WO2024099185A1 - 随机接入方法、装置、终端、网络侧设备及介质 - Google Patents

随机接入方法、装置、终端、网络侧设备及介质 Download PDF

Info

Publication number
WO2024099185A1
WO2024099185A1 PCT/CN2023/128620 CN2023128620W WO2024099185A1 WO 2024099185 A1 WO2024099185 A1 WO 2024099185A1 CN 2023128620 W CN2023128620 W CN 2023128620W WO 2024099185 A1 WO2024099185 A1 WO 2024099185A1
Authority
WO
WIPO (PCT)
Prior art keywords
synchronization signal
terminal
random access
information
target
Prior art date
Application number
PCT/CN2023/128620
Other languages
English (en)
French (fr)
Inventor
杨坤
王鹏飞
姜大洁
潘学明
Original Assignee
维沃移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 维沃移动通信有限公司 filed Critical 维沃移动通信有限公司
Publication of WO2024099185A1 publication Critical patent/WO2024099185A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/08Non-scheduled access, e.g. ALOHA
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/08Non-scheduled access, e.g. ALOHA
    • H04W74/0833Random access procedures, e.g. with 4-step access

Definitions

  • the present application belongs to the field of communication technology, and specifically relates to a random access method, apparatus, terminal, network-side equipment and medium.
  • Random access is a basic and important process in a communication system, and its main purpose is to establish uplink synchronization and request the network to allocate uplink resources to the terminal.
  • the terminal After the terminal completes downlink synchronization, it detects the signal quality of the synchronization signal block (Synchronization Signal and PBCH Block, SSB); selects a suitable SSB according to the threshold value configured by the network, for example, if there is an SSB whose signal quality is higher than the threshold value, selects the SSB that meets the conditions; if there are multiple SSBs that meet the conditions, selects one of the SSBs (the selection scheme is determined by the terminal implementation); if no SSB meets the conditions, selects an SSB from the entire SSB set (the selection scheme is determined by the terminal implementation); after determining the SSB, the terminal performs random access according to the SSB.
  • SSB Synchron Generation
  • the terminal after the terminal completes downlink synchronization, it detects the signal quality of the synchronization signal block (Synchronization Signal and PBCH Block, SSB); selects a suitable SSB according to the threshold value configured by the network
  • synchronization signals are sent separately according to the access point (AP) node cluster to achieve seamless coverage. If the synchronization signal is selected for random access in the above manner, the probability of successful access will be low.
  • the embodiments of the present application provide a random access method, apparatus, terminal, network-side equipment, and medium, which can solve the problem of low success rate of random access of terminals.
  • a random access method comprising:
  • the terminal receives first information sent by a network side device; the first information is used to indicate information related to multiple synchronization signal groups; the synchronization signal group includes at least one synchronization signal;
  • the terminal determines a plurality of target synchronization signals based on the information related to the plurality of synchronization signal groups;
  • the terminal uses the multiple target synchronization signals to perform random access.
  • a random access method comprising:
  • the network side device sends first information to the terminal; the first information is used to indicate information related to multiple synchronization signal groups; the synchronization signal group includes at least one synchronization signal.
  • a random access device comprising:
  • a receiving module configured to receive first information sent by a network side device; the first information is used to indicate information related to a plurality of synchronization signal groups; the synchronization signal group includes at least one synchronization signal;
  • a determination module configured to determine a plurality of target synchronization signals based on information related to the plurality of synchronization signal groups
  • An access module is used to perform random access using the multiple target synchronization signals.
  • a random access device comprising:
  • a sending module is used to send first information to a terminal; the first information is used to indicate information related to multiple synchronization signal groups; the synchronization signal group includes at least one synchronization signal.
  • a terminal comprising a processor and a memory, wherein the memory stores a program or instruction that can be run on the processor, and when the program or instruction is executed by the processor, the steps of the method described in the first aspect are implemented.
  • a terminal comprising a processor and a communication interface; wherein the communication interface is used to receive first information sent by a network side device; the first information is used to indicate information related to multiple synchronization signal groups; the synchronization signal group includes at least one synchronization signal; the processor is used to determine multiple target synchronization signals based on information related to the multiple synchronization signal groups; and random access is performed using the multiple target synchronization signals.
  • a network side device comprising a processor and a memory, the memory storing a program or instruction that can be run on the processor, the program or instruction being executed by the processor Implement the steps of the method described in the second aspect.
  • a network side device comprising a processor and a communication interface; wherein the communication interface is used to send first information to a terminal; the first information is used to indicate information related to multiple synchronization signal groups; and the synchronization signal group includes at least one synchronization signal.
  • a communication system comprising: a terminal and a network side device, wherein the terminal can be used to execute the steps of the method described in the first aspect, and the network side device can be used to execute the steps of the method described in the second aspect.
  • a readable storage medium on which a program or instruction is stored.
  • the program or instruction is executed by a processor, the steps of the method described in the first aspect are implemented, or the steps of the method described in the second aspect are implemented.
  • a chip comprising a processor and a communication interface, wherein the communication interface is coupled to the processor, and the processor is used to run a program or instruction to implement the method described in the first aspect, or to implement the method described in the second aspect.
  • a computer program/program product is provided, wherein the computer program/program product is stored in a storage medium, and the computer program/program product is executed by at least one processor to implement the steps of the method described in the first aspect, or to implement the steps of the method described in the second aspect.
  • the terminal after the terminal receives the first information sent by the network side device, it can determine the grouping information of the synchronization signal based on the relevant information of the synchronization signal group in the first information, and select multiple target synchronization signals from multiple synchronization signal groups to perform a random access process. Even if some target synchronization signals fail to perform random access, the random access process can still be performed based on the remaining target synchronization signals, which effectively improves the success rate of random access and shortens the access delay.
  • FIG1 is a schematic diagram of a wireless communication system applicable to an embodiment of the present application.
  • FIG2 is a schematic diagram of a random access method according to an embodiment of the present application.
  • FIG3 is one of schematic diagrams of determining a synchronization signal group provided in an embodiment of the present application.
  • FIG4 is a second schematic diagram of determining a synchronization signal group provided in an embodiment of the present application.
  • FIG5 is a third schematic diagram of determining a synchronization signal group provided in an embodiment of the present application.
  • FIG6 is a fourth schematic diagram of determining a synchronization signal group provided in an embodiment of the present application.
  • FIG7 is a schematic diagram of an interaction flow of a random access method provided in an embodiment of the present application.
  • FIG8 is a second flow chart of a random access method provided in an embodiment of the present application.
  • FIG9 is a schematic diagram of a random access device according to an embodiment of the present application.
  • FIG10 is a second schematic diagram of a random access device provided in an embodiment of the present application.
  • FIG11 is a schematic diagram of the structure of a communication device provided in an embodiment of the present application.
  • FIG12 is a schematic diagram of the structure of a terminal provided in an embodiment of the present application.
  • FIG13 is a schematic diagram of the structure of a network side device provided in an embodiment of the present application.
  • first, second, etc. in the specification and claims of the present application are used to distinguish similar objects, and are not used to describe a specific order or sequence. It should be understood that the terms used in this way are interchangeable under appropriate circumstances, so that the embodiments of the present application can be implemented in an order other than those illustrated or described here, and the objects distinguished by “first” and “second” are generally of the same type, and the number of objects is not limited.
  • the first object can be one or more.
  • “and/or” in the specification and claims represents at least one of the connected objects, and the character “/" generally represents that the objects associated with each other are in an "or” relationship.
  • LTE Long Term Evolution
  • LTE-A Long Term Evolution
  • CDMA Code Division Multiple Access
  • TDMA Time Division Multiple Access
  • FDMA Frequency Division Multiple Access
  • OFDMA Orthogonal Frequency Division Multiple Access
  • SC-FDMA Single-carrier Frequency Division Multiple Access
  • NR New Radio
  • 6G 6th Generation
  • FIG1 is a schematic diagram of a wireless communication system applicable to an embodiment of the present application.
  • the wireless communication system shown in FIG1 includes a terminal 11 and a network side device 12 .
  • the terminal 11 can be a mobile phone, a tablet computer (Tablet Personal Computer), a laptop computer (Laptop Computer) or a notebook computer, a personal digital assistant (Personal Digital Assistant, PDA), a handheld computer, a netbook, an ultra-mobile personal computer (ultra-mobile personal computer, UMPC), a mobile Internet device (Mobile Internet Device, MID), augmented reality (augmented reality, AR)/virtual reality (virtual reality, VR) equipment, a robot, a wearable device (Wearable Device), a vehicle-mounted device (VUE), a pedestrian terminal (PUE), a smart home (home appliances with wireless communication functions, such as refrigerators, televisions, washing machines or furniture, etc.), a game console, a personal computer (personal computer, PC), an ATM or a self-service machine and other terminal side devices
  • the network side device 12 may include an access network device or a core network device, wherein the access network device may also be referred to as a radio access network device, a radio access network (RAN), a radio access network function or a radio access network unit.
  • the access network device may include a base station, a WLAN access point or a WiFi node, etc.
  • the base station may be referred to as a node B, an evolved node B (eNB), an access point, a base transceiver station (BTS), a radio base station, a radio transceiver, a basic service set (BSS), an extended service set (ESS), a home B node, a home evolved B node, a transmitting and receiving point (TRP) or some other appropriate term in the field, as long as the same technical effect is achieved, the base station is not limited to a specific technical vocabulary, it should be noted that in the embodiment of the present application, only the base station in the NR system is used as an example for introduction, and the specific type of the base station is not limited.
  • the Third Generation Partnership Project (3GPP) protocol version (Release, Rel) 17 introduced a beam management mechanism based on multiple TRPs.
  • Rel-17 terminals have X TRP modules, and the base station deploys Y TRP nodes.
  • the terminal measures the reference signals (SSB or Channel State Information-Reference Signal (CSI-RS)) in the M beam sets and reports N groups of measurement results; each group of measurement results contains M measurement results, corresponding to one of the measurement results in the M beam sets.
  • Rel-15 defines a 4-step random access process.
  • the terminal After the terminal completes downlink synchronization, it checks the SSB signal quality; selects a suitable SSB based on the threshold value (rsrp-ThresholdSSB) configured by the network, that is, if there is an SSB whose signal quality SS-RSRP is higher than the threshold value, selects the SSB that meets the conditions; if there are multiple SSBs that meet the conditions, selects one of the SSBs (the selection scheme is determined by the terminal implementation); if no SSB meets the conditions, selects one SSB from the entire SSB set (the selection scheme is determined by the terminal implementation).
  • the threshold value rsrp-ThresholdSSB
  • the terminal After determining the SSB, the terminal determines the RO resource set and preamble resource set associated with the SSB based on the association between the SSB and the random access opportunity (RACH occasion, RO); the terminal randomly selects an RO resource and a preamble resource in the resource set and sends Msg1.
  • RACH occasion RO
  • the terminal randomly selects an RO resource and a preamble resource in the resource set and sends Msg1.
  • the cell-free massive MIMO system can be considered as a deconstruction of the traditional massive MIMO system.
  • the antennas of the traditional massive MIMO system are concentrated in one site (base station), and the terminals are distributed around the base station.
  • the massive MIMO system provides higher array gain and spatial resolution, but the signal-to-noise ratio of the cell edge terminal is reduced due to the inability to coordinate transmission between adjacent base stations.
  • the cell-free massive MIMO system breaks the concept of cells. A large number of antennas/TRP nodes/access points AP are dispersedly deployed in the coverage area. In theory, the terminals in the coverage area can communicate with each TRP.
  • TRPs networks
  • the CPU uses channel statistics for joint detection.
  • Cell-free networks are expected to be applied to the next generation of indoor and hotspot coverage scenarios, such as smart factories, railway stations, shopping malls, stadiums, subways, hospitals, community centers or university campuses.
  • the terminal After the terminal completes downlink synchronization, it detects the SSB signal quality and Select a unique SSB for random access. Moreover, in scenarios where multiple SSBs have similar signal quality, such as in a non-cellular massive MIMO system, it is difficult for a terminal to select one SSB from multiple SSBs with similar signal quality, which may increase the complexity of terminal implementation and reduce the probability of successful access.
  • the network side equipment may use a distributed multi-TRP deployment solution, and each TRP will send one or more SSB signals to ensure that nearby terminals can access the cell. From the terminal's perspective, the terminal only selects one SSB sent by one TRP for random access; however, when the terminal is not far from multiple TRPs, the quality of the SSB signals received by the terminal from multiple TRPs is similar, and the terminal may not be able to accurately determine the optimal SSB.
  • FIG. 2 is a flow chart of a random access method according to an embodiment of the present application. As shown in FIG. 2 , the method includes:
  • Step 201 The terminal receives first information sent by a network side device; the first information is used to indicate information related to multiple synchronization signal groups; the synchronization signal group includes at least one synchronization signal;
  • the first information is used to indicate information related to multiple synchronization signal groups; optionally, the information related to the synchronization signal group includes information about the synchronization signal group to which the synchronization signal belongs, for example, information about the synchronization signal group to which each synchronization signal in the synchronization signal set belongs, and the information can be specifically indicated in an explicit or implicit manner.
  • the information related to the synchronization signal group can also include: RO resource information associated with the synchronization signal, etc., and each synchronization signal group includes at least one synchronization signal; optionally, the first information is carried via a system message or high-level signaling (such as RRC signaling).
  • the terminal After receiving the first information sent by the network side device, the terminal can determine the grouping information of the synchronization signal based on the relevant information of the synchronization signal group in the first information, such as how many synchronization signal groups there are and which synchronization signals each synchronization signal group includes.
  • Step 202 The terminal determines multiple target synchronization signals based on information related to multiple synchronization signal groups;
  • the terminal can determine the grouping information of the synchronization signal based on the information related to the synchronization signal group in the first information, and select multiple synchronization signals from multiple synchronization signal groups as target synchronization signals, for example, the target synchronization signal can be selected based on signal quality.
  • one or more synchronization signals can be selected from a synchronization signal group as the target synchronization signal.
  • Step 203 The terminal uses multiple target synchronization signals to perform random access.
  • the terminal can use multiple target synchronization signals to perform a random access process in the random access phase based on RO resources corresponding to the multiple target synchronization signals.
  • the terminal uses multiple target synchronization signals for random access, which effectively improves the success rate of random access, shortens the access delay, and solves the problem of low access success rate when the terminal selects only one SSB for random access.
  • each TRP will send one or more SSB signals to ensure that nearby terminals access the cell.
  • the terminal can send PRACH signals to multiple TRPs at the same time, thereby increasing the success rate of terminal random access.
  • the Rel-17 terminal has multiple TRP modules and supports simultaneous transmission and reception of multiple beams.
  • the terminal can select multiple SSBs for random access in parallel based on the SSB monitoring results of multiple TRPs, thereby improving the success rate of random access.
  • the terminal in a non-cellular network, can be served by multiple TRPs in the form of a collaborative cluster at the same time.
  • the terminal can select multiple synchronization signals during the random access phase to improve the success rate of random access and the efficiency of building a collaborative cluster.
  • the terminal after the terminal receives the first information sent by the network side device, it can determine the grouping information of the synchronization signal based on the relevant information of the synchronization signal group in the first information, and select multiple target synchronization signals from multiple synchronization signal groups to perform a random access process. Even if some target synchronization signals fail to perform random access, the random access process can still be performed based on the remaining target synchronization signals, which effectively improves the success rate of random access and shortens the access delay.
  • the first information includes at least one of the following:
  • the first indication information is used to indicate information of multiple synchronization signal groups
  • the first information sent by the network side device to the terminal may include first indication information; wherein the first indication information is used to indicate information of multiple synchronization signal groups, so that the terminal can determine the information of the synchronization signal group to which each synchronization signal belongs and which synchronization signals are specifically included in each synchronization signal group based on the first indication information.
  • the first information may also include a number threshold of the synchronization signal groups to which multiple target synchronization signals belong, such as a maximum number threshold, that is, the number of target synchronization signals or synchronization signal groups corresponding to the target synchronization signals does not exceed the maximum number threshold; optionally, the number of synchronization signal groups to which the target synchronization signal belongs is the same as the number of target synchronization signals finally selected by the terminal.
  • the terminal determines the number threshold according to the terminal capability or determines it according to the protocol pre-definition.
  • the terminal capability is the maximum number of downlink signal beams that the terminal can simultaneously receive. It can be understood that the maximum number threshold of the target synchronization signal does not exceed the maximum number threshold configured by the network, and does not exceed the maximum number of receiving beams supported by the terminal capability.
  • the first information may also include an association between the synchronization signal and the access timing RO, so that after the terminal determines multiple target signals based on the first information sent by the network side device, the terminal can determine the RO resources corresponding to the multiple target synchronization signals and perform random access based on the association between the synchronization signal and the access timing RO in the first information.
  • the first information may also include configuration parameters of the RO resource, so that the terminal can determine the RO resource corresponding to the target synchronization signal according to the configuration parameters of the RO resource and perform random access.
  • the network side device may configure only one RO resource set, that is, all SSBs are associated with one RO resource set; or only one RO resource set is configured, and multiple synchronization signal groups are associated with the RO resource set respectively; or the network side device configures multiple RO resource sets, which correspond to multiple synchronization signal groups respectively, and the synchronization signal groups are associated with their respective corresponding RO resource sets. Further optionally, if multiple synchronization signal groups are independently associated with the RO resource set, it is ensured that the association period of each synchronization signal group is the same.
  • the information of the plurality of synchronization signal groups includes at least one of the following:
  • a first synchronization signal set includes a synchronization signal identifier corresponding to the first synchronization signal in each synchronization signal group;
  • a second synchronization signal set includes a synchronization signal identifier corresponding to the last synchronization signal in each synchronization signal group;
  • Synchronous signal bitmap the target separation information in the synchronous signal bitmap is used to indicate the boundary of dividing a plurality of synchronous signals into a plurality of synchronous signal groups;
  • the first information sent by the network side device to the terminal may include the first indication information; wherein the first indication information is used to indicate the information of multiple synchronization signal groups, so that the terminal can determine the information of the synchronization signal group to which each synchronization signal belongs and which synchronization signals are specifically included in each synchronization signal group based on the information of the synchronization signal group.
  • the network side device may explicitly indicate the information of the synchronization signal group to the terminal through the first indication information, or may implicitly indicate the information of the synchronization signal group, so that the terminal can accurately determine the grouping information of the synchronization signal.
  • the information of the synchronization signal group may include information of the synchronization signals included in each synchronization signal group, that is, the first information sent by the network side device explicitly indicates the information of the synchronization signals included in each synchronization signal group, so the terminal can accurately know the grouping information of the synchronization signal.
  • the information of the synchronization signal group may also include information about the synchronization signal group to which each synchronization signal in the synchronization signal set belongs, that is, the first information sent by the network side device explicitly indicates the information about the synchronization signal group to which each synchronization signal belongs, so the terminal can accurately know the grouping information of the synchronization signal.
  • the information of the synchronization signal group may also include the number of synchronization signals in each synchronization signal group, so that the terminal can accurately determine the grouping information of the synchronization signals according to the number of synchronization signals in each synchronization signal group.
  • the terminal can determine the synchronization signal information included in each synchronization signal group by arranging the synchronization signals continuously according to the number of synchronization signals in each synchronization signal group.
  • the grouping information of the synchronization signal may be determined based on the number of synchronization signal groups.
  • the number of synchronization signal groups and the implementation logic or terminal capability of the terminal determine the synchronization signal information included in each synchronization signal group. For example, it can be pre-agreed that the number of synchronization signals in each synchronization signal group is the same.
  • the information of the synchronization signal group may also include an identifier of the synchronization signal, so that the terminal can accurately determine the grouping information of the synchronization signal based on the identifier of the synchronization signal.
  • the terminal maps the module value of the identifier of the synchronization signal and the number of synchronization signal groups M to the corresponding synchronization signal group to determine the grouping information of the synchronization signal.
  • the number of synchronization signal groups is 2 by default, and the terminal may also determine the number of synchronization signal groups based on the terminal capability and the operating frequency band.
  • the number of synchronization signal groups corresponding to the frequency range 1 (Frequency range 1, FR1) band is 2, and the number of synchronization signal groups corresponding to the frequency range 2 (Frequency range 1, FR2) band is 4.
  • the number of synchronization signal groups may also be pre-configured by the network side device.
  • the information of the synchronization signal group may also include a first synchronization signal set and/or a second synchronization set, wherein the first synchronization signal set includes the synchronization signal identifier corresponding to the first synchronization signal in each synchronization signal group, and the second synchronization signal set includes the synchronization signal identifier corresponding to the last synchronization signal in each synchronization signal group, so that the terminal can determine the synchronization signal identifier corresponding to the first synchronization signal in each synchronization signal group and the synchronization signal identifier corresponding to the last synchronization signal in each synchronization signal group according to the first synchronization signal set and the second synchronization signal set, and further determine the range of the synchronization signal identifiers respectively included in each synchronization signal group, so as to accurately know the grouping information of the synchronization signal.
