WO2023116599A1 - Prach传输方法、装置、终端及网络侧设备 - Google Patents

Prach传输方法、装置、终端及网络侧设备 Download PDF

Info

Publication number
WO2023116599A1
WO2023116599A1 PCT/CN2022/139894 CN2022139894W WO2023116599A1 WO 2023116599 A1 WO2023116599 A1 WO 2023116599A1 CN 2022139894 W CN2022139894 W CN 2022139894W WO 2023116599 A1 WO2023116599 A1 WO 2023116599A1
Authority
WO
WIPO (PCT)
Prior art keywords
target
candidate
preamble
preambles
ros
Prior art date
Application number
PCT/CN2022/139894
Other languages
English (en)
French (fr)
Inventor
鲍炜
吴凯
潘学明
Original Assignee
维沃移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 维沃移动通信有限公司 filed Critical 维沃移动通信有限公司
Publication of WO2023116599A1 publication Critical patent/WO2023116599A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access, e.g. scheduled or random access
    • H04W74/08Non-scheduled or contention based access, e.g. random access, ALOHA, CSMA [Carrier Sense Multiple Access]
    • H04W74/0833Non-scheduled or contention based access, e.g. random access, ALOHA, CSMA [Carrier Sense Multiple Access] using a random access procedure
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access, e.g. scheduled or random access
    • H04W74/08Non-scheduled or contention based access, e.g. random access, ALOHA, CSMA [Carrier Sense Multiple Access]

