WO2023056973A1 - Prach重复传输方法、终端及网络侧设备 - Google Patents

Prach重复传输方法、终端及网络侧设备 Download PDF

Info

Publication number
WO2023056973A1
WO2023056973A1 PCT/CN2022/124101 CN2022124101W WO2023056973A1 WO 2023056973 A1 WO2023056973 A1 WO 2023056973A1 CN 2022124101 W CN2022124101 W CN 2022124101W WO 2023056973 A1 WO2023056973 A1 WO 2023056973A1
Authority
WO
WIPO (PCT)
Prior art keywords
prach
ros
repeated transmission
ssb
transmission method
Prior art date
Application number
PCT/CN2022/124101
Other languages
English (en)
French (fr)
Inventor
吴凯
王理惠
Original Assignee
维沃移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 维沃移动通信有限公司 filed Critical 维沃移动通信有限公司
Publication of WO2023056973A1 publication Critical patent/WO2023056973A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0446Resources in time domain, e.g. slots or frames
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0453Resources in frequency domain, e.g. a carrier in FDMA
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0457Variable allocation of band or rate
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access, e.g. scheduled or random access
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access, e.g. scheduled or random access
    • H04W74/08Non-scheduled or contention based access, e.g. random access, ALOHA, CSMA [Carrier Sense Multiple Access]

