同下行参考信号的其中一个或者多个;所述准共址信号用于所述终端设备对第一下行信号的接收,所述第一下行信号为Msg2消息或者Msg3重传调度信息或者Msg4消息。
具体地,所述多个不同下行参考信号可以是SSB集合或者CSI-RS集合的子集,由终端按照协议预定义规则或者系统消息指示的规则来确定,所述多个不同下行参考信号用于分别确定多个PRACH信号的传输资源。
可选地,终端设备可以发送多个物理随机接入信道PRACH信号至网络侧设备。
可选地,多个PRACH信号使用的多个PRACH资源可以分别对应于多个不同下行参考信号,所述下行参考信号可以是SSB或者提前配置的CSI-RS。
可选地,多个PRACH资源中的目标PRACH资源可以与准共址信号相关联。
可选地,网络侧设备在接收到多个PRACH后,可以基于多个 PRACH资源中的目标PRACH资源,确定与所述多个PRACH资源中的目标PRACH资源相关联的准共址信号。
可选地,准共址信号可以是所述多个不同下行参考信号的其中一个或者多个。
例如,多个不同下行参考信号为SSB0、SSB1、SSB2和SSB3,则准共址信号可以是SSB0或SSB1或SSB2或SSB3,也可以是多个SSB的组合,SSB0和SSB1,或SSB1和SSB3,或SSB0、SSB1和SSB2等。
可选地,准共址信号可以用于终端设备对第一下行信号的接收。
可选地,在终端设备和网络侧设备对准共址信号的理解保持一致的情况下,可以实现准确对第一下行信号进行检测和接收,提高检测效率。
可选地,第一下行信号可以为Msg2消息或者Msg3重传调度信息或者Msg4消息。
可选地,本申请实施例提供的随机接入方法,除了适用于Msg2和Msg4,还适用于调度Msg3重传的下行控制信令DC。
为了克服在PRACH信号多次发送的情况下,终端和网络侧设备对准共址信号理解不一致,从而导致下行信号传输失败的缺陷,本申请实施例通过将终端发送的多个PRACH信号使用的多个PRACH资源中的目标PRACH资源与准共址信号相关联,从而可以使网络侧设备在接收到多个PRACH后,确定目标PRACH资源,并可以根据目标PRACH资以及目标PRACH资源与准共址信号之间的关联关系确定准共址信号,以保证终端和网络侧设备对准共址信号有一致的理解,进而有效保证下行信号的成功传输。
在本申请实施例中,通过将发送的多个PRACH信号使用的多个PRACH资源中的目标PRACH资源与准共址信号相关联,从而可以通过使用目标PRACH资源发送多个PRACH以指示与目标PRACH资源相关 联的准共址信号,以保证终端和网络侧设备对准共址信号有一致的理解,进而有效保证下行信号的成功传输。
可选地,所述PRACH资源包括以下至少一项:
物理随机接入信道机会(Physical Random Access Channel Occasion,RO)资源;
前导码preamble;
所述下行参考信号与所述RO资源的映射周期。
可选地,PRACH资源可以包括以下至少一项:
物理随机接入信道机会RO资源;或
前导码preamble;或
下行参考信号与RO资源的映射周期。
例如,多个RO资源中的目标RO资源可以与准共址信号相关联。
例如,多个preamble资源中的目标preamble可以与准共址信号相关联。
例如,多个映射周期中的目标映射周期可以与准共址信号相关联。
可选地,与一个准共址信号相关联的所有所述目标PRACH资源的第一索引相同。
可选地,目标PRACH资源各自的第一索引可以全部相同。
例如,在目标PRACH资源是至少一个RO资源的情况下,至少一个RO资源的对应的第一索引可以是相同的。
例如,在目标PRACH资源是至少一个preamble资源的情况下,至少一个preamble资源的对应的第一索引可以是相同的。
可选地,多个PRACH资源可以全部作为目标PRACH资源,也可以部分作为目标PRACH资源。
可选地,多个PRACH资源中的部分作为目标PRACH资源的情况下,在网络侧设备接收到多个PRACH后,可以确定多个PRACH资源, 进而可以确定多个PRACH资源各自的第一索引,当网络侧设备基于所有的第一索引确定其中有大量的第一索引相同,即可以确定这些相同的第一索引对应的PRACH资源为目标PRACH资源,进而可以基于这些相同的第一索引确定与该第一索引相关联的准共址信号。
可选地,多个PRACH资源中的全部均作为目标PRACH资源的情况下,在网络侧设备接收到多个PRACH后,可以确定多个PRACH资源,进而可以确定这些PRACH资源各自的第一索引,由于这些第一索引均相同,即可以基于这些相同的第一索引确定与该第一索引相关联的准共址信号。
可选地,在准共址信号是多个的情况下,以准共址信号包括SSB1和SSB2,目标PRACH资源是目标RO资源为例,目标RO资源所在的子集中可以包括第一索引均为a的多个RO资源和第一索引均为b的多个RO资源,其中第一索引均为a的多个RO资源可以与SSB1相关联,第一索引均为b的多个RO资源可以与SSB2相关联;在网络侧设备接收到多个PRACH后,可以确定多个PRACH资源,进而可以确定这些PRACH资源各自的第一索引,由于这些第一索引包括a和b,则可以确定第一索引a关联的SSB1为准共址信号,确定第一索引b关联的SSB2为准共址信号。
可选地,所述目标PRACH资源的所述第一索引包括以下至少一项:
在所述PRACH资源是所述RO资源的情况下,所述目标PRACH资源的第一索引为:所述多个不同下行参考信号中每一个下行参考信号分别对应的第一RO集合内,所述RO资源的索引,其中,所述第一RO集合包括一个所述下行参考信号映射的所有RO资源;
或者,
在所述PRACH资源是所述preamble的情况下,所述目标PRACH资源的第一索引为:在所述多个不同下行参考信号中每一个下行参考信号 分别对应的第一preamble集合中,所述preamble的索引,其中,所述第一preamble集合包括所述一个下行参考信号映射的任一个RO资源内的可用preamble,所述可用preamble通过系统消息配置确定;
或者,
在所述PRACH资源是所述映射周期的情况下,所述目标PRACH资源的第一索引为:在所述多个不同下行参考信号中每一个下行参考信号分别对应的第一映射周期图案内,所述映射周期的索引,其中,一个下行参考信号对应的第一映射周期图案是所述一个下行参考信号与其映射的任一个RO资源之间的映射周期图案。
可选地,在所述PRACH资源是所述RO资源的情况下,所述目标PRACH资源的第一索引为:所述多个不同下行参考信号中每一个下行参考信号分别对应的第一RO集合内,所述RO资源的索引,其中,所述第一RO集合包括所述一个下行参考信号映射的所有RO资源,即通过系统消息配置,一个下行参考信号可以关联于连续多个RO时,第一索引表述所述连续多个RO按照频率高低或者时间先后来确定的索引值。
例如,在PRACH资源是RO资源的情况下,可以根据准共址信号在PRACH重复发送的下行参考信号中的关联顺序,从SSB关联的RO资源集合中确定一个RO子集关联于所述准共址信号,来发送Msg1。
例如,在PRACH资源是RO资源的情况下,终端设备可以基于准共址信号在Msg1重复发送的多个不同下行参考信号中的顺序,即准共址信号对应的第二索引,并基于RO资源的第一索引与第二索引之间的关联关系,确定RO资源的第一索引。
可选地,在所述PRACH资源是所述preamble的情况下,所述目标PRACH资源的第一索引为:在所述多个不同下行参考信号中每一个下行参考信号分别对应的第一preamble集合中,所述preamble的索引,其中,所述第一preamble集合包括所述一个下行参考信号映射的任一个 RO资源内的所有可用preamble,所述可用preamble通过系统消息配置确定,所述可用preamble为可以用于Msg1重复传输的preamble。
例如,在PRACH资源是preamble的情况下,可以根据准共址信号在重复发送的参考信号中的关联顺序,从用于Msg1重复传输的preamble集合中确定一个preamble子集关联于所述准共址信号来发送Msg1。
例如,在PRACH资源是preamble的情况下,终端设备可以基于准共址信号在Msg1重复发送的多个不同下行参考信号中的顺序,即准共址信号对应的第二索引,并基于preamble的第一索引与第二索引之间的关联关系,确定preamble的第一索引。
可选地,在所述PRACH资源是所述映射周期的情况下,所述目标PRACH资源的第一索引为:在所述多个不同下行参考信号中每一个下行参考信号分别对应的第一映射周期图案内,所述映射周期的索引,其中,所述第一映射周期图案(association pattern period)包含多个连续的映射周期,其中第一映射周期图案的起始时刻和时间长度由协议定义或者系统消息配置。
例如,在SSB到RO资源的映射周期中,不同时间范围或映射周期对应于不同的准共址信号。
可选地,在PRACH资源是RO资源的情况下,对于传输多个PRACH的多个SSB中任意一个SSB,可以确定该SSB映射的RO集合中索引为第一索引的RO资源作为目标资源,即多个SSB中针对每一个SSB都确定了一个索引为第一索引的RO资源作为目标资源,用于发送Msg1;在PRACH资源是preamble或映射周期的情况下,均可以参照PRACH资源是RO资源的情况,在此不再赘述。
可选地,所述准共址信号的第二索引与所述第一索引相关联;
所述第二索引为所述准共址信号在所述多个不同下行参考信号中的索引。
可选地,准共址信号的第二索引可以与目标PRACH资源的第一索引相关联。
可选地,准共址信号的第二索引可以为准共址信号在多个不同下行参考信号中的索引。
例如,终端选择使用一组SSB来发送多次Msg1,终端选择的一组SSB(多个不同下行参考信号)为SSB(i_0),SSB(i_1),…SSB(i_N-1),终端选择SSB(j)作为Msg2和Msg4的准共址信号,则准共址信号的第二索引可以为j。例如,j表示SSB(j)按照SSB编号从小到大在集合SSB(i_0),SSB(i_1),…SSB(i_N-1)中的位置。
可选地,所述第二索引与所述第一索引之间的关联关系包括数学关系。
可选地,第二索引与第一索引之间的关联关系可以包括数学关系。
可选地,所述数学关系可以由协议预定义或者由系统消息配置。
