WO2023036151A1 - 时隙配置方法、终端及网络侧设备 - Google Patents

时隙配置方法、终端及网络侧设备 Download PDF

Info

Publication number
WO2023036151A1
WO2023036151A1 PCT/CN2022/117378 CN2022117378W WO2023036151A1 WO 2023036151 A1 WO2023036151 A1 WO 2023036151A1 CN 2022117378 W CN2022117378 W CN 2022117378W WO 2023036151 A1 WO2023036151 A1 WO 2023036151A1
Authority
WO
WIPO (PCT)
Prior art keywords
index
time slots
function
specified value
predefined
Prior art date
Application number
PCT/CN2022/117378
Other languages
English (en)
French (fr)
Inventor
洪琪
李�根
李�灿
Original Assignee
维沃移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 维沃移动通信有限公司 filed Critical 维沃移动通信有限公司
Publication of WO2023036151A1 publication Critical patent/WO2023036151A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0446Resources in time domain, e.g. slots or frames

Definitions

  • the present application belongs to the technical field of terminal communication, and in particular relates to a time slot configuration method, a terminal and a network side device.
  • a terminal and a network-side device can use different subcarrier spacing (Subcarrier Spacing, SCS) for data and control channel transmission.
  • SCS subcarrier Spacing
  • multiple time slots (slots) can be included in one frame.
  • each Different time slot formats are designed for the time slots in the frame, and the format of the time slots in each frame is configured by the network side device during communication.
  • the format of the time slot may specifically include the following three types: a time slot is only used for downlink transmission, or only used for uplink transmission, or a mixed time slot.
  • the network side device configures the format of the time slot, it can The number of time slots used for uplink transmission and the number of time slots used for downlink transmission are configured, and the remaining unconfigured time slots can be flexible time slots.
  • the embodiment of the present application provides a time slot configuration method, a terminal, and a network-side device, which can solve the problem that the network-side device may not be able to configure the format of each time slot based on the current solution when the number of time slots to be configured is large. Problems with efficient configuration.
  • a time slot configuration method comprising:
  • the terminal receives configuration information, where the configuration information includes a first indication field, and the first indication field is used to indicate a first index;
  • a time slot configuration device which includes:
  • a receiving module configured to receive configuration information, where the configuration information includes a first indication field, and the first indication field is used to indicate a first index;
  • a determining module configured to determine the first number of time slots for uplink transmission and the second number of time slots for downlink transmission based on the first index.
  • a time slot configuration method which includes:
  • the network side device sends configuration information
  • the configuration information includes a first indication field, and the first indication field is used to indicate a first index, and the first index is used to determine the number of first time slots for uplink transmission and the second time slot for downlink transmission number.
  • a time slot configuration device comprising:
  • a sending module configured to send configuration information
  • the configuration information includes a first indication field, and the first indication field is used to indicate a first index, and the first index is used to determine the number of first time slots for uplink transmission and the second time slot for downlink transmission number.
  • a terminal includes a processor, a memory, and a program or instruction stored in the memory and operable on the processor.
  • the program or instruction is executed by the processor The steps of the method described in the first aspect are realized.
  • a terminal including a processor and a communication interface, wherein the communication interface is used to receive configuration information, and the configuration information includes a first indication field, and the first indication field is used to indicate the first indication field An index; the processor is configured to determine a first number of time slots for uplink transmission and a second number of time slots for downlink transmission based on the first index.
  • a network-side device includes a processor, a memory, and a program or instruction stored in the memory and operable on the processor, and the program or instruction is executed by the The processor implements the steps of the method described in the third aspect when executing.
  • a network side device including a processor and a communication interface, wherein the communication interface is used to send configuration information, the configuration information includes a first indication field, and the first indication field is used for Indicates a first index, and the first index is used to determine the first number of time slots for uplink transmission and the second number of time slots for downlink transmission.
  • a readable storage medium is provided, and programs or instructions are stored on the readable storage medium, and when the programs or instructions are executed by a processor, the steps of the method described in the first aspect are realized, or the steps of the method described in the first aspect are realized, or The steps of the method described in the third aspect.
