WO2023116883A1 - Msg1重复传输的时频资源确定方法、装置及终端 - Google Patents

Msg1重复传输的时频资源确定方法、装置及终端 Download PDF

Info

Publication number
WO2023116883A1
WO2023116883A1 PCT/CN2022/141420 CN2022141420W WO2023116883A1 WO 2023116883 A1 WO2023116883 A1 WO 2023116883A1 CN 2022141420 W CN2022141420 W CN 2022141420W WO 2023116883 A1 WO2023116883 A1 WO 2023116883A1
Authority
WO
WIPO (PCT)
Prior art keywords
msg1
repeated transmission
transmission
repeated
ssb
Prior art date
Application number
PCT/CN2022/141420
Other languages
English (en)
French (fr)
Inventor
杨坤
吴凯
潘学明
Original Assignee
维沃移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 维沃移动通信有限公司 filed Critical 维沃移动通信有限公司
Publication of WO2023116883A1 publication Critical patent/WO2023116883A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0446Resources in time domain, e.g. slots or frames
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0453Resources in frequency domain, e.g. a carrier in FDMA
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access, e.g. scheduled or random access
    • H04W74/08Non-scheduled or contention based access, e.g. random access, ALOHA, CSMA [Carrier Sense Multiple Access]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access, e.g. scheduled or random access
    • H04W74/08Non-scheduled or contention based access, e.g. random access, ALOHA, CSMA [Carrier Sense Multiple Access]
    • H04W74/0833Non-scheduled or contention based access, e.g. random access, ALOHA, CSMA [Carrier Sense Multiple Access] using a random access procedure