  • the first synchronization signal set includes the synchronization signal identifier corresponding to the first synchronization signal in each synchronization signal group
  • the first synchronization signal set or the second synchronization set can also determine the grouping information of the synchronization signal in combination with the number of synchronization signal groups, or can determine the grouping information of the synchronization signal based on the first synchronization signal set or the second synchronization set, as well as the information agreed upon by the protocol or pre-configured.
  • the information of the synchronization signal group includes a synchronization signal bitmap; wherein the target separation information in the synchronization signal bitmap is used to divide multiple synchronization signals into multiple synchronization signal groups, so that the terminal can determine the grouping information of the synchronization signal according to the target separation information in the synchronization signal bitmap.
  • the synchronization signal bitmap a group of synchronization signals are arranged continuously, and one or more synchronization signal resources are left vacant between the synchronization signal groups, and the synchronization signal between adjacent vacant synchronization signal resources is a synchronization signal of a synchronization signal group.
  • the synchronization signal grouping can be implemented in the time domain or in the frequency domain.
  • synchronization signal group 1 and synchronization signal group 2 are spaced apart in the time domain by a synchronization signal resource, thereby realizing grouping of synchronization signals.
  • synchronization signal group 1 and synchronization signal group 2 are spaced apart in the frequency domain by a synchronization signal resource, thereby realizing grouping of synchronization signals.
  • synchronization signal group 1 and synchronization signal group 2 are spaced apart in the time domain and the frequency domain by a synchronization signal resource, thereby realizing grouping of synchronization signals.
  • the information of the synchronization signal group may also include the position information of the random access response RAR window corresponding to each RO, so that the terminal can group the ROs with the same random access response RAR window position information into one group, and then determine the associated SSB grouping in the RO grouping according to the association relationship between the RO and the SSB, and thus determine the grouping of the synchronization signal.
  • RO#0, RO#1, RO#2, and RO#3 have the same random access response RAR window, then RO#0, RO#1, RO#2, and RO#3 can be grouped into one group, and then according to the association relationship between the RO and the SSB, it can be determined that SSB#0, SSB#1, SSB#2, and SSB#3 belong to the same synchronization signal group.
  • the association relationship between SSB and RO is mapped on the corresponding RO resources according to each SSB group, so that the terminal can determine the SSB group according to the SSB-RO association relationship: for example, taking FR2 as an example (assuming that each TRP supports single-beam transmission and reception), it is assumed by default that the SSB mapped on the RO resources in the same time period belong to different SSB groups, and are corresponded to different SSB groups in turn according to the order of SSB association in the same time period.
  • the network side device explicitly or implicitly indicates the grouping information of the synchronization signal through the first information, so that after the terminal receives the first information sent by the network side device, it can accurately determine the grouping information of the synchronization signal set based on the first information.
  • the terminal has low implementation complexity, and there can be multiple indication methods, which is more flexible.
  • the terminal determines multiple target synchronization signals based on information related to multiple synchronization signal groups, including:
  • the terminal determines at least one target synchronization signal group based on signal quality of synchronization signals in the synchronization signal group;
  • the terminal determines each target synchronization signal based on each target synchronization signal group.
  • the terminal determines the grouping information of the synchronization signal based on the information related to the multiple synchronization signal groups, that is, after determining the synchronization signals included in each synchronization signal group, it can determine at least one target synchronization signal group based on the signal quality of the synchronization signal in the synchronization signal group.
  • the synchronization signal is grouped based on distinguishing the synchronization signals corresponding to different TRPs or AP node clusters.
  • the terminal can also determine multiple target synchronization signals from the target synchronization signal group to perform a random access process, thereby improving the success rate of random access.
  • the terminal determines at least one target synchronization signal group based on the signal quality of the synchronization signal in the synchronization signal group, including:
  • the terminal determines the signal quality of each synchronization signal group based on the signal quality of the synchronization signal in each synchronization signal group;
  • the terminal selects at least one target synchronization signal group based on the signal quality of each synchronization signal group.
  • the terminal may determine the signal quality of each synchronization signal group based on the signal quality of the synchronization signal in each synchronization signal group; for example, the terminal determines the signal quality of M synchronization signal groups according to the weighted value, maximum value or mean value of the reference signal receiving power (RSRP) of the synchronization signals in the M synchronization signal groups, and then selects N target synchronization signal groups according to the quality of the M synchronization signal groups.
  • the terminal may select the N synchronization signal groups with the best signal quality, or select the N synchronization signal groups that exceed a preset threshold as the target synchronization signal groups, or other synchronization signal group screening rules, which are not limited here.
  • N is less than or equal to M.
  • the terminal determines multiple target synchronization signals based on each target synchronization signal group, including:
  • the terminal uses the synchronization signal with the best signal quality in each target synchronization signal group as multiple target synchronization signals; and/or,
  • the terminal uses the synchronization signals in each target synchronization signal group whose signal quality is greater than or equal to the first threshold as multiple target synchronization signals.
  • the terminal can use the synchronization signal with the best signal quality in each target synchronization signal group as multiple target synchronization signals; and/or, the terminal can use the synchronization signal with a signal quality greater than or equal to a first threshold in each target synchronization signal group as the target synchronization signal.
  • the terminal can select a synchronization signal from each of the N synchronization signal groups as the target synchronization signal.
  • the terminal selects a synchronization signal with the best RSRP as the target synchronization signal in each target synchronization signal group, or selects a synchronization signal with a signal quality greater than or equal to a first threshold as the target synchronization signal in each target synchronization signal group.
  • a synchronization signal can be randomly selected from the synchronization signal group as the target synchronization signal, or the target synchronization signal is not selected from the synchronization signal group.
  • the ROs associated with each target synchronization signal do not overlap in the time domain.
  • the terminal may also select multiple target synchronization signals in the same target synchronization signal group, which is not limited in the embodiment of the present application.
  • the number of the multiple target synchronization signals in the target synchronization signal group is predefined by the protocol or configured by a system message.
  • the number of the multiple target synchronization signals is less than or equal to the number of antenna modules supported by the terminal, or the number of simultaneously received signal streams.
  • the number N of multiple target synchronization signals selected by the terminal should be less than or equal to the number of antenna modules supported by the terminal or the number of simultaneously received signal streams, so that the terminal can effectively perform random access to multiple target synchronization signals.
  • the terminal uses multiple target synchronization signals for random access, including:
  • the terminal uses multiple target synchronization signals for random access in at least one of the following situations:
  • the terminal receives second indication information sent by the network side device; the second indication information is used to instruct the terminal to perform random access based on multiple target synchronization signals;
  • the downlink path loss is less than or equal to the second threshold
  • the number of failures of the terminal to perform random access based on the single synchronization signal is greater than or equal to a third threshold
  • the terminal receives the third indication information sent by the network side device; the third indication information is used to indicate that the area where the terminal is located is a non-cellular area; and/or indicates that the terminal is jointly served by the TRP of the transmission receiving point TRP collaboration cluster;
  • the signal quality difference of multiple synchronization signal groups measured by the terminal is less than or equal to a fourth threshold.
  • the network side device may send a second indication information to the terminal; wherein the second indication information is used to instruct the terminal to perform random access based on multiple synchronization signals; optionally, the network side device may also instruct the terminal to perform which type of random access of multiple synchronization signals, such as the network side device instructing the terminal to perform contention-based random access (CBRA) and non-contention random access (CFRA) of multiple synchronization signals; and then after receiving the second indication information sent by the network side device, the terminal may perform random access based on multiple synchronization signals. Further optionally, the second indication information indicates multiple target synchronization signals used for random access based on multiple synchronization signals.
  • CBRA contention-based random access
  • CFRA non-contention random access
  • the terminal may also determine whether to perform random access of multiple synchronization signals according to the measured downlink path loss.
  • the downlink path loss reference is lower than the system configuration threshold, it indicates that the wireless environment quality is poor, and the terminal may The random access of multiple synchronization signals can be selected to improve the success rate of random access.
  • the terminal when the terminal fails to perform random access of a single synchronization signal greater than or equal to a preset third threshold, it indicates that the terminal has a low success rate of random access based on a single synchronization signal or cannot successfully access the network side based on a single synchronization signal.
  • the terminal can choose to perform random access of multiple synchronization signals to improve the access success rate and reduce the access delay.
  • the network side device may also send a third indication message to the terminal; wherein the third indication message is used to indicate that the area where the terminal is located is a non-cellular area and/or to indicate that the terminal is jointly served by the TRP of the transmission receiving point TRP collaborative cluster.
  • the terminal may choose to perform random access of multiple synchronization signals.
  • the terminal can choose to perform random access of multiple synchronization signals to improve the success rate of random access. For example, when the channel qualities of N synchronization signal groups measured by the terminal are similar, that is, when the difference between the channel quality of the optimal synchronization signal group and the channel quality of the suboptimal/other synchronization signal groups is less than a predefined threshold, the terminal can select multiple synchronization signal groups to perform the random access process to improve the success rate of random access.
  • the first information further includes: fourth indication information, the fourth indication information is used to indicate support for synchronization signal grouping; and/or, indicates that the network side device supports the terminal to use multiple synchronization signals for random access.
  • the first information also includes fourth indication information; wherein the fourth indication information is used to indicate support for synchronization signal grouping; and/or to indicate that the network side device supports the terminal to use multiple synchronization signals for random access.
  • the terminal After receiving the fourth indication information sent by the network side device, the terminal can further determine the grouping information of the synchronization signal and perform random access of multiple synchronization signals according to the first indication information in the first information.
  • the terminal uses multiple target synchronization signals for random access, including:
  • the terminal sends Msg1 corresponding to each target synchronization signal to the network side device based on the RO associated with each target synchronization signal;
  • the terminal monitors Msg2 sent by the network side device based on the quasi-co-location parameters of each target synchronization signal
  • the terminal sends Msg3 to the network side device based on the sending space parameters of the target synchronization signal corresponding to the received Msg2.
  • the terminal can use multiple target synchronization signals for random access.
  • the terminal sends Msg1 corresponding to each target synchronization signal to the network side device based on the associated RO of each target synchronization signal within an associated period;
  • the base station configures random access RO resources for each SSB group: for example, different time-frequency resources are configured respectively; for example, the same time-frequency resources are configured and different preamble sets are configured.
  • the terminal uses N different antenna modules to send N synchronization signals on RO resources at different times.
  • the network side device uses the synchronization signal as the quasi co-location parameter to send corresponding Msg2 to the terminal.
  • N TRPs use N SSB quasi co-location parameters respectively.
  • the terminal may monitor Msg2 sent by the network side device based on the quasi-co-location parameters of each target synchronization signal; optionally, the terminal may monitor Msg2 according to N SSB quasi-co-location parameters. If the terminal successfully receives Msg2 sent by the network side device with the quasi-co-location parameters corresponding to the synchronization signal, the terminal sends Msg3 to the network side device based on the transmission space parameters of the target synchronization signal corresponding to the received Msg2, thereby realizing random access to multiple synchronization signals.
  • the terminal After the terminal sends Msg1 corresponding to SSB#i (one of N SSBs), the terminal opens the RAR monitoring window and uses SSB#i as the quasi-co-location reference for Msg2/RAR monitoring. If the terminal successfully receives Msg2 with the SSB#i quasi-co-location reference and passes the verification of the Random Access Preamble Identifier (RAPID), Msg3 is sent according to the transmission space parameters corresponding to the SSB#i reception space parameters.
  • RAPID Random Access Preamble Identifier
  • the terminal when the terminal receives multiple Msg2s sent by the network side device, the terminal determines the sending space parameter of Msg3 based on the target synchronization signal corresponding to the received Msg2, and sends Msg3 to the network side device, including:
  • the terminal selects the sending space parameter of the target synchronization signal corresponding to any one of the multiple Msg2s, and sends Msg3 to the network side device; or,
  • the terminal selects the sending space parameters of the target synchronization signal corresponding to all Msg2 in multiple Msg2s, and sends Msg3 to the network side device.
  • the terminal when the terminal performs random access of multiple synchronization signals, when the terminal receives multiple Msg2s sent by the network side, the terminal can select the sending space parameter of the target synchronization signal corresponding to any one of the multiple Msg2s, send Msg3 to the network side device, and no longer perform random access on the remaining received Msg2s. Response; or, the terminal selects the sending space parameters of the target synchronization signal corresponding to all Msg2 in multiple Msg2s, and sends Msg3 to the network side device.
  • the terminal determines the RO corresponding to N synchronization signals according to the system message configuration and sends Msg1.
  • the N synchronization signals are sent using N different antenna modules respectively.
  • the base station After the base station receives Msg1 using the TRP#j module corresponding to the synchronization signal #i (one of the N synchronization signals), it uses the TRP#j module to send Msg2/RAR with the synchronization signal #i as a quasi-co-location reference.
  • the terminal uses antenna module #k to receive the synchronization signal #i, and uses antenna module #k to receive the Msg2/RAR quasi-co-location with the synchronization signal #i.
  • the terminal successfully receives Msg2 with the quasi-co-location reference of synchronization signal #i if the terminal successfully receives Msg2 with multiple quasi-co-location references of synchronization signals and passes the verification, select the sending space parameters corresponding to the synchronization signal receiving space parameters corresponding to any one Msg2 (for example, the earliest or latest RAR received successfully, or the RAR with the best signal quality, or the earliest or latest RAR scheduled by Msg3, or the RAR selected by the terminal itself) to send Msg3, and the remaining Msg2s will no longer respond; or select the sending space parameters corresponding to the receiving space parameters of all synchronization signals that have been successfully received and verified to send Msg3.
  • Msg2 for example, the earliest or latest RAR received successfully, or the RAR with the best signal quality, or the earliest or latest RAR scheduled by Msg3, or the RAR selected by the terminal itself
  • the terminal sends Msg1 corresponding to each target synchronization signal to the network side device based on the RO of each target synchronization signal, including:
  • the terminal uses at least one beam to send Msg1 corresponding to each target synchronization signal to the network side device; the beam is used to determine the transmission point TRP cooperation cluster serving the terminal; the transmission point TRP cooperation cluster includes multiple target TRPs, and the target TRP is the TRP that receives the same beam.
  • the terminal uses at least one beam to send Msg1 corresponding to each target synchronization signal to the network side device based on the RO of each target synchronization signal; optionally, for target synchronization signals with the same RO, Msg1 is sent to the network side device using the same beam, and the TRP received in the same beam can be used as the target cluster in the terminal's collaborative cluster to jointly serve the terminal.
  • the Msg2 sent by the target TRP included in the TRP collaboration cluster includes: a unified temporary cell radio network temporary identifier TC-RNTI and information on uplink resources for sending Msg3, and the information on uplink resources includes sending space parameters.
  • the TRP collaboration cluster includes multiple target TRPs
  • the Msg2 sent by the multiple target TRPs in the collaboration cluster to the terminal includes a unified temporary cell radio network temporary identifier TC-RNTI and the same uplink resources for sending Msg3, that is, the TC-RNTI and spatial parameters in the Msg2 sent by the TRP in the same TRP collaboration cluster are the same.
  • Msg3 when the terminal sends Msg3 to the network side device, Msg3 also carries a set of TC-RNTIs in Msg2 received by the terminal, so that the network side device can use the TRP corresponding to the same TC-RNTI in the received Msg3 as the TRP collaboration cluster serving the terminal, jointly serve the terminal, and realize fast TRP collaboration cluster construction.
  • the terminal determines the RO corresponding to N synchronization signals according to the system message configuration, sends Msg1, and uses the same beam. It can be understood that the N synchronization signals are sent from N different TRP modules.
  • the beam can be selected by the terminal itself or specified by the network.
  • the TRP receiving the same beam serves the same terminal in the form of a collaborative cluster, scrambles the PDCCH information through RA-RNTI, and sends Msg2 to the terminal.
  • the TRP in the collaborative cluster allocates a unified TC-RNTI and the same Msg3 uplink resources to the terminal in Msg2, that is, configures the same transmission space parameters.
  • the number of the multiple target synchronization signals is N, where N is an integer greater than 1, and the terminal determines the multiple target synchronization signals based on the information of the synchronization signal group, including:
  • the terminal determines the first target synchronization signal based on the position information of the RAR window
  • the terminal determines N-1 target synchronization signals based on the position information of the first target synchronization signal and the RAR window, and the time domain resources occupied by the synchronization signal group where the N-1 target synchronization signals are located do not overlap with the time domain resources occupied by the RAR window.
  • the terminal can determine the first target synchronization signal based on the position information of the RAR window.
  • the starting time of the RAR window is the starting time of the time slot where the first reference channel is located after sending Msg1.
  • the reference channel can be a physical downlink control channel (Physical Downlink Control Channel, PDCCH) type Type1, control resource set (Control Resource Set, CORESET) #0 or other downlink channels.
  • the start time of the RAR window is the start boundary of the time slot where the first control resource set is located after Msg1 is sent, and the RAR window lengths of each SSB and each RO are the same.
  • RO resources temporarily use the uplink time slot; multiple ROs will be configured in the uplink time slot, and RO will be associated with multiple SSBs; after the terminal receives SSBs, obtains cell synchronization and system messages, and determines the number of SSBs in the cell and RO resource configuration, it can group ROs with the same RAR window start time, and then determine the association relationship between RO and SSB.
  • the terminal can determine the subsequent N SSBs based on the first selected SSB and the RAR window.
  • the SSB group corresponding to the RO resource cannot send PRACH.
  • the terminal can select multiple ROs within an SSB to RO association period (association period) or association pattern period (association pattern period) to ensure that the RAR windows corresponding to the ROs do not overlap with each other.
  • the number of target synchronization signals determined is not greater than the association period divided by the RAR window length or not greater than the association pattern period/RAR window length.
  • the terminal if the terminal does not receive Msg2 sent by the network side device within a preset time range, the terminal performs at least one of the following operations:
  • the terminal can then re-determine the target synchronization signal group and/or determine the target synchronization signal in each target synchronization signal group when the target synchronization signal groups are different, and perform random access, or increase the power of multiple target synchronization signals to improve the success rate of random access.
  • the terminal may also re-select N' SSB groups, select one SSB from each of the N' SSB groups, and make the next random access attempt; or the terminal re-selects an SSB from the N SSB groups that have been selected, and makes the next random access attempt.
  • the terminal may also re-select N' SSB groups, select one SSB from each of the N' SSB groups, and make the next random access attempt; or the terminal re-selects an SSB from the N SSB groups that have been selected, and makes the next random access attempt.
  • FIG8 is a second flow chart of a random access method provided in an embodiment of the present application. As shown in FIG8 , the method provided in this embodiment includes:
  • Step 801 A network-side device sends first information to a terminal; the first information is used to indicate information related to a plurality of synchronization signal groups; the synchronization signal group includes at least one synchronization signal.
  • the first information includes at least one of the following:
  • the first indication information is used to indicate information of multiple synchronization signal groups
  • the information of the multiple synchronization signal groups includes at least one of the following:
  • a first synchronization signal set includes a synchronization signal identifier corresponding to the first synchronization signal in each synchronization signal group;
  • a second synchronization signal set includes a synchronization signal identifier corresponding to the last synchronization signal in each synchronization signal group;
  • Synchronous signal bitmap Synchronous signal bitmap
  • target separation information in the synchronous signal bitmap is used to divide multiple synchronous signals into multiple synchronous signal groups
  • the number of the multiple target synchronization signals is less than or equal to the number of antenna modules supported by the terminal, or the number of simultaneously received signal streams.
  • the random access method further includes at least one of the following:
  • the network side device sends second indication information to the terminal; the second indication information is used to instruct the terminal to perform random access based on multiple synchronization signals;
  • the network side device sends a third indication information to the terminal; the third indication information is used to indicate that the area where the terminal is located is a non-cellular area; and/or indicate that the terminal is jointly served by the TRP of the transmission receiving point TRP collaborative cluster.
  • the first information also includes: fourth indication information, the fourth indication information is used to indicate support for synchronization signal grouping; and/or, indicates that the network side device supports the terminal to use multiple synchronization signals for random access.
  • the random access method further includes at least one of the following:
  • the network side device receives Msg1 corresponding to each target synchronization signal sent by the terminal; Msg1 is sent by the terminal based on the RO associated with each target synchronization signal;
  • the network side device sends a message Msg2 to the terminal based on the quasi-co-location parameters of each target synchronization signal;
  • the network side device receives Msg3 sent by the terminal; Msg3 is sent by the terminal based on the sending space parameters of the target synchronization signal corresponding to the received Msg2.
  • the network side device receives Msg1 corresponding to each target synchronization signal sent by the terminal, including:
  • the network side device receives Msg1 corresponding to each target synchronization signal sent by the terminal;
  • Msg1 is the RO of the terminal based on each target synchronization signal, and is sent using at least one beam;
  • the network side device determines a transmission point TRP collaboration cluster serving the terminal based on at least one beam; the TRP collaboration cluster includes multiple target TRPs, and the target TRP is a TRP that receives the same beam.
  • the Msg2 sent by the target TRP included in the TRP collaboration cluster includes: a unified temporary cell radio network temporary identifier TC-RNTI and information on uplink resources for sending Msg3, and the information on uplink resources includes sending space parameters.