Definitions

  • the present application belongs to the technical field of communication, and specifically relates to a PRACH transmission method, device, terminal and network side equipment.
  • Repeated transmission of the PRACH can increase the probability that the UE performs the RACH successfully.
  • Embodiments of the present application provide a PRACH transmission method, device, terminal, and network-side equipment, which can solve the problems that repeated transmission of the PRACH cannot be realized and random access performance decreases.
  • a PRACH transmission method includes:
  • the terminal determines the target RO set
  • the terminal determines a target Preamble
  • the terminal sends the target Preamble based on the target RO set
  • the terminal receives a random access response message including the index of the target Preamble.
  • a PRACH transmission method includes:
  • the network side device receives the target Preamble on the target RO set
  • the network side device sends a random access response message including the index of the target Preamble.
  • a PRACH transmission device in a third aspect, includes:
  • a first determining module configured to determine a target RO set
  • the second determination module is used to determine the target Preamble
  • the first sending module is configured to send the target Preamble based on the target RO set
  • the first receiving module is configured to receive a random access response message including the index of the target Preamble.
  • a PRACH transmission device which includes:
  • the second receiving module is used to receive the target Preamble on the target RO set
  • the second sending module is configured to send a random access response message including the index of the target Preamble.
  • a terminal in a fifth aspect, includes a processor and a memory, the memory stores programs or instructions that can run on the processor, and when the programs or instructions are executed by the processor, the following The steps of the method in one aspect.
  • a terminal including a processor and a communication interface, wherein the processor is used for:
  • the communication interface is used for:
  • a network-side device in a seventh aspect, includes a processor and a memory, the memory stores programs or instructions that can run on the processor, and the programs or instructions are executed by the processor When realizing the steps of the method as described in the second aspect.
  • a network side device including a processor and a communication interface, wherein the communication interface is used for:
  • a ninth aspect provides a PRACH transmission system, including: a terminal and a network-side device, the terminal can be used to perform the steps of the PRACH transmission method described in the first aspect, and the network-side device can be used to perform the steps of the second PRACH transmission method The steps of the PRACH transmission method described in the aspect.
  • a readable storage medium is provided, and a program or an instruction is stored on the readable storage medium, and when the program or instruction is executed by a processor, the steps of the method described in the first aspect are implemented, or the steps of the method as described in the first aspect are implemented, or the The steps of the method described in the second aspect.
  • a chip in an eleventh aspect, includes a processor and a communication interface, the communication interface is coupled to the processor, and the processor is used to run a program or an instruction to implement the method described in the first aspect. method, or implement the method as described in the second aspect.
  • a computer program/program product is provided, the computer program/program product is stored in a storage medium, and the computer program/program product is executed by at least one processor to implement the The steps of the PRACH transmission method, or the steps of implementing the PRACH transmission method as described in the second aspect.
  • the RO combination resources for the repeated transmission of the PRACH can be clarified to realize the repetition of the PRACH transmission to improve random access performance.
  • FIG. 1 shows a block diagram of a wireless communication system to which an embodiment of the present application is applicable
  • FIG. 2 is one of the schematic diagrams of RO resource distribution provided by the embodiment of the present application.
  • FIG. 3 is one of the schematic diagrams of mapping between RO resources and SSB provided by the embodiment of the present application
  • FIG. 4 is one of the schematic flow diagrams of the PRACH transmission method provided by the embodiment of the present application.
  • FIG. 5 is the second schematic diagram of the mapping between RO resources and SSB provided by the embodiment of the present application.
  • FIG. 6 is a third schematic diagram of mapping between RO resources and SSB provided by the embodiment of the present application.
  • FIG. 7 is a fourth schematic diagram of mapping between RO resources and SSBs provided by the embodiment of the present application.
  • FIG. 8 is a fifth schematic diagram of mapping between RO resources and SSB provided by the embodiment of the present application.
  • FIG. 9 is a sixth schematic diagram of mapping between RO resources and SSB provided by the embodiment of the present application.
  • FIG. 10 is a seventh schematic diagram of mapping between RO resources and SSB provided by the embodiment of the present application.
  • FIG. 11 is the eighth schematic diagram of the mapping between RO resources and SSB provided by the embodiment of the present application.
  • FIG. 12 is a ninth schematic diagram of mapping between RO resources and SSB provided by the embodiment of the present application.
  • FIG. 13 is a tenth schematic diagram of mapping between RO resources and SSB provided by the embodiment of the present application.
  • FIG. 14 is the second schematic flow diagram of the PRACH transmission method provided by the embodiment of the present application.
  • FIG. 15 is one of the structural schematic diagrams of the PRACH transmission device provided by the embodiment of the present application.
  • FIG. 16 is the second structural schematic diagram of the PRACH transmission device provided by the embodiment of the present application.
  • Fig. 17 is a schematic structural diagram of a communication device provided by an embodiment of the present application.
  • FIG. 18 is a schematic diagram of a hardware structure of a terminal implementing an embodiment of the present application.
  • FIG. 19 is a schematic diagram of a hardware structure of a network side device implementing an embodiment of the present application.
  • first, second and the like in the specification and claims of the present application are used to distinguish similar objects, and are not used to describe a specific sequence or sequence. It is to be understood that the terms so used are interchangeable under appropriate circumstances such that the embodiments of the application are capable of operation in sequences other than those illustrated or described herein and that "first" and “second” distinguish objects. It is usually one category, and the number of objects is not limited. For example, there may be one or more first objects.
  • “and/or” in the description and claims indicates at least one of the connected objects, and the character “/" generally indicates that the related objects before and after are an "or” relationship.
  • LTE Long Term Evolution
  • LTE-Advanced LTE-Advanced
  • LTE-A Long Term Evolution-Advanced
  • CDMA Code Division Multiple Access
  • TDMA Time Division Multiple Access
  • FDMA Frequency Division Multiple Access
  • OFDMA Orthogonal Frequency Division Multiple Access
  • SC-FDMA Single-carrier Frequency Division Multiple Access
  • system and “network” in the embodiments of the present application are often used interchangeably, and the described technology can be used for the above-mentioned system and radio technology, and can also be used for other systems and radio technologies.
  • the following description describes the New Radio (New Radio, NR) system for example purposes, and uses NR terminology in most of the following descriptions, but these techniques can also be applied to applications other than NR system applications, such as the 6th generation (6th Generation , 6G) communication system.
  • 6G 6th generation
  • Fig. 1 shows a block diagram of a wireless communication system to which the embodiment of the present application is applicable.
  • the wireless communication system includes a terminal 11 and a network side device 12 .
  • the terminal 11 can be a mobile phone, a tablet computer (Tablet Personal Computer), a laptop computer (Laptop Computer) or a notebook computer, a personal digital assistant (Personal Digital Assistant, PDA), a palmtop computer, a netbook, a super mobile personal computer (ultra-mobile personal computer, UMPC), mobile Internet device (Mobile Internet Device, MID), augmented reality (augmented reality, AR) / virtual reality (virtual reality, VR) equipment, robot, wearable device (Wearable Device) , vehicle equipment (VUE), pedestrian terminal (PUE), smart home (home equipment with wireless communication functions, such as refrigerators, TVs, washing machines or furniture, etc.), game consoles, personal computers (personal computers, PCs), teller machines or self-service Wearable devices include: smart watches, smart bracelets, smart headphones, smart glasses, smart jewelry (
  • the network side device 12 may include an access network device or a core network device, wherein the access network device 12 may also be called a radio access network device, a radio access network (Radio Access Network, RAN), a radio access network function or Wireless access network unit.
  • RAN Radio Access Network
  • the access network device 12 may include a base station, a WLAN access point, or a WiFi node, etc., and the base station may be called a Node B, an evolved Node B (eNB), an access point, a Base Transceiver Station (Base Transceiver Station, BTS), a radio Base station, radio transceiver, Basic Service Set (BSS), Extended Service Set (ESS), Home Node B, Home Evolved Node B, Transmitting Receiving Point (TRP) or all As long as the same technical effect is achieved, the base station is not limited to a specific technical vocabulary. It should be noted that in this embodiment of the application, only the base station in the NR system is used as an example for introduction, and The specific type of the base station is not limited.
  • Core network equipment may include but not limited to at least one of the following: core network nodes, core network functions, mobility management entities (Mobility Management Entity, MME), access mobility management functions (Access and Mobility Management Function, AMF), session management functions (Session Management Function, SMF), User Plane Function (UPF), Policy Control Function (Policy Control Function, PCF), Policy and Charging Rules Function (PCRF), edge application service Discovery function (Edge Application Server Discovery Function, EASDF), unified data management (Unified Data Management, UDM), unified data storage (Unified Data Repository, UDR), home subscriber server (Home Subscriber Server, HSS), centralized network configuration ( Centralized network configuration, CNC), network storage function (Network Repository Function, NRF), network exposure function (Network Exposure Function, NEF), local NEF (Local NEF, or L-NEF), binding support function (Binding Support Function, BSF), application function (Application Function, AF), etc. It should be noted that, in the embodiment of the present application, only the core
  • a communication system In a communication system, it includes a contention random access procedure and a non-contention random access procedure.
  • UE In the 4-step random access process (Random Access Channel, RACH) of the competition, UE first sends msg1 to the network, including Preamble; after the network detects Preamble, it will send msg2/RAR (random access response, Random access response) message , including the number of the Preamble detected by the network, and the uplink radio resource allocated to the UE to send msg3; after receiving msg2, the UE confirms that at least one of the numbers of the Preamble carried in msg2 is consistent with the number of the Preamble sent by itself , according to the resources indicated by the RAR, send msg3 containing contention resolution information; after the network receives msg3, it will send msg4 containing contention resolution information; UE receives msg4, confirms that the resolution information is consistent with what it sent in msg3, That is, the 4-step random access is completed.
  • msg2/RAR random access response, Random access response
  • the network side device includes UL grant information in the RAR to indicate MSG3 PUSCH scheduling information, and includes RAPID (RACH Preamble ID, random access procedure preamble ID), TC-RNTI, TA and other information. If the network does not receive MSG3 PUSCH, it can schedule retransmission of MSG3 PUSCH in the PDCCH scrambled by TC-RNTI.
  • RAPID RACH Preamble ID, random access procedure preamble ID
  • TC-RNTI TA and other information.
  • the network can only solve the PUSCH sent by one UE (including contention resolution information) on one MSG3 PUSCH scheduling resource, so the network will include the contention received in MSG3 in MSG4 resolve information. If the contention resolution information received by the UE in MSG4 matches the contention resolution information sent by the UE in MSG3 PUSCH, the UE considers the contention resolution to be successful. If there is no match, the contention resolution is considered unsuccessful.
  • the UE If the contention resolution is unsuccessful, the UE reselects RACH transmission resources, performs PRACH transmission, and performs the next random access attempt.
  • a cell can configure multiple frequency-division multiplexing (FDM) PRACH transmission occasions (physical random access channel transmission opportunities, or PRACH Occasion, physical random access) at a time domain position for PRACH transmission. channel opportunity), which may be referred to as RO for short.
  • FDM frequency-division multiplexing
  • PRACH Occasion physical random access channel transmission opportunities
  • RO physical random access channel transmission opportunities
  • FIG. 2 is one of the schematic diagrams of RO resource distribution provided by the embodiment of the present application. As shown in FIG. 2 , there are 8 RO resources distributed on different frequencies at a time.
  • the random access preamble can only be transmitted on the time domain resource configured by the parameter PRACH ConfigurationIndex (ie RO resource), the random access preamble can only be transmitted on the frequency domain resource configured by the parameter prach-FDM, and the PRACH frequency domain resource, where M is equal to the higher layer parameter prach-FDM.
  • the PRACH frequency domain resources are numbered in ascending order from the RO resource with the lowest frequency in the initial active uplink bandwidth part (initially activated uplink bandwidth part), otherwise, the PRACH frequency domain resources are numbered from the active uplink bandwidth part (activated uplink bandwidth part)
  • the RO resource with the lowest internal frequency starts to be numbered in ascending order. As shown in FIG. 2 , the RO resources are numbered as RO#0 to RO#7 in sequence from low to high in frequency.
  • RO and the actual sent SSB (SS/PBCH block, synchronization signal/physical broadcast channel block, sometimes referred to as SS block, synchronization signal block) or channel state information reference signal (Channel State Information Reference Signal , CSI-RS) there is an association relationship, which can also be called a correspondence relationship or a mapping relationship.
  • SSB or CSI-RS may be associated with multiple ROs, or multiple SSBs or CSI-RSs may be associated with one RO (in this case, different SSBs correspond to different Preamble codes of the RO).
  • the base station can use different beams to transmit different SSBs, and the corresponding UE sends Preamble on the RO associated with the SSB or CSI-RS.
  • the UE selects the best signal according to the strength of the received downlink beam/SSB.
  • the network can determine the SSB or CSI-RS selected by the UE according to the received Preamble RO/"RO and Preamble combination".
  • the number of FDM ROs at a time is 8, and the number of SSBs actually transmitted is 4, namely SSB#0, SSB#1, SSB#2, SSB#3, and each SSB is associated with 2 RO. If the UE determines to send PRACH/msg1/Preamble on the RO corresponding to SSB#0, then the UE selects one RO from RO#0 and RO#1 to send the PRACH.
  • the transmission of the PRACH may also be referred to as the transmission of msg1, and may also be referred to as the transmission of Preamble.
  • FIG. 3 is one of the schematic diagrams of mapping between RO resources and SSBs provided by the embodiment of the present application.
  • the ordinate is the frequency domain (frequency)
  • the abscissa is the time domain (Time).
  • the number of ROs is 2, and the number of SSBs actually transmitted is 8, that is, SSB#0, SSB#1, ..., SSB#7, and every 2 SSBs are associated with 1 RO.
  • the Preamble sets associated with the multiple SSBs are different, that is, the same Preamble cannot belong to the Preamble sets associated with different SSBs at the same time: Take RO#0 in Figure 3 as an example, there are 60 Preambles associated with SSBs, where preambles with an index of 0 to 29 are associated with SSB#0, and preambles with an index of 30 to 59 are associated with SSB#1.
  • each square in Fig. 2 and Fig. 3 represents RO, not SSB, and the mark SSB in the figure refers to which or which SSBs the RO is associated with.
  • the UE Before sending PRACH, the UE can first perform resource selection. First, according to the received RSRP of the SSB, select the SSB whose RSRP is higher than the threshold; if there are multiple SSBs whose RSRP is higher than the threshold, the terminal can select any one whose RSRP is higher than the threshold. SSB; when there is no SSB with RSRP above the threshold, UE selects an SSB based on implementation.
  • the UE Based on the configuration of the network side equipment (Network, NW), the UE obtains the corresponding relationship between the synchronization signal block (Synchronization Signal and PBCH block, SSB) and the RO; after the terminal selects the SSB, the RO corresponding to the selected SSB is used as the sending PRACH/ RO of Preamble. If the selected SSB is associated with multiple ROs, the terminal can select one of the ROs for PRACH/Preamble transmission.
  • the synchronization signal block Synchrononization Signal and PBCH block, SSB
  • the UE can select one of RO#2 and RO#3 for PRACH/Preamble transmission; in the example shown in Figure 3, if the UE selects If SSB#1 is confirmed, the UE can select the available RO (RO#0 or 4) associated with SSB#1 that is closest to the current time for PRACH/Preamble transmission.
  • the UE selects a Preamble from the Preamble set associated with the selected SSB to send the PRACH.
  • a Preamble from the Preamble set associated with the selected SSB to send the PRACH.
  • one RO is associated with two SSBs, then in the available Preamble set associated with the SSB in an RO, the Preamble will be divided into two subsets, and each subset corresponds to an SSB.
  • the UE may select a certain Preamble sequence in the Preamble subset corresponding to the selected SSB for sending the PRACH.
  • various embodiments of the present application provide a PRACH transmission method, device, terminal and network side equipment.
  • FIG. 4 is one of the schematic flow diagrams of the PRACH transmission method provided by the embodiment of the present application. As shown in FIG. 4, the method includes the following steps 400 to 403:
  • Step 400 the terminal determines the target RO set
  • the terminal cannot transmit the PRACH on the FDM RO resources at the same time.
  • the ROs associated with SSB#0 and SSB#2 in FIG. The PRACH repeatedly transmits the selected RO combination to prevent the terminal from selecting FDM RO resources for PRACH repeated transmission.
  • RO Set multiple RO time-frequency resource positions used by the same UE for repeated PRACH transmission.
  • the terminal may first determine the target RO set.
  • Step 401 the terminal determines a target Preamble
  • PRACH repeated transmission is a method to improve PRACH coverage, and the existing PRACH resources (including RACH occasion, Preamble) selection, the terminal has a greater degree of freedom.
  • PRACH repeated transmission is supported, the combination of resources needs to be limited to a certain extent, so that the network can know which Preambles detected from which RACH occasions are sent by the same UE.
  • the terminal may further determine the target Preamble based on the target RO set;
  • the terminal may determine the Preamble associated with a certain RO in the target RO set as the target Preamble;
  • the certain RO may be an RO located in a specific position in the time domain in the target RO set, such as the first RO sorted by the time domain.
  • Step 402 the terminal sends the target Preamble based on the target RO set
  • the target Preamble may be sent based on the target RO set
  • the terminal can send the target Preamble on one or more ROs in the target RO set to realize repeated transmission of the PRACH;
  • Step 403 the terminal receives a random access response message including the index of the target Preamble.
  • the network side device may return a random access response message including the index of the target Preamble
  • the terminal may receive a random access response message including the index of the target Preamble.
  • terminals that support physical random access channel (Physical Random Access Channel, PRACH) repetition can select the same or different synchronization signal blocks (Synchronization Signal and PBCH block, SSB) or CSI-RS associated physical random access channel transmission opportunities (PRACH transmission occasion, RO) performs repeated transmission of PRACH.
  • PRACH Physical Random Access Channel
  • the network side device can configure multiple ROs as a group, which can be called RO set or RO set, for use by the UE, and the terminal can determine the target RO for this PRACH repeated transmission. gather.
  • the UE can use each RO in the target RO set (target RO set) to send the target Preamble;
  • the network side device may send a random access response message after the target RO set detects the target Preamble, and the random access response message includes the index of the target Preamble.
  • the index of the target Preamble contained in the random access response message may be the preset time position in the target RO set The index of the target Preamble received on the RO.
  • the index of the target Preamble included in the random access response message may be the first RO or the last first RO in the target RO set.
  • the index of the Preamble received on the RO may be the first RO or the last first RO in the target RO set.
  • the index of the target Preamble contained in the random access response message is the index of any one of the target Preambles.
  • the RO combination resources for the repeated transmission of the PRACH can be clarified, and the random access can be improved. performance.
  • one candidate RO set includes multiple ROs, any RO in the candidate RO set belongs to one or more candidate RO sets, and the target RO set is one of all the candidate RO sets. item.
  • a target RO set may be determined from one or more candidate RO sets
  • a set of candidate ROs may include multiple ROs
  • FIG. 5 is the second schematic diagram of the mapping between RO resources and SSBs provided by the embodiment of the present application. As shown in Figure 5, the ordinate is the frequency domain (Frequent), and the abscissa is the time domain (Time). Some RO sets are designed method will result in a longer delay. Because when the UE initiates RACH, RO set#1/2 has already started, so the UE must wait until the current RO set is completely completed before it can initiate RACH in the next RO set (such as RO set#3/4). Wait time is long.
  • one RO can belong to N RO sets (N is a natural number greater than or equal to 1); that is, RO sets can overlap in the time domain.
  • any RO in a candidate RO set may belong to one or more candidate RO sets.
  • one RO corresponds to one or more candidate Preambles in any one of the candidate RO sets to which it belongs;
  • the indices of the candidate Preambles corresponding to the multiple different candidate RO sets to which the RO belongs are different.
  • the set of indexes of the available Preambles of the RO (that is, the candidate Preamble corresponding to the RO) is different in different RO sets, that is, the set of available Preambles corresponding to one RO It can be divided into N groups, and each group of Preamble corresponds to a RO set.
  • one RO may correspond to one or more candidate Preambles in any of the candidate RO sets to which it belongs, and the indexes of the candidate Preambles corresponding to the RO in different candidate RO sets are different, that is, , if the corresponding candidate Preamble index of the RO in a candidate RO set to which it belongs is regarded as a Preamble index set, then the corresponding Preamble index sets of the RO in the different candidate RO sets to which it belongs have no overlap or no identical elements (i.e. no coincidence or no identical Preamble index).
  • an RO may belong to alternative RO set 1 and alternative RO set 2.
  • a RO has a total of 64 available Preambles, that is, Preamble 0 ⁇ 63, and the RO set where the RO is located includes RO set#1, RO set#2, RO set#3 and RO set#4; then Preamble 0 ⁇ 15 can be assigned to RO set#1; Preamble 16 ⁇ 31 can be assigned to RO set#2; Preamble 32 ⁇ 47 can be assigned to RO set#3; Preamble 48 ⁇ 63 can be assigned to RO set#4.
  • the RO set definition method in the embodiment of the present application can effectively reduce the time delay in the process of RACH repeated transmission.
  • the terminal determines the target RO set, including:
  • the terminal determines a first signal, where the first signal includes a target SSB and/or a target CSI-RS;
  • the terminal determines a target RO corresponding to the first signal
  • the terminal determines a candidate target RO set from one or more candidate target RO sets as the target RO set; wherein, the candidate target RO set is a candidate RO set including the target RO;
  • the correspondence between the first signal and the target RO is predefined or preset or determined based on an instruction from the network side.
  • the terminal when the terminal determines the target RO set, it may first receive the RO set configuration message sent by the network side device, and the RO set configuration message may indicate the mapping relationship between the candidate RO set and each RO;
  • the RO set configuration message may include at least one of the following:
  • the number of the SSB associated with the RO included in the candidate RO set (or the formula used to calculate the number of the SSB);
  • the numbers of ROs included in the set of candidate ROs (or the formula used to calculate the number of ROs);
  • Time-frequency resource location information of ROs included in the candidate RO set (or a formula for calculating time-frequency resource location information of ROs);
  • the numbers of the candidate preambles that can be used by the set of candidate ROs (or the formula used to calculate the number of available candidate preambles).
  • the terminal may further select the first signal
  • the terminal may select the first signal based on RSRP, that is, if the RSRP of at least one first signal is higher than the threshold, select a first signal from the first signals whose RSRP is higher than the threshold; otherwise, based on UE implementation , choose a first signal;
  • the first signal may include a target SSB
  • the first signal may include a target CSI-RS
  • the example in which the first signal is the target SSB in each embodiment of the present application is also applicable to the case where the first signal includes the target CSI-RS.
  • the terminal can select the target SSB based on RSRP, that is, if the RSRP of at least one SSB is higher than the threshold, select an SSB from the SSBs whose RSRP is higher than the threshold as the target SSB; otherwise, based on UE To achieve, select a target SSB.
  • the terminal may determine the corresponding relationship between the first signal and the RO that is predefined or preset or based on an indication from the network side, and determine the Target RO;
  • the terminal may determine the corresponding relationship between each SSB and each RO based on the predefined or pre-set or based on the corresponding relationship between each SSB and each RO indicated by the network side. Corresponding target RO.
  • FIG. 6 is the third schematic diagram of mapping between RO resources and SSBs provided by the embodiment of the present application.
  • the target SSB the target SSB is SSB#6 as an example
  • the terminal can determine a target RO corresponding to SSB#6 based on the correspondence between the SSB and each RO, and can select the fourth row in the second row in Figure 6 RO is the target RO.
  • the terminal may further determine the set of candidate target ROs where the target RO is located, for example, the set of candidate target ROs where the target RO is located in Figure 6, which is framed by a linear frame in Figure 6
  • the ROs in constitute a set of candidate target ROs.
  • the set of candidate target ROs corresponding to the solid-line box can be called RO set#1
  • the set of candidate target ROs corresponding to the short-line dashed-line box can be called RO set#2.
  • the RO set of alternative targets corresponding to the dotted dotted frame can be called RO set#3
  • the RO set of alternative targets corresponding to the dotted dotted box can be called RO set#4; these four alternative targets RO
  • the set includes the selected target RO corresponding to SSB#6.
  • the terminal may determine a candidate target RO set from one or more candidate target RO sets as the target RO set;
  • Figure 6 includes 4 candidate target RO sets, and the terminal can select any one of these 4 candidate target RO sets as the target RO collection.
  • the terminal determines the target RO set, including:
  • the terminal determines a first signal, where the first signal includes a target SSB and/or a target CSI-RS;
  • the terminal determines a candidate target RO set from one or more candidate target RO sets as the target RO set; wherein, the candidate target RO set is a candidate target RO set associated with the first signal RO collection;
  • association relationship between the first signal and the set of candidate target ROs is predefined or preset or determined based on an instruction from the network side.
  • the terminal when the terminal determines the target RO set, it may first receive the RO set configuration message sent by the network side device, and the RO set configuration message may indicate the mapping relationship between the candidate RO set and each RO;
  • the RO set configuration message may include at least one of the following:
  • the number of the SSB associated with the RO included in the candidate RO set (or the formula used to calculate the number of the SSB);
  • the numbers of ROs included in the set of candidate ROs (or the formula used to calculate the number of ROs);
  • Time-frequency resource location information of ROs included in the candidate RO set (or a formula for calculating time-frequency resource location information of ROs);
  • the numbers of the candidate preambles that can be used by the set of candidate ROs (or the formula used to calculate the numbers of the available candidate preambles).
  • the terminal may select the first signal
  • the first signal may include a target SSB
  • the first signal may include a target CSI-RS
  • the example in which the first signal is the target SSB in each embodiment of the present application is also applicable to the case where the first signal includes the target CSI-RS.
  • the terminal may select the first signal based on RSRP, that is, if the RSRP of at least one first signal is higher than the threshold, select a first signal from the first signals whose RSRP is higher than the threshold; otherwise, based on UE implementation , select a first signal;
  • the terminal can select the target SSB based on RSRP, that is, if the RSRP of at least one SSB is higher than the threshold, select an SSB from the SSBs whose RSRP is higher than the threshold as the target SSB; otherwise, based on UE To achieve, select a target SSB.
  • the terminal may determine the corresponding relationship with the selected first signal based on the predefined or preset or based on the corresponding relationship between the first signal and the candidate RO set indicated by the network side.
  • the associated one or more candidate RO sets are used as the candidate target RO set;