Definitions

  • the present application belongs to the technical field of communications, and in particular relates to a method, device and terminal for determining time-frequency resources for repeated transmission of Msg1.
  • NR supports two types of random access procedures: Msg1's 4-step RA type (4-step RACH) and MsgA's 2-step RA type (2-step RACH). Both types of RA processes support contention based random access (Contention based RA, CBRA) and contention free random access (Contention free RA, CFRA).
  • the 2-step RACH process is generally applied to areas with better coverage to shorten the terminal access time. For areas with poor signal coverage, the terminal should use the 4-step RACH process to access the cell.
  • Msg1 is transmitted according to a single transmission, and a random access response (Random Access Response, RAR) monitoring window is opened after transmitting Msg1.
  • RAR Random Access Response
  • the coverage performance of a single transmission of Msg1 is limited, and there may be a problem of low success rate of Msg1 detection at the edge of the cell, which affects the access of the terminal at the edge of the cell to the cell.
  • Repeated transmission of Msg1 is a method to improve the coverage performance of a physical random-access channel (PRACH), however, how to realize repeated transmission of Msg1 needs to be solved.
  • PRACH physical random-access channel
  • the embodiments of the present application provide a method, device and terminal for determining time-frequency resources for repeated transmission of Msg1, which can solve the problem of how to realize repeated transmission of Msg1.
  • a method for determining time-frequency resources for repeated transmission of Msg1 is provided, which is applied to a terminal, and the method includes:
  • the terminal receives a first message sent by the network side device, where the first message carries first configuration information for repeated transmission of Msg1;
  • the terminal determines a first time-frequency resource for repeated transmission of Msg1 according to the first configuration information
  • the determination of the first time-frequency resource used for repeated transmission of Msg1 includes at least one of the following:
  • a method for determining time-frequency resources for repeated transmission of Msg1 is provided, which is applied to a network side device, and the method includes:
  • the network side device sends a first message to the terminal, where the first message carries first configuration information for repeated transmission of Msg1.
  • an apparatus for determining time-frequency resources for repeated transmission of Msg1 including:
  • the first receiving unit is configured to receive a first message sent by a network side device, where the first message carries first configuration information for repeated transmission of Msg1;
  • a first determining unit configured to determine a first time-frequency resource for repeated transmission of Msg1 according to the first configuration information
  • the determination of the first time-frequency resource used for repeated transmission of Msg1 includes at least one of the following:
  • an apparatus for determining time-frequency resources for repeated transmission of Msg1 including:
  • the first sending unit is configured to send a first message to the terminal, where the first message carries first configuration information for repeated transmission of Msg1.
  • a terminal in a fifth aspect, includes a processor and a memory, the memory stores programs or instructions that can run on the processor, and when the programs or instructions are executed by the processor, the following In one aspect, the steps of the method for determining time-frequency resources for repeated transmission of Msg1.
  • a terminal including a processor and a communication interface, wherein the communication interface is used to receive a first message sent by a network side device, and the first message carries first configuration information for repeated transmission of Msg1;
  • the processor is configured to determine the first time-frequency resource for repeated transmission of Msg1 according to the first configuration information; wherein, the determination of the first time-frequency resource for repeated transmission of Msg1 includes at least one of the following: judging Whether to perform Msg1 repeated transmission; determine the physical random access channel PRACH resource used for Msg1 repeated transmission; determine the frequency hopping parameter of Msg1 repeated transmission.
  • a network-side device in a seventh aspect, includes a processor and a memory, the memory stores programs or instructions that can run on the processor, and the programs or instructions are executed by the processor The steps for realizing the time-frequency resource determination method for repeated transmission of Msg1 as described in the second aspect.
  • a network side device including a processor and a communication interface, wherein the communication interface is used to send a first message to a terminal, and the first message carries first configuration information for repeated transmission of Msg1.
  • a system for determining time-frequency resources for repeated transmission of Msg1 including: a terminal and network-side equipment, and the terminal can be used to perform the steps of the method for determining time-frequency resources for repeated transmission of Msg1 as described in the first aspect
  • the network side device may be configured to execute the steps of the method for determining time-frequency resources for repeated transmission of Msg1 as described in the second aspect.
  • a readable storage medium on which a program or instruction is stored, and when the program or instruction is executed by a processor, the time-frequency resource for repeated transmission of Msg1 as described in the first aspect is realized.
  • a chip in an eleventh aspect, includes a processor and a communication interface, the communication interface is coupled to the processor, and the processor is used to run a program or an instruction to implement the method described in the first aspect.
  • a computer program/program product is provided, the computer program/program product is stored in a storage medium, and the computer program/program product is executed by at least one processor to implement the Steps in the method for determining time-frequency resources for repeated transmission of Msg1, or implementing steps in the method for determining time-frequency resources for repeated transmission of Msg1 as described in the second aspect.
  • the terminal determines the first time-frequency resource for Msg1 repeated transmission according to the first configuration information of Msg1 repeated transmission sent by the network side device, so as to realize Msg1 repeated transmission and improve the coverage performance of PRACH.
  • FIG. 1 is a block diagram of a wireless communication system to which an embodiment of the present application is applicable;
  • FIG. 2 is one of the flow diagrams of the method for determining time-frequency resources for repeated transmission of Msg1 provided in the embodiment of the present application;
  • FIG. 3 is an example diagram of RO time-domain position determination for repeated transmission of Msg1 associated with the same SSB provided by the embodiment of the present application;
  • FIG. 4 is an example diagram of RO time-domain position determination for repeated transmission of Msg1 associated with different SSBs provided by the embodiment of the present application;
  • FIG. 5 is one of the schematic diagrams of RO frequency hopping provided by the embodiment of the present application.
  • FIG. 6 is the second schematic diagram of RO frequency hopping provided by the embodiment of the present application.
  • FIG. 7 is the second schematic flow diagram of the method for determining time-frequency resources for repeated transmission of Msg1 provided by the embodiment of the present application;
  • FIG. 8 is one of the schematic structural diagrams of an apparatus for determining time-frequency resources for repeated transmission of Msg1 provided in an embodiment of the present application;
  • Fig. 9 is the second structural schematic diagram of the time-frequency resource determination device for Msg1 repeated transmission provided by the embodiment of the present application.
  • FIG. 10 is a schematic structural diagram of a communication device provided by an embodiment of the present application.
  • FIG. 11 is a schematic diagram of a hardware structure of a terminal implementing an embodiment of the present application.
  • FIG. 12 is a schematic structural diagram of a network side device provided by an embodiment of the present application.
  • first, second and the like in the specification and claims of the present application are used to distinguish similar objects, and are not used to describe a specific sequence or sequence. It is to be understood that the terms so used are interchangeable under appropriate circumstances such that the embodiments of the application are capable of operation in sequences other than those illustrated or described herein and that "first" and “second” distinguish objects. It is usually one category, and the number of objects is not limited. For example, there may be one or more first objects.
  • “and/or” in the description and claims means at least one of the connected objects, and the character “/” generally means that the related objects are an "or” relationship.
  • LTE Long Term Evolution
  • LTE-Advanced LTE-Advanced
  • LTE-A Long Term Evolution-Advanced
  • CDMA Code Division Multiple Access
  • TDMA Time Division Multiple Access
  • FDMA Frequency Division Multiple Access
  • OFDMA Orthogonal Frequency Division Multiple Access
  • SC-FDMA Single-carrier Frequency Division Multiple Access
  • system and “network” in the embodiments of the present application are often used interchangeably, and the described technology can be used for the above-mentioned system and radio technology, and can also be used for other systems and radio technologies.
  • NR New Radio
  • the following description describes the New Radio (NR) system for illustrative purposes, and uses NR terminology in most of the following descriptions, but these techniques can also be applied to applications other than NR system applications, such as the 6th generation (6 th Generation, 6G) communication system.
  • 6G 6th Generation
  • Fig. 1 shows a block diagram of a wireless communication system to which the embodiment of the present application is applicable.
  • the wireless communication system includes a terminal 11 and a network side device 12 .
  • the terminal 11 can be a mobile phone, a tablet computer (Tablet Personal Computer), a laptop computer (Laptop Computer) or a notebook computer, a personal digital assistant (Personal Digital Assistant, PDA), a palmtop computer, a netbook, a super mobile personal computer (ultra-mobile personal computer, UMPC), mobile Internet device (Mobile Internet Device, MID), augmented reality (augmented reality, AR) / virtual reality (virtual reality, VR) equipment, robot, wearable device (Wearable Device) , vehicle equipment (VUE), pedestrian terminal (PUE), smart home (home equipment with wireless communication functions, such as refrigerators, TVs, washing machines or furniture, etc.), game consoles, personal computers (personal computers, PCs), teller machines or self-service Wearable devices include: smart watches, smart bracelets, smart headphones, smart glasses, smart jewelry (
  • the network side device 12 may include an access network device or a core network device, where the access network device 12 may also be called a radio access network device, a radio access network (Radio Access Network, RAN), a radio access network function, or Wireless access network unit.
  • RAN Radio Access Network
  • RAN Radio Access Network
  • Wireless access network unit Wireless access network unit
  • the access network device 12 may include a base station, a WLAN access point, or a WiFi node, etc., and the base station may be called a Node B, an evolved Node B (eNB), an access point, a Base Transceiver Station (Base Transceiver Station, BTS), a radio Base station, radio transceiver, Basic Service Set (BSS), Extended Service Set (ESS), Home Node B, Home Evolved Node B, Transmitting Receiving Point (TRP) or all As long as the same technical effect is achieved, the base station is not limited to a specific technical vocabulary. It should be noted that in this embodiment of the application, only the base station in the NR system is used as an example for introduction, and The specific type of the base station is not limited.
  • Core network equipment may include but not limited to at least one of the following: core network nodes, core network functions, mobility management entities (Mobility Management Entity, MME), access mobility management functions (Access and Mobility Management Function, AMF), session management functions (Session Management Function, SMF), User Plane Function (UPF), Policy Control Function (Policy Control Function, PCF), Policy and Charging Rules Function (PCRF), edge application service Discovery function (Edge Application Server Discovery Function, EASDF), unified data management (Unified Data Management, UDM), unified data storage (Unified Data Repository, UDR), home subscriber server (Home Subscriber Server, HSS), centralized network configuration ( Centralized network configuration, CNC), network storage function (Network Repository Function, NRF), network exposure function (Network Exposure Function, NEF), local NEF (Local NEF, or L-NEF), binding support function (Binding Support Function, BSF), application function (Application Function, AF), etc. It should be noted that, in the embodiment of the present application, only the core
  • the 5G NR Rel-15/16 system defines two types of random access procedures, four-step random access procedure (4-step RACH) and two-step random access procedure (2-step RACH).
  • 4-step RACH is suitable for access anywhere within the coverage of the cell, while 2-step RACH is only suitable for access in areas close to the base station or when the signal quality is good.
  • the UE In 4-step RACH, the UE first sends Msg1 to the network, Msg1 occupies a predefined time-frequency resource and the Msg1 signal contains a preamble; after the UE sends Msg1, it will listen in the RAR time window (RA Response window)
  • the PDCCH uses the fallback DCI format, DCI format 1_0, to receive the random access response (RAR) scheduled by the PDCCH scrambled with the RA-RNTI. If the preamble index in the RAR is the same as the preamble index sent by the UE, it is considered that the RAR has been successfully received.
  • the UE can stop monitoring the RAR and send Msg3 according to the UL grant instruction carried in the RAR; Msg3 is on the UL-SCH Transmission, using HARQ, scrambling the PDCCH with the TC-RNTI indicated by the RAR, and using the fallback (fallback) DCI format, DCI format 0_0, to schedule the retransmission of Msg3.
  • Msg3 contains the unique identifier of the UE. This flag will be used for conflict resolution in step four. After receiving Msg3, the network will use the TC-RNTI scrambled PDCCH to schedule Msg4.
  • the UE When the UE successfully decodes the UE Contention Resolution Identity MAC control element contained in Msg4 to match the UE Contention Resolution Identity sent by Msg3, the UE will consider the random access If the entry is successful and the C-RNTI is set to TC-RNTI, the 4-step random access is completed.
  • the terminal After completing the downlink synchronization and cell search process and before performing the random access process, the terminal receives and detects the SSB signal in the initial downlink BWP, and obtains the signal quality of different SSBs (such as SS-RSRP).
  • the terminal determines the path loss quality according to the SSB signal quality, and determines to execute 4-step RACH or 2-step RACH with reference to the threshold msgA-RSRP-Threshold.
  • the terminal selects the SSB according to the threshold rsrp-ThresholdSSB indicated in the system message SIB1.
  • the terminal selects one SSB from the SSBs higher than the threshold as the associated SSB of the random access process; if the signal quality of all SSBs is lower than the threshold, Then the terminal can select any SSB as the associated SSB of the random access process; the specific SSB selection scheme is based on the implementation of the terminal.
  • the base station can configure multiple PRACH transmission occasions (Physical Random Access Channel transmission opportunities, or PRACH occasions) in Frequency Division Multiplexing (FDM) at one time domain location.
  • PRACH Physical Random Access Channel transmission opportunities
  • This application For simplicity, it is referred to as RO in short.
  • the number of ROs that can perform FDM on a time instance (time instance) can be: ⁇ 1,2,4,8 ⁇ .
  • the random access preamble (RACH preamble) can only be transmitted on the time domain resource configured by the parameter PRACHConfigurationIndex, and the random access preamble can only be transmitted on the frequency domain resource configured by the parameter prach-FDM, and the PRACH frequency domain resource n RA ⁇ 0, 1,...,M ⁇ 1 ⁇ , where M is equal to the higher layer parameter prach-FDM.
  • the PRACH frequency domain resource n RA is numbered in ascending order from the RO resource with the lowest frequency in the initial active uplink bandwidth part (initially activated uplink bandwidth part), otherwise, the PRACH frequency domain resource n RA starts from the active uplink bandwidth part (activated The RO resources with the lowest frequency in the uplink bandwidth part) are numbered in ascending order.
  • RO there is a relationship between RO and the actually sent SSB (SS/PBCH block, synchronization signal/physical broadcast channel block, sometimes referred to as SS block, synchronization signal block).
  • SS/PBCH block synchronization signal/physical broadcast channel block
  • SS block synchronization signal block
  • One RO may be associated with multiple SSBs, or multiple SSBs may be associated with one RO.
  • the association relationship between SSB and RO is configured by the parameter ssb-perRACH-OccasionAndCB-PreamblesPerSSB.
  • the transmit power of the terminal is much lower than that of the network.
  • the uplink signal coverage performance of the terminal is worse than the downlink signal coverage, that is, the coverage of Msg1 and Msg3
  • the performance is inferior to the coverage performance of Msg2 and Msg4.
  • the coverage performance gap between uplink and downlink channels is more obvious.
  • it is considered to introduce repeated transmission of the uplink signal in the random access process, that is, to use the multiple/repeated transmission of Msg1 (PRACH) to improve the coverage performance.
  • PRACH multiple/repeated transmission of Msg1
  • multiple Msg1 signals may be associated with the same SSB/Channel State Information-Reference Signal (CSI-RS) or different SSB/CSI-RS.
  • CSI-RS Channel State Information-Reference Signal
  • the terminal assumes that the beam of the selected SSB/CSI-RS is the most suitable beam, and selects the most suitable beam according to the rules defined in the existing protocol; however, using The Msg1 retransmission associated with a single SSB/CSI-RS needs to take longer to complete the Msg1 retransmission.
  • coverage-limited scenarios since SSB beams are usually fixed wide beams, there may be areas where beams overlap between SSB beams.
  • the signal quality SS-RSRP of multiple SSBs detected by the terminal may be similar, and selecting one of the SSB beams for random access means giving up other possible SSB beams. If the PRACH resources associated with multiple SSBs can be selected to send Msg1, in some cases, the probability that the base station can successfully detect Msg1 can be improved. In addition, because in the random access phase, the measurement of SS reference signal received power (SS-RSRP) is only determined according to the single measurement result of SSB, there may be measurement deviation in the measurement result of SS-RSRP, so choose Sending Msg1 with multiple SSBs can also reduce the impact of SSB measurement bias on SSB selection. Usually, the Msg1 associated with different SSBs is sent using different uplink beams, and the terminal can also use a beam that matches the SSB on the RO of the associated SSB to perform repeated transmission of the PRACH.
  • SS-RSRP SS reference signal received power
  • multiple ROs can be frequency-division multiplexed in one time resource.
  • the multiple time resources determined by the multiple Msg1 respectively include multiple frequency division multiplexed RO resources.
  • the system needs to define a rule to select RO resources, so that the base station and the terminal have a consistent understanding of the combination of RO resources for repeated transmission of Msg1, and avoid the detection complexity of repeated transmission of Msg1 by the base station.
  • the embodiment of the present application provides a time-frequency resource determination method for repeated transmission of Msg1.
  • FIG. 2 is one of the flow diagrams of the method for determining time-frequency resources for repeated transmission of Msg1 provided by the embodiment of the present application. As shown in Figure 2, the method includes the following steps:
  • Step 200 the terminal receives the first message sent by the network side device, the first message carries the first configuration information of repeated transmission of Msg1;
  • the first message includes at least one of the following: system message, downlink control information (Downlink control information, DCI), media access control layer control unit (Media Access Control Control Element, MAC CE), radio resource control (Radio Resource Control, RRC) signaling.
  • downlink control information Downlink control information
  • DCI downlink control information
  • media access control layer control unit Media Access Control Control Element, MAC CE
  • radio resource control Radio Resource Control, RRC
  • the terminal receives the first message carried by the network side device through the system message SIB1.
  • the first message carries first configuration information, and the first configuration information is used to indicate to the terminal the network side device's configuration of repeated transmission of Msg1.
  • Step 201 the terminal determines a first time-frequency resource for repeated transmission of Msg1 according to the first configuration information
  • the determination of the first time-frequency resource used for repeated transmission of Msg1 includes at least one of the following:
  • the first time-frequency resource includes multiple ROs in different time periods, and is associated with the same downlink signal SSB/CSI-RS or multiple downlink signals SSB/CSI-RS.
  • the terminal determines whether the current cell supports repeated transmission of Msg1 according to the first configuration information. Furthermore, the first configuration information indicates whether to perform repeated transmission of Msg1.
  • a frequency hopping parameter for repeated transmission of Msg1 is further determined according to the first configuration information.
  • the physical random access channel PRACH resource used for the repeated transmission of Msg1 is determined, that is, the RO corresponding to each transmission of Msg1 in the repeated transmission of Msg1 is determined.
  • the RO corresponding to each Msg1 transmission in the Msg1 repeated transmission includes the time domain position and the frequency domain position of the RO resource corresponding to each Msg1 transmission in the Msg1 repeated transmission.
  • the base station in the FR2, that is, the high-frequency band, the base station usually uses an analog beam for communication, that is, the base station can only send a signal in the direction of an analog beam or receive a signal in the direction of an analog beam at each moment. Therefore, when performing random access, multiple ROs at one time domain location should be associated with the same analog SSB beam. In FR2, one SSB is associated with multiple ROs, and additional frequency diversity gain can be obtained through RO frequency hopping.
  • the terminal can determine the frequency hopping parameter for repeated transmission of Msg1 according to the indication information related to frequency hopping, so that the terminal can select the frequency hopping parameter when Msg1 is repeatedly transmitted.
  • Different RO indexes in the frequency domain are ROs at different frequency positions to obtain frequency diversity gain.
  • the terminal determines the first time-frequency resource for repeated transmission of Msg1, including: determining to execute Msg1 repeated transmission; determine the physical random access channel PRACH resource used for Msg1 repeated transmission; determine the RO corresponding to each Msg1 transmission in Msg1 repeated transmission according to the physical random access channel PRACH resource used for Msg1 repeated transmission.
  • the terminal determines not to perform repeated transmission of Msg1 according to the first configuration information, no subsequent procedures are performed.
  • the terminal determines the first time-frequency resource for repeated transmission of Msg1, it sends Msg1 on the first time-frequency resource.
  • the terminal determines the first time-frequency resource for Msg1 repeated transmission according to the first configuration information of Msg1 repeated transmission sent by the network side device, so as to realize Msg1 repeated transmission and improve the coverage performance of PRACH.
  • the first configuration information includes at least one of the following:
  • the repeated transmission mode of Msg1 includes:
  • multiple ROs are associated with different SSBs, that is, multiple SSBs are associated.
  • one of the above modes is defaulted as the default mode, for example, a mode in which multiple ROs are associated with the same SSB is used by default to perform repeated sending of Msg1.
  • the first configuration information also includes multiple SSB combinations, and Msg1 for associating multiple SSBs is repeated. transfer mode.
  • a possible implementation indication method is to indicate all SSB combinations at one time in the form of a bit map or index sequence in the first configuration information; or determine other SSB combinations according to the first SSB combination, such as the second SSB The index of the combination is the sum of the index of the first SSB combination and the specified offset.
  • the base station indicates multiple SSBs of the same beam to perform repeated transmission of Msg1.
  • the configuration parameter of the association relationship between the SSB and the RO is used to indicate the association relationship between the SSB and the RO.
  • the association relationship between SSB and RO includes the association relationship between one SSB and multiple ROs, or the association relationship between one RO and multiple SSBs.
  • the configuration parameter ssb-perRACH-OccasionAndCB-PreamblesPerSSB of the association relationship between the SSB and the RO indicates that an SSB is associated with X consecutive ROs, where X is an integer greater than 1.
  • the RO frequency hopping offset may be determined according to the configuration parameters of the association relationship between the SSB and the RO.
  • the first threshold value is used to indicate the trigger threshold of repeated transmission of Msg1;
  • the terminal judges whether to perform Msg1 retransmission according to the trigger threshold of Msg1 retransmission.
  • the first threshold may be an independently configured trigger threshold for repeated transmission of Msg1, or a threshold multiplexed for judging whether to execute the repeated transmission of Msg3 in a random access procedure.
  • the threshold for judging whether to execute the random access procedure for repeatedly sending Msg3 is the trigger threshold for the random access procedure for repeatedly sending Msg3.
  • the second threshold value is used to indicate the selection threshold of the associated SSB for repeated transmission of Msg1;
  • the terminal selects the associated SSB for repeated transmission of Msg1 according to the selection threshold of the associated SSB for repeated transmission of Msg1.
  • the associated SSB of the repeated transmission of Msg1 that is, the associated SSB of the repeated transmission of Msg1.
  • the second threshold may be an independently configured threshold for selecting the associated SSB for repeated transmission of Msg1, or multiplexed and used for selecting the threshold for associated SSB in the random access process for repeated transmission of Msg3.
  • the threshold for selecting the associated SSB in the random access process of repeated transmission of Msg3 is the selection threshold of the associated SSB in the random access process of repeated transmission of Msg3.
  • the network side device indicates that RO frequency hopping is enabled, it means that the RO resource used for repeated transmission of Msg1 supports frequency hopping in the frequency domain.
  • the network side device indicates that the RO frequency hopping is not enabled, it means that the RO resource used for the repeated transmission of Msg1 does not support frequency hopping in the frequency domain.
  • the network side device further indicates the RO frequency hopping offset RO offset.
  • RO frequency hopping offset in units of RO.
  • the network side device configures the step size of the RO frequency hopping.
  • RO frequency hopping is performed, and n is the step size of RO frequency hopping.
  • the step size is set to 1 by default, that is, RO frequency hopping is performed every time Msg1 is sent.
  • the number of repeated transmissions of Msg1 may be indicated by the first configuration information, or may be determined according to a value predefined in the protocol.
  • a set of repeated transmission times including multiple optional values is configured in the first configuration information, and the terminal selects the actual repeated transmission times of Msg1 according to the channel quality.
  • the first configuration information may also include an RO mask for repeated transmission of Msg1.
  • the terminal needs to select an RO and RO frequency hopping based on the RO offset in the effective RO set indicated by the RO mask.
  • the first configuration information includes multiple RO masks, corresponding to different times of Msg1 repeated transmissions.
  • the judging whether to perform repeated transmission of Msg1, and determining the physical random access channel PRACH resources used for repeated transmission of Msg1 include:
  • the first condition includes at least one of the following:
  • the 4-step random access fails N times, the value of N is predefined by the protocol or configured by the first message, and the 4-step random access is a 4-step random access process of Msg1 single transmission and Msg3 single transmission , and/or, a 4-step random access process of Msg1 single transmission and Msg3 repeated transmission;
  • the first signaling is received, the first signaling is used to instruct the terminal to perform repeated transmission of Msg1, and carries indication information related to RO frequency hopping, and the first signaling may be DCI or MAC CE or RRC signaling;
  • the signal quality of the downlink signal is less than or not greater than the first threshold
  • the first threshold is configured through the first message, or is multiplexed with a threshold for judging whether to execute the random access procedure of repeatedly sending Msg3.
  • the determination by the terminal to perform repeated transmission of Msg1 includes the following situations.
  • Scenario 1 In the case of N times of 4-step random access failures, repeated transmission of Msg1 is performed.
  • the 4-step random access failure N times includes:
  • the terminal performs N times of Msg1 single transmission attempts and does not receive the corresponding Msg2; or,
  • the terminal performs N times of Msg1 single transmission and receives the corresponding Msg2, but the transmission of Msg3 fails;
  • the value of N is predefined by the protocol or configured by the first message.
  • N can also be understood as a threshold value.
  • the terminal performs N times of Msg1 single transmission attempts and does not receive the corresponding Msg2, the terminal will perform the N+1 random access attempt or, if the terminal performs N times of Msg1 single transmission and receives the corresponding Msg2, but the transmission of Msg3 fails, the terminal performs Msg1 repeated transmission at the N+1 random access attempt.
  • Scenario 2 When the terminal receives the first signaling, it performs Msg1 repeated transmission, wherein the first signaling is used to instruct the terminal to perform Msg1 repeated transmission, and carries indication information related to RO frequency hopping.
  • the network side device may explicitly instruct the terminal to perform repeated transmission of Msg1.