  • the network side device builds a TRP collaboration cluster serving the terminal based on the TC-RNTI in Msg2; the TRP collaboration cluster includes multiple TRPs; and Msg3 includes all TC-RNTIs received in Msg2.
  • the start time of the RAR window is the start time of the time slot where the first reference channel is located after Msg1 is sent.
  • the number of multiple target synchronization signals is N, where N is an integer greater than 1, and N is less than or equal to a first value, where the first value is an association period or an association mode period between the synchronization signal and the RO divided by the length of the RAR window.
  • the random access method provided in the embodiment of the present application can be executed by a virtual device.
  • the random access method performed by a virtual device in the embodiment of the present application is taken as an example to illustrate the random access device provided in the embodiment of the present application.
  • FIG. 9 is one of the structural schematic diagrams of a random access device provided in an embodiment of the present application. As shown in FIG. 9 , the random access device, applied to a terminal, includes:
  • the receiving module 910 is used to receive first information sent by a network side device; the first information is used to indicate information related to multiple synchronization signal groups; the synchronization signal group includes at least one synchronization signal;
  • a determination module 920 configured to determine a plurality of target synchronization signals based on information related to a plurality of synchronization signal groups
  • the access module 930 is used to perform random access using multiple target synchronization signals.
  • the first information includes at least one of the following:
  • the first indication information is used to indicate information of multiple synchronization signal groups
  • the information of the multiple synchronization signal groups includes at least one of the following:
  • a first synchronization signal set includes a synchronization signal identifier corresponding to the first synchronization signal in each synchronization signal group;
  • a second synchronization signal set includes a synchronization signal identifier corresponding to the last synchronization signal in each synchronization signal group;
  • Synchronous signal bitmap Synchronous signal bitmap
  • target separation information in the synchronous signal bitmap is used to divide multiple synchronous signals into multiple synchronous signal groups
  • the determination module 920 is specifically configured to: determine at least one target synchronization signal group based on the signal quality of the synchronization signals in the synchronization signal group;
  • a plurality of target synchronization signals are determined.
  • the determination module 920 is specifically configured to: determine the signal quality of the synchronization signal in each synchronization signal group based on the signal quality of the synchronization signal in each synchronization signal group. Quantity, determine the signal quality of each synchronization signal group;
  • At least one target synchronization signal group is selected based on the signal qualities of the respective synchronization signal groups.
  • the determination module 920 is specifically configured to: use the synchronization signal with the best signal quality in each target synchronization signal group as the multiple target synchronization signals; and/or,
  • the synchronization signals in each target synchronization signal group whose signal quality is greater than or equal to the first threshold are used as multiple target synchronization signals.
  • the number of the multiple target synchronization signals is less than or equal to the number of antenna modules supported by the terminal, or the number of simultaneously received signal streams.
  • the access module 930 is specifically configured to: perform random access using multiple target synchronization signals in at least one of the following situations:
  • the second indication information is used to instruct the terminal to perform random access based on multiple synchronization signals
  • the downlink path loss is less than or equal to the second threshold
  • the number of failures of random access based on a single synchronization signal is greater than or equal to a third threshold
  • the third indication information is used to indicate that the area where the terminal is located is a non-cellular area; and/or indicating that the terminal is jointly served by the TRP of the transmission receiving point TRP cooperation cluster;
  • the measured signal quality difference of the multiple synchronization signal groups is less than or equal to a fourth threshold.
  • the first information also includes: fourth indication information, the fourth indication information is used to indicate support for synchronization signal grouping; and/or, indicates that the network side device supports the terminal to use multiple synchronization signals for random access.
  • the access module 930 is specifically configured to: send Msg1 corresponding to each target synchronization signal to the network side device based on the RO associated with each target synchronization signal;
  • Msg3 is sent to the network side device.
  • the access module 930 is further configured to: select a transmission space parameter of a target synchronization signal corresponding to any one of the multiple Msg2s, and send Msg3 to the network side device; or,
  • the access module 930 is specifically used to: based on the RO of each target synchronization signal, use at least one beam to send Msg1 corresponding to each target synchronization signal to the network side device; the beam is used to determine the transmission point TRP cooperation cluster serving the terminal; the transmission point TRP cooperation cluster includes multiple target TRPs, and the target TRP is the TRP that receives the same beam.
  • the Msg2 sent by the target TRP included in the TRP collaboration cluster includes: a unified temporary cell radio network temporary identifier TC-RNTI and information on uplink resources for sending Msg3, and the information on uplink resources includes sending space parameters.
  • Msg3 includes TC-RNTIs in all received Msg2s; TC-RNTI is used to construct a TRP collaboration cluster serving the terminal; and the TRP collaboration cluster includes multiple TRPs.
  • the start time of the RAR window is the start time of the time slot where the first reference channel is located after Msg1 is sent.
  • the determination module 920 is specifically used to: determine the first target synchronization signal based on the position information of the RAR window;
  • N-1 target synchronization signals are determined, and the time domain resources occupied by the synchronization signal group where the N-1 target synchronization signals are located do not overlap with the time domain resources occupied by the RAR window.
  • N is less than or equal to a first value
  • the first value is an association period or an association mode period between the synchronization signal and the RO divided by a length of the RAR window.
  • the access module 930 is specifically configured to: if the Msg2 sent by the network side device is not received within a preset time range, perform at least one of the following operations:
  • FIG. 10 is a second schematic diagram of the structure of a random access device provided in an embodiment of the present application. As shown in FIG. 10 , the random access device is applied to a terminal, and includes:
  • the sending module 1010 is used to send first information to the terminal; the first information is used to indicate information related to multiple synchronization signal groups; the synchronization signal group includes at least one synchronization signal.
  • the first information includes at least one of the following:
  • the first indication information is used to indicate information of multiple synchronization signal groups
  • the information of the multiple synchronization signal groups includes at least one of the following:
  • a first synchronization signal set includes a synchronization signal identifier corresponding to the first synchronization signal in each synchronization signal group;
  • a second synchronization signal set includes a synchronization signal identifier corresponding to the last synchronization signal in each synchronization signal group;
  • Synchronous signal bitmap Synchronous signal bitmap
  • target separation information in the synchronous signal bitmap is used to divide multiple synchronous signals into multiple synchronous signal groups
  • the number of the multiple target synchronization signals is less than or equal to the number of antenna modules supported by the terminal, or the number of simultaneously received signal streams.
  • the sending module 1010 is specifically configured to send second indication information to the terminal; the second indication information is used to instruct the terminal to perform random access based on multiple synchronization signals;
  • the third indication message is used to indicate that the area where the terminal is located is a non-cellular area; and/or indicating that the terminal is jointly served by the TRP of the transmission receiving point TRP collaborative cluster.
  • the first information also includes: fourth indication information, the fourth indication information is used to indicate support for synchronization signal grouping; and/or, indicates that the network side device supports the terminal to use multiple synchronization signals for random access.
  • the sending module 1010 is specifically configured to receive Msg1 corresponding to each target synchronization signal sent by the terminal; Msg1 is sent by the terminal based on the RO associated with each target synchronization signal;
  • the receiving terminal sends Msg3; Msg3 is sent by the terminal based on the sending space parameters of the target synchronization signal corresponding to the received Msg2.
  • the sending module 1010 is specifically configured to receive Msg1 corresponding to each target synchronization signal sent by the terminal; Msg1 is an RO of the terminal based on each target synchronization signal, and is sent using at least one beam;
  • a transmission point TRP collaboration cluster serving a terminal is determined based on at least one beam; the TRP collaboration cluster includes multiple target TRPs, and the target TRP is a TRP that receives the same beam.
  • the Msg2 sent by the target TRP included in the TRP collaboration cluster includes: a unified temporary cell radio network temporary identifier TC-RNTI and information on uplink resources for sending Msg3, and the information on uplink resources includes sending space parameters.
  • the sending module 1010 is specifically used to build a TRP collaboration cluster serving the terminal based on the TC-RNTI in Msg2; the TRP collaboration cluster includes multiple TRPs; and Msg3 includes all TC-RNTIs received in Msg2.
  • the start time of the RAR window is the start time of the time slot where the first reference channel is located after Msg1 is sent.
  • the number of multiple target synchronization signals is N, where N is an integer greater than 1, and N is less than or equal to a first value, where the first value is an association period or an association mode period between the synchronization signal and the RO divided by the length of the RAR window.
  • the "virtual device” in the embodiment of the present application can be an electronic device, such as an electronic device with an operating system, or a component in an electronic device, such as an integrated circuit or a chip.
  • the electronic device can be a terminal, or it can be other devices other than a terminal.
  • the terminal can include but is not limited to the types of terminal 11 listed above, and other devices can be servers, network attached storage (NAS), etc., which are not specifically limited in the embodiment of the present application.
  • the virtual device provided in the embodiment of the present application can implement each process implemented by the method embodiments of Figures 2 to 7 and achieve the same technical effect. To avoid repetition, it will not be repeated here.
  • FIG11 is a schematic diagram of the structure of a communication device provided in an embodiment of the present application.
  • the communication device 1100 includes a processor 1101 and a memory 1102.
  • the memory 1102 stores a program or instruction that can be run on the processor 1101.
  • the program or instruction is executed by the processor 1101 to implement the various steps of the above-mentioned random access method embodiment, and can achieve the same technical effect.
  • the communication device 1100 is a network side device, the program or instruction is executed by the processor 1101 to implement the various steps of the above-mentioned random access method embodiment, and can achieve the same technical effect. To avoid repetition, it will not be repeated here.
  • the embodiment of the present application also provides a terminal, including a processor and a communication interface, the communication interface is used to receive first information sent by a network side device; the first information is used to indicate information related to multiple synchronization signal groups; the synchronization signal group includes at least one synchronization signal, the processor is used to determine multiple target synchronization signals based on the information related to the multiple synchronization signal groups; and multiple target synchronization signals are used for random access.
  • This terminal embodiment corresponds to the above-mentioned terminal side method embodiment, and each implementation process and implementation method of the above-mentioned method embodiment can be applied to this terminal embodiment, and can achieve the same technical effect.
  • Figure 12 is a structural diagram of the terminal provided in an embodiment of the present application.
  • the terminal 1200 includes but is not limited to: a radio frequency unit 1201, a network module 1202, an audio output unit 1203, an input unit 1204, a sensor 1205, a display unit 1206, a user input unit 1207, an interface unit 1208, a memory 1209 and at least some of the components of the processor 1210.
  • the terminal 1200 may also include a power source (such as a battery) for supplying power to each component, and the power source may be logically connected to the processor 1210 through a power management system, so as to implement functions such as managing charging, discharging, and power consumption management through the power management system.
  • a power source such as a battery
  • the terminal structure shown in FIG12 does not constitute a limitation on the terminal, and the terminal may include more or fewer components than shown in the figure, or combine certain components, or arrange components differently, which will not be described in detail here.
  • the input unit 1204 may include a graphics processing unit (GPU) 12041 and a microphone 12042, and the graphics processor 12041 processes the image data of the static picture or video obtained by the image capture device (such as a camera) in the video capture mode or the image capture mode.
  • the display unit 1206 may include a display panel 12061, and the display panel 12061 may be configured in the form of a liquid crystal display, an organic light emitting diode, etc.
  • the user input unit 1207 includes a touch panel 12071 and at least one of other input devices 12072.
  • the touch panel 12071 is also called a touch screen.
  • the touch panel 12071 may include two parts: a touch detection device and a touch controller.
  • Other input devices 12072 may include, but are not limited to, a physical keyboard, function keys (such as a volume control key, a switch key, etc.), a trackball, a mouse, and a joystick, which will not be repeated here.
  • the RF unit 1201 can transmit the data to the processor 1210 for processing; in addition, the RF unit 1201 can send uplink data to the network side device.
  • the RF unit 1201 includes but is not limited to an antenna, an amplifier, a transceiver, a coupler, a low noise amplifier, a duplexer, etc.
  • the memory 1209 can be used to store software programs or instructions and various data.
  • the memory 1209 may mainly include a first storage area for storing programs or instructions and a second storage area for storing data, wherein the first storage area may store an operating system, an application program or instruction required for at least one function (such as a sound playback function, an image playback function, etc.), etc.
  • the memory 1209 may include a volatile memory or a non-volatile memory, or the memory 1209 may include both volatile and non-volatile memories.
  • the non-volatile memory may be a read-only memory (ROM), a programmable read-only memory (PROM), an erasable programmable read-only memory (EPROM), an electrically erasable programmable read-only memory (EEPROM), or a flash memory.
  • the volatile memory may be a random access memory (RAM), a static random access memory (SRAM), a dynamic random access memory (DRAM), a synchronous dynamic random access memory (SDRAM), a double data rate synchronous dynamic random access memory (DDRSDRAM), an enhanced synchronous dynamic random access memory (ESDRAM), a synchronous link dynamic random access memory (SLDRAM) and a direct memory bus random access memory (DRRAM).
  • the memory 1209 in the embodiment of the present application includes but is not limited to these and any other suitable types of memory.
  • the processor 1210 may include one or more processing units; optionally, the processor 1210 integrates an application processor and a modem processor, wherein the application processor mainly processes operations related to the operating system, user interface, and application programs, and the modem processor mainly processes wireless communication signals, such as a baseband processor. It is understandable that The above-mentioned modem processor may not be integrated into the processor 1210 .
  • the radio frequency unit 1201 is used to receive the first information sent by the network side device; the first information is used to indicate information related to multiple synchronization signal groups; the synchronization signal group includes at least one synchronization signal; the processor 1210 is used to determine multiple target synchronization signals based on the information related to multiple synchronization signal groups; and use multiple target synchronization signals for random access.
  • the first information includes at least one of the following:
  • the first indication information is used to indicate information of multiple synchronization signal groups
  • the information of the multiple synchronization signal groups includes at least one of the following:
  • a first synchronization signal set includes a synchronization signal identifier corresponding to the first synchronization signal in each synchronization signal group;
  • a second synchronization signal set includes a synchronization signal identifier corresponding to the last synchronization signal in each synchronization signal group;
  • Synchronous signal bitmap Synchronous signal bitmap
  • target separation information in the synchronous signal bitmap is used to divide multiple synchronous signals into multiple synchronous signal groups
  • the processor 1210 is specifically configured to: determine at least one target synchronization signal group based on signal quality of synchronization signals in the synchronization signal group;
  • a plurality of target synchronization signals are determined.
  • the processor 1210 is specifically configured to: determine the signal quality of each synchronization signal group based on the signal quality of the synchronization signal in each synchronization signal group;
  • At least one target synchronization signal group is selected based on the signal qualities of the respective synchronization signal groups.
  • the processor 1210 is specifically configured to: use a synchronization signal with the best signal quality in each target synchronization signal group as a plurality of target synchronization signals; and/or,
  • the synchronization signals in each target synchronization signal group whose signal quality is greater than or equal to the first threshold are used as multiple target synchronization signals.
  • the number of the multiple target synchronization signals is less than or equal to the number of antenna modules supported by the terminal, or the number of simultaneously received signal streams.
  • the processor 1210 is specifically configured to: use multiple target synchronization signals to perform random access in at least one of the following situations:
  • the second indication information is used to instruct the terminal to perform random access based on multiple synchronization signals
  • the downlink path loss is less than or equal to the second threshold
  • the number of failures of random access based on a single synchronization signal is greater than or equal to a third threshold
  • the third indication information is used to indicate that the area where the terminal is located is a non-cellular area; and/or indicating that the terminal is jointly served by the TRP of the transmission receiving point TRP cooperation cluster;
  • the measured signal quality difference of the multiple synchronization signal groups is less than or equal to a fourth threshold.
  • the first information also includes: fourth indication information, the fourth indication information is used to indicate support for synchronization signal grouping; and/or, indicates that the network side device supports the terminal to use multiple synchronization signals for random access.
  • the processor 1210 is specifically configured to: send Msg1 corresponding to each target synchronization signal to the network side device based on the RO associated with each target synchronization signal;
  • Msg3 is sent to the network side device.
  • the processor 1210 is further configured to: select a sending space parameter of a target synchronization signal corresponding to any one Msg2 among multiple Msg2s, and send Msg3 to the network side device; or,
  • the processor 1210 is specifically used to: based on the RO of each target synchronization signal, use at least one beam to send Msg1 corresponding to each target synchronization signal to the network side device; the beam is used to determine the transmission point TRP cooperation cluster serving the terminal; the transmission point TRP cooperation cluster includes multiple target TRPs, and the target TRP is the TRP that receives the same beam.
  • the Msg2 sent by the target TRP included in the TRP collaboration cluster includes: a unified temporary cell radio network temporary identifier TC-RNTI and information on uplink resources for sending Msg3, and the information on uplink resources includes sending space parameters.
  • Msg3 includes TC-RNTIs in all received Msg2s; TC-RNTI is used to construct a TRP collaboration cluster serving the terminal; and the TRP collaboration cluster includes multiple TRPs.
  • the start time of the RAR window is the start time of the time slot where the first reference channel is located after Msg1 is sent.
  • the processor 1210 is specifically configured to: determine a first target synchronization signal based on the position information of the RAR window;
  • N-1 target synchronization signals are determined, and the time domain resources occupied by the synchronization signal group where the N-1 target synchronization signals are located do not overlap with the time domain resources occupied by the RAR window.
  • N is less than or equal to a first value
  • the first value is an association period or an association mode period between the synchronization signal and the RO divided by a length of the RAR window.
  • the processor 1210 is specifically configured to: if the Msg2 sent by the network side device is not received within a preset time range, perform at least one of the following operations:
  • the embodiment of the present application also provides a network side device, including a processor and a communication interface, the communication interface is used to send first information to a terminal; the first information is used to indicate information related to multiple synchronization signal groups; the synchronization signal group includes at least one synchronization signal.
  • the network side device embodiment corresponds to the above network side device method embodiment, and each implementation process and implementation method of the above method embodiment can be applied to the network side device embodiment, and can achieve the same technical effect.
  • FIG13 is a schematic diagram of the structure of a network side device provided in an embodiment of the present application.
  • the network side device 1300 includes: an antenna 1301, a radio frequency device 1302, a baseband device 1303, a processor 1304, and a memory 1305.
  • the antenna 1301 is connected to the radio frequency device 1302.
  • the radio frequency device 1302 receives information through the antenna 1301 and sends the received information to the baseband device 1303 for processing.
  • the baseband device 1303 processes the information to be sent and sends it to the radio frequency device 1302.
  • the radio frequency device 1302 processes the received information and sends it out through the antenna 1301.
  • the method executed by the network-side device in the above embodiment may be implemented in the baseband device 1303, which includes a baseband processor.
  • the baseband device 1303 may include, for example, at least one baseband board, on which multiple chips are arranged, as shown in Figure 13, one of which is, for example, a baseband processor, which is connected to the memory 1305 through a bus interface to call the program in the memory 1305 and execute the network device operations shown in the above method embodiment.
  • the network side device may also include a network interface 1306, which is, for example, a common public radio interface (CPRI).
  • a network interface 1306, which is, for example, a common public radio interface (CPRI).
  • CPRI common public radio interface
  • the network side device 1300 of the embodiment of the present application also includes: instructions or programs stored in the memory 1305 and executable on the processor 1304.
  • the processor 1304 calls the instructions or programs in the memory 1305 to execute the random access method as described above and achieve the same technical effect. To avoid repetition, it will not be repeated here.
  • An embodiment of the present application also provides a communication system, including: a terminal and a network side device, wherein the terminal can be used to execute the steps of the random access method as described above, and the network side device can be used to execute the steps of the random access method as described above.
  • An embodiment of the present application also provides a readable storage medium, which may be volatile or non-volatile, and stores a program or instruction on the readable storage medium.
  • a readable storage medium which may be volatile or non-volatile, and stores a program or instruction on the readable storage medium.
  • the processor is the processor in the terminal described in the above embodiment.
  • the readable storage medium includes a computer readable storage medium, such as a computer read-only memory ROM, a random access memory RAM, a disk Or CDs, etc.
  • An embodiment of the present application further provides a chip, which includes a processor and a communication interface, the communication interface is coupled to the processor, and the processor is used to run programs or instructions to implement the various processes of the above-mentioned random access method embodiment, and can achieve the same technical effect. To avoid repetition, it will not be repeated here.
  • the chip mentioned in the embodiments of the present application can also be called a system-level chip, a system chip, a chip system or a system-on-chip chip, etc.
  • the embodiment of the present application further provides a computer program/program product, which is stored in a storage medium, and is executed by at least one processor to implement the various processes of the above-mentioned random access method embodiment, and can achieve the same technical effect. To avoid repetition, it will not be repeated here.
  • the technical solution of the present application can be embodied in the form of a computer software product, which is stored in a storage medium (such as ROM/RAM, a magnetic disk, or an optical disk), and includes a number of instructions for enabling a terminal (which can be a mobile phone, a computer, a server, an air conditioner, or a network device, etc.) to execute the methods described in each embodiment of the present application.
  • a storage medium such as ROM/RAM, a magnetic disk, or an optical disk
  • a terminal which can be a mobile phone, a computer, a server, an air conditioner, or a network device, etc.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请公开了一种随机接入方法、装置、终端、网络侧设备及介质,属于通信技术领域,本申请实施例的随机接入方法包括:终端接收网络侧设备发送的第一信息;第一信息用于指示与多个同步信号组相关的信息;同步信号组包括至少一个同步信号;终端基于多个同步信号组相关的信息,确定多个目标同步信号;终端采用多个目标同步信号进行随机接入。