  • a chip in a tenth aspect, includes a processor and a communication interface, the communication interface is coupled to the processor, and the processor is used to run programs or instructions to implement the method as described in the first aspect , or implement the method described in the third aspect.
  • a computer program/program product is provided, the computer program/program product is stored in a non-volatile storage medium, and the program/program product is executed by at least one processor to implement the first The steps of the method described in the first aspect, or the steps of implementing the method described in the third aspect.
  • the unique corresponding first index can be determined in advance according to the number of time slots for uplink and downlink transmission in different scenarios.
  • the network side device configures the format of the time slot, it can use the first The indication field indicates the first index, and the terminal determines the number of time slots for uplink transmission and the number of time slots for downlink transmission based on the first index.
  • the format of a greater number of time slots can be indicated through the index, when the number of time slots to be configured is large, the number of time slots in different formats can be effectively indicated through the first index, so that Effectively configure the format of each slot.
  • FIG. 1 is a schematic diagram of a wireless communication system according to an embodiment of the present application.
  • Fig. 2 is a schematic flowchart of a time slot configuration method according to an embodiment of the present application
  • FIG. 3 is a schematic flowchart of a time slot configuration method according to an embodiment of the present application.
  • FIG. 4 is a schematic structural diagram of a time slot configuration device according to an embodiment of the present application.
  • FIG. 5 is a schematic structural diagram of a time slot configuration device according to an embodiment of the present application.
  • FIG. 6 is a schematic structural diagram of a communication device according to an embodiment of the present application.
  • FIG. 7 is a schematic structural diagram of a terminal according to an embodiment of the present application.
  • Fig. 8 is a schematic structural diagram of a network side device according to an embodiment of the present application.
  • first, second and the like in the specification and claims of the present application are used to distinguish similar objects, and are not used to describe a specific sequence or sequence. It is to be understood that the terms so used are interchangeable under appropriate circumstances such that the embodiments of the application are capable of operation in sequences other than those illustrated or described herein and that "first" and “second” distinguish objects. It is usually one category, and the number of objects is not limited. For example, there may be one or more first objects.
  • “and/or” in the description and claims means at least one of the connected objects, and the character “/” generally means that the related objects are an "or” relationship.
  • LTE Long Term Evolution
  • LTE-Advanced LTE-Advanced
  • LTE-A Long Term Evolution-Advanced
  • CDMA Code Division Multiple Access
  • TDMA Time Division Multiple Access
  • FDMA Frequency Division Multiple Access
  • OFDMA Orthogonal Frequency Division Multiple Access
  • SC-FDMA Single-carrier Frequency-Division Multiple Access
  • system and “network” in the embodiments of the present application are often used interchangeably, and the described technology can be used for the above-mentioned system and radio technology, and can also be used for other systems and radio technologies.
  • NR New Radio
  • the following description describes the New Radio (NR) system for illustrative purposes, and uses NR terminology in most of the following descriptions, but these techniques can also be applied to applications other than NR system applications, such as the 6th generation (6 th Generation, 6G) communication system.
  • 6G 6th Generation
  • Fig. 1 shows a block diagram of a wireless communication system to which the embodiment of the present application is applicable.
  • the wireless communication system includes a terminal 11 and a network side device 12 .
  • the terminal 11 can also be called a terminal device or a user terminal (User Equipment, UE), and the terminal 11 can be a mobile phone, a tablet computer (Tablet Personal Computer), a laptop computer (Laptop Computer) or a notebook computer, a personal digital Assistant (Personal Digital Assistant, PDA), handheld computer, netbook, ultra-mobile personal computer (UMPC), mobile Internet device (Mobile Internet Device, MID), wearable device (Wearable Device) or vehicle-mounted device (VUE), Pedestrian Terminal (PUE) and other terminal-side devices, wearable devices include: smart watches, bracelets, earphones, glasses, etc.