  • the indication information related to RO frequency hopping includes at least one of the following: whether to enable RO frequency hopping, RO frequency hopping offset, frequency hopping quantity or frequency hopping step size.
  • the first signaling includes: DCI or MAC CE or RRC signaling.
  • the first threshold is configured through the first message, or is multiplexed with a threshold for judging whether to execute the random access procedure of repeatedly sending Msg3.
  • the downlink signal may be SSB or CSI-RS.
  • the downlink signal may be one or more downlink reference signals SSB or CSI-RS selected by the terminal, for example, the SSB with the largest RSRP.
  • the signal quality of the downlink signal can be RSRP representing path loss or reference signal received quality (RSRQ) or signal-to-noise and interference ratio (signal-to-noise and interference ratio, SINR).
  • RSRP path loss or reference signal received quality
  • SINR signal-to-noise and interference ratio
  • the terminal executes repeated sending of Msg1, otherwise, executes single sending of Msg1.
  • the signal quality (RSRP or RSRQ or SINR) of all SSB/CSI-RS is lower than the first threshold value T0, that is, the maximum value of the signal quality of all SSB/CSI-RS and the first
  • the threshold value T0 is compared, and if the maximum value is less than or not greater than the first threshold value T0, the retransmission of Msg1 is performed; otherwise, a single transmission of Msg1 is performed.
  • the determining the PRACH resources used for the repeated transmission of Msg1 includes: Step 300 , Step 301 and Step 302 .
  • Step 300 Determine the SSB or SSB combination associated with the repeated transmission of Msg1 according to the repeated transmission mode of Msg1 and the second threshold value;
  • the second threshold value is configured through the first message, or multiplexed is used to select the threshold associated with the SSB in the random access process for repeated transmission of Msg3.
  • the SSB in the embodiment of the present application may be replaced by other downlink reference signals, for example, CSI-RS.
  • the SSB combination in the embodiment of the present application may be replaced by other downlink reference signal combinations, such as CSI-RS combination.
  • the embodiment of the present application uses the SSB as an example for description, but is not limited to the SSB.
  • the determining the SSB associated with the Msg1 repeated transmission according to the Msg1 repeated transmission mode and the second threshold value includes:
  • the terminal compares the signal quality of all detected SSBs with the second threshold value, and selects the SSB whose signal quality is higher than the second threshold value as the SSB associated with the repeated transmission of Msg1;
  • the signal quality of multiple SSBs is higher than the second threshold value, based on terminal implementation or randomly selecting one of the multiple SSBs as the SSB associated with the repeated transmission of Msg1;
  • an SSB is selected based on terminal implementation or randomly as the SSB associated with the repeated transmission of Msg1.
  • the SSB combination associated with the Msg1 repeated transmissions is determined according to the Msg1 repeated transmission mode and the second threshold value, include:
  • the signal quality of the SSB combination is compared with the second threshold value, and one of the SSB combinations is selected as the SSB combination associated with the repeated transmission of Msg1.
  • the signal quality of the SSB combination may be the result of the best signal quality in the SSB combination, or the worst result, or the weighted result of the signal quality of each SSB, which is specified by the protocol or configured by the network.
  • the terminal selects an SSB combination whose signal quality is higher than the second threshold among the multiple SSB combinations as the SSB combination associated with the repeated transmission of Msg1.
  • one SSB combination among the multiple SSB combinations is selected based on terminal implementation or randomly as the SSB associated with the repeated transmission of Msg1 combination.
  • the combination is used as the SSB combination associated with the repeated transmission of Msg1.
  • the terminal determines the number of repeated transmissions of Msg1 according to the signal quality of the SSB or SSB combination.
  • Step 301 according to the association relationship between the SSB or SSB combination associated with the Msg1 repeated transmission and the RO, determine a candidate RO set for the PRACH resource used for the Msg1 repeated transmission;
  • the terminal can determine the RO set corresponding to the SSB or SSB combination associated with the Msg1 repeated transmission according to the association relationship between the SSB and the RO, and can associate the Msg1 repeated transmission
  • the RO set corresponding to the SSB or SSB combination is used as a candidate RO set for the PRACH resource for the repeated transmission of the Msg1, or multiple ROs in the RO set are selected as multiple ROs for the repeated transmission of the Msg1.
  • Step 302. Determine the RO corresponding to each Msg1 transmission in the repeated Msg1 transmission.
  • the terminal determines the SSB or SSB combination associated with Msg1 repeated transmission according to the mode of Msg1 repeated transmission and the second threshold value, and then based on the association relationship between SSB or SSB combination and RO, it can determine the Msg1 repeated transmission The PRACH resource, and then determine the RO corresponding to each Msg1 transmission in the Msg1 repeated transmission based on the PRACH resource, so as to realize the Msg1 repeated transmission and improve the coverage performance of the PRACH.
  • the determining the RO corresponding to each Msg1 transmission in the Msg1 repeated transmission includes: Step 400 and Step 401 .
  • Step 400 determine the time domain position of the RO corresponding to each Msg1 transmission in the Msg1 repeated transmission
  • the terminal first determines the time domain positions of the multiple ROs repeatedly sent by Msg1, and then selects an RO from the multiple ROs on the same time domain resource according to the frequency hopping parameters, such as the RO frequency hopping offset RO offset It is used as the first time-frequency resource for repeated transmission of Msg1.
  • the determining the time domain position of the RO corresponding to each Msg1 transmission in the repeated Msg1 transmission includes:
  • the time domain positions of the multiple ROs that are repeatedly transmitted by Msg1 correspond to the association periods between multiple consecutive SSBs and ROs.
  • the association period corresponding to the first Msg1 repeatedly sent by Msg1 is determined according to the reference time point, that is, the RO associated with the SSB in the first association period starting from the reference time point is the RO corresponding to the first Msg1 transmission.
  • FIG. 3 is an example diagram of determining the RO time-domain position for repeated transmission of Msg1 associated with the same SSB provided by the embodiment of the present application.
  • the association period between the first SSB and RO is determined according to the parameter time point.
  • the RO associated with SSB1 is Msg1 being repeatedly transmitted The RO corresponding to the first Msg1.
  • the RO associated with SSB1 in the next association period between SSB and RO is the RO corresponding to the second Msg1 in the repeated transmission of Msg1, and so on. That is, the time-domain positions of multiple ROs repeatedly transmitted by Msg1 correspond to the association period between multiple consecutive SSBs and ROs.
  • the determining the time domain position of the RO corresponding to each Msg1 transmission in the repeated Msg1 transmission includes:
  • the time domain positions of the ROs associated with each SSB are within one SSB-RO association period.
  • FIG. 4 is an example diagram of determining the RO time-domain position for repeated transmission of Msg1 associated with different SSBs provided by the embodiment of the present application.
  • the terminal selects the combination of SSB1 and SSBi to perform repeated transmission of Msg1.
  • the RO corresponding to the first Msg1 in the repeated transmission of Msg1 is the RO associated with SSB1
  • the RO corresponding to the second Msg1 in the repeated transmission of Msg1 is the RO associated with SSBi.
  • the RO associated with SSB1 and the RO associated with SSBi are within the same association period between SSB and RO.
  • Step 401 determine the frequency domain position of the RO corresponding to each Msg1 transmission in the Msg1 repeated transmission.
  • the frequency domain position of the RO corresponding to each Msg1 transmission in the repeated Msg1 transmission On the basis of the time domain position of the RO corresponding to each Msg1 transmission in the repeated Msg1 transmission, first determine the frequency domain position of the RO of the first Msg1 transmission in the repeated Msg1 transmission, and then, according to the frequency hopping parameters and the RO of the first Msg1 transmission Determine the frequency domain position of the RO for the second Msg1 transmission, determine the frequency domain position of the RO for the i-th Msg1 transmission according to the frequency hopping parameters and the frequency domain position of the RO for the i-1th Msg1 transmission, and then By analogy, the frequency domain position of the RO corresponding to each Msg1 transmission in the repeated Msg1 transmission is determined.
  • the determining the frequency domain position of the RO corresponding to each Msg1 transmission in the Msg1 repeated transmission according to the frequency hopping parameters includes:
  • the RO frequency domain position of the i-1th Msg1 transmission in the Msg1 repeated transmission and the RO frequency hopping offset determine the frequency domain position of the RO of the i-th Msg1 transmission in the Msg1 repeated transmission;
  • i is a positive integer greater than or equal to 2.
  • the protocol predefined rule may be to determine the frequency domain position of the RO for the first Msg1 transmission according to the UE ID.
  • RO frequency hopping guarantees RO frequency hopping within X available ROs associated with an SSB.
  • indexRO (i-th transmission) mod(indexRO (i-1th transmission)+ROoffset, X), where indexRO represents the index of multiple ROs multiplexed in the frequency domain, and ROoffset is the offset of RO frequency hopping, It is configured by the first configuration information or predefined by the protocol.
  • the determination of frequency hopping parameters for repeated transmission of Msg1 includes:
  • the RO frequency hopping offset is determined according to the configuration parameters of the association relationship between the SSB and the RO or the predefined rules of the protocol.
  • the value of a is predefined by the protocol.
  • the protocol predefined rule is to determine the RO frequency hopping offset according to the number of RO frequency domain multiplexing.
  • RO offset 0
  • the terminal needs to select an RO in the effective RO set indicated by the RO mask and RO frequency hopping based on the RO offset.
  • the ROs used for the second repetition and subsequent repetitions are independently configured ROs.
  • the "second repetition” described in the embodiment of this application refers to the second sending of the same Msg1 before the RAR window ends or starts.
  • the Nth repetition is understood as the Nth Msg1 transmission determined in time order in one Msg1 repeated transmission.
  • the method also includes:
  • the terminal determines that the network side device supports the Msg1 repeated transmission. It can be understood that if the first configuration information is configured with the parameter of repeated transmission of Msg1, it means that the current cell supports/allows repeated transmission of Msg1.
  • the terminal After the terminal detects the SSB and obtains the system information, it determines whether to perform Msg1 repeated transmission, and the first configuration information also includes information for the second and more than two Msg1 repeated transmissions in Msg1 repeated transmission. In the case of RO, the terminal determines that it needs to perform repeated transmission of Msg1.
  • the repeated transmission mode of Msg1 includes:
  • the RO used for the second and more than two Msg1 transmissions in the repeated Msg1 transmission is associated with the same SSB as the RO for the first Msg1 transmission in the repeated Msg1 transmission;
  • the RO for the second and more than two Msg1 transmissions in the repeated Msg1 transmission is associated with one or more different SSBs than the RO for the first Msg1 transmission in the repeated Msg1 transmission.
  • the first message indicates that the Msg1 repeated sending mode is whether the additionally configured RO and the RO used to send the first Msg1 are associated with the same SSB, or whether the additionally configured RO and the RO used to send the first Msg1 can be Associated with different one or more SSBs.
  • the RO used for the second and more than two Msg1 transmissions in the Msg1 repeated transmission is associated with one or more SSBs different from the RO of the first Msg1 transmission in the Msg1 repeated transmission means: the second and more than two times
  • the SSB associated with the RO of the Msg1 transmission is different from the SSB associated with the RO of the first Msg1 transmission, and there can be multiple different SSBs.
  • the additionally configured RO is the RO used for the second and more than two Msg1 transmissions in the Msg1 repeated transmission.
  • one of the above-mentioned modes is defaulted as the default mode, for example, a mode in which the additionally configured RO is associated with the same one or more SSBs as the RO used to send the first Msg1 is used by default. Execute Msg1 to send repeatedly.
  • the The first message also carries multiple SSB combinations, and the multiple SSB combinations are used to associate the RO of the second and more than two Msg1 transmissions in the current Msg1 repeated transmission with the RO of the first Msg1 transmission in the Msg1 repeated transmission.
  • Msg1 repeats the transmission pattern for different one or more SSBs.
  • the terminal determines whether to select a PRACH resource that supports repeated transmission of Msg1, which may be based on one or more of the following options:
  • the downlink measurement metric (such as RSRP, RSRQ, RSRI) is less than or not greater than the first threshold T0;
  • the first threshold value can be an independently configured value, or can be an existing configuration value or a function of an existing configuration value, such as multiplexing the RSRP threshold used to determine whether to perform the random access process of Msg3 repeated transmission .
  • the third threshold may be an independently configured value, or may be an existing configuration value or a function of an existing configuration value, such as half of the maximum number of retransmissions used to determine whether a random access error is required to be declared .
  • the terminal selects the SSB used for the first Msg1 transmission according to the second threshold value T1 of the SSB used for the RO resource selection of the first Msg1 transmission in the repeated Msg1 transmission.
  • the second threshold may be configured independently, or multiplexed to select the threshold associated with the SSB in the random access process of repeated transmission of Msg3; or multiplexed and not used for repeated transmission of Msg1 (that is, a single transmission of Msg1) Based on the RSRP threshold selected by SSB.
  • the terminal determines the RO and preamble sequence used for the first Msg1 transmission according to the selected SSB. Furthermore, according to the RO, preamble sequence and frequency hopping parameters of the first Msg1 transmission, the terminal can determine the location and quantity of PRACH resources used for the second and more than two Msg1 transmissions in the repeated Msg1 transmission.
  • the method also includes:
  • multiple ROs are configured in the frequency domain may refer to the configuration of the ROs used for the first Msg1 transmission in the frequency domain.
  • FIG. 6 is the second schematic diagram of RO frequency hopping provided by the embodiment of the present application.
  • the number of repeated transmissions is 4, and the frequency hopping offset is 2.
  • the repeated transmission of Msg1 supports frequency hopping.
  • the network side device indicates the offset of frequency hopping, such as in units of RO.
  • the network side device also configures the step size of RO frequency hopping, that is, RO frequency hopping is performed every few times after Msg1 is sent, for example, the default step size is 1, that is, RO hopping is performed every time Msg1 is sent frequency.
  • the method also includes:
  • the number of Msg1 repeated transmissions is determined according to the number of ROs used for the second and more than two Msg1 transmissions in the first configuration information.
  • the method also includes:
  • the SSBs associated with sending the second and subsequent repetitions may be determined by at least one of the following methods:
  • adjacent beams or multiple SSBs of the same beam can be respectively mapped to ROs used to send repeated transmissions of Msg1.
  • x is the index of the associated SSB
  • N is the number of SSBs actually sent.
  • the terminal determines the first time-frequency resource for repeated transmission of Msg1 according to the first configuration information of repeated transmission of Msg1 sent by the network side device, and obtains frequency diversity gain by selecting ROs at different frequency positions, and at the same time It is also possible to avoid complete overlap of resources used by different msg1repetitions on time-frequency resources.
  • the coverage performance of repeated sending of Msg1 can be improved and the complexity of PRACH resource allocation can be reduced.
  • the terminal receives the first message sent by the network side device, where the first message carries first configuration information for repeated transmission of Msg1, including:
  • the terminal receives the first message, where the first message carries first configuration information used to indicate the repeated transmission of Msg1 in the contention-free random access process.
  • the first message carries the first configuration information used to indicate the repeated transmission of Msg1 in the contention-free random access process.
  • the first configuration information includes at least one of the following:
  • the random access type includes at least one of the following:
  • an A-bits field is defined for indication, and A may be 2.
  • the RACH type is determined according to the corresponding relationship between the preamble index indicated by the DCI and the preamble index ranges of different RACH types.
  • Whether to perform Msg1 repeated transmission can be determined according to the random access type.
  • the mode of repeated transmission of Msg1 includes:
  • Whether to enable RO frequency hopping indicates whether the repeated transmission of Msg1 supports frequency hopping. Or by default, determine whether to enable RO frequency hopping according to the configuration of the system message.
  • the first configuration information indicates the RO frequency hopping offset RO offset for repeated transmission of Msg1.
  • the field indicates the RO configuration set, such as the RO set on the NUL carrier, or the RO set on the NUL carrier, or the 2-step RO set, or the 4-step RACH with Msg3 repetition RO set, or a specially configured RO set used for repeated transmission of Msg1.
  • the RO configuration set such as the RO set on the NUL carrier, or the RO set on the NUL carrier, or the 2-step RO set, or the 4-step RACH with Msg3 repetition RO set, or a specially configured RO set used for repeated transmission of Msg1.
  • the first configuration message may also include the RO used for the second and more than two Msg1 transmissions in the Msg1 repeated transmission.
  • the terminal determines, according to the first configuration information, the first time-frequency resource used for repeated transmission of Msg1.
  • the terminal determines the first time-frequency resource for repeated transmission of Msg1 according to the first configuration information, including:
  • the terminal determines the first time-frequency resource for repeated transmission of Msg1 according to the first configuration information. Refer to the above-mentioned embodiment to determine the first time-frequency resource for repeated transmission of Msg1 according to the first configuration information. Relevant procedures will not be repeated here.
  • the method further includes at least one of the following:
  • the fields in DCI 1-0 are used to indicate the configuration information of Msg1 repeated transmission, including random access type, Msg1 repeated transmission mode, Msg1 repeated transmission times, whether to enable RO frequency hopping, and RO Parameters related to frequency hopping.
  • the terminal receives the first configuration information sent by the network side device to indicate the repeated transmission of Msg1 during the contention-free random access process, and determines the The first time-frequency resource for repeated transmission of Msg1 can realize repeated transmission of Msg1 in a contention-free random access process, and improve the coverage performance of PRACH.
  • FIG. 7 is the second schematic flow diagram of the method for determining time-frequency resources for repeated transmission of Msg1 provided by the embodiment of the present application. As shown in Figure 7, the method is applied to a network side device, and the method includes the following steps:
  • Step 700 The network side device sends a first message to the terminal, where the first message carries first configuration information for repeated transmission of Msg1.
  • the network side device indicates to the terminal the first configuration information repeatedly transmitted by Msg1 by sending the first message to the terminal.
  • the first message includes at least one of the following: system message, DCI, MAC CE, and RRC signaling.
  • the first configuration information includes at least one of the following:
  • the repeated transmission mode of Msg1 includes:
  • multiple ROs are associated with different SSBs, that is, multiple SSBs are associated.
  • one of the above modes is defaulted as the default mode, for example, a mode in which multiple ROs are associated with the same SSB is used by default to perform repeated sending of Msg1.
  • the first configuration information also includes multiple SSB combinations, and Msg1 for associating multiple SSBs is repeated. transfer mode.
  • a possible implementation indication method is to indicate all SSB combinations at one time in the form of a bit map or index sequence in the first configuration information; or determine other SSB combinations according to the first SSB combination, such as the second SSB The index of the combination is the sum of the index of the first SSB combination and the specified offset.
  • the base station indicates multiple SSBs of the same beam to perform repeated transmission of Msg1.
  • the configuration parameter of the association relationship between the SSB and the RO is used to indicate the association relationship between the SSB and the RO.
  • the association relationship between SSB and RO includes the association relationship between one SSB and multiple ROs, or the association relationship between one RO and multiple SSBs.
  • the configuration parameter ssb-perRACH-OccasionAndCB-PreamblesPerSSB of the association relationship between the SSB and the RO indicates that an SSB is associated with X consecutive ROs, where X is an integer greater than 1.
  • the RO frequency hopping offset may be determined according to the configuration parameters of the association relationship between the SSB and the RO.
  • the first threshold value is used to indicate the trigger threshold of repeated transmission of Msg1;
  • the terminal judges whether to execute Msg1 retransmission according to the trigger threshold of Msg1 retransmission.
  • the first threshold may be an independently configured trigger threshold for repeated transmission of Msg1 , or a threshold multiplexed for judging whether to execute the repeated transmission of Msg3 in a random access procedure.
  • the threshold for judging whether to execute the random access procedure for repeatedly sending Msg3 is the trigger threshold for the random access procedure for repeatedly sending Msg3.
  • the second threshold value is used to indicate the selection threshold of the associated SSB for repeated transmission of Msg1;
  • the terminal selects the associated SSB for repeated transmission of Msg1 according to the selection threshold of the associated SSB for repeated transmission of Msg1.
  • the associated SSB of the repeated transmission of Msg1 that is, the associated SSB of the repeated transmission of Msg1.
  • the second threshold may be an independently configured threshold for selecting the associated SSB for repeated transmission of Msg1, or multiplexed and used for selecting the threshold for associated SSB in the random access process for repeated transmission of Msg3.
  • the threshold for selecting the associated SSB in the random access process of repeated transmission of Msg3 is the selection threshold of the associated SSB in the random access process of repeated transmission of Msg3.
  • the network side device indicates that RO frequency hopping is enabled, it means that the RO resource used for repeated transmission of Msg1 supports frequency hopping in the frequency domain.
  • the network side device indicates that the RO frequency hopping is not enabled, it means that the RO resource used for the repeated transmission of Msg1 does not support frequency hopping in the frequency domain.
  • the network side device further indicates the RO frequency hopping offset RO offset.
  • RO frequency hopping offset in units of RO.
  • the network side device configures the step size of the RO frequency hopping.
  • RO frequency hopping is performed, and n is compensation for RO frequency hopping.
  • the step size is set to 1 by default, that is, RO frequency hopping is performed every time Msg1 is sent.
  • the number of repeated transmissions of Msg1 may be indicated by the first configuration information, or may be determined according to a value predefined in the protocol.
  • a set of repeated transmission times including multiple optional values is configured in the first configuration information, and the terminal selects the actual repeated transmission times of Msg1 according to the channel quality.
  • the first configuration information may also include an RO mask for repeated transmission of Msg1.
  • the terminal needs to select an RO and RO frequency hopping based on the RO offset in the effective RO set indicated by the RO mask.
  • the first configuration information includes multiple RO masks, corresponding to different times of Msg1 repeated transmissions.
  • the method also includes:
  • the network side device may explicitly instruct the terminal to perform repeated transmission of Msg1.
  • the indication information related to RO frequency hopping includes at least one of the following: whether to enable RO frequency hopping, RO frequency hopping offset, frequency hopping quantity or frequency hopping step size.
  • the first signaling includes: DCI or MAC CE or RRC signaling.
  • the first configuration information further includes the RO used for the second and more than two Msg1 transmissions in the Msg1 repeated transmission.
  • the network side device can carry the RO used for the second and more than two Msg1 transmissions in the Msg1 repeated transmission in the first configuration information, and the second Msg1 transmission and the second and subsequent Msg1 transmissions ROs are configured independently.
  • the terminal After the terminal detects the SSB and obtains the system information, it judges whether to perform Msg1 repeated transmission, and if the first configuration information also includes the RO for the second and more than two Msg1 transmissions in the Msg1 repeated transmission, The terminal determines that the repeated transmission of Msg1 needs to be performed.
  • the method also includes:
  • the SSB pattern is used for the terminal to determine the SSB associated with the second and more than two Msg1 transmissions in the repeated Msg1 transmission.
  • the network side device sends the SSB pattern to the terminal, so that the terminal determines the SSB associated with the second and more than two Msg1 transmissions in the repeated Msg1 transmission.
  • SSB mode is used to correlate Msg1 transmission with SSB.
  • adjacent beams or multiple SSBs of the same beam can be respectively mapped to different ROs used to send repeated transmissions of Msg1.
  • x is the index of the associated SSB
  • N is the number of SSBs actually sent.
  • the network side device sends the first configuration information of Msg1 repeated transmission to the terminal, so that the terminal can determine the first time-frequency resource for Msg1 repeated transmission, which can realize Msg1 repeated transmission and improve the coverage performance of PRACH.
  • the network side device sends a first message to the terminal, where the first message carries first configuration information for repeated transmission of Msg1, including:
  • the network side device sends a first message to the terminal, where the first message carries first configuration information used to indicate the repeated transmission of Msg1 in the contention-free random access process.
  • the network side device sends the first message to the terminal, indicating to the terminal the first configuration information for performing Msg1 repeated transmission in the contention-free random access process, so that the terminal determines the The first time-frequency resource for repeated transmission of Msg1.
  • the first configuration information includes at least one of the following:
  • the random access type includes at least one of the following:
  • an A-bits field is defined for indication, and A may be 2.
  • the RACH type is determined according to the corresponding relationship between the preamble index indicated by the DCI and the preamble index ranges of different RACH types.
  • Whether to perform Msg1 repeated transmission can be determined according to the random access type.
  • the mode of repeated transmission of Msg1 includes:
  • Whether to enable RO frequency hopping indicates whether the repeated transmission of Msg1 supports frequency hopping. Or by default, determine whether to enable RO frequency hopping according to the configuration of the system message.
  • the first configuration information indicates the RO frequency hopping offset RO offset for repeated transmission of Msg1.
  • the field indicates the RO configuration set, such as the RO set on the NUL carrier, or the RO set on the NUL carrier, or the 2-step RO set, or the 4-step RACH with Msg3 repetition RO set, or a specially configured RO set used for repeated transmission of Msg1.
  • the RO configuration set such as the RO set on the NUL carrier, or the RO set on the NUL carrier, or the 2-step RO set, or the 4-step RACH with Msg3 repetition RO set, or a specially configured RO set used for repeated transmission of Msg1.
  • the first configuration message may also include the RO used for the second Msg1 transmission in the repeated Msg1 transmission and more than two Msg1 transmissions.
  • the network side device may independently configure the ROs of the second repetition and subsequent repetitions by carrying the RO used for the second and more than two Msg1 transmissions in the repeated Msg1 transmission in the first configuration information.
  • the network side device sends to the terminal the first configuration information for indicating the repeated transmission of Msg1 during the contention-free random access process, so that the terminal can determine the configuration information used for the repeated transmission of Msg1 during the contention-free random access process.
  • the first time-frequency resource can realize repeated transmission of Msg1 in a contention-free random access process, and improve the coverage performance of the PRACH.
  • the method for determining the time-frequency resource for repeated transmission of Msg1 provided in the embodiment of the present application may be executed by an apparatus for determining the time-frequency resource for repeated transmission of Msg1.
  • the device for determining the time-frequency resource for repeated transmission of Msg1 is taken as an example to illustrate the device for determining the time-frequency resource for repeated transmission of Msg1 provided in the embodiment of the present application.