Description

随机接入方法、装置、终端、网络侧设备及介质
相关申请的交叉引用
本申请主张在2022年11月10日在中国提交的申请号为202211407155.8的中国专利的优先权,其全部内容通过引用包含于此。
技术领域
本申请属于通信技术领域,具体涉及一种随机接入方法、装置、终端、网络侧设备及介质。
背景技术
随机接入是通信系统中一个基本且重要的过程,其主要目为建立上行链路同步,请求网络分配给终端上行链路资源。
相关技术中,终端完成下行同步后,检测同步信号块(Synchronization Signal and PBCH Block,SSB)信号质量;根据网络配置的门限值来选择合适的SSB,例如,如果存在一个SSB信号质量高于门限值,则选择满足条件的SSB,如果存在多个SSB满足条件,则选择其中一个SSB(选择方案由终端实现决定),如果没有SSB满足条件,则从SSB全集中选择一个SSB(选择方案由终端实现决定);确定SSB之后,终端根据SSB进行随机接入。
在分布式传输接收点(Transmission Reception Point,TRP)部署的场景,或在6G无蜂窝(cell free)场景下,根据接入点(Access Point,AP)节点簇来分别发送同步信号来进行无缝覆盖,如果采用上述方式选择同步信号进行随机接入,接入成功的概率会较低。
发明内容
本申请实施例提供一种随机接入方法、装置、终端、网络侧设备及介质,能够解决终端随机接入成功率低的问题。
第一方面,提供了一种随机接入方法,该方法包括:
终端接收网络侧设备发送的第一信息;所述第一信息用于指示与多个同步信号组相关的信息;所述同步信号组包括至少一个同步信号;
所述终端基于所述多个同步信号组相关的信息,确定多个目标同步信号;
所述终端采用所述多个目标同步信号进行随机接入。
第二方面,提供了一种随机接入方法,该方法包括:
网络侧设备向终端发送第一信息;所述第一信息用于指示与多个同步信号组相关的信息;所述同步信号组包括至少一个同步信号。
第三方面,提供了一种随机接入装置,该装置包括:
接收模块,用于接收网络侧设备发送的第一信息;所述第一信息用于指示与多个同步信号组相关的信息;所述同步信号组包括至少一个同步信号;
确定模块,用于基于所述多个同步信号组相关的信息,确定多个目标同步信号;
接入模块,用于采用所述多个目标同步信号进行随机接入。
第四方面,提供了一种随机接入装置,该装置包括:
发送模块,用于向终端发送第一信息;所述第一信息用于指示与多个同步信号组相关的信息;所述同步信号组包括至少一个同步信号。
第五方面,提供了一种终端,该终端包括处理器和存储器,所述存储器存储可在所述处理器上运行的程序或指令,所述程序或指令被所述处理器执行时实现如第一方面所述的方法的步骤。
第六方面,提供了一种终端,包括处理器及通信接口;其中,所述通信接口用于接收网络侧设备发送的第一信息;所述第一信息用于指示与多个同步信号组相关的信息;所述同步信号组包括至少一个同步信号;所述处理器用于基于所述多个同步信号组相关的信息,确定多个目标同步信号;采用所述多个目标同步信号进行随机接入。
第七方面,提供了一种网络侧设备,该网络侧设备包括处理器和存储器,所述存储器存储可在所述处理器上运行的程序或指令,所述程序或指令被所述处理器执行时 实现如第二方面所述的方法的步骤。
第八方面,提供了一种网络侧设备,包括处理器及通信接口;其中,所述通信接口用于向终端发送第一信息;所述第一信息用于指示与多个同步信号组相关的信息;所述同步信号组包括至少一个同步信号。
第九方面,提供了一种通信系统,包括:终端及网络侧设备,所述终端可用于执行如第一方面所述的方法的步骤,所述网络侧设备可用于执行如第二方面所述的方法的步骤。
第十方面,提供了一种可读存储介质,所述可读存储介质上存储程序或指令,所述程序或指令被处理器执行时实现如第一方面所述的方法的步骤,或者实现如第二方面所述的方法的步骤。
第十一方面,提供了一种芯片,所述芯片包括处理器和通信接口,所述通信接口和所述处理器耦合,所述处理器用于运行程序或指令,实现如第一方面所述的方法,或实现如第二方面所述的方法。
第十二方面,提供了一种计算机程序/程序产品,所述计算机程序/程序产品被存储在存储介质中,所述计算机程序/程序产品被至少一个处理器执行以实现如第一方面所述的方法的步骤,或者实现如第二方面所述的方法的步骤。
在本申请实施例中,终端接收网络侧设备发送的第一信息后,就可以基于第一信息中的同步信号组的相关信息,确定同步信号的分组信息,并从多个同步信号组中选择多个目标同步信号执行随机接入过程,即使部分目标同步信号执行随机接入失败的情况下,仍可以基于剩余的目标同步信号进行随机接入过程,有效的提升了随机接入的成功率,缩短了接入时延。
附图说明
图1是本申请实施例可应用的无线通信系统的示意图;
图2是本申请实施例提供的随机接入方法的流程示意图之一;
图3是本申请实施例提供的确定同步信号组的示意图之一;
图4是本申请实施例提供的确定同步信号组的示意图之二;
图5是本申请实施例提供的确定同步信号组的示意图之三;
图6是本申请实施例提供的确定同步信号组的示意图之四;
图7是本申请实施例提供的随机接入方法的交互流程示意图;
图8是本申请实施例提供的随机接入方法的流程示意图之二;
图9是本申请实施例提供的随机接入装置的示意图之一;
图10是本申请实施例提供的随机接入装置的示意图之二;
图11是本申请实施例提供的通信设备的结构示意图;
图12是本申请实施例提供的终端的结构示意图;
图13是本申请实施例提供的网络侧设备的结构示意图。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚描述,显然,所描述的实施例是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员所获得的所有其他实施例,都属于本申请保护的范围。
本申请的说明书和权利要求书中的术语“第一”、“第二”等是用于区别类似的对象,而不用于描述特定的顺序或先后次序。应该理解这样使用的术语在适当情况下可以互换,以便本申请的实施例能够以除了在这里图示或描述的那些以外的顺序实施,且“第一”、“第二”所区别的对象通常为一类,并不限定对象的个数,例如第一对象可以是一个,也可以是多个。此外,说明书以及权利要求中“和/或”表示所连接对象的至少其中之一,字符“/”一般表示前后关联对象是一种“或”的关系。
值得指出的是,本申请实施例所描述的技术不限于长期演进型(Long Term Evolution,LTE)/LTE的演进(LTE-Advanced,LTE-A)系统,还可用于其他无线通信系统,诸如码分多址(Code Division Multiple Access,CDMA)、时分多址(Time Division Multiple Access,TDMA)、频分多址(Frequency Division Multiple Access,FDMA)、正交频分多址(Orthogonal Frequency Division Multiple Access,OFDMA)、单载波频分多址(Single-carrier Frequency Division Multiple Access,SC-FDMA)和其他系统。本申请实施例中的术语“系统”和“网络”常被可互换地使 用,所描述的技术既可用于以上提及的系统和无线电技术,也可用于其他系统和无线电技术。以下描述出于示例目的描述了新空口(New Radio,NR)系统,并且在以下大部分描述中使用NR术语,但是这些技术也可应用于NR系统应用以外的通信系统,如第6代(6th Generation,6G)通信系统。
图1是本申请实施例可应用的无线通信系统的示意图,图1示出的无线通信系统包括终端11和网络侧设12。其中,终端11可以是手机、平板电脑(Tablet Personal Computer)、膝上型电脑(Laptop Computer)或称为笔记本电脑、个人数字助理(Personal Digital Assistant,PDA)、掌上电脑、上网本、超级移动个人计算机(ultra-mobile personal computer,UMPC)、移动上网装置(Mobile Internet Device,MID)、增强现实(augmented reality,AR)/虚拟现实(virtual reality,VR)设备、机器人、可穿戴式设备(Wearable Device)、车载设备(VUE)、行人终端(PUE)、智能家居(具有无线通信功能的家居设备,如冰箱、电视、洗衣机或者家具等)、游戏机、个人计算机(personal computer,PC)、柜员机或者自助机等终端侧设备,可穿戴式设备包括:智能手表、智能手环、智能耳机、智能眼镜、智能首饰(智能手镯、智能手链、智能戒指、智能项链、智能脚镯、智能脚链等)、智能腕带、智能服装等。需要说明的是,在本申请实施例并不限定终端11的具体类型。
网络侧设备12可以包括接入网设备或核心网设备,其中,接入网设备也可以称为无线接入网设备、无线接入网(Radio Access Network,RAN)、无线接入网功能或无线接入网单元。接入网设备可以包括基站、WLAN接入点或WiFi节点等,基站可被称为节点B、演进节点B(eNB)、接入点、基收发机站(Base Transceiver Station,BTS)、无线电基站、无线电收发机、基本服务集(Basic Service Set,BSS)、扩展服务集(Extended Service Set,ESS)、家用B节点、家用演进型B节点、发送接收点(Transmitting Receiving Point,TRP)或所述领域中其他某个合适的术语,只要达到相同的技术效果,所述基站不限于特定技术词汇,需要说明的是,在本申请实施例中仅以NR系统中的基站为例进行介绍,并不限定基站的具体类型。
为了便于更加清晰地理解本申请各实施例的技术方案,首先对本申请各实施例相关的一些技术内容进行介绍。
第三代合作伙伴计划(Third Generation Partnership Project,3GPP)协议版本(Release,Rel)17中引入了基于多TRP的波束管理机制。Rel-17终端具有X个TRP模块,同时基站部署了Y个TRP节点。基站为Rel-17终端配置M个波束,分别来自于M个TRP的波束集合。M<=Y,M<=X。终端对M个波束集合中的参考信号(SSB或者信道状态信息参考信号(Channel State Information-Reference Signal,CSI-RS))进行测量,并上报N组测量结果;每组测量结果包含M个测量结果,分别对应于M个波束集合中其中一个测量结果。Rel-17终端支持使用X个TRP模块分别接收来自M个TRP的无线信号。根据协议规定M=2,N<=4。
Rel-15定义了4步随机接入的流程。终端完成下行同步后,检查SSB信号质量;根据网络配置的门限值(rsrp-ThresholdSSB)来选择合适的SSB,即,如果存在一个SSB信号质量SS-RSRP高于门限值,则选择满足条件的SSB,如果存在多个SSB满足条件,则选择其中一个SSB(选择方案由终端实现决定),如果没有SSB满足条件,则从SSB全集中选择一个SSB(选择方案由终端实现决定)。确定SSB之后,终端根据SSB与随机接入时机(RACH occasion,RO)的关联关系,确定SSB关联的RO资源集合和前导码preamble资源集合;终端在资源集合中随机选择一个RO资源和一个preamble资源,发送Msg1。
无蜂窝大规模多输入多输出(Multi Inputs Multi Out,MIMO)系统:无蜂窝大规模MIMO系统可以认为是对传统大规模MIMO系统的解构。传统大规模MIMO系统的天线集中的布置在一个站点(基站),终端分布在基站周围。在大规模MIMO系统提供了较高的阵列增益以及空间分辨率,但是由于相邻基站之间无法协同传输导致小区边缘终端的信干噪比降低。无蜂窝大规模MIMO系统破除了小区的概念,大量天线/TRP节点/接入点AP分散部署在覆盖区域内,理论上覆盖区域内的终端可以与每一个TRP通信,借助前传网络和中央处理单元(Central Processing Unit,CPU),地理上分散的大量TRP可以共同为终端服务,CPU利用信道统计信息来进行联合检测。无蜂窝网络有望应用于下一代室内和热点覆盖场景,如智能工厂,火车站,购物中心,体育场,地铁,医院,社区中心或大学校园等。
目前,终端完成下行同步后,检测SSB信号质量,并根据网络配置的门限值来 选择唯一的SSB进行随机接入。。而且在多个SSB信号质量相近的场景下,例如无蜂窝大规模MIMO系统中,终端从多个信号质量相近的SSB中选择一个SSB,决策难度较大,可能会增加终端实现的复杂度,并且接入成功的概率较低。
例如,网络侧设备可能使用分布式多TRP的部署方案,每个TRP会发送一个或者多个SSB信号来保证附近的终端接入小区。在终端角度看来,终端只选择一个TRP发送的一个SSB来进行随机接入;但是,当终端与多个TRP距离相差不多的情况下,终端接收多个TRP的SSB信号质量相近,这时终端可能无法准确判断出最优的SSB。
为了解决上述问题,本申请实施例中,考虑选择多个同步信号进行随机接入。
下面结合附图,通过一些实施例及其应用场景对本申请实施例提供的随机接入方法、装置、终端、网络侧设备及介质进行详细地说明。
图2是本申请实施例提供的随机接入方法的流程示意图之一,如图2所示,该方法包括:
步骤201、终端接收网络侧设备发送的第一信息;第一信息用于指示与多个同步信号组相关的信息;同步信号组包括至少一个同步信号;
具体地,第一信息用于指示与多个同步信号组相关的信息;可选地,同步信号组相关的信息包括同步信号所属的同步信号组的信息,例如,同步信号集合中每个同步信号所属的同步信号组的信息,该信息具体可以通过显式或隐式的方式进行指示,可选地,同步信号组相关的信息还可以包括:与同步信号关联的RO资源信息等,各个同步信号组中包括至少一个同步信号;可选地,第一信息通过系统消息或者高层信令(例如RRC信令)携带。
终端接收网络侧设备发送的第一信息后,可以基于第一信息中的同步信号组的相关信息,确定同步信号的分组信息,例如有几个同步信号组,每个同步信号组包括哪些同步信号等。
步骤202、终端基于多个同步信号组相关的信息,确定多个目标同步信号;
具体地,终端在接收网络侧设备发送的第一信息后,就可以基于第一信息中的同步信号组相关的信息确定同步信号的分组信息,并从多个同步信号组中选择多个同步信号作为目标同步信号,例如可以基于信号质量选择目标同步信号。可选地,一个同步信号组中可以选择一个或多个同步信号作为目标同步信号。
具体的,终端确定M个同步信号组,选择N个同步信号组用于同步信号选择,N<=M;从N个同步信号组中分别选择一个或者A个同步信号作为目标同步信号,A由协议预定义或系统消息配置。
步骤203、终端采用多个目标同步信号进行随机接入。
具体地,终端在基于多个同步信号组相关的信息,确定多个目标同步信号后,终端就可以基于多个目标同步信号对应的RO资源,在随机接入阶段采用多个目标同步信号执行随机接入过程。终端采用多个目标同步信号进行随机接入,相较于终端基于单一同步信号进行随机接入的过程,有效地提升了随机接入的成功率,缩短了接入时延,解决了终端只选择一个SSB进行随机接入时接入成功率低的问题。
例如,在分布式多TRP的部署场景下,每个TRP会发送一个或者多个SSB信号来保证附近的终端接入小区,终端可以同时向多个TRP发送PRACH信号,从而增加终端随机接入的成功率。可选地,Rel-17终端具备多个TRP模块,支持多个波束的同时发送\接收。终端可以根据多TRP的SSB监听结果选择多个SSB并行进行随机接入,从而提升随机接入的成功率。可选地,在无蜂窝网络中,终端可以同时被多个TRP以协作簇的形式进行服务,终端可以在随机接入阶段选择多个同步信号,提升随机接入的成功率和协作簇的构建效率。
上述实施例的方法,终端接收网络侧设备发送的第一信息后,就可以基于第一信息中的同步信号组的相关信息,确定同步信号的分组信息,并从多个同步信号组中选择多个目标同步信号执行随机接入过程,即使部分目标同步信号执行随机接入失败的情况下,仍可以基于剩余的目标同步信号进行随机接入过程,有效的提升了随机接入的成功率,缩短了接入时延。