  • the network side device 12 may be a base station or a core network, where a base station may be called a node B, an evolved node B, an access point, a base transceiver station (Base Transceiver Station, BTS), a radio base station, a radio transceiver, a basic service Basic Service Set (BSS), Extended Service Set (ESS), Node B, Evolved Node B (eNB), Home Node B, Home Evolved Node B, Wireless Local Area Network (WLAN) ) access point, wireless fidelity (Wireless Fidelity, WiFi) node, transmitting and receiving point (Transmitting Receiving Point, TRP) or some other suitable term in the field, as long as the same technical effect is achieved, the base station is not limited to Specific technical terms, it should be noted that in the embodiment of the present application, only the base station in the NR system is taken as an example, but the specific type of the
  • a network side device when configuring a time slot format, may use TDD-uplink (UL)-downlink (Downlink, DL)-ConfigCommon for configuration. Specifically, the network side device can indicate the number of time slots for downlink transmission through the indication field nrofDownlinkSlots, use the indication field nrofUplinkSlots to indicate the number of time slots for uplink transmission, and the remaining time slots can be flexible time slots (in the transmission period of uplink/downlink and When the SCS is determined, the number of time slots in each frame is fixed, and after the network side device indicates the number of time slots for uplink transmission and downlink transmission, the remaining number of time slots is the number of flexible time slots). Wherein, both nrofDownlinkSlots and nrofUplinkSlots include a specific number of bits.
  • the SCS frequency as 480KHz and 960KHz and the transmission period as 10ms
  • the number of time slots in one frame is 320
  • the maximum number of time slots for uplink transmission can be 320 (the number of time slots for downlink transmission is 0 at this time)
  • the maximum number of time slots for downlink transmission can be 320 (the number of time slots for uplink transmission is 0 at this time)
  • the above two indication fields nrofDownlinkSlots and nrofUplinkSlots can be Each contains 9 bits, so that the format of each time slot can be effectively configured.
  • the number of time slots in one frame will increase to 640.
  • the 9-bit nrofDownlinkSlots and nrofUplinkSlots are used to refer to the number of time slots for downlink transmission and the number of time slots for uplink transmission
  • the number of time slots for uplink transmission/downlink transmission can be indicated up to 512.
  • the number of time slots for uplink transmission/downlink transmission is greater than 512, nrofDownlinkSlots and nrofUplinkSlots cannot be used for effective indication.
  • the embodiment of the present application provides a time slot configuration method, terminal and network side equipment, considering that indexing can indicate different time slots in more scenarios.
  • the number of uplink and downlink transmission time slots can be determined in advance according to the number of uplink and downlink transmission time slots in different scenarios.
  • the first indication field indicates the first index, and the terminal determines the number of time slots for uplink transmission and the number of time slots for downlink transmission based on the first index. In this way, since the format of a greater number of time slots can be indicated through the index, when the number of time slots to be configured is large, the number of time slots in different formats can be effectively indicated through the first index, so that Effectively configure the format of each slot.
  • the embodiment of the present application provides a time slot configuration method 200, which can be executed by a terminal, in other words, the method can be executed by software or hardware installed in the terminal, and the method includes the following steps.
  • S202 The terminal receives configuration information, where the configuration information includes a first indication field, where the first indication field is used to indicate a first index.
  • the network side device may pre-determine the corresponding first index for the number of uplink and downlink transmission time slots in different scenarios, and the first index may correspond to the unique uplink transmission time slot data and the unique number of downlink transmission time slots .
  • the network side device may send configuration information to the terminal device, where the configuration information includes a first indication field, where the first indication field is used to indicate the first index.
  • the above-mentioned first indication field may be composed of one indication field, or may be composed of multiple indication fields.
  • the multiple indication fields may be two indication fields nrofDownlinkSlots and nrofUplinkSlots in the TDD-UL-DL-ConfigurationCommon configuration in the prior art.
  • the first indication field may include multiple bits, and the multiple bits may be used to indicate the first index.
  • the maximum value of the multiple bits may be greater than the maximum value of the first index, and the maximum value of the first index may be understood as the number of combinations of timeslot numbers for different uplink and downlink transmissions.
  • the terminal After the network side device sends the configuration information to the terminal, the terminal can receive the above configuration information from the network side device.
  • S204 Determine the first number of time slots for uplink transmission and the second number of time slots for downlink transmission based on the first index.