  • FIG. 8 is one of the schematic structural diagrams of an apparatus for determining time-frequency resources for repeated transmission of Msg1 provided by an embodiment of the present application.
  • the device 800 for determining time-frequency resources for repeated transmission of Msg1 includes:
  • the first receiving unit 810 is configured to receive a first message sent by the network side device, where the first message carries first configuration information for repeated transmission of Msg1;
  • the first determining unit 820 is configured to determine a first time-frequency resource for repeated transmission of Msg1 according to the first configuration information
  • the determination of the first time-frequency resource used for repeated transmission of Msg1 includes at least one of the following:
  • the first configuration information includes at least one of the following:
  • the first threshold value is used to indicate the trigger threshold of repeated transmission of Msg1;
  • the second threshold value is used to indicate the selection threshold of the associated SSB of the repeated transmission of Msg1;
  • the repeated transmission mode of Msg1 includes:
  • the judging whether to perform repeated transmission of Msg1, and determining the physical random access channel PRACH resources used for repeated transmission of Msg1 include:
  • the first condition includes at least one of the following:
  • the 4-step random access fails N times, and the value of N is predefined by the protocol or configured by the first message;
  • the first signaling is used to instruct the terminal to perform repeated transmission of Msg1, and carries indication information related to RO frequency hopping;
  • the signal quality of the downlink signal is less than or not greater than the first threshold
  • the first threshold is configured through the first message, or is multiplexed with a threshold for judging whether to execute the random access procedure of repeatedly sending Msg3.
  • the 4-step random access failure N times includes:
  • the terminal performs N times of Msg1 single transmission attempts and does not receive the corresponding Msg2; or,
  • the terminal performs N times of Msg1 single transmission and receives the corresponding Msg2, but the transmission of Msg3 fails;
  • the value of N is predefined by the protocol or configured by the first message.
  • the first signaling includes: DCI or MAC CE or RRC signaling.
  • the determining the PRACH resource used for repeated transmission of Msg1 includes:
  • the second threshold value is configured through the first message, or multiplexed is used to select the threshold associated with the SSB in the random access process for repeated transmission of Msg3.
  • the determining the SSB associated with the Msg1 repeated transmission according to the Msg1 repeated transmission mode and the second threshold value includes:
  • the terminal compares the signal quality of all detected SSBs with the second threshold value, and selects the SSB whose signal quality is higher than the second threshold value As the SSB associated with the repeated transmission of the Msg1;
  • the signal quality of multiple SSBs is higher than the second threshold value, based on terminal implementation or randomly selecting one of the multiple SSBs as the SSB associated with the repeated transmission of Msg1;
  • an SSB is selected based on terminal implementation or randomly as the SSB associated with the repeated transmission of Msg1.
  • the determining the SSB combination associated with the Msg1 repeated transmission according to the Msg1 repeated transmission mode and the second threshold value includes:
  • the signal quality of the SSB combination is compared with the second threshold value, and one of the SSB combinations is selected as the Msg1 repeated transmission associated SSB combination.
  • the determining the RO corresponding to each Msg1 transmission in the repeated Msg1 transmission includes:
  • the frequency domain position of the RO corresponding to each Msg1 transmission in the repeated Msg1 transmission is determined.
  • the determining the time domain position of the RO corresponding to each Msg1 transmission in the repeated Msg1 transmission includes:
  • the time domain positions of the multiple ROs that are repeatedly transmitted by Msg1 correspond to the association period between multiple consecutive SSBs and ROs;
  • association period corresponding to the first Msg1 repeatedly transmitted by Msg1 is determined according to the parameter time point, and the reference time point is determined according to the protocol pre-definition or the first message configuration.
  • the determining the time domain position of the RO corresponding to each Msg1 transmission in the repeated Msg1 transmission includes:
  • the time domain positions of the ROs associated with each SSB are within one SSB-RO association period.
  • the determining the frequency domain position of the RO corresponding to each Msg1 transmission in the Msg1 repeated transmission according to the frequency hopping parameters includes:
  • the RO frequency domain position of the i-1th Msg1 transmission in the Msg1 repeated transmission and the RO frequency hopping offset determine the frequency domain position of the RO of the i-th Msg1 transmission in the Msg1 repeated transmission;
  • i is a positive integer greater than or equal to 2.
  • the determination of frequency hopping parameters for repeated transmission of Msg1 includes:
  • the RO frequency hopping offset is determined according to the configuration parameters of the association relationship between the SSB and the RO or the predefined rules of the protocol.
  • the device also includes:
  • the second determining unit is configured to determine that the network-side device supports Msg1 repeated transmission when the first configuration information further includes an RO for the second or more than two Msg1 repeated transmissions in the Msg1 repeated transmission.
  • the repeated transmission mode of Msg1 includes:
  • the RO used for the second and more than two Msg1 transmissions in the repeated Msg1 transmission is associated with the same SSB as the RO for the first Msg1 transmission in the repeated Msg1 transmission;
  • the RO for the second and more than two Msg1 transmissions in the repeated Msg1 transmission is associated with one or more different SSBs than the RO for the first Msg1 transmission in the repeated Msg1 transmission.
  • the The first message also carries multiple SSB combinations.
  • the device also includes:
  • the third determining unit is configured to determine that repeated transmission of Msg1 supports frequency hopping when multiple ROs are configured in the frequency domain.
  • the device also includes:
  • the fourth determining unit is configured to determine the number of Msg1 repeated transmissions according to the number of ROs used for the second Msg1 transmission in the Msg1 repeated transmission and more than two times of Msg1 transmissions in the first configuration information.
  • the device also includes:
  • the fifth determination unit is configured to determine the SSB associated with the second and more than two Msg1 transmissions in the repeated Msg1 transmission according to the SSB mode configured by the network side device or predetermined.
  • the first receiving unit is configured to:
  • a first message is received, where the first message carries first configuration information used to indicate the repeated transmission of Msg1 in the contention-free random access process.
  • the first configuration information includes at least one of the following:
  • the random access type includes at least one of the following:
  • the first message includes at least one of the following: system message, DCI, MAC CE, and RRC signaling.
  • the apparatus for determining the time-frequency resource for repeated transmission of Msg1 in the embodiment of the present application may be an electronic device, such as an electronic device with an operating system, or a component of the electronic device, such as an integrated circuit or a chip.
  • the electronic device may be a terminal, or other devices other than the terminal.
  • the terminal may include, but not limited to, the types of terminal 11 listed above, and other devices may be servers, Network Attached Storage (NAS), etc., which are not specifically limited in this embodiment of the present application.
  • NAS Network Attached Storage
  • the device for determining time-frequency resources for repeated transmission of Msg1 provided in the embodiment of the present application can realize various processes realized by the method embodiments in FIG. 2 to FIG. 6 and achieve the same technical effect. To avoid repetition, details are not repeated here.
  • FIG. 9 is a second structural schematic diagram of an apparatus for determining time-frequency resources for repeated transmission of Msg1 provided by an embodiment of the present application.
  • the device 900 for determining time-frequency resources for repeated transmission of Msg1 includes:
  • the first sending unit 910 is configured to send a first message to the terminal, where the first message carries first configuration information for repeated transmission of Msg1.
  • the first configuration information includes at least one of the following:
  • the first threshold value is used to indicate the trigger threshold of repeated transmission of Msg1;
  • the second threshold value is used to indicate the selection threshold of the associated SSB of the repeated transmission of Msg1;
  • the device also includes:
  • the second sending unit is configured to send the first signaling to the terminal, where the first signaling is used to instruct the terminal to perform repeated sending of Msg1 and carries indication information related to RO frequency hopping.
  • the first signaling includes: DCI or MAC CE or RRC signaling.
  • the first configuration information further includes an RO used for the second and more than two Msg1 transmissions in the Msg1 repeated transmission.
  • the device also includes:
  • the third sending unit is configured to send the SSB pattern to the terminal, and the SSB pattern is used for the terminal to determine the SSB associated with the second and more than two Msg1 transmissions in the repeated Msg1 transmission.
  • the first sending unit is configured to:
  • the first configuration information includes at least one of the following:
  • the random access type includes at least one of the following:
  • the first message includes at least one of the following: system message, DCI, MAC CE, and RRC signaling.
  • the device for determining the time-frequency resource for repeated transmission of Msg1 provided in the embodiment of the present application can realize the various processes realized by the method embodiment in Fig. 7 and achieve the same technical effect. In order to avoid repetition, details are not repeated here.
  • this embodiment of the present application also provides a communication device 1000, including a processor 1001 and a memory 1002, and the memory 1002 stores programs or instructions that can run on the processor 1001, such as , when the communication device 1000 is a terminal, when the program or instruction is executed by the processor 1001, each step of the above embodiment of the method for determining the time-frequency resource for repeated transmission of Msg1 can be realized, and the same technical effect can be achieved.
  • the communication device 1000 is a network-side device, when the program or instruction is executed by the processor 1001, the steps of the above embodiment of the method for determining the time-frequency resource for repeated transmission of Msg1 can be achieved, and the same technical effect can be achieved. In order to avoid repetition, here No longer.
  • the embodiment of the present application also provides a terminal, including a processor and a communication interface, wherein the communication interface is used to receive a first message sent by a network side device, and the first message carries first configuration information for repeated transmission of Msg1;
  • the processor is configured to determine the first time-frequency resource for repeated transmission of Msg1 according to the first configuration information; wherein, the determination of the first time-frequency resource for repeated transmission of Msg1 includes at least one of the following: judging Whether to perform Msg1 repeated transmission; determine the physical random access channel PRACH resource used for Msg1 repeated transmission; determine the frequency hopping parameters of Msg1 repeated transmission; determine the RO corresponding to each Msg1 transmission in Msg1 repeated transmission.
  • This terminal embodiment corresponds to the above-mentioned terminal-side method embodiment, and each implementation process and implementation mode of the above-mentioned method embodiment can be applied to this terminal embodiment, and can achieve the same technical effect.
  • FIG. 11 is a schematic diagram of a hardware structure of a terminal implementing an embodiment of the present application.
  • the terminal 1100 includes, but is not limited to: a radio frequency unit 1101, a network module 1102, an audio output unit 1103, an input unit 1104, a sensor 1105, a display unit 1106, a user input unit 1107, an interface unit 1108, a memory 1109, and a processor 1110. At least some parts.
  • the terminal 1100 may also include a power supply (such as a battery) for supplying power to various components, and the power supply may be logically connected to the processor 1110 through the power management system, so as to manage charging, discharging, and power consumption through the power management system. Management and other functions.
  • a power supply such as a battery
  • the terminal structure shown in FIG. 11 does not constitute a limitation on the terminal, and the terminal may include more or fewer components than shown in the figure, or combine some components, or arrange different components, which will not be repeated here.
  • the input unit 1104 may include a graphics processing unit (Graphics Processing Unit, GPU) 11041 and a microphone 11042, and the graphics processor 11041 is used in a video capture mode or an image capture mode by an image capture device (such as the image data of the still picture or video obtained by the camera) for processing.
  • the display unit 1106 may include a display panel 11061, and the display panel 11061 may be configured in the form of a liquid crystal display, an organic light emitting diode, or the like.
  • the user input unit 1107 includes at least one of a touch panel 11071 and other input devices 11072 .
  • Touch panel 11071 also called touch screen.
  • the touch panel 11071 may include two parts, a touch detection device and a touch controller.
  • Other input devices 11072 may include, but are not limited to, physical keyboards, function keys (such as volume control keys, switch keys, etc.), trackballs, mice, and joysticks, which will not be repeated here.
  • the radio frequency unit 1101 may transmit the downlink data from the network side device to the processor 1110 for processing after receiving it; in addition, the radio frequency unit 1101 may send uplink data to the network side device.
  • the radio frequency unit 1101 includes, but is not limited to, an antenna, an amplifier, a transceiver, a coupler, a low noise amplifier, a duplexer, and the like.
  • the memory 1109 can be used to store software programs or instructions as well as various data.
  • the memory 1109 may mainly include a first storage area for storing programs or instructions and a second storage area for storing data, wherein the first storage area may store an operating system, an application program or instructions required by at least one function (such as a sound playing function, image playback function, etc.), etc.
  • memory 1109 may include volatile memory or nonvolatile memory, or, memory 1109 may include both volatile and nonvolatile memory.
  • the non-volatile memory can be read-only memory (Read-Only Memory, ROM), programmable read-only memory (Programmable ROM, PROM), erasable programmable read-only memory (Erasable PROM, EPROM), electronically programmable Erase Programmable Read-Only Memory (Electrically EPROM, EEPROM) or Flash.
  • ROM Read-Only Memory
  • PROM programmable read-only memory
  • Erasable PROM Erasable PROM
  • EPROM erasable programmable read-only memory
  • Electrical EPROM Electrical EPROM
  • EEPROM electronically programmable Erase Programmable Read-Only Memory
  • Volatile memory can be random access memory (Random Access Memory, RAM), static random access memory (Static RAM, SRAM), dynamic random access memory (Dynamic RAM, DRAM), synchronous dynamic random access memory (Synchronous DRAM, SDRAM), double data rate synchronous dynamic random access memory (Double Data Rate SDRAM, DDRSDRAM), enhanced synchronous dynamic random access memory (Enhanced SDRAM, ESDRAM), synchronous connection dynamic random access memory (Synch link DRAM , SLDRAM) and Direct Memory Bus Random Access Memory (Direct Rambus RAM, DRRAM).
  • RAM Random Access Memory
  • SRAM static random access memory
  • DRAM dynamic random access memory
  • DRAM synchronous dynamic random access memory
  • SDRAM double data rate synchronous dynamic random access memory
  • Double Data Rate SDRAM Double Data Rate SDRAM
  • DDRSDRAM double data rate synchronous dynamic random access memory
  • Enhanced SDRAM, ESDRAM enhanced synchronous dynamic random access memory
  • Synch link DRAM , SLDRAM
  • Direct Memory Bus Random Access Memory Direct Rambus
  • the processor 1110 may include one or more processing units; optionally, the processor 1110 integrates an application processor and a modem processor, wherein the application processor mainly processes operations related to the operating system, user interface, and application programs, etc., Modem processors mainly process wireless communication signals, such as baseband processors. It can be understood that the foregoing modem processor may not be integrated into the processor 1110 .
  • the radio frequency unit 1101 is configured to receive a first message sent by a network side device, and the first message carries first configuration information for repeated transmission of Msg1;
  • the processor 1110 is configured to determine the first time-frequency resource for repeated transmission of Msg1 according to the first configuration information; wherein, the determination of the first time-frequency resource for repeated transmission of Msg1 includes at least one of the following : judging whether to perform repeated transmission of Msg1; determining physical random access channel PRACH resources used for repeated transmission of Msg1; determining frequency hopping parameters for repeated transmission of Msg1.
  • the terminal determines the first time-frequency resource for Msg1 repeated transmission according to the first configuration information of Msg1 repeated transmission sent by the network side device, so as to realize Msg1 repeated transmission and improve the coverage performance of PRACH.
  • the first configuration information includes at least one of the following:
  • the first threshold value is used to indicate the trigger threshold of repeated transmission of Msg1;
  • the second threshold value is used to indicate the selection threshold of the associated SSB of the repeated transmission of Msg1;
  • the repeated transmission mode of Msg1 includes:
  • the processor 1110 is configured to:
  • the first condition includes at least one of the following:
  • the 4-step random access fails N times, and the value of N is predefined by the protocol or configured by the first message;
  • the first signaling is used to instruct the terminal to perform repeated transmission of Msg1, and carries indication information related to RO frequency hopping;
  • the signal quality of the downlink signal is less than or not greater than the first threshold
  • the first threshold is configured through the first message, or is multiplexed with a threshold for judging whether to execute the random access procedure of repeatedly sending Msg3.
  • the 4-step random access failure N times includes:
  • the terminal performs N times of Msg1 single transmission attempts and does not receive the corresponding Msg2; or,
  • the terminal performs N times of Msg1 single transmission and receives the corresponding Msg2, but the transmission of Msg3 fails;
  • the value of N is predefined by the protocol or configured by the first message.
  • the first signaling includes: DCI or MAC CE or RRC signaling.
  • the determining the PRACH resource used for repeated transmission of Msg1 includes:
  • the second threshold value is configured through the first message, or multiplexed is used to select the threshold associated with the SSB in the random access process for repeated transmission of Msg3.
  • the determining the SSB associated with the Msg1 repeated transmission according to the Msg1 repeated transmission mode and the second threshold value includes:
  • the terminal compares the signal quality of all detected SSBs with the second threshold value, and selects the SSB whose signal quality is higher than the second threshold value As the SSB associated with the repeated transmission of the Msg1;
  • the signal quality of multiple SSBs is higher than the second threshold value, based on terminal implementation or randomly selecting one of the multiple SSBs as the SSB associated with the repeated transmission of Msg1;
  • an SSB is selected based on terminal implementation or randomly as the SSB associated with the repeated transmission of Msg1.
  • the determining the SSB combination associated with the Msg1 repeated transmission according to the Msg1 repeated transmission mode and the second threshold value includes:
  • the signal quality of the SSB combination is compared with the second threshold value, and one of the SSB combinations is selected as the Msg1 repeated transmission associated SSB combination.
  • the determining the RO corresponding to each Msg1 transmission in the repeated Msg1 transmission includes:
  • the frequency domain position of the RO corresponding to each Msg1 transmission in the repeated Msg1 transmission is determined.
  • the determining the time domain position of the RO corresponding to each Msg1 transmission in the repeated Msg1 transmission includes:
  • the time domain positions of the multiple ROs that are repeatedly transmitted by Msg1 correspond to the association period between multiple consecutive SSBs and ROs;
  • association period corresponding to the first Msg1 repeatedly transmitted by Msg1 is determined according to the parameter time point, and the reference time point is determined according to the protocol pre-definition or the first message configuration.
  • the determining the time domain position of the RO corresponding to each Msg1 transmission in the repeated Msg1 transmission includes:
  • the time domain positions of the ROs associated with each SSB are within one SSB-RO association period.
  • the determining the frequency domain position of the RO corresponding to each Msg1 transmission in the Msg1 repeated transmission according to the frequency hopping parameters includes:
  • the RO frequency domain position of the i-1th Msg1 transmission in the Msg1 repeated transmission and the RO frequency hopping offset determine the frequency domain position of the RO of the i-th Msg1 transmission in the Msg1 repeated transmission;
  • i is a positive integer greater than or equal to 2.
  • the determination of frequency hopping parameters for repeated transmission of Msg1 includes:
  • the RO frequency hopping offset is determined according to the configuration parameters of the association relationship between the SSB and the RO or the predefined rules of the protocol.
  • processor 1110 is further configured to:
  • the network side device supports the Msg1 repeated transmission.
  • the repeated transmission mode of Msg1 includes:
  • the RO used for the second and more than two Msg1 transmissions in the repeated Msg1 transmission is associated with the same SSB as the RO for the first Msg1 transmission in the repeated Msg1 transmission;
  • the RO for the second and more than two Msg1 transmissions in the repeated Msg1 transmission is associated with one or more different SSBs than the RO for the first Msg1 transmission in the repeated Msg1 transmission.
  • the The first message also carries multiple SSB combinations.
  • the processor 1110 is further configured to: determine that repeated transmission of Msg1 supports frequency hopping when multiple ROs are configured in the frequency domain.
  • the processor 1110 is further configured to: determine the number of repeated Msg1 transmissions according to the number of ROs used for the second or more Msg1 transmissions in the repeated Msg1 transmissions in the first configuration information.
  • the processor 1110 is further configured to: determine the SSB associated with the second and more than two Msg1 transmissions in the repeated Msg1 transmission according to the SSB mode configured by the network side device or predetermined.
  • the radio frequency unit 1101 is configured to:
  • a first message is received, where the first message carries first configuration information used to indicate the repeated transmission of Msg1 in the contention-free random access process.
  • the first configuration information includes at least one of the following:
  • the random access type includes at least one of the following:
  • the first message includes at least one of the following: system message, DCI, MAC CE, and RRC signaling.
  • the terminal determines the first time-frequency resource for repeated transmission of Msg1 according to the first configuration information of repeated transmission of Msg1 sent by the network side device, and obtains frequency diversity gain by selecting ROs at different frequency positions, and at the same time It is also possible to avoid complete overlap of resources used by different msg1 repetitions on time-frequency resources.
  • the coverage performance of repeated sending of Msg1 can be improved and the complexity of PRACH resource allocation can be reduced.
  • the embodiment of the present application also provides a network side device, including a processor and a communication interface, where the communication interface is used to send a first message to a terminal, and the first message carries first configuration information for repeated transmission of Msg1.
  • the network-side device embodiment corresponds to the above-mentioned network-side device method embodiment, and each implementation process and implementation mode of the above-mentioned method embodiment can be applied to this network-side device embodiment, and can achieve the same technical effect.
  • the embodiment of the present application also provides a network side device.
  • the network side device 1200 includes: an antenna 1201 , a radio frequency device 1202 , a baseband device 1203 , a processor 1204 and a memory 1205 .
  • the antenna 1201 is connected to the radio frequency device 1202 .
  • the radio frequency device 1202 receives information through the antenna 1201, and sends the received information to the baseband device 1203 for processing.
  • the baseband device 1203 processes the information to be sent and sends it to the radio frequency device 1202
  • the radio frequency device 1202 processes the received information and sends it out through the antenna 1201 .
  • the method performed by the network side device in the above embodiments may be implemented in the baseband device 1203, where the baseband device 1203 includes a baseband processor.
  • the baseband device 1203 may include, for example, at least one baseband board, on which a plurality of chips are arranged, as shown in FIG.
  • the program executes the network device operations shown in the above method embodiments.
  • the network side device may also include a network interface 1202, such as a common public radio interface (common public radio interface, CPRI).
  • a network interface 1202 such as a common public radio interface (common public radio interface, CPRI).
  • the network side device 1200 in this embodiment of the present invention further includes: instructions or programs stored in the memory 1205 and executable on the processor 1204, and the processor 1204 calls the instructions or programs in the memory 1205 to execute the various programs shown in FIG.
  • the method of module execution achieves the same technical effect, so in order to avoid repetition, it is not repeated here.
  • the embodiment of the present application also provides a readable storage medium, the readable storage medium stores a program or an instruction, and when the program or instruction is executed by the processor, each embodiment of the method for determining the time-frequency resource of the above Msg1 repeated transmission is realized. process, and can achieve the same technical effect, in order to avoid repetition, it will not be repeated here.
  • the processor is the processor in the terminal described in the foregoing embodiments.
  • the readable storage medium includes a computer-readable storage medium, such as a computer read-only memory ROM, a random access memory RAM, a magnetic disk or an optical disk, and the like.
  • the embodiment of the present application further provides a chip, the chip includes a processor and a communication interface, the communication interface is coupled to the processor, and the processor is used to run programs or instructions to realize the time and frequency of the above-mentioned repeated transmission of Msg1
  • the chip includes a processor and a communication interface
  • the communication interface is coupled to the processor
  • the processor is used to run programs or instructions to realize the time and frequency of the above-mentioned repeated transmission of Msg1
  • the chip mentioned in the embodiment of the present application may also be called a system-on-chip, a system-on-chip, a system-on-a-chip, or a system-on-a-chip.
  • the embodiment of the present application further provides a computer program/program product, the computer program/program product is stored in a storage medium, and the computer program/program product is executed by at least one processor to realize the above-mentioned time when Msg1 is repeatedly transmitted
  • a computer program/program product is stored in a storage medium
  • the computer program/program product is executed by at least one processor to realize the above-mentioned time when Msg1 is repeatedly transmitted
  • the embodiment of the present application also provides a system for determining time-frequency resources for repeated transmission of Msg1, including: a terminal and network-side equipment, the terminal can be used to perform the steps of the method for determining time-frequency resources for repeated transmission of Msg1 as described above, so that The network side device may be used to execute the steps of the method for determining the time-frequency resource for repeated transmission of Msg1 as described above.
  • the term “comprising”, “comprising” or any other variation thereof is intended to cover a non-exclusive inclusion such that a process, method, article or apparatus comprising a set of elements includes not only those elements, It also includes other elements not expressly listed, or elements inherent in the process, method, article, or device. Without further limitations, an element defined by the phrase “comprising a " does not preclude the presence of additional identical elements in the process, method, article, or apparatus comprising that element.
  • the scope of the methods and devices in the embodiments of the present application is not limited to performing functions in the order shown or discussed, and may also include performing functions in a substantially simultaneous manner or in reverse order according to the functions involved. Functions are performed, for example, the described methods may be performed in an order different from that described, and various steps may also be added, omitted, or combined. Additionally, features described with reference to certain examples may be combined in other examples.
  • the methods of the above embodiments can be implemented by means of software plus a necessary general-purpose hardware platform, and of course also by hardware, but in many cases the former is better implementation.
  • the technical solution of the present application can be embodied in the form of computer software products, which are stored in a storage medium (such as ROM/RAM, magnetic disk, etc.) , CD-ROM), including several instructions to make a terminal (which may be a mobile phone, a computer, a server, an air conditioner, or a network device, etc.) execute the methods described in the various embodiments of the present application.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请公开了一种Msg1重复传输的时频资源确定方法、装置及终端,属于通信技术领域,本申请实施例的Msg1重复传输的时频资源确定方法包括:终端接收网络侧设备发送的第一消息,所述第一消息携带Msg1重复传输的第一配置信息;所述终端根据所述第一配置信息,确定用于Msg1重复传输的第一时频资源;其中,所述确定用于Msg1重复传输的第一时频资源,包括以下至少一项:判断是否执行Msg1重复传输;确定用于Msg1重复传输的物理随机接入信道PRACH资源;确定Msg1重复传输的跳频参数。