在一实施例中,第一信息包括以下至少一项:
第一指示信息;第一指示信息用于指示多个同步信号组的信息;
多个目标同步信号所属的同步信号组的数量阈值;
同步信号和接入时机RO的关联关系;
RO资源的配置参数。
具体地,网络侧设备向终端发送的第一信息中可以包括第一指示信息;其中,第一指示信息用于指示多个同步信号组的信息,使得终端根据第一指示信息就可以确定各个同步信号所属的同步信号组的信息以及各个同步信号组中具体包括哪些同步信号。
可选地,第一信息中也可以包括多个目标同步信号所属的同步信号组的数量阈值,例如最大数量阈值,即目标同步信号或者目标同步信号对应的同步信号组的数量不超过最大数量阈值;可选地,目标同步信号所属的同步信号组的数量与终端最终选择的目标同步信号的数量相同,目标同步信号所属的同步信号组的数量阈值越大的情况下,目标同步信号的数量也就越多,接入的成功率也就越大。如果没有显式配置所述数量阈值,终端跟终端能力确定数量阈值或者根据协议预定义确定。终端能力是终端同时接收下行信号波束的最大数量。可以理解,目标同步信号的最大数量阈值不超过网络配置的最大数量阈值,并且不超过终端能力支持的最大接收波束数量。
可选地,第一信息中也可以包括同步信号和接入时机RO的关联关系,使得终端在基于网络侧设备发送的第一信息确定多个目标信号后,终端就可以根据第一信息中同步信号和接入时机RO的关联关系,确定多个目标同步信号对应的RO资源并进行随机接入。
可选地,第一信息中也可以包括RO资源的配置参数,使得终端可以根据RO资源的配置参数确定目标同步信号对应的RO资源并进行随机接入。可选地,网络侧设备可以只配置一个RO资源集合,即所有SSB关联于一个RO资源集合;或者只配置一个RO资源集合,多个同步信号组分别与RO资源集合进行关联;或者,网络侧设备配置多个RO资源集合,分别对应于多个同步信号组,同步信号组与各自对应的RO资源集合进行关联。进一步可选地,如果多个同步信号组独立的与RO资源集合进行关联,保证各个同步信号组的关联周期相同。
在一实施例中,多个同步信号组的信息,包括以下至少一项:
各个同步信号组包括的同步信号的信息;
同步信号集合中每个同步信号所属的同步信号组的信息;
各个同步信号组中的同步信号的数量;
同步信号组的数量;
多个同步信号的标识;
第一同步信号集合;第一同步信号集合中包括各个同步信号组中的第一个同步信号所对应的同步信号标识;
第二同步信号集合;第二同步信号集合中包括各个同步信号组中的最后一个同步信号所对应的同步信号标识;
同步信号位图;同步信号位图中的目标分隔信息用于指示多个同步信号分成多个同步信号组的边界;
各个RO所对应的随机接入响应(Random Access Response,RAR)窗口的位置信息。
具体地,网络侧设备向终端发送的第一信息中可以包括第一指示信息;其中,第一指示信息用于指示多个同步信号组的信息,使得终端根据同步信号组的信息就可以确定各个同步信号所属的同步信号组的信息以及各个同步信号组中具体包括哪些同步信号。可选的,网络侧设备可以通过第一指示信息向终端显式指示同步信号组的信息,也可以隐式指示同步信号组的信息,使得终端准确地确定同步信号的分组信息。
可选地,同步信号组的信息可以包括各个同步信号组包括的同步信号的信息,也就是网络侧设备发送的第一信息显式的指示了各个同步信号组中所包括的同步信号的信息,因此终端可以准确的知道同步信号的分组信息。
可选地,同步信号组的信息也可以包括同步信号集合中每个同步信号所属的同步信号组的信息,也就是网络侧设备发送的第一信息显式的指示了每个同步信号所属的同步信号组的信息,因此终端可以准确的知道同步信号的分组信息。
可选地,同步信号组的信息也可以包括各个同步信号组中的同步信号的数量,从而终端根据各个同步信号组中的同步信号的数量,就可以准确地确定同步信号的分组信息。可选地,终端根据各个同步信号组中的同步信号的数量,将同步信号连续排列,就可以确定各个同步信号组中包括的同步信号信息。
可选地,可以基于同步信号组的数量确定同步信号的分组信息。例如,终端根据 同步信号组的数量以及终端的实现逻辑或终端能力,确定各个同步信号组中包括的同步信号信息,例如可以预先约定每个同步信号组中同步信号的数量相同。
可选地,同步信号组的信息也可以包括同步信号的标识,从而终端根据同步信号的标识,就可以准确地确定同步信号的分组信息。可选地,终端根据同步信号的标识与同步信号组的数量M的模值,映射到对应的同步信号分组里,确定同步信号的分组信息。可选的,同步信号组的数量默认为2,终端也可以根据终端能力和工作频段确定同步信号组的数量,例如频率范围1(Frequency range 1,FR1)频段对应的同步信号组的数量2,频率范围2(Frequency range 1,FR2)频段对应的同步信号组的数量为4,同步信号组的数量也可以是网络侧设备预先配置的。
可选地,同步信号组的信息也可以包括第一同步信号集合和/或第二同步集合,其中,第一同步信号集合中包括各个同步信号组中的第一个同步信号所对应的同步信号标识,第二同步信号集合中包括各个同步信号组中的最后一个同步信号所对应的同步信号标识,从而终端根据第一同步信号集合和第二同步信号集合,就可以确定各个同步信号组中的第一个同步信号所对应的同步信号标识、各个同步信号组中的最后一个同步信号所对应的同步信号标识,进而也就可以确定各个同步信号组中分别包括的同步信号标识的范围,从而准确地获知到同步信号的分组信息。例如,第一同步信号集合或第二同步集合,还可以与同步信号组的数量等结合确定同步信号的分组信息,或,可以基于第一同步信号集合或第二同步集合,以及协议约定或预先配置的信息,确定同步信号的分组信息。
可选地,同步信号组的信息包括同步信号位图;其中,同步信号位图中的目标分隔信息用于将多个同步信号分成多个同步信号组,从而终端根据同步信号位图中的目标分隔信息就可以确定同步信号的分组信息。例如,在同步信号位图中,一组同步信号连续排列,同步信号分组之间间隔空置一个或者多个同步信号资源,相邻的空置同步信号资源中间的同步信号为一个同步信号组的同步信号。其中同步信号分组可以在时域实现,也可以在频域实现。
示例性地,如图3所示,同步信号组1和同步信号组2之间在时域上通过一个同步信号资源进行间隔,从而实现同步信号的分组。如图4所示,同步信号组1和同步信号组2之间在频域上通过一个同步信号资源进行间隔,从而实现同步信号的分组。如图5所示,同步信号组1和同步信号组2之间在时域和频域中通过一个同步信号资源进行间隔,从而实现同步信号的分组。
可选地,同步信号组的信息也可以包括各个RO所对应的随机接入响应RAR窗口的位置信息,从而终端可以将具有相同随机接入响应RAR窗口的位置信息的RO分为一组,进而根据RO与SSB的关联关系,确定RO分组内相关联的SSB分组,也就确定了同步信号的分组。例如,如图6所示,RO#0、RO#1、RO#2、RO#3具有相同随机接入响应RAR窗口,则可以将RO#0、RO#1、RO#2、RO#3分为一组,进而根据RO与SSB的关联关系,可以确定SSB#0、SSB#1、SSB#2、SSB#3属于同一个同步信号组。可选地,SSB到RO的关联关系按照各个SSB分组分别在对应的RO资源上进行映射,从而终端根据SSB-RO关联关系就可以确定SSB分组:例如,以FR2为例(假设每个TRP支持单波束收发),默认的认为同一时间段的RO资源上映射的SSB属于不同的SSB分组,根据同一时间段SSB关联先后顺序分别依次对应到不同的SSB分组里。
上述实施例的方法,网络侧设备通过第一信息显式或隐式的指示同步信号的分组信息,使得终端接收到网络侧设备发送的第一信息后,就可以基于第一信息准确地确定同步信号集合的分组信息,终端实现复杂度较低,而且指示的方式可以有多种,灵活性较大。
在一实施例中,终端基于多个同步信号组相关的信息,确定多个目标同步信号,包括:
终端基于同步信号组中的同步信号的信号质量,确定至少一个目标同步信号组;
终端基于各个目标同步信号组,确定各个目标同步信号。
具体地,终端基于多个同步信号组相关的信息,确定同步信号的分组信息,也就是确定各个同步信号组中包括的同步信号后,可以基于同步信号组中的同步信号的信号质量,确定至少一个目标同步信号组。在实际应用中,同步信号的分组依据是区分不同的TRP或者AP节点簇对应的同步信号。进一步地,终端也就可以从目标同步信号组中,确定多个目标同步信号执行随机接入过程,提升随机接入的成功率。
在一实施例中,终端基于同步信号组中的同步信号的信号质量,确定至少一个目标同步信号组,包括:
终端基于各个同步信号组中的同步信号的信号质量,确定各个同步信号组的信号质量;
终端基于各个同步信号组的信号质量,选择至少一个目标同步信号组。
具体地,终端可以基于各个同步信号组中的同步信号的信号质量,确定各个同步信号组的信号质量;例如,终端根据M个同步信号组内的同步信号的参考信号接收功率(Reference Signal Receiving Power,RSRP)的加权值或者最大值或者均值,确定M个同步信号组的信号质量,进而根据M个同步信号组的质量选择N个目标同步信号组。可选的,终端可以选择信号质量最好的N个同步信号组,或者选择超过预设门限的N个同步信号组作为目标同步信号组,或者其他同步信号组筛选规则,这里不做限定。可选地,N小于或等于M。
在一实施例中,终端基于各个目标同步信号组,确定多个目标同步信号,包括:
终端将各个目标同步信号组中的信号质量最优的同步信号,作为多个目标同步信号;和/或,
终端将各个目标同步信号组中的信号质量大于或等于第一阈值的同步信号,作为多个目标同步信号。
具体地,终端在确定多个目标同步信号组后,可以将各个目标同步信号组中的信号质量最优的同步信号,作为多个目标同步信号;和/或,终端将各个目标同步信号组中的信号质量大于或等于第一阈值的同步信号,作为目标同步信号。
例如,终端确定N个目标同步信号组后,终端可以从N个同步信号分组中分别选择一个同步信号作为目标同步信号。可选地,终端在各个目标同步信号组中选择RSRP最好的同步信号作为目标同步信号,或者在各个目标同步信号组中选择信号质量大于或等于第一阈值的同步信号作为目标同步信号。可选地,若同步信号分组的信号质量低于预定义或预配置门限,则可以从同步信号组中随机选择一个同步信号作为目标同步信号,或者该同步信号组中不选择目标同步信号。进一步可选地,各个目标同步信号所关联的RO在时域上不重叠。
可选地,终端在同一个目标同步信号组中也可以选择多个目标同步信号,本申请实施例对此并不限定。所述目标同步信号组中的多个目标同步信号的数量由协议预定义或者系统消息配置。
在一实施例中,多个目标同步信号的数量小于或等于终端支持的天线模块的数量,或同时接收信号流的数量。
具体地,终端选择的多个目标同步信号的数量N应该小于或等于终端支持的天线模块的数量或同时接收信号流的数量,使得终端可以有效地执行多个目标同步信号的随机接入。
在一实施例中,终端采用多个目标同步信号进行随机接入,包括:
终端在如下至少一种情况下,采用多个目标同步信号进行随机接入:
终端接收到网络侧设备发送的第二指示信息;第二指示信息用于指示终端执行基于多个目标同步信号的随机接入;
下行路损小于或等于第二阈值;
终端基于单一同步信号进行随机接入的失败次数大于或等于第三阈值;
终端接收到网络侧设备发送的第三指示信息;第三指示信息用于指示终端所在区域为无蜂窝区域;和/或指示终端被传输接收点TRP协作簇的TRP共同服务;
终端测量得到的多个同步信号组的信号质量差值小于或等于第四阈值。
具体地,为了指示终端选择多个目标同步信号执行随机接入过程,网络侧设备可以向终端发送第二指示信息;其中,第二指示信息用于指示终端执行基于多个同步信号的随机接入;可选地,网络侧设备还可以指示终端执行哪种类型的多个同步信号的随机接入,如网络侧设备指示终端执行多同步信号的竞争的随机接入(Contention Based Random Access,CBRA)和非竞争随机接入(Contention Free Random Access,CFRA);进而终端在接收到网络侧设备发送的第二指示信息后,就可以执行基于多个同步信号的随机接入。进一步可选地,第二指示信息中指示基于多个同步信号的随机接入使用的多个目标同步信号。
可选地,终端也可以根据测量的下行路损,确定是否执行多个同步信号的随机接入。可选的,在下行路损参考低于系统配置门限时,表明无线环境质量较差,终端可 以选择执行多个同步信号的随机接入以提升随机接入成功率。
可选地,终端执行单一同步信号的随机接入失败大于或等于预设的第三阈值后,表明终端基于单一同步信号的随机接入成功率较低或者基于单一同步信号无法成功接入网络侧,则终端可以选择执行多个同步信号的随机接入,提升接入成功率,降低接入时延。
可选地,网络侧设备也可以向终端发送第三指示信息;其中,第三指示信息用于指示终端所在区域为无蜂窝区域和/或指示终端被传输接收点TRP协作簇的TRP共同服务,则终端在接收到第三指示信息后,可以选择执行多个同步信号的随机接入。
可选地,终端测量得到的多个同步信号组的信号质量差值小于或等于第四阈值,表明终端所在区域的无线环境质量较差或存在重叠覆盖,则终端可以选择执行多个同步信号的随机接入以提升随机接入成功率。例如,终端测量的N个同步信号分组的信道质量相近时,也就是最优同步信号分组的信道质量与次优/其他同步信号分组的信道质量差值小于预定义门限时,终端可以选择多个同步信号分组执行随机接入流程,以提升随机接入的成功率。
在一实施例中,第一信息还包括:第四指示信息,第四指示信息用于指示支持同步信号分组;和/或,指示网络侧设备支持终端使用多个同步信号进行随机接入。
具体地,第一信息还包括第四指示信息;其中,第四指示信息用于指示支持同步信号分组;和/或,指示网络侧设备支持终端使用多个同步信号进行随机接入。终端在接收到网络侧设备发送的第四指示信息后,进一步就可以根据第一信息中的第一指示信息,确定同步信号的分组信息并执行多个同步信号的随机接入。
在一实施例中,终端采用多个目标同步信号进行随机接入,包括:
终端基于各个目标同步信号关联的RO,向网络侧设备发送各个目标同步信号对应的Msg1;
终端基于各个目标同步信号的准共址参数,监听网络侧设备发送的Msg2;
终端基于接收到的Msg2对应的目标同步信号的发送空间参数,向网络侧设备发送Msg3。
具体地,终端在确定多个目标同步信号后,就可以采用多个目标同步信号进行随机接入。可选的,如图7所示,终端基于各个目标同步信号在一个关联周期内的关联RO,向网络侧设备发送各个目标同步信号对应的Msg1;可选的,基站为各个SSB分组分别配置随机接入RO资源:例如,分别配置不同的时频资源;又例如,配置相同的时频资源,配置不同preamble集合。可选地,终端分别使用N个不同的天线模块在不同的时间的RO资源上发送N个同步信号。
可选地,网络侧设备在接收终端发送的多个Msg1后,使用同步信号为准共址参数向终端发送对应的Msg2。可选地,N个TRP分别使用N个SSB准共址参数。
可选地,终端可以基于各个目标同步信号的准共址参数,监听网络侧设备发送的Msg2;可选地,终端按照N个SSB准共址参数监听Msg2,若终端以同步信号对应的准共址参数成功接收网络侧设备发送的Msg2,终端基于接收到的Msg2对应的目标同步信号的发送空间参数,向网络侧设备发送Msg3,实现多同步信号的随机接入。
例如,终端发送SSB#i(N个SSB其中之一)对应的Msg1之后,终端开启RAR监听窗口,并且使用SSB#i为准共址参考进行Msg2/RAR监听。如果终端以SSB#i准共址参考成功接收Msg2,并且校验随机接入前导码标识(Random Access Preamble Identifier,RAPID)通过,按照SSB#i接收空间参数相对应的发送空间参数发送Msg3。
在一实施例中,在终端接收到网络侧设备发送的多个Msg2的情况下,终端基于接收到的Msg2对应的目标同步信号确定Msg3的发送空间参数,向网络侧设备发送Msg3,包括:
终端选择多个Msg2中任意一个Msg2对应的目标同步信号的发送空间参数,向网络侧设备发送Msg3;或,
终端选择多个Msg2中全部Msg2对应的目标同步信号的发送空间参数,向网络侧设备发送Msg3。