Definitions

  • the present application belongs to the technical field of communication, and in particular relates to a PRACH repeated transmission method, terminal and network side equipment.
  • Physical random-access channel (Physical random-access channel, PRACH) repeated transmission is a method to improve PRACH coverage, and existing PRACH resources (including random access channel transmission opportunity (RACH occasion, referred to as RO), preamble Code (preamble, may also be called pilot sequence)) selection, the terminal has a greater degree of freedom, the resources selected by the terminal may not be able to support the terminal to perform PRACH repeated transmission, resulting in random access failure.
  • PRACH Physical random-access channel
  • the embodiment of the present application provides a PRACH retransmission method, terminal and network side equipment, which can solve the problem that the resources selected by the terminal may not be able to support the terminal to perform PRACH retransmission, resulting in failure of random access.
  • a PRACH repeated transmission method which is applied to a terminal, and the method includes:
  • the terminal performs repeated transmission of the physical random access channel PRACH preamble on multiple ROs included in the physical random access channel transmission opportunity RO set.
  • a PRACH repeated transmission method which is applied to a network side device, and the method includes:
  • the network side device detects the PRACH preamble on multiple ROs included in the physical random access channel transmission opportunity RO set.
  • a PRACH retransmission device including:
  • the transmission unit is configured to repeatedly transmit the physical random access channel PRACH preamble on multiple ROs included in the physical random access channel transmission opportunity RO set.
  • a PRACH retransmission device including:
  • the detecting unit is configured to detect the preamble of the physical random access channel PRACH on multiple ROs included in the physical random access channel transmission opportunity RO set.
  • a terminal includes a processor, a memory, and a program or instruction stored in the memory and operable on the processor.
  • the program or instruction is executed by the processor. The steps of implementing the PRACH repeated transmission method described in the first aspect.
  • a terminal including a processor and a communication interface, wherein the communication interface is used to perform a physical random access channel PRACH preamble on multiple ROs included in the physical random access channel transmission opportunity RO set Repeated transmission of preamble.
  • a network-side device includes a processor, a memory, and a program or instruction stored in the memory and operable on the processor, and the program or instruction is executed by the The processor implements the steps of implementing the PRACH repeated transmission method as described in the second aspect.
  • a network side device including a processor and a communication interface, wherein the communication interface is used to perform physical random access channel PRACH on multiple ROs included in the physical random access channel transmission opportunity RO set Detection of the preamble preamble.
  • a ninth aspect provides a readable storage medium, on which a program or an instruction is stored, and when the program or instruction is executed by a processor, the steps of the PRACH repeated transmission method as described in the first aspect are implemented, Or realize the steps of the PRACH repeated transmission method as described in the second aspect.
  • a chip in a tenth aspect, includes a processor and a communication interface, the communication interface is coupled to the processor, and the processor is used to run programs or instructions to implement the PRACH as described in the first aspect A repeated transmission method, or implement the PRACH repeated transmission method as described in the second aspect.
  • a computer program/program product is provided, the computer program/program product is stored in a non-transitory storage medium, and the program/program product is executed by at least one processor to implement the first The steps of the PRACH repeated transmission method described in the aspect, or the steps of implementing the PRACH repeated transmission method described in the second aspect.
  • the probability of PRACH collision can be reduced, the capacity of the PRACH can be increased, and the random access process can be optimized.
  • FIG. 1 is a structural diagram of a wireless communication system applicable to an embodiment of the present application
  • Figure 2 is one of the schematic diagrams of the relationship between RO and SSB
  • Figure 3 is the second schematic diagram of the relationship between RO and SSB
  • FIG. 4 is one of the schematic flow diagrams of the PRACH repeated transmission method provided by the embodiment of the present application.
  • FIG. 5 is one of the schematic diagrams of the RO set provided by the embodiment of the present application.
  • FIG. 6 is the second schematic diagram of the RO set provided by the embodiment of the present application.
  • FIG. 7 is the second schematic flow diagram of the PRACH repeated transmission method provided by the embodiment of the present application.
  • FIG. 8 is one of the structural schematic diagrams of the PRACH retransmission device provided by the embodiment of the present application.
  • FIG. 9 is the second structural schematic diagram of the PRACH retransmission device provided by the embodiment of the present application.
  • FIG. 10 is a schematic structural diagram of a communication device provided by an embodiment of the present application.
  • FIG. 11 is a schematic diagram of a hardware structure of a terminal implementing an embodiment of the present application.
  • FIG. 12 is a schematic structural diagram of a network side device provided by an embodiment of the present application.
  • first, second and the like in the specification and claims of the present application are used to distinguish similar objects, and are not used to describe a specific sequence or sequence. It is to be understood that the terms so used are interchangeable under appropriate circumstances such that the embodiments of the application are capable of operation in sequences other than those illustrated or described herein and that "first" and “second” distinguish objects. It is usually one category, and the number of objects is not limited. For example, there may be one or more first objects.
  • “and/or” in the description and claims means at least one of the connected objects, and the character “/” generally means that the related objects are an "or” relationship.
  • LTE Long Term Evolution
  • LTE-Advanced LTE-Advanced
  • LTE-A Long Term Evolution-Advanced
  • CDMA Code Division Multiple Access
  • TDMA Time Division Multiple Access
  • FDMA Frequency Division Multiple Access
  • OFDMA Orthogonal Frequency Division Multiple Access
  • SC-FDMA Single-carrier Frequency-Division Multiple Access
  • SC-FDMA Single-carrier Frequency-Division Multiple Access
  • system and “network” in the embodiments of the present application are often used interchangeably, and the described technologies can be used for the above-mentioned systems and radio technologies as well as other systems and radio technologies.
  • NR New Radio
  • the following description describes the New Radio (NR) system for illustrative purposes, and uses NR terminology in most of the following descriptions, but these techniques can also be applied to applications other than NR system applications, such as the 6th generation (6 th Generation, 6G) communication system.
  • 6G 6th Generation
  • FIG. 1 shows a structural diagram of a wireless communication system to which this embodiment of the present application is applicable.
  • the wireless communication system includes a terminal 11 and a network side device 12 .
  • the terminal 11 can also be called a terminal device or a user terminal (User Equipment, UE), and the terminal 11 can be a mobile phone, a tablet computer (Tablet Personal Computer), a laptop computer (Laptop Computer) or a notebook computer, a personal digital Assistant (Personal Digital Assistant, PDA), handheld computer, netbook, ultra-mobile personal computer (ultra-mobile personal computer, UMPC), mobile internet device (Mobile Internet Device, MID), augmented reality (augmented reality, AR)/virtual reality (virtual reality, VR) equipment, robots, wearable devices (Wearable Device), vehicle-mounted equipment (VUE), pedestrian terminal (PUE), smart home (home equipment with wireless communication functions, such as refrigerators, TVs, washing machines or furniture etc.) and other terminal-side devices, wearable devices include: smart watches, smart bracelets, smart headphones
  • the network side device 12 may be a base station or a core network, where the base station may be referred to as Node B, evolved Node B, access point, base transceiver station (Base Transceiver Station, BTS), radio base station, radio transceiver, basic service Basic Service Set (BSS), Extended Service Set (ESS), Node B, Evolved Node B (eNB), Home Node B, Home Evolved Node B, WLAN access point, WiFi node, transmission Receiving point (Transmitting Receiving Point, TRP) or some other suitable term in the field, as long as the same technical effect is achieved, the base station is not limited to specific technical terms. It should be noted that in the embodiment of this application, only The base station in the NR system is taken as an example, but the specific type of the base station is not limited.
  • the UE In the random access process of competition, also known as 4-step RACH, the UE first sends msg1 to the network side device, including the preamble; after the network detects the preamble, it will send msg2, including the random access response (Random Access Response) corresponding to the preamble , RAR) message; after receiving msg2, UE sends msg3 according to the instruction of RAR; after receiving msg3, the network will send msg4, including the contention resolution ID; UE receives msg4, and completes 4-step random access.
  • RAR random access response
  • the network includes uplink (Uplink, UL) grant information in RAR to indicate MSG3 physical uplink shared channel (Physical Uplink Shared Channel, PUSCH) scheduling information, and includes random access preamble ID (RACH preamble ID, RAPID), Temporary Cell Radio Network Temporary Identifier (Temporary Cell Radio Network Temporary Identifier, TC-RNTI), Timing Advance (Timing Advance, TA) and other information. If the network does not receive the MSG3 PUSCH, it can schedule the retransmission of the MSG3 PUSCH in the physical downlink control channel (Physical Downlink Control Channel, PDCCH) scrambled by the TC-RNTI.
  • PDCCH Physical Downlink Control Channel
  • different UEs randomly select a preamble for transmission, so that different UEs may select the same preamble to send on the same resource, triggering the contention random access process.
  • This situation can be understood as a preamble conflict of the UE.
  • different UEs will receive the same RAR, and at this time different UEs will transmit MSG3 PUSCH according to the scheduling information in the RAR UL grant.
  • the network can only solve the PUSCH sent by one UE on one MSG3 PUSCH scheduling resource, so the network will include in the MSG4 Physical Downlink Shared Channel (PDSCH) If the contention resolution ID matches the Common Control Channel (CCCH) service data unit (Service Data Unit, SDU) sent by the UE in the MSG3 PUSCH, the UE considers the contention resolution to be successful, and uses the TC-RNTI as the UE's cell radio Network Temporary Identity (Cell Radio Network Temporary Identity, C-RNTI). If there is no match, the contention resolution is considered unsuccessful.
  • CCCH Common Control Channel
  • SDU Service Data Unit
  • the contention resolution is unsuccessful, the RACH transmission resource is reselected, the PRACH transmission is performed, and the next random access attempt is performed.
  • the base station can configure multiple FDM PRACH transmission occasions (Physical Random Access Channel transmission opportunities, or PRACH occasions) at a time domain position for PRACH transmission.
  • PRACH occasions Physical Random Access Channel transmission opportunities, or PRACH occasions
  • the number of ROs that can perform FDM on a time instance instance can be: ⁇ 1,2,4,8 ⁇ .
  • the random access preamble (RACH preamble) can only be transmitted on the time domain resource configured by the parameter PRACHConfigurationIndex, and the random access preamble can only be transmitted on the frequency domain resource configured by the parameter prach-FDM, and the PRACH frequency domain resource n RA ⁇ 0, 1,...,M-1 ⁇ , where M is equal to the higher layer parameter prach-FDM.
  • the PRACH frequency domain resource n RA is numbered in ascending order from the RO resource with the lowest frequency in the initial active uplink bandwidth part (initially activated uplink bandwidth part), otherwise, the PRACH frequency domain resource n RA starts from the active uplink bandwidth part (activated The RO resources with the lowest frequency in the uplink bandwidth part) are numbered in ascending order.
  • RO there is a relationship between RO and the actually sent SSB (SS/PBCH block, synchronization signal/physical broadcast channel block, sometimes referred to as SS block, synchronization signal block).
  • SS/PBCH block synchronization signal/physical broadcast channel block
  • SS block synchronization signal block
  • One RO may be associated with multiple SSBs, or multiple SSBs may be associated with one RO.
  • different SSBs can use different beams for transmission, and the terminal can also use a beam that matches the SSB on the RO of the associated SSB to perform repeated transmission of the PRACH.
  • FIG. 2 is one of the schematic diagrams of the relationship between RO and SSB.
  • the number of FDM ROs on a time instance is 8, and the number of SSBs actually transmitted is 4.
  • the corresponding SSBs are SSB#0, SSB#1, SSB#2, and SSB#3.
  • Each SSB is associated with 2 ROs. If the UE sends PRACH on the RO corresponding to SSB0, then the UE selects one RO from RO#0 and RO#1 to send the PRACH.
  • FIG. 3 is the second schematic diagram of the relationship between RO and SSB.
  • the number of FDM ROs on a time instance is 2, and the number of SSBs actually transmitted is 8.
  • the corresponding SSBs are SSB#0, SSB#1, ..., SSB#7, every 2
  • Each SSB is associated with one RO.
  • the preamble sets associated with the multiple SSBs are different.
  • the UE Before sending the PRACH, the UE first performs resource selection, and first selects the RO corresponding to the SSB whose RSRP is higher than the threshold. If there are multiple SSBs higher than the threshold, the terminal can select any SSB. After determining the SSB, if the SSB is associated with multiple ROs, the terminal may select one of the ROs for PRACH transmission. And a preamble is randomly selected from the preamble set associated with the SSB in the RO to send the PRACH.
  • the terminal may select ROs associated with multiple SSBs for repeated transmission of PRACH.
  • the multiple SSBs can use different beams for transmission, so that the terminal can also use different beams for PRACH transmission on ROs associated with different SSBs .
  • the RO associated with the SSB can be an FDM resource.
  • the terminal cannot transmit the PRACH on the FDM RO resource at the same time, so it is impossible to select the RO combination associated with the combination of some SSBs.
  • SSB#0 in Figure 3 The RO associated with SSB#2 is FDM, so it may be necessary to limit the SSB combination and/or RO combination when the terminal performs repeated PRACH transmission.
  • the preamble selected by the terminal in each RO is randomly selected from the preamble set associated with the SSB. If PRACH repeated transmission is supported, and the preambles used for PRACH repeated transmission are all random, on the one hand, The network cannot determine whether the repeated PRACH transmissions come from the same UE, and on the other hand, it cannot perform reception combining to improve reception performance.
  • embodiments of the present application provide a PRACH retransmission method, a terminal, and a network side device.
  • FIG. 4 is one of the schematic flowcharts of the PRACH retransmission method provided by the embodiment of the present application. As shown in Figure 4, the method includes the following steps:
  • step 400 the terminal performs repeated transmission of the physical random access channel PRACH preamble on multiple ROs included in the physical random access channel transmission opportunity RO set.
  • ROs for repeated PRACH transmission by the terminal can be defined as an RO set (RO set or RO bundle or RO CE set, where CE is Coverage enhancement).
  • the method also includes:
  • the terminal needs to determine the RO set, and specifically determine the RO set according to the parameters of the RO set.
  • the parameters of the RO set include at least one of the following:
  • the frequency resource where the RO that can be used for repeated transmission of the PRACH is located.
  • the parameters of the RO set are determined according to the configuration of the network side device, and/or determined according to a preset rule.
  • the configuration of the network side device may be replaced by the indication of the network side device.
  • the cell transmits 8 SSBs, namely SSB#0, SSB#1, ..., SSB#7, and the network may indicate that the combination of index values of SSBs associated with ROs for PRACH repetition is ⁇ SSB#0, SSB#2, SSB#4, SSB#6 ⁇ , or ⁇ SSB#1, SSB#3, SSB#5, SSB#7 ⁇ , or other combinations of index values, as shown in FIG. 5 .
  • the SSBs associated with multiple ROs included in the RO set may be the same or different.
  • the network can arbitrarily indicate the number and index value of the associated SSB in the RO set to achieve the maximum number of repetitions and the flexibility of PRACH transmission associated SSB.
  • the network may indicate the time position and/or frequency position of the RO, which may be indicated by means of time index and/or frequency index, for example, the network may indicate the combination of frequency index values and/or time index values of multiple ROs. For example, ⁇ (f_idx0,t_idx0),(f_idx1,t_idx1),(f_idx2,t_idx2),(f_idx3,t_idx3) ⁇ .
  • the multiple ROs included in the RO set are ROs that can be used for repeated transmission of the PRACH.
  • the configuration of the network side device includes that the network side device passes downlink control information (Downlink Control Information, DCI), media access control (Media Access Control, MAC) control element (Control Element, CE), radio resource control (Radio Resource Control , RRC), or other high-layer signaling explicit or implicit configuration.
  • DCI Downlink Control Information
  • MAC media access control
  • CE Control Element
  • RRC Radio Resource Control
  • the parameters of the RO set are indicated through network-side device configuration, which has high flexibility and can prevent the terminal from performing repeated PRACH transmissions on multiple FDM ROs at the same time, and prevent the terminal from arbitrarily selecting RO combinations for PRACH Repeated transmission, or selecting too many ROs for repeated PRACH transmission, reduces the probability of PRACH collision and improves the capacity of PRACH.
  • the terminal uses preset rules to determine parameters of the RO set, and the preset rules include at least one of the following:
  • index value of the SSB that satisfies mod(SSB index, M) with the same numerical value as the index value of the SSB associated with the plurality of ROs, wherein M is an integer, and M is a predefined value or determined according to the configuration of the network side device;
  • the frequency positions of the multiple ROs are the same, or the frequency positions of the multiple ROs are determined according to a time index
  • the frequency positions of the multiple ROs are all different
  • the time positions of the multiple ROs are all different.
  • the index values of multiple RO-associated SSBs satisfying the value of mod(SSB index, M) are equal to the SSBs of the multiple RO-associated SSBs, where M is an integer, and M is a predefined value, Alternatively, M may be determined according to the configuration of the network side device.
  • mod(SSB index, M) represents the result of finding the remainder of SSB index on M.
  • the multiple ROs associated with the SSB index with the same mod are the multiple ROs in one RO set set
  • the mod of SSB#0, SSB#2, SSB#4, and SSB#6 are all 0 and belong to the same RO set