  • the terminal may determine a candidate target RO set from one or more candidate target RO sets as the target RO set;
  • RO set#1 to RO set#4 in Figure 6 can be selected as the candidate target RO sets associated with the target SSB, and the terminal can select any of the four candidate target RO sets One as the target RO set.
  • the terminal determines a candidate target RO set as the target RO set from one or more candidate target RO sets, including:
  • the terminal determines, among the one or more candidate target RO sets, an unstarted candidate target RO set as the target RO set.
  • the terminal may determine an unstarted candidate target RO set as the target RO set among one or more candidate target RO sets.
  • the terminal can determine a target RO corresponding to SSB#6, and determine the alternative target RO sets RO set#1 to RO set#4 where the target RO is located, then it can be in RO set#1 to RO set#4 A candidate target RO set that has not started is determined as the target RO set.
  • the terminal can determine the alternative target RO sets RO set#1 to RO set#4 corresponding to SSB#6, and can determine a candidate target RO set that has not yet started in RO set#1 to RO set#4 as The set of target ROs.
  • the terminal determines, among the one or more candidate target RO sets, an unstarted candidate target RO set as the target RO set, including:
  • the terminal determines the candidate target RO set whose start time is closest to the current time as the target RO set, or determines that the start time is among all the candidate target RO sets that have not yet started
  • the earliest candidate target RO set in the RO set is used as the target RO set.
  • the terminal may select an alternative target RO set whose start time is closest to the current moment as the target RO set;
  • the terminal may select a candidate target RO set whose start time is earliest among all candidate target RO sets that have not started yet as the target RO set.
  • RO set#1 to RO set#4 in Figure 6 Taking RO set#1 to RO set#4 in Figure 6 as an example, if the current moment is the first moment, the terminal can select RO set#1 as the target RO set;
  • the terminal can select RO set#2 as the target RO set;
  • the terminal can select RO set#3 as the target RO set;
  • the terminal may select RO set#4 as the target RO set.
  • the current moment may be the moment when the terminal determines the target RO set.
  • the terminal no matter when the terminal initiates the RACH, it can start the RACH retransmission process when the next RO arrives.
  • the required waiting time is very short, which effectively reduces the waiting time delay before RACH transmission.
  • the terminal determines a candidate target RO set from one or more candidate target RO sets as the target RO set, including:
  • the terminal determines a first RO set in the one or more candidate target RO sets as the target RO set, where, among the multiple ROs included in the first RO set, the target RO is located in a specific time position.
  • the terminal may, among one or more candidate target RO sets, select the candidate target RO set in which the target RO is located at a specific time position among the included ROs as the target RO set;
  • the candidate target RO set satisfying that the target RO is located at a specific time position among the included ROs is called the first RO set;
  • a first RO set in the one or more candidate target RO sets may be determined as the target RO set.
  • the specific time position may mean that the target RO is the first RO in the ROs included in the first RO set
  • the specific time position may mean that the target RO is the second RO in the ROs included in the first RO set
  • the specific time position may mean that the target RO is the third RO in the ROs included in the first RO set
  • the specific time position may mean that the target RO is the fourth RO in the ROs included in the first RO set
  • the specific time position may mean that the target RO is the last RO in the ROs included in the first RO set
  • Fig. 7 is the fourth schematic diagram of the mapping between RO resources and SSBs provided by the embodiment of the present application.
  • the specific time order may mean that the target RO is the first among the ROs contained in the first RO set. Take RO as an example, if the target SSB selected by the UE is SSB#0, then the target RO is the RO corresponding to SSB#0, and the target RO is the first RO in RO set#1, then the UE can select the RO in Figure 7 set#1 is used as the target RO set for repeated PRACH transmission;
  • the target RO is the RO corresponding to SSB#2, and the target RO is the first RO in RO set#2, then the UE can select RO set#2 in Figure 7 as the target RO set, for PRACH repeated transmission;
  • the target RO is the RO corresponding to SSB#4, and the target RO is the first RO in RO set#3, then the UE can select RO set#3 in Figure 7 as the target RO set, for PRACH repeated transmission;
  • the target RO is the RO corresponding to SSB#6, and the target RO is the first RO in RO set#4, then the UE can select RO set#4 in Figure 7 as the target The ROs are assembled for repeated PRACH transmission.
  • the network side device can directly determine the target RO after the target RO set receives the Preamble, and then directly determine the first signal, Furthermore, Msg2 may be sent on the beam corresponding to the first signal.
  • the terminal determines a candidate target RO set from one or more candidate target RO sets as the target RO set, including:
  • the terminal determines, among the one or more candidate target RO sets, a candidate target RO set that meets the first condition as the target RO set;
  • At least one of the one or more first signals associated with each RO in the set of candidate target ROs meeting the first condition is the same.
  • the terminal determines, among the one or more candidate target RO sets, a candidate target RO set that meets the first condition as the target RO set, where the candidate target RO set that meets the first condition At least one first signal among the one or more first signals associated with each RO of is the same.
  • the RO set may be determined to be composed of ROs mapped (map) to the same first signal.
  • the size of the RO set can be configured by RRC signaling.
  • the RO set can be determined to be composed of ROs mapped to the same SSB.
  • the size of the RO set (including the number of ROs) can be configured by RRC signaling.
  • FIG 8 is the fifth schematic diagram of the mapping between RO resources and SSB provided by the embodiment of the present application.
  • RO set1, RO set2, RO set3, and RO set4 can be respectively mapped to SSB0, SSB2, SSB4 and SSB6 are composed of two ROs, so as to support PRACH transmission repeated twice.
  • the PRACH mask is applied to a group of ROs, and this group of ROs is mapped to the same first signal. Only the group of ROs allowed by the PRACH mask is used for PRACH repetition; when repetition is supported (repetition ) and PRACH resource sharing that does not support repetition, the introduction of PRACH mask can reduce the impact of PRACH transmission that supports repetition on the transmission of PRACH that does not support repetition.
  • Figure 9 is the sixth schematic diagram of the mapping between RO resources and SSBs provided by the embodiment of the present application. As shown in Figure 9, taking the first signal as the target SSB as an example, for each SSB, only even numbers (the first The RO number is 0, and the ROs mapped to the same SSB are numbered independently) ROs are used for PRACH repetition.
  • the PRACH mask is applied to a group of ROs, and this group of ROs is mapped to the same SSB. Only the group of ROs allowed by the PRACH mask is used for PRACH repetition. In this way, when repetition is supported and no In the case of PRACH resource sharing that supports repetition, the introduction of PRACH mask can reduce the impact of PRACH transmission that supports repetition on the transmission of PRACH that does not support repetition.
  • ROs can be used for PRACH repetition.
  • ROs can be used for PRACH repetition.
  • each SSB it can be limited that only the ROs that meet the preset rules (the first RO number is 0, and the ROs mapped to the same SSB are numbered independently) are used for PRACH repetition.
  • the terminal determines the target SSB, it can further determine the associated target RO set, or determine the associated target RO to further determine the target RO set.
  • All ROs in the target RO set are mapped to the same SSB, as shown in Figure 9.
  • the first RO and the fifth RO in the second line can form RO set#1, which is associated with SSB0; the second RO and sixth RO in the second line can form RO set#2, which is associated with SSB2.
  • Other ROs in the second line can be defined as not being used for PRACH repetition.
  • the RO set in order to support PRACH repetition to only occur on ROs associated with the same first signal, can be determined to be composed of ROs mapped to the same first signal.
  • the size of RO set can be configured by RRC signaling.
  • the RO set may be composed of ROs mapped to the same SSB.
  • the size of RO set can be configured by RRC signaling.
  • Figure 10 is the seventh schematic diagram of the mapping between RO resources and SSBs provided by the embodiment of the present application. As shown in Figure 10, taking the first signal as the target SSB as an example, RO set1 and RO set2 can be mapped to adjacent SSB0 respectively Composed of two ROs, thus supporting the PRACH transmission repeated twice; where RO set1 and RO set2 share one RO.
  • the terminal determines the target Preamble, including:
  • the terminal selects the first target Preamble sent on the first RO from one or more candidate Preambles, where the one or more candidate Preambles correspond to the first RO in the target RO set Preamble, the first RO is the target RO or an RO with a preset time rank in the target RO set;
  • the terminal determines a second target Preamble sent on a second RO in the target RO set based on the index of the first target Preamble and the first rule;
  • the second RO includes other ROs in the target RO set except the first RO, and the target Preamble includes the first target Preamble and the second target Preamble;
  • the correspondence between the first RO in the target RO set and the one or more candidate Preambles is predefined by the protocol or indicated or preset by the network side device.
  • the corresponding relationship between the Preamble group of each RO and the RO set to which it belongs can be configured or specified; that is, the corresponding Preamble groups of an RO in different RO sets to which it belongs;
  • the target Preamble when determining the target Preamble, first determine the first target Preamble sent on one RO (that is, the first RO), and then determine the first target Preamble and the first rule based on the target RO set.
  • the first RO may be a target RO
  • the first RO may be an RO with a preset time rank, such as the first RO in the target RO Set;
  • one or more candidate Preambles corresponding to the first RO in the target RO set may be determined first, and then among the one or more candidate Preambles Select the first target Preamble to be transferred;
  • the first target Preamble when it is determined from one or more candidate Preambles, it may be determined based on a selection method that is predefined or preset or indicated by a high layer or indicated by the network side, for example, the selection method may be random Select, then can be to randomly determine a candidate Preamble from one or more candidate Preambles as the first target Preamble; For example, the selection method can be to select one or more candidate Preambles with the smallest or largest index The first target Preamble; any selection method capable of determining the first target Preamble from one or more alternative Preambles is applicable to this embodiment of the present application, and is not limited here.
  • the selection method may be random Select, then can be to randomly determine a candidate Preamble from one or more candidate Preambles as the first target Preamble;
  • the selection method can be to select one or more candidate Preambles with the smallest or largest index The first target Preamble; any selection method capable of determining the first target Preamble from one or more alternative Preambles
  • preambles 0 to 15 belong to RO set0; preambles 16 to 31 belong to RO set1;
  • the UE can determine the first RO in the RO set, such as the preamble sent in the first RO, such as preamble No. 3; the subsequent RO is the preamble sent in the second RO and the first RO
  • the preamble sent in has a corresponding relationship.
  • the terminal determines the target Preamble, including:
  • the terminal selects a first target Preamble sent on the first RO from one or more candidate Preambles, where the one or more candidate Preambles are corresponding to the first RO in the target RO set or the one or more candidate Preambles are the candidate Preambles corresponding to the first signal among all the candidate Preambles corresponding to the first RO in the target RO set, the
  • the first RO is an RO with a preset time rank in the target RO set;
  • the terminal determines a second target Preamble sent on a second RO in the target RO set based on the index of the first target Preamble and the first rule;
  • the second RO includes other ROs in the target RO set except the first RO, and the target Preamble includes the first target Preamble and the second target Preamble;
  • the correspondence between the first RO in the target RO set and the one or more candidate Preambles is predefined by the protocol or indicated or preset by the network side device;
  • the correspondence between the one or more candidate Preambles and the first signal among all the corresponding candidate Preambles in the target RO set is predefined by the protocol or indicated or preset by the network side device.
  • the corresponding relationship between the Preamble group of each RO and the RO set to which it belongs can be configured or specified; that is, the corresponding Preamble groups of an RO in different RO sets to which it belongs;
  • Preambles corresponding to any one RO in the RO Set can be divided into two groups, which are respectively related to the two first signals. corresponding to the signal.
  • the target Preamble when determining the target Preamble, first determine the first target Preamble sent on one RO (that is, the first RO), and then determine the first target Preamble and the first rule based on the target RO set.
  • the first target Preamble when it is determined from one or more candidate Preambles, it may be determined based on a selection method that is predefined or preset or indicated by a high layer or indicated by the network side, for example, the selection method may be random Select, then can be to randomly determine a candidate Preamble from one or more candidate Preambles as the first target Preamble; For example, the selection method can be to select one or more candidate Preambles with the smallest or largest index The first target Preamble; any selection method capable of determining the first target Preamble from one or more alternative Preambles is applicable to this embodiment of the present application, and is not limited here.
  • the selection method may be random Select, then can be to randomly determine a candidate Preamble from one or more candidate Preambles as the first target Preamble;
  • the selection method can be to select one or more candidate Preambles with the smallest or largest index The first target Preamble; any selection method capable of determining the first target Preamble from one or more alternative Preambles
  • the first RO may be an RO with a preset time rank, such as the first RO in the target RO Set;
  • the target RO Set is only associated with one SSB
  • when determining the first target Preamble sent on the first RO it may first be determined that the first RO is in the target All the corresponding candidate Preambles in the RO set, and then select the first target Preamble to be transmitted among these candidate Preambles;
  • the target RO Set is associated with two SSBs
  • when determining the first target Preamble sent on the first RO it may first be determined that the first RO is in the target All the corresponding candidate Preambles in the RO set, and then determine one or more candidate Preambles corresponding to the target SSB in these candidate Preambles, and then select the first target Preamble to be transmitted in the one or more candidate Preambles
  • preambles 0 to 15 belong to RO set0; preambles 16 to 31 belong to RO set1; and since RO set0 is associated with SSB1 and SSB2, preambles 0 to 7 belong to RO set0 And associated with SSB1, preamble No. 8 ⁇ 15 belongs to RO set0 and associated with SSB2;
  • the UE can determine the first RO in the RO set in preambles 0 to 7, such as the preamble sent in the first RO, such as preamble No. 3 ;
  • the successor RO, that is, the preamble sent in the second RO has a corresponding relationship with the preamble sent in the first RO.
  • the terminal determines the target Preamble, including:
  • the terminal selects the target Preamble among one or more candidate Preambles
  • the one or more candidate preambles are candidate preambles corresponding to the target RO set, and the correspondence between the one or more candidate preambles and the target RO set is predefined by the protocol Or indicated or preset by the network side device; or, the one or more candidate Preambles are candidate Preambles corresponding to the first signal, and the one or more candidate Preambles are the same as the first signal
  • the corresponding relationship between the signals is predefined by the protocol or indicated or preset by the network side device; or the one or more candidate Preambles are all the candidate Preambles corresponding to the target RO set.
  • a candidate Preamble corresponding to a signal, the correspondence between the one or more candidate Preambles and the first signal among all the candidate Preambles corresponding to the target RO set is predefined by the protocol or Indicated or preset by the network side device.
  • each candidate RO set and all candidate Preambles can be directly set; after the target RO set is determined, one or more candidate Preambles corresponding to the target RO set can be directly selected, and can be obtained from Determine the target Preamble in one or more alternative Preambles;
  • the target Preamble from one or more candidate Preambles it may be determined based on a predefined or preset selection method indicated by a high layer or indicated by the network side.
  • the selection method may be a random selection, Then it may be to randomly determine a candidate Preamble as the target Preamble from one or more candidate Preambles; for example, the selection method may be to select the candidate Preamble with the smallest or largest index value among one or more candidate Preambles as the target Preamble; any The selection manners that can realize determining the target Preamble from one or more candidate Preambles are all applicable to this embodiment of the present application, and are not limited here.
  • RO set0 corresponds to preamble numbers 0-15
  • RO set1 corresponds to preamble numbers 16-30
  • RO set2 corresponds to preamble numbers 31-45;
  • Determine an alternative preamble as the target preamble for example, determine preamble No. 0 as the target preamble.
  • the target Preamble from one or more candidate Preambles it may be determined based on a predefined or preset selection method indicated by a high layer or indicated by the network side.
  • the selection method may be a random selection, Then it may be to randomly determine a candidate Preamble as the target Preamble from one or more candidate Preambles; for example, the selection method may be to select the candidate Preamble with the smallest or largest index value among one or more candidate Preambles as the target Preamble; any The selection manners that can realize determining the target Preamble from one or more candidate Preambles are all applicable to this embodiment of the present application, and are not limited here.
  • the first signal as SSB as an example, it can be preset that SSB0 corresponds to preamble numbers 0 to 15, SSB1 corresponds to preamble numbers 16 to 30, and SSB2 corresponds to preamble numbers 31 to 45; In preamble No. 15, determine an alternative preamble as the target preamble, for example, determine preamble No. 0 as the target preamble.
  • the candidate Preamble corresponding to the target RO set in the case of different possible first signals can be preset; after the target RO set and the first signal are determined, all the corresponding preambles to the target RO set can be directly determined.
  • the selected Preamble one or more alternative Preambles corresponding to the first signal are further selected, and the target Preamble can be determined from the one or more alternative Preambles;
  • the candidate RO set can include RO set0 corresponding to preamble numbers 0-15, RO set1 corresponding to preamble numbers 16-30, and RO set2 corresponding to preamble numbers 31-45.
  • the possible first signals can be SSB0 and SSB1, which can be preset: In the case that RO set0 corresponds to preambles 0 to 15, if the first signal is SSB0, determine the target preamble from preambles 0 to 7, and if the first signal is SSB1, determine the target preamble from preambles 8 to 16 ; In the case that RO set1 corresponds to No. 16-30 preambles, if the first signal is SSB0, then determine the target preamble from No.
  • 16-23 preambles if the first signal is SSB1, then determine the target from No. 24-30 preambles preamble; in the case that RO set2 corresponds to preamble No. 31 ⁇ 45, if the first signal is SSB0, then determine the target preamble from No. 31 ⁇ 37 preamble; if the first signal is SSB1, then determine the target preamble from No. 38 ⁇ 45 preamble Target preamble; if the target RO set is determined to be RO set2 and the first signal is SSB0, then the target preamble can be determined from No. 31 to No. 37 preambles, for example, the target preamble can be determined to be No. 31 preamble.
  • indexes of the target Preamble follow the first rule
  • indexes of the target Preamble follow the first rule, including at least one of the following:
  • the first mathematical relationship is predefined, or preset, or indicated by the network side.
  • the network side equipment cannot determine whether repeated PRACH transmissions are from the same UE, and also cannot perform reception combining to improve reception performance. Therefore, in the embodiment of the present application, the network side device can configure multiple ROs as a group (RO set/RO set) for use by the UE.
  • the UE can use each RO in the RO set to send the Preamble, and the index of the Preamble sent in each RO can conform to the first rule specified in pre-configuration or protocol (for example: the index of the sent Preamble is the same, or based on the RO
  • the index of the Preamble sent by the first RO in the set can calculate the Preamble index that should be sent in the subsequent ROs, etc.), so that the network side device can know which Preambles are sent by the same UE. It may also be that the network side device can receive the Preamble in one target RO set and decode the preambles received in the same target RO set after combining, so as to receive performance.
  • FIG 11 is the eighth schematic diagram of the mapping between RO resources and SSBs provided by the embodiment of the present application.
  • the ordinate is the frequency domain (Frequent)
  • the abscissa is the time domain (Time)
  • the UE selects the target RO set If it is RO set#0, UE can send Preamble in all ROs in RO set#0. For example, it can send Preamble in RO corresponding to SSB#0/2/4/6 in RO set#0.
  • the selected Preamble index is X.
  • the network side device can assume that the Preamble index with the same number received on each RO of RO set#0 comes from one UE.
  • the network side device can also combine and decode the signals received on the four ROs of RO set#0 to improve the success rate of decoding.
  • the indices of the multiple target Preambles to be transmitted may follow the first rule, and the indices of the multiple target Preambles may be the same;
  • the indices of the multiple target Preambles to be transmitted may follow the first rule, and may be that there is a first mathematical relationship among the indices of the multiple target Preambles, where the first mathematical relationship is predefined, or Preset or indicated by the network side.
  • the indexes of the multiple target Preambles to be transmitted may be an arithmetic sequence, and after determining the index of the Preamble sent by the first RO in the target RO Set, it may be directly determined based on the law of the arithmetic sequence Preamble index that should be sent in subsequent ROs in the target RO Set.
  • the UE may determine the index of the target Preamble to be sent on the selected target RO based on the selected first signal and the selected target RO, and then determine the index of the target Preamble to be sent on other ROs in the target RO set according to the index of the target Preamble to be sent.
  • the index of the target Preamble to send may be determined using the index of the target Preamble to send.
  • the preamble index sent by each RO in set#2 is one of Preamble 16 ⁇ 31
  • the preamble index sent by each RO in RO set#3 is one of Preamble 32 ⁇ 47
  • each RO in RO set#4 The index of the sent Preamble is one of 48 ⁇ 63; then the network side device can combine the signals received in the four ROs of RO set#1 to detect whether there is Preamble 0 ⁇ 15 sent; NW sends RO set#2 Combine the signals received in the four ROs to detect whether there are Preamble 16 ⁇ 31 sent; NW combines the signals received in the four ROs of RO set#3 to detect whether there are Preamble 32 ⁇ 47 sent; NW sends the RO set The signals received in the four ROs of #4 are combined to detect whether Preamble 48-63 is sent. It can effectively improve the receiving performance.
  • the terminal sends the target Preamble based on the target RO set, including:
  • the terminal sends the target Preamble based on all ROs in the target RO set.
  • the target Preamble may be sent on all ROs in the target RO set.
  • the first signals associated with the ROs belonging to the same candidate RO set are the same.
  • the first signals associated with ROs belonging to the same candidate RO set may be the same;
  • the first signals associated with ROs belonging to the same candidate RO set may be the same.
  • the first signals associated with the ROs belonging to the same candidate RO set are different.
  • the first signals associated with the ROs belonging to the same candidate RO set may be different;
  • the first signals associated with ROs belonging to the same candidate RO set may be different.
  • all or part of the ROs in a set of candidate ROs are located at different frequencies; where the respective frequencies corresponding to all or part of the ROs are indicated by the network side device.
  • all or part of the ROs in a set of candidate ROs may be located at different frequencies;
  • the frequencies at which all or part of the ROs in a set of candidate ROs are respectively located may be indicated by the network side device.
  • Figure 12 is the ninth schematic diagram of the mapping between RO resources and SSBs provided by the embodiment of the present application. As shown in Figure 12, the frequency positions of the ROs belonging to one RO set may be different; in Figure 12, the ROs filled with the same pattern Among them, four time-adjacent ones form a RO set;
  • each RO belongs to four RO sets; for example, the RO whose index is 4 belongs to RO set1 ⁇ 4, the RO whose index is 5 belongs to RO set2 ⁇ 5, and so on. Therefore, in the RO with index 4, there are four sets of Preambles without index overlap, corresponding to 4 RO sets.
  • the UE indicates its selected RO set by sending the corresponding Preamble.
  • FIG. 13 is the tenth schematic diagram of the mapping between RO resources and SSBs provided by the embodiment of the present application. As shown in FIG. 13 , among the ROs filled with the same pattern, four temporally adjacent ones form an RO set;
  • Each RO belongs to four RO sets; for example, the RO with index 4 belongs to RO set1 ⁇ 4, the RO with index 5 belongs to RO set2 ⁇ 5, and so on. Therefore, in the RO with index 4, there are four sets of Preambles without index overlap, corresponding to 4 RO sets.
  • the UE indicates its selected RO set by sending the corresponding Preamble.
  • all ROs in a candidate RO set are located at the same frequency; wherein, the same frequency is indicated by the network side device.
  • all ROs in a candidate RO set may be located at the same frequency
  • the frequency of all ROs in a candidate RO set may be the same frequency indicated by the network side device.
  • RO sets contain different numbers of ROs.
  • the number of ROs included in different candidate RO sets may be different.
  • different candidate RO sets may contain the same number of ROs.
  • the RO combination resources for the repeated transmission of the PRACH can be clarified to realize the repetition of the PRACH transmission to improve random access performance.
  • FIG. 14 is the second schematic flow diagram of the PRACH transmission method provided by the embodiment of the present application. As shown in FIG. 14, the method includes the following steps:
  • Step 1400 the network side device receives the target Preamble on the target RO set
  • Step 1410 the network side device sends a random access response message including the index of the target Preamble.
  • the network side device can configure multiple ROs as a group, which can be called RO set or RO set, for use by the UE, from which the terminal can determine the target RO set for this PRACH repeated transmission.
  • the UE can use each RO in the target RO set (target RO set) to send the target Preamble;
  • the network side device may receive the target Preamble sent by the terminal on the target RO set;
  • the network side device may send a random access response message after the target RO set receives the target Preamble, and the random access response message includes the index of the target Preamble.
  • the RO combination resources for the repeated transmission of the PRACH can be clarified to realize the repetition of the PRACH transmission to improve random access performance.
  • the network side device sends a random access response message containing the index of the target Preamble, including:
  • the network side device determines a target RO corresponding to the target Preamble in the target RO set
  • the network side device sends the random access response message including the index of the target Preamble on the beam corresponding to the first signal.
  • the network side device may first send an RO set configuration message to the terminal, and the RO set configuration message may indicate the mapping relationship between the candidate RO set and each RO;
  • the RO set configuration message may include at least one of the following:
  • the number of the SSB associated with the RO included in the candidate RO set (or the formula used to calculate the number of the SSB);
  • the numbers of ROs included in the set of candidate ROs (or the formula used to calculate the number of ROs);
  • Time-frequency resource location information of ROs included in the candidate RO set (or a formula for calculating time-frequency resource location information of ROs);
  • the numbers of the candidate preambles that can be used by the set of candidate ROs (or the formula used to calculate the numbers of the available candidate preambles).
  • the terminal may further select the first signal
  • the first signal may include a target SSB
  • the first signal may include a target CSI-RS
  • the example in which the first signal is the target SSB in each embodiment of the present application is also applicable to the case where the first signal includes the target CSI-RS.
  • the terminal may select the first signal based on RSRP, that is, if the RSRP of at least one first signal is higher than the threshold, select a first signal from the first signals whose RSRP is higher than the threshold; otherwise, based on UE implementation , select a first signal;
  • the terminal can select the target SSB based on RSRP, that is, if the RSRP of at least one SSB is higher than the threshold, select an SSB from the SSBs whose RSRP is higher than the threshold as the target SSB; otherwise, based on UE To achieve, select a target SSB.
  • the terminal may determine the corresponding relationship between the first signal and the RO that is predefined or preset or based on an indication from the network side, and determine the Target RO;
  • the terminal may determine the corresponding relationship between each SSB and each RO based on the predefined or pre-set or based on the corresponding relationship between each SSB and each RO indicated by the network side. Corresponding target RO.