具体地,终端在执行多个同步信号的随机接入过程中,在终端接收到网络侧发送的多个Msg2的情况下,终端可以选择多个Msg2中任意一个Msg2对应的目标同步信号的发送空间参数,向网络侧设备发送Msg3,对于接收到的其余Msg2不再进行 响应;或,终端选择多个Msg2中全部Msg2对应的目标同步信号的发送空间参数,向网络侧设备发送Msg3。
例如,终端根据系统消息配置确定N个同步信号对应的RO,发送Msg1。可选地,N个同步信号分别使用N个不同的天线模块发送。基站使用同步信号#i(N个同步信号其中之一)对应的TRP#j模块接收Msg1之后,使用TRP#j模块以同步信号#i为准共址参考发送Msg2/RAR。可选地,对于多天线模块的终端,终端使用天线模块#k接收同步信号#i,并且,使用天线模块#k接收与同步信号#i准共址的Msg2/RAR。如果终端以同步信号#i准共址参考成功接收Msg2,如果终端以多个同步信号准共址参考成功接收Msg2,并校验通过,选择任意一个Msg2(例如,最早或者最晚接收成功的RAR,或者信号质量最好的RAR,或者Msg3调度最早或者最晚的RAR,或者由终端实现自行选择的RAR)对应的同步信号接收空间参数相对应的发送空间参数发送Msg3,其余Msg2不再进行响应;或选择所有成功接收并校验通过的同步信号的接收空间参数相对应的发送空间参数发送Msg3。
在一实施例中,终端基于各个目标同步信号的RO,向网络侧设备发送各个目标同步信号对应的Msg1,包括:
终端基于各个目标同步信号的RO,利用至少一个波束向网络侧设备发送各个目标同步信号对应的Msg1;波束用于确定为终端服务的传输点TRP协作簇;传输点TRP协作簇包括多个目标TRP,目标TRP为接收到相同波束的TRP。
具体地,终端基于各个目标同步信号的RO,利用至少一个波束向网络侧设备发送各个目标同步信号对应的Msg1;可选的,对于RO相同的目标同步信号,利用同一个波束向网络侧设备发送Msg1,进而接收到相同波束的TRP可以作为终端的协作簇中的目标簇,共同服务终端。
在一实施例中,TRP协作簇包括的目标TRP发送的Msg2中包括:统一的临时的小区无线网络临时标识TC-RNTI和用于发送Msg3的上行资源的信息,上行资源的信息包括发送空间参数。
具体地,TRP协作簇中包括多个目标TRP,协作簇中的多个目标TRP向终端发送的Msg2中包括统一的临时的小区无线网络临时标识TC-RNTI和相同的用于发送Msg3的上行资源,也就是同一TRP协作簇中的TRP发送的Msg2中的TC-RNTI以及空间参数相同。进一步,终端在向网络侧设备发送Msg3时,Msg3中也携带终端收到的Msg2中的TC-RNTI构成的集合,从而使得网络侧设备可以将接收到的Msg3中的相同TC-RNTI对应的TRP作为服务终端的TRP协作簇,共同服务终端,实现快速的TRP协作簇构建。
例如,终端根据系统消息配置确定N个同步信号对应的RO,发送Msg1,使用相同的波束。可以理解,N个同步信号分别来自于N个不同的TRP模块发送。波束可以由终端自行选择或由网络指定。收到同一个波束的TRP以协作簇的形式服务同一个终端,通过RA-RNTI加扰PDCCH信息,并向终端发送Msg2,协作簇内的TRP在Msg2中为终端分配统一的TC-RNTI和相同的Msg3上行资源,即配置相同的发送空间参数。
在一实施例中,多个目标同步信号的数量为N,N为大于1的整数,终端基于同步信号组的信息,确定多个目标同步信号,包括:
终端基于RAR窗口的位置信息,确定第一个目标同步信号;
终端基于第一个目标同步信号和RAR窗口的位置信息,确定N-1个目标同步信号,N-1个目标同步信号所在的同步信号组所占的时域资源与RAR窗口所占的时域资源不重叠。
具体地,终端在确定多个目标同步信号时,可以基于RAR窗口的位置信息确定第一个目标同步信号,可选地,RAR窗口的起始时刻为发送Msg1后第一个参考信道所在时隙的起始时刻。可选地,参考信道可以为物理下行控制信道(Physical Downlink Control Channel,PDCCH)类型Type1、控制资源集(Control Resource Set,CORESET)#0或其它下行信道。
例如,RAR窗口的起始时刻是Msg1发送后第一个控制资源集所在时隙的开始边界,并且各个SSB和各个RO的RAR window长度相同。如图6所示,RO资源暂用上行时隙;在上行时隙上会配置多个RO,RO会关联于多个SSB;终端在接收SSB,获得小区同步和系统消息后,确定小区内SSB数量和RO资源配置后,可以将具有相同RAR窗口起始时刻的RO分为一组,进而根据RO与SSB的关联关系,确 定RO分组内相关联的SSB分组和目标同步信号。
终端在确定第一个目标同步信号和RAR窗口的位置信息后,终端就可以根据首个选择的SSB以及RAR窗口,确定后续N个SSB,可选地,如果RAR窗口开启时间内,存在上行时隙并且存在RO资源,RO资源对应的SSB组不能发送PRACH。终端可以在一个SSB到RO关联周期(association period)或者关联模式周期(association pattern period)内选择多个RO,保证RO对应的RAR窗口不互相重叠。可选地,确定的目标同步信号的数量不大于关联周期除以RAR窗口长度或者不大于关联模式周期/RAR窗口长度。
在一实施例中,若终端在预设时间范围内未接收到网络侧设备发送的Msg2,终端执行如下至少一项操作:
重新确定目标同步信号组和/或多个目标同步信号,并进行随机接入;
增加多个目标同步信号的功率,并进行随机接入。
具体地,终端在选择多个目标同步信号执行随机接入的过程中,若终端向网络侧设备发发送多个Msg1后,终端在预设时间范围内未接收到网络侧设备发送的Msg2,表明终端本次随机接入过程执行失败;则终端可以重新确定目标同步信号组和/或在目标同步信号组不同的情况确定各个目标同步信号组中的目标同步信号,并进行随机接入,或,增加多个目标同步信号的功率,以提升随机接入的成功率。
例如,如果终端对N个Msg1的监听窗口都超时,则认为Msg1传输失败,则终端重新执行Msg1传输,选择N'个SSB,N'可以不等于N。可选地,终端也可以重新选择N'个SSB分组,从N'个SSB分组中各选择一个SSB,进行下一次随机接入尝试;或者终端在已经选择的N个SSB分组中,重新选择SSB,进行下一次随机接入尝试。在进行下一次随机接入尝试的时候,如果选择的SSB不变,提升对应的Msg1的发送功率,或者如果选择的SSB分组不变,提升SSB分组中对应的Msg1的发送功率。
图8是本申请实施例提供的随机接入方法的流程示意图之二。如图8所示,本实施例提供的方法,包括:
步骤801、网络侧设备向终端发送第一信息;第一信息用于指示与多个同步信号组相关的信息;同步信号组包括至少一个同步信号。
可选地,第一信息包括以下至少一项:
第一指示信息;第一指示信息用于指示多个同步信号组的信息;
多个目标同步信号所属的同步信号组的数量阈值;
同步信号和接入时机RO的关联关系;
RO资源的配置参数。
可选地,多个同步信号组的信息,包括以下至少一项:
各个同步信号组包括的同步信号的信息;
同步信号集合中每个同步信号所属的同步信号组的信息;
各个同步信号组中的同步信号的数量;
同步信号组的数量;
所多个同步信号的标识;
第一同步信号集合;第一同步信号集合中包括各个同步信号组中的第一个同步信号所对应的同步信号标识;
第二同步信号集合;第二同步信号集合中包括各个同步信号组中的最后一个同步信号所对应的同步信号标识;
同步信号位图;同步信号位图中的目标分隔信息用于将多个同步信号分成多个同步信号组;
目标同步信号组的可选最大数;
各个RO所对应的随机接入响应RAR窗口的位置信息。
可选地,多个目标同步信号的数量小于或等于终端支持的天线模块的数量,或同时接收信号流的数量。
可选地,随机接入方法还包括以下至少一项:
网络侧设备向终端发送第二指示信息;第二指示信息用于指示终端执行基于多个同步信号的随机接入;
网络侧设备向终端发送第三指示信息;第三指示信息用于指示终端所在区域为无蜂窝区域;和/或指示终端被传输接收点TRP协作簇的TRP共同服务。
可选地,第一信息还包括:第四指示信息,第四指示信息用于指示支持同步信号分组;和/或,指示网络侧设备支持终端使用多个同步信号进行随机接入。
可选地,随机接入方法还包括以下至少一项:
网络侧设备接收终端发送的各个目标同步信号对应的Msg1;Msg1为终端基于各个目标同步信号关联的RO发送的;
网络侧设备基于各个目标同步信号的准共址参数,向终端发送消息Msg2;
网络侧设备接收终端发送的Msg3;Msg3为终端基于接收到的Msg2对应的目标同步信号的发送空间参数发送的。
可选地,网络侧设备接收终端发送的各个目标同步信号对应的Msg1,包括:
网络侧设备接收终端发送的各个目标同步信号对应的Msg1;Msg1为终端基于各个目标同步信号的RO,利用至少一个波束发送的;
网络侧设备基于至少一个波束确定为终端服务的传输点TRP协作簇;TRP协作簇包括多个目标TRP,目标TRP为接收到相同波束的TRP。
可选地,TRP协作簇包括的目标TRP发送的Msg2中包括:统一的临时的小区无线网络临时标识TC-RNTI和用于发送Msg3的上行资源的信息,上行资源的信息包括发送空间参数。
可选地,网络侧设备基于Msg2中的TC-RNTI构建为终端服务的TRP协作簇;TRP协作簇包括多个TRP;Msg3中包括接收到的所有Msg2中的TC-RNTI。
可选地,RAR窗口的起始时刻为发送Msg1后第一个参考信道所在时隙的起始时刻。
可选地,多个目标同步信号的数量为N,N为大于1的整数,N小于或等于第一数值,第一数值为同步信号与RO的关联周期或关联模式周期除以RAR窗口的长度。
本申请实施例提供的随机接入方法,执行主体可以为虚拟装置。本申请实施例中以虚拟装置执行随机接入的方法为例,说明本申请实施例提供的随机接入装置。
图9是本申请实施例提供的随机接入装置的结构示意图之一,如图9所示,该随机接入装置,应用于终端,包括:
接收模块910,用于接收网络侧设备发送的第一信息;第一信息用于指示与多个同步信号组相关的信息;同步信号组包括至少一个同步信号;
确定模块920,用于基于多个同步信号组相关的信息,确定多个目标同步信号;
接入模块930,用于采用多个目标同步信号进行随机接入。
可选地,第一信息包括以下至少一项:
第一指示信息;第一指示信息用于指示多个同步信号组的信息;
多个目标同步信号所属的同步信号组的数量阈值;
同步信号和接入时机RO的关联关系;
RO资源的配置参数。
可选地,多个同步信号组的信息,包括以下至少一项:
各个同步信号组包括的同步信号的信息;
同步信号集合中每个同步信号所属的同步信号组的信息;
各个同步信号组中的同步信号的数量;
同步信号组的数量;
所多个同步信号的标识;
第一同步信号集合;第一同步信号集合中包括各个同步信号组中的第一个同步信号所对应的同步信号标识;
第二同步信号集合;第二同步信号集合中包括各个同步信号组中的最后一个同步信号所对应的同步信号标识;
同步信号位图;同步信号位图中的目标分隔信息用于将多个同步信号分成多个同步信号组;
目标同步信号组的可选最大数;
各个RO所对应的随机接入响应RAR窗口的位置信息。
可选地,确定模块920具体用于:基于同步信号组中的同步信号的信号质量,确定至少一个目标同步信号组;
基于各个目标同步信号组,确定多个目标同步信号。
可选地,确定模块920具体用于:基于各个同步信号组中的同步信号的信号质 量,确定各个同步信号组的信号质量;
基于各个同步信号组的信号质量,选择至少一个目标同步信号组。
可选地,确定模块920具体用于:将各个目标同步信号组中的信号质量最优的同步信号,作为多个目标同步信号;和/或,
将各个目标同步信号组中的信号质量大于或等于第一阈值的同步信号,作为多个目标同步信号。
可选地,多个目标同步信号的数量小于或等于终端支持的天线模块的数量,或同时接收信号流的数量。
可选地,接入模块930,具体用于:在如下至少一种情况下,采用多个目标同步信号进行随机接入:
接收到网络侧设备发送的第二指示信息;第二指示信息用于指示终端执行基于多个同步信号的随机接入;
下行路损小于或等于第二阈值;
基于单一同步信号进行随机接入的失败次数大于或等于第三阈值;
接收到网络侧设备发送的第三指示信息;第三指示信息用于指示终端所在区域为无蜂窝区域;和/或指示终端被传输接收点TRP协作簇的TRP共同服务;
测量得到的多个同步信号组的信号质量差值小于或等于第四阈值。
可选地,第一信息还包括:第四指示信息,第四指示信息用于指示支持同步信号分组;和/或,指示网络侧设备支持终端使用多个同步信号进行随机接入。
可选地,接入模块930,具体用于:基于各个目标同步信号关联的RO,向网络侧设备发送各个目标同步信号对应的Msg1;
基于各个目标同步信号的准共址参数,监听网络侧设备发送的消息Msg2;
基于接收到的Msg2对应的目标同步信号的发送空间参数,向网络侧设备发送Msg3。
可选地,接入模块930,还用于:选择多个Msg2中任意一个Msg2对应的目标同步信号的发送空间参数,向网络侧设备发送Msg3;或,
选择多个Msg2中全部Msg2对应的目标同步信号的发送空间参数,向网络侧设备发送Msg3。
可选地,接入模块930,具体用于:基于各个目标同步信号的RO,利用至少一个波束向网络侧设备发送各个目标同步信号对应的Msg1;波束用于确定为终端服务的传输点TRP协作簇;传输点TRP协作簇包括多个目标TRP,目标TRP为接收到相同波束的TRP。
可选地,TRP协作簇包括的目标TRP发送的Msg2中包括:统一的临时的小区无线网络临时标识TC-RNTI和用于发送Msg3的上行资源的信息,上行资源的信息包括发送空间参数。
可选地,Msg3中包括接收到的所有Msg2中的TC-RNTI;TC-RNTI用于构建为终端服务的TRP协作簇;TRP协作簇包括多个TRP。
可选地,RAR窗口的起始时刻为发送Msg1后第一个参考信道所在时隙的起始时刻。
可选地,确定模块920具体用于:基于RAR窗口的位置信息,确定第一个目标同步信号;
基于第一个目标同步信号和RAR窗口的位置信息,确定N-1个目标同步信号,N-1个目标同步信号所在的同步信号组所占的时域资源与RAR窗口所占的时域资源不重叠。
可选地,N小于或等于第一数值,第一数值为同步信号与RO的关联周期或关联模式周期除以RAR窗口的长度。
可选地,接入模块930,具体用于:若在预设时间范围内未接收到网络侧设备发送的Msg2,执行如下至少一项操作:
重新确定目标同步信号组和/或多个目标同步信号,并进行随机接入;
增加多个目标同步信号的功率,并进行随机接入。
图10是本申请实施例提供的随机接入装置的结构示意图之二,如图10所示,该随机接入装置,应用于终端,包括:
发送模块1010,用于向终端发送第一信息;第一信息用于指示与多个同步信号组相关的信息;同步信号组包括至少一个同步信号。
可选地,第一信息包括以下至少一项:
第一指示信息;第一指示信息用于指示多个同步信号组的信息;
多个目标同步信号所属的同步信号组的数量阈值;
同步信号和接入时机RO的关联关系;
RO资源的配置参数。
可选地,多个同步信号组的信息,包括以下至少一项:
各个同步信号组包括的同步信号的信息;
同步信号集合中每个同步信号所属的同步信号组的信息;
各个同步信号组中的同步信号的数量;
同步信号组的数量;
所多个同步信号的标识;
第一同步信号集合;第一同步信号集合中包括各个同步信号组中的第一个同步信号所对应的同步信号标识;
第二同步信号集合;第二同步信号集合中包括各个同步信号组中的最后一个同步信号所对应的同步信号标识;
同步信号位图;同步信号位图中的目标分隔信息用于将多个同步信号分成多个同步信号组;
目标同步信号组的可选最大数;
各个RO所对应的随机接入响应RAR窗口的位置信息。
可选地,多个目标同步信号的数量小于或等于终端支持的天线模块的数量,或同时接收信号流的数量。
可选地,发送模块1010,具体用于向终端发送第二指示信息;第二指示信息用于指示终端执行基于多个同步信号的随机接入;
向终端发送第三指示信息;第三指示信息用于指示终端所在区域为无蜂窝区域;和/或指示终端被传输接收点TRP协作簇的TRP共同服务。