  • the terminal may determine the number of time slots for uplink transmission and the number of time slots for downlink transmission based on the first index indicated by the configuration information.
  • the number of time slots for uplink transmission may be represented by the first number of time slots
  • the number of time slots for downlink transmission may be represented by the second number of time slots.
  • the terminal when the terminal determines the first number of time slots and the second number of time slots based on the first index, it can be implemented in at least two manners, and the two implementation manners will be described below respectively.
  • the first implementation method :
  • the terminal may determine the first number of time slots based on the first index and a predefined first function, and determine the second number of time slots based on the first index and a predefined second function.
  • the above-mentioned first function may be related to the first number of time slots, the total number of time slots, and the first index, that is, the first function may represent a functional relationship between the first number of time slots, the total number of time slots, and the first index.
  • the second function may be related to the second number of time slots and the first index, that is, the second function may characterize the functional relationship between the second number of time slots and the first index.
  • the total number of time slots can be determined based on the current SCS and the transmission cycle of the uplink and downlink.
  • the first function may be related to the first number of time slots and the first index, and the first function may represent a functional relationship between the first number of time slots and the first index.
  • the second function is related to the second number of time slots, the total number of time slots, and the first index, and the second function may represent a functional relationship between the second number of time slots, the total number of time slots, and the first index.
  • the above-mentioned first function and second function can be predefined by the protocol, and based on the first function and the first index, the unique number of the first time slot can be determined, and based on the second function and the first index, the unique number of the second time slot can be determined .
  • the number of time slots to be configured is 640 (which can correspond to SCS of 960KHz, and the transmission period is 10ms)
  • the first indication field includes 18 bits (which can be the bits in nrofDownlinkSlots and nrofUplinkSlots)
  • how the network side device determines (or how the protocol pre-defines) the first function and the second function and how the terminal determines the first number of time slots and the second number of time slots based on the first function and the second function is described.
  • the derivation process of the first function and the second function can be as follows:
  • the first time slot number Y1 can be expressed as the following formula:
  • M is the value obtained by subtracting one from the total number of time slots. In the case that the total number of time slots is 640, M is 639.
  • the second function is:
  • the first function can also be determined as:
  • the second function is:
  • the terminal when the terminal determines the first number of time slots and the second number of time slots based on the first index, it can determine the unique number of first time slots based on the first function, and determine the unique number of time slots based on the second function. The number of second time slots for .
  • the derivation process of the formulas of the first function and the second function above is described by taking the total number of time slots as 640 as an example.
  • the first function can also be derived based on the same method.
  • the first function and the second function, the derivation process of the first function and the second function under the total number of other time slots will not be illustrated one by one here.
  • the terminal may determine the second index based on the first index and a predefined first formula. If the second index is smaller than the first specified value, the first number of time slots may be determined based on the first index and a predefined third function, and the second number of time slots may be determined based on the first index and a predefined fourth function. If the second index is greater than or equal to the first specified value, the first number of time slots may be determined based on the first index and a predefined fifth function, and the second number of time slots may be determined based on the first index and a predefined sixth function .
  • the above-mentioned first specified value may be determined based on the total number of time slots, which may be pre-configured by the network side device or predefined by a protocol.
  • the total number of time slots is determined by the SCS and the transmission cycle of the uplink and downlink.
  • the first specified value may be equal to the total number of slots minus one.
  • the first formula is related to the first index and the second specified value, and the second specified value may also be determined based on the total number of time slots, specifically preconfigured by the network side device or predefined by a protocol. Wherein, the first designated value and the second designated value may be the same or different.
  • the above-mentioned third function, fourth function, fifth function and sixth function are all related to the first index and the second specified value, but the functional relationship between these four functions and the first index and the second specified value is different.
  • the third function represents the first functional relationship between the first time slot number and the first index and the second designated value
  • the fourth function represents the second time slot number and the first index and the second designated value
  • the second functional relationship between the values, the fifth function characterizes the third functional relationship between the first time slot number and the first index and the second specified value, the sixth function characterizes the second time slot number and the first A fourth functional relationship between an index and the second specified value.