  • mod(SSB index, 2) of SSB#1, SSB#3, SSB#5, and SSB#7 are all 1 and belong to the same RO set.
  • the RO set determined according to the implicit rule does not include RO combinations at different frequency positions at the same time.
  • the frequency positions of the multiple ROs are determined according to a time index, which can be considered as an index of the sequence of resources used to transmit the PRACH within a period of time.
  • a time index which can be considered as an index of the sequence of resources used to transmit the PRACH within a period of time.
  • ROs at different times have different time indexes .
  • the frequency positions of the multiple ROs are different, that is, the repeated transmission of the PRACH preamble can be performed on different frequency positions, and the performance of the repeated transmission of the PRACH can be improved by means of this frequency hopping transmission.
  • the frequency positions of the plurality of ROs are different, that is, at different times, the repeated transmission of the PRACH preamble may be performed at different frequency positions.
  • the frequency positions of the multiple ROs are different, including:
  • the frequency positions of adjacent ROs among the multiple ROs are separated by X frequency units;
  • X is an integer, and X is a predefined value or determined according to the configuration of the network side equipment; the frequency unit includes resource block RB, subcarrier, subband or RO bandwidth.
  • the preset rule is that ROs at different frequency positions form an RO set in the order of time at adjacent moments, then Make sure to use the ROs associated with ⁇ SSB#0, SSB#3, SSB#4, SSB#7 ⁇ to form an RO set, and the ROs associated with ⁇ SSB#1, SSB#2, SSB#5, SSB#6 ⁇ to form an RO set.
  • the terminal cannot send the PRACH on the FDM RO resource at the same time, therefore, the time positions of the multiple ROs are all different. That is, the multiple ROs do not include two ROs at the same position.
  • the above-mentioned multiple rules can be combined, and network-side device configurations and preset rules can be combined.
  • the network-side device configuration/instruction determines that the ROs at the same frequency position are an RO set, and each RO is associated with multiple SSBs, and the SSBs associated with the ROs can be further restricted through network instructions or preset rules.
  • the ROs at the same frequency position are determined to be an RO set through preset rules, and each RO is associated with multiple SSBs, and the SSBs associated with the ROs can be further restricted through network instructions or preset rules.
  • the network can further indicate that the combinations of SSBs associated with ROs are limited to ⁇ SSB#0, SSB#2, SSB#4, SSB#6 ⁇ , ⁇ SSB#1, SSB#3, SSB#5, SSB#7 ⁇ .
  • M mod(SSB index, M)
  • the parameters of the RO set are determined by preset rules, which can prevent the terminal from arbitrarily selecting RO combinations for PRACH repeated transmission, or selecting too many ROs for PRACH repeated transmission, reducing the probability of PRACH collision, and improving the PRACH capacity, while reducing network configuration parameters and configuration overhead.
  • the parameters of the RO set meet at least one of the following:
  • index values of the SSBs associated with the plurality of ROs satisfy the value of mod (SSB index, M), where M is an integer, and M is a predefined value or determined according to network side device configuration;
  • the frequency positions of the multiple ROs are the same, or the frequency positions of the multiple ROs are determined according to a time index
  • the frequency positions of the multiple ROs are all different
  • the time positions of the multiple ROs are all different.
  • the parameters of the RO set configured by the network or the parameters of the RO set determined according to presets satisfy at least one of the above items.
  • the network when the network indicates the RO set for PRACH repetition, it can indicate the RO set, or indicate the RO resource for the terminal to perform PRACH repetition transmission by indicating the reference RO in the RO set.
  • contention based random access Contention Based Random Access, CBRA
  • contention free random access Contention Free Random Access
  • the multiple ROs are K RO resources in at least one association period
  • association period is the time required to complete at least one round of SSB-to-RO mapping within a set of preset time periods; K is an integer greater than 1.
  • the time required to complete a round of mapping of all SSB and PRACH resources sent by the network side device is called the RO mapping cycle. It takes one or more frames (10ms) to complete a round of mapping, or within a frame (10ms) can complete multiple rounds of SSB and RO mapping.
  • An RO association period association period contains at least one frame, and at least one SSB-to-RO mapping needs to be completed within the RO association period.
  • An association period can include multiple RO mapping periods.
  • the number K of ROs included in an association period is implicitly determined.
  • the set of preset time periods is ⁇ 10, 20, 40, 80, 160 ⁇ ms.
  • 10 ms is the shortest time for completing at least one round of mapping in the above-mentioned set of preset time periods, and can complete 2 rounds of mapping. 10ms is the association period.
  • the PRACH repeated transmission can be based on the RO mapping period or the RO association period, and only one RO is sent in each period.
  • the SSBs associated with ROs in each association period are the same, or the SSBs associated with ROs in each RO mapping period are the same;
  • the RO used for repeated PRACH transmission may be associated with the same SSB.
  • the preambles sent on the multiple ROs meet at least one of the following conditions:
  • the index value of the preamble is the same;
  • the index value of the preamble satisfies the numerical value of mod(preamble index, N), where N is an integer.
  • the terminal When performing repeated PRACH transmission, the terminal not only needs to determine multiple ROs for repeated PRACH transmission, but also needs to determine the preamble used for PRACH transmission in each RO.
  • the PRACH preamble combination used in the repeated transmission of the PRACH can be further limited, such as limiting multiple repeated preambles to the same (index value) preamble, or the index values of these preambles satisfy the second preset rule, where the second preset The rule is that the index value of the preamble satisfies the value of mod(preamble index, N).
  • each RO is associated with 2 SSBs
  • the preamble indexes associated with the SSBs with even indexes are 0-31
  • the preamble indexes associated with the SSBs with odd indexes are 32-63.
  • the index value combination of the SSB associated with the PRACH repetition RO is ⁇ SSB#0, SSB#2, SSB#4, SSB#6 ⁇
  • the set of index values of the preamble selected for use in each RO is 0-31, Further restrict the use of PRACH preambles with the same index value in preamble 0-31 for transmission.
  • the set of preamble index values selected for use in each RO is 32-63, further restricting the use of PRACH preamble with the same index value in preamble 32-63 for transmission.
  • the PRACH preamble index values in different ROs can be further restricted to satisfy the second preset rule, and the values of mod(preamble index, N) are required to be equal.
  • the N satisfies at least one of the following:
  • the N is determined according to the configuration of the network side device
  • the N is 64/num_SSB_RO, where num_SSB_RO is the number of SSBs associated with one RO.
  • the network indicates that the index value of the SSB associated with the RO used for PRACH repeated transmission is ⁇ SSB#0, SSB#3, SSB#4, SSB#7 ⁇ , and the associated SSB#0 and SSB#4
  • the sets of preamble index values used by the ROs are all 0-31, and the set of preamble index values used by the ROs associated with SSB#3 and SSB#7 are all 32-63. It can be further required that the values of mod(preamble index, N) be equal.
  • N 32, a value that can be configured for the network side device.
  • N is 64/num_SSB_RO
  • num_SSB_RO is the number of SSBs associated with one RO.
  • num_SSB_RO 2. Then, if the preamble index selected on the RO associated with SSB#0 and SSB#4 is 0, then the preamble index selected on the RO associated with SSB#3 and SSB#7 is 32; if SSB#0 and SSB#4 are associated The preamble index selected on RO is 1, then the preamble index selected on the RO associated with SSB#3 and SSB#7 is 33, which always satisfies the same value of mod(preamble index, 32).
  • the index value set of the preamble that can be used for repeated transmission of the PRACH is determined according to the configuration of the network side device.
  • the network side device configures a preamble index value set for repeated transmission of the PRACH.
  • the index value set of the preamble is associated with all SSBs sent by the network side device. That is, the preamble corresponding to the index value set does not further divide the associated SSB.
  • the corresponding preamble sets are different, and in the case of further supporting PRACH repeated transmission, the preamble set for repeated transmission corresponding to each SSB is also different.
  • the disadvantage of this method is that multiple preamble sets need to be divided to correspond to multiple SSBs, and the cost of separating the preamble resources is very high, occupying preamble resources that are not used for repeated transmission. Such a problem exists in the scheme where the index values of the preambles sent on multiple ROs are different.
  • the index value set of the preamble is associated with all SSBs sent by the network side device, and different SSBs are no longer required to be associated with different preamble sets, reducing the occupation of the number of PRACH preamble resources.
  • the network can also simply detect only one preamble set to determine whether there is a UE performing PRACH retransmission, which reduces the complexity of network implementation.
  • the network detects the same preamble set on each RO, and if a preamble in the set is detected, it is considered that there is a terminal for repeated transmission.
  • the method also includes one of the following:
  • the determining the RA-RNTI according to the RO set includes one of the following:
  • the terminal After the terminal performs PRACH transmission, it needs to monitor RAR (Msg2), because the RA-RNTI corresponding to PRACH transmission on each RO may be different under the existing mechanism, then after repeated PRACH transmission on multiple ROs , the method for determining RA-RNTI needs further clarification.
  • RAR Msg2
  • a possible method is to calculate the RA-RNTI by using parameters of a reference RO among multiple ROs, where the parameters include a time index, a frequency index, a symbol index, and the like.
  • the reference RO includes one of the following:
  • the reference RO may be the first RO, the last RO among the multiple ROs, or an RO indicated by the network side device.
  • the calculation method of the RA-RNTI can use the existing rules, and when the terminal monitors the PDCCH scrambled by the RA-RNTI, the PDCCH monitoring of the scheduled RAR is performed according to the RA-RNTI calculated with reference to the RO.
  • the network can transmit the PRACH responses to multiple terminals in the same RAR, selecting a reference RO and using the existing rules to calculate the RA-RNTI is beneficial for the network to perform PRACH repeated transmission and UEs that do not perform PRACH Repeated transmission but the RAR of the UE that uses the reference RO for PRACH transmission is transmitted on the same PDCCH (RA-RNTI scrambled) scheduled PDSCH, which reduces network overhead.
  • PDCCH RA-RNTI scrambled
  • the network can choose to use the index of the preamble sent by the UE detected in the reference RO to determine the RAPID and deliver it in the RAR.
  • the parameters of the RO set include at least one of the following:
  • the index value of the time unit where the RO set is located includes at least one of the following: frame, subframe, time slot, symbol;
  • the index value of the SSB associated with the RO set for example, the index associated with the first or last SSB;
  • the frequency index value of the RO set the frequency index value where the starting RO is located.
  • sf_id can be frame frame/subframe subframe/time slot slot/symbol idx
  • SSB_id can be SSB index value
  • f_id can be the frequency index value of RO set
  • the frequency index value of RO set can be based on the height of the frequency position, Sort in ascending order.
  • the coverage of terminals that perform repeated PRACH transmissions is usually poor, and RAR scheduling is performed with PDCCHs scrambled by different RA-RNTIs, then the network can optimize the parameters of RAR transmission for these terminals with poor coverage, so as to ensure Transmission performance of random responses for PRACH repeated transmissions.
  • FIG. 7 is the second schematic flow diagram of the PRACH retransmission method provided by the embodiment of the present application. As shown in Figure 7, the PRACH repeated transmission method includes the following steps:
  • Step 700 the network side device detects the PRACH preamble on multiple ROs included in the physical random access channel transmission opportunity RO set.
  • the network side device detects the PRACH preamble on multiple ROs included in the physical random access channel transmission opportunity RO set, which can improve the performance of the network receiving PRACH.
  • the method also includes:
  • the parameters of the RO set include at least one of the following:
  • the frequency resource where the RO that can be used for repeated transmission of the PRACH is located.
  • the method also includes:
  • the preset rules include at least one of the following:
  • the index value of the SSB that satisfies the numerical value equal to mod (SSB index, M) is used as the index value of the SSB associated with the plurality of ROs;
  • the frequency positions of the multiple ROs are the same, or the frequency positions of the multiple ROs are determined according to a time index
  • the frequency positions of the multiple ROs are all different
  • the time positions of the multiple ROs are all different.
  • the parameters of the RO set meet at least one of the following:
  • index values of the SSBs associated with the plurality of ROs satisfy the value of mod (SSB index, M), where M is an integer, and M is a predefined value or determined according to network side device configuration;
  • the frequency positions of the multiple ROs are the same, or the frequency positions of the multiple ROs are determined according to a time index
  • the frequency positions of the multiple ROs are all different
  • the time positions of the multiple ROs are all different.
  • the frequency positions of the multiple ROs are different, including:
  • the frequency positions of adjacent ROs among the multiple ROs are separated by X frequency units, where X is an integer, and X is a predefined value or determined according to the configuration of the network side device; the frequency unit includes resource blocks RB, subcarriers, Subband or RO bandwidth.
  • the multiple ROs are K RO resources in at least one association period
  • association period is the time required to complete at least one round of SSB-to-RO mapping within a set of preset time periods; K is an integer greater than 1.
  • the RO mapping period is the time required to complete a round of mapping from ROs to SSBs within a set of preset time periods.
  • the SSBs associated with ROs in each association period are the same, or the SSBs associated with ROs in each RO mapping period are the same;
  • the RO mapping period is the time required to complete a round of mapping from ROs to SSBs within a set of preset time periods.
  • the preambles detected on the multiple ROs meet at least one of the following conditions:
  • the index value of the preamble is the same;
  • the index value of the preamble satisfies the numerical value of mod(preamble index, N), where N is an integer.
  • the N satisfies at least one of the following:
  • the N is determined according to the configuration of the network side device
  • the N is 64/num_SSB_RO, where num_SSB_RO is the number of SSBs associated with one RO.
  • the index value set of the preamble that can be used for repeated transmission of the PRACH is determined according to the configuration of the network side device.
  • the index value set of the preamble is associated with all SSBs sent by the network side device.
  • the method also includes:
  • the determining the RA-RNTI according to the RO set includes one of the following:
  • the parameters of the RO set include at least one of the following:
  • the index value of the time unit where the RO set is located includes at least one of the following: frame, subframe, time slot, symbol;
  • the frequency index value of the RO set is the frequency index value of the RO set.
  • the PRACH retransmission method provided in the embodiment of the present application may be executed by a PRACH retransmission device, or a control module in the PRACH retransmission device for executing the PRACH retransmission method.
  • the PRACH repeated transmission method performed by the PRACH repeated transmission device is taken as an example to describe the PRACH repeated transmission device provided in the embodiment of the present application.
  • FIG. 8 is one of the structural schematic diagrams of the PRACH repeated transmission device provided by the embodiment of the present application. As shown in FIG. 8, the PRACH repeated transmission device 800 includes:
  • the transmission unit 810 is configured to perform repeated transmission of a physical random access channel PRACH preamble on multiple ROs included in the physical random access channel transmission opportunity RO set.
  • the probability of PRACH collision can be reduced, the capacity of the PRACH can be increased, and the random access process can be optimized.
  • the device also includes:
  • the first determining unit is configured to acquire parameters of the RO set, and determine the RO set according to the parameters of the RO set.
  • the parameters of the RO set include at least one of the following:
  • the frequency resource where the RO that can be used for repeated transmission of the PRACH is located.
  • the parameters of the RO set are determined according to the configuration of the network side device, and/or determined according to a preset rule.
  • the parameters of the RO set meet at least one of the following:
  • index values of the SSBs associated with the plurality of ROs satisfy the value of mod (SSB index, M), where M is an integer, and M is a predefined value or determined according to network side device configuration;
  • the frequency positions of the multiple ROs are the same, or the frequency positions of the multiple ROs are determined according to a time index
  • the frequency positions of the multiple ROs are all different
  • the time positions of the multiple ROs are all different.
  • the frequency positions of the multiple ROs are different, including:
  • the frequency positions of adjacent ROs among the multiple ROs are separated by X frequency units;
  • X is an integer, and X is a predefined value or determined according to the configuration of the network side equipment; the frequency unit includes resource block RB, subcarrier, subband or RO bandwidth.
  • the multiple ROs are K RO resources in at least one association period
  • association period is the time required to complete at least one round of SSB-to-RO mapping within a set of preset time periods; K is an integer greater than 1.
  • the RO mapping period is the time required to complete a round of mapping from RO to SSB within a set of preset time periods.
  • the SSBs associated with ROs in each association period are the same, or the SSBs associated with ROs in each RO mapping period are the same;
  • the RO mapping period is the time required to complete a round of mapping from ROs to SSBs within a set of preset time periods.
  • the preambles sent on the multiple ROs meet at least one of the following conditions:
  • the index value of the preamble is the same;
  • the index value of the preamble satisfies the numerical value of mod(preamble index, N), where N is an integer.
  • the N satisfies at least one of the following:
  • the N is determined according to the configuration of the network side device
  • the N is 64/num_SSB_RO, where num_SSB_RO is the number of SSBs associated with one RO.
  • the index value set of the preamble that can be used for repeated transmission of the PRACH is determined according to the configuration of the network side device.