可选地,第一信息还包括:第四指示信息,第四指示信息用于指示支持同步信号分组;和/或,指示网络侧设备支持终端使用多个同步信号进行随机接入。
可选地,发送模块1010,具体用于接收终端发送的各个目标同步信号对应的Msg1;Msg1为终端基于各个目标同步信号关联的RO发送的;
基于各个目标同步信号的准共址参数,向终端发送消息Msg2;
接收终端发送的Msg3;Msg3为终端基于接收到的Msg2对应的目标同步信号的发送空间参数发送的。
可选地,发送模块1010,具体用于接收终端发送的各个目标同步信号对应的Msg1;Msg1为终端基于各个目标同步信号的RO,利用至少一个波束发送的;
基于至少一个波束确定为终端服务的传输点TRP协作簇;TRP协作簇包括多个目标TRP,目标TRP为接收到相同波束的TRP。
可选地,TRP协作簇包括的目标TRP发送的Msg2中包括:统一的临时的小区无线网络临时标识TC-RNTI和用于发送Msg3的上行资源的信息,上行资源的信息包括发送空间参数。
可选地,发送模块1010,具体用于基于Msg2中的TC-RNTI构建为终端服务的TRP协作簇;TRP协作簇包括多个TRP;Msg3中包括接收到的所有Msg2中的TC-RNTI。
可选地,RAR窗口的起始时刻为发送Msg1后第一个参考信道所在时隙的起始时刻。
可选地,多个目标同步信号的数量为N,N为大于1的整数,N小于或等于第一数值,第一数值为同步信号与RO的关联周期或关联模式周期除以RAR窗口的长度。
本申请实施例中的《虚拟装置》可以是电子设备,例如具有操作系统的电子设备,也可以是电子设备中的部件,例如集成电路或芯片。该电子设备可以是终端,也可以为除终端之外的其他设备。示例性的,终端可以包括但不限于上述所列举的终端11的类型,其他设备可以为服务器、网络附属存储器(Network Attached Storage,NAS)等,本申请实施例不作具体限定。
本申请实施例提供的虚拟装置能够实现图2至图7的方法实施例实现的各个过程,并达到相同的技术效果,为避免重复,这里不再赘述。
图11是本申请实施例提供的通信设备的结构示意图,如图11所示,该通信设备1100,包括处理器1101和存储器1102,存储器1102上存储有可在所述处理器1101上运行的程序或指令,例如,该通信设备1100为终端时,该程序或指令被处理器1101执行时实现上述随机接入方法实施例的各个步骤,且能达到相同的技术效果。该通信设备1100为网络侧设备时,该程序或指令被处理器1101执行时实现上述随机接入方法实施例的各个步骤,且能达到相同的技术效果,为避免重复,这里不再赘述。
本申请实施例还提供一种终端,包括处理器和通信接口,通信接口用于接收网络侧设备发送的第一信息;第一信息用于指示与多个同步信号组相关的信息;同步信号组包括至少一个同步信号,处理器用于基于多个同步信号组相关的信息,确定多个目标同步信号;采用多个目标同步信号进行随机接入。该终端实施例与上述终端侧方法实施例对应,上述方法实施例的各个实施过程和实现方式均可适用于该终端实施例中,且能达到相同的技术效果。
图12是本申请实施例提供的终端的结构示意图,如图12所示,该终端1200包括但不限于:射频单元1201、网络模块1202、音频输出单元1203、输入单元1204、传感器1205、显示单元1206、用户输入单元1207、接口单元1208、存储器1209以及处理器1210等中的至少部分部件。
本领域技术人员可以理解,终端1200还可以包括给各个部件供电的电源(比如电池),电源可以通过电源管理系统与处理器1210逻辑相连,从而通过电源管理系统实现管理充电、放电、以及功耗管理等功能。图12中示出的终端结构并不构成对终端的限定,终端可以包括比图示更多或更少的部件,或者组合某些部件,或者不同的部件布置,在此不再赘述。
应理解的是,本申请实施例中,输入单元1204可以包括图形处理单元(Graphics Processing Unit,GPU)12041和麦克风12042,图形处理器12041对在视频捕获模式或图像捕获模式中由图像捕获装置(如摄像头)获得的静态图片或视频的图像数据进行处理。显示单元1206可包括显示面板12061,可以采用液晶显示器、有机发光二极管等形式来配置显示面板12061。用户输入单元1207包括触控面板12071以及其他输入设备12072中的至少一种。触控面板12071,也称为触摸屏。触控面板12071可包括触摸检测装置和触摸控制器两个部分。其他输入设备12072可以包括但不限于物理键盘、功能键(比如音量控制按键、开关按键等)、轨迹球、鼠标、操作杆,在此不再赘述。
本申请实施例中,射频单元1201接收来自网络侧设备的下行数据后,可以传输给处理器1210进行处理;另外,射频单元1201可以向网络侧设备发送上行数据。通常,射频单元1201包括但不限于天线、放大器、收发信机、耦合器、低噪声放大器、双工器等。
存储器1209可用于存储软件程序或指令以及各种数据。存储器1209可主要包括存储程序或指令的第一存储区和存储数据的第二存储区,其中,第一存储区可存储操作系统、至少一个功能所需的应用程序或指令(比如声音播放功能、图像播放功能等)等。此外,存储器1209可以包括易失性存储器或非易失性存储器,或者,存储器1209可以包括易失性和非易失性存储器两者。其中,非易失性存储器可以是只读存储器(Read-Only Memory,ROM)、可编程只读存储器(Programmable ROM,PROM)、可擦除可编程只读存储器(Erasable PROM,EPROM)、电可擦除可编程只读存储器(Electrically EPROM,EEPROM)或闪存。易失性存储器可以是随机存取存储器(Random Access Memory,RAM),静态随机存取存储器(Static RAM,SRAM)、动态随机存取存储器(Dynamic RAM,DRAM)、同步动态随机存取存储器(Synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(Double Data Rate SDRAM,DDRSDRAM)、增强型同步动态随机存取存储器(Enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(Synch link DRAM,SLDRAM)和直接内存总线随机存取存储器(Direct Rambus RAM,DRRAM)。本申请实施例中的存储器1209包括但不限于这些和任意其它适合类型的存储器。
处理器1210可包括一个或多个处理单元;可选的,处理器1210集成应用处理器和调制解调处理器,其中,应用处理器主要处理涉及操作系统、用户界面和应用程序等的操作,调制解调处理器主要处理无线通信信号,如基带处理器。可以理解的是, 上述调制解调处理器也可以不集成到处理器1210中。
其中,射频单元1201,用于接收网络侧设备发送的第一信息;第一信息用于指示与多个同步信号组相关的信息;同步信号组包括至少一个同步信号;处理器1210,用于基于多个同步信号组相关的信息,确定多个目标同步信号;采用多个目标同步信号进行随机接入。
可选地,第一信息包括以下至少一项:
第一指示信息;第一指示信息用于指示多个同步信号组的信息;
多个目标同步信号所属的同步信号组的数量阈值;
同步信号和接入时机RO的关联关系;
RO资源的配置参数。
可选地,多个同步信号组的信息,包括以下至少一项:
各个同步信号组包括的同步信号的信息;
同步信号集合中每个同步信号所属的同步信号组的信息;
各个同步信号组中的同步信号的数量;
同步信号组的数量;
所多个同步信号的标识;
第一同步信号集合;第一同步信号集合中包括各个同步信号组中的第一个同步信号所对应的同步信号标识;
第二同步信号集合;第二同步信号集合中包括各个同步信号组中的最后一个同步信号所对应的同步信号标识;
同步信号位图;同步信号位图中的目标分隔信息用于将多个同步信号分成多个同步信号组;
目标同步信号组的可选最大数;
各个RO所对应的随机接入响应RAR窗口的位置信息。
可选地,处理器1210具体用于:基于同步信号组中的同步信号的信号质量,确定至少一个目标同步信号组;
基于各个目标同步信号组,确定多个目标同步信号。
可选地,处理器1210具体用于:基于各个同步信号组中的同步信号的信号质量,确定各个同步信号组的信号质量;
基于各个同步信号组的信号质量,选择至少一个目标同步信号组。
可选地,处理器1210具体用于:将各个目标同步信号组中的信号质量最优的同步信号,作为多个目标同步信号;和/或,
将各个目标同步信号组中的信号质量大于或等于第一阈值的同步信号,作为多个目标同步信号。
可选地,多个目标同步信号的数量小于或等于终端支持的天线模块的数量,或同时接收信号流的数量。
可选地,处理器1210,具体用于:在如下至少一种情况下,采用多个目标同步信号进行随机接入:
接收到网络侧设备发送的第二指示信息;第二指示信息用于指示终端执行基于多个同步信号的随机接入;
下行路损小于或等于第二阈值;
基于单一同步信号进行随机接入的失败次数大于或等于第三阈值;
接收到网络侧设备发送的第三指示信息;第三指示信息用于指示终端所在区域为无蜂窝区域;和/或指示终端被传输接收点TRP协作簇的TRP共同服务;
测量得到的多个同步信号组的信号质量差值小于或等于第四阈值。
可选地,第一信息还包括:第四指示信息,第四指示信息用于指示支持同步信号分组;和/或,指示网络侧设备支持终端使用多个同步信号进行随机接入。
可选地,处理器1210,具体用于:基于各个目标同步信号关联的RO,向网络侧设备发送各个目标同步信号对应的Msg1;
基于各个目标同步信号的准共址参数,监听网络侧设备发送的消息Msg2;
基于接收到的Msg2对应的目标同步信号的发送空间参数,向网络侧设备发送Msg3。
可选地,处理器1210,还用于:选择多个Msg2中任意一个Msg2对应的目标同步信号的发送空间参数,向网络侧设备发送Msg3;或,
选择多个Msg2中全部Msg2对应的目标同步信号的发送空间参数,向网络侧设备发送Msg3。
可选地,处理器1210,具体用于:基于各个目标同步信号的RO,利用至少一个波束向网络侧设备发送各个目标同步信号对应的Msg1;波束用于确定为终端服务的传输点TRP协作簇;传输点TRP协作簇包括多个目标TRP,目标TRP为接收到相同波束的TRP。
可选地,TRP协作簇包括的目标TRP发送的Msg2中包括:统一的临时的小区无线网络临时标识TC-RNTI和用于发送Msg3的上行资源的信息,上行资源的信息包括发送空间参数。
可选地,Msg3中包括接收到的所有Msg2中的TC-RNTI;TC-RNTI用于构建为终端服务的TRP协作簇;TRP协作簇包括多个TRP。
可选地,RAR窗口的起始时刻为发送Msg1后第一个参考信道所在时隙的起始时刻。
可选地,处理器1210,具体用于:基于RAR窗口的位置信息,确定第一个目标同步信号;
基于第一个目标同步信号和RAR窗口的位置信息,确定N-1个目标同步信号,N-1个目标同步信号所在的同步信号组所占的时域资源与RAR窗口所占的时域资源不重叠。
可选地,N小于或等于第一数值,第一数值为同步信号与RO的关联周期或关联模式周期除以RAR窗口的长度。
可选地,处理器1210,具体用于:若在预设时间范围内未接收到网络侧设备发送的Msg2,执行如下至少一项操作:
重新确定目标同步信号组和/或多个目标同步信号,并进行随机接入;
增加多个目标同步信号的功率,并进行随机接入。
本申请实施例还提供一种网络侧设备,包括处理器和通信接口,通信接口用于向终端发送第一信息;第一信息用于指示与多个同步信号组相关的信息;同步信号组包括至少一个同步信号。该网络侧设备实施例与上述网络侧设备方法实施例对应,上述方法实施例的各个实施过程和实现方式均可适用于该网络侧设备实施例中,且能达到相同的技术效果。
图13是本申请实施例提供的网络侧设备的结构示意图,如图13所示,该网络侧设备1300包括:天线1301、射频装置1302、基带装置1303、处理器1304和存储器1305。天线1301与射频装置1302连接。在上行方向上,射频装置1302通过天线1301接收信息,将接收的信息发送给基带装置1303进行处理。在下行方向上,基带装置1303对要发送的信息进行处理,并发送给射频装置1302,射频装置1302对收到的信息进行处理后经过天线1301发送出去。
以上实施例中网络侧设备执行的方法可以在基带装置1303中实现,该基带装置1303包括基带处理器。
基带装置1303例如可以包括至少一个基带板,该基带板上设置有多个芯片,如图13所示,其中一个芯片例如为基带处理器,通过总线接口与存储器1305连接,以调用存储器1305中的程序,执行以上方法实施例中所示的网络设备操作。
该网络侧设备还可以包括网络接口1306,该接口例如为通用公共无线接口(common public radio interface,CPRI)。
具体地,本申请实施例的网络侧设备1300还包括:存储在存储器1305上并可在处理器1304上运行的指令或程序,处理器1304调用存储器1305中的指令或程序执行如上所述的随机接入方法,并达到相同的技术效果,为避免重复,故不在此赘述。
本申请实施例还提供了一种通信系统,包括:终端及网络侧设备,所述终端可用于执行如上所述的随机接入方法的步骤,所述网络侧设备可用于执行如上所述的随机接入方法的步骤。
本申请实施例还提供一种可读存储介质,所述可读存储介质可以是以易失性的,也可以是非易失性的,所述可读存储介质上存储有程序或指令,该程序或指令被处理器执行时实现上述随机接入方法实施例的各个过程,且能达到相同的技术效果,为避免重复,这里不再赘述。
其中,所述处理器为上述实施例中所述的终端中的处理器。所述可读存储介质,包括计算机可读存储介质,如计算机只读存储器ROM、随机存取存储器RAM、磁碟 或者光盘等。
本申请实施例另提供了一种芯片,所述芯片包括处理器和通信接口,所述通信接口和所述处理器耦合,所述处理器用于运行程序或指令,实现上述随机接入方法实施例的各个过程,且能达到相同的技术效果,为避免重复,这里不再赘述。
应理解,本申请实施例提到的芯片还可以称为系统级芯片,系统芯片,芯片系统或片上系统芯片等。
本申请实施例另提供了一种计算机程序/程序产品,所述计算机程序/程序产品被存储在存储介质中,所述计算机程序/程序产品被至少一个处理器执行以实现上述随机接入方法实施例的各个过程,且能达到相同的技术效果,为避免重复,这里不再赘述。
需要说明的是,在本文中,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者装置不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者装置所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括该要素的过程、方法、物品或者装置中还存在另外的相同要素。此外,需要指出的是,本申请实施方式中的方法和装置的范围不限按示出或讨论的顺序来执行功能,还可包括根据所涉及的功能按基本同时的方式或按相反的顺序来执行功能,例如,可以按不同于所描述的次序来执行所描述的方法,并且还可以添加、省去、或组合各种步骤。另外,参照某些示例所描述的特征可在其他示例中被组合。
通过以上的实施方式的描述,本领域的技术人员可以清楚地了解到上述实施例方法可借助软件加必需的通用硬件平台的方式来实现,当然也可以通过硬件,但很多情况下前者是更佳的实施方式。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分可以以计算机软件产品的形式体现出来,该计算机软件产品存储在一个存储介质(如ROM/RAM、磁碟、光盘)中,包括若干指令用以使得一台终端(可以是手机,计算机,服务器,空调器,或者网络设备等)执行本申请各个实施例所述的方法。
上面结合附图对本申请的实施例进行了描述,但是本申请并不局限于上述的具体实施方式,上述的具体实施方式仅仅是示意性的,而不是限制性的,本领域的普通技术人员在本申请的启示下,在不脱离本申请宗旨和权利要求所保护的范围情况下,还可做出很多形式,均属于本申请的保护之内。