  • the above-mentioned third function, fourth function, fifth function and sixth function can be predefined by the protocol, and based on the third function, the first index and the second specified value, the unique first time slot number can be determined, and based on the fourth function , the first index and the second specified value can determine the unique number of the second time slot, based on the fifth function, the first index and the second specified value can determine the unique number of the first time slot, based on the sixth function, the first index and a second specified value may determine a unique second number of time slots.
  • the first index can be determined by referring to a calculation method similar to the index value (Start and length indicator value, referred to as SLIV), and then the above-mentioned third function and fourth function can be obtained , the fifth function and the sixth function.
  • SLIV Start and length indicator value
  • a boundary value A may be set for the first number of time slots and the second number of time slots, where A is a positive integer.
  • A can be determined by the total number of time slots, which can be specifically expressed as:
  • M is determined by the total number of time slots.
  • M can be equal to the total number of time slots minus one.
  • the first index x can be obtained, as follows:
  • Q, N, G, and H are all integers, and at least one of Q, N, G, and H may be configured by a network-side device, or predefined by a protocol.
  • Q, N, G, H and above-mentioned M, A can satisfy the following relationship:
  • the combined number of time slots for different uplink and downlink transmissions can be expressed as the following formula:
  • the maximum value corresponding to the multiple bits used needs to be greater than the above combination quantity.
  • the terminal may determine the second index based on a predefined first formula.
  • the first formula can be expressed as Wherein, M may be regarded as the above-mentioned second specified value, which is specifically the total number of time slots minus one.
  • the terminal can determine the unique number of first time slots and the unique number of second time slots based on the first index.
  • the third function is:
  • the fifth function is:
  • the unique corresponding first index can be determined in advance according to the number of time slots for uplink and downlink transmission in different scenarios.
  • the network side device configures the format of the time slot, it can use the first The indication field indicates the first index, and the terminal determines the number of time slots for uplink transmission and the number of time slots for downlink transmission based on the first index.
  • the format of a greater number of time slots can be indicated through the index, when the number of time slots to be configured is large, the number of time slots in different formats can be effectively indicated through the first index, so that Effectively configure the format of each slot.
  • the embodiment of the present application provides a time slot configuration method 300, which can be performed by a network-side device, in other words, the method can be performed by software or hardware installed on the network-side device, and the method includes the following step.
  • the network side device sends configuration information, the configuration information includes a first indication field, the first indication field is used to indicate the first index, and the first index is used to determine the first number of time slots for uplink transmission and the second time slot for downlink transmission number of slots.
  • the network side device may pre-determine the corresponding first index for the number of uplink and downlink transmission time slots in different scenarios, and the first index may correspond to the unique uplink transmission time slot data and the unique downlink transmission time slot number .
  • the network side device may send configuration information to the terminal device, where the configuration information includes a first indication field, where the first indication field is used to indicate the first index.
  • the above-mentioned first indication field may be composed of one indication field, or may be composed of multiple indication fields.
  • the multiple indication fields may be two indication fields nrofDownlinkSlots and nrofUplinkSlots in the TDD-UL-DL-ConfigurationCommon configuration in the prior art.
  • the first indication field may include multiple bits, and the multiple bits may be used to indicate the first index.
  • the maximum value of the multiple bits may be greater than the maximum value of the first index, and the maximum value of the first index may be understood as the number of combinations of timeslot numbers for different uplink and downlink transmissions.
  • the above-mentioned first index is used to determine the first number of time slots and the second number of time slots.
  • the first index and a predefined first function are used to determine the first number of time slots
  • the first The index and the predefined second function are used to determine the second slot number.
  • the first function, the first number of time slots, the total number of time slots, and the first index may represent a functional relationship between the first number of time slots, the total number of time slots, and the first index.
  • the second function is related to the second number of time slots and the first index, and can characterize the functional relationship between the second number of time slots and the first index, and the total number of time slots is determined by the transmission cycle of the SCS.
  • the first function may be related to the first number of time slots and the first index, and the first function may represent a functional relationship between the first number of time slots and the first index.
  • the second function is related to the second number of time slots, the total number of time slots, and the first index, and the second function may represent a functional relationship between the second number of time slots, the total number of time slots, and the first index.