  • the index value set of the preamble is associated with all SSBs sent by the network side device.
  • the device further includes a first listening unit, configured to:
  • the determining the RA-RNTI according to the RO set includes one of the following:
  • the reference RO includes one of the following:
  • the parameters of the RO set include at least one of the following:
  • the index value of the time unit where the RO set is located includes at least one of the following: frame, subframe, time slot, symbol;
  • the frequency index value of the RO set is the frequency index value of the RO set.
  • the PRACH retransmission device in the embodiment of the present application may be a device, a device with an operating system or an electronic device, or a component, an integrated circuit, or a chip in a terminal.
  • the apparatus or electronic equipment may be a mobile terminal or a non-mobile terminal.
  • the mobile terminal may include but not limited to the types of terminals 11 listed above, and the non-mobile terminal may be a server, a network attached storage (Network Attached Storage, NAS), a personal computer (personal computer, PC), a television ( television, TV), teller machines or self-service machines, etc., are not specifically limited in this embodiment of the present application.
  • the PRACH retransmission device provided in the embodiment of the present application can realize each process realized by the method embodiments in FIG. 2 to FIG. 6 and achieve the same technical effect. In order to avoid repetition, details are not repeated here.
  • FIG. 9 is the second structural schematic diagram of the PRACH repeated transmission device provided by the embodiment of the present application. As shown in FIG. 9, the PRACH repeated transmission device 900 includes:
  • the detecting unit 910 is configured to detect a physical random access channel PRACH preamble on multiple ROs included in the physical random access channel transmission opportunity RO set.
  • the PRACH preamble detection can be performed on multiple ROs included in the physical random access channel transmission opportunity RO set, which can reduce the PRACH collision probability and improve the PRACH receiving performance.
  • the device also includes:
  • the second determining unit is configured to acquire parameters of the RO set, and determine the RO set according to the parameters of the RO set.
  • the parameters of the RO set include at least one of the following:
  • the frequency resource where the RO that can be used for repeated transmission of the PRACH is located.
  • the device also includes:
  • a first sending unit configured to send a first message to a terminal, where the first message is used to indicate parameters of the RO set
  • the third determining unit is configured to determine parameters of the RO set according to a preset rule.
  • the parameters of the RO set meet at least one of the following:
  • index values of the SSBs associated with the plurality of ROs satisfy the value of mod (SSB index, M), where M is an integer, and M is a predefined value or determined according to network side device configuration;
  • the frequency positions of the multiple ROs are the same, or the frequency positions of the multiple ROs are determined according to a time index
  • the frequency positions of the multiple ROs are all different
  • the time positions of the multiple ROs are all different.
  • the frequency positions of the multiple ROs are different, including:
  • the frequency positions of adjacent ROs among the multiple ROs are separated by X frequency units, where X is an integer, and X is a predefined value or determined according to the configuration of the network side device; the frequency unit includes resource blocks RB, subcarriers, Subband or RO bandwidth.
  • the multiple ROs are K RO resources in at least one association period
  • association period is the time required to complete at least one round of SSB-to-RO mapping within a set of preset time periods; K is an integer greater than 1.
  • the RO mapping period is the time required to complete a round of mapping from ROs to SSBs within a set of preset time periods.
  • the SSBs associated with ROs in each association period are the same, or the SSBs associated with ROs in each RO mapping period are the same;
  • the RO mapping period is the time required to complete a round of mapping from ROs to SSBs within a set of preset time periods.
  • the preambles detected on the multiple ROs meet at least one of the following conditions:
  • the index value of the preamble is the same;
  • the index value of the preamble satisfies the numerical value of mod(preamble index, N), where N is an integer.
  • the N satisfies at least one of the following:
  • the N is determined according to the configuration of the network side device
  • the N is 64/num_SSB_RO, where num_SSB_RO is the number of SSBs associated with one RO.
  • the index value set of the preamble that can be used for repeated transmission of the PRACH is determined according to the configuration of the network side device.
  • the index value set of the preamble is associated with all SSBs sent by the network side device.
  • the device also includes:
  • a fourth determining unit configured to determine a random access radio network temporary identifier RA-RNTI according to the RO set
  • a second sending unit configured to send a random access response RAR message according to the RA-RNTI
  • the determining the RA-RNTI according to the RO set includes one of the following:
  • the reference RO includes one of the following:
  • the parameters of the RO set include at least one of the following:
  • the index value of the time unit where the RO set is located includes at least one of the following: frame, subframe, time slot, symbol;
  • the frequency index value of the RO set is the frequency index value of the RO set.
  • the PRACH retransmission device provided in the embodiment of the present application can realize each process realized by the method embodiment in FIG. 7 and achieve the same technical effect. To avoid repetition, details are not repeated here.
  • this embodiment of the present application further provides a communication device 1000, including a processor 1001, a memory 1002, and programs or instructions stored in the memory 1002 and operable on the processor 1001,
  • a communication device 1000 including a processor 1001, a memory 1002, and programs or instructions stored in the memory 1002 and operable on the processor 1001
  • the communication device 1000 is a terminal
  • the program or instruction is executed by the processor 1001
  • each process of the above PRACH repeated transmission method embodiment can be realized, and the same technical effect can be achieved.
  • the communication device 1000 is a network-side device
  • the program or instruction is executed by the processor 1001
  • each process of the above PRACH repeated transmission method embodiment can be achieved, and the same technical effect can be achieved. To avoid repetition, details are not repeated here.
  • the embodiment of the present application also provides a terminal, including a processor and a communication interface, wherein the communication interface is used to perform physical random access channel PRACH preamble on multiple ROs included in the physical random access channel transmission opportunity RO set Repeated transmission of preamble.
  • This terminal embodiment corresponds to the above-mentioned terminal-side method embodiment, and each implementation process and implementation mode of the above-mentioned method embodiment can be applied to this terminal embodiment, and can achieve the same technical effect.
  • FIG. 11 is a schematic diagram of a hardware structure of a terminal implementing an embodiment of the present application.
  • the terminal 1100 includes but is not limited to: a radio frequency unit 1101, a network module 1102, an audio output unit 1103, an input unit 1104, a sensor 1105, a display unit 1106, a user input unit 1107, an interface unit 1108, a memory 1109, and a processor 1110, etc. at least some of the components.
  • the terminal 1100 may also include a power supply (such as a battery) for supplying power to various components, and the power supply may be logically connected to the processor 1110 through the power management system, so as to manage charging, discharging, and power consumption through the power management system. Management and other functions.
  • a power supply such as a battery
  • the terminal structure shown in FIG. 11 does not constitute a limitation on the terminal, and the terminal may include more or fewer components than shown in the figure, or combine some components, or arrange different components, which will not be repeated here.
  • the input unit 1104 may include a graphics processor (Graphics Processing Unit, GPU) 11041 and a microphone 11042, and the graphics processor 11041 is used for the image capture device (such as the image data of the still picture or video obtained by the camera) for processing.
  • the display unit 1106 may include a display panel 11061, and the display panel 11061 may be configured in the form of a liquid crystal display, an organic light emitting diode, or the like.
  • the user input unit 1107 includes a touch panel 11071 and other input devices 11072 . Touch panel 11071, also called touch screen.
  • the touch panel 11071 may include two parts, a touch detection device and a touch controller.
  • Other input devices 11072 may include, but are not limited to, physical keyboards, function keys (such as volume control keys, switch keys, etc.), trackballs, mice, and joysticks, which will not be repeated here.
  • the radio frequency unit 1101 receives the downlink data from the network side device, and processes it to the processor 1110; in addition, sends the uplink data to the network side device.
  • the radio frequency unit 1101 includes, but is not limited to, an antenna, at least one amplifier, a transceiver, a coupler, a low noise amplifier, a duplexer, and the like.
  • the memory 1109 can be used to store software programs or instructions as well as various data.
  • the memory 1109 may mainly include a program or instruction storage area and a data storage area, wherein the program or instruction storage area may store an operating system, an application program or instructions required by at least one function (such as a sound playback function, an image playback function, etc.) and the like.
  • the memory 1109 may include a high-speed random access memory, and may also include a nonvolatile memory, wherein the nonvolatile memory may be a read-only memory (Read-Only Memory, ROM), a programmable read-only memory (Programmable ROM) , PROM), erasable programmable read-only memory (Erasable PROM, EPROM), electrically erasable programmable read-only memory (Electrically EPROM, EEPROM) or flash memory.
  • ROM Read-Only Memory
  • PROM programmable read-only memory
  • PROM erasable programmable read-only memory
  • Erasable PROM Erasable PROM
  • EPROM electrically erasable programmable read-only memory
  • EEPROM electrically erasable programmable read-only memory
  • flash memory for example at least one magnetic disk storage device, flash memory device, or other non-volatile solid-state storage device.
  • the processor 1110 may include one or more processing units; optionally, the processor 1110 may integrate an application processor and a modem processor, wherein the application processor mainly processes the operating system, user interface, application programs or instructions, etc., Modem processors mainly handle wireless communications, such as baseband processors. It can be understood that the foregoing modem processor may not be integrated into the processor 1110 .
  • the radio frequency unit 1101 is configured to repeatedly transmit the physical random access channel PRACH preamble on multiple ROs included in the physical random access channel transmission opportunity RO set.
  • the probability of PRACH collision can be reduced, the capacity of the PRACH can be increased, and the random access process can be optimized.
  • the processor 1110 is configured to:
  • the parameters of the RO set include at least one of the following:
  • the frequency resource where the RO that can be used for repeated transmission of the PRACH is located.
  • the parameters of the RO set are determined according to the configuration of the network side device, and/or determined according to a preset rule.
  • the parameters of the RO set meet at least one of the following:
  • index values of the SSBs associated with the plurality of ROs satisfy the value of mod (SSB index, M), where M is an integer, and M is a predefined value or determined according to network side device configuration;
  • the frequency positions of the multiple ROs are the same, or the frequency positions of the multiple ROs are determined according to a time index
  • the frequency positions of the multiple ROs are all different
  • the time positions of the multiple ROs are all different.
  • the frequency positions of the multiple ROs are different, including:
  • the frequency positions of adjacent ROs among the multiple ROs are separated by X frequency units;
  • X is an integer, and X is a predefined value or determined according to the configuration of the network side equipment; the frequency unit includes resource block RB, subcarrier, subband or RO bandwidth.
  • the multiple ROs are K RO resources in at least one association period
  • association period is the time required to complete at least one round of SSB-to-RO mapping within a set of preset time periods; K is an integer greater than 1.
  • the RO mapping period is the time required to complete a round of mapping from ROs to SSBs within a set of preset time periods.
  • the SSB associated with the RO in each association period is the same, or the SSB associated with the RO in each RO mapping period is the same;
  • the RO mapping period is the time required to complete a round of mapping from ROs to SSBs within a set of preset time periods.
  • the preambles sent on the multiple ROs meet at least one of the following conditions:
  • the index value of the preamble is the same;
  • the index value of the preamble satisfies the numerical value of mod(preamble index, N), where N is an integer.
  • the N satisfies at least one of the following:
  • the N is determined according to the configuration of the network side device
  • the N is 64/num_SSB_RO, where num_SSB_RO is the number of SSBs associated with one RO.
  • the index value set of the preamble that can be used for repeated transmission of the PRACH is determined according to the configuration of the network side device.
  • the index value set of the preamble is associated with all SSBs sent by the network side device.
  • processor 1110 is further configured to:
  • the determining the RA-RNTI according to the RO set includes one of the following:
  • the reference RO includes one of the following:
  • the parameters of the RO set include at least one of the following:
  • the index value of the time unit where the RO set is located includes at least one of the following: frame, subframe, time slot, symbol;
  • the frequency index value of the RO set is the frequency index value of the RO set.
  • the embodiment of the present application also provides a network side device, including a processor and a communication interface, wherein the communication interface is used to perform physical random access channel PRACH preamble on multiple ROs included in the physical random access channel transmission opportunity RO set Preamble detection.
  • the network-side device embodiment corresponds to the above-mentioned network-side device method embodiment, and each implementation process and implementation mode of the above-mentioned method embodiment can be applied to this network-side device embodiment, and can achieve the same technical effect.
  • the embodiment of the present application also provides a network side device.
  • the network side device 1200 includes: an antenna 1201 , a radio frequency device 1202 , and a baseband device 1203 .
  • the antenna 1201 is connected to the radio frequency device 1202 .
  • the radio frequency device 1202 receives information through the antenna 1201, and sends the received information to the baseband device 1203 for processing.
  • the baseband device 1203 processes the information to be sent and sends it to the radio frequency device 1202
  • the radio frequency device 1202 processes the received information and sends it out through the antenna 1201 .
  • the foregoing frequency band processing device may be located in the baseband device 1203 , and the method performed by the network side device in the above embodiments may be implemented in the baseband device 1203 , and the baseband device 1203 includes a processor 1204 and a memory 1205 .
  • the baseband device 1203 may include, for example, at least one baseband board, and the baseband board is provided with a plurality of chips, as shown in FIG. The operation of the network side device shown in the above method embodiments.
  • the baseband device 1203 may also include a network interface 1206 for exchanging information with the radio frequency device 1202, such as a common public radio interface (CPRI for short).
  • a network interface 1206 for exchanging information with the radio frequency device 1202, such as a common public radio interface (CPRI for short).
  • CPRI common public radio interface
  • the network-side device in this embodiment of the present invention also includes: instructions or programs stored in the memory 1205 and operable on the processor 1204, and the processor 1204 calls the instructions or programs in the memory 1205 to execute the modules shown in FIG. 9 To avoid duplication, the method of implementation and to achieve the same technical effect will not be repeated here.
  • the embodiment of the present application also provides a readable storage medium, the readable storage medium stores a program or an instruction, and when the program or instruction is executed by the processor, each process of the above PRACH repeated transmission method embodiment is implemented, and can achieve The same technical effects are not repeated here to avoid repetition.
  • the processor is the processor in the terminal described in the foregoing embodiments.
  • the readable storage medium includes computer readable storage medium, such as computer read-only memory (Read-Only Memory, ROM), random access memory (Random Access Memory, RAM), magnetic disk or optical disk, etc.
  • the embodiment of the present application further provides a chip, the chip includes a processor and a communication interface, the communication interface is coupled to the processor, and the processor is used to run programs or instructions to implement the above embodiment of the PRACH repeated transmission method Each process, and can achieve the same technical effect, in order to avoid repetition, will not repeat them here.
  • the chip mentioned in the embodiment of the present application may also be called a system-on-chip, a system-on-chip, a system-on-a-chip, or a system-on-a-chip.
  • the embodiment of the present application also provides a computer program/program product, the computer program/program product is stored in a non-transitory storage medium, and the program/program product is executed by at least one processor to implement the above-mentioned system message
  • the computer program/program product is stored in a non-transitory storage medium, and the program/program product is executed by at least one processor to implement the above-mentioned system message
  • the term “comprising”, “comprising” or any other variation thereof is intended to cover a non-exclusive inclusion such that a process, method, article or apparatus comprising a set of elements includes not only those elements, It also includes other elements not expressly listed, or elements inherent in the process, method, article, or device. Without further limitations, an element defined by the phrase “comprising a " does not preclude the presence of additional identical elements in the process, method, article, or apparatus comprising that element.
  • the scope of the methods and devices in the embodiments of the present application is not limited to performing functions in the order shown or discussed, and may also include performing functions in a substantially simultaneous manner or in reverse order according to the functions involved. Functions are performed, for example, the described methods may be performed in an order different from that described, and various steps may also be added, omitted, or combined. Additionally, features described with reference to certain examples may be combined in other examples.