例如,在终端多次发送PRACH信号选择使用的一组SSB即{SSB(i_0),SSB(i_1),…SSB(i_N-1)}中,每个SSB用于Msg1发送的关联M个RO资源,且M>1(M的大小可以由系统消息配置确定,这种情况下,每个SSB用于Msg1发送的M个资源互不相同),根据预定义规则或者由系统消息配置的规则,M个RO资源与准共址信号SSB(j)的顺序(第二索引)可以存在数学映射关系,M个RO的一个子集可以用于多次发送PRACH的SSB集合{SSB(i_0),SSB(i_1),…SSB(i_N-1)}且第一下行信号的准共址信号SSB(j)的Msg1重复传输,即从SSB(i)用于Msg1发送的关联的RO集合中根据第一下行信号的准共址信号选择一个子集来发送Msg1。准共址信号SSB(j)对应的目标RO子集的确定方式可以是m mod N=j,m=0,1,…,M-1表示M个RO的索引,或者[j*(M/N)+0,j*(M/N)+(M/N-1)]或者其他子集划分方式,其中,mod表示求余数。
例如,一个SSB关联的RO资源中preamble的索引集合为p_0~p_K-1,根据预定义规则,K个preamble与准共址信号SSB(j)的顺序(第二索引)可以存在数学映射关系,K个preamble的一个子集可以用于多次发送PRACH的SSB集合{SSB(i_1),SSB(i_2),…SSB(i_N)}且第一下行信号的准共址信号SSB(j)的Msg1重复传输。准共址信号SSB(j)对应的目标preamble子集的确定方式可以是k mod N=j,m=0,1,…,K-1表示K个preamble的索引,或者[j*(M/N)+0,j*(M/N)+(M/N-1)]或者其他子集划分方式,其中,mod表示求余数。
例如,SSB与RO资源的关联周期可以对应于不同的准共址信号SSB(j)。从参考时间点(例如无线帧0)开始连续的x*N(x为正整数,由协议定义或者系统消息配置)个用于Msg1传输的SSB与RO的关联周期与SSB集合{SSB(i_1),SSB(i_2),…SSB(i_N)}中的N个SSB存在关联关系。根据协议定义,用于Msg1传输的SSB与RO资源的关联从无线帧0开始映射,因此,第一个关联周期可以对应于准共址信号SSB(j=i_0),第二个关联周期可以对应于准共址信号SSB(j=i_1),依次类推。
在本申请实施例中,通过数学映射关系将目标PRACH资源与准共址信号关联起来,从而可以根据两者的关联关系确定准共址信号,以保证终端和网络侧设备对准共址信号有一致的理解,进而有效保证下行信号的成功传输。
可选地,在所述终端设备发送多个物理随机接入信道PRACH信号之前,所述方法还包括:
所述终端设备从所述多个不同下行参考信号中确定所述准共址信号;
所述终端设备基于所述准共址信号的第二索引,确定与所述第二索引相关联的所述第一索引;
所述终端设备基于所述第一索引,确定所述多个PRACH信号的所述目标PRACH资源。
可选地,终端设备可以从多个不同下行参考信号中确定准共址信号。
可选地,终端设备可以基于准共址信号的第二索引,确定与第二索引相关联的第一索引。
可选地,终端设备可以基于准共址信号的第二索引,并基于第二索引与第一索引之间的数学关系,确定与第二索引相关联的第一索引。
可选地,终端设备可以基于第一索引,确定多个PRACH信号的目标PRACH资源。
例如,终端设备可以基于第二索引,并基于第一索引与第二索引之间的数学关系,确定多个PRACH信号的第一索引对应的目标RO资源,并从目标RO资源中选择一个目标RO资源作为Msg1发送资源。
例如,终端设备可以基于第二索引,并基于第一索引与第二索引之间的数学关系,确定多个PRACH信号的第一索引对应的目标preamble资源,并从目标preamble资源中选择一个目标preamble资源作为Msg1发送资源。
例如,终端设备可以基于第二索引,并基于第一索引与第二索引之间的数学关系,确定多个PRACH信号的目标映射周期。
可选地,所述终端设备从所述多个不同下行参考信号中确定所述准共址信号,包括:
所述终端设备基于参考信号接收质量,从所述多个不同下行参考信号中确定所述参考信号接收质量的值最大的下行参考信号作为所述准共址信号。
可选地,终端设备可以基于参考信号接收质量,从多个不同下行参考信号中确定参考信号接收质量的值最大的下行参考信号作为准共址信 号。
可选地,参考信号接收质量可以包括参考信号接收功率(RSRP)或参考信号接收质量(Reference Signal Receiving Quality,RSRQ)或信噪比(Signal to Interference plus Noise Ratio,SINR)。
例如,终端设备可以从SSB集合中选择一个SSB作为Msg2和Msg4的准共址信号。选择方法可以包括以下至少一项:
(1)基于终端实现进行随机选择;
(2)选择RSRP或者RSRQ或者SINR最好的SSB;
(3)根据网络侧设备配置的门限值进行选择。如果存在SS-RSRP高于门限值的SSB,从满足条件的多个SSB中选择一个SSB;如果没有高于门限值的SSB,则可以按照方法(1)或者(2)选择SSB。
可选地,在没有满足条件的SSB的情况下,终端设备可以从专用preamble集合中选择preamble发送Msg1,所述专用preamble集合不用于准共址信号的关联并且由系统消息配置。终端设备可以根据预设规则,监听所有SSB关联的RO资源对应的RAR,即终端设备监听多个波束对应的RAR;对应的,网络侧设备检测到专用preamble集合中的preamble,则按照预设规则,分别使用Msg1重复传输关联的多个SSB发送下行信号。
可选地,所述终端设备从所述多个不同下行参考信号中确定所述准共址信号,包括:
在所述多个不同下行参考信号中存在第一下行参考信号的情况下,所述终端设备从所述第一下行参考信号中随机确定一个下行参考信号作为所述准共址信号,或所述终端设备从所述第一下行参考信号中确定所述参考信号接收质量的值最大的第一下行参考信号作为所述准共址信号;
在所述多个不同下行参考信号中不存在所述第一下行参考信号的情 况下,所述终端设备从所述多个不同下行参考信号中随机确定一个下行参考信号作为所述准共址信号,或所述终端设备从所述多个不同下行参考信号中确定所述参考信号接收质量的值最大的下行参考信号作为所述准共址信号;
其中,所述第一下行参考信号是所述参考信号接收质量的值大于第一阈值的下行参考信号。
可选地,在多个不同下行参考信号中存在第一下行参考信号的情况下,终端设备可以从第一下行参考信号中随机确定一个下行参考信号作为准共址信号。
可选地,在多个不同下行参考信号中存在第一下行参考信号的情况下,终端设备可以从第一下行参考信号中确定参考信号接收质量的值最大的第一下行参考信号作为准共址信号。
可选地,在多个不同下行参考信号中不存在第一下行参考信号的情况下,终端设备可以从多个不同下行参考信号中随机确定一个下行参考信号作为准共址信号。
可选地,在多个不同下行参考信号中不存在第一下行参考信号的情况下,终端设备可以从多个不同下行参考信号中确定参考信号接收质量的值最大的下行参考信号作为准共址信号。
可选地,第一下行参考信号可以是参考信号接收质量的值大于第一阈值的下行参考信号。
可选地,第一阈值可以是网络侧设备配置的门限值,也可以是预设的门限值,本申请实施例对此不作具体限定。
可选地,第一阈值的大小可以根据需求任意配置或设置,本申请实施例对此不作具体限定。
可选地,所述终端设备发送多个物理随机接入信道PRACH信号,包括:
所述终端设备随机确定多个PRACH资源,发送所述多个PRACH信号;
所述方法还包括:
所述终端设备基于随机确定的所述多个PRACH资源中的目标PRACH资源,确定所述准共址信号。
可选地,终端设备可以随机确定多个PRACH资源,发送多个PRACH信号。
例如,终端设备可以随机确定多个RO资源,发送多个PRACH信号。
例如,终端设备可以随机确定多个preamble资源,发送多个PRACH信号。
可选地,终端设备可以基于随机确定的多个PRACH资源中的目标PRACH资源,确定准共址信号。
可选地,终端设备可以基于选择的准共址信号在Msg1重复发送的参考信号关联顺序,确定Msg1的发送资源(例如RO index或者preamble或者Msg1的发送时间)。
例如,当一个SSB与多个RO资源关联时,终端设备可以根据准共址信号在Msg1重复发送的参考信号关联顺序,从SSB关联的多个RO资源中确定一个RO子集发送Msg1。
例如,终端设备根据准共址信号在Msg1重复发送的参考信号关联顺序,从每个RO资源中包含的preamble集合中确定一个preamble子集发送Msg1。
例如,SSB到RO资源的映射周期中,不同时间范围(映射周期)可以对应于不同准共址信号。
可选地,终端设备可以基于协议预定义的规则或者系统消息配置的规则选择准共址信号。所述规则可以是上述提及的第一索引与第二索引 的关联关系。
可选的,终端设备根据准共址信号确定第一下行信号的接收波束。下面通过一个具体的实施例对本申请实施例提供的随机接入方法进行说明。
假设终端设备随机地从Msg1的资源(RO和preamble)中选择目标资源,并发送Msg1。网络侧设备和终端可以根据Msg1的资源确定Msg2和Msg4的准共址信号(SSB/CSI-RS)。终端根据准共址信号确定Msg2和Msg4的接收波束。
例如,终端设备重复发送Msg1时使用preamble I资源,根据协议定义或者系统消息配置的规则,preamble I对应于Msg1重复发送时第J次发送的Msg1所关联的SSB(J),则网络侧设备和终端设备使用SSB(J)作为Msg2和Msg4的准共址信号。
例如,终端设备选择SSB0和SSB1作为Msg1重复发送的关联SSB。终端设备在SSB0关联的RO资源和SSB1关联的RO资源上分别发送Msg1,并且preamble index相同。如果preamble index为偶数,网络侧设备和终端设备可以使用SSB0作为Msg2和Msg4传输的准共址信号;如果为奇数,则可以使用SSB1作为准共址信号。
在本申请实施例中,通过将发送的多个PRACH信号使用的多个PRACH资源中的目标PRACH资源与准共址信号相关联,从而可以通过使用目标PRACH资源发送多个PRACH以指示与目标PRACH资源相关联的准共址信号,以保证终端和网络侧设备对准共址信号有一致的理解,进而有效保证下行信号的成功传输。