  • first function and second function may be preconfigured by the network side device or predefined by a protocol.
  • first function and second function may be preconfigured by the network side device or predefined by a protocol.
  • the above-mentioned first index is also used to determine the second index by using a predefined first formula.
  • the first index is used to determine the first number of time slots and the second number of time slots.
  • the first index and the predefined third function For determining the first number of time slots, the first index and the predefined fourth function are used for determining the second number of time slots.
  • the first index and the predefined fifth function are used to determine the first number of time slots
  • the first index and the predefined sixth function are used to determine the second time slot number. number of slots.
  • the first specified value may be determined based on the total number of time slots, which is specifically pre-configured by the network side device or predefined by a protocol, and the total number of time slots may be determined by the current SCS and transmission period.
  • the first formula above is related to the first index and the second specified value, and the second specified value is determined based on the total number of time slots.
  • the third function, the fourth function, the fifth function and the sixth function are all related to the first index and the second specified value, wherein the third function characterizes the first time slot number between the first index and the second specified value.
  • the fourth function characterizes a second functional relationship between the second slot number and the first index and the second specified value.
  • the fifth function characterizes a third functional relationship between the first slot number and the first index and the second specified value.
  • the sixth function characterizes a fourth functional relationship between the second slot number and the first index and the second specified value.
  • the third function, the fourth function, the fifth function, and the sixth function can be determined by referring to a calculation method similar to an index value (start position and length flag value, referred to as SLIV), for details, see Corresponding content in the embodiment shown in FIG. 2 will not be repeated here.
  • SLIV start position and length flag value
  • the terminal can determine the corresponding first number of time slots and the number of second time slots based on the first index indicated in the configuration information.
  • the specific implementation method can refer to FIG. 2 The illustrated embodiment will not be described again here.
  • the unique corresponding first index can be determined in advance according to the number of time slots for uplink and downlink transmission in different scenarios.
  • the network side device configures the format of the time slot, it can use the first The indication field indicates the first index, and the terminal determines the number of time slots for uplink transmission and the number of time slots for downlink transmission based on the first index.
  • the format of a greater number of time slots can be indicated through the index, when the number of time slots to be configured is large, the number of time slots in different formats can be effectively indicated through the first index, so that Effectively configure the format of each slot.
  • the executor may be a time slot configuration device, or a control module in the time slot configuration for executing the time slot configuration method.
  • the time slot configuration method performed by the time slot configuration device is taken as an example to illustrate the time slot configuration device provided in the embodiment of the present application.
  • Fig. 4 is a schematic structural diagram of an apparatus for configuring time slots according to an embodiment of the present application, and the apparatus may correspond to terminals in other embodiments.
  • the device 400 includes the following modules.
  • a receiving module 401 configured to receive configuration information, where the configuration information includes a first indication field, and the first indication field is used to indicate a first index;
  • a determining module 402 configured to determine a first number of time slots for uplink transmission and a second number of time slots for downlink transmission based on the first index.
  • the first indication field is composed of one or more indication fields, the first indication field includes multiple bits, and the multiple bits are used to indicate the first index.
  • the determining module 402 is further configured to:
  • the second number of slots is determined based on the first index and a predefined second function.
  • the first function represents the functional relationship between the first number of time slots, the total number of time slots and the first index
  • the second function represents the function relationship between the second time slot A functional relationship between the number and the first index, the total number of time slots is determined by the subcarrier spacing SCS and the transmission period; or,
  • the first function characterizes the functional relationship between the first number of time slots and the first index
  • the second function characterizes the second number of time slots and the total number of time slots and the first index functional relationship between them.
  • the determining module 402 is further configured to:
  • the first number of time slots is determined based on the first index and a predefined third function, and based on the first index and a predefined fourth a function to determine said second number of slots;
  • the first number of time slots is determined based on the first index and a predefined fifth function, and based on the first index and a predefined a defined sixth function determines said second number of time slots;
  • the first specified value is determined based on the total number of time slots, and the total number of time slots is determined by the SCS and the transmission cycle.