Description

Msg1重复传输的时频资源确定方法、装置及终端
相关申请的交叉引用
本申请要求于2021年12月24日提交的申请号为202111602745.1,发明名称为“Msg1重复传输的时频资源确定方法、装置及终端”的中国专利申请的优先权,其通过引用方式全部并入本申请。
技术领域
本申请属于通信技术领域,具体涉及一种Msg1重复传输的时频资源确定方法、装置及终端。
背景技术
NR支持两种类型的随机接入过程:Msg1的4步RA类型(4-step RACH)和MsgA的2步RA类型(2-step RACH)。两种类型的RA过程都支持基于竞争的随机访问(Contention based RA,CBRA)和无竞争的随机访问(Contention free RA,CFRA)。2-step RACH过程一般应用于覆盖较好的区域,缩短终端接入时间。对于信号覆盖差的区域中,终端应该使用4-step RACH过程接入小区。
相关技术中,Msg1都是按照单次传输进行传输,在传输Msg1之后开启随机接入响应(Random Access Response,RAR)监听窗口。Msg1单次传输的覆盖性能有限,在小区边缘可能存在Msg1检测成功率低的问题,影响小区边缘终端接入小区。Msg1重复传输是一种提升物理随机接入信道(Physical random-access channel,PRACH)覆盖性能的方法,但是,如何实现Msg1重复传输需要解决。
发明内容
本申请实施例提供一种Msg1重复传输的时频资源确定方法、装置及终端,能够解决如何实现Msg1重复传输的问题。
第一方面,提供了一种Msg1重复传输的时频资源确定方法,应用于终端,该方法包括:
终端接收网络侧设备发送的第一消息,所述第一消息携带Msg1重复传输的第一配置信息;
所述终端根据所述第一配置信息,确定用于Msg1重复传输的第一时频资源;
其中,所述确定用于Msg1重复传输的第一时频资源,包括以下至少一项:
判断是否执行Msg1重复传输;
确定用于Msg1重复传输的物理随机接入信道PRACH资源;
确定Msg1重复传输的跳频参数。
第二方面,提供了一种Msg1重复传输的时频资源确定方法,应用于网络侧设备,该方法包括:
网络侧设备向终端发送第一消息,所述第一消息携带Msg1重复传输的第一配置信息。
第三方面,提供了一种Msg1重复传输的时频资源确定装置,包括:
第一接收单元,用于接收网络侧设备发送的第一消息,所述第一消息携带Msg1重复传输的第一配置信息;
第一确定单元,用于根据所述第一配置信息,确定用于Msg1重复传输的第一时频资源;
其中,所述确定用于Msg1重复传输的第一时频资源,包括以下至少一项:
判断是否执行Msg1重复传输;
确定用于Msg1重复传输的物理随机接入信道PRACH资源;
确定Msg1重复传输的跳频参数。
第四方面,提供了一种Msg1重复传输的时频资源确定装置,包括:
第一发送单元,用于向终端发送第一消息,所述第一消息携带Msg1重复传输的第一配置信息。
第五方面,提供了一种终端,该终端包括处理器和存储器,所述存储器存储可在所述处理器上运行的程序或指令,所述程序或指令被所述处理器执行时实现如第一方面所述的Msg1重复传输的时频资源确定方法的步骤。
第六方面,提供了一种终端,包括处理器及通信接口,其中,所述通信接口用于接收网络侧设备发送的第一消息,所述第一消息携带Msg1重复传输的第一配置信息;所述处理器用于根据所述第一配置信息,确定用于Msg1重复传输的第一时频资源;其中,所述确定用于Msg1重复传输的第一时频资源,包括以下至少一项:判断是否执行Msg1重复传输;确定用于Msg1重复传输的物理随机接入信道PRACH资源;确定Msg1重复传输的跳频参数。
第七方面,提供了一种网络侧设备,该网络侧设备包括处理器和存储器,所述存储器存储可在所述处理器上运行的程序或指令,所述程序或指令被所述处理器执行时实现如第二方面所述的Msg1重复传输的时频资源确定方法的步骤。
第八方面,提供了一种网络侧设备,包括处理器及通信接口,其中,所述通信接口用于向终端发送第一消息,所述第一消息携带Msg1重复传输的第一配置信息。
第九方面,提供了一种Msg1重复传输的时频资源确定系统,包括:终端及网络侧设备,所述终端可用于执行如第一方面所述的Msg1重复传输的时频资源确定方法的步骤,所述网络侧设备可用于执行如第二方面所述的Msg1重复传输的时频资源确定方法的步骤。
第十方面,提供了一种可读存储介质,所述可读存储介质上存储程序或指令,所述程序或指令被处理器执行时实现如第一方面所述的Msg1重复传输的时频资源确定方法的步骤,或者实现如第二方面所述的Msg1重复传输的时频资源确定方法的步骤。
第十一方面,提供了一种芯片,所述芯片包括处理器和通信接口,所述通信接口和所述处理器耦合,所述处理器用于运行程序或指令,实现如第一方面所述的Msg1重复传输的时频资源确定方法,或者实现如第二方面所述的Msg1重复传输的时频资源确定方法。
第十二方面,提供了一种计算机程序/程序产品,所述计算机程序/程序产品被存储在存储介质中,所述计算机程序/程序产品被至少一个处理器执行以实现如第一方面所述的Msg1重复传输的时频资源确定方法的步骤,或者实现如第二方面所述的Msg1重复传输的时频资源确定方法的步骤。
在本申请实施例中,终端根据网络侧设备发送的Msg1重复传输的第一配置信息,确定用于Msg1重复传输的第一时频资源,可以实现Msg1重复传输,提升PRACH的覆盖性能。
附图说明
图1是本申请实施例可应用的一种无线通信系统的框图;
图2为本申请实施例提供的Msg1重复传输的时频资源确定方法的流程示意图之一;
图3为本申请实施例提供的关联同一个SSB的Msg1重复传输的RO时域位置确定的示例图;
图4为本申请实施例提供的关联不同的SSB的Msg1重复传输的RO时域位置确定的示例图;
图5为本申请实施例提供的RO跳频示意图之一;
图6为本申请实施例提供的RO跳频示意图之二;
图7为本申请实施例提供的Msg1重复传输的时频资源确定方法的流程示意图之二;
图8为本申请实施例提供的Msg1重复传输的时频资源确定装置的结构示意图之一;
图9为本申请实施例提供的Msg1重复传输的时频资源确定装置的结构示意图之 二;
图10为本申请实施例提供的通信设备的结构示意图;
图11为实现本申请实施例的一种终端的硬件结构示意图;
图12为本申请实施例提供的网络侧设备的结构示意图。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚描述,显然,所描述的实施例是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员所获得的所有其他实施例,都属于本申请保护的范围。
本申请的说明书和权利要求书中的术语“第一”、“第二”等是用于区别类似的对象,而不用于描述特定的顺序或先后次序。应该理解这样使用的术语在适当情况下可以互换,以便本申请的实施例能够以除了在这里图示或描述的那些以外的顺序实施,且“第一”、“第二”所区别的对象通常为一类,并不限定对象的个数,例如第一对象可以是一个,也可以是多个。此外,说明书以及权利要求中“和/或”表示所连接对象的至少其中之一,字符“/”一般表示前后关联对象是一种“或”的关系。
值得指出的是,本申请实施例所描述的技术不限于长期演进型(Long Term Evolution,LTE)/LTE的演进(LTE-Advanced,LTE-A)系统,还可用于其他无线通信系统,诸如码分多址(Code Division Multiple Access,CDMA)、时分多址(Time Division Multiple Access,TDMA)、频分多址(Frequency Division Multiple Access,FDMA)、正交频分多址(Orthogonal Frequency Division Multiple Access,OFDMA)、单载波频分多址(Single-carrier Frequency Division Multiple Access,SC-FDMA)和其他系统。本申请实施例中的术语“系统”和“网络”常被可互换地使用,所描述的技术既可用于以上提及的系统和无线电技术,也可用于其他系统和无线电技术。以下描述出于示例目的描述了新空口(New Radio,NR)系统,并且在以下大部分描述中使用NR术语,但是这些技术也可应用于NR系统应用以外的应用,如第6代(6 th Generation,6G)通信系统。
图1示出本申请实施例可应用的一种无线通信系统的框图。无线通信系统包括终端11和网络侧设备12。其中,终端11可以是手机、平板电脑(Tablet Personal Computer)、膝上型电脑(Laptop Computer)或称为笔记本电脑、个人数字助理(Personal Digital Assistant,PDA)、掌上电脑、上网本、超级移动个人计算机(ultra-mobile personal computer,UMPC)、移动上网装置(Mobile Internet Device,MID)、增强现实(augmented reality,AR)/虚拟现实(virtual reality,VR)设 备、机器人、可穿戴式设备(Wearable Device)、车载设备(VUE)、行人终端(PUE)、智能家居(具有无线通信功能的家居设备,如冰箱、电视、洗衣机或者家具等)、游戏机、个人计算机(personal computer,PC)、柜员机或者自助机等终端侧设备,可穿戴式设备包括:智能手表、智能手环、智能耳机、智能眼镜、智能首饰(智能手镯、智能手链、智能戒指、智能项链、智能脚镯、智能脚链等)、智能腕带、智能服装等。需要说明的是,在本申请实施例并不限定终端11的具体类型。网络侧设备12可以包括接入网设备或核心网设备,其中,接入网设备12也可以称为无线接入网设备、无线接入网(Radio Access Network,RAN)、无线接入网功能或无线接入网单元。接入网设备12可以包括基站、WLAN接入点或WiFi节点等,基站可被称为节点B、演进节点B(eNB)、接入点、基收发机站(Base Transceiver Station,BTS)、无线电基站、无线电收发机、基本服务集(Basic Service Set,BSS)、扩展服务集(Extended Service Set,ESS)、家用B节点、家用演进型B节点、发送接收点(Transmitting Receiving Point,TRP)或所述领域中其他某个合适的术语,只要达到相同的技术效果,所述基站不限于特定技术词汇,需要说明的是,在本申请实施例中仅以NR系统中的基站为例进行介绍,并不限定基站的具体类型。核心网设备可以包含但不限于如下至少一项:核心网节点、核心网功能、移动管理实体(Mobility Management Entity,MME)、接入移动管理功能(Access and Mobility Management Function,AMF)、会话管理功能(Session Management Function,SMF)、用户平面功能(User Plane Function,UPF)、策略控制功能(Policy Control Function,PCF)、策略与计费规则功能单元(Policy and Charging Rules Function,PCRF)、边缘应用服务发现功能(Edge Application Server Discovery Function,EASDF)、统一数据管理(Unified Data Management,UDM),统一数据仓储(Unified Data Repository,UDR)、归属用户服务器(Home Subscriber Server,HSS)、集中式网络配置(Centralized network configuration,CNC)、网络存储功能(Network Repository Function,NRF),网络开放功能(Network Exposure Function,NEF)、本地NEF(Local NEF,或L-NEF)、绑定支持功能(Binding Support Function,BSF)、应用功能(Application Function,AF)等。需要说明的是,在本申请实施例中仅以NR系统中的核心网设备为例进行介绍,并不限定核心网设备的具体类型。
下面结合附图,通过一些实施例及其应用场景对本申请实施例提供的Msg1重复传输的时频资源确定方法、装置及终端进行详细地说明。
首先对于本申请相关的内容进行介绍。
5G NR Rel-15/16系统定义了两类随机接入过程,四步随机接入过程(4-step RACH)和两步随机接入过程(2-step RACH)。4-step RACH适用于在小区覆盖范围内任意位置进行接入,而2-step RACH仅适用于在靠近基站的区域或者信号质量 较好的情况下进行接入。在4-step RACH中,UE首先向网络发送Msg1,Msg1占用预定义的时频资源并且Msg1信号包含前导码(preamble);UE发送了Msg1之后,将在RAR时间窗(RA Response window)内监听PDCCH,用回退(fallback)DCI格式即DCI format 1_0,以接收用RA-RNTI加扰的PDCCH调度的随机接入响应random access response(RAR)。若该RAR中的preamble index与UE发送的preamble index相同时,则认为成功接收了RAR,此时UE就可以停止监听RAR并根据RAR中携带的UL grant的指示发送Msg3;Msg3在UL-SCH上传输,并使用HARQ,用RAR指示的TC-RNTI加扰PDCCH,用回退(fallback)DCI格式即DCI format 0_0来调度Msg3的重传。Msg3中包含UE唯一的标志。该标志将用于步骤四的冲突解决。网络收到Msg3后,将用TC-RNTI加扰的PDCCH调度Msg4,当UE成功解码出Msg4中包含的UE Contention Resolution Identity MAC control element与Msg3发送的UE Contention Resolution Identity匹配时,UE会认为随机接入成功并将自己的C-RNTI设置成TC-RNTI,即完成4步随机接入。
终端在完成下行同步和小区搜索过程之后并且在执行随机接入过程之前,接收并检测初始下行BWP中的SSB信号,获得不同SSB的信号质量(例如SS-RSRP)。终端根据SSB信号质量确定路损质量,参考门限msgA-RSRP-Threshold确定执行4-step RACH或者2-step RACH。终端根据系统消息SIB1中指示的门限rsrp-ThresholdSSB来进行SSB选择。如果存在SS-RSRP高于门限的SSB(可以是多个SSB),那么终端从高于门限的SSB中选择一个SSB作为随机接入过程的关联SSB;如果所有SSB的信号质量都低于门限,那么终端可以选择任意一个SSB作为随机接入过程的关联SSB;具体的SSB选择方案基于终端实现。
在NR系统中,基站可以在一个时域位置上,频分复用(Frequency Division Multiplexing,FDM)的配置多个PRACH transmission occasion(物理随机接入信道传输机会,又或者叫PRACH occasion),本申请中为了简单,简称为RO。一个时间实例(time instance)上可以进行FDM的RO个数可以为:{1,2,4,8}。
随机接入前导(RACH preamble)只能在参数PRACHConfigurationIndex配置的时域资源上传输,随机接入前导只能在参数prach-FDM配置的频域资源上传输,PRACH频域资源n RA∈{0,1,...,M-1},其中M等于高层参数prach-FDM。在初始接入的时候,PRACH频域资源n RA从initial active uplink bandwidth part(初始激活上行带宽部分)内频率最低RO资源开始升序编号,否则,PRACH频域资源n RA从active uplink bandwidth part(激活上行带宽部分)内频率最低RO资源开始升序编号。
在NR中,RO和实际发送的SSB(SS/PBCH block,同步信号/物理广播信道块,有时候也直接简称为SS block,同步信号块)之间存在关联关系。一个RO上可能关联多个SSB,也可以多个SSB关联1个RO。SSB与RO的关联关系由参数ssb-perRACH-OccasionAndCB-PreamblesPerSSB配置。
由于终端发送功率受限,终端发送功率相对于网络发送功率要低很多,在小区边缘区域或者覆盖受限的区域内,终端的上行信号覆盖性能要劣于下行信号覆盖,即Msg1和Msg3的覆盖性能要劣于Msg2和Msg4的覆盖性能。在高频频段FR2上,上下行信道的覆盖性能差距更加明显。为提升上行信号的覆盖性能,考虑在随机接入过程中引入上行信号重复的发送,即使用Msg1(PRACH)的多次/重复发送的方式来提升覆盖性能。
Msg1重复传输时,多个Msg1信号可以关联于相同的SSB/信道状态信息参考信号(Channel State Information-Reference Signal,CSI-RS)或者不同的SSB/CSI-RS。如果Msg1重复发送关联于同一个SSB/CSI-RS,那么终端假设选定的SSB/CSI-RS的波束为最合适的波束,按照现有协议的定义的规则选择最合适的波束;但是,使用单个SSB/CSI-RS关联的Msg1重复发送需要使用更长的时间完成Msg1重复发送。在覆盖受限的场景中,由于SSB波束通常是固定的宽波束,SSB波束之间可能存在波束交叠的区域。这种情况下,终端检测的多个SSB的信号质量SS-RSRP可能是相近的,选择其中一个SSB波束进行随机接入,也就表示放弃了其他可能SSB波束。如果可以选择多个SSB关联的PRACH资源发送Msg1,在某些情况下则可以提升基站成功检测Msg1的概率。此外,由于在随机接入阶段,SS参考信号接收功率(SS reference signal received power,SS-RSRP)的测量仅根据SSB的单次测量结果确定,所以SS-RSRP测量结果可能存在测量偏差,因此选择多个SSB来发送Msg1也可以降低SSB测量偏差对SSB选择的影响。通常不同的SSB关联的Msg1采用不同的上行波束进行发送,终端也可以在关联的SSB的RO上采用和该SSB较为匹配的波束进行PRACH的重复传输。
此外,根据RO资源配置方式可知,多个RO可以频分复用在一个时间资源内。在Msg1重复发送时,多个Msg1确定的多个时间资源上分别包含多个频分复用的RO资源。系统需要定义一个规则来选择RO资源,使得基站和终端对Msg1重复传输的RO资源组合有一致理解,避免基站Msg1重复传输的检测复杂度。
本申请实施例提供了Msg1重复传输的时频资源确定方法。
图2为本申请实施例提供的Msg1重复传输的时频资源确定方法的流程示意图之一。如图2所示,该方法包括以下步骤:
步骤200、终端接收网络侧设备发送的第一消息,所述第一消息携带Msg1重复传输的第一配置信息;
可选地,所述第一消息包括以下至少一项:系统消息,下行控制信息(Downlink control information,DCI),媒体接入控制层控制单元(Media Access Control Control Element,MAC CE),无线资源控制(Radio Resource Control,RRC)信令。
例如,终端接收网络侧设备通过系统消息SIB1携带的第一消息。
第一消息中携带第一配置信息,第一配置信息用于向终端指示网络侧设备对Msg1重复传输的配置。
步骤201、所述终端根据所述第一配置信息,确定用于Msg1重复传输的第一时频资源;
其中,所述确定用于Msg1重复传输的第一时频资源,包括以下至少一项:
判断是否执行Msg1重复传输;
确定用于Msg1重复传输的物理随机接入信道PRACH资源;
确定Msg1重复传输的跳频参数。
所述第一时频资源包含多个不同时间段的RO,关联于同一个下行信号SSB/CSI-RS或者多个下行信号SSB/CSI-RS。
可以理解的是,终端根据第一配置信息,确定当前小区是否支持Msg1重复传输。更进一步的,第一配置信息指示是否执行Msg1重复传输。
在确定执行Msg1重复传输的情况下,进一步根据第一配置信息确定Msg1重复传输的跳频参数。
进一步地,根据Msg1重复传输的跳频参数,确定用于Msg1重复传输的物理随机接入信道PRACH资源,即确定Msg1重复传输中每次Msg1传输对应的RO。
需要说明的是,Msg1重复传输中每次Msg1传输对应的RO包括Msg1重复传输中每次Msg1传输对应的RO资源的时域位置和频域位置。
可以理解,在FR2即高频频段上,基站通常使用模拟波束进行通信,即每个时刻基站只能发送一个模拟波束方向上的信号或者接收一个模拟波束方向上的信号。因此,在进行随机接入时,一个时域位置上的多个RO应该关联于同一个模拟SSB波束。在FR2中,一个SSB关联于多个RO,可以通过RO跳频来获得额外的频率分集增益。
可以理解,在第一配置信息中包含RO跳频相关的指示信息的情况下,终端可以根据该跳频相关的指示信息,确定Msg1重复传输的跳频参数,从而可以在Msg1重复传输时选择在频域上的不同RO index即不同频率位置的RO来获得频率分集增益。
在通过跳频获得频率分集增益的同时,也可以避免不同Msg1 repetition所用资源在时频资源上的完全重叠,从而提升PRACH的覆盖性能以及降低PRACH资源分配的复杂度。
可选地,在第一配置信息中不包含RO跳频相关的指示信息或者第一配置信息指示不跳频的情况下,终端确定用于Msg1重复传输的第一时频资源,包括:确定执行Msg1重复传输;确定用于Msg1重复传输的物理随机接入信道PRACH资源;根据用于Msg1重复传输的物理随机接入信道PRACH资源,确定Msg1重复传输中每次Msg1传输对应的RO。
可选地,若终端根据第一配置信息,确定不执行Msg1重复传输,则不再进行后续流程。
可以理解的是,终端确定了用于Msg1重复传输的第一时频资源之后,在第一时频资源上发送Msg1。
在本申请实施例中,终端根据网络侧设备发送的Msg1重复传输的第一配置信息,确定用于Msg1重复传输的第一时频资源,可以实现Msg1重复传输,提升PRACH的覆盖性能。
可选地,所述第一配置信息包括以下至少一项:
1)Msg1重复传输的模式;
可选地,所述Msg1重复传输的模式,包括:
多个RO关联于同一个SSB;或者,
多个RO关联于不同的SSB。
其中,多个RO关联于不同的SSB即关联多个SSB。
可选地,按照协议预定义规则,默认上述其中一种模式为默认模式,例如默认使用多个RO关联于同一个SSB的模式来执行Msg1重复发送。
2)多种SSB组合;
需要说明的是,多个RO关联于不同的SSB,进一步地,不同的SSB可以对应于多个SSB组合,那么,第一配置信息还包括多种SSB组合,用于关联多个SSB的Msg1重复传输模式。一种可能的实现指示方式是第一配置信息中以位图(bit map)或者index序列的方式一次指示所有SSB组合;或者根据第一个SSB组合来确定其他的SSB组合,例如第二个SSB组合的index是第一个SSB组合的index与特定偏移的和。
在实际部署中,可以考虑多个SSB使用相同发送波束。基站指示相同波束的多个SSB来进行Msg1重复发送。
3)SSB与RO的关联关系的配置参数;
可以理解,SSB与RO的关联关系的配置参数用于指示SSB与RO的关联关系。
SSB与RO的关联关系包括一个SSB与多个RO的关联关系,或者,一个RO与多个SSB的关联关系。
例如,通过SSB与RO的关联关系的配置参数ssb-perRACH-OccasionAndCB-PreamblesPerSSB,指示一个SSB与X个连续的RO关联,X大于1的整数。
在本申请实施例中,可选地,当第一消息没有显示的配置RO跳频偏移量时,可以根据SSB与RO的关联关系的配置参数确定RO跳频偏移量。
4)第一门限值,用于指示Msg1重复传输的触发门限;
在一实施例中,终端根据Msg1重复传输的触发门限,判断是否执行Msg1重复 发送。
第一门限值可以是独立配置的Msg1重复传输的触发门限,或者,复用用于判断是否执行Msg3重复发送的随机接入过程的门限。
其中,用于判断是否执行Msg3重复发送的随机接入过程的门限即Msg3重复发送的随机接入过程的触发门限。
5)第二门限值,用于指示Msg1重复传输的关联SSB的选择门限;
在一实施例中,终端根据Msg1重复传输的关联SSB的选择门限,选择Msg1重复传输的关联SSB。
Msg1重复传输的关联SSB,即Msg1重复传输关联的SSB。
第二门限值可以是独立配置的用于选择Msg1重复传输的关联SSB的门限,或者,复用用于选择Msg3重复发送的随机接入过程中的关联SSB的门限。
其中,用于选择Msg3重复发送的随机接入过程中的关联SSB的门限即Msg3重复发送的随机接入过程的关联SSB的选择门限。
6)是否使能RO跳频;
可以理解,若网络侧设备指示使能RO跳频,说明支持用于Msg1重复传输的RO资源在频域跳频。
若网络侧设备指示不使能RO跳频,说明不支持用于Msg1重复传输的RO资源在频域跳频。
7)RO跳频偏移量;
可选地,如果使能RO跳频,网络侧设备进一步指示RO跳频偏移量RO offset。
RO跳频偏移量,以RO为单位。
8)跳频数量或跳频步长;
可选地,网络侧设备配置RO跳频的步长。
例如,每隔n次Msg1发送后,进行RO跳频,n为RO跳频的步长。
可选地,在不显示配置RO跳频步长时,步长默认设置为1,即每发送一次Msg1进行一次RO跳频。
9)Msg1重复传输的次数;
需要说明的是,Msg1重复传输的次数可以通过所述第一配置信息指示,也可以根据协议预定义的数值确定。可选地,第一配置信息中配置包含多个可选数值的重复传输次数集合,终端根据信道质量选择实际的Msg1重复传输次数。
10)Msg1重复传输的导频序列(preamble)资源集合;
11)Msg1重复传输的RO掩码(mask)。
可选地,所述第一配置信息还可以包括Msg1重复传输的RO mask。
需要说明的是,如果网络侧设备配置了RO mask,则终端需要在RO mask指示 的有效RO集合内选择RO以及基于RO offset的RO跳频。进一步可选地,第一配置信息中包含多个RO mask,分别对应于不同的Msg1重复传输次数。
可选地,所述判断是否执行Msg1重复传输,确定用于Msg1重复传输的物理随机接入信道PRACH资源,包括:
在满足第一条件的情况下,确定执行Msg1重复传输,并确定用于Msg1重复传输的PRACH资源;
其中,所述第一条件包括以下至少一项:
4步随机接入失败N次,N的取值由协议预定义或者由所述第一消息配置,所述4步随机接入为Msg1单次传输和Msg3单次传输的4步随机接入过程,和/或,Msg1单次传输和Msg3重复传输的4步随机接入过程;
接收到第一信令,所述第一信令用于指示终端执行Msg1重复发送,并携带RO跳频相关的指示信息,所述第一信令可以是DCI或者MAC CE或者RRC信令;
下行信号的信号质量小于或不大于所述第一门限值;
其中,所述第一门限值通过所述第一消息配置,或者复用用于判断是否执行Msg3重复发送的随机接入过程的门限。
终端确定执行Msg1重复传输包括如下几种情形。
情形一,在4步随机接入失败N次的情况下,执行Msg1重复传输。
可选地,所述4步随机接入失败N次包括:
在一个4步随机接入过程中,终端进行N次Msg1单次发送尝试并且没有收到相应的Msg2;或者,
在一个4步随机接入过程中,终端进行N次Msg1单次发送收到了相应的Msg2,但是Msg3传输失败;
其中,所述N的取值由协议预定义或者由所述第一消息配置。
N也可以理解为一个门限值,在一个4步随机接入过程中,若终端进行N次Msg1单次发送尝试并且没有收到相应的Msg2,则终端在第N+1次随机接入尝试时执行Msg1重复发送,或者,若终端进行N次Msg1单次发送收到了相应的Msg2,但是Msg3传输失败,则终端在第N+1次随机接入尝试时执行Msg1重复发送。
情形二,在终端接收到第一信令的情况下,执行Msg1重复传输,其中,所述第一信令用于指示终端执行Msg1重复发送,并携带RO跳频相关的指示信息。