图10是本申请实施例提供的随机接入方法的流程示意图之二,如图10所示,该方法包括:
步骤1000,网络侧设备接收多个PRACH信号,所述多个PRACH信号使用的多个PRACH资源分别关联于多个不同下行参考信号;其中, 所述多个PRACH资源中的目标PRACH资源与准共址信号相关联;所述准共址信号是所述多个不同下行参考信号的其中一个或者多个;
步骤1010,所述网络侧设备基于所述目标PRACH资源,确定第一下行信号的准共址信号;
其中,所述第一下行信号为Msg2消息或者Msg3重传调度信息或者Msg4消息。
可选地,网络侧设备可以接收终端设备发送的多个PRACH信号。
具体地,所述多个不同下行参考信号可以是SSB集合或者CSI-RS集合的子集,由终端按照协议预定义规则或者系统消息指示的规则来确定,所述多个不同下行参考信号用于分别确定多个PRACH信号的传输资源。
可选地,多个PRACH资源中的目标PRACH资源可以与准共址信号相关联。
例如,多个RO资源中的目标资源可以与准共址信号相关联。
例如,多个preamble资源中的目标preamble可以与准共址信号相关联。
例如,多个映射周期中的目标映射周期可以与准共址信号相关联。
可选地,网络侧设备在接收到多个PRACH后,可以基于多个PRACH资源中的目标PRACH资源,确定与所述多个PRACH资源中的目标PRACH资源相关联的准共址信号。
可选地,准共址信号可以是多个不同下行参考信号的其中一个或者多个。
例如,多个不同下行参考信号为SSB0、SSB1、SSB2和SSB3,则准共址信号可以是SSB0或SSB1或SSB2或SSB3,也可以是SSB0和SSB1,或SSB1和SSB3,或SSB0、SSB1和SSB2等。
可选地,网络侧设备可以基于目标PRACH资源,确定第一下行信号 的准共址信号。
可选地,第一下行信号可以为Msg2消息或者Msg3重传调度信息或者Msg4消息。
可选地,终端在发送Msg1时按照协议预定义规则选择目标资源,网络侧设备在检测到Msg1后,可以根据Msg1使用的RO资源或者preamble资源确定Msg2和Msg4的准共址信号(SSB/CSI-RS)。
例如,终端在发送Msg1时按照协议预定义规则选择preamble资源,网络侧设备根据preamble index确定Msg2和Msg4的准共址信号。
可选地,本申请实施例提供的随机接入方法,除了适用于Msg2和Msg4,还适用于调度Msg3重传的PDCCH的准共址信号。
下面通过一个具体的实施例对本申请实例提供的随机接入方法进行介绍。
在初始接入阶段,终端设备选择使用一组SSB多次发送Msg1,终端选择的一组SSB为SSB(i_0),SSB(i_1),…SSB(i_N-1),并且其对应的信号质量为SS-RSRP(i_0),SS-RSRP(i_1),…SS-RSRP(i_N-1)。
可选地,终端设备可以从SSB集合中选择一个SSB作为Msg2和Msg4的准共址信号。选择方法可以包括以下至少一项:
(1)基于终端实现进行随机选择;
(2)选择RSRP或者RSRQ或者SINR最好的SSB;
(3)根据网络侧设备配置的门限值进行选择。如果存在SS-RSRP高于门限值的SSB,从满足条件的多个SSB中选择一个SSB;如果没有高于门限值的SSB,则可以按照方法(1)或者(2)选择SSB。
可选地,在没有满足条件的SSB的情况下,终端设备可以从专用preamble集合中选择preamble发送Msg1,所述专用preamble集合不用于准共址信号的关联并且由系统消息配置。终端设备可以根据预设规则,监听所有SSB关联的RO资源对应的RAR,即终端设备监听多个波 束对应的RAR;对应的,网络侧设备检测到专用preamble集合中的preamble,则按照预设规则,分别使用Msg1重复传输关联的多个SSB发送下行信号。
例如,终端选择SSB(j)作为Msg2和Msg4的准共址信号,SSB(j)属于SSB集合{SSB(i_0),SSB(i_1),…SSB(i_N-1)}。按照SSB索引或者Msg1重复发送时SSB关联顺序,SSB(j)在SSB集合中的顺序可以为j。
可选地,终端设备可以根据准共址信号SSB(j)的顺序确定Msg1发送的RO资源或者preamble或者时间段。
例如,在终端多次发送PRACH信号选择使用的一组SSB即{SSB(i_0),SSB(i_1),…SSB(i_N-1)}中,每个SSB用于Msg1发送的关联M个RO资源,且M>1(M的大小可以由系统消息配置确定,这种情况下,每个SSB用于Msg1发送的M个资源互不相同),根据预定义规则或者由系统消息配置的规则,M个RO资源与准共址信号SSB(j)的顺序(第二索引)可以存在数学映射关系,M个RO的一个子集可以用于多次发送PRACH的SSB集合{SSB(i_0),SSB(i_1),…SSB(i_N-1)}且第一下行信号的准共址信号SSB(j)的Msg1重复传输,即从SSB(i)用于Msg1发送的关联的RO集合中根据第一下行信号的准共址信号选择一个子集来发送Msg1。RO子集的确定方式可以是m mod N=j,m=0,1,…,M-1表示M个RO的索引,或者[j*(M/N)+0,j*(M/N)+(M/N-1)]或者其他子集划分方式,其中,mod表示求余数。
例如,一个SSB的关联RO资源中preamble编号的集合为p_0~p_K-1,根据预定义规则,K个preamble与准共址信号SSB(j)的顺序存在映射关系,K个preamble的一个子集可以用于多次发送PRACH的SSB集合{SSB(i_1),SSB(i_2),…SSB(i_N)}且第一下行信号的准共址信号SSB(j)的Msg1重复传输。preamble子集的确定方式可以是k mod N=j,m=0,1,…,K-1表示K个preamble的编号,或者[j*(M/N)+0, j*(M/N)+(M/N-1)]或者其他子集划分方式,其中,mod表示求余数。
例如,SSB与RO资源的关联周期对应于不同的准共址信号SSB(j)。从参考时间点(例如无线帧0)开始连续的x*N(x为正整数,由协议定义或者系统消息配置)个用于Msg1传输的SSB与RO的关联周期与SSB集合{SSB(i_1),SSB(i_2),…SSB(i_N)}中的N个SSB存在关联关系。根据协议定义,用于Msg1传输的SSB与RO资源的关联从无线帧0开始映射,因此,第一个关联周期对应于准共址信号SSB(j=i_0),第二个关联周期对应于准共址信号SSB(j=i_1),依次类推。
可选地,终端设备可以从上述集合中选择RO资源和preamble资源来发送Msg1。
可选地,网络侧设备检测到重复发送的Msg1后,可以根据RO资源和preamble资源确定Msg2和Msg4的准共址参考信号。在本申请实施例中,网络侧设备通过基于接收的多个PRACH信号使用的多个PRACH资源中的目标PRACH资源与准共址信号的关联关系,确定准共址信号,以保证网络侧设备和终端对准共址信号有一致的理解,进而有效保证下行信号的成功传输。
可选地,所述PRACH资源包括以下至少一项:
物理随机接入信道机会RO资源;
前导码preamble;
所述下行参考信号与所述RO资源的映射周期。
可选地,PRACH资源可以包括以下至少一项:
物理随机接入信道机会RO资源;或
前导码preamble;或
所述下行参考信号与所述RO资源的映射周期。
例如,多个RO资源中的目标RO资源可以与准共址信号相关联。
例如,多个preamble资源中的目标preamble可以与准共址信号相关 联。
例如,多个映射周期中的目标映射周期可以与准共址信号相关联。
可选地,与一个准共址信号相关联的所有所述目标PRACH资源的第一索引相同。
可选地,目标PRACH资源各自的第一索引可以相同。
例如,在目标PRACH资源是至少一个RO资源的情况下,至少一个RO资源对应的第一索引可以是相同的。
例如,在目标PRACH资源是至少一个preamble资源的情况下,至少一个preamble资源对应的第一索引可以是相同的。
可选地,多个PRACH资源可以全部作为目标PRACH资源,也可以部分作为目标PRACH资源。
可选地,多个PRACH资源中的部分作为目标PRACH资源的情况下,在网络侧设备接收到多个PRACH后,可以确定多个PRACH资源,进而可以确定多个PRACH资源各自的第一索引,当网络侧设备基于所有的第一索引确定其中有大量的第一索引相同,即可以确定这些相同的第一索引对应的PRACH资源为目标PRACH资源,进而可以基于这些相同的第一索引确定与该第一索引相关联的准共址信号。
可选地,多个PRACH资源中的全部均作为目标PRACH资源的情况下,在网络侧设备接收到多个PRACH后,可以确定多个PRACH资源,进而可以确定这些PRACH资源各自的第一索引,由于这些第一索引均相同,即可以基于这些相同的第一索引确定与该第一索引相关联的准共址信号。
可选地,在准共址信号是多个的情况下,以准共址信号包括SSB1和SSB2,目标PRACH资源是目标RO资源为例,目标RO资源所在的子集中可以包括第一索引均为a的多个RO资源和第一索引均为b的多个RO资源,其中第一索引均为a的多个RO资源可以与SSB1相关联,第一索 引均为b的多个RO资源可以与SSB2相关联;在网络侧设备接收到多个PRACH后,可以确定多个PRACH资源,进而可以确定这些PRACH资源各自的第一索引,由于这些第一索引包括a和b,则可以确定第一索引a关联的SSB1为准共址信号,确定第一索引b关联的SSB2为准共址信号。
可选地,所述目标PRACH资源的所述第一索引包括以下至少一项:
在所述PRACH资源是所述RO资源的情况下,所述目标PRACH资源的第一索引为:所述多个不同下行参考信号中每一个下行参考信号分别对应的第一RO集合内,所述RO资源的索引,其中,所述第一RO集合包括一个所述下行参考信号映射的所有RO资源;
或者,
在所述PRACH资源是所述preamble的情况下,所述目标PRACH资源的第一索引为:在所述多个不同下行参考信号中每一个下行参考信号分别对应的第一preamble集合中,所述preamble的索引,其中,所述第一preamble集合包括所述一个下行参考信号映射的任一个RO资源内的可用preamble,所述可用preamble通过系统消息配置确定;