  • the terminal may further determine the set of candidate target ROs in which the target RO is located, and the terminal may determine one set of candidate target ROs from one or more set of candidate target ROs as the target RO Set, used for repeated transmission of PRACH;
  • the network side device may determine the target RO corresponding to the target Preamble in the target RO set; and then may determine the first RO corresponding to the target RO A signal, and then the random access response message including the index of the target Preamble may be sent on the beam corresponding to the first signal.
  • the network side device sends a random access response message containing the index of the target Preamble, including:
  • the network side device determines a first signal corresponding to the target RO set
  • the network side device sends the random access response message including the index of the target Preamble on the beam corresponding to the first signal.
  • the network side device may first send an RO set configuration message to the terminal, and the RO set configuration message may indicate the mapping relationship between the candidate RO set and each RO;
  • the RO set configuration message may include at least one of the following:
  • the number of the SSB associated with the RO included in the candidate RO set (or the formula used to calculate the number of the SSB);
  • the numbers of ROs included in the set of candidate ROs (or the formula used to calculate the number of ROs);
  • Time-frequency resource location information of ROs included in the candidate RO set (or a formula for calculating time-frequency resource location information of ROs);
  • the numbers of the candidate preambles that can be used by the set of candidate ROs (or the formula used to calculate the numbers of the available candidate preambles).
  • the terminal may further select the first signal
  • the first signal may include a target SSB
  • the first signal may include a target CSI-RS
  • the example in which the first signal is the target SSB in each embodiment of the present application is also applicable to the case where the first signal includes the target CSI-RS.
  • the terminal may select the first signal based on RSRP, that is, if the RSRP of at least one first signal is higher than the threshold, select a first signal from the first signals whose RSRP is higher than the threshold; otherwise, based on UE implementation , select a first signal;
  • the terminal can select the target SSB based on RSRP, that is, if the RSRP of at least one SSB is higher than the threshold, select an SSB from the SSBs whose RSRP is higher than the threshold as the target SSB; otherwise, based on UE To achieve, select a target SSB.
  • the terminal may determine the corresponding relationship with the selected first signal based on the predefined or preset or based on the corresponding relationship between the first signal and the candidate RO set indicated by the network side.
  • the associated one or more candidate RO sets are used as the candidate target RO set;
  • the terminal may determine a candidate target RO set from one or more candidate target RO sets as the target RO set for repeated transmission of the PRACH;
  • the network-side device may determine a first signal corresponding to the target RO set, and then may send the containing A random access response message of the index of the target Preamble.
  • the index of the target Preamble contained in the random access response message is the index of the target Preamble received on the RO of the preset time rank in the target RO set; wherein, in the target RO set The transmitted target Preamble corresponds to different index values.
  • the index of the target Preamble may refer to the index of the Preamble received on the RO of the preset time rank in the target RO set;
  • the target Preamble transmitted in the target RO set may correspond to different index values.
  • the index of the target Preamble contained in the random access response message may be the preset time position in the target RO set The index of the target Preamble received on the RO.
  • the index of the target Preamble included in the random access response message may be the first RO or the last first RO in the target RO set.
  • the index of the Preamble received on the RO may be the first RO or the last first RO in the target RO set.
  • the index of the target Preamble contained in the random access response message is an index of any one of the target Preambles; wherein, the target Preambles transmitted in the target RO set correspond to the same index value.
  • the target Preamble transmitted in the target RO set may correspond to the same index value.
  • the index of the target Preamble contained in the random access response message is the index of any one of the target Preambles.
  • the RO combination resources for the repeated transmission of the PRACH can be clarified to realize the repetition of the PRACH transmission to improve random access performance.
  • the PRACH transmission method provided in the embodiment of the present application may be executed by a PRACH transmission device.
  • the PRACH transmission device provided by the embodiment of the present application is described by taking the PRACH transmission device executing the PRACH transmission method as an example.
  • FIG. 15 is one of the schematic structural diagrams of the PRACH transmission device provided by the embodiment of the present application. As shown in FIG. A receiving module 1540; wherein:
  • the first determining module 1510 is used to determine the target RO set
  • the second determination module 1520 is used to determine the target Preamble
  • the first sending module 1530 is configured to send the target Preamble based on the target RO set
  • the first receiving module 1540 is configured to receive a random access response message including the index of the target Preamble.
  • the RO combination resources for the repeated transmission of the PRACH can be clarified to realize the repetition of the PRACH transmission to improve random access performance.
  • one candidate RO set includes multiple ROs, any RO in the candidate RO set belongs to one or more candidate RO sets, and the target RO set is one of all the candidate RO sets. item.
  • one RO corresponds to one or more candidate Preambles in any one of the candidate RO sets to which it belongs;
  • the indices of the candidate Preambles corresponding to the multiple different candidate RO sets to which the RO belongs are different.
  • the first determining module is specifically configured to:
  • the first signal including a target SSB and/or a target CSI-RS
  • a candidate target RO set as the target RO set; wherein, the candidate target RO set is a candidate RO set including the target RO;
  • the correspondence between the first signal and the target RO is predefined or preset or determined based on an instruction from the network side.
  • the first determining module is specifically configured to:
  • the first signal including a target SSB and/or a target CSI-RS
  • a candidate target RO set is the candidate RO set associated with the first signal
  • association relationship between the first signal and the set of candidate target ROs is predefined or preset or determined based on an instruction from the network side.
  • the first determining module is specifically configured to:
  • the first determining module is specifically configured to:
  • the candidate target RO set whose start time is closest to the current time as the target RO set or determine that the start time is among all the candidate target RO sets that have not yet started
  • the earliest candidate target RO set is used as the target RO set.
  • the first determining module is specifically configured to:
  • the first determining module is specifically configured to:
  • At least one of the one or more first signals associated with each RO in the set of candidate target ROs meeting the first condition is the same.
  • the second determination module is specifically configured to:
  • the first RO is an RO with a preset time rank in the target RO or the target RO set;
  • the second RO includes other ROs in the target RO set except the first RO, and the target Preamble includes the first target Preamble and the second target Preamble;
  • the correspondence between the first RO in the target RO set and the one or more candidate Preambles is predefined by the protocol or indicated or preset by the network side device.
  • the second determination module is specifically configured to:
  • the second RO includes other ROs in the target RO set except the first RO, and the target Preamble includes the first target Preamble and the second target Preamble;
  • the correspondence between the first RO in the target RO set and the one or more candidate Preambles is predefined by the protocol or indicated or preset by the network side device;
  • the correspondence between the one or more candidate Preambles and the first signal among all the corresponding candidate Preambles in the target RO set is predefined by the protocol or indicated or preset by the network side device.
  • the second determination module is specifically configured to:
  • Preambles select the target Preamble
  • the one or more candidate preambles are candidate preambles corresponding to the target RO set, and the correspondence between the one or more candidate preambles and the target RO set is predefined by the protocol Or indicated or preset by the network side device; or, the one or more candidate Preambles are candidate Preambles corresponding to the first signal, and the one or more candidate Preambles are the same as the first signal
  • the corresponding relationship between the signals is predefined by the protocol or indicated or preset by the network side device; or the one or more candidate Preambles are all the candidate Preambles corresponding to the target RO set.
  • a candidate Preamble corresponding to a signal, the correspondence between the one or more candidate Preambles and the first signal among all the candidate Preambles corresponding to the target RO set is predefined by the protocol or Indicated or preset by the network side device.
  • indexes of the target Preamble follow the first rule
  • indexes of the target Preamble follow the first rule, including at least one of the following:
  • the first mathematical relationship is predefined, or preset, or indicated by the network side.
  • the first sending module is specifically configured to:
  • the target Preamble is sent based on all ROs in the target RO set.
  • the first signals associated with the ROs belonging to the same candidate RO set are the same.
  • the first signals associated with the ROs belonging to the same candidate RO set are different.
  • all or part of the ROs in a set of candidate ROs are located at different frequencies; where the respective frequencies corresponding to all or part of the ROs are indicated by the network side device.
  • all ROs in a set of candidate ROs are located at the same frequency; where the same frequency is indicated by the network side device.
  • RO sets contain different numbers of ROs.
  • the RO combination resources for the repeated transmission of the PRACH can be clarified to realize the repetition of the PRACH transmission to improve random access performance.
  • the PRACH transmission device in the embodiment of the present application may be a device with an operating system.
  • the operating system may be an Android (Android) operating system, an ios operating system, or other possible operating systems, which are not specifically limited in this embodiment of the present application.
  • the PRACH transmission apparatus in the embodiment of the present application may be an electronic device, such as an electronic device with an operating system, or a component in the electronic device, such as an integrated circuit or a chip.
  • the electronic device may be a terminal, or other devices other than the terminal.
  • the terminal may include, but not limited to, the types of terminal 11 listed above, and other devices may be servers, Network Attached Storage (NAS), etc., which are not specifically limited in this embodiment of the present application.
  • NAS Network Attached Storage
  • Fig. 16 is the second structural diagram of the PRACH transmission device provided by the embodiment of the present application.
  • the PRACH transmission device 1600 includes: a second receiving module 1610 and a second sending module 1620; where:
  • the second receiving module 1610 is configured to receive the target Preamble on the target RO set
  • the second sending module 1620 is configured to send a random access response message including the index of the target Preamble.
  • the RO combination resources for the repeated transmission of the PRACH can be clarified to realize the repetition of the PRACH transmission to improve random access performance.
  • the second sending module is specifically configured to:
  • the second sending module is specifically configured to:
  • the index of the target Preamble contained in the random access response message is the index of the target Preamble received on the RO of the preset time rank in the target RO set; wherein, in the target RO set The transmitted target Preamble corresponds to different index values.
  • the index of the target Preamble contained in the random access response message is an index of any one of the target Preambles; wherein, the target Preambles transmitted in the target RO set correspond to the same index value.
  • the RO combination resources for the repeated transmission of the PRACH can be clarified to realize the repetition of the PRACH transmission to improve random access performance.
  • the PRACH transmission apparatus in the embodiment of the present application may be an electronic device, such as an electronic device with an operating system, or a component in the electronic device, such as an integrated circuit or a chip.
  • the electronic device may be a terminal, or other devices other than the terminal.
  • the terminal may include, but not limited to, the types of terminal 11 listed above, and other devices may be servers, Network Attached Storage (NAS), etc., which are not specifically limited in this embodiment of the present application.
  • NAS Network Attached Storage
  • the PRACH transmission device provided in the embodiment of the present application can realize each process realized by the method embodiments in FIG. 4 to FIG. 14 and achieve the same technical effect. To avoid repetition, details are not repeated here.
  • FIG. 17 is a schematic structural diagram of a communication device provided by the embodiment of the present application.
  • the embodiment of the present application also provides a communication device 1700, including a processor 1701 and a memory 1702, and the memory 1702 stores a Programs or instructions that can be run on the processor 1701, for example, when the communication device 1700 is a terminal, when the program or instructions are executed by the processor 1701, each step of the above PRACH transmission method embodiment can be achieved, and the same technical effect.
  • the communication device 1700 is a network-side device, when the program or instruction is executed by the processor 1701, each step of the above-mentioned PRACH transmission method embodiment can be achieved, and the same technical effect can be achieved. To avoid repetition, details are not repeated here.
  • the embodiment of the present application also provides a terminal, including a processor and a communication interface, and the processor is used for:
  • the communication interface is used for:
  • FIG. 18 is a schematic diagram of a hardware structure of a terminal implementing an embodiment of the present application.
  • the terminal 1800 includes, but is not limited to: a radio frequency unit 1801, a network module 1802, an audio output unit 1803, an input unit 1804, a sensor 1805, a display unit 1806, a user input unit 1807, an interface unit 1808, a memory 1809, and a processor 1810. At least some parts.
  • the terminal 1800 may also include a power supply (such as a battery) for supplying power to various components, and the power supply may be logically connected to the processor 1810 through the power management system, so as to manage charging, discharging, and power consumption through the power management system. Management and other functions.
  • the terminal structure shown in FIG. 18 does not constitute a limitation on the terminal.
  • the terminal may include more or fewer components than shown in the figure, or combine some components, or arrange different components, which will not be repeated here.
  • the input unit 1804 may include a graphics processing unit (Graphics Processing Unit, GPU) 18041 and a microphone 18042, and the graphics processor 18041 is used by the image capture device (such as the image data of the still picture or video obtained by the camera) for processing.
  • the display unit 1806 may include a display panel 18061, and the display panel 18061 may be configured in the form of a liquid crystal display, an organic light emitting diode, or the like.
  • the user input unit 1807 includes at least one of a touch panel 18071 and other input devices 18072 . Touch panel 18071, also called touch screen.
  • the touch panel 18071 can include two parts: a touch detection device and a touch controller.
  • Other input devices 18072 may include, but are not limited to, physical keyboards, function keys (such as volume control buttons, switch buttons, etc.), trackballs, mice, and joysticks, which will not be repeated here.
  • the radio frequency unit 1801 may transmit the downlink data from the network side device to the processor 1810 for processing after receiving it; in addition, the radio frequency unit 1801 may send uplink data to the network side device.
  • the radio frequency unit 1801 includes, but is not limited to, an antenna, an amplifier, a transceiver, a coupler, a low noise amplifier, a duplexer, and the like.
  • the memory 1809 can be used to store software programs or instructions as well as various data.
  • the memory 1809 may mainly include a first storage area for storing programs or instructions and a second storage area for storing data, wherein the first storage area may store an operating system, an application program or instructions required by at least one function (such as a sound playing function, image playback function, etc.), etc.
  • memory 1809 may include volatile memory or nonvolatile memory, or, memory 1809 may include both volatile and nonvolatile memory.
  • the non-volatile memory can be read-only memory (Read-Only Memory, ROM), programmable read-only memory (Programmable ROM, PROM), erasable programmable read-only memory (Erasable PROM, EPROM), electronically programmable Erase Programmable Read-Only Memory (Electrically EPROM, EEPROM) or Flash.
  • ROM Read-Only Memory
  • PROM programmable read-only memory
  • Erasable PROM Erasable PROM
  • EPROM erasable programmable read-only memory
  • Electrical EPROM Electrical EPROM
  • EEPROM electronically programmable Erase Programmable Read-Only Memory
  • Volatile memory can be random access memory (Random Access Memory, RAM), static random access memory (Static RAM, SRAM), dynamic random access memory (Dynamic RAM, DRAM), synchronous dynamic random access memory (Synchronous DRAM, SDRAM), double data rate synchronous dynamic random access memory (Double Data Rate SDRAM, DDRSDRAM), enhanced synchronous dynamic random access memory (Enhanced SDRAM, ESDRAM), synchronous connection dynamic random access memory (Synch link DRAM , SLDRAM) and Direct Memory Bus Random Access Memory (Direct Rambus RAM, DRRAM).
  • RAM Random Access Memory
  • SRAM static random access memory
  • DRAM dynamic random access memory
  • DRAM synchronous dynamic random access memory
  • SDRAM double data rate synchronous dynamic random access memory
  • Double Data Rate SDRAM Double Data Rate SDRAM
  • DDRSDRAM double data rate synchronous dynamic random access memory
  • Enhanced SDRAM, ESDRAM enhanced synchronous dynamic random access memory
  • Synch link DRAM , SLDRAM
  • Direct Memory Bus Random Access Memory Direct Rambus
  • the processor 1810 may include one or more processing units; optionally, the processor 1810 integrates an application processor and a modem processor, wherein the application processor mainly processes operations related to the operating system, user interface, and application programs, etc., Modem processors mainly process wireless communication signals, such as baseband processors. It can be understood that the foregoing modem processor may not be integrated into the processor 1810 .
  • the processor 1810 is used for:
  • the RO combination resources for the repeated transmission of the PRACH can be clarified to realize the repetition of the PRACH transmission to improve random access performance.
  • one candidate RO set includes multiple ROs, any RO in the candidate RO set belongs to one or more candidate RO sets, and the target RO set is one of all the candidate RO sets. item.
  • one RO corresponds to one or more candidate Preambles in any one of the candidate RO sets to which it belongs;
  • the indices of the candidate Preambles corresponding to the multiple different candidate RO sets to which the RO belongs are different.
  • processor 1810 is used for:
  • the first signal including a target SSB and/or a target CSI-RS
  • a candidate target RO set as the target RO set; wherein, the candidate target RO set is a candidate RO set including the target RO;
  • the correspondence between the first signal and the target RO is predefined or preset or determined based on an instruction from the network side.
  • processor 1810 is used for:
  • the first signal including a target SSB and/or a target CSI-RS
  • a candidate target RO set is the candidate RO set associated with the first signal
  • association relationship between the first signal and the set of candidate target ROs is predefined or preset or determined based on an instruction from the network side.
  • processor 1810 is used for:
  • processor 1810 is used for:
  • the candidate target RO set whose start time is closest to the current time as the target RO set or determine that the start time is among all the candidate target RO sets that have not yet started
  • the earliest candidate target RO set is used as the target RO set.
  • processor 1810 is used for:
  • processor 1810 is used for:
  • At least one of the one or more first signals associated with each RO in the set of candidate target ROs meeting the first condition is the same.
  • processor 1810 is used for:
  • the first RO is an RO with a preset time rank in the target RO or the target RO set;
  • the terminal determines a second target Preamble sent on a second RO in the target RO set based on the index of the first target Preamble and the first rule;
  • the second RO includes other ROs in the target RO set except the first RO, and the target Preamble includes the first target Preamble and the second target Preamble;
  • the correspondence between the first RO in the target RO set and the one or more candidate Preambles is predefined by the protocol or indicated or preset by the network side device.
  • processor 1810 is used for:
  • the terminal determines a second target Preamble sent on a second RO in the target RO set based on the index of the first target Preamble and the first rule;
  • the second RO includes other ROs in the target RO set except the first RO, and the target Preamble includes the first target Preamble and the second target Preamble;
  • the correspondence between the first RO in the target RO set and the one or more candidate Preambles is predefined by the protocol or indicated or preset by the network side device;
  • the correspondence between the one or more candidate Preambles and the first signal among all the corresponding candidate Preambles in the target RO set is predefined by the protocol or indicated or preset by the network side device.
  • processor 1810 is used for:
  • Preambles select the target Preamble
  • the one or more candidate preambles are candidate preambles corresponding to the target RO set, and the correspondence between the one or more candidate preambles and the target RO set is predefined by the protocol Or indicated or preset by the network side device; or, the one or more candidate Preambles are candidate Preambles corresponding to the first signal, and the one or more candidate Preambles are the same as the first signal
  • the corresponding relationship between the signals is predefined by the protocol or indicated or preset by the network side device; or the one or more candidate Preambles are all the candidate Preambles corresponding to the target RO set.
  • a candidate Preamble corresponding to a signal, the correspondence between the one or more candidate Preambles and the first signal among all the candidate Preambles corresponding to the target RO set is predefined by the protocol or Indicated or preset by the network side device.
  • indexes of the target Preamble follow the first rule
  • indexes of the target Preamble follow the first rule, including at least one of the following:
  • the first mathematical relationship is predefined, or preset, or indicated by the network side.
  • processor 1810 is used for:
  • the target Preamble is sent based on all ROs in the target RO set.
  • the first signals associated with the ROs belonging to the same candidate RO set are the same.
  • the first signals associated with the ROs belonging to the same candidate RO set are different.
  • all or part of the ROs in a set of candidate ROs are located at different frequencies; where the respective frequencies corresponding to all or part of the ROs are indicated by the network side device.
  • all ROs in a set of candidate ROs are located at the same frequency; where the same frequency is indicated by the network side device.
  • RO sets contain different numbers of ROs.
  • the RO combination resources for the repeated transmission of the PRACH can be clarified to realize the repetition of the PRACH transmission to improve random access performance.
  • the embodiment of the present application also provides a network side device, including a processor and a communication interface, where the communication interface is used for:
  • the network-side device embodiment corresponds to the above-mentioned network-side device method embodiment, and each implementation process and implementation mode of the above-mentioned method embodiment can be applied to this network-side device embodiment, and can achieve the same technical effect.
  • FIG. 19 is a schematic diagram of the hardware structure of a network-side device implementing an embodiment of the present application.
  • the antenna 1901 is connected to the radio frequency device 1902 .
  • the radio frequency device 1902 receives information through the antenna 1901, and sends the received information to the baseband device 1903 for processing.
  • the baseband device 1903 processes the information to be sent and sends it to the radio frequency device 1902
  • the radio frequency device 1902 processes the received information and sends it out through the antenna 1901 .
  • the method performed by the network side device in the above embodiments may be implemented in the baseband device 1903, where the baseband device 1903 includes a baseband processor.
  • the baseband device 1903 may include, for example, at least one baseband board, on which a plurality of chips are arranged, as shown in FIG.
  • the program executes the network device operations shown in the above method embodiments.
  • the network side device may also include a network interface 1906, such as a common public radio interface (common public radio interface, CPRI).
  • a network interface 1906 such as a common public radio interface (common public radio interface, CPRI).
  • the network-side device 1900 in this embodiment of the present invention further includes: instructions or programs stored in the memory 1905 and executable on the processor 1904, and the processor 1904 calls the instructions or programs in the memory 1905 to execute the various programs shown in FIG.
  • the method of module execution achieves the same technical effect, so in order to avoid repetition, it is not repeated here.
  • processor 1904 is used for:
  • the RO combination resources for the repeated transmission of the PRACH can be clarified to realize the repetition of the PRACH transmission to improve random access performance.
  • processor 1904 is used for:
  • processor 1904 is used for:
  • the index of the target Preamble contained in the random access response message is the index of the target Preamble received on the RO of the preset time rank in the target RO set; wherein, in the target RO set The transmitted target Preamble corresponds to different index values.
  • the index of the target Preamble contained in the random access response message is an index of any one of the target Preambles; wherein, the target Preambles transmitted in the target RO set correspond to the same index value.
  • the RO combination resources for the repeated transmission of the PRACH can be clarified to realize the repetition of the PRACH transmission to improve random access performance.
  • the embodiment of the present application also provides a readable storage medium, the readable storage medium stores a program or an instruction, and when the program or instruction is executed by the processor, the various processes of the above-mentioned PRACH transmission method embodiment are realized, and the same To avoid repetition, the technical effects will not be repeated here.
  • the processor is the processor in the terminal described in the foregoing embodiments.
  • the readable storage medium includes a computer-readable storage medium, such as a computer read-only memory ROM, a random access memory RAM, a magnetic disk or an optical disk, and the like.
  • the embodiment of the present application further provides a chip, the chip includes a processor and a communication interface, the communication interface is coupled to the processor, and the processor is used to run programs or instructions to implement the above PRACH transmission method embodiment
  • the chip includes a processor and a communication interface
  • the communication interface is coupled to the processor
  • the processor is used to run programs or instructions to implement the above PRACH transmission method embodiment
  • the chip mentioned in the embodiment of the present application may also be called a system-on-chip, a system-on-chip, a system-on-a-chip, or a system-on-a-chip.
  • the embodiment of the present application further provides a computer program/program product, the computer program/program product is stored in a storage medium, and the computer program/program product is executed by at least one processor to implement the above PRACH transmission method embodiment
  • the computer program/program product is stored in a storage medium, and the computer program/program product is executed by at least one processor to implement the above PRACH transmission method embodiment
  • the embodiment of the present application also provides a PRACH transmission system, including: a terminal and a network-side device, the terminal can be used to perform the steps of the above-mentioned PRACH transmission method, and the network-side device can be used to perform the above-mentioned PRACH The steps of the transfer method.
  • the term “comprising”, “comprising” or any other variation thereof is intended to cover a non-exclusive inclusion such that a process, method, article or apparatus comprising a set of elements includes not only those elements, It also includes other elements not expressly listed, or elements inherent in the process, method, article, or device. Without further limitations, an element defined by the phrase “comprising a " does not preclude the presence of additional identical elements in the process, method, article, or apparatus comprising that element.
  • the scope of the methods and devices in the embodiments of the present application is not limited to performing functions in the order shown or discussed, and may also include performing functions in a substantially simultaneous manner or in reverse order according to the functions involved. Functions are performed, for example, the described methods may be performed in an order different from that described, and various steps may also be added, omitted, or combined. Additionally, features described with reference to certain examples may be combined in other examples.
  • the methods of the above embodiments can be implemented by means of software plus a necessary general-purpose hardware platform, and of course also by hardware, but in many cases the former is better implementation.
  • the technical solution of the present application can be embodied in the form of computer software products, which are stored in a storage medium (such as ROM/RAM, magnetic disk, etc.) , CD-ROM), including several instructions to make a terminal (which may be a mobile phone, a computer, a server, an air conditioner, or a network device, etc.) execute the methods described in the various embodiments of the present application.