可以理解的是,网络侧设备可以显式地指示终端执行Msg1重复传输。
其中,RO跳频相关的指示信息包括以下至少一项:是否使能RO跳频,RO跳频偏移量,跳频数量或跳频步长。
可选地,所述第一信令包括:DCI或者MAC CE或者RRC信令。
情形三,在下行信号的信号质量小于或不大于所述第一门限值的情况下,终端执行Msg1重复传输。
其中,第一门限值通过所述第一消息配置,或者复用用于判断是否执行Msg3重复发送的随机接入过程的门限。
可选地,所述下行信号可以是SSB或者CSI-RS。
进一步,所述下行信号可以是由终端选择的一个或者多个下行参考信号SSB或者CSI-RS,例如RSRP最大的SSB。
下行信号的信号质量可以是代表路径损耗(pathloss)的RSRP或者参考信号接收质量(reference signal received quality,RSRQ)或者信噪比和干扰比(signal-to-noise and interference ratio,SINR)。
在所述下行信号的信号质量低于第一门限值T0时,终端执行Msg1重复发送,否则执行Msg1单次发送。
例如,一种实现方式,所有SSB/CSI-RS的信号质量(RSRP或者RSRQ或者SINR)都低于第一门限值T0,即选择所有SSB/CSI-RS的信号质量的最大值与第一门限值T0进行比较,若该最大值小于或不大于第一门限值T0,则执行Msg1重发发送;否则执行Msg1单次发送。
为了执行Msg1重复传输,需要先确定/选择用于Msg1重复传输的PRACH资源。下面介绍如何确定用于Msg1重复传输的PRACH资源。
可选地,所述确定用于Msg1重复传输的PRACH资源,包括:步骤300、步骤301和步骤302。
步骤300、根据所述Msg1重复传输的模式和第二门限值,确定所述Msg1重复传输关联的SSB或者SSB组合;
其中,所述第二门限值通过所述第一消息配置,或者复用用于选择Msg3重复发送的随机接入过程中的关联SSB的门限。
需要说明的是,本申请实施例中的SSB可以替换为其他下行参考信号,例如,CSI-RS。本申请实施例中的SSB组合可以替换为其他下行参考信号的组合,例如CSI-RS组合。本申请实施例以SSB为例进行说明,但不限于SSB。
对于多个RO关联于同一个SSB的Msg1重复传输的模式,所述根据所述Msg1重复传输的模式和所述第二门限值,确定所述Msg1重复传输关联的SSB,包括:
终端将所有检测到SSB的信号质量与所述第二门限值进行比较,选择信号质量高于所述第二门限值的SSB作为所述Msg1重复传输关联的SSB;
或者,在存在多个SSB的信号质量高于所述第二门限值的情况下,基于终端实现或者随机选择所述多个SSB中的一个SSB作为所述Msg1重复传输关联的SSB;
或者,在不存在信号质量高于所述第二门限值的SSB的情况下,基于终端实现或者随机选择一个SSB作为所述Msg1重复传输关联的SSB。
可选地,对于多个RO关联于不同的SSB的Msg1重复传输的模式,所述根据所述Msg1重复传输的模式和所述第二门限值,确定所述Msg1重复传输关联的SSB 组合,包括:
使用SSB组合的信号质量与所述第二门限值进行比较,并且选择SSB组合中的一个SSB组合作为所述Msg1重复传输关联的SSB组合。
其中,SSB组合的信号质量可以为SSB组合中信号质量最好的结果,或者其中最差的结果,或者各个SSB信号质量的加权结果,由协议规定或者网络配置。
可选地,终端选择多个SSB组合中信号质量高于第二门限值的一个SSB组合作为所述Msg1重复传输关联的SSB组合。
或者,在存在多个SSB组合的信号质量高于所述第二门限值的情况下,基于终端实现或者随机选择所述多个SSB组合中的一个SSB组合作为所述Msg1重复传输关联的SSB组合。
或者,在所述多个SSB组合中不存在信号质量高于所述第二门限值的SSB组合的情况下,基于终端实现从所述多个SSB组合中选择一个SSB组合或者随机选择一个SSB组合作为所述Msg1重复传输关联的SSB组合。
更进一步的,终端根据SSB或者SSB组合的信号质量确定Msg1重复传输的次数。
步骤301、根据所述Msg1重复传输关联的SSB或者SSB组合与RO之间的关联关系,确定用于所述Msg1重复传输的PRACH资源的候选RO集合;
可以理解,在终端确定了Msg1重复传输关联的SSB或者SSB组合之后,可以根据SSB与RO之间的关联关系,确定Msg1重复传输关联的SSB或者SSB组合对应的RO集合,可以将Msg1重复传输关联的SSB或者SSB组合对应的RO集合作为用于所述Msg1重复传输的PRACH资源的候选RO集合,或者,选择该RO集合中的多个RO作为用于所述Msg1重复传输的多个RO。
步骤302、确定Msg1重复传输中每次Msg1传输对应的RO。
在本申请实施例中,终端根据Msg1重复传输的模式和第二门限值确定Msg1重复传输关联的SSB或SSB组合,再基于SSB或SSB组合与RO的关联关系,可以确定用于Msg1重复传输的PRACH资源,后续基于该PRACH资源确定Msg1重复传输中每次Msg1传输对应的RO,从而可以实现Msg1重复传输,提升PRACH的覆盖性能。
可选地,所述确定Msg1重复传输中每次Msg1传输对应的RO,包括:步骤400和步骤401。
步骤400、确定Msg1重复传输中每次Msg1传输对应的RO的时域位置;
可以理解的是,终端先确定Msg1重复发送的多个RO的时域位置,再根据跳频参数,例如RO跳频偏移量RO offset,从同一时域资源上的多个RO中选择一个RO作为Msg1重复传输的第一时频资源。
可选地,所述确定Msg1重复传输中每次Msg1传输对应的RO的时域位置,包 括:
对于多个RO关联于同一个SSB的Msg1重复传输的模式,Msg1重复传输的多个RO的时域位置对应于多个连续的SSB与RO的关联周期。
其中,Msg1重复发送的第一个Msg1对应的关联周期根据参考时间点确定,即参考时间点开始的第一个关联周期里的SSB的关联的RO为第一个Msg1传输对应的RO。
参考时间点由协议预定义或者第一消息配置确定,例如参考时间点为frame=0的起始时刻,或者关联模式周期(association pattern period)的起始时刻。
图3为本申请实施例提供的关联同一个SSB的Msg1重复传输的RO时域位置确定的示例图。如图3所示,假设多个RO关联于SSB1,根据参数时间点确定第一个SSB与RO的关联周期,在第一SSB与RO的关联周期中,关联于SSB1的RO为Msg1重复传输中第一个Msg1对应的RO。下一个SSB与RO的关联周期中的关联于SSB1的RO为Msg1重复传输中第二个Msg1对应的RO,以此类推。即Msg1重复传输的多个RO的时域位置对应于多个连续的SSB与RO的关联周期。
可选地,所述确定Msg1重复传输中每次Msg1传输对应的RO的时域位置,包括:
对于多个RO关联于不同的SSB的Msg1重复传输的模式,各个SSB关联的RO的时域位置在一个SSB与RO的关联周期内。
图4为本申请实施例提供的关联不同的SSB的Msg1重复传输的RO时域位置确定的示例图。如图4所示,终端选择SSB1和SSBi的组合来进行Msg1重复传输。Msg1重复传输中第一个Msg1对应的RO为关联于SSB1的RO,Msg1重复传输中第二个Msg1对应的RO为关联于SSBi的RO。其中,关联于SSB1的RO与关联于SSBi的RO在同一个SSB与RO的关联周期内。
步骤401、根据所述跳频参数,确定Msg1重复传输中每次Msg1传输对应的RO的频域位置。
在Msg1重复传输中每次Msg1传输对应的RO的时域位置的基础上,首先确定Msg1重复传输中首个Msg1传输的RO的频域位置,然后,根据跳频参数以及首个Msg1传输的RO的频域位置,确定第二次Msg1传输的RO的频域位置,根据跳频参数以及第i-1次Msg1传输的RO的频域位置确定第i次Msg1传输的RO的频域位置,依次类推,从而确定Msg1重复传输中每次Msg1传输对应的RO的频域位置。
可选地,所述根据所述跳频参数,确定Msg1重复传输中每次Msg1传输对应的RO的频域位置,包括:
对于Msg1重复传输中首个Msg1传输的RO的频域位置,按照协议预定义的规则确定或者通过在首个Msg1传输的时域位置上的RO集合内随机选择一个RO确定;
根据Msg1重复传输中第i-1次Msg1传输的RO频域位置以及RO跳频偏移量,确定Msg1重复传输中第i次Msg1传输的RO的频域位置;
其中,i为大于等于2的正整数。
在一实施例中,协议预定义的规则可以是根据UE ID确定首个Msg1传输的RO的频域位置。
RO跳频保证在一个SSB关联的X个可用RO内进行RO跳频。indexRO(第i次传输)=mod(indexRO(第i-1次传输)+ROoffset,X),其中,indexRO表示频域复用的多个RO的索引,ROoffset为RO跳频的偏移量,由第一配置信息配置或者协议预定义。
图5为本申请实施例提供的RO跳频示意图之一。如图5所示,RO offset=2。
可选地,所述确定Msg1重复传输的跳频参数,包括:
根据SSB与RO的关联关系的配置参数或者协议预定义规则,确定所述RO跳频偏移量。
在一实施例中,根据系统消息中配置的SSB与RO的关联关系的配置参数,ssb-perRACH-OccasionAndCB-PreamblesPerSSB,一个SSB与X个连续的RO关联,X大于1的整数,RO offset为a*X,其中a为大于0小于1的实数,例如a=1/2。如果a*X不为整数,则按照向下取整或者向上取整的方式对结果进行进一步整数化处理。a的取值由协议预定义。
在一实施例中,协议预定义规则为根据RO频域复用数量来确定RO跳频偏移量。
特别地,当RO offset=0时,表示Msg1重复传输时多个Msg1占用的RO的频率资源相同,或者表示SSB关联的多个连续RO中的逻辑位置相同。
如果网络侧设备配置RO mask,终端需要在RO mask指示的有效RO集合内选择RO以及基于RO offset的RO跳频。
在一些实施例中,用于第二次repetition以及第二次以后repetition的RO是独立配置的RO。
需要说明的是,本申请实施例中所描述的“第二次repetition”指的是同一条Msg1在RAR window结束之前或者开始之前的第二次发送。(可选的定义)第N次repetition理解为一次Msg1重复传输中,按时间顺序确定的第N次Msg1发送。
在一些可选的实施例中,所述方法还包括:
在所述第一配置信息还包括用于Msg1重复传输中第二次以及超过两次的Msg1传输的RO的情况下,终端确定网络侧设备支持Msg1重复传输。可以理解,如果第一配置信息配置了Msg1重复传输的参数,表示当前小区支持/允许Msg1重复传输。
可以理解的是,终端在检测到SSB并且获得系统消息之后,判断是否需要执行Msg1重复传输,在所述第一配置信息还包括用于Msg1重复传输中第二次以及超过 两次的Msg1传输的RO的情况下,终端确定需要执行Msg1重复传输。
可选地,所述Msg1重复传输的模式,包括:
所述用于Msg1重复传输中第二次以及超过两次的Msg1传输的RO与Msg1重复传输中首个Msg1传输的RO关联于相同的一个SSB;
所述用于Msg1重复传输中第二次以及超过两次的Msg1传输的RO与Msg1重复传输中首个Msg1传输的RO关联于不同的一个或多个SSB。
进一步地,第一消息指示Msg1重复发送的模式为额外配置的RO与用于发送第一次Msg1的RO关联于相同的一个SSB,还是额外配置的RO与用于发送第一次Msg1的RO可以关联于不同的一个或者多个SSB。
其中,用于Msg1重复传输中第二次以及超过两次的Msg1传输的RO与Msg1重复传输中首个Msg1传输的RO关联于不同的一个或多个SSB是指:第二次以及超过两次的Msg1传输的RO关联的SSB与首个Msg1传输的RO关联的SSB不同,并且可以有多个不同的SSB。
需要说明的是,额外配置的RO即用于Msg1重复传输中第二次以及超过两次的Msg1传输的RO。
进一步可选地,按照协议预定义规则,默认上述其中一种模式为默认模式,例如默认使用额外配置的RO与用于发送第一次Msg1的RO关联于相同的一个或者多个SSB的模式来执行Msg1重复发送。
可选地,在所述用于Msg1重复传输中第二次以及超过两次的Msg1传输的RO与Msg1重复传输中首个Msg1传输的RO关联于不同的一个或多个SSB的情况下,所述第一消息还携带多个SSB组合,所述多个SSB组合用于关联当前Msg1重复传输中第二次以及超过两次的Msg1传输的RO与Msg1重复传输中首个Msg1传输的RO关联于不同的一个或多个SSB的Msg1重复传输模式。
进一步地,终端确定是否选择支持Msg1重复发送的PRACH资源,可以基于如下一种或者多种选项:
1)下行测量度量(比如RSRP,RSRQ,RSRI)小于或者不大于第一门限值T0;
该第一门限值可以是一个独立配置的值,或者可以是一个现有配置值或者是现有配置值的函数,比如复用用于判断是否执行Msg3重复发送的随机接入过程的RSRP threshold。
2)已经重复发送PRACH preamble的次数是否超过第三门限值;
该第三门限值可以是一个独立配置的值,或者可以是一个现有配置值或者是现有配置值的函数,比如是用于确定是否要求宣布随机接入错误的最大重传次数的一半。
进一步地,终端根据用于Msg1重复传输中首个Msg1传输的RO资源选择的SSB的第二门限值T1,选择用于首个Msg1传输的SSB。
该第二门限值可以是独立配置的,或者复用用于选择Msg3重复发送的随机接入过程中的关联SSB的门限;或者复用不做Msg1重复传输(即Msg1单次传输)的用于SSB选择的RSRP threshold。
进一步地,终端根据所选择的SSB,确定用于首个Msg1传输的RO和preamble序列。进而,终端根据首个Msg1传输的RO和preamble序列以及跳频参数,可以确定用于Msg1重复传输中第二次以及超过两次的Msg1传输的PRACH资源的位置以及数量。
可选地,所述方法还包括:
在频域配置了多个RO的情况下,确定Msg1重复传输支持跳频。
这里的“频域配置了多个RO”可以是指用于首个Msg1传输的RO在频域的配置。
这种情况下,只要首个Msg1传输的RO配置支持多个RO在频域的复用,就认为Msg1重复传输支持跳频。图6为本申请实施例提供的RO跳频示意图之二,图6中重复传输次数为4,跳频偏移量为2。如图6所示,当频域配置了两个RO用于第一次Msg1传输时,确定Msg1重复传输支持跳频。
可选地,如果支持跳频,网络侧设备指示跳频的偏移量,比如以RO为单位。
进一步可选地,网络侧设备还配置RO跳频的步长,即每隔几次Msg1发送后,进行RO跳频,比如可选地默认步长为1,即每发送一次Msg1进行一次RO跳频。
可选地,所述方法还包括:
根据所述第一配置信息中用于Msg1重复传输中第二次以及超过两次的Msg1传输的RO的数量,确定Msg1重复发送的次数。
可选地,所述方法还包括:
根据网络侧设备配置的或预先确定的SSB模式,确定所述Msg1重复传输中第二次以及超过两次的Msg1传输关联的SSB。
对于关联多个SSB的Msg1重复发送的模式,与用于发送第二个以及后续repetition相关联的SSB可以由如下至少一种方法确定:
1)根据网络侧设备配置的SSB pattern;
比如相邻beam或者相同beam的多个SSB可以分别映射到用于发送Msg1重复传输的RO上。
2)预先确定的SSB模式;
比如,如果第一个repetition关联到SSB0,UE和网络就默认第n次repetition关联到SSBx,x=(n-1)mod N
这里的x是所关联的SSB的index,N是实际发送的SSB数量。
在本申请实施例中,终端根据网络侧设备发送的Msg1重复传输的第一配置信息,确定用于Msg1重复传输的第一时频资源,通过选择不同频率位置的RO来获得 频率分集增益,同时也可以避免不同msg1repetition所用资源在时频资源上的完全重叠。可提升Msg1重复发送的覆盖性能以及降低PRACH资源分配的复杂度。
可选地,所述终端接收网络侧设备发送的第一消息,所述第一消息携带Msg1重复传输的第一配置信息,包括:
终端接收第一消息,所述第一消息中携带用于指示执行无竞争随机接入过程中的Msg1重复传输的第一配置信息。
本实施例中,第一消息中携带用于指示无竞争随机接入过程中的Msg1重复传输的第一配置信息。
可选地,所述第一配置信息包括以下至少一项:
a)随机接入类型;
可选地,随机接入类型包括以下至少一项:
Msg1单次传输和Msg3单次传输的4步随机接入过程;
Msg1单次传输和Msg3重复传输的4岁随机接入过程;
Msg1重复传输和Msg3单次传输的4步随机接入过程;
Msg1重复传输和Msg3重复传输的4步随机接入过程。
具体的,定义A-bits字段进行指示,A可以是2。或者,根据DCI指示的preamble index在不同RACH类型的preamble index范围的对应关系来确定RACH类型。
根据随机接入类型可以确定是否执行Msg1重复传输。
b)Msg1重复传输的模式;
可选地,Msg1重复传输的模式,包括:
关联于同一SSB的Msg1重复传输模式,或者,关联于多个SSB的Msg1重复传输模式。
c)Msg1重复传输的次数;
d)是否使能RO跳频;
是否使能RO跳频即指示Msg1重复传输是否支持跳频。或者默认的按照系统消息的配置来确定是否使能RO跳频。
e)RO跳频偏移量;
可选地,第一配置信息指示Msg1重复传输的RO跳频偏移量RO offset。
或者,按照协议预定义规则或者系统消息的配置来确定RO offset。
f)RO集合。
可选地,通过字段指示RO配置集合,例如NUL载波上的RO集合,或者NUL载波上的RO集合,或者2-step RO集合,或者4-step RACH with Msg3 repetition的RO集合,或者专门配置的用于Msg1重复传输的RO集合。
可选地,第一配置消息还可以包括用于Msg1重复传输中第二次以及超过两次的 Msg1传输的RO。
终端根据所述第一配置信息,确定用于Msg1重复传输的第一时频资源。
可选地,终端根据所述第一配置信息,确定用于Msg1重复传输的第一时频资源,包括:
判断是否执行Msg1重复传输;
确定用于Msg1重复传输的物理随机接入信道PRACH资源;
确定Msg1重复传输的跳频参数;
确定Msg1重复传输中每次Msg1传输对应的RO。
本实施例中,终端根据该第一配置信息,确定用于Msg1重复传输的第一时频资源可以参考前述实施例中根据第一配置信息,确定用于Msg1重复传输的第一时频资源的相关流程,在此不再赘述。
需要说明的是,在第一配置消息还可以包括用于Msg1重复传输中第二次以及超过两次的Msg1传输的RO的情况下,所述方法还包括以下至少一项:
根据所述第一配置信息中用于Msg1重复传输中第二次以及超过两次的Msg1传输的RO的数量和/或跳频模式(frequency hopping pattern),确定Msg1重复发送的次数;
在频域配置了多个RO的情况下,确定Msg1重复传输支持跳频。
对于DCI调度的Msg1重复传输,使用DCI 1-0中的字段来指示Msg1重复传输的配置信息,包括随机接入类型,Msg1重复传输模式,Msg1重复传输次数,是否使能RO跳频,以及RO跳频的相关参数。
在本申请实施例中,终端接收网络侧设备发送的用于指示执行无竞争随机接入过程中Msg1重复传输的第一配置信息,根据第一配置信息,确定用于无竞争随机接入过程中Msg1重复传输的第一时频资源,可以实现无竞争随机接入过程Msg1重复传输,提升PRACH的覆盖性能。
图7为本申请实施例提供的Msg1重复传输的时频资源确定方法的流程示意图之二。如图7所示,该方法应用于网络侧设备,该方法包括以下步骤:
步骤700、网络侧设备向终端发送第一消息,所述第一消息携带Msg1重复传输的第一配置信息。
可以理解的是,网络侧设备通过向终端发送第一消息,向终端指示Msg1重复传输的第一配置信息。
可选地,所述第一消息包括以下至少一项:系统消息,DCI,MAC CE,RRC信令。
可选地,所述第一配置信息包括以下至少一项:
1)Msg1重复传输的模式;
可选地,所述Msg1重复传输的模式,包括:
多个RO关联于同一个SSB;或者,
多个RO关联于不同的SSB。
其中,多个RO关联于不同的SSB即关联多个SSB。
可选地,按照协议预定义规则,默认上述其中一种模式为默认模式,例如默认使用多个RO关联于同一个SSB的模式来执行Msg1重复发送。
2)多种SSB组合;
需要说明的是,多个RO关联于不同的SSB,进一步地,不同的SSB可以对应于多个SSB组合,那么,第一配置信息还包括多种SSB组合,用于关联多个SSB的Msg1重复传输模式。一种可能的实现指示方式是第一配置信息中以位图(bit map)或者index序列的方式一次指示所有SSB组合;或者根据第一个SSB组合来确定其他的SSB组合,例如第二个SSB组合的index是第一个SSB组合的index与特定偏移的和。
在实际部署中,可以考虑多个SSB使用相同发送波束。基站指示相同波束的多个SSB来进行Msg1重复发送。
3)SSB与RO的关联关系的配置参数;
可以理解,SSB与RO的关联关系的配置参数用于指示SSB与RO的关联关系。
SSB与RO的关联关系包括一个SSB与多个RO的关联关系,或者,一个RO与多个SSB的关联关系。
例如,通过SSB与RO的关联关系的配置参数ssb-perRACH-OccasionAndCB-PreamblesPerSSB,指示一个SSB与X个连续的RO关联,X大于1的整数。
在本申请实施例中,可选地,当第一消息没有显示的配置RO跳频偏移量时,可以根据SSB与RO的关联关系的配置参数确定RO跳频偏移量。
4)第一门限值,用于指示Msg1重复传输的触发门限;
在一实施例中,终端根据Msg1重复传输的触发门限,判断是否执行Msg1重复发送。
第一门限值可以是独立配置的Msg1重复传输的触发门限,或者,复用用于判断是否执行Msg3重复发送的随机接入过程的门限。
其中,用于判断是否执行Msg3重复发送的随机接入过程的门限即Msg3重复发送的随机接入过程的触发门限。
5)第二门限值,用于指示Msg1重复传输的关联SSB的选择门限;
在一实施例中,终端根据Msg1重复传输的关联SSB的选择门限,选择Msg1重复传输的关联SSB。
Msg1重复传输的关联SSB,即Msg1重复传输关联的SSB。
第二门限值可以是独立配置的用于选择Msg1重复传输的关联SSB的门限,或 者,复用用于选择Msg3重复发送的随机接入过程中的关联SSB的门限。
其中,用于选择Msg3重复发送的随机接入过程中的关联SSB的门限即Msg3重复发送的随机接入过程的关联SSB的选择门限。
6)是否使能RO跳频;
可以理解,若网络侧设备指示使能RO跳频,说明支持用于Msg1重复传输的RO资源在频域跳频。
若网络侧设备指示不使能RO跳频,说明不支持用于Msg1重复传输的RO资源在频域跳频。
7)RO跳频偏移量;
可选地,如果使能RO跳频,网络侧设备进一步指示RO跳频偏移量RO offset。
RO跳频偏移量,以RO为单位。
8)跳频数量或跳频步长;
可选地,网络侧设备配置RO跳频的步长。
例如,每隔n次Msg1发送后,进行RO跳频,n为RO跳频的补偿。
可选地,在不显式配置RO跳频步长时,步长默认设置为1,即每发送一次Msg1进行一次RO跳频。
9)Msg1重复传输的次数;
需要说明的是,Msg1重复传输的次数可以通过所述第一配置信息指示,也可以根据协议预定义的数值确定。可选地,第一配置信息中配置包含多个可选数值的重复传输次数集合,终端根据信道质量选择实际的Msg1重复传输次数。
10)Msg1重复传输的preamble资源集合;
11)Msg1重复传输的RO mask。
可选地,所述第一配置信息还可以包括Msg1重复传输的RO mask。
需要说明的是,如果网络侧设备配置了RO mask,则终端需要在RO mask指示的有效RO集合内选择RO以及基于RO offset的RO跳频。进一步可选地,第一配置信息中包含多个RO mask,分别对应于不同的Msg1重复传输次数。
可选地,所述方法还包括:
向终端发送第一信令,所述第一信令用于指示终端执行Msg1重复发送,并携带RO跳频相关的指示信息。
可以理解的是,网络侧设备可以显式地指示终端执行Msg1重复传输。
其中,RO跳频相关的指示信息包括以下至少一项:是否使能RO跳频,RO跳频偏移量,跳频数量或跳频步长。
可选地,所述第一信令包括:DCI或者MAC CE或者RRC信令。
可选地,所述第一配置信息还包括用于Msg1重复传输中第二次以及超过两次的 Msg1传输的RO。
可以理解的是,网络侧设备可以通过在第一配置信息中携带用于Msg1重复传输中第二次以及超过两次的Msg1传输的RO,对第二次Msg1传输以及第二次以后Msg1传输的RO进行独立配置。
终端在检测到SSB并且获得系统消息之后,判断是否需要执行Msg1重复传输,在所述第一配置信息还包括用于Msg1重复传输中第二次以及超过两次的Msg1传输的RO的情况下,终端确定需要执行Msg1重复传输。
可选地,所述方法还包括:
向终端发送SSB模式,所述SSB模式用于供终端确定所述Msg1重复传输中第二次以及超过两次的Msg1传输关联的SSB。
可以理解的是,网络侧设备向终端发送SSB模式,以供终端确定所述Msg1重复传输中第二次以及超过两次的Msg1传输关联的SSB。
SSB模式用于关联Msg1传输与SSB。
比如相邻beam或者相同beam的多个SSB可以分别映射到用于发送Msg1重复传输的不同RO上。
又比如,如果第一个repetition关联到SSB0,UE和网络就默认第n次repetition关联到SSBx,x=(n-1)mod N
这里的x是所关联的SSB的index,N是实际发送的SSB数量。
在本申请实施例中,网络侧设备向终端发送Msg1重复传输的第一配置信息,以供终端确定用于Msg1重复传输的第一时频资源,可以实现Msg1重复传输,提升PRACH的覆盖性能。
可选地,所述网络侧设备向终端发送第一消息,所述第一消息携带Msg1重复传输的第一配置信息,包括:
网络侧设备向终端发送第一消息,所述第一消息中携带用于指示执行无竞争随机接入过程中的Msg1重复传输的第一配置信息。
可以理解的是,网络侧设备向终端发送第一消息,向终端指示执行无竞争随机接入过程中的Msg1重复传输的第一配置信息,以使得终端根据所述第一配置信息,确定用于Msg1重复传输的第一时频资源。
可选地,所述第一配置信息包括以下至少一项:
a)随机接入类型;
可选地,所述随机接入类型包括以下至少一项:
Msg1单次传输和Msg3单次传输的4步随机接入过程;
Msg1单次传输和Msg3重复传输的4岁随机接入过程;
Msg1重复传输和Msg3单次传输的4步随机接入过程;
Msg1重复传输和Msg3重复传输的4步随机接入过程。
具体的,定义A-bits字段进行指示,A可以是2。或者,根据DCI指示的preamble index在不同RACH类型的preamble index范围的对应关系来确定RACH类型。
根据随机接入类型可以确定是否执行Msg1重复传输。
b)Msg1重复传输的模式;
可选地,Msg1重复传输的模式,包括:
关联于同一SSB的Msg1重复传输模式,或者,关联于多个SSB的Msg1重复传输模式。
c)Msg1重复传输的次数;
d)是否使能RO跳频;
是否使能RO跳频即指示Msg1重复传输是否支持跳频。或者默认的按照系统消息的配置来确定是否使能RO跳频。
e)RO跳频偏移量;
可选地,第一配置信息指示Msg1重复传输的RO跳频偏移量RO offset。
或者,按照协议预定义规则或者系统消息的配置来确定RO offset。
f)RO集合。
可选地,通过字段指示RO配置集合,例如NUL载波上的RO集合,或者NUL载波上的RO集合,或者2-step RO集合,或者4-step RACH with Msg3 repetition的RO集合,或者专门配置的用于Msg1重复传输的RO集合。
可选地,第一配置消息还可以包括用于Msg1重复传输中第二次以及超过两次的Msg1传输的RO。
网络侧设备可以通过在第一配置信息中携带用于Msg1重复传输中第二次以及超过两次的Msg1传输的RO,对第二次repetition以及第二次以后repetition的RO进行独立配置。