  • the first formula is related to the first index and the second specified value
  • the third function represents a first functional relationship between the first number of time slots and the first index and the second specified value
  • the fourth function represents the relationship between the second number of time slots and the a second functional relationship between the first index and the second specified value
  • the fifth function represents a third functional relationship between the first number of time slots and the first index and the second specified value
  • the sixth function represents the relationship between the second number of time slots and the a fourth functional relationship between the first index and said second specified value
  • the second specified value is determined based on the total number of time slots, and the total number of time slots is determined by the SCS and the transmission period.
  • the device 400 according to the embodiment of the present application can refer to the process of the method 200 corresponding to the embodiment of the present application, and each unit/module in the device 400 and the above-mentioned other operations and/or functions are respectively in order to realize the corresponding process in the method 200, And can achieve the same or equivalent technical effect, for the sake of brevity, no more details are given here.
  • Fig. 5 is a schematic structural diagram of an apparatus for configuring time slots according to an embodiment of the present application, and the apparatus may correspond to network-side devices in other embodiments.
  • the device 500 includes the following modules.
  • a sending module 501 configured to send configuration information
  • the configuration information includes a first indication field, and the first indication field is used to indicate a first index, and the first index is used to determine the number of first time slots for uplink transmission and the second time slot for downlink transmission number.
  • the first indication field is composed of one or more indication fields, the first indication field includes multiple bits, and the multiple bits are used to indicate the first index.
  • the first index and a predefined first function are used to determine the first number of time slots
  • the first index and a predefined second function are used to determine the second number of time slots.
  • the first function represents the functional relationship between the first number of time slots, the total number of time slots and the first index
  • the second function represents the function relationship between the second time slot a functional relationship between the number and the first index, the total number of slots being determined by the SCS and the transmission period;
  • the first function characterizes the functional relationship between the first number of time slots and the first index
  • the second function characterizes the second number of time slots and the total number of time slots and the first index functional relationship between them.
  • the first index is also used to determine the second index through a predefined first formula
  • the first index and a predefined third function are used to determine the first number of time slots, and the first index and a predefined fourth function for determining the second number of time slots;
  • the first index and a predefined fifth function are used to determine the first number of time slots, and the first index and the predefined The sixth function is used to determine the second number of time slots;
  • the first specified value is determined based on the total number of time slots, and the total number of time slots is determined by the SCS and the transmission period.
  • the first formula is related to the first index and the second specified value
  • the third function represents a first functional relationship between the first number of time slots and the first index and the second specified value
  • the fourth function represents the relationship between the second number of time slots and the a second functional relationship between the first index and the second specified value
  • the fifth function represents a third functional relationship between the first number of time slots and the first index and the second specified value
  • the sixth function represents the relationship between the second number of time slots and the a fourth functional relationship between the first index and said second specified value
  • the second specified value is determined based on the total number of time slots, and the total number of time slots is determined by the SCS and the transmission cycle.
  • the device 500 according to the embodiment of the present application can refer to the process of the method 300 corresponding to the embodiment of the present application, and each unit/module in the device 500 and the above-mentioned other operations and/or functions are respectively in order to realize the corresponding process in the method 300, And can achieve the same or equivalent technical effect, for the sake of brevity, no more details are given here.
  • the time slot configuration apparatus in the embodiment of the present application may be a device, an apparatus having an operating system or an electronic device, or may be a component, an integrated circuit, or a chip in a terminal.
  • the apparatus or electronic equipment may be a mobile terminal or a non-mobile terminal.
  • the mobile terminal may include but not limited to the types of terminals 11 listed above, and the non-mobile terminal may be a server, a network attached storage (Network Attached Storage, NAS), a personal computer (personal computer, PC), a television ( television, TV), teller machines or self-service machines, etc., are not specifically limited in this embodiment of the present application.
  • the time slot configuration device provided in the embodiment of the present application can realize each process realized by the method embodiments in FIG. 2 to FIG. 3 , and achieve the same technical effect. In order to avoid repetition, details are not repeated here.