Abstract

本申请公开了一种PRACH传输方法、装置、终端及网络侧设备,属于通信技术领域,本申请实施例的PRACH传输方法包括:终端确定目标RO集合;所述终端确定目标Preamble;所述终端基于目标RO集合,发送所述目标Preamble;所述终端接收包含所述目标Preamble的索引的随机接入响应消息。

Description

PRACH传输方法、装置、终端及网络侧设备
相关申请的交叉引用
本申请要求于2021年12月22日提交的申请号为202111580962.5,发明名称为“PRACH传输方法、装置、终端及网络侧设备”的中国专利申请的优先权,其通过引用方式全部并入本申请。
技术领域
本申请属于通信技术领域,具体涉及一种PRACH传输方法、装置、终端及网络侧设备。
背景技术
PRACH重复发送可以提高UE进行RACH成功的概率。
但现有的通信系统中,PRACH的重复发送的物理随机接入信道传输机会(PRACH transmission occasion,RO)资源如何确定还是不清晰的,进而会导致PRACH的重复发送无法实现,随机接入性能降低。
发明内容
本申请实施例提供一种PRACH传输方法、装置、终端及网络侧设备,能够解决PRACH的重复发送无法实现,随机接入性能降低的问题。
第一方面,提供了一种PRACH传输方法,该方法包括:
终端确定目标RO集合;
所述终端确定目标Preamble;
所述终端基于目标RO集合,发送所述目标Preamble;
所述终端接收包含所述目标Preamble的索引的随机接入响应消息。
第二方面,提供了一种PRACH传输方法,该方法包括:
网络侧设备在目标RO集合上接收目标Preamble;
所述网络侧设备发送包含所述目标Preamble的索引的随机接入响应消息。
第三方面,提供了一种PRACH传输装置,该装置包括:
第一确定模块,用于确定目标RO集合;
第二确定模块,用于确定目标Preamble;
第一发送模块,用于基于目标RO集合,发送所述目标Preamble;
第一接收模块,用于接收包含所述目标Preamble的索引的随机接入响应消息。
第四方面,提供了一种PRACH传输装置,该装置包括:
第二接收模块,用于在目标RO集合上接收目标Preamble;
第二发送模块,用于发送包含所述目标Preamble的索引的随机接入响应消息。
第五方面,提供了一种终端,该终端包括处理器和存储器,所述存储器存储可在所述处理器上运行的程序或指令,所述程序或指令被所述处理器执行时实现如第一方面所述的方法的步骤。
第六方面,提供了一种终端,包括处理器及通信接口,其中,所述处理器用于:
确定目标RO集合;
确定目标Preamble;
所述通信接口用于:
基于目标RO集合,发送所述目标Preamble;
接收包含所述目标Preamble的索引的随机接入响应消息。
第七方面,提供了一种网络侧设备,该网络侧设备包括处理器和存储器,所述存储器存储可在所述处理器上运行的程序或指令,所述程序或指令被所述处理器执行时实现如第二方面所述的方法的步骤。
第八方面,提供了一种网络侧设备,包括处理器及通信接口,其中,所 述通信接口用于:
在目标RO集合上接收目标Preamble;
发送包含所述目标Preamble的索引的随机接入响应消息。
第九方面,提供了一种PRACH传输系统,包括:终端及网络侧设备,所述终端可用于执行如第一方面所述的PRACH传输方法的步骤,所述网络侧设备可用于执行如第二方面所述的PRACH传输方法的步骤。
第十方面,提供了一种可读存储介质,所述可读存储介质上存储程序或指令,所述程序或指令被处理器执行时实现如第一方面所述的方法的步骤,或者实现如第二方面所述的方法的步骤。
第十一方面,提供了一种芯片,所述芯片包括处理器和通信接口,所述通信接口和所述处理器耦合,所述处理器用于运行程序或指令,实现如第一方面所述的方法,或实现如第二方面所述的方法。
第十二方面,提供了一种计算机程序/程序产品,所述计算机程序/程序产品被存储在存储介质中,所述计算机程序/程序产品被至少一个处理器执行以实现如第一方面所述的PRACH传输方法的步骤,或者实现如第二方面所述的PRACH传输方法的步骤。
在本申请实施例中,通过首先确定目标RO集合和在目标RO集合上传输的目标Preamble,并在目标RO集合上完成PRACH重复传输,可以明确PRACH的重复发送的RO组合资源,实现PRACH的重复传输,提高随机接入性能。
附图说明
图1示出本申请实施例可应用的一种无线通信系统的框图;
图2是本申请实施例提供的RO资源分布示意图之一;
图3是本申请实施例提供的RO资源和SSB之间的映射示意图之一;
图4是本申请实施例提供的PRACH传输方法的流程示意图之一;
图5是本申请实施例提供的RO资源和SSB之间的映射示意图之二;
图6是本申请实施例提供的RO资源和SSB之间的映射示意图之三;
图7是本申请实施例提供的RO资源和SSB之间的映射示意图之四;
图8是本申请实施例提供的RO资源和SSB之间的映射示意图之五;
图9是本申请实施例提供的RO资源和SSB之间的映射示意图之六;
图10是本申请实施例提供的RO资源和SSB之间的映射示意图之七;
图11是本申请实施例提供的RO资源和SSB之间的映射示意图之八;
图12是本申请实施例提供的RO资源和SSB之间的映射示意图之九;
图13是本申请实施例提供的RO资源和SSB之间的映射示意图之十;
图14是本申请实施例提供的PRACH传输方法的流程示意图之二;
图15是本申请实施例提供的PRACH传输装置的结构示意图之一;
图16是本申请实施例提供的PRACH传输装置的结构示意图之二;
图17是本申请实施例提供的通信设备的结构示意图;
图18为实现本申请实施例的一种终端的硬件结构示意图;
图19为实现本申请实施例的一种网络侧设备的硬件结构示意图。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚描述,显然,所描述的实施例是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员所获得的所有其他实施例,都属于本申请保护的范围。
本申请的说明书和权利要求书中的术语“第一”、“第二”等是用于区别类似的对象,而不用于描述特定的顺序或先后次序。应该理解这样使用的术语在适当情况下可以互换,以便本申请的实施例能够以除了在这里图示或描述的那些以外的顺序实施,且“第一”、“第二”所区别的对象通常为一类,并不限定对象的个数,例如第一对象可以是一个,也可以是多个。此外,说 明书以及权利要求中“和/或”表示所连接对象的至少其中之一,字符“/”一般表示前后关联对象是一种“或”的关系。
值得指出的是,本申请实施例所描述的技术不限于长期演进型(Long Term Evolution,LTE)/LTE的演进(LTE-Advanced,LTE-A)系统,还可用于其他无线通信系统,诸如码分多址(Code Division Multiple Access,CDMA)、时分多址(Time Division Multiple Access,TDMA)、频分多址(Frequency Division Multiple Access,FDMA)、正交频分多址(Orthogonal Frequency Division Multiple Access,OFDMA)、单载波频分多址(Single-carrier Frequency Division Multiple Access,SC-FDMA)和其他系统。本申请实施例中的术语“系统”和“网络”常被可互换地使用,所描述的技术既可用于以上提及的系统和无线电技术,也可用于其他系统和无线电技术。以下描述出于示例目的描述了新空口(New Radio,NR)系统,并且在以下大部分描述中使用NR术语,但是这些技术也可应用于NR系统应用以外的应用,如第6代(6th Generation,6G)通信系统。
图1示出本申请实施例可应用的一种无线通信系统的框图。无线通信系统包括终端11和网络侧设备12。其中,终端11可以是手机、平板电脑(Tablet Personal Computer)、膝上型电脑(Laptop Computer)或称为笔记本电脑、个人数字助理(Personal Digital Assistant,PDA)、掌上电脑、上网本、超级移动个人计算机(ultra-mobile personal computer,UMPC)、移动上网装置(Mobile Internet Device,MID)、增强现实(augmented reality,AR)/虚拟现实(virtual reality,VR)设备、机器人、可穿戴式设备(Wearable Device)、车载设备(VUE)、行人终端(PUE)、智能家居(具有无线通信功能的家居设备,如冰箱、电视、洗衣机或者家具等)、游戏机、个人计算机(personal computer,PC)、柜员机或者自助机等终端侧设备,可穿戴式设备包括:智能手表、智能手环、智能耳机、智能眼镜、智能首饰(智能手镯、智能手链、智能戒指、智能项链、智能脚镯、智能脚链等)、智能腕带、智能服装等。需要说明的是,在本申请 实施例并不限定终端11的具体类型。网络侧设备12可以包括接入网设备或核心网设备,其中,接入网设备12也可以称为无线接入网设备、无线接入网(Radio Access Network,RAN)、无线接入网功能或无线接入网单元。接入网设备12可以包括基站、WLAN接入点或WiFi节点等,基站可被称为节点B、演进节点B(eNB)、接入点、基收发机站(Base Transceiver Station,BTS)、无线电基站、无线电收发机、基本服务集(Basic Service Set,BSS)、扩展服务集(Extended Service Set,ESS)、家用B节点、家用演进型B节点、发送接收点(Transmitting Receiving Point,TRP)或所述领域中其他某个合适的术语,只要达到相同的技术效果,所述基站不限于特定技术词汇,需要说明的是,在本申请实施例中仅以NR系统中的基站为例进行介绍,并不限定基站的具体类型。核心网设备可以包含但不限于如下至少一项:核心网节点、核心网功能、移动管理实体(Mobility Management Entity,MME)、接入移动管理功能(Access and Mobility Management Function,AMF)、会话管理功能(Session Management Function,SMF)、用户平面功能(User Plane Function,UPF)、策略控制功能(Policy Control Function,PCF)、策略与计费规则功能单元(Policy and Charging Rules Function,PCRF)、边缘应用服务发现功能(Edge Application Server Discovery Function,EASDF)、统一数据管理(Unified Data Management,UDM),统一数据仓储(Unified Data Repository,UDR)、归属用户服务器(Home Subscriber Server,HSS)、集中式网络配置(Centralized network configuration,CNC)、网络存储功能(Network Repository Function,NRF),网络开放功能(Network Exposure Function,NEF)、本地NEF(Local NEF,或L-NEF)、绑定支持功能(Binding Support Function,BSF)、应用功能(Application Function,AF)等。需要说明的是,在本申请实施例中仅以NR系统中的核心网设备为例进行介绍,并不限定核心网设备的具体类型。
下面结合附图,通过一些实施例及其应用场景对本申请实施例提供的 PRACH传输方法、装置、终端及网络侧设备进行详细地说明。
首先对以下内容进行介绍:
(1)随机接入流程;
在通信系统中,包含竞争的随机接入流程和非竞争随机接入的流程。
在竞争的4步随机接入过程(Random Access Channel,RACH)中,UE首先向网络发送msg1,包含Preamble;网络检测到Preamble后,将发送msg2/RAR(随机接入响应,Random access response)消息,包含网络所检测到的Preamble的编号,以及分配给UE发送msg3的上行无线资源;UE接收到msg2后,确认msg2中携带的Preamble的编号中,至少有一个和自己所发送的Preamble的编号一致,则根据RAR的指示的资源,发送包含竞争解决信息的msg3;网络收到msg3后,将发送包含竞争解决信息的msg4;UE收到msg4,确认进行解决信息和自己在msg3中发送的一致,即完成4步随机接入。
网络侧设备在RAR中包含UL grant信息用于指示MSG3 PUSCH调度信息,并且包含RAPID(RACH Preamble ID,随机接入过程前导码ID),TC-RNTI,TA等信息。如果网络没有接收到MSG3 PUSCH,可以在TC-RNTI加扰的PDCCH中调度MSG3 PUSCH的重传。
对于竞争的随机接入过程,不同的UE随机选取Preamble进行传输,这样不同的UE可能在相同的时频无线资源(RO资源)上选取相同的Preamble发送,这种情况可以理解为UE的Preamble冲突。这种情况下,不同的UE会收到相同的RAR,则此时不同的UE会根据该RAR UL grant中的调度信息,进行MSG3 PUSCH的传输。
但由于此前不支持MSG3 PUSCH的重复传输,网络在一个MSG3 PUSCH调度资源上只能解出一个UE发送的PUSCH(包含竞争解决信息),所以,网络会在MSG4中包含在MSG3中收到的竞争解决信息。如果UE收到的MSG4中的竞争解决信息和UE在MSG3 PUSCH中发送的竞争解决信息匹配, 则UE认为竞争解决成功。如果不匹配,则认为竞争解决不成功。
如果竞争解决不成功,则UE重新选择RACH发送资源,进行PRACH发送,进行下一次随机接入尝试。
(2)随机接入资源的选择;
在通信系统中,小区可以在一个传输PRACH的时域位置上,配置多个频分复用(FDM)的PRACH transmission occasion(物理随机接入信道传输机会,又或者叫PRACH Occasion,物理随机接入信道机会),可以简称为RO。在一个时刻,可以进行FDM的RO个数可以为:{1,2,4,8}。图2是本申请实施例提供的RO资源分布示意图之一,如图2所示,一个时刻,有8个RO资源分布在不同的频率上。
随机接入前导(Preamble)只能在参数PRACH ConfigurationIndex配置的时域资源(即RO资源)上传输,随机接入前导只能在参数prach-FDM配置的频域资源上传输,PRACH频域资源,其中M等于高层参数prach-FDM。在初始接入的时候,PRACH频域资源从initial active uplink bandwidth part(初始激活上行带宽部分)内频率最低RO资源开始升序编号,否则,PRACH频域资源从active uplink bandwidth part(激活上行带宽部分)内频率最低RO资源开始升序编号。如图2所示,RO资源按照频率从低到高,依次编号为RO#0~RO#7。
在通信系统中,RO和实际发送的SSB(SS/PBCH block,同步信号/物理广播信道块,有时候也直接简称为SS block,同步信号块)或信道状态信息参考信号(Channel State Information Reference Signal,CSI-RS)之间存在关联关系,也可以称为对应关系或映射关系。一个SSB或CSI-RS可能关联多个RO,也可以多个SSB或CSI-RS关联1个RO(这种情况下,不同SSB对应该RO的不同的Preamble码)。通常,基站可以采用不同的波束进行不同的SSB的发送,对应的UE在与SSB或CSI-RS关联的RO上发送Preamble,这样,UE根据接收到的下行波束/SSB的强度,选择信号好的SSB或CSI-RS 所关联的RO/"RO和Preamble组合”,进行msg1发送。这样,网络就可以根据接收到的Preamble的RO/"RO和Preamble组合",确定出UE所选择的SSB或CSI-RS。并在SSB或CSI-RS对应的下行波束上,发送Msg2,以确保下行信号的接收质量。
以图2为例,一个时刻上的FDM的RO数目为8个,实际传输的SSB数目为4个,即SSB#0,SSB#1,SSB#2,SSB#3,每个SSB关联2个RO。如果UE确定在SSB#0对应的RO上发送PRACH/msg1/Preamble,那么UE在RO#0和RO#1中选择一个RO进行PRACH的发送。
其中,PRACH的传输还可以称为msg1的传输,还可以称为Preamble的传输。
图3是本申请实施例提供的RO资源和SSB之间的映射示意图之一,如图3所示纵坐标为频域(frequency),横坐标为时域(Time),一个时刻上的FDM的RO数目为2个,实际传输的SSB数目为8个,即SSB#0,SSB#1,……,SSB#7,每2个SSB关联1个RO。多个SSB共享一个RO时,该多个SSB关联的Preamble集合是不同的,即同一个Preamble也不能同时归属不同SSB关联的Preamble集合:以图3中RO#0为例,其有60个与SSB关联的Preamble,其中index为0~29的Preamble与SSB#0关联,index为30~59的Preamble与SSB#1关联。
其中,图2和图3中每一个方格代表的均是RO,不是SSB,图中标示SSB是指这个RO和哪个或哪些SSB是关联的。
UE发送PRACH前,可以首先进行资源选择,首先根据接收到的SSB的RSRP,选择RSRP高于门限的SSB;如果有多个SSB的RSRP高于该门限,终端可以选择任一个RSRP高于门限的SSB;当没有RSRP高于门限的SSB,UE基于实现选择一个SSB。
基于网络侧设备(Network,NW)的配置,UE获得同步信号块(Synchronization Signal and PBCH block,SSB)和RO的对应关系;在终端 选择了SSB之后,所选SSB对应的RO被作为发送PRACH/Preamble的RO。如果所选SSB关联多个RO,终端可以选择其中一个RO进行PRACH/Preamble发送。
例如:在图2所示的例子中,假设UE选择了SSB#1,UE可以从RO#2和RO#3中选择一个进行PRACH/Preamble发送;在图3所示的例子中,假如UE选择了SSB#1,则UE可以选择与SSB#1关联的RO(RO#0或4)中距离当前时间最近的可用的RO进行PRACH/Preamble发送。
在所选择的RO中,UE在所选SSB关联的Preamble集合中选择一个Preamble进行PRACH的发送。如图3中,一个RO关联2个SSB,那么一个RO中与SSB关联的可用的Preamble集合中,Preamble会被分成两个子集,每个子集对应于一个SSB。UE可以选取对应于所选SSB的那个Preamble子集里的某个Preamble序列用于PRACH的发送。
现有的通信系统中,PRACH的重复发送的RO组合资源如何确定还是不清晰的,进而会导致PRACH重复传输无法实现,随机接入性能降低。
为了克服上述缺陷,本申请各实施例提供了一种PRACH传输方法、装置、终端及网络侧设备。
图4是本申请实施例提供的PRACH传输方法的流程示意图之一,如图4所示,该方法包括如下步骤400至步骤403:
步骤400,终端确定目标RO集合;
具体地,因为上行发送功率受限,终端无法在同一时间的FDM的RO资源上进行PRACH的发送,例如图3中SSB#0和SSB#2关联的RO是FDM的关系,所以需要限制终端进行PRACH重复传输选择的RO组合,避免终端选择FDM的RO资源进行PRACH重复发送。
具体地,可以将供同一个UE使用来进行PRACH重复传输的多个RO时频资源位置定义为一个RO集合(RO Set)。
因此,终端可以首先确定目标RO集合。
步骤401,所述终端确定目标Preamble;
具体地,PRACH重复传输是一种提升PRACH覆盖的方法,而现有的PRACH资源(包括RACH occasion,Preamble)选择,终端有较大的自由度。在支持了PRACH重复传输的情况下,需要对资源的组合进行一定程度的限制,使得网络可以知道从哪些RACH occasion上检出的哪些Preamble是由同一个UE发送的。
可选地,终端在确定目标RO集合后,进而可以基于目标RO集合确定目标Preamble;
比如终端可以确定目标RO集合中的某一个RO关联的Preamble作为目标Preamble;
例如:所述某一个RO可以是所述目标RO集合中,在时域上位于特定位次的RO,如按时域排序的第一个RO。
步骤402,所述终端基于目标RO集合,发送所述目标Preamble;
可选地,在终端确定了目标RO集合,以及目标Preamble后可以基于目标RO集合,发送所述目标Preamble;
比如,终端可以在目标RO集合中的一个或多个RO上,发送目标Preamble,以实现PRACH的重复传输;
步骤403,所述终端接收包含所述目标Preamble的索引的随机接入响应消息。
可选地,网络侧设备如果在目标RO集合上检测到目标Preamble发送,可以返回包含所述目标Preamble的索引的随机接入响应消息;
可选地,终端则可以接收包含目标Preamble的索引的随机接入响应消息。
具体地,支持物理随机接入信道(Physical Random Access Channel,PRACH)重复的终端可以选择相同或不同同步信号块(Synchronization Signal and PBCH block,SSB)或CSI-RS关联的物理随机接入信道传输机会(PRACH transmission occasion,RO)进行PRACH的重复发送。
具体地,本申请实施例中,网络侧设备可以将多个RO配置为一组,可以称为RO set或RO集合,供UE使用,终端可以从中确定出用于此次PRACH重复传输的目标RO集合。
可选地,UE可以使用目标RO集合(目标RO set)内的每一个RO进行目标Preamble发送;
可选地,网络侧设备可以在目标RO集合检测到目标Preamble后,发送随机接入响应消息,随机接入响应消息中包含目标Preamble的索引。
可选地,在目标RO集合中传输的目标Preamble对应不同的索引值的情况下,所述随机接入响应消息中包含的目标Preamble的索引,可以是在目标RO集合中预设时间位次的RO上接收到的目标Preamble的索引。
比如,在目标RO集合中传输的目标Preamble对应不同的索引值的情况下,所述随机接入响应消息中包含的目标Preamble的索引,可以是在目标RO集合中第一个RO或最后第一RO上接收到的Preamble的索引。
可选地,在目标RO集合中传输的目标Preamble对应相同的索引值的情况下,所述随机接入响应消息中包含的所述目标Preamble的索引是任何一个所述目标Preamble的索引。
在本申请实施例中,通过首先确定目标RO集合和在目标RO集合上传输的目标Preamble,并在目标RO集合上完成PRACH重复传输,可以明确PRACH的重复发送的RO组合资源,提高随机接入性能。
可选地,一个备选RO集合包括多个RO,所述备选RO集合中任意一个RO属于一个或多个备选RO集合,所述目标RO集合是所有所述备选RO集合中的一项。
可选地,在确定目标RO集合时,可以从一个或多个备选RO集合中确定一个目标RO集合;
可选地,一个备选RO集合中可以包括多个RO;
图5是本申请实施例提供的RO资源和SSB之间的映射示意图之二,如 图5所示,纵坐标为频域(Frequent),横坐标为时域(Time),有些RO集合的设计方法会导致较长的时延。因为UE发起RACH时,RO set#1/2已经开始,所以,UE必须等到当前RO set完全结束,才能在下一个RO set(如RO set#3/4)发起RACH。等待时间较长。
因此,在进行RO set规划时,一个RO可以属于N个RO set(N为大于或等于1的自然数);即RO集合在时域可以重叠(overlap)。
可选地,一个备选RO集合中任意一个RO可以属于一个或多个备选RO集合。
可选地,一个所述RO在任意一个所属的备选RO集合中对应一个或多个备选Preamble;
一个所述RO在所属的多个不同备选RO集合中分别对应的备选Preamble的索引不相同。
可选地,当一个RO属于不同备选RO set时,该RO可用的Preamble(即该RO对应的备选Preamble)的index的集合在不同的RO set里不同,即一个RO对应的可用Preamble集合可以被分为N组,每组Preamble对应一个RO set。
可选地,一个所述RO在任意一个所属的备选RO集合中可以对应一个或多个备选Preamble,且该RO在不同的备选RO集合中对应的备选Preamble的索引不相同,即,若把该RO在一个所属的备选RO集合中对应的备选Preamble的索引看做一个Preamble索引集合,则该RO在其所属的不同的备选RO集合中分别对应的Preamble索引集合无重合或无相同的元素(即无重合或无相同的Preamble索引)。
比如,一个RO可以属于备选RO集合1和备选RO集合2,该RO在备选RO集合1可以对应备选Preamble0至Preamble20;该RO在备选RO集合2可以对应备选Preamble21至Preamble30。
举例来说一个RO一共有64个可用Preamble,即Preamble 0~63,该RO 所在的备选RO集合包括RO set#1、RO set#2、RO set#3和RO set#4;则Preamble 0~15可以分配给RO set#1;Preamble 16~31可以分配给RO set#2;Preamble 32~47可以分配给RO set#3;Preamble 48~63可以分配给RO set#4。
本申请实施例中的RO集合定义方法,可以有效降低RACH重复传输过程中的时延。
可选地,所述终端确定目标RO集合,包括:
所述终端确定第一信号,所述第一信号包括目标SSB和/或目标CSI-RS;
所述终端确定与所述第一信号相对应的目标RO;
所述终端从一个或多个备选目标RO集合中,确定一个备选目标RO集合作为所述目标RO集合;其中,所述备选目标RO集合为包括所述目标RO的备选RO集合;
其中,所述第一信号与所述目标RO之间的对应关系是预定义的或预先设置的或基于网络侧的指示确定的。
可选地,终端在确定目标RO集合时,可以首先接收网络侧设备发送的RO集合配置消息,该RO集合配置消息可以指示备选RO集合和各RO之间的映射关系;
可选地,RO集合配置消息可以包括以下至少一项:
备选RO集合包含的RO数量;
备选RO集合包含的RO的相对时间位置信息;
备选RO集合内包含的RO的相对频率位置信息;
备选RO集合内包含的RO所关联的SSB的编号(或用于计算SSB的编号的公式);
备选RO集合内包含的RO的编号(或用于计算RO的编号的公式);
备选RO集合内包含的RO的时频资源位置信息(或用于计算RO的时频资源位置信息的公式);
备选RO集合可以使用的备选Preamble的编号(或用于计算可用备选 Preamble的编号的公式)。
可选地,终端在接收到了RO集合配置消息后,可以进一步进行第一信号的选择;
可选地,终端可以基于RSRP进行第一信号的选择,即如果有至少一个第一信号的RSRP高于门限,从RSRP高于门限的第一信号中选择一个第一信号;否则,基于UE实现,选择一个第一信号;
可选地,第一信号可以包括目标SSB;
可选地,第一信号可以包括目标CSI-RS;
可选地,本申请各实施例中以第一信号为目标SSB的举例,也均适用于第一信号包括目标CSI-RS的情况。以第一信号为目标SSB为例,终端可以基于RSRP进行目标SSB选择,即如果有至少一个SSB的RSRP高于门限,从RSRP高于门限的SSB中选择一个SSB作为目标SSB;否则,基于UE实现,选择一个目标SSB。
可选地,终端在确定第一信号后,可以基于预定义的或预先设置的或基于网络侧的指示的第一信号和RO之间的对应关系,确定与所选择的第一信号相关联的目标RO;
以第一信号为目标SSB为例,终端在确定目标SSB后,可以基于预定义的或预先设置的或基于网络侧的指示的各SSB分别和各RO之间的对应关系,确定与目标SSB相对应的目标RO。
图6是本申请实施例提供的RO资源和SSB之间的映射示意图之三,如图6所示,纵坐标为频域(Frequent),横坐标为时域(Time),以第一信号为目标SSB,该目标SSB为SSB#6为例,终端可以基于SSB和各个RO之间的对应关系,确定一个与SSB#6相对应的目标RO,可以是选择图6中第二行第四个RO为目标RO。
可选地,终端在确定目标RO后,可以进一步确定目标RO所在的备选目标RO集合,比如图6中的目标RO所在的备选目标RO集合,图6中一种 线型的框所框中的RO组成一个备选目标RO集合,比如实线框对应的备选目标RO集合,可以称为RO set#1,短线型虚线框对应的备选目标RO集合,可以称为RO set#2,点型虚线框对应的备选目标RO集合,可以称为RO set#3,点线组合型虚线框对应的备选目标RO集合,可以称为RO set#4;这四个备选目标RO集合中均包含所选择的那一个与SSB#6相对应的目标RO。
可选地,终端可以从一个或多个备选目标RO集合中,确定一个备选目标RO集合作为所述目标RO集合;
以选择图6中第二行第四个RO为目标RO为例,图6中包括4个备选目标RO集合,则终端可以选择这4个备选目标RO集合中的任意一个作为所述目标RO集合。
可选地,所述终端确定目标RO集合,包括:
所述终端确定第一信号,所述第一信号包括目标SSB和/或目标CSI-RS;
所述终端从一个或多个备选目标RO集合中,确定一个备选目标RO集合作为所述目标RO集合;其中,所述备选目标RO集合为与所述第一信号相关联的备选RO集合;
其中,所述第一信号与所述备选目标RO集合之间的关联关系是预定义的或预先设置的或基于网络侧的指示确定的。
可选地,终端在确定目标RO集合时,可以首先接收网络侧设备发送的RO集合配置消息,该RO集合配置消息可以指示备选RO集合和各RO之间的映射关系;
可选地,RO集合配置消息可以包括以下至少一项:
备选RO集合包含的RO数量;
备选RO集合包含的RO的相对时间位置信息;
备选RO集合内包含的RO的相对频率位置信息;
备选RO集合内包含的RO所关联的SSB的编号(或用于计算SSB的编号的公式);
备选RO集合内包含的RO的编号(或用于计算RO的编号的公式);
备选RO集合内包含的RO的时频资源位置信息(或用于计算RO的时频资源位置信息的公式);
备选RO集合可以使用的备选Preamble的编号(或用于计算可用备选Preamble的编号的公式)。
可选地,终端在接收到了RO集合配置消息后,可以进行第一信号的选择;
可选地,第一信号可以包括目标SSB;
可选地,第一信号可以包括目标CSI-RS;
可选地,本申请各实施例中以第一信号为目标SSB的举例,也均适用于第一信号包括目标CSI-RS的情况。
可选地,终端可以基于RSRP进行第一信号的选择,即如果有至少一个第一信号的RSRP高于门限,从RSRP高于门限的第一信号中选择一个第一信号;否则,基于UE实现,选择一个第一信号;
以第一信号为目标SSB为例,终端可以基于RSRP进行目标SSB选择,即如果有至少一个SSB的RSRP高于门限,从RSRP高于门限的SSB中选择一个SSB作为目标SSB;否则,基于UE实现,选择一个目标SSB。
可选地,终端在确定第一信号后,可以基于预定义的或预先设置的或基于网络侧的指示的第一信号和备选RO集合之间的对应关系,确定与所选择的第一信号相关联的一个或多个备选RO集合作为备选目标RO集合;
可选地,终端可以从一个或多个备选目标RO集合中,确定一个备选目标RO集合作为所述目标RO集合;
以目标SSB为SSB#6为例,可以选择图6中RO set#1至RO set#4为与目标SSB关联的备选目标RO集合,终端可以选择这4个备选目标RO集合中的任意一个作为所述目标RO集合。