在本申请实施例中,网络侧设备向终端发用于指示执行无竞争随机接入过程中Msg1重复传输的第一配置信息,以供终端确定用于无竞争随机接入过程中Msg1重复传输的第一时频资源,可以实现无竞争随机接入过程Msg1重复传输,提升PRACH的覆盖性能。
本申请实施例提供的Msg1重复传输的时频资源确定方法,执行主体可以为Msg1重复传输的时频资源确定装置。本申请实施例中以Msg1重复传输的时频资源确定装置执行Msg1重复传输的时频资源确定方法为例,说明本申请实施例提供的Msg1重复传输的时频资源确定装置。
图8为本申请实施例提供的Msg1重复传输的时频资源确定装置的结构示意图之一。如图8所示,该Msg1重复传输的时频资源确定装置800包括:
第一接收单元810,用于接收网络侧设备发送的第一消息,所述第一消息携带 Msg1重复传输的第一配置信息;
第一确定单元820,用于根据所述第一配置信息,确定用于Msg1重复传输的第一时频资源;
其中,所述确定用于Msg1重复传输的第一时频资源,包括以下至少一项:
判断是否执行Msg1重复传输;
确定用于Msg1重复传输的物理随机接入信道PRACH资源;
确定Msg1重复传输的跳频参数。
可选地,所述第一配置信息包括以下至少一项:
Msg1重复传输的模式;
多种SSB组合;
SSB与RO的关联关系的配置参数;
第一门限值,用于指示Msg1重复传输的触发门限;
第二门限值,用于指示Msg1重复传输的关联SSB的选择门限;
是否使能RO跳频;
RO跳频偏移量;
跳频数量或跳频步长;
Msg1重复传输的次数;
Msg1重复传输的preamble资源集合;
Msg1重复传输的RO mask。
可选地,所述Msg1重复传输的模式,包括:
多个RO关联于同一个SSB;或者,
多个RO关联于不同的SSB。
可选地,所述判断是否执行Msg1重复传输,确定用于Msg1重复传输的物理随机接入信道PRACH资源,包括:
在满足第一条件的情况下,确定执行Msg1重复传输,并确定用于Msg1重复传输的PRACH资源;
其中,所述第一条件包括以下至少一项:
4步随机接入失败N次,N的取值由协议预定义或者由所述第一消息配置;
接收到第一信令,所述第一信令用于指示终端执行Msg1重复发送,并携带RO跳频相关的指示信息;
下行信号的信号质量小于或不大于所述第一门限值;
其中,所述第一门限值通过所述第一消息配置,或者复用用于判断是否执行Msg3重复发送的随机接入过程的门限。
可选地,所述4步随机接入失败N次包括:
在一个4步随机接入过程中,终端进行N次Msg1单次发送尝试并且没有收到 相应的Msg2;或者,
在一个4步随机接入过程中,终端进行N次Msg1单次发送收到了相应的Msg2,但是Msg3传输失败;
其中,所述N的取值由协议预定义或者由所述第一消息配置。
可选地,所述第一信令包括:DCI或者MAC CE或者RRC信令。
可选地,所述确定用于Msg1重复传输的PRACH资源,包括:
根据所述Msg1重复传输的模式和第二门限值,确定所述Msg1重复传输关联的SSB或者SSB组合;
根据所述Msg1重复传输关联的SSB或者SSB组合与RO之间的关联关系,确定用于所述Msg1重复传输的PRACH资源的候选RO集合;
确定Msg1重复传输中每次Msg1传输对应的RO;
其中,所述第二门限值通过所述第一消息配置,或者复用用于选择Msg3重复发送的随机接入过程中的关联SSB的门限。
可选地,所述根据所述Msg1重复传输的模式和所述第二门限值,确定所述Msg1重复传输关联的SSB,包括:
对于多个RO关联于同一个SSB的Msg1重复传输的模式,终端将所有检测到SSB的信号质量与所述第二门限值进行比较,选择信号质量高于所述第二门限值的SSB作为所述Msg1重复传输关联的SSB;
或者,在存在多个SSB的信号质量高于所述第二门限值的情况下,基于终端实现或者随机选择所述多个SSB中的一个SSB作为所述Msg1重复传输关联的SSB;
或者,在不存在信号质量高于所述第二门限值的SSB的情况下,基于终端实现或者随机选择一个SSB作为所述Msg1重复传输关联的SSB。
可选地,所述根据所述Msg1重复传输的模式和所述第二门限值,确定所述Msg1重复传输关联的SSB组合,包括:
对于多个RO关联于不同的SSB的Msg1重复传输的模式,使用SSB组合的信号质量与所述第二门限值进行比较,并且选择SSB组合中的一个SSB组合作为所述Msg1重复传输关联的SSB组合。
可选地,所述确定Msg1重复传输中每次Msg1传输对应的RO,包括:
确定Msg1重复传输中每次Msg1传输对应的RO的时域位置;
根据所述跳频参数,确定Msg1重复传输中每次Msg1传输对应的RO的频域位置。
可选地,所述确定Msg1重复传输中每次Msg1传输对应的RO的时域位置,包括:
对于多个RO关联于同一个SSB的Msg1重复传输的模式,Msg1重复传输的多个RO的时域位置对应于多个连续的SSB与RO的关联周期;
其中,Msg1重复传输的第一个Msg1对应的关联周期根据参数时间点确定,所述参考时间点根据协议预定义或所述第一消息配置确定。
可选地,所述确定Msg1重复传输中每次Msg1传输对应的RO的时域位置,包括:
对于多个RO关联于不同的SSB的Msg1重复传输的模式,各个SSB关联的RO的时域位置在一个SSB与RO的关联周期内。
可选地,所述根据所述跳频参数,确定Msg1重复传输中每次Msg1传输对应的RO的频域位置,包括:
对于Msg1重复传输中首个Msg1传输的RO的频域位置,按照协议预定义的规则确定或者通过在首个Msg1传输的时域位置上的RO集合内随机选择一个RO确定;
根据Msg1重复传输中第i-1次Msg1传输的RO频域位置以及RO跳频偏移量,确定Msg1重复传输中第i次Msg1传输的RO的频域位置;
其中,i为大于等于2的正整数。
可选地,所述确定Msg1重复传输的跳频参数,包括:
根据SSB与RO的关联关系的配置参数或者协议预定义规则,确定所述RO跳频偏移量。
可选地,所述装置还包括:
第二确定单元,用于在所述第一配置信息还包括用于Msg1重复传输中第二次以及超过两次的Msg1传输的RO的情况下,确定网络侧设备支持Msg1重复传输。
可选地,所述Msg1重复传输的模式,包括:
所述用于Msg1重复传输中第二次以及超过两次的Msg1传输的RO与Msg1重复传输中首个Msg1传输的RO关联于相同的一个SSB;
所述用于Msg1重复传输中第二次以及超过两次的Msg1传输的RO与Msg1重复传输中首个Msg1传输的RO关联于不同的一个或多个SSB。
可选地,在所述用于Msg1重复传输中第二次以及超过两次的Msg1传输的RO与Msg1重复传输中首个Msg1传输的RO关联于不同的一个或多个SSB的情况下,所述第一消息还携带多个SSB组合。
可选地,所述装置还包括:
第三确定单元,用于在频域配置了多个RO的情况下,确定Msg1重复传输支持跳频。
可选地,所述装置还包括:
第四确定单元,用于根据所述第一配置信息中用于Msg1重复传输中第二次以及超过两次的Msg1传输的RO的数量,确定Msg1重复发送的次数。
可选地,所述装置还包括:
第五确定单元,用于根据网络侧设备配置的或预先确定的SSB模式,确定所述Msg1重复传输中第二次以及超过两次的Msg1传输关联的SSB。
可选地,所述第一接收单元,用于:
接收第一消息,所述第一消息中携带用于指示执行无竞争随机接入过程中的Msg1重复传输的第一配置信息。
可选地,所述第一配置信息包括以下至少一项:
随机接入类型;
Msg1重复传输的模式;
Msg1重复传输的次数;
是否使能RO跳频;
RO跳频偏移量;
RO集合。
可选地,所述随机接入类型包括以下至少一项:
Msg1单次传输和Msg3单次传输的4步随机接入过程;
Msg1单次传输和Msg3重复传输的4岁随机接入过程;
Msg1重复传输和Msg3单次传输的4步随机接入过程;
Msg1重复传输和Msg3重复传输的4步随机接入过程。
可选地,所述第一消息包括以下至少一项:系统消息,DCI,MAC CE,RRC信令。
本申请实施例中的Msg1重复传输的时频资源确定装置可以是电子设备,例如具有操作系统的电子设备,也可以是电子设备中的部件,例如集成电路或芯片。该电子设备可以是终端,也可以为除终端之外的其他设备。示例性的,终端可以包括但不限于上述所列举的终端11的类型,其他设备可以为服务器、网络附属存储器(Network Attached Storage,NAS)等,本申请实施例不作具体限定。
本申请实施例提供的Msg1重复传输的时频资源确定装置能够实现图2至图6的方法实施例实现的各个过程,并达到相同的技术效果,为避免重复,这里不再赘述。
图9为本申请实施例提供的Msg1重复传输的时频资源确定装置的结构示意图之二。如图9所示,该Msg1重复传输的时频资源确定装置900包括:
第一发送单元910,用于向终端发送第一消息,所述第一消息携带Msg1重复传输的第一配置信息。
可选地,所述第一配置信息包括以下至少一项:
Msg1重复传输的模式;
多种SSB组合;
SSB与RO的关联关系的配置参数;
第一门限值,用于指示Msg1重复传输的触发门限;
第二门限值,用于指示Msg1重复传输的关联SSB的选择门限;
是否使能RO跳频;
RO跳频偏移量;
跳频数量或跳频步长;
Msg1重复传输的次数;
Msg1重复传输的preamble资源集合;
Msg1重复传输的RO mask。
可选地,所述装置还包括:
第二发送单元,用于向终端发送第一信令,所述第一信令用于指示终端执行Msg1重复发送,并携带RO跳频相关的指示信息。
可选地,所述第一信令包括:DCI或者MAC CE或者RRC信令。
可选地,所述第一配置信息还包括用于Msg1重复传输中第二次以及超过两次的Msg1传输的RO。
可选地,所述装置还包括:
第三发送单元,用于向终端发送SSB模式,所述SSB模式用于供终端确定所述Msg1重复传输中第二次以及超过两次的Msg1传输关联的SSB。
可选地,所述第一发送单元,用于:
向终端发送第一消息,所述第一消息中携带用于指示执行无竞争随机接入过程中的Msg1重复传输的第一配置信息。
可选地,所述第一配置信息包括以下至少一项:
随机接入类型;
Msg1重复传输的模式;
Msg1重复传输的次数;
是否使能RO跳频;
RO跳频偏移量;
RO集合。
可选地,所述随机接入类型包括以下至少一项:
Msg1单次传输和Msg3单次传输的4步随机接入过程;
Msg1单次传输和Msg3重复传输的4岁随机接入过程;
Msg1重复传输和Msg3单次传输的4步随机接入过程;
Msg1重复传输和Msg3重复传输的4步随机接入过程。
可选地,所述第一消息包括以下至少一项:系统消息,DCI,MAC CE,RRC信令。
本申请实施例提供的Msg1重复传输的时频资源确定装置能够实现图7的方法实 施例实现的各个过程,并达到相同的技术效果,为避免重复,这里不再赘述。
可选的,如图10所示,本申请实施例还提供一种通信设备1000,包括处理器1001和存储器1002,存储器1002上存储有可在所述处理器1001上运行的程序或指令,例如,该通信设备1000为终端时,该程序或指令被处理器1001执行时实现上述Msg1重复传输的时频资源确定方法实施例的各个步骤,且能达到相同的技术效果。该通信设备1000为网络侧设备时,该程序或指令被处理器1001执行时实现上述Msg1重复传输的时频资源确定方法实施例的各个步骤,且能达到相同的技术效果,为避免重复,这里不再赘述。
本申请实施例还提供一种终端,包括处理器和通信接口,其中,所述通信接口用于接收网络侧设备发送的第一消息,所述第一消息携带Msg1重复传输的第一配置信息;所述处理器用于根据所述第一配置信息,确定用于Msg1重复传输的第一时频资源;其中,所述确定用于Msg1重复传输的第一时频资源,包括以下至少一项:判断是否执行Msg1重复传输;确定用于Msg1重复传输的物理随机接入信道PRACH资源;确定Msg1重复传输的跳频参数;确定Msg1重复传输中每次Msg1传输对应的RO。
该终端实施例与上述终端侧方法实施例对应,上述方法实施例的各个实施过程和实现方式均可适用于该终端实施例中,且能达到相同的技术效果。
具体地,图11为实现本申请实施例的一种终端的硬件结构示意图。
该终端1100包括但不限于:射频单元1101、网络模块1102、音频输出单元1103、输入单元1104、传感器1105、显示单元1106、用户输入单元1107、接口单元1108、存储器1109以及处理器1110等中的至少部分部件。
本领域技术人员可以理解,终端1100还可以包括给各个部件供电的电源(比如电池),电源可以通过电源管理系统与处理器1110逻辑相连,从而通过电源管理系统实现管理充电、放电、以及功耗管理等功能。图11中示出的终端结构并不构成对终端的限定,终端可以包括比图示更多或更少的部件,或者组合某些部件,或者不同的部件布置,在此不再赘述。
应理解的是,本申请实施例中,输入单元1104可以包括图形处理单元(Graphics Processing Unit,GPU)11041和麦克风11042,图形处理器11041对在视频捕获模式或图像捕获模式中由图像捕获装置(如摄像头)获得的静态图片或视频的图像数据进行处理。显示单元1106可包括显示面板11061,可以采用液晶显示器、有机发光二极管等形式来配置显示面板11061。用户输入单元1107包括触控面板11071以及其他输入设备11072中的至少一种。触控面板11071,也称为触摸屏。触控面板11071可包括触摸检测装置和触摸控制器两个部分。其他输入设备11072可以包括但不限于物理键盘、功能键(比如音量控制按键、开关按键等)、轨迹球、鼠标、操作杆,在此不再赘述。
本申请实施例中,射频单元1101接收来自网络侧设备的下行数据后,可以传输给处理器1110进行处理;另外,射频单元1101可以向网络侧设备发送上行数据。通常,射频单元1101包括但不限于天线、放大器、收发信机、耦合器、低噪声放大器、双工器等。
存储器1109可用于存储软件程序或指令以及各种数据。存储器1109可主要包括存储程序或指令的第一存储区和存储数据的第二存储区,其中,第一存储区可存储操作系统、至少一个功能所需的应用程序或指令(比如声音播放功能、图像播放功能等)等。此外,存储器1109可以包括易失性存储器或非易失性存储器,或者,存储器1109可以包括易失性和非易失性存储器两者。其中,非易失性存储器可以是只读存储器(Read-Only Memory,ROM)、可编程只读存储器(Programmable ROM,PROM)、可擦除可编程只读存储器(Erasable PROM,EPROM)、电可擦除可编程只读存储器(Electrically EPROM,EEPROM)或闪存。易失性存储器可以是随机存取存储器(Random Access Memory,RAM),静态随机存取存储器(Static RAM,SRAM)、动态随机存取存储器(Dynamic RAM,DRAM)、同步动态随机存取存储器(Synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(Double Data Rate SDRAM,DDRSDRAM)、增强型同步动态随机存取存储器(Enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(Synch link DRAM,SLDRAM)和直接内存总线随机存取存储器(Direct Rambus RAM,DRRAM)。本申请实施例中的存储器1109包括但不限于这些和任意其它适合类型的存储器。
处理器1110可包括一个或多个处理单元;可选的,处理器1110集成应用处理器和调制解调处理器,其中,应用处理器主要处理涉及操作系统、用户界面和应用程序等的操作,调制解调处理器主要处理无线通信信号,如基带处理器。可以理解的是,上述调制解调处理器也可以不集成到处理器1110中。
其中,所述射频单元1101用于接收网络侧设备发送的第一消息,所述第一消息携带Msg1重复传输的第一配置信息;
所述处理器1110用于根据所述第一配置信息,确定用于Msg1重复传输的第一时频资源;其中,所述确定用于Msg1重复传输的第一时频资源,包括以下至少一项:判断是否执行Msg1重复传输;确定用于Msg1重复传输的物理随机接入信道PRACH资源;确定Msg1重复传输的跳频参数。
在本申请实施例中,终端根据网络侧设备发送的Msg1重复传输的第一配置信息,确定用于Msg1重复传输的第一时频资源,可以实现Msg1重复传输,提升PRACH的覆盖性能。
可选地,所述第一配置信息包括以下至少一项:
Msg1重复传输的模式;
多种SSB组合;
SSB与RO的关联关系的配置参数;
第一门限值,用于指示Msg1重复传输的触发门限;
第二门限值,用于指示Msg1重复传输的关联SSB的选择门限;
是否使能RO跳频;
RO跳频偏移量;
跳频数量或跳频步长;
Msg1重复传输的次数;
Msg1重复传输的preamble资源集合;
Msg1重复传输的RO mask。
可选地,所述Msg1重复传输的模式,包括:
多个RO关联于同一个SSB;或者,
多个RO关联于不同的SSB。
可选地,所述处理器1110,用于:
在满足第一条件的情况下,确定执行Msg1重复传输,并确定用于Msg1重复传输的PRACH资源;
其中,所述第一条件包括以下至少一项:
4步随机接入失败N次,N的取值由协议预定义或者由所述第一消息配置;
接收到第一信令,所述第一信令用于指示终端执行Msg1重复发送,并携带RO跳频相关的指示信息;
下行信号的信号质量小于或不大于所述第一门限值;
其中,所述第一门限值通过所述第一消息配置,或者复用用于判断是否执行Msg3重复发送的随机接入过程的门限。
可选地,所述4步随机接入失败N次包括:
在一个4步随机接入过程中,终端进行N次Msg1单次发送尝试并且没有收到相应的Msg2;或者,
在一个4步随机接入过程中,终端进行N次Msg1单次发送收到了相应的Msg2,但是Msg3传输失败;
其中,所述N的取值由协议预定义或者由所述第一消息配置。
可选地,所述第一信令包括:DCI或者MAC CE或者RRC信令。
可选地,所述确定用于Msg1重复传输的PRACH资源,包括:
根据所述Msg1重复传输的模式和第二门限值,确定所述Msg1重复传输关联的SSB或者SSB组合;
根据所述Msg1重复传输关联的SSB或者SSB组合与RO之间的关联关系,确定用于所述Msg1重复传输的PRACH资源的候选RO集合;
确定Msg1重复传输中每次Msg1传输对应的RO;
其中,所述第二门限值通过所述第一消息配置,或者复用用于选择Msg3重复发送的随机接入过程中的关联SSB的门限。
可选地,所述根据所述Msg1重复传输的模式和所述第二门限值,确定所述Msg1重复传输关联的SSB,包括:
对于多个RO关联于同一个SSB的Msg1重复传输的模式,终端将所有检测到SSB的信号质量与所述第二门限值进行比较,选择信号质量高于所述第二门限值的SSB作为所述Msg1重复传输关联的SSB;
或者,在存在多个SSB的信号质量高于所述第二门限值的情况下,基于终端实现或者随机选择所述多个SSB中的一个SSB作为所述Msg1重复传输关联的SSB;
或者,在不存在信号质量高于所述第二门限值的SSB的情况下,基于终端实现或者随机选择一个SSB作为所述Msg1重复传输关联的SSB。
可选地,所述根据所述Msg1重复传输的模式和所述第二门限值,确定所述Msg1重复传输关联的SSB组合,包括:
对于多个RO关联于不同的SSB的Msg1重复传输的模式,使用SSB组合的信号质量与所述第二门限值进行比较,并且选择SSB组合中的一个SSB组合作为所述Msg1重复传输关联的SSB组合。
可选地,所述确定Msg1重复传输中每次Msg1传输对应的RO,包括:
确定Msg1重复传输中每次Msg1传输对应的RO的时域位置;
根据所述跳频参数,确定Msg1重复传输中每次Msg1传输对应的RO的频域位置。
可选地,所述确定Msg1重复传输中每次Msg1传输对应的RO的时域位置,包括:
对于多个RO关联于同一个SSB的Msg1重复传输的模式,Msg1重复传输的多个RO的时域位置对应于多个连续的SSB与RO的关联周期;
其中,Msg1重复传输的第一个Msg1对应的关联周期根据参数时间点确定,所述参考时间点根据协议预定义或所述第一消息配置确定。
可选地,所述确定Msg1重复传输中每次Msg1传输对应的RO的时域位置,包括:
对于多个RO关联于不同的SSB的Msg1重复传输的模式,各个SSB关联的RO的时域位置在一个SSB与RO的关联周期内。
可选地,所述根据所述跳频参数,确定Msg1重复传输中每次Msg1传输对应的RO的频域位置,包括:
对于Msg1重复传输中首个Msg1传输的RO的频域位置,按照协议预定义的规则确定或者通过在首个Msg1传输的时域位置上的RO集合内随机选择一个RO确定;
根据Msg1重复传输中第i-1次Msg1传输的RO频域位置以及RO跳频偏移量,确定Msg1重复传输中第i次Msg1传输的RO的频域位置;
其中,i为大于等于2的正整数。
可选地,所述确定Msg1重复传输的跳频参数,包括:
根据SSB与RO的关联关系的配置参数或者协议预定义规则,确定所述RO跳频偏移量。
可选地,所述处理器1110,还用于:
在所述第一配置信息还包括用于Msg1重复传输中第二次以及超过两次的Msg1传输的RO的情况下,确定网络侧设备支持Msg1重复传输。
可选地,所述Msg1重复传输的模式,包括:
所述用于Msg1重复传输中第二次以及超过两次的Msg1传输的RO与Msg1重复传输中首个Msg1传输的RO关联于相同的一个SSB;
所述用于Msg1重复传输中第二次以及超过两次的Msg1传输的RO与Msg1重复传输中首个Msg1传输的RO关联于不同的一个或多个SSB。
可选地,在所述用于Msg1重复传输中第二次以及超过两次的Msg1传输的RO与Msg1重复传输中首个Msg1传输的RO关联于不同的一个或多个SSB的情况下,所述第一消息还携带多个SSB组合。
可选地,所述处理器1110,还用于:在频域配置了多个RO的情况下,确定Msg1重复传输支持跳频。
可选地,所述处理器1110,还用于:根据所述第一配置信息中用于Msg1重复传输中第二次以及超过两次的Msg1传输的RO的数量,确定Msg1重复发送的次数。
可选地,所述处理器1110,还用于:根据网络侧设备配置的或预先确定的SSB模式,确定所述Msg1重复传输中第二次以及超过两次的Msg1传输关联的SSB。
可选地,所述射频单元1101,用于:
接收第一消息,所述第一消息中携带用于指示执行无竞争随机接入过程中的Msg1重复传输的第一配置信息。
可选地,所述第一配置信息包括以下至少一项:
随机接入类型;
Msg1重复传输的模式;
Msg1重复传输的次数;
是否使能RO跳频;
RO跳频偏移量;
RO集合。
可选地,所述随机接入类型包括以下至少一项:
Msg1单次传输和Msg3单次传输的4步随机接入过程;
Msg1单次传输和Msg3重复传输的4岁随机接入过程;
Msg1重复传输和Msg3单次传输的4步随机接入过程;
Msg1重复传输和Msg3重复传输的4步随机接入过程。
可选地,所述第一消息包括以下至少一项:系统消息,DCI,MAC CE,RRC信令。
在本申请实施例中,终端根据网络侧设备发送的Msg1重复传输的第一配置信息,确定用于Msg1重复传输的第一时频资源,通过选择不同频率位置的RO来获得频率分集增益,同时也可以避免不同msg1 repetition所用资源在时频资源上的完全重叠。可提升Msg1重复发送的覆盖性能以及降低PRACH资源分配的复杂度。
本申请实施例还提供一种网络侧设备,包括处理器和通信接口,其中,所述通信接口用于向终端发送第一消息,所述第一消息携带Msg1重复传输的第一配置信息。
该网络侧设备实施例与上述网络侧设备方法实施例对应,上述方法实施例的各个实施过程和实现方式均可适用于该网络侧设备实施例中,且能达到相同的技术效果。
具体地,本申请实施例还提供了一种网络侧设备。如图12所示,该网络侧设备1200包括:天线1201、射频装置1202、基带装置1203、处理器1204和存储器1205。天线1201与射频装置1202连接。在上行方向上,射频装置1202通过天线1201接收信息,将接收的信息发送给基带装置1203进行处理。在下行方向上,基带装置1203对要发送的信息进行处理,并发送给射频装置1202,射频装置1202对收到的信息进行处理后经过天线1201发送出去。
以上实施例中网络侧设备执行的方法可以在基带装置1203中实现,该基带装置1203包括基带处理器。
基带装置1203例如可以包括至少一个基带板,该基带板上设置有多个芯片,如图12所示,其中一个芯片例如为基带处理器,通过总线接口与存储器1205连接,以调用存储器1205中的程序,执行以上方法实施例中所示的网络设备操作。
该网络侧设备还可以包括网络接口1202,该接口例如为通用公共无线接口(common public radio interface,CPRI)。
具体地,本发明实施例的网络侧设备1200还包括:存储在存储器1205上并可在处理器1204上运行的指令或程序,处理器1204调用存储器1205中的指令或程序执行图9所示各模块执行的方法,并达到相同的技术效果,为避免重复,故不在此赘述。
本申请实施例还提供一种可读存储介质,所述可读存储介质上存储有程序或指令,该程序或指令被处理器执行时实现上述Msg1重复传输的时频资源确定方法实施 例的各个过程,且能达到相同的技术效果,为避免重复,这里不再赘述。
其中,所述处理器为上述实施例中所述的终端中的处理器。所述可读存储介质,包括计算机可读存储介质,如计算机只读存储器ROM、随机存取存储器RAM、磁碟或者光盘等。
本申请实施例另提供了一种芯片,所述芯片包括处理器和通信接口,所述通信接口和所述处理器耦合,所述处理器用于运行程序或指令,实现上述Msg1重复传输的时频资源确定方法实施例的各个过程,且能达到相同的技术效果,为避免重复,这里不再赘述。
应理解,本申请实施例提到的芯片还可以称为系统级芯片,系统芯片,芯片系统或片上系统芯片等。
本申请实施例另提供了一种计算机程序/程序产品,所述计算机程序/程序产品被存储在存储介质中,所述计算机程序/程序产品被至少一个处理器执行以实现上述Msg1重复传输的时频资源确定方法实施例的各个过程,且能达到相同的技术效果,为避免重复,这里不再赘述。
本申请实施例还提供了一种Msg1重复传输的时频资源确定系统,包括:终端及网络侧设备,所述终端可用于执行如上所述的Msg1重复传输的时频资源确定方法的步骤,所述网络侧设备可用于执行如上所述的Msg1重复传输的时频资源确定方法的步骤。
需要说明的是,在本文中,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者装置不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者装置所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括该要素的过程、方法、物品或者装置中还存在另外的相同要素。此外,需要指出的是,本申请实施方式中的方法和装置的范围不限按示出或讨论的顺序来执行功能,还可包括根据所涉及的功能按基本同时的方式或按相反的顺序来执行功能,例如,可以按不同于所描述的次序来执行所描述的方法,并且还可以添加、省去、或组合各种步骤。另外,参照某些示例所描述的特征可在其他示例中被组合。
通过以上的实施方式的描述,本领域的技术人员可以清楚地了解到上述实施例方法可借助软件加必需的通用硬件平台的方式来实现,当然也可以通过硬件,但很多情况下前者是更佳的实施方式。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分可以以计算机软件产品的形式体现出来,该计算机软件产品存储在一个存储介质(如ROM/RAM、磁碟、光盘)中,包括若干指令用以使得一台终端(可以是手机,计算机,服务器,空调器,或者网络设备等)执行本 申请各个实施例所述的方法。
上面结合附图对本申请的实施例进行了描述,但是本申请并不局限于上述的具体实施方式,上述的具体实施方式仅仅是示意性的,而不是限制性的,本领域的普通技术人员在本申请的启示下,在不脱离本申请宗旨和权利要求所保护的范围情况下,还可做出很多形式,均属于本申请的保护之内。