Abstract

本申请公开了一种PRACH重复传输方法、终端及网络侧设备,属于通信技术领域,本申请实施例的PRACH重复传输方法包括:终端在物理随机接入信道传输机会RO集合包含的多个RO上进行物理随机接入信道PRACH前导码preamble的重复传输。

Description

PRACH重复传输方法、终端及网络侧设备
相关申请的交叉引用
本申请要求于2021年10月09日提交的申请号为2021111781334,发明名称为“PRACH重复传输方法、终端及网络侧设备”的中国专利申请的优先权,其通过引用方式全部并入本申请。
技术领域
本申请属于通信技术领域,具体涉及一种PRACH重复传输方法、终端及网络侧设备。
背景技术
物理随机接入信道(Physical random-access channel,PRACH)重复传输是一种提升PRACH覆盖的方法,而现有的PRACH的资源(包括随机接入信道传输机会(RACH occasion,简称为RO),前导码(preamble,也可称为导频序列))选择,终端有较大的自由度,终端选择的资源可能无法支持终端进行PRACH重复传输,导致随机接入失败。
发明内容
本申请实施例提供一种PRACH重复传输方法、终端及网络侧设备,能够解决终端选择的资源可能无法支持终端进行PRACH重复传输,导致随机接入失败的问题。
第一方面,提供了一种PRACH重复传输方法,应用于终端,该方法包括:
终端在物理随机接入信道传输机会RO集合包含的多个RO上进行物理随机接入信道PRACH前导码preamble的重复传输。
第二方面,提供了一种PRACH重复传输方法,应用于网络侧设备,该方法包括:
网络侧设备在物理随机接入信道传输机会RO集合包含的多个RO上进行物理随机接入信道PRACH前导码preamble的检测。
第三方面,提供了一种PRACH重复传输装置,包括:
传输单元,用于在物理随机接入信道传输机会RO集合包含的多个RO上进行物理随机接入信道PRACH前导码preamble的重复传输。
第四方面,提供了一种PRACH重复传输装置,包括:
检测单元,用于在物理随机接入信道传输机会RO集合包含的多个RO上进行物理随机接入信道PRACH前导码preamble的检测。
第五方面,提供了一种终端,该终端包括处理器、存储器及存储在所述存储器上并可在所述处理器上运行的程序或指令,所述程序或指令被所述处理器执行时实现如第一方面所述的PRACH重复传输方法的步骤。
第六方面,提供了一种终端,包括处理器及通信接口,其中,所述通信接口用于在物理随机接入信道传输机会RO集合包含的多个RO上进行物理随机接入信道PRACH前导码preamble的重复传输。
第七方面,提供了一种网络侧设备,该网络侧设备包括处理器、存储器及存储在所述存储器上并可在所述处理器上运行的程序或指令,所述程序或指令被所述处理器执行时实现如第二方面所述的PRACH重复传输方法的步骤。
第八方面,提供了一种网络侧设备,包括处理器及通信接口,其中,所述通信接口用于在物理随机接入信道传输机会RO集合包含的多个RO上进行物理随机接入信道PRACH前导码preamble的检测。
第九方面,提供了一种可读存储介质,所述可读存储介质上存储程序或指令,所述程序或指令被处理器执行时实现如第一方面所述的PRACH重复传输方法的步骤,或者实现如第二方面所述的PRACH重复传输方法的步骤。
第十方面,提供了一种芯片,所述芯片包括处理器和通信接口,所述通信接口和所述处理器耦合,所述处理器用于运行程序或指令,实现如第一方面所述的PRACH重复传输方法,或实现如第二方面所述的PRACH重复传输方法。
第十一方面,提供了一种计算机程序/程序产品,所述计算机程序/程序产品被存储在非瞬态的存储介质中,所述程序/程序产品被至少一个处理器执行以实现如第一方面所述的PRACH重复传输方法的步骤,或者实现如第二方面所述的PRACH重复传输方法的步骤。
在本申请实施例中,通过将终端进行PRACH preamble的重复传输的机会限制在RO集合上,可降低PRACH冲突概率,提升PRACH的容量,优化随机接入流程。
附图说明
图1为本申请实施例可应用的一种无线通信系统的结构图;
图2为RO和SSB的关联关系示意图之一;
图3为RO和SSB的关联关系示意图之二;
图4为本申请实施例提供的PRACH重复传输方法的流程示意图之一;
图5为本申请实施例提供的RO集合的示意图之一;
图6为本申请实施例提供的RO集合的示意图之二;
图7为本申请实施例提供的PRACH重复传输方法的流程示意图之二;
图8为本申请实施例提供的PRACH重复传输装置的结构示意图之一;
图9为本申请实施例提供的PRACH重复传输装置的结构示意图之二;
图10为本申请实施例提供的通信设备的结构示意图;
图11为实现本申请实施例的一种终端的硬件结构示意图;
图12为本申请实施例提供的网络侧设备的结构示意图。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚描述,显然,所描述的实施例是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员所获得的所有其他实施例,都属于本申请保护的范围。
本申请的说明书和权利要求书中的术语“第一”、“第二”等是用于区别类似的对象,而不用于描述特定的顺序或先后次序。应该理解这样使用的术语在适当情况下可以互换,以便本申请的实施例能够以除了在这里图示或描述的那些以外的顺序实施,且“第一”、“第二”所区别的对象通常为一类,并不限定对象的个数,例如第一对象可以是一个,也可以是多个。此外,说明书以及权利要求中“和/或”表示所连接对象的至少其中之一,字符“/”一般表示前后关联对象是一种“或”的关系。
值得指出的是,本申请实施例所描述的技术不限于长期演进型(Long Term Evolution,LTE)/LTE的演进(LTE-Advanced,LTE-A)系统,还可用于其他无线通信系统,诸如码分多址(Code Division Multiple Access,CDMA)、时分多址(Time Division Multiple Access,TDMA)、频分多址(Frequency Division Multiple Access,FDMA)、正交频分多址(Orthogonal Frequency Division Multiple Access,OFDMA)、单载波频分多址(Single-carrier Frequency-Division Multiple Access,SC-FDMA)和其他系统。本申请实施例中的术语“系统”和“网络”常被可互换地使用,所描述的技术既可用于以上提及的系统和无线电技术,也可用于其他系统和无线电技术。以下描述出于示例目的描述了新空口(New Radio,NR)系统,并且在以下大部分描述中使用NR术语,但是这些技术也可应用于NR系统应用以外的应用,如第6代(6 th Generation,6G)通信系统。
图1示出本申请实施例可应用的一种无线通信系统的结构图。无线通信系统包括终端11和网络侧设备12。其中,终端11也可以称作终端设备或者用户终端(User Equipment,UE),终端11可以是手机、平板电脑(Tablet Personal Computer)、膝上型电脑(Laptop Computer)或称为笔记本电脑、个人数字助理(Personal Digital Assistant,PDA)、掌上电脑、上网本、超级移动个人计算机(ultra-mobile personal computer,UMPC)、移动上网装置(Mobile Internet Device,MID)、增强现实(augmented reality,AR)/虚拟现实(virtual reality,VR)设备、机器人、可穿戴式设备(Wearable Device)、车载设备(VUE)、行人终端(PUE)、智能家居(具有无线通信功能的家居设备,如冰箱、电视、洗衣机或者家具等)等终端侧设备,可穿戴式设备包括:智能手表、智能手环、智能耳机、智能眼镜、智能首饰(智能手镯、智能手链、智能戒指、智能项链、智能脚镯、智能脚链等)、智能腕带、智能服装、游戏机等。需要说明的是,在本申请实施例并不限定终端11的具体类型。网络侧设备12 可以是基站或核心网,其中,基站可被称为节点B、演进节点B、接入点、基收发机站(Base Transceiver Station,BTS)、无线电基站、无线电收发机、基本服务集(Basic Service Set,BSS)、扩展服务集(Extended Service Set,ESS)、B节点、演进型B节点(eNB)、家用B节点、家用演进型B节点、WLAN接入点、WiFi节点、发送接收点(Transmitting Receiving Point,TRP)或所述领域中其他某个合适的术语,只要达到相同的技术效果,所述基站不限于特定技术词汇,需要说明的是,在本申请实施例中仅以NR系统中的基站为例,但是并不限定基站的具体类型。
在现有技术中,包含竞争的随机接入流程和非竞争随机接入的流程。
竞争的随机接入过程,也称为4步RACH中,UE首先向网络侧设备发送msg1,包含preamble;网络检测到preamble后,将发送msg2,包含该preamble对应的随机接入响应(Random Access Response,RAR)消息;UE接收到msg2后,根据RAR的指示,发送msg3;网络收到msg3后,将发送msg4,包含竞争解决标识contention resolution ID;UE收到msg4,即完成4步随机接入。
网络在RAR中包含上行(Uplink,UL)授权(grant)信息用于指示MSG3物理上行共享信道(Physical Uplink Shared Channel,PUSCH)调度信息,并且包含随机接入前导标识(RACH preamble ID,RAPID),临时小区无线网络临时标识(Temporary Cell Radio Network Temporary Identifier,TC-RNTI),定时提前量(Timing Advance,TA)等信息。如果网络没有接收到MSG3 PUSCH,可以在TC-RNTI加扰的物理下行控制信道(Physical Downlink Control Channel,PDCCH)中调度MSG3 PUSCH的重传。
对于竞争的随机接入过程,不同的UE随机选取preamble进行传输,这样不同的UE可能在相同的资源上选取相同的preamble发送,触发竞争随机接入过程。这种情况可以理解为UE的preamble冲突。这种情况下,不同的UE会收到相同的RAR,则此时不同的UE会根据该RAR UL grant中的调度信息,进行MSG3 PUSCH的传输。由于现有技术不支持MSG3 PUSCH的重复传输,网络在一个MSG3 PUSCH调度资源上只能解出一个UE发送的PUSCH,所以,网络会在MSG4物理下行共享信道(Physical Downlink Shared Channel,PDSCH)中包含竞争解决ID和UE在MSG3 PUSCH中发送的公共控制信道(Common Control Channel,CCCH)业务数据单元(Service Data Unit,SDU)匹配,则UE认为竞争解决成功,并将TC-RNTI作为UE的小区无线网络临时标识(Cell Radio Network Temporary Identity,C-RNTI)。如果不匹配,则认为竞争解决不成功。
如果竞争解决不成功,则重新选择RACH发送资源,进行PRACH发送,进行下一次随机接入尝试。
在NR中,基站可以在一个传输PRACH的时域位置上,配置多个FDM的PRACH transmission occasion(物理随机接入信道传输机会,又或者叫PRACH occasion),在这里为了简单,简称为RO。一个时间time实例instance上可以进行FDM的RO个数可以为:{1,2,4,8}。
随机接入前导(RACH preamble)只能在参数PRACHConfigurationIndex配置的时域资源上传输,随机接入前导只能在参数prach-FDM配置的频域资源上传输,PRACH频域资源n RA∈{0,1,...,M-1},其中M等于高层参数prach-FDM。在初始接入的时候,PRACH频域资源n RA从initial active uplink bandwidth part(初始激活上行带宽部分)内频率最低RO资源开始升序编号,否则,PRACH频域资源n RA从active uplink bandwidth part(激活上行带宽部分)内频率最低RO资源开始升序编号。
在NR中,RO和实际发送的SSB(SS/PBCH block,同步信号/物理广播信道块,有时候也直接简称为SS block,同步信号块)之间存在关联关系。一个RO上可能关联多个SSB,也可以多个SSB关联1个RO。通常不同的SSB可以采用不同的波束进行发送,终端也可以在关联的SSB的RO上采用和该SSB较为匹配的波束进行PRACH的重复传输。
图2为RO和SSB的关联关系示意图之一。如图2所示,一个time instance上的FDM的RO数目为8个,实际传输的SSB数目为4个,例如对应的SSB为SSB#0,SSB#1,SSB#2,SSB#3,每个SSB关联2个RO。如果UE在SSB0对应的RO上发送PRACH,那么UE在RO#0和RO#1中选择一个RO进行PRACH的发送。
图3为RO和SSB的关联关系示意图之二。如图3所示,一个time instance上的FDM的RO数目为2个,实际传输的SSB数目为8个,例如对应的SSB为SSB#0,SSB#1,……,SSB#7,每2个SSB关联1个RO。多个SSB共享一个RO时,该多个SSB关联的preamble集合是不同的。
注意,图2和图3中所示方框均为RO,方框中标出的SSB是指该RO所关联的SSB。
UE发送PRACH前,首先进行资源选择,首先选择RSRP高于门限的SSB对应的RO,如果有多个SSB高于该门限,终端可以选择任一个SSB。在确定SSB之后,如果该SSB关联多个RO,终端可以任选其中一个RO进行PRACH发送。并在RO中使用该SSB关联的preamble集合中随机选择一个preamble进行PRACH的发送。
如果支持PRACH重复,终端可能选择多个SSB关联的RO进行PRACH的重复发送,该多个SSB可以使用不同的波束发送,这样终端也可以在关联不同SSB的RO上使用不同的波束进行PRACH的发送。
在现有框架下,支持PRACH重复传输,存在如下的问题:
1,SSB关联的RO可以是FDM的资源,终端无法在同一时间的FDM的RO资源上进行PRACH的发送,所以选择部分SSB的组合关联的RO组合是不能实现的,例如图3中SSB#0和SSB#2关联的RO是FDM的关系,所以可能需要限制终端进行PRACH重复传输时的SSB组合和/或RO组合。
2,现有框架下,终端在每个RO中选择的preamble是在该SSB关联的preamble集合中随机选择的,如果支持PRACH重复传输,且PRACH重复传输使用的preamble都是随机的,一方面,网络无法确定重复的PRACH传输是否来自同一个UE,另一方面,也无法做接收合并以提升接收性能。
3,在多个RO上进行PRACH重复传输的情况下,终端使用什么样的RA-RNTI进行RAR(MSG2)的监听需要进一步明确,现有的只使用一个RO发送一次PRACH的情况下,RA-RNTI的计算是确定。
为了解决上述问题,本申请实施例提供了PRACH重复传输方法、终端及网络侧设备。
下面结合附图,通过一些实施例及其应用场景对本申请实施例提供的PRACH重复传输方法、终端及网络侧设备进行详细地说明。
图4为本申请实施例提供的PRACH重复传输方法的流程示意图之一。如图4所示,该方法包括以下步骤:
步骤400、终端在物理随机接入信道传输机会RO集合包含的多个RO上进行物理随机接入信道PRACH前导码preamble的重复传输。
为了解决终端选择的资源可能无法用于实现PRACH重复传输,导致随机接入失败的问题,本申请实施例将终端进行PRACH preamble的重复传输的机会限制在RO集合上。终端进行PRACH重复传输的多个RO可以定义为RO集合(RO set或者RO bundle或RO CE set,其中CE为覆盖增强Coverage enhancement)。
可选地,所述方法还包括:
获取所述RO集合的参数,根据所述RO集合的参数确定所述RO集合。
可以理解,在终端在所述RO集合包含的多个RO上进行PRACH preamble的重复传输之前,终端需要确定该RO集合,具体根据RO集合的参数确定RO集合。
可选地,所述RO集合的参数包括以下至少一项:
所述多个RO关联的同步信号块SSB的索引值;
可用于PRACH重复传输的RO所在的时间资源;
可用于PRACH重复传输的RO所在的频率资源。
可选地,所述RO集合的参数根据网络侧设备配置确定,和/或,根据预设规则确定。
在本申请实施例中,网络侧设备配置可以替换为网络侧设备指示。
可选地,该RO集合中包含k个SSB关联的RO,其中,所述k满足:1<k<=L,其中,L为服务小区发送的SSB的数目,L由网络侧设备配置。
例如,该小区发送了8个SSB,即SSB#0,SSB#1,…,SSB#7,网络可以指示进行PRACH重复的RO关联的SSB的索引值组合为{SSB#0,SSB#2,SSB#4,SSB#6},或者为{SSB#1,SSB#3,SSB#5,SSB#7},或者其他的索引值组合,如图5所示。
可选地,所述RO集合包含的多个RO关联的SSB可以相同或者不同。
网络可以任意指示RO set中关联的SSB的数目和索引值,以达到最大的重复次数和PRACH传输关联SSB的灵活性。
或者网络可以指示RO所在的时间位置和/或频率位置,可以通过时间索引和/或频率索引的方式指示,例如网络可以指示多个RO的频率索引值和/或时间索引值组合。例如,{(f_idx0,t_idx0),(f_idx1,t_idx1),(f_idx2,t_idx2),(f_idx3,t_idx3)}。
可以理解的是,所述RO集合包含的多个RO,为可用于PRACH重复传输的RO。
可选地,网络侧设备配置包括网络侧设备通过下行控制信息(Downlink Control Information,DCI),媒体访问控制(Media Access Control,MAC)控制单元(Control Element,CE),无线资源控制(Radio Resource Control,RRC),或其他高层信令显式或隐式配置。
在本申请实施例中,通过网络侧设备配置的方式指示RO集合的参数,灵活性较高,可以避免终端在相同时刻的多个FDM RO上进行PRACH重复传输,避免终端任意选择RO组合进行PRACH重复传输,或者选择过多的RO进行PRACH重复传输,降低PRACH冲突概率,提升了PRACH的容量。
可选地,终端采用预设规则确定RO集合的参数,所述预设规则包括以下至少一项:
将满足mod(SSB index,M)的数值相等的SSB的索引值作为所述多个RO关联的SSB的索引值,其中,M为整数,M为预定义的值或者根据网络侧设备配置确定;