或者,
在所述PRACH资源是所述映射周期的情况下,所述目标PRACH资源的第一索引为:在所述多个不同下行参考信号中每一个下行参考信号分别对应的第一映射图案周期内,所述映射周期的索引,其中,所述第一映射图案周期包含多个连续的映射周期,其中第一映射图案周期的起始时刻和时间长度由协议定义或者系统消息配置。
例如,在PRACH资源是RO资源的情况下,终端设备可以根据准共址信号在PRACH重复发送的下行参考信号中的关联顺序,从SSB关联的RO资源集合中确定一个RO子集关联于所述准共址信号,来发送Msg1。
例如,在PRACH资源是RO资源的情况下,终端设备可以基于准共址信号在Msg1重复发送的多个不同下行参考信号中的顺序,即准共址信号对应的第二索引,并基于RO资源的第一索引与第二索引之间的关联关系,确定RO资源的第一索引。
可选地,在PRACH资源是preamble的情况下,目标PRACH资源的第一索引可以为:在所述多个不同下行参考信号中每一个下行参考信号分别对应的第一preamble集合中,所述preamble的索引,其中,一个下行参考信号对应的第一preamble集合包括所述一个下行参考信号映射的任一个RO资源内的所有preamble。
例如,在PRACH资源是preamble的情况下,终端设备可以根据准共址信号在重复发送的参考信号中的关联顺序,从用于Msg1重复传输的preamble集合中确定一个preamble子集关联于所述准共址信号来发送Msg1。
例如,在PRACH资源是preamble的情况下,终端设备可以基于准共址信号在Msg1重复发送的多个不同下行参考信号中的顺序,即准共址信号对应的第二索引,并基于preamble的第一索引与第二索引之间的关联关系,确定preamble的第一索引。
可选地,在PRACH资源是映射周期的情况下,目标PRACH资源的第一索引可以为:在所述多个不同下行参考信号中每一个下行参考信号分别对应的第一映射周期图案内,所述映射周期的索引,其中,一个下行参考信号对应的第一映射周期图案是所述一个下行参考信号与其映射的任一个RO资源之间的映射周期图案。
例如,在SSB到RO资源的映射周期中,不同时间范围或映射周期对应于不同的准共址信号。
可选地,在PRACH资源是RO资源的情况下,对于传输多个PRACH的多个SSB中任意一个SSB,终端设备可以确定该SSB映射的 RO集合中索引为第一索引的RO资源作为目标资源,即多个SSB中针对每一个SSB都确定了一个索引为第一索引的RO资源作为目标资源,用于发送Msg1;在PRACH资源是preamble或映射周期的情况下,均可以参照PRACH资源是RO资源的情况,在此不再赘述。
可选地,所述准共址信号的第二索引与所述第一索引相关联;
所述第二索引为所述准共址信号在所述多个不同下行参考信号中的索引。
可选地,准共址信号的第二索引可以与目标PRACH资源的第一索引相关联。
可选地,第二索引可以为准共址信号在多个不同下行参考信号中的索引。
例如,终端选择使用一组SSB来发送多次Msg1,终端选择的一组SSB(多个不同下行参考信号)为SSB(i_0),SSB(i_1),…SSB(i_N-1),终端选择SSB(j)作为Msg2和Msg4的准共址信号,则准共址信号的第二索引为j。例如,j表示SSB(j)按照SSB编号从小到大在集合SSB(i_0),SSB(i_1),…SSB(i_N-1)中的位置。
可选地,所述第二索引与所述第一索引之间的关联关系包括数学关系。
可选地,第二索引可以与第一索引之间的关联关系包括数学关系。
可选地,所述数学关系可以由协议预定义或者由系统消息配置。例如,在终端多次发送PRACH信号选择使用的一组SSB即{SSB(i_0),SSB(i_1),…SSB(i_N-1)}中,每个SSB用于Msg1发送的关联M个RO资源,且M>1(M的大小可以由系统消息配置确定,这种情况下,每个SSB用于Msg1发送的M个资源互不相同),根据预定义规则或者由系统消息配置的规则,M个RO资源与准共址信号SSB(j)的顺序(第二索引)可以存在数学映射关系,M个RO的一个子集可以用于 多次发送PRACH的SSB集合{SSB(i_0),SSB(i_1),…SSB(i_N-1)}且第一下行信号的准共址信号SSB(j)的Msg1重复传输,即从SSB(i)用于Msg1发送的关联的RO集合中根据第一下行信号的准共址信号选择一个子集来发送Msg1。RO子集的确定方式可以是m mod N=j,m=0,1,…,M-1表示M个RO的索引,或者[j*(M/N)+0,j*(M/N)+(M/N-1)]或者其他子集划分方式,其中,mod表示求余数。
例如,一个SSB关联的RO资源中preamble的索引集合为p_0~p_K-1,根据预定义规则,K个preamble与准共址信号SSB(j)的顺序(第二索引)可以存在数学映射关系,K个preamble的一个子集可以用于多次发送PRACH的SSB集合{SSB(i_1),SSB(i_2),…SSB(i_N)}且第一下行信号的准共址信号SSB(j)的Msg1重复传输。preamble子集的确定方式可以是k mod N=j,m=0,1,…,K-1表示K个preamble的索引,或者[j*(M/N)+0,j*(M/N)+(M/N-1)]或者其他子集划分方式,其中,mod表示求余数。
例如,SSB与RO资源的关联周期可以对应于不同的准共址信号SSB(j)。从参考时间点(例如无线帧0)开始连续的x*N(x为正整数,由协议定义或者系统消息配置)个用于Msg1传输的SSB与RO的关联周期与SSB集合{SSB(i_1),SSB(i_2),…SSB(i_N)}中的N个SSB存在关联关系。根据协议定义,用于Msg1传输的SSB与RO资源的关联从无线帧0开始映射,因此,第一个关联周期可以对应于准共址信号SSB(j=i_0),第二个关联周期可以对应于准共址信号SSB(j=i_1),依次类推。
在本申请实施例中,网络侧设备通过基于接收的多个PRACH信号使用的多个PRACH资源中的目标PRACH资源与准共址信号的关联关系,确定准共址信号,以保证网络侧设备和终端对准共址信号有一致的理解,进而有效保证下行信号的成功传输。
需要说明的是,本申请实施例提供的随机接入方法,执行主体可以为随机接入装置,或者,该随机接入装置中的用于执行随机接入的方法的控制模块。本申请实施例中以随机接入装置执行随机接入的方法为例,说明本申请实施例提供的随机接入装置。
图11是本申请实施例提供的随机接入装置的结构示意图之一,如图11所示,包括:第一发送模块1110;其中:
第一发送模块1110用于发送多个物理随机接入信道PRACH信号,所述多个PRACH信号使用的多个PRACH资源分别对应于多个不同下行参考信号;
其中,所述多个PRACH信号使用的多个PRACH资源中的目标PRACH资源与准共址信号相关联;所述准共址信号是所述多个不同下行参考信号的其中一个或者多个;所述准共址信号用于所述终端设备对第一下行信号的接收,所述第一下行信号为Msg2消息或者Msg3重传调度信息或者Msg4消息。
在本申请实施例中,通过将发送的多个PRACH信号使用的多个PRACH资源中的目标PRACH资源与准共址信号相关联,从而可以通过使用目标PRACH资源发送多个PRACH以指示与目标PRACH资源相关联的准共址信号,以保证终端和网络侧设备对准共址信号有一致的理解,进而有效保证下行信号的成功传输。
可选地,所述PRACH资源包括以下至少一项:
物理随机接入信道机会RO资源;
前导码preamble;
所述下行参考信号与所述RO资源的映射周期。
可选地,与一个准共址信号相关联的所有所述目标PRACH资源的第一索引相同。
可选地,所述目标PRACH资源的所述第一索引包括以下至少一项:
在所述PRACH资源是所述RO资源的情况下,所述目标PRACH资源的第一索引为:所述多个不同下行参考信号中每一个下行参考信号分别对应的第一RO集合内,所述RO资源的索引,其中,所述第一RO集合包括一个所述下行参考信号映射的所有RO资源;
或者,
在所述PRACH资源是所述preamble的情况下,所述目标PRACH资源的第一索引为:在所述多个不同下行参考信号中每一个下行参考信号分别对应的第一preamble集合中,所述preamble的索引,其中,所述第一preamble集合包括所述一个下行参考信号映射的任一个RO资源内的可用preamble,所述可用preamble通过系统消息配置确定;
或者,
在所述PRACH资源是所述映射周期的情况下,所述目标PRACH资源的第一索引为:在所述多个不同下行参考信号中每一个下行参考信号分别对应的第一映射图案周期内,所述映射周期的索引,其中,所述第一映射图案周期包含多个连续的映射周期,其中第一映射图案周期的起始时刻和时间长度由协议定义或者系统消息配置。
可选地,所述准共址信号的第二索引与所述第一索引相关联;
所述第二索引为所述准共址信号在所述多个不同下行参考信号中的索引。
可选地,所述第二索引与所述第一索引之间的关联关系包括数学关系。
可选地,所述装置还包括:第一确定模块、第二确定模块和第三确定模块,其中:
第一确定模块,用于在所述终端设备发送多个物理随机接入信道PRACH信号之前,所述终端设备从所述多个不同下行参考信号中确定所述准共址信号;
第二确定模块,用于在所述终端设备发送多个物理随机接入信道PRACH信号之前,所述终端设备基于所述准共址信号的第二索引,确定与所述第二索引相关联的所述第一索引;
第三确定模块,用于在所述终端设备发送多个物理随机接入信道PRACH信号之前,所述终端设备基于所述第一索引,确定所述多个PRACH信号的所述目标PRACH资源。
可选地,所述第一确定模块还用于:
基于参考信号接收功率质量,从所述多个不同下行参考信号中确定所述参考信号接收功率质量的值最大的下行参考信号作为所述准共址信号。
可选地,所述第一确定模块还用于:
在所述多个不同下行参考信号中存在第一下行参考信号的情况下,所述终端设备从所述第一下行参考信号中随机确定一个下行参考信号作为所述准共址信号,或所述终端设备从所述第一下行参考信号中确定所述参考信号接收功率质量的值最大的第一下行参考信号作为所述准共址信号;