可选地,所述终端从一个或多个备选目标RO集合中,确定一个备选目 标RO集合作为所述目标RO集合,包括:
所述终端在所述一个或多个备选目标RO集合中,确定一个尚未开始的备选目标RO集合作为所述目标RO集合。
可选地,终端可以在一个或多个备选目标RO集合中,确定一个尚未开始的备选目标RO集合作为所述目标RO集合。
例如,终端可以确定一个与SSB#6相对应的目标RO,并确定目标RO所在的备选目标RO集合RO set#1至RO set#4,则可以在RO set#1至RO set#4中确定一个尚未开始的备选目标RO集合作为所述目标RO集合。
例如,终端可以确定与SSB#6相对应的备选目标RO集合RO set#1至RO set#4,可以在RO set#1至RO set#4中确定一个尚未开始的备选目标RO集合作为所述目标RO集合。
可选地,所述终端在所述一个或多个备选目标RO集合中,确定一个尚未开始的备选目标RO集合作为所述目标RO集合,包括:
所述终端在所述一个或多个备选目标RO集合中,确定开始时间与当前时刻最接近的备选目标RO集合作为所述目标RO集合,或确定开始时间在所有尚未开始的备选目标RO集合中最早的备选目标RO集合作为所述目标RO集合。
可选地,终端可以选择开始时间距离当前时刻最近的备选目标RO集合作为所述目标RO集合;
可选地,终端可以选择开始时间在所有尚未开始的备选目标RO集合中最早的备选目标RO集合作为所述目标RO集合。
以图6中的RO set#1至RO set#4为例,若当前时刻为第一时刻,则终端可以选择RO set#1作为所述目标RO集合;
以图6中的RO set#1至RO set#4为例,若当前时刻为第二时刻,则终端可以选择RO set#2作为所述目标RO集合;
以图6中的RO set#1至RO set#4为例,若当前时刻为第三时刻,则终端 可以选择RO set#3作为所述目标RO集合;
以图6中的RO set#1至RO set#4为例,若当前时刻为第四时刻,则终端可以选择RO set#4作为所述目标RO集合。
可选地,当前时刻可以是终端确定目标RO集合的时刻。
在本申请实施例中,不论终端在什么时刻发起RACH,其都可以在下一个RO到来的时候,开始进行RACH重复发送过程。所需要等待的时间都很短,有效降低了进行RACH发送前的等待时延。
可选地,所述终端从一个或多个备选目标RO集合中,确定一个备选目标RO集合作为所述目标RO集合,包括:
所述终端确定所述一个或多个备选目标RO集合中的第一RO集合作为所述目标RO集合,其中,在所述第一RO集合包含的多个RO中,所述目标RO位于特定时间位次。
可选地,终端可以在一个或多个备选目标RO集合中,选择目标RO在其所包含的RO中位于特定时间位次的备选目标RO集合作为目标RO集合;
可选地,可以认为在一个或多个备选目标RO集合中,满足目标RO在其所包含的RO中位于特定时间位次的备选目标RO集合称为第一RO集合;
可选地,可以确定所述一个或多个备选目标RO集合中的第一RO集合作为所述目标RO集合。
例如,特定时间位次可以是指目标RO是第一RO集合所包含的RO中的第一个RO;
例如,特定时间位次可以是指目标RO是第一RO集合所包含的RO中的第二个RO;
例如,特定时间位次可以是指目标RO是第一RO集合所包含的RO中的第三个RO;
例如,特定时间位次可以是指目标RO是第一RO集合所包含的RO中的第四个RO;
例如,特定时间位次可以是指目标RO是第一RO集合所包含的RO中的最后一个RO;
图7是本申请实施例提供的RO资源和SSB之间的映射示意图之四,如图7所示,以特定时间位次可以是指目标RO是第一RO集合所包含的RO中的第一个RO为例,若UE选择的目标SSB为SSB#0,则目标RO为SSB#0对应的RO,目标RO为RO set#1中的第一个RO,则UE可以选择图7中的RO set#1作为目标RO集合,进行PRACH重复发送;
若UE选择的目标SSB为SSB#2,则目标RO为SSB#2对应的RO,目标RO为RO set#2中的第一个RO,则UE可以选择图7中的RO set#2作为目标RO集合,进行PRACH重复发送;
若UE选择的目标SSB为SSB#4,则目标RO为SSB#4对应的RO,目标RO为RO set#3中的第一个RO,则UE可以选择图7中的RO set#3作为目标RO集合,进行PRACH重复发送;
若UE选择的目标SSB为SSB#6,则目标RO为SSB#6对应的RO,目标RO为RO set#4中的第一个RO,则UE可以选择图7中的RO set#4作为目标RO集合,进行PRACH重复发送。
在本申请实施例中,通过确定目标RO位于特定时间位次的目标RO集合进行PRACH重复发送,则网络侧设备在目标RO集合接收Preamble后可以直接确定目标RO,进而可以直接确定第一信号,进而可以在第一信号对应的波束上进行Msg2的发送。
可选地,所述终端从一个或多个备选目标RO集合中,确定一个备选目标RO集合作为所述目标RO集合,包括:
所述终端在所述一个或多个备选目标RO集合中,确定一个符合第一条件的备选目标RO集合作为所述目标RO集合;
其中,所述符合第一条件的备选目标RO集合中的各个RO所关联的一个或多个第一信号中的至少一个第一信号相同。
可选地,终端在所述一个或多个备选目标RO集合中,确定符合第一条件的备选目标RO集合作为所述目标RO集合,其中,符合第一条件的备选目标RO集合中的各个RO所关联的一个或多个第一信号中的至少一个第一信号相同。
可选地,为了支持PRACH repetition只发生在相同第一信号关联的RO上,RO set确定可以由映射(map)到相同第一信号的RO组成。RO set的大小可以由RRC信令配置。
可选地,以第一信号为SSB为例,为了支持PRACH repetition只发生在相同SSB beam关联的RO上,RO set确定可以由映射到相同SSB的RO组成。RO set的大小(包含RO的数量)可以由RRC信令配置。
图8是本申请实施例提供的RO资源和SSB之间的映射示意图之五,如图8所示,RO set1,RO set2,RO set3,和RO set4,可以分别由分别映射到SSB0,SSB2,SSB4,SSB6的两个RO组成,从而支持重复两次的PRACH发送。
可选地,还可以限定PRACH mask应用于一组RO,并且这一组RO是映射到相同第一信号上,只有PRACH mask允许的这一组RO才用于做PRACH repetition;当支持重复(repetition)和不支持repetition的PRACH资源共享的情况下,引入PRACH mask,可以减少支持repetition的PRACH发送对不支持repetition的PRACH发送的影响。
图9是本申请实施例提供的RO资源和SSB之间的映射示意图之六,如图9所示,以第一信号是目标SSB为例,对于每个SSB,可以限定只有偶数(第一个RO编号为0,对映射到相同SSB的RO独立编号)RO才用于PRACH repetition。
可选地,还可以限定PRACH mask应用于一组RO,并且这一组RO是映射到相同SSB上,只有PRACH mask允许的这一组RO才用于做PRACH repetition.这样,当支持repetition和不支持repetition的PRACH资源共享的情 况下,引入PRACH mask,可以减少支持repetition的PRACH发送对不支持repetition的PRACH发送的影响。
例如,对于每个SSB,可以限定只有偶数(第一个RO编号为0,对映射到相同SSB的RO独立编号)RO才用于PRACH repetition。
例如,对于每个SSB,可以限定只有奇数(第一个RO编号为0,对映射到相同SSB的RO独立编号)RO才用于PRACH repetition。
例如,对于每个SSB,可以限定只有满足预设规律的(第一个RO编号为0,对映射到相同SSB的RO独立编号)RO才用于PRACH repetition。
因此,在终端确定目标SSB后,可以进一步确定相关联的目标RO set,或确定相关联的目标RO进一步确定目标RO set,目标RO set中的所有RO是映射到相同SSB,比如如图9中的第二行第一个RO和第五个RO可以组成RO set#1,与SSB0相关联;第二行第二个RO和第六个RO可以组成RO set#2,与SSB2相关联。第二行其他RO可以被限定为不用于PRACH repetition。
可选地,为了支持PRACH repetition只发生在相同第一信号关联的RO上,RO set确定可以由映射到相同第一信号的RO组成。RO set的大小可以有RRC信令配置。
可选地,以第一信号是目标SSB为例,为了支持PRACH repetition只发生在相同SSB关联的RO上,RO set确定可以由映射到相同SSB的RO组成。RO set的大小可以有RRC信令配置。
图10是本申请实施例提供的RO资源和SSB之间的映射示意图之七,如图10所示,以第一信号是目标SSB为例,RO set1和RO set2可以分别由映射到相邻SSB0的两个RO组成,从而支持重复两次的PRACH发送;其中RO set1和RO set2共享一个RO。
可选地,所述终端确定目标Preamble,包括:
所述终端在一个或多个备选Preamble中选择在第一RO上发送的第一目标Preamble,其中,所述一个或多个备选Preamble为所述第一RO在所述目 标RO集合中对应的Preamble,所述第一RO为所述目标RO或所述目标RO集合中预设时间位次的RO;
所述终端基于所述第一目标Preamble的索引和第一规则,确定在所述目标RO集合内的第二RO上发送的第二目标Preamble;
其中,所述第二RO包括所述目标RO集合中除了所述第一RO以外的其他RO,所述目标Preamble包括所述第一目标Preamble和所述第二目标Preamble;
所述第一RO在所述目标RO集合中和所述一个或多个备选Preamble之间的对应关系是协议预定义的或网络侧设备指示的或预设置的。
具体地,可以配置或规定每一个RO的Preamble组与所属RO set的对应关系;即一个RO在所属的不同的RO set内分别对应的Preamble组;
可选地,可以在确定目标Preamble时,首先确定一个RO(即第一RO)上发送的第一目标Preamble,再基于第一目标Preamble和第一规则确定在目标RO集合上其他RO上发送的第二目标Preamble;
可选地,第一RO可以是目标RO;
可选地,第一RO可以是预设时间位次的RO,比如是目标RO Set中的第一RO;
可选地,在确定第一RO上发送的第一目标Preamble时,可以首先确定第一RO在目标RO集合中对应的一个或多个备选Preamble,进而在该一个或多个备选Preamble中选择要传输的第一目标Preamble;
可选地,在从一个或多个备选Preamble中确定第一目标Preamble时,可以是基于预定义的或预设置的或高层指示的或网络侧指示的选择方式确定,比如选择方式可以是随机选择,则可以是从一个或多个备选Preamble中随机确定一个备选Preamble作为第一目标Preamble;比如选择方式可以是选择一个或多个备选Preamble中索引值最小或最大的备选Preamble作为第一目标Preamble;任意可以实现从一个或多个备选Preamble中确定第一目标Preamble 的选择方式均适用于本申请实施例,在此不作限定。
例如,例如一个RO属于2个RO set,其0~15号preamble属于RO set0;16~31号preamble属于RO set1;
如果UE选择了RO set0为目标RO集合,则UE可以确定RO set中第一RO比如第一个RO中发送的preamble,例如3号preamble;后继RO即第二RO中发送的preamble与第一RO中发送的preamble有对应关系。
可选地,所述终端确定目标Preamble,包括:
所述终端在一个或多个备选Preamble中选择在第一RO上发送的第一目标Preamble,其中,所述一个或多个备选Preamble是所述第一RO在所述目标RO集合中对应的备选Preamble,或所述一个或多个备选Preamble是所述第一RO在所述目标RO集合中对应的所有备选Preamble中与所述第一信号相对应的备选Preamble,所述第一RO为所述目标RO集合中预设时间位次的RO;
所述终端基于所述第一目标Preamble的索引和第一规则,确定在所述目标RO集合内的第二RO上发送的第二目标Preamble;
其中,所述第二RO包括所述目标RO集合中除了所述第一RO以外的其他RO,所述目标Preamble包括所述第一目标Preamble和所述第二目标Preamble;
所述第一RO在所述目标RO集合中与所述一个或多个备选Preamble之间的对应关系是协议预定义的或网络侧设备指示的或预设置的;所述第一RO在所述目标RO集合中对应的所有备选Preamble中的所述一个或多个备选Preamble与所述第一信号之间的对应关系是协议预定义的或网络侧设备指示的或预设置的。
具体地,可以配置或规定每一个RO的Preamble组与所属RO set的对应关系;即一个RO在所属的不同的RO set内分别对应的Preamble组;
可选地,对于一个RO Set来说,如果关联有两个第一信号,则该RO Set 中的任意一个RO在该RO Set中对应的所有Preamble可以分为两组,分别与两个第一信号相对应。
可选地,可以在确定目标Preamble时,首先确定一个RO(即第一RO)上发送的第一目标Preamble,再基于第一目标Preamble和第一规则确定在目标RO集合上其他RO上发送的第二目标Preamble;
可选地,在从一个或多个备选Preamble中确定第一目标Preamble时,可以是基于预定义的或预设置的或高层指示的或网络侧指示的选择方式确定,比如选择方式可以是随机选择,则可以是从一个或多个备选Preamble中随机确定一个备选Preamble作为第一目标Preamble;比如选择方式可以是选择一个或多个备选Preamble中索引值最小或最大的备选Preamble作为第一目标Preamble;任意可以实现从一个或多个备选Preamble中确定第一目标Preamble的选择方式均适用于本申请实施例,在此不作限定。
可选地,第一RO可以是预设时间位次的RO,比如是目标RO Set中的第一RO;
可选地,以第一信号是目标SSB为例,在目标RO Set仅与一个SSB相关联的情况下,在确定第一RO上发送的第一目标Preamble时,可以首先确定第一RO在目标RO集合中对应的所有备选Preamble,进而在这些备选Preamble中选择要传输的第一目标Preamble;
可选地,以第一信号是目标SSB为例,在目标RO Set与2个SSB相关联的情况下,在确定第一RO上发送的第一目标Preamble时,可以首先确定第一RO在目标RO集合中对应的所有备选Preamble,进而在这些备选Preamble中确定与目标SSB对应的一个或多个备选Preamble,进而在所述一个或多个备选Preamble选择要传输的第一目标Preamble
例如,例如一个RO属于2个RO set,其0~15号preamble属于RO set0;16~31号preamble属于RO set1;又由于RO set0与SSB1和SSB2相关联,则0~7号preamble属于RO set0且与SSB1关联,8~15号preamble属于RO set0 且与SSB2关联;
如果UE选择了RO set0为目标RO集合,选择可SSB1为目标SSB,则UE可以在0~7号preamble中确定RO set中第一RO,比如第一个RO中发送的preamble,例如3号preamble;后继RO即第二RO中发送的preamble与第一RO中发送的preamble有对应关系。
可选地,所述终端确定目标Preamble,包括:
所述终端在一个或多个备选Preamble中,选择所述目标Preamble;
其中,所述一个或多个备选Preamble是与所述目标RO集合相对应的备选Preamble,所述一个或多个备选Preamble与所述目标RO集合之间的对应关系是协议预定义的或网络侧设备指示的或预设置的;或,所述一个或多个备选Preamble是与所述第一信号相对应的备选Preamble,所述一个或多个备选Preamble与所述第一信号之间的对应关系是协议预定义的或网络侧设备指示的或预设置的;或所述一个或多个备选Preamble是与所述目标RO集合对应的所有备选Preamble中与所述第一信号相对应的备选Preamble,在与所述目标RO集合对应的所有备选Preamble中的所述一个或多个备选Preamble与所述第一信号之间的对应关系是协议预定义的或网络侧设备指示的或预设置的。
具体地,可以直接设置各备选RO集合和所有备选Preamble之间的对应关系;若确定目标RO集合后,可以直接从与目标RO集合相对应的一个或多个备选Preamble,并可以从一个或多个备选Preamble中确定目标Preamble;
可选地,在从一个或多个备选Preamble中确定目标Preamble时,可以是基于预定义的或预设置的或高层指示的或网络侧指示的选择方式确定,比如选择方式可以是随机选择,则可以是从一个或多个备选Preamble中随机确定一个备选Preamble作为目标Preamble;比如选择方式可以是选择一个或多个备选Preamble中索引值最小或最大的备选Preamble作为目标Preamble;任意可以实现从一个或多个备选Preamble中确定目标Preamble的选择方式均适用 于本申请实施例,在此不作限定。
比如,可以预设RO set0对应0~15号preamble,RO set1对应16~30号preamble,RO set2对应31~45号preamble;在确定目标RO集合为RO set0后,可以从0~15号preamble中确定一个备选preamble作为目标preamble,比如确定0号preamble作为目标preamble。
具体地,可以直接设置可能的第一信号和所有备选Preamble之间的对应关系;若确定第一信号后,可以直接从与第一信号相对应的一个或多个备选Preamble,并可以从一个或多个备选Preamble中确定目标Preamble;
可选地,在从一个或多个备选Preamble中确定目标Preamble时,可以是基于预定义的或预设置的或高层指示的或网络侧指示的选择方式确定,比如选择方式可以是随机选择,则可以是从一个或多个备选Preamble中随机确定一个备选Preamble作为目标Preamble;比如选择方式可以是选择一个或多个备选Preamble中索引值最小或最大的备选Preamble作为目标Preamble;任意可以实现从一个或多个备选Preamble中确定目标Preamble的选择方式均适用于本申请实施例,在此不作限定。
比如,以第一信号为SSB为例,可以预设SSB0对应0~15号preamble,SSB1对应16~30号preamble,SSB2对应31~45号preamble;在确定目标RO集合为SSB0后,可以从0~15号preamble中确定一个备选preamble作为目标preamble,比如确定0号preamble作为目标preamble。
具体地,可以预设目标RO集合在不同的可能的第一信号的情况下分别对应的备选Preamble;若确定目标RO集合和第一信号后,可以直接确定与目标RO集合所有相对应的备选Preamble中,进一步与第一信号相对应的一个或多个备选Preamble,并可以从一个或多个备选Preamble中确定目标Preamble;
例如,备选RO集合可以包括RO set0对应0~15号preamble,RO set1对应16~30号preamble,RO set2对应31~45号preamble,可能的第一信号可 以是SSB0和SSB1,可以预设:在RO set0对应0~15号preamble的情况下,若第一信号为SSB0,则从0~7号preamble中确定目标preamble,若第一信号为SSB1,则从8~16号preamble中确定目标preamble;在RO set1对应16~30号preamble的情况下,若第一信号为SSB0,则从16~23号preamble中确定目标preamble,若第一信号为SSB1,则从24~30号preamble中确定目标preamble;在RO set2对应31~45号preamble的情况下,若第一信号为SSB0,则从31~37号preamble中确定目标preamble,若第一信号为SSB1,则从38~45号preamble中确定目标preamble;若确定目标RO集合为RO set2,第一信号为SSB0,则可以从31~37号preamble中确定目标preamble,比如可以确定目标preamble为31号preamble。
可选地,多个所述目标Preamble的索引遵循第一规则;
其中,多个所述目标Preamble的索引遵循第一规则,包括以下至少一项:
多个所述目标Preamble的索引相同;
多个所述目标Preamble的索引之间存在第一数学关系;
所述第一数学关系是预定义的,或预先设置的,或网络侧指示的。
为了克服现有技术中网络侧设备无法确定重复的PRACH传输是否来自同一个UE,另外也无法做接收合并以提升接收性能。因此,本申请实施例中,网络侧设备可以将多个RO配置为一组(RO set/RO集合),供UE使用。UE可以使用RO set内的每一个RO进行Preamble发送,在每个RO内发送的Preamble的index可以符合预先配置或协议规定的第一规则(例如:发送的Preamble的index是相同的,或基于RO集合内第一个RO发送的Preamble的index,可以算出后继各RO内应该发送的Preamble index等等),使得网络侧设备可以知道哪些Preamble是属于同一个UE发送的。也可以是网络侧设备可以在一个目标RO集合中接收Preamble并对在同一个目标RO集合接收到的Preamble进行合并后解码,可以接收性能。
图11是本申请实施例提供的RO资源和SSB之间的映射示意图之八,如 图11所示,纵坐标为频域(Frequent),横坐标为时域(Time),UE选择目标RO集合为RO set#0,则UE可以在RO set#0中的全部RO内发送Preamble,比如可以在RO set#0中与SSB#0/2/4/6对应的RO内发送Preamble,选择的Preamble index为X。那么,网络侧设备可以假设在RO set#0的各RO上收到的编号相同Preamble index来自一个UE。网络侧设备还可以对RO set#0的四个RO上收到的信号进行合并解码,以提高解码的成功率。
可选地,要进行传输的多个所述目标Preamble的索引可以遵循第一规则,可以是多个目标Preamble的索引相同;
可选地,要进行传输的多个所述目标Preamble的索引可以遵循第一规则,可以是多个目标Preamble的索引之间存在第一数学关系,其中,第一数学关系是预定义的,或预先设置的,或网络侧指示的。
比如,要进行传输的多个所述目标Preamble的索引可以是一个等差数列,在确定目标RO Set中的第一个RO发送的Preamble的index后,可以基于该等差数列的规律,直接确定目标RO Set中的后续各RO内应该发送的Preamble index。
可选地,UE可以基于所选第一信号和所选目标RO,确定在所选目标RO上待发目标Preamble的索引,再依据待发目标Preamble的索引,确定在目标RO集合内其他RO上待发目标Preamble的索引。
本申请实施例中,假设规定一个UE在目标RO set内所有RO发送的Preamble的索引是相同的,比如RO set#1内各个RO发送的Preamble的索引均为Preamble 0~15中的一个,RO set#2内各个RO发送的Preamble的索引均为Preamble 16~31中的一个,RO set#3内各个RO发送的Preamble的索引均为Preamble 32~47中的一个,RO set#4内各个RO发送的Preamble的索引均为48~63中的一个;则网络侧设备可以将RO set#1的四个RO内收到的信号合并,检测是否有Preamble 0~15发送;NW将RO set#2的四个RO内收到的信号合并,检测是否有Preamble 16~31发送;NW将RO set#3的四个RO 内收到的信号合并,检测是否有Preamble 32~47发送;NW将RO set#4的四个RO内收到的信号合并,检测是否有Preamble 48~63发送。可以有效提高接收性能。
可选地,所述终端基于目标RO集合,发送所述目标Preamble,包括:
所述终端基于所述目标RO集合中的全部RO,发送所述目标Preamble。
可选地,在确定目标RO集合后,可以在目标RO集合中的全部RO上,发送目标Preamble。
可选地,部分或全部备选RO集合的RO中,属于相同备选RO集合的RO所关联的第一信号相同。
可选地,部分备选RO集合所包含的所有RO中,属于相同备选RO集合的RO所关联的第一信号可以相同;
可选地,全部备选RO集合所包含的所有RO中,属于相同备选RO集合的RO所关联的第一信号可以相同。
可选地,部分或全部备选RO集合的RO中,属于相同备选RO集合的RO所关联的第一信号不相同。
可选地,部分备选RO集合所包含的所有RO中,属于相同备选RO集合的RO所关联的第一信号可以不相同;
可选地,全部备选RO集合所包含的所有RO中,属于相同备选RO集合的RO所关联的第一信号可以不相同。
可选地,一个备选RO集合中的全部或部分RO位于不同频率;其中,所述全部或部分RO各自分别对应的频率是网络侧设备指示的。
可选地,一个备选RO集合中的全部或部分RO可以位于不同频率;
可选地,一个备选RO集合中的全部或部分RO分别位于的频率大小可以是网络侧设备指示的。
图12是本申请实施例提供的RO资源和SSB之间的映射示意图之九,如图12所示,属于一个RO set的RO的频率位置可以不相同;在图12中,同 一图案填充的RO中,四个时间相邻的组成一个RO set;
例如,左下斜线图案填充的RO中,RO set1:有index=1~4四个RO组成;
RO set2:有index=2~5四个RO组成;
RO set3:有index=3~6四个RO组成;
RO set4:有index=4~7四个RO组成;
RO set5:有index=5~8四个RO组成;
.......
其中,每个RO属于四个RO set;例如:index为4的RO属于RO set1~4,index为5的RO属于RO set2~5等等。所以,index为4的RO中,有四组不index overlap的Preamble,分别对应4个RO set。UE通过发送对应Preamble,指示其所选的RO set。
图13是本申请实施例提供的RO资源和SSB之间的映射示意图之十,如图13所示,同一图案填充的RO中,四个时间相邻的组成一个RO set;
例如:左下斜线图案填充的RO中:
RO set1:有index=1~4四个RO组成;
RO set2:有index=2~5四个RO组成;
RO set3:有index=3~6四个RO组成;
RO set4:有index=4~7四个RO组成;
RO set5:有index=5~8四个RO组成;
.......
每个RO属于四个RO set;例如:index为4的RO属于RO set1~4,index为5的RO属于RO set2~5等等。所以,index为4的RO中,有四组不index overlap的Preamble,分别对应4个RO set。UE通过发送对应Preamble,指示其所选的RO set。
可选地,一个备选RO集合中的全部RO位于相同频率;其中,所述相 同频率是网络侧设备指示的。
可选地,一个备选RO集合中的全部RO可以位于相同频率;
可选地,一个备选RO集合中的全部RO位于的频率大小可以是所述相同频率是网络侧设备指示的。
可选地,不同的备选RO集合包含的RO数量不相同。
可选地,不同的备选RO集合包含的RO数量可以不相同。
可选地,不同的备选RO集合包含的RO数量可以相同。
在本申请实施例中,通过首先确定目标RO集合和在目标RO集合上传输的目标Preamble,并在目标RO集合上完成PRACH重复传输,可以明确PRACH的重复发送的RO组合资源,实现PRACH的重复传输,提高随机接入性能。
图14是本申请实施例提供的PRACH传输方法的流程示意图之二,如图14所示,该方法包括如下步骤:
步骤1400,网络侧设备在目标RO集合上接收目标Preamble;
步骤1410,所述网络侧设备发送包含所述目标Preamble的索引的随机接入响应消息。
具体地,网络侧设备可以将多个RO配置为一组,可以称为RO set或RO集合,供UE使用,终端可以从中确定出用于此次PRACH重复传输的目标RO集合。
可选地,UE可以使用目标RO集合(目标RO set)内的每一个RO进行目标Preamble发送;
可选地,网络侧设备可以接收终端在目标RO集合上发送的目标Preamble;
可选地,网络侧设备可以在目标RO集合接收到目标Preamble后,发送随机接入响应消息,随机接入响应消息中包含目标Preamble的索引。
在本申请实施例中,通过首先确定目标RO集合和在目标RO集合上传输的目标Preamble,并在目标RO集合上完成PRACH重复传输,可以明确 PRACH的重复发送的RO组合资源,实现PRACH的重复传输,提高随机接入性能。
可选地,所述网络侧设备发送包含所述目标Preamble的索引的随机接入响应消息,包括:
所述网络侧设备确定在所述目标RO集合中与所述目标Preamble对应的目标RO;
所述网络侧设备确定与所述目标RO相对应的第一信号;
所述网络侧设备在所述第一信号对应的波束上发送所述包含所述目标Preamble的索引的随机接入响应消息。
可选地,网络侧设备可以首先给终端发送RO集合配置消息,该RO集合配置消息可以指示备选RO集合和各RO之间的映射关系;
可选地,RO集合配置消息可以包括以下至少一项:
备选RO集合包含的RO数量;
备选RO集合包含的RO的相对时间位置信息;
备选RO集合内包含的RO的相对频率位置信息;
备选RO集合内包含的RO所关联的SSB的编号(或用于计算SSB的编号的公式);
备选RO集合内包含的RO的编号(或用于计算RO的编号的公式);
备选RO集合内包含的RO的时频资源位置信息(或用于计算RO的时频资源位置信息的公式);
备选RO集合可以使用的备选Preamble的编号(或用于计算可用备选Preamble的编号的公式)。
可选地,终端在接收到了RO集合配置消息后,可以进一步进行第一信号的选择;
可选地,第一信号可以包括目标SSB;
可选地,第一信号可以包括目标CSI-RS;
可选地,本申请各实施例中以第一信号为目标SSB的举例,也均适用于第一信号包括目标CSI-RS的情况。
可选地,终端可以基于RSRP进行第一信号的选择,即如果有至少一个第一信号的RSRP高于门限,从RSRP高于门限的第一信号中选择一个第一信号;否则,基于UE实现,选择一个第一信号;
以第一信号为目标SSB为例,终端可以基于RSRP进行目标SSB选择,即如果有至少一个SSB的RSRP高于门限,从RSRP高于门限的SSB中选择一个SSB作为目标SSB;否则,基于UE实现,选择一个目标SSB。
可选地,终端在确定第一信号后,可以基于预定义的或预先设置的或基于网络侧的指示的第一信号和RO之间的对应关系,确定与所选择的第一信号相关联的目标RO;
以第一信号为目标SSB为例,终端在确定目标SSB后,可以基于预定义的或预先设置的或基于网络侧的指示的各SSB分别和各RO之间的对应关系,确定与目标SSB相对应的目标RO。
可选地,终端在确定目标RO后,可以进一步确定目标RO所在的备选目标RO集合,终端可以从一个或多个备选目标RO集合中,确定一个备选目标RO集合作为所述目标RO集合,用于PRACH的重复传输;
可选地,网络侧设备可以在从目标RO集合接收到目标Preamble以后,可以确定在所述目标RO集合中与所述目标Preamble对应的目标RO;进而可以确定与所述目标RO相对应的第一信号,进而可以在所述第一信号对应的波束上发送所述包含所述目标Preamble的索引的随机接入响应消息。