Claims (39)

  1. 一种Msg1重复传输的时频资源确定方法,包括:
    终端接收网络侧设备发送的第一消息,所述第一消息携带Msg1重复传输的第一配置信息;
    所述终端根据所述第一配置信息,确定用于Msg1重复传输的第一时频资源;
    其中,所述确定用于Msg1重复传输的第一时频资源,包括以下至少一项:
    判断是否执行Msg1重复传输;
    确定用于Msg1重复传输的物理随机接入信道PRACH资源;
    确定Msg1重复传输的跳频参数。
  2. 根据权利要求1所述的Msg1重复传输的时频资源确定方法,其中,所述第一配置信息包括以下至少一项:
    Msg1重复传输的模式;
    多种同步信号块SSB组合;
    SSB与随机接入信道传输机会RO的关联关系的配置参数;
    第一门限值,用于指示Msg1重复传输的触发门限;
    第二门限值,用于指示Msg1重复传输的关联SSB的选择门限;
    是否使能RO跳频;
    RO跳频偏移量;
    跳频数量或跳频步长;
    Msg1重复传输的次数;
    Msg1重复传输的导频序列资源集合;
    Msg1重复传输的RO掩码。
  3. 根据权利要求2所述的Msg1重复传输的时频资源确定方法,其中,所述Msg1重复传输的模式,包括:
    多个RO关联于同一个SSB;或者,
    多个RO关联于不同的SSB。
  4. 根据权利要求1-3中任一项所述的Msg1重复传输的时频资源确定方法,其中,所述判断是否执行Msg1重复传输,确定用于Msg1重复传输的物理随机接入信道PRACH资源,包括:
    在满足第一条件的情况下,确定执行Msg1重复传输,并确定用于Msg1重复传输的PRACH资源;
    其中,所述第一条件包括以下至少一项:
    4步随机接入失败N次,N的取值由协议预定义或者由所述第一消息配置;
    接收到第一信令,所述第一信令用于指示终端执行Msg1重复发送,并携带RO 跳频相关的指示信息;
    下行信号的信号质量小于或不大于所述第一门限值;
    其中,所述第一门限值通过所述第一消息配置,或者复用用于判断是否执行Msg3重复发送的随机接入过程的门限。
  5. 根据权利要求4所述的Msg1重复传输的时频资源的确定方法,其中,所述4步随机接入失败N次包括:
    在一个4步随机接入过程中,终端进行N次Msg1单次发送尝试并且没有收到相应的Msg2;或者,
    在一个4步随机接入过程中,终端进行N次Msg1单次发送收到了相应的Msg2,但是Msg3传输失败;
    其中,所述N的取值由协议预定义或者由所述第一消息配置。
  6. 根据权利要求4所述的Msg1重复传输的时频资源确定方法,其中,所述第一信令包括:下行控制信息DCI或者媒体接入控制层控制单元MAC CE或者无线资源控制RRC信令。
  7. 根据权利要求2所述的Msg1重复传输的时频资源确定方法,其中,所述确定用于Msg1重复传输的PRACH资源,包括:
    根据所述Msg1重复传输的模式和第二门限值,确定所述Msg1重复传输关联的SSB或者SSB组合;
    根据所述Msg1重复传输关联的SSB或者SSB组合与RO之间的关联关系,确定用于所述Msg1重复传输的PRACH资源的候选RO集合;
    确定Msg1重复传输中每次Msg1传输对应的RO;
    其中,所述第二门限值通过所述第一消息配置,或者复用用于选择Msg3重复发送的随机接入过程中的关联SSB的门限。
  8. 根据权利要求7所述的Msg1重复传输的时频资源确定方法,其中,所述根据所述Msg1重复传输的模式和所述第二门限值,确定所述Msg1重复传输关联的SSB,包括:
    对于多个RO关联于同一个SSB的Msg1重复传输的模式,终端将所有检测到SSB的信号质量与所述第二门限值进行比较,选择信号质量高于所述第二门限值的SSB作为所述Msg1重复传输关联的SSB;
    或者,在存在多个SSB的信号质量高于所述第二门限值的情况下,基于终端实现或者随机选择所述多个SSB中的一个SSB作为所述Msg1重复传输关联的SSB;
    或者,在不存在信号质量高于所述第二门限值的SSB的情况下,基于终端实现或者随机选择一个SSB作为所述Msg1重复传输关联的SSB。
  9. 根据权利要求7所述的Msg1重复传输的时频资源确定方法,其中,所述根据所述Msg1重复传输的模式和所述第二门限值,确定所述Msg1重复传输关联的 SSB组合,包括:
    对于多个RO关联于不同的SSB的Msg1重复传输的模式,使用SSB组合的信号质量与所述第二门限值进行比较,并且选择SSB组合中的一个SSB组合作为所述Msg1重复传输关联的SSB组合。
  10. 根据权利要求7所述的Msg1重复传输的时频资源确定方法,其中,所述确定Msg1重复传输中每次Msg1传输对应的RO,包括:
    确定Msg1重复传输中每次Msg1传输对应的RO的时域位置;
    根据所述跳频参数,确定Msg1重复传输中每次Msg1传输对应的RO的频域位置。
  11. 根据权利要求10所述的Msg1重复传输的时频资源确定方法,其中,所述确定Msg1重复传输中每次Msg1传输对应的RO的时域位置,包括:
    对于多个RO关联于同一个SSB的Msg1重复传输的模式,Msg1重复传输的多个RO的时域位置对应于多个连续的SSB与RO的关联周期;
    其中,Msg1重复传输的第一个Msg1对应的关联周期根据参数时间点确定,所述参考时间点根据协议预定义或所述第一消息配置确定。
  12. 根据权利要求10所述的Msg1重复传输的时频资源确定方法,其中,所述确定Msg1重复传输中每次Msg1传输对应的RO的时域位置,包括:
    对于多个RO关联于不同的SSB的Msg1重复传输的模式,各个SSB关联的RO的时域位置在一个SSB与RO的关联周期内。
  13. 根据权利要求10所述的Msg1重复传输的时频资源确定方法,其中,所述根据所述跳频参数,确定Msg1重复传输中每次Msg1传输对应的RO的频域位置,包括:
    对于Msg1重复传输中首个Msg1传输的RO的频域位置,按照协议预定义的规则确定或者通过在首个Msg1传输的时域位置上的RO集合内随机选择一个RO确定;
    根据Msg1重复传输中第i-1次Msg1传输的RO频域位置以及RO跳频偏移量,确定Msg1重复传输中第i次Msg1传输的RO的频域位置;
    其中,i为大于等于2的正整数。
  14. 根据权利要求13所述的Msg1重复传输的时频资源确定方法,其中,所述确定Msg1重复传输的跳频参数,包括:
    根据SSB与RO的关联关系的配置参数或者协议预定义规则,确定所述RO跳频偏移量。
  15. 根据权利要求2所述的Msg1重复传输的时频资源确定方法,其中,所述方法还包括:
    在所述第一配置信息还包括用于Msg1重复传输中第二次以及超过两次的Msg1 传输的RO的情况下,终端确定网络侧设备支持Msg1重复传输。
  16. 根据权利要求15所述的Msg1重复传输的时频资源确定方法,其中,所述Msg1重复传输的模式,包括:
    所述用于Msg1重复传输中第二次以及超过两次的Msg1传输的RO与Msg1重复传输中首个Msg1传输的RO关联于相同的一个SSB;
    所述用于Msg1重复传输中第二次以及超过两次的Msg1传输的RO与Msg1重复传输中首个Msg1传输的RO关联于不同的一个或多个SSB。
  17. 根据权利要求16所述的Msg1重复传输的时频资源确定方法,其中,在所述用于Msg1重复传输中第二次以及超过两次的Msg1传输的RO与Msg1重复传输中首个Msg1传输的RO关联于不同的一个或多个SSB的情况下,所述第一消息还携带多个SSB组合。
  18. 根据权利要求15所述的Msg1重复传输的时频资源确定方法,其中,所述方法还包括:
    在频域配置了多个RO的情况下,确定Msg1重复传输支持跳频。
  19. 根据权利要求15所述的Msg1重复传输的时频资源确定方法,其中,所述方法还包括:
    根据所述第一配置信息中用于Msg1重复传输中第二次以及超过两次的Msg1传输的RO的数量,确定Msg1重复发送的次数。
  20. 根据权利要求15所述的Msg1重复传输的时频资源确定方法,其中,所述方法还包括:
    根据网络侧设备配置的或预先确定的SSB模式,确定所述Msg1重复传输中第二次以及超过两次的Msg1传输关联的SSB。
  21. 根据权利要求1所述的Msg1重复传输的时频资源确定方法,其中,所述终端接收网络侧设备发送的第一消息,所述第一消息携带Msg1重复传输的第一配置信息,包括:
    终端接收第一消息,所述第一消息中携带用于指示执行无竞争随机接入过程中的Msg1重复传输的第一配置信息。
  22. 根据权利要求21所述的Msg1重复传输的时频资源确定方法,其中,所述第一配置信息包括以下至少一项:
    随机接入类型;
    Msg1重复传输的模式;
    Msg1重复传输的次数;
    是否使能RO跳频;
    RO跳频偏移量;
    RO集合。
  23. 根据权利要求22所述的Msg1重复传输的时频资源确定方法,其中,所述随机接入类型包括以下至少一项:
    Msg1单次传输和Msg3单次传输的4步随机接入过程;
    Msg1单次传输和Msg3重复传输的4岁随机接入过程;
    Msg1重复传输和Msg3单次传输的4步随机接入过程;
    Msg1重复传输和Msg3重复传输的4步随机接入过程。
  24. 根据权利要求1-23中任一项所述的Msg1重复传输的时频资源确定方法,其中,所述第一消息包括以下至少一项:系统消息,DCI,MAC CE,RRC信令。
  25. 一种Msg1重复传输的时频资源确定方法,包括:
    网络侧设备向终端发送第一消息,所述第一消息携带Msg1重复传输的第一配置信息。
  26. 根据权利要求25所述的Msg1重复传输的时频资源确定方法,其中,所述第一配置信息包括以下至少一项:
    Msg1重复传输的模式;
    多种同步信号块SSB组合;
    SSB与RO的关联关系的配置参数;
    第一门限值,用于指示Msg1重复传输的触发门限;
    第二门限值,用于指示Msg1重复传输的关联SSB的选择门限;
    是否使能RO跳频;
    RO跳频偏移量;
    跳频数量或跳频步长;
    Msg1重复传输的次数;
    Msg1重复传输的导频序列资源集合;
    Msg1重复传输的RO掩码。
  27. 根据权利要求25所述的Msg1重复传输的时频资源确定方法,其中,所述方法还包括:
    向终端发送第一信令,所述第一信令用于指示终端执行Msg1重复发送,并携带RO跳频相关的指示信息。
  28. 根据权利要求27所述的Msg1重复传输的时频资源确定方法,其中,所述第一信令包括:DCI或者MAC CE或者RRC信令。
  29. 根据权利要求25所述的Msg1重复传输的时频资源确定方法,其中,所述第一配置信息还包括用于Msg1重复传输中第二次以及超过两次的Msg1传输的RO。
  30. 根据权利要求29所述的Msg1重复传输的时频资源确定方法,其中,所述 方法还包括:
    向终端发送SSB模式,所述SSB模式用于供终端确定所述Msg1重复传输中第二次以及超过两次的Msg1传输关联的SSB。
  31. 根据权利要求24所述的Msg1重复传输的时频资源确定方法,其中,所述网络侧设备向终端发送第一消息,所述第一消息携带Msg1重复传输的第一配置信息,包括:
    网络侧设备向终端发送第一消息,所述第一消息中携带用于指示执行无竞争随机接入过程中的Msg1重复传输的第一配置信息。
  32. 根据权利要求31所述的Msg1重复传输的时频资源确定方法,其中,所述第一配置信息包括以下至少一项:
    随机接入类型;
    Msg1重复传输的模式;
    Msg1重复传输的次数;
    是否使能RO跳频;
    RO跳频偏移量;
    RO集合。
  33. 根据权利要求32所述的Msg1重复传输的时频资源确定方法,其中,所述随机接入类型包括以下至少一项:
    Msg1单次传输和Msg3单次传输的4步随机接入过程;
    Msg1单次传输和Msg3重复传输的4岁随机接入过程;
    Msg1重复传输和Msg3单次传输的4步随机接入过程;
    Msg1重复传输和Msg3重复传输的4步随机接入过程。
  34. 根据权利要求25-33中任一项所述的Msg1重复传输的时频资源确定方法,其中,所述第一消息包括以下至少一项:系统消息,下行控制信息DCI,媒体接入控制层控制单元MAC CE,无线资源控制RRC信令。
  35. 一种Msg1重复传输的时频资源确定装置,包括:
    第一接收单元,用于接收网络侧设备发送的第一消息,所述第一消息携带Msg1重复传输的第一配置信息;
    第一确定单元,用于根据所述第一配置信息,确定用于Msg1重复传输的第一时频资源;
    其中,所述确定用于Msg1重复传输的第一时频资源,包括以下至少一项:
    判断是否执行Msg1重复传输;
    确定用于Msg1重复传输的物理随机接入信道PRACH资源;
    确定Msg1重复传输的跳频参数。
  36. 一种Msg1重复传输的时频资源确定装置,包括:
    第一发送单元,用于向终端发送第一消息,所述第一消息携带Msg1重复传输的第一配置信息。
  37. 一种终端,包括处理器和存储器,所述存储器存储可在所述处理器上运行的程序或指令,所述程序或指令被所述处理器执行时实现如权利要求1至24任一项所述的Msg1重复传输的时频资源确定方法的步骤。
  38. 一种网络侧设备,包括处理器和存储器,所述存储器存储可在所述处理器上运行的程序或指令,所述程序或指令被所述处理器执行时实现如权利要求25至34任一项所述的Msg1重复传输的时频资源确定方法的步骤。
  39. 一种可读存储介质,所述可读存储介质上存储程序或指令,所述程序或指令被处理器执行时实现如权利要求1至24任一项所述的Msg1重复传输的时频资源确定方法的步骤,或者实现如权利要求25至34任一项所述的Msg1重复传输的时频资源确定方法的步骤。
PCT/CN2022/141420 2021-12-24 2022-12-23 Msg1重复传输的时频资源确定方法、装置及终端 WO2023116883A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111602745.1A CN116367313A (zh) 2021-12-24 2021-12-24 Msg1重复传输的时频资源确定方法、装置及终端
CN202111602745.1 2021-12-24

Publications (1)

Publication Number Publication Date
WO2023116883A1 true WO2023116883A1 (zh) 2023-06-29

Family

ID=86901362

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/141420 WO2023116883A1 (zh) 2021-12-24 2022-12-23 Msg1重复传输的时频资源确定方法、装置及终端

Country Status (2)

Country Link
CN (1) CN116367313A (zh)
WO (1) WO2023116883A1 (zh)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104581925A (zh) * 2013-10-29 2015-04-29 电信科学技术研究院 一种覆盖增强机制下的定时维护方法及装置
US20210153259A1 (en) * 2018-07-26 2021-05-20 Vivo Mobile Communication Co.,Ltd. Random access method and related device
US20210329691A1 (en) * 2020-04-17 2021-10-21 Qualcomm Incorporated Beam refinement techniques for random access communications

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104581925A (zh) * 2013-10-29 2015-04-29 电信科学技术研究院 一种覆盖增强机制下的定时维护方法及装置
US20210153259A1 (en) * 2018-07-26 2021-05-20 Vivo Mobile Communication Co.,Ltd. Random access method and related device
US20210329691A1 (en) * 2020-04-17 2021-10-21 Qualcomm Incorporated Beam refinement techniques for random access communications

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
HUAWEI, HISILICON: "Initial access in NR unlicensed", 3GPP DRAFT; R1-1812195, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, no. Spokane, USA; 20181112 - 20181116, 11 November 2018 (2018-11-11), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , XP051554067 *
VIVO: "Discussion on coverage enhancements for channels other than PUCCH and PUSCH", 3GPP DRAFT; R1-2007682, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, no. e-Meeting; 20201026 - 20201113, 1 November 2020 (2020-11-01), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France, XP052349036 *

Also Published As

Publication number Publication date
CN116367313A (zh) 2023-06-30

Similar Documents

Publication Publication Date Title
CN107454998B (zh) 在lte授权辅助接入操作中与其它技术的装置内共存
US20230319894A1 (en) Random access method and apparatus, terminal, and network side device
WO2023116591A1 (zh) 传输确定方法、装置、终端、网络侧设备和存储介质
WO2022143808A1 (zh) 速率匹配方法和设备
WO2023116883A1 (zh) Msg1重复传输的时频资源确定方法、装置及终端
WO2023186157A1 (zh) 随机接入资源配置方法、装置、终端及网络侧设备
WO2023116599A1 (zh) Prach传输方法、装置、终端及网络侧设备
WO2023138587A1 (zh) Bwp上的波形确定方法及终端方法
WO2024099185A1 (zh) 随机接入方法、装置、终端、网络侧设备及介质
WO2023151628A1 (zh) Pusch传输方法、装置、终端、及网络侧设备
WO2023207675A1 (zh) 信息上报方法、装置、终端、网络侧设备及介质
WO2023185901A1 (zh) 资源处理方法、装置及终端
WO2024022197A1 (zh) Ra方法、装置、ue、网络侧设备、通信系统及可读存储介质
CN117715228A (zh) 准共址参数的确定方法、装置及终端
WO2023061489A1 (zh) 随机接入处理方法、装置、终端、网络侧设备及存储介质
WO2023207785A1 (zh) 终端操作方法、装置、终端及网络侧设备
WO2023116905A1 (zh) 定位参考信号的处理方法、设备及可读存储介质
WO2023246583A1 (zh) 频域资源确定方法、终端及网络侧设备
WO2023241647A1 (zh) 一种波束选择的方法、终端及网络侧设备
WO2024022316A1 (zh) 下行参考信号发送方法、装置、终端及网络侧设备
WO2023134580A1 (zh) 信息传输方法、装置、终端及网络侧设备
WO2024022311A1 (zh) 同步参考小区确定方法、装置、终端及网络侧设备
WO2023207976A1 (zh) 物理随机接入信道传输资源确定方法、装置、终端和设备
WO2023143532A1 (zh) 资源选择方法及装置、终端
CN118055514A (zh) 消息接收方法、装置及终端设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22910194

Country of ref document: EP

Kind code of ref document: A1