在所述多个不同下行参考信号中不存在所述第一下行参考信号的情况下,所述终端设备从所述多个不同下行参考信号中随机确定一个下行参考信号作为所述准共址信号,或所述终端设备从所述多个不同下行参考信号中确定所述参考信号接收功率质量的值最大的下行参考信号作为所述准共址信号;
其中,所述第一下行参考信号是所述参考信号接收功率质量的值大于第一阈值的下行参考信号。
可选地,所述第一发送模块还用于:
随机确定多个PRACH资源,发送所述多个PRACH信号;
基于随机确定的所述多个PRACH资源中的目标PRACH资源,确定 所述准共址信号。
在本申请实施例中,通过将发送的多个PRACH信号使用的多个PRACH资源中的目标PRACH资源与准共址信号相关联,从而可以通过使用目标PRACH资源发送多个PRACH以指示与目标PRACH资源相关联的准共址信号,以保证终端和网络侧设备对准共址信号有一致的理解,进而有效保证下行信号的成功传输。
图12是本申请实施例提供的随机接入装置的流程示意图之二,如图12所示,包括:第一接收模块1210和第四确定模块1220;其中:
第一接收模块1210用于接收多个PRACH信号,所述多个PRACH信号使用的多个PRACH资源分别关联于多个不同下行参考信号;其中,所述多个PRACH资源中的目标PRACH资源与准共址信号相关联;所述准共址信号是所述多个不同下行参考信号的其中一个或者多个;
第四确定模块1220用于基于所述目标PRACH资源,确定第一下行信号的准共址信号;
其中,所述第一下行信号为Msg2消息或者Msg3重传调度信息或者Msg4消息。
可选地,随机接入装置可以通过第一接收模块1210接收多个PRACH信号;然后基于目标PRACH资源,通过第四确定模块1220确定第一下行信号的准共址信号。
在本申请实施例中,网络侧设备通过基于接收的多个PRACH信号使用的多个PRACH资源中的目标PRACH资源与准共址信号的关联关系,确定准共址信号,以保证网络侧设备和终端对准共址信号有一致的理解,进而有效保证下行信号的成功传输。
可选地,所述PRACH资源包括以下至少一项:
物理随机接入信道机会RO资源;
前导码preamble;
所述下行参考信号与所述RO资源的映射周期。
可选地,与一个准共址信号相关联的所有所述目标PRACH资源的第一索引相同。
可选地,所述目标PRACH资源的所述第一索引包括以下至少一项:
在所述PRACH资源是所述RO资源的情况下,所述目标PRACH资源的第一索引为:所述多个不同下行参考信号中每一个下行参考信号分别对应的第一RO集合内,所述RO资源的索引,其中,所述第一RO集合包括一个所述下行参考信号映射的所有RO资源;
或者,
在所述PRACH资源是所述preamble的情况下,所述目标PRACH资源的第一索引为:在所述多个不同下行参考信号中每一个下行参考信号分别对应的第一preamble集合中,所述preamble的索引,其中,所述第一preamble集合包括所述一个下行参考信号映射的任一个RO资源内的可用preamble,所述可用preamble通过系统消息配置确定;
或者,
在所述PRACH资源是所述映射周期的情况下,所述目标PRACH资源的第一索引为:在所述多个不同下行参考信号中每一个下行参考信号分别对应的第一映射图案周期内,所述映射周期的索引,其中,所述第一映射图案周期包含多个连续的映射周期,其中第一映射图案周期的起始时刻和时间长度由协议定义或者系统消息配置。
可选地,所述准共址信号的第二索引与所述第一索引相关联;
所述第二索引为所述准共址信号在所述多个不同下行参考信号中的索引。
可选地,所述第二索引与所述第一索引之间的关联关系包括数学关系。
在本申请实施例中,网络侧设备通过基于接收的多个PRACH信号使 用的多个PRACH资源中的目标PRACH资源与准共址信号的关联关系,确定准共址信号,以保证网络侧设备和终端对准共址信号有一致的理解,进而有效保证下行信号的成功传输。
本申请实施例中的随机接入装置可以是装置,具有操作系统的装置或电子设备,也可以是终端中的部件、集成电路、或芯片。该装置或电子设备可以是移动终端,也可以为非移动终端。示例性的,移动终端可以包括但不限于上述所列举的终端11的类型,非移动终端可以为服务器、网络附属存储器(Network Attached Storage,NAS)、个人计算机(personal computer,PC)、电视机(television,TV)、柜员机或者自助机等,本申请实施例不作具体限定。
本申请实施例提供的随机接入装置能够实现图9和图10的方法实施例实现的各个过程,并达到相同的技术效果,为避免重复,这里不再赘述。
可选的,图13是本申请实施例提供的通信设备的结构示意图。如图13所示,本申请实施例还提供一种通信设备1300,包括处理器1301,存储器1302,存储在存储器1302上并可在所述处理器1301上运行的程序或指令,例如,该通信设备1300为终端时,该程序或指令被处理器1301执行时实现上述随机接入方法实施例的各个过程,且能达到相同的技术效果。该终端设备1300为网络侧设备时,该程序或指令被处理器1301执行时实现上述随机接入方法实施例的各个过程,且能达到相同的技术效果,为避免重复,这里不再赘述。
本申请实施例还提供一种终端,包括处理器和通信接口,通信接口用于:发送多个物理随机接入信道PRACH信号,所述多个PRACH信号使用的多个PRACH资源分别对应于多个不同下行参考信号;其中,所述多个PRACH信号使用的多个PRACH资源中的目标PRACH资源与准共址信号相关联;所述准共址信号是所述多个不同下行参考信号的其中一 个或者多个;所述准共址信号用于所述终端设备对第一下行信号的接收,所述第一下行信号为Msg2消息或者Msg3重传调度信息或者Msg4消息。该终端实施例是与上述终端侧方法实施例对应的,上述方法实施例的各个实施过程和实现方式均可适用于该终端实施例中,且能达到相同的技术效果。具体地,图14为实现本申请实施例的终端设备的硬件结构示意图。
该终端设备1400包括但不限于:射频单元1401、网络模块1402、音频输出单元1403、输入单元1404、传感器1405、显示单元1406、用户输入单元1407、接口单元1408、存储器1409、以及处理器1410等中的至少部分部件。
本领域技术人员可以理解,终端设备1400还可以包括给各个部件供电的电源(比如电池),电源可以通过电源管理系统与处理器1410逻辑相连,从而通过电源管理系统实现管理充电、放电、以及功耗管理等功能。图14中示出的终端设备结构并不构成对终端设备的限定,终端设备可以包括比图示更多或更少的部件,或者组合某些部件,或者不同的部件布置,在此不再赘述。
应理解的是,本申请实施例中,输入单元1404可以包括图形处理器(Graphics Processing Unit,GPU)14041和麦克风14042,图形处理器14041对在视频捕获模式或图像捕获模式中由图像捕获装置(如摄像头)获得的静态图片或视频的图像数据进行处理。显示单元1406可包括显示面板14061,可以采用液晶显示器、有机发光二极管等形式来配置显示面板14061。用户输入单元1407包括触控面板14071以及其他输入设备14072。触控面板14071,也称为触摸屏。触控面板12071可包括触摸检测装置和触摸控制器两个部分。其他输入设备14072可以包括但不限于物理键盘、功能键(比如音量控制按键、开关按键等)、轨迹球、鼠标、操作杆,在此不再赘述。
本申请实施例中,射频单元1401将来自网络侧设备的下行数据接收后,给处理器1410处理;另外,将上行的数据发送给网络侧设备。通常,射频单元1401包括但不限于天线、至少一个放大器、收发信机、耦合器、低噪声放大器、双工器等。
存储器1409可用于存储软件程序或指令以及各种数据。存储器1409可主要包括存储程序或指令区和存储数据区,其中,存储程序或指令区可存储操作系统、至少一个功能所需的应用程序或指令(比如声音播放功能、图像播放功能等)等。此外,存储器1409可以包括高速随机存取存储器,还可以包括非易失性存储器,其中,非易失性存储器可以是只读存储器(Read-Only Memory,ROM)、可编程只读存储器(Programmable ROM,PROM)、可擦除可编程只读存储器(Erasable PROM,EPROM)、电可擦除可编程只读存储器(Electrically EPROM,EEPROM)或闪存。例如至少一个磁盘存储器件、闪存器件、或其他非易失性固态存储器件。
处理器1410可包括一个或多个处理单元;可选的,处理器1410可集成应用处理器和调制解调处理器,其中,应用处理器主要处理操作系统、用户界面和应用程序或指令等,调制解调处理器主要处理无线通信,如基带处理器。可以理解的是,上述调制解调处理器也可以不集成到处理器1410中。
其中,处理器1410用于:
发送多个物理随机接入信道PRACH信号,所述多个PRACH信号使用的多个PRACH资源分别对应于多个不同下行参考信号;
其中,所述多个PRACH信号使用的多个PRACH资源中的目标PRACH资源与准共址信号相关联;所述准共址信号是所述多个不同下行参考信号的其中一个或者多个;所述准共址信号用于所述终端设备对第一下行信号的接收,所述第一下行信号为Msg2消息或者Msg3重传调度信息或者Msg4消息。
在本申请实施例中,通过将发送的多个PRACH信号使用的多个PRACH资源中的目标PRACH资源与准共址信号相关联,从而可以通过使用目标PRACH资源发送多个PRACH以指示与目标PRACH资源相关联的准共址信号,以保证终端和网络侧设备对准共址信号有一致的理解,进而有效保证下行信号的成功传输。
可选地,所述PRACH资源包括以下至少一项:
物理随机接入信道机会RO资源;
前导码preamble;
所述下行参考信号与所述RO资源的映射周期。
可选地,与一个准共址信号相关联的所有所述目标PRACH资源的第一索引相同。
可选地,所述目标PRACH资源的所述第一索引包括以下至少一项:
在所述PRACH资源是所述RO资源的情况下,所述多个不同下行参考信号中每一个下行参考信号分别对应的第一RO集合内,所述RO资源的索引,其中,所述第一RO集合包括一个所述下行参考信号映射的所有RO资源;