所述多个RO的频率位置相同,或者,所述多个RO的频率位置根据时间索引确定;
所述多个RO的频率位置均不相同;
所述多个RO的时间位置均不相同。
一种实施方式中,多个RO关联的SSB的索引值满足mod(SSB index,M)的数值相等的SSB为所述多个RO关联的SSB,其中M为整数,M为预定义的值,或者,M可以根据网络侧设备配置确定。
其中,mod(SSB index,M)表示SSB index对M求余数的结果。
例如,mod(SSB index,2)数值相同的SSB索引关联的多个RO为一个RO集合set中的所述多个RO,那么SSB#0,SSB#2,SSB#4,SSB#6的mod(SSB index,2)都为0,属于同一个RO set;那么SSB#1,SSB#3,SSB#5,SSB#7的mod(SSB index,2)都为1属于同一个RO set。
另一种实施方式中,根据网络侧设备配置的RO分布,确定在同一个频率位置的多个RO属于同一个RO set,一种可能的RO set的组合和图5所示的RO set的效果相同。这样根据该隐式规则确定的RO set中不包含在同一时刻不同频率位置的RO组合。
或者,所述多个RO的频率位置根据时间索引确定,时间索引可以认为是一段时间内的用于传输PRACH的资源的前后顺序的索引,可以参考图3,不同时刻的RO有不同的时间索引。
又一种实施方式中,多个RO的频率位置均不相同,即可以在不同的频率位置上进行PRACH preamble的重复传输,通过这种跳频传输的方式提升PRACH重复传输的性能。
可选地,所述多个RO的频率位置均不相同,即在不同时刻,可以在不同的频率位置上进行PRACH preamble的重复传输。
可选地,所述多个RO的频率位置均不相同,包括:
所述多个RO中相邻RO的频率位置间隔X个频率单元;
其中,X为整数,X为预定义的值或者根据网络侧设备配置确定;所述频率单元包括 资源块RB,子载波,子带或RO带宽。
即可以根据网络侧设备配置的RO分布,确定相邻RO的频率位置间隔X个频率单元的多个RO属于同一个RO set。一种可能的RO set的组合如图6所示,在网络侧设备配置跳频传输的情况下,预设规则为按照时间顺序,在相邻时刻,不同频率位置的RO构成一个RO set,那么确定使用{SSB#0,SSB#3,SSB#4,SSB#7}关联的RO构成一个RO set,{SSB#1,SSB#2,SSB#5,SSB#6}关联的RO构成一个RO set。
终端无法在同一时间的FDM的RO资源上进行PRACH的发送,因此,所述多个RO的时间位置均不相同。即所述多个RO中不包括两个相同位置的RO。
由于现有的SSB和RO关联的配置中存在多个SSB关联同一个RO的情况,上述的多个规则可以结合,网络侧设备配置和预设规则可以结合。例如网络侧设备配置/指示确定在同一频率位置的RO为一个RO set,而每个RO关联多个SSB,可以进一步通过网络指示或者预设规则的方式限制RO关联的SSB。或者,通过预设规则确定在同一频率位置的RO为一个RO set,而每个RO关联多个SSB,可以进一步通过网络指示或者预设规则的方式限制RO关联的SSB。
例如,按图3的方式,网络可以进一步指示限制RO关联SSB的组合为{SSB#0,SSB#2,SSB#4,SSB#6},{SSB#1,SSB#3,SSB#5,SSB#7}。或者通过mod(SSB index,M)的数值相等的规则,例如进一步配置M=2,限制RO关联SSB的组合为{SSB#0,SSB#2,SSB#4,SSB#6},{SSB#1,SSB#3,SSB#5,SSB#7}。
在本申请实施例中,通过预设规则的方式确定RO集合的参数,可以避免终端任意选择RO组合进行PRACH重复传输,或者选择过多的RO进行PRACH重复传输,降低PRACH冲突概率,提升了PRACH的容量,同时可以减少网络的配置参数,降低配置开销。
可选地,所述RO集合的参数满足以下至少一项:
所述多个RO关联的SSB的索引值满足mod(SSB index,M)的数值相等,其中,M为整数,M为预定义的值或者根据网络侧设备配置确定;
所述多个RO的频率位置相同,或者,所述多个RO的频率位置根据时间索引确定;
所述多个RO的频率位置均不相同;
所述多个RO的时间位置均不相同。
可以理解,网络配置的RO集合的参数或者根据预设确定的RO集合的参数满足上述至少一项。
可选地,对于网络指示的随机接入过程,例如通过PDCCH order或者RRC信令指示的基于竞争的随机接入(Contention Based Random Access,CBRA)或者无竞争的随机接入(Contention Free Random Access,CFRA)的RACH流程,网络在指示进行PRACH重复的RO set时,可以指示RO set,或者通过指示RO set中的参考RO来指示终端进行PRACH重复传输的RO资源。
可选地,所述多个RO为至少一个关联周期内的K个RO资源;
其中,所述关联周期为在一个预设时间段的集合内,完成至少一轮SSB到RO的映射所需要的时间;K为大于1的整数。
在现有的框架下,在网络侧设备发送的所有SSB和PRACH资源都完成一轮映射所需要的时间称为RO映射周期,完成一轮映射需要一个或者多个frame(10ms),或者在一个frame(10ms)可以完成多轮SSB和RO的映射。一个RO关联周期association period包含至少1个frame,在RO association period内至少需要完成1次SSB到RO的映射。
一个关联周期association period可以包含多个RO映射周期。
一个关联周期内包含的RO的个数K是隐式确定的。
例如,预设时间段的集合为{10,20,40,80,160}ms。
例如,每10ms内有1个RO,共有4个SSB,且每个SSB关联1个RO,那么就需要40ms完成1轮SSB到RO的映射。40ms就是关联周期association period。
又例如,10ms内有8个RO,共有4个SSB,每个SSB关联1个RO,那么10ms为上述预设时间段的集合中完成至少一轮映射的最短时间,且能完成2轮映射。10ms就是关联周期association period。
可选地,在每个所述关联周期内只有一个RO,或者,在每个RO映射周期内只有一个RO。
PRACH重复传输可以RO映射周期或者RO关联周期为基本的单元,在每个周期内只在一个RO上进行发送。
可选地,在每个所述关联周期内的RO关联的SSB是相同的,或者,在每个RO映射周期内的RO关联的SSB是相同的;
即在每个关联周期或映射周期内,用于进行PRACH重复传输的RO可以关联相同的SSB。
可选地,在所述多个RO上发送的preamble,满足以下条件至少其中之一:
preamble的索引值相同;
preamble的索引值满足mod(preamble index,N)的数值相等,其中,N为整数。
进行PRACH重复发送时,终端不仅需要确定进行PRACH重复传输的多个RO,也需要确定在每个RO中进行PRACH发送使用的preamble。
对PRACH重复传输中使用的PRACH preamble组合可以进行进一步的限定,例如限定多个重复的preamble为相同(索引值)的preamble,或者这些preamble的索引值满足第二预设规则,此处第二预设规则即preamble的索引值满足mod(preamble index,N)的数值相等。
以图5为例进行说明,每个RO关联2个SSB,偶数索引的SSB关联的preamble的索引为0-31,奇数索引的SSB关联的preamble索引为32-63。进行PRACH重复的RO关联的SSB的索引值组合为{SSB#0,SSB#2,SSB#4,SSB#6},且各RO中选择使用的preamble 的索引值的集合都为0-31,进一步限制在preamble 0-31中使用相同的索引值的PRACH preamble进行传输。
同理,若进行PRACH重复的RO关联的SSB的索引值组合为{SSB#1,SSB#3,SSB#5,SSB#7},且各RO中选择使用的preamble的索引值的集合都为32-63,进一步限制在preamble 32-63中使用相同的索引值的PRACH preamble进行传输。
若进行PRACH重复发送使用的SSB索引,关联的preamble的索引值不同,那么可以进一步限制不同RO中的PRACH preamble索引值满足第二预设规则,要求mod(preamble index,N)的数值相等。
可选地,所述N满足以下至少之一:
所述N根据网络侧设备配置确定;
所述N为64/num_SSB_RO,其中,num_SSB_RO是一个RO关联的SSB的个数。
例如,仍以图3为例,网络指示PRACH重复发送使用的RO关联的SSB的索引值为{SSB#0,SSB#3,SSB#4,SSB#7},关联SSB#0和SSB#4的RO使用的preamble的索引值的集合都为0-31,关联SSB#3和SSB#7的RO使用的preamble的索引值的集合都为32-63。可以进一步要求,mod(preamble index,N)的数值相等。
N=32,可以为网络侧设备配置的数值。
或者,N为64/num_SSB_RO,num_SSB_RO为一个RO关联的SSB的个数,在图3的例子中,num_SSB_RO=2。那么,如果SSB#0和SSB#4关联的RO上选择的preamble索引是0,那么SSB#3和SSB#7关联的RO上选择的preamble索引是32;如果SSB#0和SSB#4关联的RO上选择的preamble索引是1,那么SSB#3和SSB#7关联的RO上选择的preamble索引是33,始终满足mod(preamble index,32)的数值相同。
可选地,可用于PRACH重复传输的preamble的索引值集合根据网络侧设备配置确定。
即网络侧设备配置用于PRACH重复传输的preamble的索引值集合。
可选地,所述preamble的索引值集合与网络侧设备发送的所有SSB关联。即该索引值集合对应的preamble不再对关联的SSB做进一步划分。
相关技术中,在一个SSB对应多个RO的情况下,对应的preamble集合是不同的,那么进一步的支持了PRACH重复传输的情况下,在其中每个SSB对应的用于重复传输的preamble集合也是不同的。
这种方法的缺点是需要划分出多个preamble集合对应于多个SSB,preamble资源分隔出来的这块开销很大,挤占了不用于重复传输的preamble资源。如上述在多个RO上发送的preamble的索引值不相同的方案就有这种问题。
所述preamble的索引值集合与网络侧设备发送的所有SSB关联,不再要求不同的SSB关联不同的preamble集合,减小了对PRACH preamble资源数目的占用。另外,网络也可以简单地只检测一个preamble集合就确定是否有UE进行PRACH重复传输,降低了网络 实现的复杂度。
例如,网络在每一个RO上都检测相同的preamble集合,如果检测到该集合中的preamble,则认为存在终端进行重复传输。
可选地,所述方法还包括以下之一:
根据所述RO集合确定随机接入无线网络临时标识RA-RNTI;
根据所述RA-RNTI监听网络侧设备发送的随机接入响应RAR消息;
其中,所述根据所述RO集合确定RA-RNTI,包括以下之一:
根据所述RO集合中的一个参考RO确定RA-RNTI;
根据所述RO集合的参数确定RA-RNTI。
终端在进行PRACH传输后,需要进行RAR(Msg2)的监听,因为现有机制下在每个RO上进行PRACH发送对应的RA-RNTI可能是不同的,那么在多个RO上进行PRACH重复发送之后,确定RA-RNTI的方法需要进一步的明确。
可能的方法为,使用多个RO中的一个参考RO的参数进行RA-RNTI的计算,所述参数包括时间索引,频率索引,符号索引等。
可选地,所述参考RO,包括以下之一:
所述多个RO中的第一个RO;
所述多个RO中的最后一个RO;
网络侧设备指示的一个RO。
也就是说,该参考RO可以为多个RO中的第一个RO,最后一个RO,或者网络侧设备指示的一个RO。这样,RA-RNTI的计算方法可以使用现有规则,终端监听RA-RNTI加扰的PDCCH时,根据该参考RO计算的RA-RNTI进行调度RAR的PDCCH监听。
由于网络可以把对多个终端的PRACH的响应在同一个RAR中进行传输,选取一个参考RO采用现有的规则进行RA-RNTI的计算,有利于网络将进行PRACH重复传输的UE和没有进行PRACH重复传输但使用了参考RO进行PRACH发送的UE的RAR在同一个PDCCH(RA-RNTI加扰的)调度的PDSCH进行传输,降低了网络的开销。
网络在发送的RAR中,可以选择使用参考RO中检测到UE发送的preamble的index,确定RAPID,并在RAR中下发。
或者定义新的RA-RNTI计算方法,采用RO集合的参数计算RA-RNTI。
可选地,所述RO集合的参数包括以下至少一项:
所述RO集合所在的时间单元的索引值,所述时间单元包括以下至少一项:帧,子帧,时隙,符号;
所述RO集合关联的SSB的索引值;例如,关联第一或最后一个SSB的索引;
所述RO集合的频率索引值;起始RO所在的频率索引值。
例如:新的计算公式:RA-RNTI=1+sf_id+4×SSB_id+64×f_id,
其中,sf_id可以为帧frame/子帧subframe/时隙slot/符号symbol idx,SSB_id可以为 SSB索引值,f_id可以为RO set的频率索引值,RO set的频率索引值可以根据频率位置的高低,以升序的方式进行排序。
进行PRACH重复传输的终端的覆盖通常较差,以不同的RA-RNTI加扰的PDCCH进行RAR的调度,那么网络可以针对这部分覆盖较差的终端,对RAR传输的参数进行优化,以保证针对进行PRACH重复传输的随机响应的传输性能。
图7为本申请实施例提供的PRACH重复传输方法的流程示意图之二。如图7所示,该PRACH重复传输方法包括以下步骤:
步骤700、网络侧设备在物理随机接入信道传输机会RO集合包含的多个RO上进行物理随机接入信道PRACH前导码preamble的检测。
在本申请实施例中,网络侧设备在物理随机接入信道传输机会RO集合包含的多个RO上进行物理随机接入信道PRACH前导码preamble的检测,可以提升网络接收PRACH的接收性能。
可选地,所述方法还包括:
获取RO集合的参数,根据所述RO集合的参数确定所述RO集合;
可选地,所述RO集合的参数包括以下至少一项:
所述多个RO关联的同步信号块SSB的索引值;
可用于PRACH重复传输的RO所在的时间资源;
可用于PRACH重复传输的RO所在的频率资源。
可选地,所述方法还包括:
向终端发送第一消息,其中,所述第一消息用于指示所述RO集合的参数;
或者,
根据预设规则确定所述RO集合的参数。
可选地,所述预设规则包括以下至少一项:
将满足mod(SSB index,M)的数值相等的SSB的索引值作为所述多个RO关联的SSB的索引值;
所述多个RO的频率位置相同,或者,所述多个RO的频率位置根据时间索引确定;
所述多个RO的频率位置均不相同;
所述多个RO的时间位置均不相同。
可选地,所述RO集合的参数满足以下至少一项:
所述多个RO关联的SSB的索引值满足mod(SSB index,M)的数值相等,其中,M为整数,M为预定义的值或者根据网络侧设备配置确定;
所述多个RO的频率位置相同,或者,所述多个RO的频率位置根据时间索引确定;
所述多个RO的频率位置均不相同;
所述多个RO的时间位置均不相同。
可选地,所述多个RO的频率位置均不相同,包括:
所述多个RO中相邻RO的频率位置间隔X个频率单元,其中,X为整数,X为预定义的值或根据网络侧设备配置确定;所述频率单元包括资源块RB,子载波,子带或RO带宽。
可选地,所述多个RO为至少一个关联周期内的K个RO资源;
其中,所述关联周期为在一个预设时间段的集合内,完成至少一轮SSB到RO的映射所需要的时间;K为大于1的整数。
可选地,在每个所述关联周期内只有一个RO,或者,在每个RO映射周期内只有一个RO;
其中,所述RO映射周期为在一个预设时间段的集合内,完成一轮RO到SSB的映射所需要的时间。
可选地,在每个所述关联周期内的RO关联的SSB是相同的,或者,在每个RO映射周期内的RO关联的SSB是相同的;
其中,所述RO映射周期为在一个预设时间段的集合内,完成一轮RO到SSB的映射所需要的时间。
可选地,在所述多个RO上检测的preamble,满足以下条件至少其中之一:
preamble的索引值相同;
preamble的索引值满足mod(preamble index,N)的数值相等,其中,N为整数。
可选地,所述N满足以下至少之一:
所述N根据网络侧设备配置确定;
所述N为64/num_SSB_RO,其中,num_SSB_RO是一个RO关联的SSB的个数。
可选地,可用于PRACH重复传输的preamble的索引值集合根据网络侧设备配置确定。
可选地,所述preamble的索引值集合与网络侧设备发送的所有SSB关联。
可选地,所述方法还包括:
根据所述RO集合确定随机接入无线网络临时标识RA-RNTI;
根据所述RA-RNTI发送随机接入响应RAR消息;
其中,所述根据所述RO集合确定RA-RNTI,包括以下之一:
根据所述RO集合中的一个参考RO确定RA-RNTI;
根据所述RO集合的参数确定RA-RNTI。
可选地,所述RO集合的参数包括以下至少一项:
所述RO集合所在的时间单元的索引值,所述时间单元包括以下至少一项:帧,子帧,时隙,符号;
所述RO集合关联的SSB的索引值;
所述RO集合的频率索引值。
对于上述以网络侧设备为执行主体的实施例理解可以参考前述以终端为执行主体的 实施例中的相关描述,在此不再赘述。
需要说明的是,本申请实施例提供的PRACH重复传输方法,执行主体可以为PRACH重复传输装置,或者,该PRACH重复传输装置中的用于执行PRACH重复传输方法的控制模块。本申请实施例中以PRACH重复传输装置执行PRACH重复传输方法为例,说明本申请实施例提供的PRACH重复传输装置。
图8为本申请实施例提供的PRACH重复传输装置的结构示意图之一,如图8所示,该PRACH重复传输装置800包括:
传输单元810,用于在物理随机接入信道传输机会RO集合包含的多个RO上进行物理随机接入信道PRACH前导码preamble的重复传输。
在本申请实施例中,通过将终端进行PRACH preamble的重复传输的机会限制在RO集合上,可降低PRACH冲突概率,提升PRACH的容量,优化随机接入流程。
可选地,所述装置还包括:
第一确定单元,用于获取所述RO集合的参数,根据所述RO集合的参数确定所述RO集合。
可选地,所述RO集合的参数包括以下至少一项:
所述多个RO关联的同步信号块SSB的索引值;
可用于PRACH重复传输的RO所在的时间资源;
可用于PRACH重复传输的RO所在的频率资源。
可选地,所述RO集合的参数根据网络侧设备配置确定,和/或,根据预设规则确定。
可选地,所述RO集合的参数满足以下至少一项:
所述多个RO关联的SSB的索引值满足mod(SSB index,M)的数值相等,其中,M为整数,M为预定义的值或者根据网络侧设备配置确定;
所述多个RO的频率位置相同,或者,所述多个RO的频率位置根据时间索引确定;
所述多个RO的频率位置均不相同;
所述多个RO的时间位置均不相同。
可选地,所述多个RO的频率位置均不相同,包括:
所述多个RO中相邻RO的频率位置间隔X个频率单元;
其中,X为整数,X为预定义的值或者根据网络侧设备配置确定;所述频率单元包括资源块RB,子载波,子带或RO带宽。
可选地,所述多个RO为至少一个关联周期内的K个RO资源;
其中,所述关联周期为在一个预设时间段的集合内,完成至少一轮SSB到RO的映射所需要的时间;K为大于1的整数。
可选地,在每个所述关联周期内只有一个RO,或者,在每个RO映射周期内只有一个RO;
其中,所述RO映射周期为在一个预设时间段的集合内,完成一轮RO到SSB的映射 所需要的时间。
可选地,在每个所述关联周期内的RO关联的SSB是相同的,或者,在每个RO映射周期内的RO关联的SSB是相同的;
其中,所述RO映射周期为在一个预设时间段的集合内,完成一轮RO到SSB的映射所需要的时间。
可选地,在所述多个RO上发送的preamble,满足以下条件至少其中之一:
preamble的索引值相同;
preamble的索引值满足mod(preamble index,N)的数值相等,其中,N为整数。
可选地,所述N满足以下至少之一:
所述N根据网络侧设备配置确定;
所述N为64/num_SSB_RO,其中,num_SSB_RO是一个RO关联的SSB的个数。
可选地,可用于PRACH重复传输的preamble的索引值集合根据网络侧设备配置确定。
可选地,所述preamble的索引值集合与网络侧设备发送的所有SSB关联。
可选地,所述装置还包括第一监听单元,用于:
根据所述RO集合确定随机接入无线网络临时标识RA-RNTI;
根据所述RA-RNTI监听网络侧设备发送的随机接入响应RAR消息;
其中,所述根据所述RO集合确定RA-RNTI,包括以下之一:
根据所述RO集合中的一个参考RO确定RA-RNTI;
根据所述RO集合的参数确定RA-RNTI。
可选地,所述参考RO,包括以下之一:
所述多个RO中的第一个RO;
所述多个RO中的最后一个RO;
网络侧设备指示的一个RO。
可选地,所述RO集合的参数包括以下至少一项:
所述RO集合所在的时间单元的索引值,所述时间单元包括以下至少一项:帧,子帧,时隙,符号;
所述RO集合关联的SSB的索引值;
所述RO集合的频率索引值。
本申请实施例中的PRACH重复传输装置可以是装置,具有操作系统的装置或电子设备,也可以是终端中的部件、集成电路、或芯片。该装置或电子设备可以是移动终端,也可以为非移动终端。示例性的,移动终端可以包括但不限于上述所列举的终端11的类型,非移动终端可以为服务器、网络附属存储器(Network Attached Storage,NAS)、个人计算机(personal computer,PC)、电视机(television,TV)、柜员机或者自助机等,本申请实施例不作具体限定。
本申请实施例提供的PRACH重复传输装置能够实现图2至图6的方法实施例实现的各个过程,并达到相同的技术效果,为避免重复,这里不再赘述。
图9为本申请实施例提供的PRACH重复传输装置的结构示意图之二,如图9所示,该PRACH重复传输装置900包括:
检测单元910,用于在物理随机接入信道传输机会RO集合包含的多个RO上进行物理随机接入信道PRACH前导码preamble的检测。
在本申请实施例中,通过在物理随机接入信道传输机会RO集合包含的多个RO上进行物理随机接入信道PRACH前导码preamble的检测,可降低PRACH冲突概率,提升PRACH的接收性能。
所述装置还包括:
第二确定单元,用于获取所述RO集合的参数,根据所述RO集合的参数确定所述RO集合。
可选地,所述RO集合的参数包括以下至少一项:
所述多个RO关联的同步信号块SSB的索引值;
可用于PRACH重复传输的RO所在的时间资源;
可用于PRACH重复传输的RO所在的频率资源。
可选地,所述装置还包括:
第一发送单元,用于向终端发送第一消息,其中,所述第一消息用于指示所述RO集合的参数;
或者,
第三确定单元,用于根据预设规则确定所述RO集合的参数。
可选地,所述RO集合的参数满足以下至少一项:
所述多个RO关联的SSB的索引值满足mod(SSB index,M)的数值相等,其中,M为整数,M为预定义的值或者根据网络侧设备配置确定;
所述多个RO的频率位置相同,或者,所述多个RO的频率位置根据时间索引确定;
所述多个RO的频率位置均不相同;
所述多个RO的时间位置均不相同。
可选地,所述多个RO的频率位置均不相同,包括:
所述多个RO中相邻RO的频率位置间隔X个频率单元,其中,X为整数,X为预定义的值或根据网络侧设备配置确定;所述频率单元包括资源块RB,子载波,子带或RO带宽。
可选地,所述多个RO为至少一个关联周期内的K个RO资源;
其中,所述关联周期为在一个预设时间段的集合内,完成至少一轮SSB到RO的映射所需要的时间;K为大于1的整数。
可选地,在每个所述关联周期内只有一个RO,或者,在每个RO映射周期内只有一个RO;
其中,所述RO映射周期为在一个预设时间段的集合内,完成一轮RO到SSB的映射所需要的时间。
可选地,在每个所述关联周期内的RO关联的SSB是相同的,或者,在每个RO映射周期内的RO关联的SSB是相同的;
其中,所述RO映射周期为在一个预设时间段的集合内,完成一轮RO到SSB的映射所需要的时间。
可选地,在所述多个RO上检测的preamble,满足以下条件至少其中之一:
preamble的索引值相同;
preamble的索引值满足mod(preamble index,N)的数值相等,其中,N为整数。
可选地,所述N满足以下至少之一:
所述N根据网络侧设备配置确定;
所述N为64/num_SSB_RO,其中,num_SSB_RO是一个RO关联的SSB的个数。
可选地,可用于PRACH重复传输的preamble的索引值集合根据网络侧设备配置确定。
可选地,所述preamble的索引值集合与网络侧设备发送的所有SSB关联。
可选地,所述装置还包括:
第四确定单元,用于根据所述RO集合确定随机接入无线网络临时标识RA-RNTI;
第二发送单元,用于根据所述RA-RNTI发送随机接入响应RAR消息;
其中,所述根据所述RO集合确定RA-RNTI,包括以下之一:
根据所述RO集合中的一个参考RO确定RA-RNTI;
根据所述RO集合的参数确定RA-RNTI。
可选地,所述参考RO,包括以下之一:
所述多个RO中的第一个RO;
所述多个RO中的最后一个RO;
网络侧设备指示的一个RO。
可选地,所述RO集合的参数包括以下至少一项:
所述RO集合所在的时间单元的索引值,所述时间单元包括以下至少一项:帧,子帧,时隙,符号;
所述RO集合关联的SSB的索引值;
所述RO集合的频率索引值。
本申请实施例提供的PRACH重复传输装置能够实现图7的方法实施例实现的各个过程,并达到相同的技术效果,为避免重复,这里不再赘述。
可选的,如图10所示,本申请实施例还提供一种通信设备1000,包括处理器1001, 存储器1002,存储在存储器1002上并可在所述处理器1001上运行的程序或指令,例如,该通信设备1000为终端时,该程序或指令被处理器1001执行时实现上述PRACH重复传输方法实施例的各个过程,且能达到相同的技术效果。该通信设备1000为网络侧设备时,该程序或指令被处理器1001执行时实现上述PRACH重复传输方法实施例的各个过程,且能达到相同的技术效果,为避免重复,这里不再赘述。
本申请实施例还提供一种终端,包括处理器和通信接口,其中,所述通信接口用于在物理随机接入信道传输机会RO集合包含的多个RO上进行物理随机接入信道PRACH前导码preamble的重复传输。该终端实施例是与上述终端侧方法实施例对应的,上述方法实施例的各个实施过程和实现方式均可适用于该终端实施例中,且能达到相同的技术效果。具体地,图11为实现本申请实施例的一种终端的硬件结构示意图。
该终端1100包括但不限于:射频单元1101、网络模块1102、音频输出单元1103、输入单元1104、传感器1105、显示单元1106、用户输入单元1107、接口单元1108、存储器1109、以及处理器1110等中的至少部分部件。
本领域技术人员可以理解,终端1100还可以包括给各个部件供电的电源(比如电池),电源可以通过电源管理系统与处理器1110逻辑相连,从而通过电源管理系统实现管理充电、放电、以及功耗管理等功能。图11中示出的终端结构并不构成对终端的限定,终端可以包括比图示更多或更少的部件,或者组合某些部件,或者不同的部件布置,在此不再赘述。
应理解的是,本申请实施例中,输入单元1104可以包括图形处理器(Graphics Processing Unit,GPU)11041和麦克风11042,图形处理器11041对在视频捕获模式或图像捕获模式中由图像捕获装置(如摄像头)获得的静态图片或视频的图像数据进行处理。显示单元1106可包括显示面板11061,可以采用液晶显示器、有机发光二极管等形式来配置显示面板11061。用户输入单元1107包括触控面板11071以及其他输入设备11072。触控面板11071,也称为触摸屏。触控面板11071可包括触摸检测装置和触摸控制器两个部分。其他输入设备11072可以包括但不限于物理键盘、功能键(比如音量控制按键、开关按键等)、轨迹球、鼠标、操作杆,在此不再赘述。
本申请实施例中,射频单元1101将来自网络侧设备的下行数据接收后,给处理器1110处理;另外,将上行的数据发送给网络侧设备。通常,射频单元1101包括但不限于天线、至少一个放大器、收发信机、耦合器、低噪声放大器、双工器等。
存储器1109可用于存储软件程序或指令以及各种数据。存储器1109可主要包括存储程序或指令区和存储数据区,其中,存储程序或指令区可存储操作系统、至少一个功能所需的应用程序或指令(比如声音播放功能、图像播放功能等)等。此外,存储器1109可以包括高速随机存取存储器,还可以包括非易失性存储器,其中,非易失性存储器可以是只读存储器(Read-Only Memory,ROM)、可编程只读存储器(Programmable ROM,PROM)、可擦除可编程只读存储器(Erasable PROM,EPROM)、电可擦除可编程只读存储器 (Electrically EPROM,EEPROM)或闪存。例如至少一个磁盘存储器件、闪存器件、或其他非易失性固态存储器件。
处理器1110可包括一个或多个处理单元;可选的,处理器1110可集成应用处理器和调制解调处理器,其中,应用处理器主要处理操作系统、用户界面和应用程序或指令等,调制解调处理器主要处理无线通信,如基带处理器。可以理解的是,上述调制解调处理器也可以不集成到处理器1110中。
其中,射频单元1101,用于在物理随机接入信道传输机会RO集合包含的多个RO上进行物理随机接入信道PRACH前导码preamble的重复传输。
在本申请实施例中,通过将终端进行PRACH preamble的重复传输的机会限制在RO集合上,可降低PRACH冲突概率,提升PRACH的容量,优化随机接入流程。
可选地,所述处理器1110用于:
获取所述RO集合的参数,根据所述RO集合的参数确定所述RO集合;
可选地,所述RO集合的参数包括以下至少一项:
所述多个RO关联的同步信号块SSB的索引值;
可用于PRACH重复传输的RO所在的时间资源;
可用于PRACH重复传输的RO所在的频率资源。
可选地,所述RO集合的参数根据网络侧设备配置确定,和/或,根据预设规则确定。
可选地,所述RO集合的参数满足以下至少一项:
所述多个RO关联的SSB的索引值满足mod(SSB index,M)的数值相等,其中,M为整数,M为预定义的值或者根据网络侧设备配置确定;
所述多个RO的频率位置相同,或者,所述多个RO的频率位置根据时间索引确定;
所述多个RO的频率位置均不相同;
所述多个RO的时间位置均不相同。
可选地,所述多个RO的频率位置均不相同,包括:
所述多个RO中相邻RO的频率位置间隔X个频率单元;
其中,X为整数,X为预定义的值或者根据网络侧设备配置确定;所述频率单元包括资源块RB,子载波,子带或RO带宽。
可选地,所述多个RO为至少一个关联周期内的K个RO资源;
其中,所述关联周期为在一个预设时间段的集合内,完成至少一轮SSB到RO的映射所需要的时间;K为大于1的整数。
可选地,在每个所述关联周期内只有一个RO,或者,在每个RO映射周期内只有一个RO;
其中,所述RO映射周期为在一个预设时间段的集合内,完成一轮RO到SSB的映射所需要的时间。
可选地,在每个所述关联周期内的RO关联的SSB是相同的,或者,在每个RO映射 周期内的RO关联的SSB是相同的;
其中,所述RO映射周期为在一个预设时间段的集合内,完成一轮RO到SSB的映射所需要的时间。
可选地,在所述多个RO上发送的preamble,满足以下条件至少其中之一:
preamble的索引值相同;
preamble的索引值满足mod(preamble index,N)的数值相等,其中,N为整数。
可选地,所述N满足以下至少之一:
所述N根据网络侧设备配置确定;
所述N为64/num_SSB_RO,其中,num_SSB_RO是一个RO关联的SSB的个数。
可选地,可用于PRACH重复传输的preamble的索引值集合根据网络侧设备配置确定。
可选地,所述preamble的索引值集合与网络侧设备发送的所有SSB关联。
可选地,所述处理器1110还用于:
根据所述RO集合确定随机接入无线网络临时标识RA-RNTI;
根据所述RA-RNTI监听网络侧设备发送的随机接入响应RAR消息;
其中,所述根据所述RO集合确定RA-RNTI,包括以下之一:
根据所述RO集合中的一个参考RO确定RA-RNTI;
根据所述RO集合的参数确定RA-RNTI。
可选地,所述参考RO,包括以下之一:
所述多个RO中的第一个RO;
所述多个RO中的最后一个RO;
网络侧设备指示的一个RO。
可选地,所述RO集合的参数包括以下至少一项:
所述RO集合所在的时间单元的索引值,所述时间单元包括以下至少一项:帧,子帧,时隙,符号;
所述RO集合关联的SSB的索引值;
所述RO集合的频率索引值。
本申请实施例还提供一种网络侧设备,包括处理器和通信接口,其中,通信接口用于在物理随机接入信道传输机会RO集合包含的多个RO上进行物理随机接入信道PRACH前导码preamble的检测。该网络侧设备实施例是与上述网络侧设备方法实施例对应的,上述方法实施例的各个实施过程和实现方式均可适用于该网络侧设备实施例中,且能达到相同的技术效果。
具体地,本申请实施例还提供了一种网络侧设备。如图12所示,该网络侧设备1200包括:天线1201、射频装置1202、基带装置1203。天线1201与射频装置1202连接。在上行方向上,射频装置1202通过天线1201接收信息,将接收的信息发送给基带装置1203 进行处理。在下行方向上,基带装置1203对要发送的信息进行处理,并发送给射频装置1202,射频装置1202对收到的信息进行处理后经过天线1201发送出去。
上述频带处理装置可以位于基带装置1203中,以上实施例中网络侧设备执行的方法可以在基带装置1203中实现,该基带装置1203包括处理器1204和存储器1205。
基带装置1203例如可以包括至少一个基带板,该基带板上设置有多个芯片,如图12所示,其中一个芯片例如为处理器1204,与存储器1205连接,以调用存储器1205中的程序,执行以上方法实施例中所示的网络侧设备操作。
该基带装置1203还可以包括网络接口1206,用于与射频装置1202交互信息,该接口例如为通用公共无线接口(common public radio interface,简称CPRI)。
具体地,本发明实施例的网络侧设备还包括:存储在存储器1205上并可在处理器1204上运行的指令或程序,处理器1204调用存储器1205中的指令或程序执行图9所示各模块执行的方法,并达到相同的技术效果,为避免重复,故不在此赘述。
本申请实施例还提供一种可读存储介质,所述可读存储介质上存储有程序或指令,该程序或指令被处理器执行时实现上述PRACH重复传输方法实施例的各个过程,且能达到相同的技术效果,为避免重复,这里不再赘述。
其中,所述处理器为上述实施例中所述的终端中的处理器。所述可读存储介质,包括计算机可读存储介质,如计算机只读存储器(Read-Only Memory,ROM)、随机存取存储器(Random Access Memory,RAM)、磁碟或者光盘等。
本申请实施例另提供了一种芯片,所述芯片包括处理器和通信接口,所述通信接口和所述处理器耦合,所述处理器用于运行程序或指令,实现上述PRACH重复传输方法实施例的各个过程,且能达到相同的技术效果,为避免重复,这里不再赘述。
应理解,本申请实施例提到的芯片还可以称为系统级芯片,系统芯片,芯片系统或片上系统芯片等。
本申请实施例还提供了一种计算机程序/程序产品,所述计算机程序/程序产品被存储在非瞬态的存储介质中,所述程序/程序产品被至少一个处理器执行以实现上述系统消息报告的上报方法实施例的各个过程,且能达到相同的技术效果,为避免重复,这里不再赘述。
需要说明的是,在本文中,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者装置不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者装置所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括该要素的过程、方法、物品或者装置中还存在另外的相同要素。此外,需要指出的是,本申请实施方式中的方法和装置的范围不限按示出或讨论的顺序来执行功能,还可包括根据所涉及的功能按基本同时的方式或按相反的顺序来执行功能,例如,可以按不同于所描述的次序来执行所描述的方法,并且还可以添加、省去、或组合各种步骤。另外, 参照某些示例所描述的特征可在其他示例中被组合。
通过以上的实施方式的描述,本领域的技术人员可以清楚地了解到上述实施例方法可借助软件加必需的通用硬件平台的方式来实现,当然也可以通过硬件,但很多情况下前者是更佳的实施方式。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分可以以计算机软件产品的形式体现出来,该计算机软件产品存储在一个存储介质(如ROM/RAM、磁碟、光盘)中,包括若干指令用以使得一台终端(可以是手机,计算机,服务器,或者网络设备等)执行本申请各个实施例所述的方法。
上面结合附图对本申请的实施例进行了描述,但是本申请并不局限于上述的具体实施方式,上述的具体实施方式仅仅是示意性的,而不是限制性的,本领域的普通技术人员在本申请的启示下,在不脱离本申请宗旨和权利要求所保护的范围情况下,还可做出很多形式,均属于本申请的保护之内。