可选地,所述网络侧设备发送包含所述目标Preamble的索引的随机接入响应消息,包括:
所述网络侧设备确定与所述目标RO集合相对应的第一信号;
所述网络侧设备在所述第一信号对应的波束上发送所述包含所述目标Preamble的索引的随机接入响应消息。
可选地,网络侧设备可以首先给终端发送RO集合配置消息,该RO集合配置消息可以指示备选RO集合和各RO之间的映射关系;
可选地,RO集合配置消息可以包括以下至少一项:
备选RO集合包含的RO数量;
备选RO集合包含的RO的相对时间位置信息;
备选RO集合内包含的RO的相对频率位置信息;
备选RO集合内包含的RO所关联的SSB的编号(或用于计算SSB的编号的公式);
备选RO集合内包含的RO的编号(或用于计算RO的编号的公式);
备选RO集合内包含的RO的时频资源位置信息(或用于计算RO的时频资源位置信息的公式);
备选RO集合可以使用的备选Preamble的编号(或用于计算可用备选Preamble的编号的公式)。
可选地,终端在接收到了RO集合配置消息后,可以进一步进行第一信号的选择;
可选地,第一信号可以包括目标SSB;
可选地,第一信号可以包括目标CSI-RS;
可选地,本申请各实施例中以第一信号为目标SSB的举例,也均适用于第一信号包括目标CSI-RS的情况。
可选地,终端可以基于RSRP进行第一信号的选择,即如果有至少一个第一信号的RSRP高于门限,从RSRP高于门限的第一信号中选择一个第一信号;否则,基于UE实现,选择一个第一信号;
以第一信号为目标SSB为例,终端可以基于RSRP进行目标SSB选择,即如果有至少一个SSB的RSRP高于门限,从RSRP高于门限的SSB中选择一个SSB作为目标SSB;否则,基于UE实现,选择一个目标SSB。
可选地,终端在确定第一信号后,可以基于预定义的或预先设置的或基 于网络侧的指示的第一信号和备选RO集合之间的对应关系,确定与所选择的第一信号相关联的一个或多个备选RO集合作为备选目标RO集合;
可选地,终端可以从一个或多个备选目标RO集合中,确定一个备选目标RO集合作为所述目标RO集合,用于PRACH的重复传输;
可选地,网络侧设备可以在从目标RO集合接收到目标Preamble以后,可以确定与所述目标RO集合相对应的第一信号,进而可以在所述第一信号对应的波束上发送所述包含所述目标Preamble的索引的随机接入响应消息。
可选地,所述随机接入响应消息中包含的所述目标Preamble的索引是在目标RO集合中预设时间位次的RO上接收到的目标Preamble的索引;其中,所述目标RO集合中传输的目标Preamble对应不同的索引值。
具体地,目标Preamble的索引可以是指在目标RO集合中预设时间位次的RO上接收到的Preamble的索引;
具体地,目标RO集合中传输的目标Preamble可以对应不同的索引值。
可选地,在目标RO集合中传输的目标Preamble对应不同的索引值的情况下,所述随机接入响应消息中包含的目标Preamble的索引,可以是在目标RO集合中预设时间位次的RO上接收到的目标Preamble的索引。
比如,在目标RO集合中传输的目标Preamble对应不同的索引值的情况下,所述随机接入响应消息中包含的目标Preamble的索引,可以是在目标RO集合中第一个RO或最后第一RO上接收到的Preamble的索引。
可选地,所述随机接入响应消息中包含的所述目标Preamble的索引是任何一个所述目标Preamble的索引;其中,所述目标RO集合中传输的目标Preamble对应相同的索引值。
具体地,目标RO集合中传输的目标Preamble可以对应相同的索引值。
可选地,在目标RO集合中传输的目标Preamble对应相同的索引值的情况下,所述随机接入响应消息中包含的所述目标Preamble的索引是任何一个所述目标Preamble的索引。
在本申请实施例中,通过首先确定目标RO集合和在目标RO集合上传输的目标Preamble,并在目标RO集合上完成PRACH重复传输,可以明确PRACH的重复发送的RO组合资源,实现PRACH的重复传输,提高随机接入性能。
本申请实施例提供的PRACH传输方法,执行主体可以为PRACH传输装置。本申请实施例中以PRACH传输装置执行PRACH传输方法为例,说明本申请实施例提供的PRACH传输装置。
图15是本申请实施例提供的PRACH传输装置的结构示意图之一,如图15所示,PRACH传输装置1500包括:第一确定模块1510,第二确定模块1520,第一发送模块1530,和第一接收模块1540;其中:
第一确定模块1510用于确定目标RO集合;
第二确定模块1520用于确定目标Preamble;
第一发送模块1530用于基于目标RO集合,发送所述目标Preamble;
第一接收模块1540用于接收包含所述目标Preamble的索引的随机接入响应消息。
在本申请实施例中,通过首先确定目标RO集合和在目标RO集合上传输的目标Preamble,并在目标RO集合上完成PRACH重复传输,可以明确PRACH的重复发送的RO组合资源,实现PRACH的重复传输,提高随机接入性能。
可选地,一个备选RO集合包括多个RO,所述备选RO集合中任意一个RO属于一个或多个备选RO集合,所述目标RO集合是所有所述备选RO集合中的一项。
可选地,一个所述RO在任意一个所属的备选RO集合中对应一个或多个备选Preamble;
一个所述RO在所属的多个不同备选RO集合中分别对应的备选Preamble的索引不相同。
可选地,所述第一确定模块具体用于:
确定第一信号,所述第一信号包括目标SSB和/或目标CSI-RS;
确定与所述第一信号相对应的目标RO;
从一个或多个备选目标RO集合中,确定一个备选目标RO集合作为所述目标RO集合;其中,所述备选目标RO集合为包括所述目标RO的备选RO集合;
其中,所述第一信号与所述目标RO之间的对应关系是预定义的或预先设置的或基于网络侧的指示确定的。
可选地,所述第一确定模块具体用于:
确定第一信号,所述第一信号包括目标SSB和/或目标CSI-RS;
从一个或多个备选目标RO集合中,确定一个备选目标RO集合作为所述目标RO集合;其中,所述备选目标RO集合为与所述第一信号相关联的备选RO集合;
其中,所述第一信号与所述备选目标RO集合之间的关联关系是预定义的或预先设置的或基于网络侧的指示确定的。
可选地,所述第一确定模块具体用于:
在所述一个或多个备选目标RO集合中,确定一个尚未开始的备选目标RO集合作为所述目标RO集合。
可选地,所述第一确定模块具体用于:
在所述一个或多个备选目标RO集合中,确定开始时间与当前时刻最接近的备选目标RO集合作为所述目标RO集合,或确定开始时间在所有尚未开始的备选目标RO集合中最早的备选目标RO集合作为所述目标RO集合。
可选地,所述第一确定模块具体用于:
确定所述一个或多个备选目标RO集合中的第一RO集合作为所述目标RO集合,其中,在所述第一RO集合包含的多个RO中,所述目标RO位于特定时间位次。
可选地,所述第一确定模块具体用于:
在所述一个或多个备选目标RO集合中,确定一个符合第一条件的备选目标RO集合作为所述目标RO集合;
其中,所述符合第一条件的备选目标RO集合中的各个RO所关联的一个或多个第一信号中的至少一个第一信号相同。
可选地,所述第二确定模块具体用于:
在一个或多个备选Preamble中选择在第一RO上发送的第一目标Preamble,其中,所述一个或多个备选Preamble为所述第一RO在所述目标RO集合中对应的Preamble,所述第一RO为所述目标RO或所述目标RO集合中预设时间位次的RO;
基于所述第一目标Preamble的索引和第一规则,确定在所述目标RO集合内的第二RO上发送的第二目标Preamble;
其中,所述第二RO包括所述目标RO集合中除了所述第一RO以外的其他RO,所述目标Preamble包括所述第一目标Preamble和所述第二目标Preamble;
所述第一RO在所述目标RO集合中和所述一个或多个备选Preamble之间的对应关系是协议预定义的或网络侧设备指示的或预设置的。
可选地,所述第二确定模块具体用于:
在一个或多个备选Preamble中选择在第一RO上发送的第一目标Preamble,其中,所述一个或多个备选Preamble是所述第一RO在所述目标RO集合中对应的备选Preamble,或所述一个或多个备选Preamble是所述第一RO在所述目标RO集合中对应的所有备选Preamble中与所述第一信号相对应的备选Preamble,所述第一RO为所述目标RO集合中预设时间位次的RO;
基于所述第一目标Preamble的索引和第一规则,确定在所述目标RO集合内的第二RO上发送的第二目标Preamble;
其中,所述第二RO包括所述目标RO集合中除了所述第一RO以外的其他RO,所述目标Preamble包括所述第一目标Preamble和所述第二目标Preamble;
所述第一RO在所述目标RO集合中与所述一个或多个备选Preamble之间的对应关系是协议预定义的或网络侧设备指示的或预设置的;所述第一RO在所述目标RO集合中对应的所有备选Preamble中的所述一个或多个备选Preamble与所述第一信号之间的对应关系是协议预定义的或网络侧设备指示的或预设置的。
可选地,所述第二确定模块具体用于:
在一个或多个备选Preamble中,选择所述目标Preamble;
其中,所述一个或多个备选Preamble是与所述目标RO集合相对应的备选Preamble,所述一个或多个备选Preamble与所述目标RO集合之间的对应关系是协议预定义的或网络侧设备指示的或预设置的;或,所述一个或多个备选Preamble是与所述第一信号相对应的备选Preamble,所述一个或多个备选Preamble与所述第一信号之间的对应关系是协议预定义的或网络侧设备指示的或预设置的;或所述一个或多个备选Preamble是与所述目标RO集合对应的所有备选Preamble中与所述第一信号相对应的备选Preamble,在与所述目标RO集合对应的所有备选Preamble中的所述一个或多个备选Preamble与所述第一信号之间的对应关系是协议预定义的或网络侧设备指示的或预设置的。
可选地,多个所述目标Preamble的索引遵循第一规则;
其中,多个所述目标Preamble的索引遵循第一规则,包括以下至少一项:
多个所述目标Preamble的索引相同;
多个所述目标Preamble的索引之间存在第一数学关系;
所述第一数学关系是预定义的,或预先设置的,或网络侧指示的。
可选地,所述第一发送模块具体用于:
基于所述目标RO集合中的全部RO,发送所述目标Preamble。
可选地,部分或全部备选RO集合的RO中,属于相同备选RO集合的RO所关联的第一信号相同。
可选地,部分或全部备选RO集合的RO中,属于相同备选RO集合的RO所关联的第一信号不相同。
可选地,一个备选RO集合中的全部或部分RO位于不同频率;其中,所述全部或部分RO各自分别对应的频率是网络侧设备指示的。
可选地,一个备选RO集合中的全部RO位于相同频率;其中,所述相同频率是网络侧设备指示的。
可选地,不同的备选RO集合包含的RO数量不相同。
在本申请实施例中,通过首先确定目标RO集合和在目标RO集合上传输的目标Preamble,并在目标RO集合上完成PRACH重复传输,可以明确PRACH的重复发送的RO组合资源,实现PRACH的重复传输,提高随机接入性能。
本申请实施例中的PRACH传输装置可以为具有操作系统的装置。该操作系统可以为安卓(Android)操作系统,可以为ios操作系统,还可以为其他可能的操作系统,本申请实施例不作具体限定。
本申请实施例中的PRACH传输装置可以是电子设备,例如具有操作系统的电子设备,也可以是电子设备中的部件,例如集成电路或芯片。该电子设备可以是终端,也可以为除终端之外的其他设备。示例性的,终端可以包括但不限于上述所列举的终端11的类型,其他设备可以为服务器、网络附属存储器(Network Attached Storage,NAS)等,本申请实施例不作具体限定。
图16是本申请实施例提供的PRACH传输装置的结构示意图之二,如图16所示,PRACH传输装置1600包括:第二接收模块1610和第二发送模块1620;其中:
第二接收模块1610用于在目标RO集合上接收目标Preamble;
第二发送模块1620用于发送包含所述目标Preamble的索引的随机接入响应消息。
在本申请实施例中,通过首先确定目标RO集合和在目标RO集合上传输的目标Preamble,并在目标RO集合上完成PRACH重复传输,可以明确PRACH的重复发送的RO组合资源,实现PRACH的重复传输,提高随机接入性能。
可选地,所述第二发送模块具体用于:
确定在所述目标RO集合中与所述目标Preamble对应的目标RO;
确定与所述目标RO相对应的第一信号;
在所述第一信号对应的波束上发送所述包含所述目标Preamble的索引的随机接入响应消息。
可选地,所述第二发送模块具体用于:
确定与所述目标RO集合相对应的第一信号;
在所述第一信号对应的波束上发送所述包含所述目标Preamble的索引的随机接入响应消息。
可选地,所述随机接入响应消息中包含的所述目标Preamble的索引是在目标RO集合中预设时间位次的RO上接收到的目标Preamble的索引;其中,所述目标RO集合中传输的目标Preamble对应不同的索引值。
可选地,所述随机接入响应消息中包含的所述目标Preamble的索引是任何一个所述目标Preamble的索引;其中,所述目标RO集合中传输的目标Preamble对应相同的索引值。
在本申请实施例中,通过首先确定目标RO集合和在目标RO集合上传输的目标Preamble,并在目标RO集合上完成PRACH重复传输,可以明确PRACH的重复发送的RO组合资源,实现PRACH的重复传输,提高随机接入性能。
本申请实施例中的PRACH传输装置可以是电子设备,例如具有操作系 统的电子设备,也可以是电子设备中的部件,例如集成电路或芯片。该电子设备可以是终端,也可以为除终端之外的其他设备。示例性的,终端可以包括但不限于上述所列举的终端11的类型,其他设备可以为服务器、网络附属存储器(Network Attached Storage,NAS)等,本申请实施例不作具体限定。
本申请实施例提供的PRACH传输装置能够实现图4至图14的方法实施例实现的各个过程,并达到相同的技术效果,为避免重复,这里不再赘述。
可选的,图17是本申请实施例提供的通信设备的结构示意图,如图17所示,本申请实施例还提供一种通信设备1700,包括处理器1701和存储器1702,存储器1702上存储有可在所述处理器1701上运行的程序或指令,例如,该通信设备1700为终端时,该程序或指令被处理器1701执行时实现上述PRACH传输方法实施例的各个步骤,且能达到相同的技术效果。该通信设备1700为网络侧设备时,该程序或指令被处理器1701执行时实现上述PRACH传输方法实施例的各个步骤,且能达到相同的技术效果,为避免重复,这里不再赘述。
本申请实施例还提供一种终端,包括处理器和通信接口,所述处理器用于:
确定目标RO集合;
确定目标Preamble;
所述通信接口用于:
基于目标RO集合,发送所述目标Preamble;
接收包含所述目标Preamble的索引的随机接入响应消息。
该终端实施例与上述终端侧方法实施例对应,上述方法实施例的各个实施过程和实现方式均可适用于该终端实施例中,且能达到相同的技术效果。具体地,图18为实现本申请实施例的一种终端的硬件结构示意图。
该终端1800包括但不限于:射频单元1801、网络模块1802、音频输出单元1803、输入单元1804、传感器1805、显示单元1806、用户输入单元1807、 接口单元1808、存储器1809以及处理器1810等中的至少部分部件。
本领域技术人员可以理解,终端1800还可以包括给各个部件供电的电源(比如电池),电源可以通过电源管理系统与处理器1810逻辑相连,从而通过电源管理系统实现管理充电、放电、以及功耗管理等功能。图18中示出的终端结构并不构成对终端的限定,终端可以包括比图示更多或更少的部件,或者组合某些部件,或者不同的部件布置,在此不再赘述。
应理解的是,本申请实施例中,输入单元1804可以包括图形处理单元(Graphics Processing Unit,GPU)18041和麦克风18042,图形处理器18041对在视频捕获模式或图像捕获模式中由图像捕获装置(如摄像头)获得的静态图片或视频的图像数据进行处理。显示单元1806可包括显示面板18061,可以采用液晶显示器、有机发光二极管等形式来配置显示面板18061。用户输入单元1807包括触控面板18071以及其他输入设备18072中的至少一种。触控面板18071,也称为触摸屏。触控面板18071可包括触摸检测装置和触摸控制器两个部分。其他输入设备18072可以包括但不限于物理键盘、功能键(比如音量控制按键、开关按键等)、轨迹球、鼠标、操作杆,在此不再赘述。
本申请实施例中,射频单元1801接收来自网络侧设备的下行数据后,可以传输给处理器1810进行处理;另外,射频单元1801可以向网络侧设备发送上行数据。通常,射频单元1801包括但不限于天线、放大器、收发信机、耦合器、低噪声放大器、双工器等。
存储器1809可用于存储软件程序或指令以及各种数据。存储器1809可主要包括存储程序或指令的第一存储区和存储数据的第二存储区,其中,第一存储区可存储操作系统、至少一个功能所需的应用程序或指令(比如声音播放功能、图像播放功能等)等。此外,存储器1809可以包括易失性存储器或非易失性存储器,或者,存储器1809可以包括易失性和非易失性存储器两者。其中,非易失性存储器可以是只读存储器(Read-Only Memory,ROM)、 可编程只读存储器(Programmable ROM,PROM)、可擦除可编程只读存储器(Erasable PROM,EPROM)、电可擦除可编程只读存储器(Electrically EPROM,EEPROM)或闪存。易失性存储器可以是随机存取存储器(Random Access Memory,RAM),静态随机存取存储器(Static RAM,SRAM)、动态随机存取存储器(Dynamic RAM,DRAM)、同步动态随机存取存储器(Synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(Double Data Rate SDRAM,DDRSDRAM)、增强型同步动态随机存取存储器(Enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(Synch link DRAM,SLDRAM)和直接内存总线随机存取存储器(Direct Rambus RAM,DRRAM)。本申请实施例中的存储器1809包括但不限于这些和任意其它适合类型的存储器。
处理器1810可包括一个或多个处理单元;可选的,处理器1810集成应用处理器和调制解调处理器,其中,应用处理器主要处理涉及操作系统、用户界面和应用程序等的操作,调制解调处理器主要处理无线通信信号,如基带处理器。可以理解的是,上述调制解调处理器也可以不集成到处理器1810中。
其中,处理器1810用于:
确定目标RO集合;
确定目标Preamble;
基于目标RO集合,发送所述目标Preamble;
接收包含所述目标Preamble的索引的随机接入响应消息。
在本申请实施例中,通过首先确定目标RO集合和在目标RO集合上传输的目标Preamble,并在目标RO集合上完成PRACH重复传输,可以明确PRACH的重复发送的RO组合资源,实现PRACH的重复传输,提高随机接入性能。
可选地,一个备选RO集合包括多个RO,所述备选RO集合中任意一个RO属于一个或多个备选RO集合,所述目标RO集合是所有所述备选RO集 合中的一项。
可选地,一个所述RO在任意一个所属的备选RO集合中对应一个或多个备选Preamble;
一个所述RO在所属的多个不同备选RO集合中分别对应的备选Preamble的索引不相同。
可选地,处理器1810用于:
确定第一信号,所述第一信号包括目标SSB和/或目标CSI-RS;
确定与所述第一信号相对应的目标RO;
从一个或多个备选目标RO集合中,确定一个备选目标RO集合作为所述目标RO集合;其中,所述备选目标RO集合为包括所述目标RO的备选RO集合;
其中,所述第一信号与所述目标RO之间的对应关系是预定义的或预先设置的或基于网络侧的指示确定的。
可选地,处理器1810用于:
确定第一信号,所述第一信号包括目标SSB和/或目标CSI-RS;
从一个或多个备选目标RO集合中,确定一个备选目标RO集合作为所述目标RO集合;其中,所述备选目标RO集合为与所述第一信号相关联的备选RO集合;
其中,所述第一信号与所述备选目标RO集合之间的关联关系是预定义的或预先设置的或基于网络侧的指示确定的。
可选地,处理器1810用于:
在所述一个或多个备选目标RO集合中,确定一个尚未开始的备选目标RO集合作为所述目标RO集合。
可选地,处理器1810用于:
在所述一个或多个备选目标RO集合中,确定开始时间与当前时刻最接近的备选目标RO集合作为所述目标RO集合,或确定开始时间在所有尚未 开始的备选目标RO集合中最早的备选目标RO集合作为所述目标RO集合。
可选地,处理器1810用于:
确定所述一个或多个备选目标RO集合中的第一RO集合作为所述目标RO集合,其中,在所述第一RO集合包含的多个RO中,所述目标RO位于特定时间位次。
可选地,处理器1810用于:
在所述一个或多个备选目标RO集合中,确定一个符合第一条件的备选目标RO集合作为所述目标RO集合;
其中,所述符合第一条件的备选目标RO集合中的各个RO所关联的一个或多个第一信号中的至少一个第一信号相同。
可选地,处理器1810用于:
在一个或多个备选Preamble中选择在第一RO上发送的第一目标Preamble,其中,所述一个或多个备选Preamble为所述第一RO在所述目标RO集合中对应的Preamble,所述第一RO为所述目标RO或所述目标RO集合中预设时间位次的RO;
所述终端基于所述第一目标Preamble的索引和第一规则,确定在所述目标RO集合内的第二RO上发送的第二目标Preamble;
其中,所述第二RO包括所述目标RO集合中除了所述第一RO以外的其他RO,所述目标Preamble包括所述第一目标Preamble和所述第二目标Preamble;
所述第一RO在所述目标RO集合中和所述一个或多个备选Preamble之间的对应关系是协议预定义的或网络侧设备指示的或预设置的。
可选地,处理器1810用于:
在一个或多个备选Preamble中选择在第一RO上发送的第一目标Preamble,其中,所述一个或多个备选Preamble是所述第一RO在所述目标RO集合中对应的备选Preamble,或所述一个或多个备选Preamble是所述第 一RO在所述目标RO集合中对应的所有备选Preamble中与所述第一信号相对应的备选Preamble,所述第一RO为所述目标RO集合中预设时间位次的RO;
所述终端基于所述第一目标Preamble的索引和第一规则,确定在所述目标RO集合内的第二RO上发送的第二目标Preamble;
其中,所述第二RO包括所述目标RO集合中除了所述第一RO以外的其他RO,所述目标Preamble包括所述第一目标Preamble和所述第二目标Preamble;
所述第一RO在所述目标RO集合中与所述一个或多个备选Preamble之间的对应关系是协议预定义的或网络侧设备指示的或预设置的;所述第一RO在所述目标RO集合中对应的所有备选Preamble中的所述一个或多个备选Preamble与所述第一信号之间的对应关系是协议预定义的或网络侧设备指示的或预设置的。
可选地,处理器1810用于:
在一个或多个备选Preamble中,选择所述目标Preamble;
其中,所述一个或多个备选Preamble是与所述目标RO集合相对应的备选Preamble,所述一个或多个备选Preamble与所述目标RO集合之间的对应关系是协议预定义的或网络侧设备指示的或预设置的;或,所述一个或多个备选Preamble是与所述第一信号相对应的备选Preamble,所述一个或多个备选Preamble与所述第一信号之间的对应关系是协议预定义的或网络侧设备指示的或预设置的;或所述一个或多个备选Preamble是与所述目标RO集合对应的所有备选Preamble中与所述第一信号相对应的备选Preamble,在与所述目标RO集合对应的所有备选Preamble中的所述一个或多个备选Preamble与所述第一信号之间的对应关系是协议预定义的或网络侧设备指示的或预设置的。
可选地,多个所述目标Preamble的索引遵循第一规则;
其中,多个所述目标Preamble的索引遵循第一规则,包括以下至少一项:
多个所述目标Preamble的索引相同;
多个所述目标Preamble的索引之间存在第一数学关系;
所述第一数学关系是预定义的,或预先设置的,或网络侧指示的。
可选地,处理器1810用于:
基于所述目标RO集合中的全部RO,发送所述目标Preamble。
可选地,部分或全部备选RO集合的RO中,属于相同备选RO集合的RO所关联的第一信号相同。
可选地,部分或全部备选RO集合的RO中,属于相同备选RO集合的RO所关联的第一信号不相同。
可选地,一个备选RO集合中的全部或部分RO位于不同频率;其中,所述全部或部分RO各自分别对应的频率是网络侧设备指示的。
可选地,一个备选RO集合中的全部RO位于相同频率;其中,所述相同频率是网络侧设备指示的。
可选地,不同的备选RO集合包含的RO数量不相同。
在本申请实施例中,通过首先确定目标RO集合和在目标RO集合上传输的目标Preamble,并在目标RO集合上完成PRACH重复传输,可以明确PRACH的重复发送的RO组合资源,实现PRACH的重复传输,提高随机接入性能。
本申请实施例还提供一种网络侧设备,包括处理器和通信接口,所述通信接口用于:
在目标RO集合上接收目标Preamble;
发送包含所述目标Preamble的索引的随机接入响应消息。该网络侧设备实施例与上述网络侧设备方法实施例对应,上述方法实施例的各个实施过程和实现方式均可适用于该网络侧设备实施例中,且能达到相同的技术效果。
具体地,本申请实施例还提供了一种网络侧设备。图19为实现本申请实 施例的一种网络侧设备的硬件结构示意图,如图19所示,该网络侧设备1900包括:天线1901、射频装置1902、基带装置1903、处理器1904和存储器1905。天线1901与射频装置1902连接。在上行方向上,射频装置1902通过天线1901接收信息,将接收的信息发送给基带装置1903进行处理。在下行方向上,基带装置1903对要发送的信息进行处理,并发送给射频装置1902,射频装置1902对收到的信息进行处理后经过天线1901发送出去。
以上实施例中网络侧设备执行的方法可以在基带装置1903中实现,该基带装置1903包括基带处理器。
基带装置1903例如可以包括至少一个基带板,该基带板上设置有多个芯片,如图19所示,其中一个芯片例如为基带处理器,通过总线接口与存储器1905连接,以调用存储器1905中的程序,执行以上方法实施例中所示的网络设备操作。
该网络侧设备还可以包括网络接口1906,该接口例如为通用公共无线接口(common public radio interface,CPRI)。
具体地,本发明实施例的网络侧设备1900还包括:存储在存储器1905上并可在处理器1904上运行的指令或程序,处理器1904调用存储器1905中的指令或程序执行图16所示各模块执行的方法,并达到相同的技术效果,为避免重复,故不在此赘述。
其中,处理器1904用于:
在目标RO集合上接收目标Preamble;
发送包含所述目标Preamble的索引的随机接入响应消息。
在本申请实施例中,通过首先确定目标RO集合和在目标RO集合上传输的目标Preamble,并在目标RO集合上完成PRACH重复传输,可以明确PRACH的重复发送的RO组合资源,实现PRACH的重复传输,提高随机接入性能。
可选地,处理器1904用于:
确定在所述目标RO集合中与所述目标Preamble对应的目标RO;
确定与所述目标RO相对应的第一信号;
在所述第一信号对应的波束上发送所述包含所述目标Preamble的索引的随机接入响应消息。
可选地,处理器1904用于:
确定与所述目标RO集合相对应的第一信号;
在所述第一信号对应的波束上发送所述包含所述目标Preamble的索引的随机接入响应消息。
可选地,所述随机接入响应消息中包含的所述目标Preamble的索引是在目标RO集合中预设时间位次的RO上接收到的目标Preamble的索引;其中,所述目标RO集合中传输的目标Preamble对应不同的索引值。
可选地,所述随机接入响应消息中包含的所述目标Preamble的索引是任何一个所述目标Preamble的索引;其中,所述目标RO集合中传输的目标Preamble对应相同的索引值。
在本申请实施例中,通过首先确定目标RO集合和在目标RO集合上传输的目标Preamble,并在目标RO集合上完成PRACH重复传输,可以明确PRACH的重复发送的RO组合资源,实现PRACH的重复传输,提高随机接入性能。
本申请实施例还提供一种可读存储介质,所述可读存储介质上存储有程序或指令,该程序或指令被处理器执行时实现上述PRACH传输方法实施例的各个过程,且能达到相同的技术效果,为避免重复,这里不再赘述。
其中,所述处理器为上述实施例中所述的终端中的处理器。所述可读存储介质,包括计算机可读存储介质,如计算机只读存储器ROM、随机存取存储器RAM、磁碟或者光盘等。
本申请实施例另提供了一种芯片,所述芯片包括处理器和通信接口,所述通信接口和所述处理器耦合,所述处理器用于运行程序或指令,实现上述 PRACH传输方法实施例的各个过程,且能达到相同的技术效果,为避免重复,这里不再赘述。
应理解,本申请实施例提到的芯片还可以称为系统级芯片,系统芯片,芯片系统或片上系统芯片等。
本申请实施例另提供了一种计算机程序/程序产品,所述计算机程序/程序产品被存储在存储介质中,所述计算机程序/程序产品被至少一个处理器执行以实现上述PRACH传输方法实施例的各个过程,且能达到相同的技术效果,为避免重复,这里不再赘述。
本申请实施例还提供了一种PRACH传输系统,包括:终端及网络侧设备,所述终端可用于执行如上所述的PRACH传输方法的步骤,所述网络侧设备可用于执行如上所述的PRACH传输方法的步骤。
需要说明的是,在本文中,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者装置不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者装置所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括该要素的过程、方法、物品或者装置中还存在另外的相同要素。此外,需要指出的是,本申请实施方式中的方法和装置的范围不限按示出或讨论的顺序来执行功能,还可包括根据所涉及的功能按基本同时的方式或按相反的顺序来执行功能,例如,可以按不同于所描述的次序来执行所描述的方法,并且还可以添加、省去、或组合各种步骤。另外,参照某些示例所描述的特征可在其他示例中被组合。
通过以上的实施方式的描述,本领域的技术人员可以清楚地了解到上述实施例方法可借助软件加必需的通用硬件平台的方式来实现,当然也可以通过硬件,但很多情况下前者是更佳的实施方式。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分可以以计算机软件产品的 形式体现出来,该计算机软件产品存储在一个存储介质(如ROM/RAM、磁碟、光盘)中,包括若干指令用以使得一台终端(可以是手机,计算机,服务器,空调器,或者网络设备等)执行本申请各个实施例所述的方法。
上面结合附图对本申请的实施例进行了描述,但是本申请并不局限于上述的具体实施方式,上述的具体实施方式仅仅是示意性的,而不是限制性的,本领域的普通技术人员在本申请的启示下,在不脱离本申请宗旨和权利要求所保护的范围情况下,还可做出很多形式,均属于本申请的保护之内