或者,
在所述PRACH资源是所述preamble的情况下,所述目标PRACH资源的第一索引为:在所述多个不同下行参考信号中每一个下行参考信号分别对应的第一preamble集合中,所述preamble的索引,其中,所述第一preamble集合包括所述一个下行参考信号映射的任一个RO资源内的可用preamble,所述可用preamble通过系统消息配置确定;
或者,
在所述PRACH资源是所述映射周期的情况下,所述目标PRACH资源的第一索引为:在所述多个不同下行参考信号中每一个下行参考信号分别对应的第一映射图案周期内,所述映射周期的索引,其中,所述第 一映射图案周期包含多个连续的映射周期,其中第一映射图案周期的起始时刻和时间长度由协议定义或者系统消息配置。
可选地,所述准共址信号的第二索引与所述第一索引相关联;
所述第二索引为所述准共址信号在所述多个不同下行参考信号中的索引。
可选地,所述第二索引与所述第一索引之间的关联关系包括数学关系。
可选地,处理器1410还用于:在所述终端设备发送多个物理随机接入信道PRACH信号之前,所述终端设备从所述多个不同下行参考信号中确定所述准共址信号;
所述终端设备基于所述准共址信号的第二索引,确定与所述第二索引相关联的所述第一索引;
所述终端设备基于所述第一索引,确定所述多个PRACH信号的所述目标PRACH资源。
可选地,处理器1410还用于:
基于参考信号接收功率质量R,从所述多个不同下行参考信号中确定所述参考信号接收功率质量的值最大的下行参考信号作为所述准共址信号。
可选地,处理器1410还用于:
在所述多个不同下行参考信号中存在第一下行参考信号的情况下,所述终端设备从所述第一下行参考信号中随机确定一个下行参考信号作为所述准共址信号,或所述终端设备从所述第一下行参考信号中确定所述参考信号接收功率质量的值最大的第一下行参考信号作为所述准共址信号;
在所述多个不同下行参考信号中不存在所述第一下行参考信号的情况下,所述终端设备从所述多个不同下行参考信号中随机确定一个下行 参考信号作为所述准共址信号,或所述终端设备从所述多个不同下行参考信号中确定所述参考信号接收功率质量的值最大的下行参考信号作为所述准共址信号;
其中,所述第一下行参考信号是所述参考信号接收功率质量的值大于第一阈值的下行参考信号。
可选地,处理器1410还用于:
随机确定多个PRACH资源,发送所述多个PRACH信号;
所述方法还包括:
所述终端设备基于随机确定的所述多个PRACH资源中的目标PRACH资源,确定所述准共址信号。
本申请实施例还提供一种网络侧设备,包括处理器和通信接口,处理器用于:
基于所述目标PRACH资源,确定第一下行信号的准共址信号;
其中,所述第一下行信号为Msg2消息或者Msg3重传调度信息或者Msg4消息;
通信接口用于:
接收多个PRACH信号,所述多个PRACH信号使用的多个PRACH资源分别关联于多个不同下行参考信号;其中,所述多个PRACH资源中的目标PRACH资源与准共址信号相关联;所述准共址信号是所述多个不同下行参考信号的其中一个或者多个。
该网络侧设备实施例是与上述网络侧设备方法实施例对应的,上述方法实施例的各个实施过程和实现方式均可适用于该网络侧设备实施例中,且能达到相同的技术效果。
具体地,本申请实施例还提供了一种网络侧设备,图15为实现本申请实施例的网络侧设备的硬件结构示意图。如图15所示,该网络设备1500包括:天线1501、射频装置1502、基带装置1503。天线1501与射 频装置1502连接。在上行方向上,射频装置1502通过天线1501接收信息,将接收的信息发送给基带装置1503进行处理。在下行方向上,基带装置1503对要发送的信息进行处理,并发送给射频装置1502,射频装置1502对收到的信息进行处理后经过天线1501发送出去。
上述频带处理装置可以位于基带装置1503中,以上实施例中网络侧设备执行的方法可以在基带装置1503中实现,该基带装置1503包括处理器1504和存储器1505。
基带装置1503例如可以包括至少一个基带板,该基带板上设置有多个芯片,如图15所示,其中一个芯片例如为处理器1504,与存储器1505连接,以调用存储器1505中的程序,执行以上方法实施例中所示的网络设备操作。
该基带装置1503还可以包括网络接口1506,用于与射频装置1502交互信息,该接口例如为通用公共无线接口(common public radio interface,简称CPRI)。
具体地,本发明实施例的网络侧设备还包括:存储在存储器1505上并可在处理器1504上运行的指令或程序,处理器1504调用存储器1505中的指令或程序执行图12所示各模块执行的方法,并达到相同的技术效果,为避免重复,故不在此赘述。
可选地,处理器1504用于:
基于所述目标PRACH资源,确定第一下行信号的准共址信号;
其中,所述第一下行信号为Msg2消息或者Msg3重传调度信息或者Msg4消息;
可选地,通信接口1504用于:
接收多个PRACH信号,所述多个PRACH信号使用的多个PRACH资源分别关联于多个不同下行参考信号;其中,所述多个PRACH资源中的目标PRACH资源与准共址信号相关联;所述准共址信号是所述多个不 同下行参考信号的其中一个或者多个。
在本申请实施例中,网络侧设备通过基于接收的多个PRACH信号使用的多个PRACH资源中的目标PRACH资源与准共址信号的关联关系,确定准共址信号,以保证网络侧设备和终端对准共址信号有一致的理解,进而有效保证下行信号的成功传输。
可选地,所述PRACH资源包括以下至少一项:
物理随机接入信道机会RO资源;
前导码preamble;
所述下行参考信号与所述RO资源的映射周期。
可选地,与一个准共址信号相关联的所有所述目标PRACH资源的第一索引相同。
可选地,所述目标PRACH资源的所述第一索引包括以下至少一项:
在所述PRACH资源是所述RO资源的情况下,所述目标PRACH资源的第一索引为:所述多个不同下行参考信号中每一个下行参考信号分别对应的第一RO集合内,所述RO资源的索引,其中,所述第一RO集合包括一个所述下行参考信号映射的所有RO资源;
或者,
在所述PRACH资源是所述preamble的情况下,所述目标PRACH资源的第一索引为:在所述多个不同下行参考信号中每一个下行参考信号分别对应的第一preamble集合中,所述preamble的索引,其中,所述第一preamble集合包括所述一个下行参考信号映射的任一个RO资源内的可用preamble,所述可用preamble通过系统消息配置确定;
或者,
在所述PRACH资源是所述映射周期的情况下,所述目标PRACH资源的第一索引为:在所述多个不同下行参考信号中每一个下行参考信号分别对应的第一映射图案周期内,所述映射周期的索引,其中,所述第 一映射图案周期包含多个连续的映射周期,其中第一映射图案周期的起始时刻和时间长度由协议定义或者系统消息配置。
可选地,所述准共址信号的第二索引与所述第一索引相关联;
所述第二索引为所述准共址信号在所述多个不同下行参考信号中的索引。
可选地,所述第二索引与所述第一索引之间的关联关系包括数学关系。
在本申请实施例中,网络侧设备通过基于接收的多个PRACH信号使用的多个PRACH资源中的目标PRACH资源与准共址信号的关联关系,确定准共址信号,以保证网络侧设备和终端对准共址信号有一致的理解,进而有效保证下行信号的成功传输。
本申请实施例还提供一种可读存储介质,所述可读存储介质上存储有程序或指令,该程序或指令被处理器执行时实现上述随机接入方法实施例的各个过程,且能达到相同的技术效果,为避免重复,这里不再赘述。
其中,所述处理器为上述实施例中所述的终端设备中的处理器。所述可读存储介质,包括计算机可读存储介质,如计算机只读存储器(Read-Only Memory,ROM)、随机存取存储器(Random Access Memory,RAM)、磁碟或者光盘等。
本申请实施例另提供了一种芯片,所述芯片包括处理器和通信接口,所述通信接口和所述处理器耦合,所述处理器用于运行程序或指令,实现上述随机接入方法实施例的各个过程,且能达到相同的技术效果,为避免重复,这里不再赘述。
应理解,本申请实施例提到的芯片还可以称为系统级芯片,系统芯片,芯片系统或片上系统芯片等。
本申请实施例还提供了一种计算机程序/程序产品,所述计算机程序/ 程序产品被存储在非瞬态的存储介质中,所述程序/程序产品被至少一个处理器执行以实现上述随机接入方法实施例的各个过程,且能达到相同的技术效果,为避免重复,这里不再赘述。
需要说明的是,在本文中,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者装置不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者装置所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括该要素的过程、方法、物品或者装置中还存在另外的相同要素。此外,需要指出的是,本申请实施方式中的方法和装置的范围不限按示出或讨论的顺序来执行功能,还可包括根据所涉及的功能按基本同时的方式或按相反的顺序来执行功能,例如,可以按不同于所描述的次序来执行所描述的方法,并且还可以添加、省去、或组合各种步骤。另外,参照某些示例所描述的特征可在其他示例中被组合。
通过以上的实施方式的描述,本领域的技术人员可以清楚地了解到上述实施例方法可借助软件加必需的通用硬件平台的方式来实现,当然也可以通过硬件,但很多情况下前者是更佳的实施方式。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分可以以计算机软件产品的形式体现出来,该计算机软件产品存储在一个存储介质(如ROM/RAM、磁碟、光盘)中,包括若干指令用以使得一台通信设备(可以是手机,计算机,服务器,或者网络设备等)执行本申请各个实施例所述的方法。
上面结合附图对本申请的实施例进行了描述,但是本申请并不局限于上述的具体实施方式,上述的具体实施方式仅仅是示意性的,而不是限制性的,本领域的普通技术人员在本申请的启示下,在不脱离本申请宗旨和权利要求所保护的范围情况下,还可做出很多形式,均属于本申 请的保护之内。