Claims (35)

  1. 一种PRACH重复传输方法,包括:
    终端在物理随机接入信道传输机会RO集合包含的多个RO上进行物理随机接入信道PRACH前导码preamble的重复传输。
  2. 根据权利要求1所述的PRACH重复传输方法,其中,所述方法还包括:
    获取所述RO集合的参数,根据所述RO集合的参数确定所述RO集合;
    其中,所述RO集合的参数包括以下至少一项:
    所述多个RO关联的同步信号块SSB的索引值;
    可用于PRACH重复传输的RO所在的时间资源;
    可用于PRACH重复传输的RO所在的频率资源。
  3. 根据权利要求2所述的PRACH重复传输方法,其中,所述RO集合的参数根据网络侧设备配置确定,和/或,根据预设规则确定。
  4. 根据权利要求2或3所述的PRACH重复传输方法,其中,所述RO集合的参数满足以下至少一项:
    所述多个RO关联的SSB的索引值满足mod(SSB index,M)的数值相等,其中,M为整数,M为预定义的值或者根据网络侧设备配置确定;
    所述多个RO的频率位置相同,或者,所述多个RO的频率位置根据时间索引确定;
    所述多个RO的频率位置均不相同;
    所述多个RO的时间位置均不相同。
  5. 根据权利要求4所述的PRACH重复传输方法,其中,所述多个RO的频率位置均不相同,包括:
    所述多个RO中相邻RO的频率位置间隔X个频率单元;
    其中,X为整数,X为预定义的值或者根据网络侧设备配置确定;所述频率单元包括资源块RB,子载波,子带或RO带宽。
  6. 根据权利要求1所述的PRACH重复传输方法,其中,所述多个RO为至少一个关联周期内的K个RO资源;
    其中,所述关联周期为在一个预设时间段的集合内,完成至少一轮SSB到RO的映射所需要的时间;K为大于1的整数。
  7. 根据权利要求6所述的PRACH重复传输方法,其中,在每个所述关联周期内只有一个RO,或者,在每个RO映射周期内只有一个RO;
    其中,所述RO映射周期为在一个预设时间段的集合内,完成一轮RO到SSB的映射所需要的时间。
  8. 根据权利要求6所述的PRACH重复传输方法,其中,在每个所述关联周期内 的RO关联的SSB是相同的,或者,在每个RO映射周期内的RO关联的SSB是相同的;
    其中,所述RO映射周期为在一个预设时间段的集合内,完成一轮RO到SSB的映射所需要的时间。
  9. 根据权利要求1所述的PRACH重复传输方法,其中,在所述多个RO上发送的preamble,满足以下条件至少其中之一:
    preamble的索引值相同;
    preamble的索引值满足mod(preamble index,N)的数值相等,其中,N为整数。
  10. 根据权利要求9所述的PRACH重复传输方法,其中,所述N满足以下至少之一:
    所述N根据网络侧设备配置确定;
    所述N为64/num_SSB_RO,其中,num_SSB_RO是一个RO关联的SSB的个数。
  11. 根据权利要求9所述的PRACH重复传输方法,其中,可用于PRACH重复传输的preamble的索引值集合根据网络侧设备配置确定。
  12. 根据权利要求11所述的PRACH重复传输方法,其中,所述preamble的索引值集合与网络侧设备发送的所有SSB关联。
  13. 根据权利要求1所述的PRACH重复传输方法,其中,所述方法还包括:
    根据所述RO集合确定随机接入无线网络临时标识RA-RNTI;
    根据所述RA-RNTI监听网络侧设备发送的随机接入响应RAR消息;
    其中,所述根据所述RO集合确定RA-RNTI,包括以下之一:
    根据所述RO集合中的一个参考RO确定RA-RNTI;
    根据所述RO集合的参数确定RA-RNTI。
  14. 根据权利要求13所述的PRACH重复传输方法,其中,所述参考RO,包括以下之一:
    所述多个RO中的第一个RO;
    所述多个RO中的最后一个RO;
    网络侧设备指示的一个RO。
  15. 根据权利要求13所述的PRACH重复传输方法,其中,所述RO集合的参数包括以下至少一项:
    所述RO集合所在的时间单元的索引值,所述时间单元包括以下至少一项:帧,子帧,时隙,符号;
    所述RO集合关联的SSB的索引值;
    所述RO集合的频率索引值。
  16. 一种PRACH重复传输方法,包括:
    网络侧设备在物理随机接入信道传输机会RO集合包含的多个RO上进行物理随机接入信道PRACH前导码preamble的检测。
  17. 根据权利要求16所述的PRACH重复传输方法,其中,所述方法还包括:
    获取所述RO集合的参数,根据所述RO集合的参数确定所述RO集合;
    其中,所述RO集合的参数包括以下至少一项:
    所述多个RO关联的同步信号块SSB的索引值;
    可用于PRACH重复传输的RO所在的时间资源;
    可用于PRACH重复传输的RO所在的频率资源。
  18. 根据权利要求17所述的PRACH重复传输方法,其中,所述方法还包括:
    向终端发送第一消息,其中,所述第一消息用于指示所述RO集合的参数;
    或者,
    根据预设规则确定所述RO集合的参数。
  19. 根据权利要求17或18所述的PRACH重复传输方法,其中,所述RO集合的参数满足以下至少一项:
    所述多个RO关联的SSB的索引值满足mod(SSB index,M)的数值相等,其中,M为整数,M为预定义的值或者根据网络侧设备配置确定;
    所述多个RO的频率位置相同,或者,所述多个RO的频率位置根据时间索引确定;
    所述多个RO的频率位置均不相同;
    所述多个RO的时间位置均不相同。
  20. 根据权利要求19所述的PRACH重复传输方法,其中,所述多个RO的频率位置均不相同,包括:
    所述多个RO中相邻RO的频率位置间隔X个频率单元,其中,X为整数,X为预定义的值或根据网络侧设备配置确定;所述频率单元包括资源块RB,子载波,子带或RO带宽。
  21. 根据权利要求16所述的PRACH重复传输方法,其中,所述多个RO为至少一个关联周期内的K个RO资源;
    其中,所述关联周期为在一个预设时间段的集合内,完成至少一轮SSB到RO的映射所需要的时间;K为大于1的整数。
  22. 根据权利要求21所述的PRACH重复传输方法,其中,在每个所述关联周期内只有一个RO,或者,在每个RO映射周期内只有一个RO;
    其中,所述RO映射周期为在一个预设时间段的集合内,完成一轮RO到SSB的映射所需要的时间。
  23. 根据权利要求21所述的PRACH重复传输方法,其中,在每个所述关联周期内的RO关联的SSB是相同的,或者,在每个RO映射周期内的RO关联的SSB是相 同的;
    其中,所述RO映射周期为在一个预设时间段的集合内,完成一轮RO到SSB的映射所需要的时间。
  24. 根据权利要求16所述的PRACH重复传输方法,其中,在所述多个RO上检测的preamble,满足以下条件至少其中之一:
    preamble的索引值相同;
    preamble的索引值满足mod(preamble index,N)的数值相等,其中,N为整数。
  25. 根据权利要求24所述的PRACH重复传输方法,其中,所述N满足以下至少之一:
    所述N根据网络侧设备配置确定;
    所述N为64/num_SSB_RO,其中,num_SSB_RO是一个RO关联的SSB的个数。
  26. 根据权利要求24所述的PRACH重复传输方法,其中,可用于PRACH重复传输的preamble的索引值集合根据网络侧设备配置确定。
  27. 根据权利要求26所述的PRACH重复传输方法,其中,所述preamble的索引值集合与网络侧设备发送的所有SSB关联。
  28. 根据权利要求16所述的PRACH重复传输方法,其中,所述方法还包括:
    根据所述RO集合确定随机接入无线网络临时标识RA-RNTI;
    根据所述RA-RNTI发送随机接入响应RAR消息;
    其中,所述根据所述RO集合确定RA-RNTI,包括以下之一:
    根据所述RO集合中的一个参考RO确定RA-RNTI;
    根据所述RO集合的参数确定RA-RNTI。
  29. 根据权利要求28所述的PRACH重复传输方法,其中,所述参考RO,包括以下之一:
    所述多个RO中的第一个RO;
    所述多个RO中的最后一个RO;
    网络侧设备指示的一个RO。
  30. 根据权利要求28所述的PRACH重复传输方法,其中,所述RO集合的参数包括以下至少一项:
    所述RO集合所在的时间单元的索引值,所述时间单元包括以下至少一项:帧,子帧,时隙,符号;
    所述RO集合关联的SSB的索引值;
    所述RO集合的频率索引值。
  31. 一种PRACH重复传输装置,包括:
    传输单元,用于在物理随机接入信道传输机会RO集合包含的多个RO上进行物理随机接入信道PRACH前导码preamble的重复传输。
  32. 一种PRACH重复传输装置,包括:
    检测单元,用于在物理随机接入信道传输机会RO集合包含的多个RO上进行物理随机接入信道PRACH前导码preamble的检测。
  33. 一种终端,包括处理器,存储器及存储在所述存储器上并可在所述处理器上运行的程序或指令,所述程序或指令被所述处理器执行时实现如权利要求1至15任一项所述的PRACH重复传输方法的步骤。
  34. 一种网络侧设备,包括处理器,存储器及存储在所述存储器上并可在所述处理器上运行的程序或指令,所述程序或指令被所述处理器执行时实现如权利要求16至30任一项所述的PRACH重复传输方法的步骤。
  35. 一种可读存储介质,所述可读存储介质上存储程序或指令,所述程序或指令被处理器执行时实现如权利要求1至15任一项所述的PRACH重复传输方法的步骤,或者实现如权利要求16至30任一项所述的PRACH重复传输方法的步骤。
PCT/CN2022/124101 2021-10-09 2022-10-09 Prach重复传输方法、终端及网络侧设备 WO2023056973A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111178133.4A CN115968035A (zh) 2021-10-09 2021-10-09 Prach重复传输方法、终端及网络侧设备
CN202111178133.4 2021-10-09

Publications (1)

Publication Number Publication Date
WO2023056973A1 true WO2023056973A1 (zh) 2023-04-13

Family

ID=85803939

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/124101 WO2023056973A1 (zh) 2021-10-09 2022-10-09 Prach重复传输方法、终端及网络侧设备

Country Status (2)

Country Link
CN (1) CN115968035A (zh)
WO (1) WO2023056973A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106686691A (zh) * 2015-11-06 2017-05-17 电信科学技术研究院 一种随机接入响应rar传输方法及相关设备
CN110337835A (zh) * 2019-05-31 2019-10-15 北京小米移动软件有限公司 随机接入方法及装置、通信设备及存储介质
WO2020165141A1 (en) * 2019-02-14 2020-08-20 Telefonaktiebolaget Lm Ericsson (Publ) Two-step random access procedure
CN111867129A (zh) * 2019-08-16 2020-10-30 维沃移动通信有限公司 物理随机接入信道传输方法、终端及网络侧设备

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106686691A (zh) * 2015-11-06 2017-05-17 电信科学技术研究院 一种随机接入响应rar传输方法及相关设备
WO2020165141A1 (en) * 2019-02-14 2020-08-20 Telefonaktiebolaget Lm Ericsson (Publ) Two-step random access procedure
CN110337835A (zh) * 2019-05-31 2019-10-15 北京小米移动软件有限公司 随机接入方法及装置、通信设备及存储介质
CN111867129A (zh) * 2019-08-16 2020-10-30 维沃移动通信有限公司 物理随机接入信道传输方法、终端及网络侧设备

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
SAMSUNG: "Handling Preambles not associated with PRUs", 3GPP DRAFT; R2-2000225, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG2, no. Athens, Greece; 20200224 - 20200228, 13 February 2020 (2020-02-13), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , XP051848515 *

Also Published As

Publication number Publication date
CN115968035A (zh) 2023-04-14

Similar Documents

Publication Publication Date Title
US11089556B2 (en) Physical random access channel enhanced transmission method, network device, and terminal
US10383152B2 (en) Random access procedure for machine type communication
WO2021189202A1 (zh) 用于随机接入的通信方法、装置及计算机可读存储介质
US20230345541A1 (en) Ra-rnti processing method and apparatus, terminal, and readable storage medium
US20230189351A1 (en) Signal Transmission Method for Random Access, Terminal, and Network-Side Device
US20240155580A1 (en) Method for obtaining initial bandwidth part configuration, terminal, and network-side device
WO2023056973A1 (zh) Prach重复传输方法、终端及网络侧设备
WO2022143654A1 (zh) Pdcch监测能力的处理方法、终端及网络侧设备
WO2022143742A1 (zh) 数据传输方法、装置及通信设备
CN116208269A (zh) 信息传输方法及设备
WO2023083227A1 (zh) Prach重复传输方法、终端及网络侧设备
WO2023083290A1 (zh) 随机接入方法、装置、终端及网络侧设备
WO2023061489A1 (zh) 随机接入处理方法、装置、终端、网络侧设备及存储介质
WO2023116599A1 (zh) Prach传输方法、装置、终端及网络侧设备
WO2023056929A1 (zh) 准共址下行rs的确定方法、装置及终端
WO2023131174A1 (zh) Prach重复传输方法、终端及网络侧设备
WO2023131175A1 (zh) 确定prach重复传输资源的方法、终端及网络侧设备
WO2022237770A1 (zh) 传输控制方法、装置、终端及可读存储介质
WO2023001266A1 (zh) 随机接入过程的竞争解决方法、终端及网络侧设备
EP4307803A1 (en) Random access method and device, terminal, and storage medium
WO2023072209A1 (zh) 传输处理方法、装置、终端及可读存储介质
US20230422253A1 (en) Physical uplink control channel resource determining method, terminal, and network-side device
WO2023116883A1 (zh) Msg1重复传输的时频资源确定方法、装置及终端
WO2023151628A1 (zh) Pusch传输方法、装置、终端、及网络侧设备
WO2022188836A1 (zh) Cot确定方法、上行传输方法和设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22877987

Country of ref document: EP

Kind code of ref document: A1