Claims (46)

  1. 一种物理随机接入信道PRACH传输方法,包括:
    终端确定目标物理随机接入信道传输机会RO集合;
    所述终端确定目标前导码Preamble;
    所述终端基于目标RO集合,发送所述目标Preamble;
    所述终端接收包含所述目标Preamble的索引的随机接入响应消息。
  2. 根据权利要求1所述的PRACH传输方法,其中,一个备选RO集合包括多个RO,所述备选RO集合中任意一个RO属于一个或多个备选RO集合,所述目标RO集合是所有所述备选RO集合中的一项。
  3. 根据权利要求1或2所述的PRACH传输方法,其中,一个所述RO在任意一个所属的备选RO集合中对应一个或多个备选Preamble;
    一个所述RO在所属的多个不同备选RO集合中分别对应的备选Preamble的索引不相同。
  4. 根据权利要求2或3所述的PRACH传输方法,其中,所述终端确定目标RO集合,包括:
    所述终端确定第一信号,所述第一信号包括目标同步信号块SSB和/或目标信道状态信息参考信号CSI-RS;
    所述终端确定与所述第一信号相对应的目标RO;
    所述终端从一个或多个备选目标RO集合中,确定一个备选目标RO集合作为所述目标RO集合;其中,所述备选目标RO集合为包括所述目标RO的备选RO集合;
    其中,所述第一信号与所述目标RO之间的对应关系是预定义的或预先设置的或基于网络侧的指示确定的。
  5. 根据权利要求2或3所述的PRACH传输方法,其中,所述终端确定目标RO集合,包括:
    所述终端确定第一信号,所述第一信号包括目标SSB和/或目标CSI-RS;
    所述终端从一个或多个备选目标RO集合中,确定一个备选目标RO集合作为所述目标RO集合;其中,所述备选目标RO集合为与所述第一信号相关联的备选RO集合;
    其中,所述第一信号与所述备选目标RO集合之间的关联关系是预定义的或预先设置的或基于网络侧的指示确定的。
  6. 根据权利要求4或5所述的PRACH传输方法,其中,所述终端从一个或多个备选目标RO集合中,确定一个备选目标RO集合作为所述目标RO集合,包括:
    所述终端在所述一个或多个备选目标RO集合中,确定一个尚未开始的备选目标RO集合作为所述目标RO集合。
  7. 根据权利要求6所述的PRACH传输方法,其中,所述终端在所述一个或多个备选目标RO集合中,确定一个尚未开始的备选目标RO集合作为所述目标RO集合,包括:
    所述终端在所述一个或多个备选目标RO集合中,确定开始时间与当前时刻最接近的备选目标RO集合作为所述目标RO集合,或确定开始时间在所有尚未开始的备选目标RO集合中最早的备选目标RO集合作为所述目标RO集合。
  8. 根据权利要求4或5所述的PRACH传输方法,其中,所述终端从一个或多个备选目标RO集合中,确定一个备选目标RO集合作为所述目标RO集合,包括:
    所述终端确定所述一个或多个备选目标RO集合中的第一RO集合作为所述目标RO集合,其中,在所述第一RO集合包含的多个RO中,所述目标RO位于特定时间位次。
  9. 根据权利要求4所述的PRACH传输方法,其中,所述终端从一个或多个备选目标RO集合中,确定一个备选目标RO集合作为所述目标RO集合,包括:
    所述终端在所述一个或多个备选目标RO集合中,确定一个符合第一条件的备选目标RO集合作为所述目标RO集合;
    其中,所述符合第一条件的备选目标RO集合中的各个RO所关联的一个或多个第一信号中的至少一个第一信号相同。
  10. 根据权利要求4或6-9任一项所述的PRACH传输方法,其中,所述终端确定目标Preamble,包括:
    所述终端在一个或多个备选Preamble中选择在第一RO上发送的第一目标Preamble,其中,所述一个或多个备选Preamble为所述第一RO在所述目标RO集合中对应的Preamble,所述第一RO为所述目标RO或所述目标RO集合中预设时间位次的RO;
    所述终端基于所述第一目标Preamble的索引和第一规则,确定在所述目标RO集合内的第二RO上发送的第二目标Preamble;
    其中,所述第二RO包括所述目标RO集合中除了所述第一RO以外的其他RO,所述目标Preamble包括所述第一目标Preamble和所述第二目标Preamble;
    所述第一RO在所述目标RO集合中和所述一个或多个备选Preamble之间的对应关系是协议预定义的或网络侧设备指示的或预设置的。
  11. 根据权利要求5-9任一项所述的PRACH传输方法,其中,所述终端确定目标Preamble,包括:
    所述终端在一个或多个备选Preamble中选择在第一RO上发送的第一目标Preamble,其中,所述一个或多个备选Preamble是所述第一RO在所述目标RO集合中对应的备选Preamble,或所述一个或多个备选Preamble是所述第一RO在所述目标RO集合中对应的所有备选Preamble中与所述第一信号相对应的备选Preamble,所述第一RO为所述目标RO集合中预设时间位次的RO;
    所述终端基于所述第一目标Preamble的索引和第一规则,确定在所述目 标RO集合内的第二RO上发送的第二目标Preamble;
    其中,所述第二RO包括所述目标RO集合中除了所述第一RO以外的其他RO,所述目标Preamble包括所述第一目标Preamble和所述第二目标Preamble;
    所述第一RO在所述目标RO集合中与所述一个或多个备选Preamble之间的对应关系是协议预定义的或网络侧设备指示的或预设置的;所述第一RO在所述目标RO集合中对应的所有备选Preamble中的所述一个或多个备选Preamble与所述第一信号之间的对应关系是协议预定义的或网络侧设备指示的或预设置的。
  12. 根据权利要求4-9任一项所述的PRACH传输方法,其中,所述终端确定目标Preamble,包括:
    所述终端在一个或多个备选Preamble中,选择所述目标Preamble;
    其中,所述一个或多个备选Preamble是与所述目标RO集合相对应的备选Preamble,所述一个或多个备选Preamble与所述目标RO集合之间的对应关系是协议预定义的或网络侧设备指示的或预设置的;或,所述一个或多个备选Preamble是与所述第一信号相对应的备选Preamble,所述一个或多个备选Preamble与所述第一信号之间的对应关系是协议预定义的或网络侧设备指示的或预设置的;或所述一个或多个备选Preamble是与所述目标RO集合对应的所有备选Preamble中与所述第一信号相对应的备选Preamble,在与所述目标RO集合对应的所有备选Preamble中的所述一个或多个备选Preamble与所述第一信号之间的对应关系是协议预定义的或网络侧设备指示的或预设置的。
  13. 根据权利要求10或11或12所述的PRACH传输方法,其中,多个所述目标Preamble的索引遵循第一规则;
    其中,多个所述目标Preamble的索引遵循第一规则,包括以下至少一项:
    多个所述目标Preamble的索引相同;
    多个所述目标Preamble的索引之间存在第一数学关系;
    所述第一数学关系是预定义的,或预先设置的,或网络侧指示的。
  14. 根据权利要求2-13任一项所述的PRACH传输方法,其中,所述终端基于目标RO集合,发送所述目标Preamble,包括:
    所述终端基于所述目标RO集合中的全部RO,发送所述目标Preamble。
  15. 根据权利要求2-9任一项所述的PRACH传输方法,其中,部分或全部备选RO集合的RO中,属于相同备选RO集合的RO所关联的第一信号相同。
  16. 根据权利要求2-8任一项所述的PRACH传输方法,其中,部分或全部备选RO集合的RO中,属于相同备选RO集合的RO所关联的第一信号不相同。
  17. 根据权利要求2-16任一项所述的PRACH传输方法,其中,一个备选RO集合中的全部或部分RO位于不同频率;其中,所述全部或部分RO各自分别对应的频率是网络侧设备指示的。
  18. 根据权利要求2-16任一项所述的PRACH传输方法,其中,一个备选RO集合中的全部RO位于相同频率;其中,所述相同频率是网络侧设备指示的。
  19. 根据权利要求2-16任一项所述的PRACH传输方法,其中,不同的备选RO集合包含的RO数量不相同。
  20. 一种PRACH传输方法,包括:
    网络侧设备在目标RO集合上接收目标Preamble;
    所述网络侧设备发送包含所述目标Preamble的索引的随机接入响应消息。
  21. 根据权利要求20所述的PRACH传输方法,其中,所述网络侧设备发送包含所述目标Preamble的索引的随机接入响应消息,包括:
    所述网络侧设备确定在所述目标RO集合中与所述目标Preamble对应的目标RO;
    所述网络侧设备确定与所述目标RO相对应的第一信号;
    所述网络侧设备在所述第一信号对应的波束上发送所述包含所述目标Preamble的索引的随机接入响应消息。
  22. 根据权利要求20所述的PRACH传输方法,其中,所述网络侧设备发送包含所述目标Preamble的索引的随机接入响应消息,包括:
    所述网络侧设备确定与所述目标RO集合相对应的第一信号;
    所述网络侧设备在所述第一信号对应的波束上发送所述包含所述目标Preamble的索引的随机接入响应消息。
  23. 根据权利要求20至22任一项所述的PRACH传输方法,其中,所述随机接入响应消息中包含的所述目标Preamble的索引是在目标RO集合中预设时间位次的RO上接收到的目标Preamble的索引;其中,所述目标RO集合中传输的目标Preamble对应不同的索引值。
  24. 根据权利要求20至22任一项所述的PRACH传输方法,其中,所述随机接入响应消息中包含的所述目标Preamble的索引是任何一个所述目标Preamble的索引;其中,所述目标RO集合中传输的目标Preamble对应相同的索引值。
  25. 一种PRACH传输装置,包括:
    第一确定模块,用于确定目标RO集合;
    第二确定模块,用于确定目标Preamble;
    第一发送模块,用于基于目标RO集合,发送所述目标Preamble;
    第一接收模块,用于接收包含所述目标Preamble的索引的随机接入响应消息。
  26. 根据权利要求25所述的PRACH传输装置,其中,一个备选RO集合包括多个RO,所述备选RO集合中任意一个RO属于一个或多个备选RO集合,所述目标RO集合是所有所述备选RO集合中的一项。
  27. 根据权利要求25或26所述的PRACH传输装置,其中,一个所述 RO在任意一个所属的备选RO集合中对应一个或多个备选Preamble;
    一个所述RO在所属的多个不同备选RO集合中分别对应的备选Preamble的索引不相同。
  28. 根据权利要求26或27所述的PRACH传输装置,其中,所述第一确定模块具体用于:
    确定第一信号,所述第一信号包括目标SSB和/或目标CSI-RS;
    确定与所述第一信号相对应的目标RO;
    从一个或多个备选目标RO集合中,确定一个备选目标RO集合作为所述目标RO集合;其中,所述备选目标RO集合为包括所述目标RO的备选RO集合;
    其中,所述第一信号与所述目标RO之间的对应关系是预定义的或预先设置的或基于网络侧的指示确定的。
  29. 根据权利要求26或27所述的PRACH传输装置,其中,所述第一确定模块具体用于:
    确定第一信号,所述第一信号包括目标SSB和/或目标CSI-RS;
    从一个或多个备选目标RO集合中,确定一个备选目标RO集合作为所述目标RO集合;其中,所述备选目标RO集合为与所述第一信号相关联的备选RO集合;
    其中,所述第一信号与所述备选目标RO集合之间的关联关系是预定义的或预先设置的或基于网络侧的指示确定的。
  30. 根据权利要求28或29所述的PRACH传输装置,其中,所述第一确定模块具体用于:
    终端在所述一个或多个备选目标RO集合中,确定一个尚未开始的备选目标RO集合作为所述目标RO集合。
  31. 根据权利要求30所述的PRACH传输装置,其中,所述第一确定模块具体用于:
    所述终端在所述一个或多个备选目标RO集合中,确定开始时间与当前时刻最接近的备选目标RO集合作为所述目标RO集合,或确定开始时间在所有尚未开始的备选目标RO集合中最早的备选目标RO集合作为所述目标RO集合。
  32. 根据权利要求28或29所述的PRACH传输装置,其中,所述第一确定模块具体用于:
    终端确定所述一个或多个备选目标RO集合中的第一RO集合作为所述目标RO集合,其中,在所述第一RO集合包含的多个RO中,所述目标RO位于特定时间位次。
  33. 根据权利要求28所述的PRACH传输装置,其中,所述第一确定模块具体用于:
    终端在所述一个或多个备选目标RO集合中,确定一个符合第一条件的备选目标RO集合作为所述目标RO集合;
    其中,所述符合第一条件的备选目标RO集合中的各个RO所关联的一个或多个第一信号中的至少一个第一信号相同。
  34. 根据权利要求28或30-33任一项所述的PRACH传输装置,其中,所述第二确定模块具体用于:
    在一个或多个备选Preamble中选择在第一RO上发送的第一目标Preamble,其中,所述一个或多个备选Preamble为所述第一RO在所述目标RO集合中对应的Preamble,所述第一RO为所述目标RO或所述目标RO集合中预设时间位次的RO;
    所述终端基于所述第一目标Preamble的索引和第一规则,确定在所述目标RO集合内的第二RO上发送的第二目标Preamble;
    其中,所述第二RO包括所述目标RO集合中除了所述第一RO以外的其他RO,所述目标Preamble包括所述第一目标Preamble和所述第二目标Preamble;
    所述第一RO在所述目标RO集合中和所述一个或多个备选Preamble之间的对应关系是协议预定义的或网络侧设备指示的或预设置的。
  35. 根据权利要求29-33任一项所述的PRACH传输装置,其中,所述第二确定模块具体用于:
    在一个或多个备选Preamble中选择在第一RO上发送的第一目标Preamble,其中,所述一个或多个备选Preamble是所述第一RO在所述目标RO集合中对应的备选Preamble,或所述一个或多个备选Preamble是所述第一RO在所述目标RO集合中对应的所有备选Preamble中与所述第一信号相对应的备选Preamble,所述第一RO为所述目标RO集合中预设时间位次的RO;
    基于所述第一目标Preamble的索引和第一规则,确定在所述目标RO集合内的第二RO上发送的第二目标Preamble;
    其中,所述第二RO包括所述目标RO集合中除了所述第一RO以外的其他RO,所述目标Preamble包括所述第一目标Preamble和所述第二目标Preamble;
    所述第一RO在所述目标RO集合中与所述一个或多个备选Preamble之间的对应关系是协议预定义的或网络侧设备指示的或预设置的;所述第一RO在所述目标RO集合中对应的所有备选Preamble中的所述一个或多个备选Preamble与所述第一信号之间的对应关系是协议预定义的或网络侧设备指示的或预设置的。
  36. 根据权利要求28-33任一项所述的PRACH传输装置,其中,所述第二确定模块具体用于:
    在一个或多个备选Preamble中,选择所述目标Preamble;
    其中,所述一个或多个备选Preamble是与所述目标RO集合相对应的备选Preamble,所述一个或多个备选Preamble与所述目标RO集合之间的对应关系是协议预定义的或网络侧设备指示的或预设置的;或,所述一个或多个 备选Preamble是与所述第一信号相对应的备选Preamble,所述一个或多个备选Preamble与所述第一信号之间的对应关系是协议预定义的或网络侧设备指示的或预设置的;或所述一个或多个备选Preamble是与所述目标RO集合对应的所有备选Preamble中与所述第一信号相对应的备选Preamble,在与所述目标RO集合对应的所有备选Preamble中的所述一个或多个备选Preamble与所述第一信号之间的对应关系是协议预定义的或网络侧设备指示的或预设置的。
  37. 根据权利要求34或35或36所述的PRACH传输装置,其中,多个所述目标Preamble的索引遵循第一规则;
    其中,多个所述目标Preamble的索引遵循第一规则,包括以下至少一项:
    多个所述目标Preamble的索引相同;
    多个所述目标Preamble的索引之间存在第一数学关系;
    所述第一数学关系是预定义的,或预先设置的,或网络侧指示的。
  38. 根据权利要求25-36任一项所述的PRACH传输装置,其中,所述第一发送模块具体用于:
    基于所述目标RO集合中的全部RO,发送所述目标Preamble。
  39. 一种PRACH传输装置,包括:
    第二接收模块,用于在目标RO集合上接收目标Preamble;
    第二发送模块,用于发送包含所述目标Preamble的索引的随机接入响应消息。
  40. 根据权利要求39所述的PRACH传输装置,其中,所述第二发送模块具体用于:
    确定在所述目标RO集合中与所述目标Preamble对应的目标RO;
    确定与所述目标RO相对应的第一信号;
    在所述第一信号对应的波束上发送所述包含所述目标Preamble的索引的随机接入响应消息。
  41. 根据权利要求39所述的PRACH传输装置,其中,所述第二发送模块具体用于:
    确定与所述目标RO集合相对应的第一信号;
    在所述第一信号对应的波束上发送所述包含所述目标Preamble的索引的随机接入响应消息。
  42. 根据权利要求39至41任一项所述的PRACH传输方法,其中,所述随机接入响应消息中包含的所述目标Preamble的索引是在目标RO集合中预设时间位次的RO上接收到的目标Preamble的索引;其中,所述目标RO集合中传输的目标Preamble对应不同的索引值。
  43. 根据权利要求39至41任一项所述的PRACH传输方法,其中,所述随机接入响应消息中包含的所述目标Preamble的索引是任何一个所述目标Preamble的索引;其中,所述目标RO集合中传输的目标Preamble对应相同的索引值。
  44. 一种终端,包括处理器和存储器,所述存储器存储可在所述处理器上运行的程序或指令,所述程序或指令被所述处理器执行时实现如权利要求1至19任一项所述的PRACH传输方法的步骤。
  45. 一种网络侧设备,包括处理器和存储器,所述存储器存储可在所述处理器上运行的程序或指令,所述程序或指令被所述处理器执行时实现如权利要求20至24任一项所述的PRACH传输方法的步骤。
  46. 一种可读存储介质,所述可读存储介质上存储程序或指令,所述程序或指令被处理器执行时实现如权利要求1至19任一项所述的PRACH传输方法的步骤,或者实现如权利要求20至24任一项所述的PRACH传输方法的步骤。
PCT/CN2022/139894 2021-12-22 2022-12-19 Prach传输方法、装置、终端及网络侧设备 WO2023116599A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111580962.5A CN116347640A (zh) 2021-12-22 2021-12-22 Prach传输方法、装置、终端及网络侧设备
CN202111580962.5 2021-12-22

Publications (1)

Publication Number Publication Date
WO2023116599A1 true WO2023116599A1 (zh) 2023-06-29

Family

ID=86877578

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/139894 WO2023116599A1 (zh) 2021-12-22 2022-12-19 Prach传输方法、装置、终端及网络侧设备

Country Status (2)

Country Link
CN (1) CN116347640A (zh)
WO (1) WO2023116599A1 (zh)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019192469A1 (zh) * 2018-04-04 2019-10-10 维沃移动通信有限公司 非竞争随机接入资源配置方法、终端设备和网络设备
WO2020248270A1 (zh) * 2019-06-14 2020-12-17 Oppo广东移动通信有限公司 确定随机接入资源的方法、终端设备和网络设备
CN112205061A (zh) * 2018-09-21 2021-01-08 Oppo广东移动通信有限公司 一种资源关联方法及装置、终端、网络设备

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019192469A1 (zh) * 2018-04-04 2019-10-10 维沃移动通信有限公司 非竞争随机接入资源配置方法、终端设备和网络设备
CN112205061A (zh) * 2018-09-21 2021-01-08 Oppo广东移动通信有限公司 一种资源关联方法及装置、终端、网络设备
WO2020248270A1 (zh) * 2019-06-14 2020-12-17 Oppo广东移动通信有限公司 确定随机接入资源的方法、终端设备和网络设备

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
ERICSSON: "Remaining details of RACH procedure", 3GPP DRAFT; R1-1802946_REMAINING DETAILS OF RACH PROCEDURE, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, no. Athens, Greece; 20180226 - 20180302, 17 February 2018 (2018-02-17), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , XP051398328 *
ZTE, SANECHIPS: "Remaining issues on the initial access procedure for NR-U", 3GPP DRAFT; R1-2003451, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, no. e-Meeting; 20200525 - 20200605, 16 May 2020 (2020-05-16), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , XP051885237 *

Also Published As

Publication number Publication date
CN116347640A (zh) 2023-06-27

Similar Documents

Publication Publication Date Title
US11089556B2 (en) Physical random access channel enhanced transmission method, network device, and terminal
JP2023536742A (ja) セルハンドオーバ方法及び端末
CN114599111A (zh) 随机接入方法、装置、终端及网络侧设备
WO2023116591A1 (zh) 传输确定方法、装置、终端、网络侧设备和存储介质
CN114390657A (zh) 功率确定方法、装置、终端及可读存储介质
WO2023116599A1 (zh) Prach传输方法、装置、终端及网络侧设备
JP2023535781A (ja) 補助情報を伝送する方法、端末機器とネットワーク機器
WO2023083227A1 (zh) Prach重复传输方法、终端及网络侧设备
WO2023116883A1 (zh) Msg1重复传输的时频资源确定方法、装置及终端
WO2024022197A1 (zh) Ra方法、装置、ue、网络侧设备、通信系统及可读存储介质
WO2023207675A1 (zh) 信息上报方法、装置、终端、网络侧设备及介质
WO2024022166A1 (zh) Ra方法、装置、ue、网络侧设备、通信系统及可读存储介质
WO2023134580A1 (zh) 信息传输方法、装置、终端及网络侧设备
WO2023056973A1 (zh) Prach重复传输方法、终端及网络侧设备
WO2023131175A1 (zh) 确定prach重复传输资源的方法、终端及网络侧设备
WO2023186157A1 (zh) 随机接入资源配置方法、装置、终端及网络侧设备
WO2023083290A1 (zh) 随机接入方法、装置、终端及网络侧设备
WO2023131174A1 (zh) Prach重复传输方法、终端及网络侧设备
WO2024067306A1 (zh) 能力指示方法、装置、终端及介质
EP4301068A1 (en) Method and device for indicating scs of initial downlink bwp
WO2023138587A1 (zh) Bwp上的波形确定方法及终端方法
WO2023151616A1 (zh) 数据发送方法、数据接收方法及相关设备
WO2023116905A1 (zh) 定位参考信号的处理方法、设备及可读存储介质
WO2023198183A1 (zh) 信息获取方法、信息发送方法、装置、终端及网络侧设备
WO2024022316A1 (zh) 下行参考信号发送方法、装置、终端及网络侧设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22909912

Country of ref document: EP

Kind code of ref document: A1