Claims (35)

  1. 一种随机接入方法,包括:
    终端设备发送多个物理随机接入信道PRACH信号,所述多个PRACH信号使用的多个PRACH资源分别对应于多个不同下行参考信号;
    其中,所述多个PRACH信号使用的多个PRACH资源中的目标PRACH资源与准共址信号相关联;所述准共址信号是所述多个不同下行参考信号的其中一个或者多个;所述准共址信号用于所述终端设备对第一下行信号的接收,所述第一下行信号为Msg2消息或者Msg3重传调度信息或者Msg4消息。
  2. 根据权利要求1所述的随机接入方法,其中,所述PRACH资源包括以下至少一项:
    物理随机接入信道机会RO资源;
    前导码preamble;
    所述下行参考信号与所述RO资源的映射周期。
  3. 根据权利要求2所述的随机接入方法,其中,与一个准共址信号相关联的所有所述目标PRACH资源的第一索引相同。
  4. 根据权利要求3所述的随机接入方法,其中,所述目标PRACH资源的所述第一索引包括以下至少一项:
    在所述PRACH资源是所述RO资源的情况下,所述目标PRACH资源的第一索引为:所述多个不同下行参考信号中每一个下行参考信号分别对应的第一RO集合内,所述RO资源的索引,其中,所述第一RO集合包括一个所述下行参考信号映射的所有RO资源;
    或者,
    在所述PRACH资源是所述preamble的情况下,所述目标PRACH资源的第一索引为:在所述多个不同下行参考信号中每一个下行参考信号 分别对应的第一preamble集合中,所述preamble的索引,其中,所述第一preamble集合包括所述一个下行参考信号映射的任一个RO资源内的可用preamble,所述可用preamble通过系统消息配置确定;
    或者,
    在所述PRACH资源是所述映射周期的情况下,所述目标PRACH资源的第一索引为:在所述多个不同下行参考信号中每一个下行参考信号分别对应的第一映射图案周期内,所述映射周期的索引,其中,所述第一映射图案周期包含多个连续的映射周期,其中第一映射图案周期的起始时刻和时间长度由协议定义或者系统消息配置。
  5. 根据权利要求1-4任一项所述的随机接入方法,其中,
    所述准共址信号的第二索引与第一索引相关联;
    所述第二索引为所述准共址信号在所述多个不同下行参考信号中的索引。
  6. 根据权利要求5所述的随机接入方法,其中,所述第二索引与所述第一索引之间的关联关系包括数学关系。
  7. 根据权利要求5或6所述的随机接入方法,其中,在所述终端设备发送多个物理随机接入信道PRACH信号之前,所述方法还包括:
    所述终端设备从所述多个不同下行参考信号中确定所述准共址信号;
    所述终端设备基于所述准共址信号的第二索引,确定与所述第二索引相关联的所述第一索引;
    所述终端设备基于所述第一索引,确定所述多个PRACH信号的所述目标PRACH资源。
  8. 根据权利要求7所述的随机接入方法,其中,所述终端设备从所述多个不同下行参考信号中确定所述准共址信号,包括:
    所述终端设备从所述多个不同下行参考信号中确定参考信号接收质 量的值最大的下行参考信号作为所述准共址信号。
  9. 根据权利要求7所述的随机接入方法,其中,所述终端设备从所述多个不同下行参考信号中确定所述准共址信号,包括:
    在所述多个不同下行参考信号中存在第一下行参考信号的情况下,所述终端设备从所述第一下行参考信号中随机确定一个下行参考信号作为所述准共址信号,或所述终端设备从所述第一下行参考信号中确定所述参考信号接收质量的值最大的第一下行参考信号作为所述准共址信号;
    在所述多个不同下行参考信号中不存在所述第一下行参考信号的情况下,所述终端设备从所述多个不同下行参考信号中随机确定一个下行参考信号作为所述准共址信号,或所述终端设备从所述多个不同下行参考信号中确定所述参考信号接收质量的值最大的下行参考信号作为所述准共址信号;
    其中,所述第一下行参考信号是所述参考信号接收质量的值大于第一阈值的下行参考信号。
  10. 根据权利要1-6任一项所述的随机接入方法,其中,所述终端设备发送多个物理随机接入信道PRACH信号,包括:
    所述终端设备随机确定多个PRACH资源,发送所述多个PRACH信号;
    所述方法还包括:
    所述终端设备基于随机确定的所述多个PRACH资源中的目标PRACH资源,确定所述准共址信号。
  11. 一种随机接入方法,包括:
    网络侧设备接收多个PRACH信号,所述多个PRACH信号使用的多个PRACH资源分别关联于多个不同下行参考信号;其中,所述多个PRACH资源中的目标PRACH资源与准共址信号相关联;所述准共址信 号是所述多个不同下行参考信号的其中一个或者多个;
    所述网络侧设备基于所述目标PRACH资源,确定第一下行信号的准共址信号;
    其中,所述第一下行信号为Msg2消息或者Msg3重传调度信息或者Msg4消息。
  12. 根据权利要求11所述的随机接入方法,其中,所述PRACH资源包括以下至少一项:
    物理随机接入信道机会RO资源;
    前导码preamble;
    所述下行参考信号与所述RO资源的映射周期。
  13. 根据权利要求12所述的随机接入方法,其中,与一个准共址信号相关联的所有所述目标PRACH资源的第一索引相同。
  14. 根据权利要求13所述的随机接入方法,其中,所述目标PRACH资源的所述第一索引包括以下至少一项:
    在所述PRACH资源是所述RO资源的情况下,所述目标PRACH资源的第一索引为:所述多个不同下行参考信号中每一个下行参考信号分别对应的第一RO集合内,所述RO资源的索引,其中,所述第一RO集合包括一个所述下行参考信号映射的所有RO资源;
    或者,
    在所述PRACH资源是所述preamble的情况下,所述目标PRACH资源的第一索引为:在所述多个不同下行参考信号中每一个下行参考信号分别对应的第一preamble集合中,所述preamble的索引,其中,所述第一preamble集合包括所述一个下行参考信号映射的任一个RO资源内的可用preamble,所述可用preamble通过系统消息配置确定;
    或者,
    在所述PRACH资源是所述映射周期的情况下,所述目标PRACH资 源的第一索引为:在所述多个不同下行参考信号中每一个下行参考信号分别对应的第一映射图案周期内,所述映射周期的索引,其中,所述第一映射图案周期包含多个连续的映射周期,其中第一映射图案周期的起始时刻和时间长度由协议定义或者系统消息配置。
  15. 根据权利要求11-14任一项所述的随机接入方法,其中,所述准共址信号的第二索引与第一索引相关联;
    所述第二索引为所述准共址信号在所述多个不同下行参考信号中的索引。
  16. 根据权利要求15所述的随机接入方法,其中,所述第二索引与所述第一索引之间的关联关系包括数学关系。
  17. 一种随机接入装置,包括:
    第一发送模块,用于发送多个物理随机接入信道PRACH信号,所述多个PRACH信号使用的多个PRACH资源分别对应于多个不同下行参考信号;
    其中,所述多个PRACH信号使用的多个PRACH资源中的目标PRACH资源与准共址信号相关联;所述准共址信号是所述多个不同下行参考信号的其中一个或者多个;所述准共址信号用于终端设备对第一下行信号的接收,所述第一下行信号为Msg2消息或者Msg3重传调度信息或者Msg4消息。
  18. 根据权利要求17所述的随机接入装置,其中,所述PRACH资源包括以下至少一项:
    物理随机接入信道机会RO资源;
    前导码preamble;
    所述下行参考信号与所述RO资源的映射周期。
  19. 根据权利要求18所述的随机接入装置,其中,与一个准共址信号相关联的所有所述目标PRACH资源的第一索引相同。
  20. 根据权利要求19所述的随机接入装置,其中,所述目标PRACH资源的所述第一索引包括以下至少一项:
    在所述PRACH资源是所述RO资源的情况下,所述目标PRACH资源的第一索引为:所述多个不同下行参考信号中每一个下行参考信号分别对应的第一RO集合内,所述RO资源的索引,其中,所述第一RO集合包括一个所述下行参考信号映射的所有RO资源;
    或者,
    在所述PRACH资源是所述preamble的情况下,所述目标PRACH资源的第一索引为:在所述多个不同下行参考信号中每一个下行参考信号分别对应的第一preamble集合中,所述preamble的索引,其中,所述第一preamble集合包括所述一个下行参考信号映射的任一个RO资源内的可用preamble,所述可用preamble通过系统消息配置确定;
    或者,
    在所述PRACH资源是所述映射周期的情况下,所述目标PRACH资源的第一索引为:在所述多个不同下行参考信号中每一个下行参考信号分别对应的第一映射图案周期内,所述映射周期的索引,其中,所述第一映射图案周期包含多个连续的映射周期,其中第一映射图案周期的起始时刻和时间长度由协议定义或者系统消息配置。
  21. 根据权利要求17-20任一项所述的随机接入装置,其中,所述准共址信号的第二索引与第一索引相关联;
    所述第二索引为所述准共址信号在所述多个不同下行参考信号中的索引。
  22. 根据权利要求21所述的随机接入装置,其中,所述第二索引与所述第一索引之间的关联关系包括数学关系。
  23. 根据权利要求21或22所述的随机接入装置,其中,所述装置还包括:
    第一确定模块,用于在所述终端设备发送多个物理随机接入信道PRACH信号之前,所述终端设备从所述多个不同下行参考信号中确定所述准共址信号;
    第二确定模块,用于在所述终端设备发送多个物理随机接入信道PRACH信号之前,所述终端设备基于所述准共址信号的第二索引,确定与所述第二索引相关联的所述第一索引;
    第三确定模块,用于在所述终端设备发送多个物理随机接入信道PRACH信号之前,所述终端设备基于所述第一索引,确定所述多个PRACH信号的所述目标PRACH资源。
  24. 根据权利要求23所述的随机接入装置,其中,所述第一确定模块还用于:
    从所述多个不同下行参考信号中确定所述参考信号接收质量的值最大的下行参考信号作为所述准共址信号。
  25. 根据权利要求23所述的随机接入装置,其中,所述第一确定模块还用于:
    在所述多个不同下行参考信号中存在第一下行参考信号的情况下,所述终端设备从所述第一下行参考信号中随机确定一个下行参考信号作为所述准共址信号,或所述终端设备从所述第一下行参考信号中确定所述参考信号接收质量的值最大的第一下行参考信号作为所述准共址信号;
    在所述多个不同下行参考信号中不存在所述第一下行参考信号的情况下,所述终端设备从所述多个不同下行参考信号中随机确定一个下行参考信号作为所述准共址信号,或所述终端设备从所述多个不同下行参考信号中确定所述参考信号接收质量的值最大的下行参考信号作为所述准共址信号;
    其中,所述第一下行参考信号是所述参考信号接收质量的值大于第 一阈值的下行参考信号。
  26. 根据权利要求17-22任一项所述的随机接入装置,其中,所述第一发送模块还用于:
    随机确定多个PRACH资源,发送所述多个PRACH信号;
    基于随机确定的所述多个PRACH资源中的目标PRACH资源,确定所述准共址信号。
  27. 一种随机接入装置,包括:
    第一接收模块,用于接收多个PRACH信号,所述多个PRACH信号使用的多个PRACH资源分别关联于多个不同下行参考信号;其中,所述多个PRACH资源中的目标PRACH资源与准共址信号相关联;所述准共址信号是所述多个不同下行参考信号的其中一个或者多个;
    第四确定模块,用于基于所述目标PRACH资源,确定第一下行信号的准共址信号;
    其中,所述第一下行信号为Msg2消息或者Msg3重传调度信息或者Msg4消息。
  28. 根据权利要求27所述的随机接入装置,其中,所述PRACH资源包括以下至少一项:
    物理随机接入信道机会RO资源;
    前导码preamble;
    所述下行参考信号与所述RO资源的映射周期。
  29. 根据权利要求28所述的随机接入装置,其中,与一个准共址信号相关联的所有所述目标PRACH资源的第一索引相同。
  30. 根据权利要求29所述的随机接入装置,其中,所述目标PRACH资源的所述第一索引包括以下至少一项:
    在所述PRACH资源是所述RO资源的情况下,所述目标PRACH资源的第一索引为:所述多个不同下行参考信号中每一个下行参考信号分 别对应的第一RO集合内,所述RO资源的索引,其中,所述第一RO集合包括一个所述下行参考信号映射的所有RO资源;
    或者,
    在所述PRACH资源是所述preamble的情况下,所述目标PRACH资源的第一索引为:在所述多个不同下行参考信号中每一个下行参考信号分别对应的第一preamble集合中,所述preamble的索引,其中,所述第一preamble集合包括所述一个下行参考信号映射的任一个RO资源内的可用preamble,所述可用preamble通过系统消息配置确定;
    或者,
    在所述PRACH资源是所述映射周期的情况下,所述目标PRACH资源的第一索引为:在所述多个不同下行参考信号中每一个下行参考信号分别对应的第一映射图案周期内,所述映射周期的索引,其中,所述第一映射图案周期包含多个连续的映射周期,其中第一映射图案周期的起始时刻和时间长度由协议定义或者系统消息配置。
  31. 根据权利要求27-30任一项所述的随机接入装置,其中,所述准共址信号的第二索引与第一索引相关联;
    所述第二索引为所述准共址信号在所述多个不同下行参考信号中的索引。
  32. 根据权利要求31所述的随机接入装置,其中,所述第二索引与所述第一索引之间的关联关系包括数学关系。
  33. 一种终端,包括处理器,存储器及存储在所述存储器上并可在所述处理器上运行的程序或指令,所述程序或指令被所述处理器执行时实现如权利要求1至10任一项所述的随机接入方法的步骤。
  34. 一种网络侧设备,包括处理器,存储器及存储在所述存储器上并可在所述处理器上运行的程序或指令,所述程序或指令被所述处理器执行时实现如权利要求11至16任一项所述的随机接入方法的步骤。
  35. 一种可读存储介质,所述可读存储介质上存储程序或指令,所述程序或指令被处理器执行时实现如权利要求1至10任一项所述的随机接入方法的步骤,或者实现如权利要求11至16任一项所述的随机接入方法的步骤。
PCT/CN2022/131308 2021-11-11 2022-11-11 随机接入方法、装置、终端及网络侧设备 WO2023083290A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111334667.1A CN116112134A (zh) 2021-11-11 2021-11-11 随机接入方法、装置、终端及网络侧设备
CN202111334667.1 2021-11-11