Claims (35)

  1. 一种随机接入方法,包括:
    终端接收网络侧设备发送的第一信息;所述第一信息用于指示与多个同步信号组相关的信息;所述同步信号组包括至少一个同步信号;
    所述终端基于所述多个同步信号组相关的信息,确定多个目标同步信号;
    所述终端采用所述多个目标同步信号进行随机接入。
  2. 根据权利要求1所述的随机接入方法,其中,所述第一信息包括以下至少一项:
    第一指示信息;所述第一指示信息用于指示多个同步信号组的信息;
    所述多个目标同步信号所属的同步信号组的数量阈值;
    同步信号和接入时机RO的关联关系;
    RO资源的配置参数。
  3. 根据权利要求2所述的随机接入方法,其中,所述多个同步信号组的信息,包括以下至少一项:
    各个所述同步信号组包括的同步信号的信息;
    同步信号集合中每个同步信号所属的同步信号组的信息;
    各个所述同步信号组中的同步信号的数量;
    同步信号组的数量;
    多个同步信号的标识;
    第一同步信号集合;所述第一同步信号集合中包括各个同步信号组中的第一个同步信号所对应的同步信号标识;
    第二同步信号集合;所述第二同步信号集合中包括各个同步信号组中的最后一个同步信号所对应的同步信号标识;
    同步信号位图;所述同步信号位图中的目标分隔信息用于将多个同步信号分成多个同步信号组;
    各个RO所对应的随机接入响应RAR窗口的位置信息。
  4. 根据权利要求1所述的随机接入方法,其中,所述终端基于所述多个同步信号组相关的信息,确定多个目标同步信号,包括:
    所述终端基于所述同步信号组中的同步信号的信号质量,确定至少一个目标同步信号组;
    所述终端基于各个所述目标同步信号组,确定所述多个目标同步信号。
  5. 根据权利要求4所述的随机接入方法,其中,所述终端基于所述同步信号组中的同步信号的信号质量,确定至少一个目标同步信号组,包括:
    所述终端基于各个同步信号组中的同步信号的信号质量,确定各个同步信号组的信号质量;
    所述终端基于各个所述同步信号组的信号质量,选择至少一个目标同步信号组。
  6. 根据权利要求4或5所述的随机接入方法,其中,所述终端基于各个所述目标同步信号组,确定所述多个目标同步信号,包括:
    所述终端将各个目标同步信号组中的信号质量最优的同步信号,作为所述多个目标同步信号;和/或,
    所述终端将各个目标同步信号组中的信号质量大于或等于第一阈值的同步信号,作为所述多个目标同步信号。
  7. 根据权利要求1-6任一项所述的随机接入方法,其中,所述多个目标同步信号的数量小于或等于所述终端支持的天线模块的数量,或同时接收信号流的数量。
  8. 根据权利要求1-6任一项所述的随机接入方法,其中,所述终端采用所述多个目标同步信号进行随机接入,包括:
    所述终端在如下至少一种情况下,采用所述多个目标同步信号进行随机接入:
    所述终端接收到所述网络侧设备发送的第二指示信息;所述第二指示信息用于指示所述终端执行基于多个同步信号的随机接入;
    下行路损小于或等于第二阈值;
    所述终端基于单一同步信号进行随机接入的失败次数大于或等于第三阈值;
    所述终端接收到所述网络侧设备发送的第三指示信息;所述第三指示信息用于指示所述终端所在区域为无蜂窝区域;和/或指示所述终端被传输接收点TRP协作簇的TRP共同服务;
    所述终端测量得到的多个同步信号组的信号质量差值小于或等于第四阈值。
  9. 根据权利要求1-6任一项所述的随机接入方法,其中,所述第一信息还包括:第四指示信息,所述第四指示信息用于指示支持同步信号分组;和/或,指示所述网络侧设备支持终端使用多个同步信号进行随机接入。
  10. 根据权利要求1-6任一项所述的随机接入方法,其中,所述终端采用所述多个目标同步信号进行随机接入,包括:
    所述终端基于各个所述目标同步信号关联的RO,向所述网络侧设备发送各个所述目标同步信号对应的Msg1;
    所述终端基于各个所述目标同步信号的准共址参数,监听所述网络侧设备发送的Msg2;
    所述终端基于接收到的Msg2对应的目标同步信号的发送空间参数,向所述网络侧设备发送Msg3。
  11. 根据权利要求10所述的随机接入方法,其中,在所述终端接收到所述网络侧设备发送的多个Msg2的情况下,所述终端基于接收到的Msg2对应的目标同步信号确定Msg3的发送空间参数,向所述网络侧设备发送Msg3,包括:
    所述终端选择所述多个Msg2中任意一个所述Msg2对应的目标同步信号的发送空间参数,向所述网络侧设备发送Msg3;或,
    所述终端选择所述多个Msg2中全部Msg2对应的目标同步信号的发送空间参数,向所述网络侧设备发送Msg3。
  12. 根据权利要求10所述的随机接入方法,其中,所述终端基于各个所述目标同步信号的RO,向所述网络侧设备发送各个所述目标同步信号对应的Msg1,包括:
    所述终端基于各个所述目标同步信号的RO,利用至少一个波束向所述网络侧设备发送各个所述目标同步信号对应的Msg1;所述波束用于确定为所述终端服务的传输点TRP协作簇;传输点TRP协作簇包括多个目标TRP,所述目标TRP为接收到相同波束的TRP。
  13. 根据权利要求12所述的随机接入方法,其中,
    所述TRP协作簇包括的目标TRP发送的Msg2中包括:统一的临时的小区无线网络临时标识TC-RNTI和用于发送Msg3的上行资源的信息,所述上行资源的信息包括发送空间参数。
  14. 根据权利要求10所述的随机接入方法,其中,所述Msg3中包括接收到的所有Msg2中的TC-RNTI;所述TC-RNTI用于构建为所述终端服务的TRP协作簇;所述TRP协作簇包括多个TRP。
  15. 根据权利要求2所述的随机接入方法,其中,
    所述RAR窗口的起始时刻为发送Msg1后第一个参考信道所在时隙的起始时刻。
  16. 根据权利要求2或15所述的随机接入方法,其中,所述多个目标同步信号的数量为N,N为大于1的整数,所述终端基于所述同步信号组的信息,确定多个目标同步信号,包括:
    所述终端基于所述RAR窗口的位置信息,确定第一个目标同步信号;
    所述终端基于所述第一个目标同步信号和所述RAR窗口的位置信息,确定N-1个目标同步信号,所述N-1个目标同步信号所在的同步信号组所占的时域资源与所述RAR窗口所占的时域资源不重叠。
  17. 根据权利要求16所述的随机接入方法,其中,所述N小于或等于第一数值,所述第一数值为同步信号与RO的关联周期或关联模式周期除以RAR窗口的长度。
  18. 根据权利要求1-6任一项所述的随机接入方法,其中,所述方法还包括:
    若所述终端在预设时间范围内未接收到网络侧设备发送的Msg2,所述终端执行如下至少一项操作:
    重新确定目标同步信号组和/或多个目标同步信号,并进行随机接入;
    增加所述多个目标同步信号的功率,并进行随机接入。
  19. 一种随机接入方法,包括:
    网络侧设备向终端发送第一信息;所述第一信息用于指示与多个同步信号组相关的信息;所述同步信号组包括至少一个同步信号。
  20. 根据权利要求19所述的随机接入方法,其中,所述第一信息包括以下至少一项:
    第一指示信息;所述第一指示信息用于指示多个同步信号组的信息;
    所述多个目标同步信号所属的同步信号组的数量阈值;
    同步信号和接入时机RO的关联关系;
    RO资源的配置参数。
  21. 根据权利要求20所述的随机接入方法,其中,所述多个同步信号组的信息,包括以下至少一项:
    各个所述同步信号组包括的同步信号的信息;
    同步信号集合中每个同步信号所属的同步信号组的信息;
    各个所述同步信号组中的同步信号的数量;
    同步信号组的数量;
    所多个同步信号的标识;
    第一同步信号集合;所述第一同步信号集合中包括各个同步信号组中的第一个同步信号所对应的同步信号标识;
    第二同步信号集合;所述第二同步信号集合中包括各个同步信号组中的最后一个同步信号所对应的同步信号标识;
    同步信号位图;所述同步信号位图中的目标分隔信息用于将多个同步信号分成多个同步信号组;
    目标同步信号组的可选最大数;
    各个RO所对应的随机接入响应RAR窗口的位置信息。
  22. 根据权利要求19-21任一项所述的随机接入方法,其中,所述多个目标同步信号的数量小于或等于所述终端支持的天线模块的数量,或同时接收信号流的数量。
  23. 根据权利要求19-21任一项所述的随机接入方法,其中,还包括以下至少一项:
    所述网络侧设备向终端发送第二指示信息;所述第二指示信息用于指示所述终端执行基于多个同步信号的随机接入;
    所述网络侧设备向终端发送第三指示信息;所述第三指示信息用于指示所述终端所在区域为无蜂窝区域;和/或指示所述终端被传输接收点TRP协作簇的TRP共同服务。
  24. 根据权利要求19-21任一项所述的随机接入方法,其中,所述第一信息还包括:第四指示信息,所述第四指示信息用于指示支持同步信号分组;和/或,指示所述网络侧设备支持终端使用多个同步信号进行随机接入。
  25. 根据权利要求19-21任一项所述的随机接入方法,其中,所述方法还包括以下至少一项:
    所述网络侧设备接收所述终端发送的各个所述目标同步信号对应的Msg1;所述Msg1为所述终端基于各个所述目标同步信号关联的RO发送的;
    所述网络侧设备基于各个所述目标同步信号的准共址参数,向所述终端发送消息Msg2;
    所述网络侧设备接收终端发送的Msg3;所述Msg3为所述终端基于接收到的Msg2对应的目标同步信号的发送空间参数发送的。
  26. 根据权利要求25所述的随机接入方法,其中,所述网络侧设备接收所述终端发送的各个所述目标同步信号对应的Msg1,包括:
    所述网络侧设备接收所述终端发送的各个所述目标同步信号对应的Msg1;所述Msg1为所述终端基于各个所述目标同步信号的RO,利用至少一个波束发送的;
    所述网络侧设备基于所述至少一个波束确定为所述终端服务的传输点TRP协作簇;所述TRP协作簇包括多个目标TRP,所述目标TRP为接收到相同波束的TRP。
  27. 根据权利要求26所述的随机接入方法,其中,
    所述TRP协作簇包括的目标TRP发送的Msg2中包括:统一的临时的小区无线网络临时标识TC-RNTI和用于发送Msg3的上行资源的信息,所述上行资源的信息包括发送空间参数。
  28. 根据权利要求25所述的随机接入方法,其中,
    所述网络侧设备基于所述Msg2中的TC-RNTI构建为所述终端服务的TRP协作簇;所述TRP协作簇包括多个TRP;所述Msg3中包括接收到的所有Msg2中的TC- RNTI。
  29. 根据权利要求21所述的随机接入方法,其中,
    所述RAR窗口的起始时刻为发送Msg1后第一个参考信道所在时隙的起始时刻。
  30. 根据权利要求21或29所述的随机接入方法,其中,所述多个目标同步信号的数量为N,N为大于1的整数,所述N小于或等于第一数值,所述第一数值为同步信号与RO的关联周期或关联模式周期除以RAR窗口的长度。
  31. 一种随机接入装置,包括:
    接收模块,用于接收网络侧设备发送的第一信息;所述第一信息用于指示与多个同步信号组相关的信息;所述同步信号组包括至少一个同步信号;
    确定模块,用于基于所述多个同步信号组相关的信息,确定多个目标同步信号;
    接入模块,用于采用所述多个目标同步信号进行随机接入。
  32. 一种随机接入装置,包括:
    发送模块,用于向终端发送第一信息;所述第一信息用于指示与多个同步信号组相关的信息;所述同步信号组包括至少一个同步信号。
  33. 一种终端,包括处理器和存储器,所述存储器存储可在所述处理器上运行的程序或指令,所述程序或指令被所述处理器执行时实现如权利要求1至18任一项所述的随机接入方法的步骤。
  34. 一种网络侧设备,包括处理器和存储器,所述存储器存储可在所述处理器上运行的程序或指令,所述程序或指令被所述处理器执行时实现如权利要求19至30任一项所述的随机接入方法的步骤。
  35. 一种可读存储介质,所述可读存储介质上存储程序或指令,所述程序或指令被处理器执行时实现如权利要求1至18任一项所述的随机接入方法,或者实现如权利要求19至30任一项所述的随机接入方法的步骤。
PCT/CN2023/128620 2022-11-10 2023-10-31 随机接入方法、装置、终端、网络侧设备及介质 WO2024099185A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202211407155.8 2022-11-10
CN202211407155.8A CN118042636A (zh) 2022-11-10 2022-11-10 随机接入方法、终端及网络侧设备

Publications (1)

Publication Number Publication Date
WO2024099185A1 true WO2024099185A1 (zh) 2024-05-16

Family

ID=91002800

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/128620 WO2024099185A1 (zh) 2022-11-10 2023-10-31 随机接入方法、装置、终端、网络侧设备及介质

Country Status (2)

Country Link
CN (1) CN118042636A (zh)
WO (1) WO2024099185A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110099459A (zh) * 2018-01-31 2019-08-06 华为技术有限公司 一种随机接入方法及装置
US20190253949A1 (en) * 2018-02-15 2019-08-15 Kyungmin Park Beam Failure Information for Radio Configuration
CN111972013A (zh) * 2020-07-07 2020-11-20 北京小米移动软件有限公司 定位方法、装置、通信设备及存储介质
CN111972015A (zh) * 2020-07-01 2020-11-20 北京小米移动软件有限公司 定位方法、装置、通信设备及存储介质
CN114080047A (zh) * 2020-08-13 2022-02-22 维沃移动通信有限公司 随机接入的信号传输方法、终端及网络侧设备
CN114828040A (zh) * 2021-01-29 2022-07-29 中国移动通信有限公司研究院 随机接入方法、装置、设备及可读存储介质

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110099459A (zh) * 2018-01-31 2019-08-06 华为技术有限公司 一种随机接入方法及装置
US20190253949A1 (en) * 2018-02-15 2019-08-15 Kyungmin Park Beam Failure Information for Radio Configuration
CN111972015A (zh) * 2020-07-01 2020-11-20 北京小米移动软件有限公司 定位方法、装置、通信设备及存储介质
CN111972013A (zh) * 2020-07-07 2020-11-20 北京小米移动软件有限公司 定位方法、装置、通信设备及存储介质
CN114080047A (zh) * 2020-08-13 2022-02-22 维沃移动通信有限公司 随机接入的信号传输方法、终端及网络侧设备
CN114828040A (zh) * 2021-01-29 2022-07-29 中国移动通信有限公司研究院 随机接入方法、装置、设备及可读存储介质

Also Published As

Publication number Publication date
CN118042636A (zh) 2024-05-14

Similar Documents

Publication Publication Date Title
EP3799508B1 (en) Random access method, terminal device and network side device
WO2017076352A1 (zh) 基于波束的系统广播消息传输方法、装置和系统
KR20200099094A (ko) 2-단계 랜덤 액세스
CN107919929B (zh) 一种基于波束的信道检测方法和设备
US20180027595A1 (en) Methods and devices for random access
WO2019161793A1 (zh) 非竞争随机接入的方法和装置
CN108024385A (zh) 随机接入的方法、网络设备和用户设备
US20220322452A1 (en) Communication method and system, and device
US20230319894A1 (en) Random access method and apparatus, terminal, and network side device
WO2019159294A1 (ja) ユーザ装置及び基地局装置
US11632804B2 (en) Apparatus and methods for multi-cell random access channel
US20210298087A1 (en) User equipment and transmission method
US20230164723A1 (en) Communication method and apparatus
US20230188281A1 (en) Method for measuring reference signal, terminal, and network side device
US20220385428A1 (en) Signal quality information obtaining method, device, and system
WO2018028436A1 (zh) 一种随机接入的方法、网络侧设备及终端
US10757686B2 (en) Method and user equipment for requesting common information from an access node
US20220338073A1 (en) User equipment beam refinement before completion of handover
WO2023116883A1 (zh) Msg1重复传输的时频资源确定方法、装置及终端
US20230217512A1 (en) Connection establishment method, apparatus, device, and storage medium
US20230049532A1 (en) Random access method and terminal device
WO2024099185A1 (zh) 随机接入方法、装置、终端、网络侧设备及介质
CN113784398B (zh) 数据的处理方法及装置、终端及网络侧设备
WO2019218301A1 (en) Network-assisted beam scheduling mechanism for directional beamforming transmission
WO2023186157A1 (zh) 随机接入资源配置方法、装置、终端及网络侧设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23887875

Country of ref document: EP

Kind code of ref document: A1