Publications (1)

Publication Number Publication Date
WO2023083290A1 true WO2023083290A1 (zh) 2023-05-19

Family

ID=86253258

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/131308 WO2023083290A1 (zh) 2021-11-11 2022-11-11 随机接入方法、装置、终端及网络侧设备

Country Status (2)

Country Link
CN (1) CN116112134A (zh)
WO (1) WO2023083290A1 (zh)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020248270A1 (zh) * 2019-06-14 2020-12-17 Oppo广东移动通信有限公司 确定随机接入资源的方法、终端设备和网络设备
US20210051710A1 (en) * 2019-08-14 2021-02-18 Comcast Cable Communications, Llc Random access procedures
WO2021098570A1 (en) * 2019-11-20 2021-05-27 Guangdong Oppo Mobile Telecommunications Corp., Ltd. Method for determining prach occasion and terminal device, network device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020248270A1 (zh) * 2019-06-14 2020-12-17 Oppo广东移动通信有限公司 确定随机接入资源的方法、终端设备和网络设备
US20210051710A1 (en) * 2019-08-14 2021-02-18 Comcast Cable Communications, Llc Random access procedures
WO2021098570A1 (en) * 2019-11-20 2021-05-27 Guangdong Oppo Mobile Telecommunications Corp., Ltd. Method for determining prach occasion and terminal device, network device

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
QUALCOMM INCORPORATED: "Summary of Maintenance for PRACH procedure", 3GPP TSG RAN WG1 94BIS, R1-1811919, 9 October 2018 (2018-10-09), XP051519243 *

Also Published As

Publication number Publication date
CN116112134A (zh) 2023-05-12

Similar Documents

Publication Publication Date Title
CN116321513A (zh) 用于执行随机接入信道进程的方法及其用户设备
WO2021189202A1 (zh) 用于随机接入的通信方法、装置及计算机可读存储介质
WO2022017526A1 (zh) 重复传输方法、装置及用户设备
EP4181555A1 (en) Data transmission type configuration method and terminal
WO2022152275A1 (zh) Msg3传输方法、装置、设备及存储介质
US20230189351A1 (en) Signal Transmission Method for Random Access, Terminal, and Network-Side Device
WO2022002050A1 (zh) 传输处理方法、装置及终端
WO2022143742A1 (zh) 数据传输方法、装置及通信设备
WO2022022488A1 (zh) 传输辅助信息的方法、终端设备和网络设备
WO2022017491A1 (zh) 信道测量处理方法、装置及设备
WO2023083290A1 (zh) 随机接入方法、装置、终端及网络侧设备
WO2022017492A1 (zh) 定位处理方法、装置及设备
CN113784386B (zh) 数据的传输方法及装置、终端及网络侧设备
CN113973393A (zh) 随机接入方法、装置、设备及系统
WO2023056929A1 (zh) 准共址下行rs的确定方法、装置及终端
WO2023056973A1 (zh) Prach重复传输方法、终端及网络侧设备
WO2023083304A1 (zh) 随机接入的方法、终端及网络侧设备
WO2023134580A1 (zh) 信息传输方法、装置、终端及网络侧设备
WO2023061489A1 (zh) 随机接入处理方法、装置、终端、网络侧设备及存储介质
EP4247098A1 (en) Channel measurement method and apparatus, lbt failure reporting method and apparatus, and device
WO2024022197A1 (zh) Ra方法、装置、ue、网络侧设备、通信系统及可读存储介质
WO2023083227A1 (zh) Prach重复传输方法、终端及网络侧设备
WO2023066129A1 (zh) 信息上报方法、设备及可读存储介质
US20230156814A1 (en) Method for setting data transmission type and terminal
WO2022127898A1 (zh) 消息传输方法、装置及设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22892083

Country of ref document: EP

Kind code of ref document: A1