  • this embodiment of the present application further provides a communication device 600, including a processor 601, a memory 602, and programs or instructions stored in the memory 602 and operable on the processor 601,
  • a communication device 600 including a processor 601, a memory 602, and programs or instructions stored in the memory 602 and operable on the processor 601
  • the communication device 600 is a terminal
  • the program or instruction is executed by the processor 601
  • each process of the above embodiment of the time slot configuration method can be realized, and the same technical effect can be achieved.
  • the communication device 600 is a network-side device
  • the program or instruction is executed by the processor 601
  • each process of the above embodiment of the time slot configuration method can be achieved, and the same technical effect can be achieved. To avoid repetition, details are not repeated here.
  • the embodiment of the present application also provides a terminal, including a processor and a communication interface, the communication interface is used to receive configuration information, the configuration information includes a first indication field, and the first indication field is used to indicate the first index, processing The device is configured to determine the first number of time slots for uplink transmission and the second number of time slots for downlink transmission based on the first index.
  • This terminal embodiment corresponds to the above-mentioned terminal-side method embodiment, and each implementation process and implementation mode of the above-mentioned method embodiment can be applied to this terminal embodiment, and can achieve the same technical effect.
  • FIG. 7 is a schematic diagram of a hardware structure of a terminal implementing an embodiment of the present application.
  • the terminal 700 includes but is not limited to: a radio frequency unit 701, a network module 702, an audio output unit 703, an input unit 704, a sensor 705, a display unit 706, a user input unit 707, an interface unit 708, a memory 709, and a processor 710, etc. at least some of the components.
  • the terminal 700 may also include a power supply (such as a battery) for supplying power to various components, and the power supply may be logically connected to the processor 710 through the power management system, so as to manage charging, discharging, and power consumption through the power management system. Management and other functions.
  • a power supply such as a battery
  • the terminal structure shown in FIG. 7 does not constitute a limitation on the terminal, and the terminal may include more or fewer components than shown in the figure, or combine some components, or arrange different components, which will not be repeated here.
  • the input unit 704 may include a graphics processor (Graphics Processing Unit, GPU) 7041 and a microphone 7042, and the graphics processor 7041 is used for the image capture device (such as the image data of the still picture or video obtained by the camera) for processing.
  • the display unit 706 may include a display panel 7061, and the display panel 7061 may be configured in the form of a liquid crystal display, an organic light emitting diode, or the like.
  • the user input unit 707 includes a touch panel 7071 and other input devices 7072 .
  • the touch panel 7071 is also called a touch screen.
  • the touch panel 7071 may include two parts, a touch detection device and a touch controller.
  • Other input devices 7072 may include, but are not limited to, physical keyboards, function keys (such as volume control buttons, switch buttons, etc.), trackballs, mice, and joysticks, which will not be repeated here.
  • the radio frequency unit 701 receives the downlink data from the network side device, and processes it to the processor 710; in addition, sends the uplink data to the network side device.
  • the radio frequency unit 701 includes, but is not limited to, an antenna, at least one amplifier, a transceiver, a coupler, a low noise amplifier, a duplexer, and the like.
  • the memory 709 can be used to store software programs or instructions as well as various data.
  • the memory 709 may mainly include a program or instruction storage area and a data storage area, wherein the program or instruction storage area may store an operating system, an application program or instructions required by at least one function (such as a sound playback function, an image playback function, etc.) and the like.
  • the memory 709 may include a high-speed random access memory, and may also include a nonvolatile memory, wherein the nonvolatile memory may be a read-only memory (Read-Only Memory, ROM), a programmable read-only memory (Programmable ROM) , PROM), erasable programmable read-only memory (Erasable PROM, EPROM), electrically erasable programmable read-only memory (Electrically EPROM, EEPROM) or flash memory.
  • ROM Read-Only Memory
  • PROM programmable read-only memory
  • PROM erasable programmable read-only memory
  • Erasable PROM Erasable PROM
  • EPROM electrically erasable programmable read-only memory
  • EEPROM electrically erasable programmable read-only memory
  • flash memory for example at least one magnetic disk storage device, flash memory device, or other non-volatile solid-state storage device.
  • the processor 710 may include one or more processing units; optionally, the processor 710 may integrate an application processor and a modem processor, wherein the application processor mainly processes the operating system, user interface and application programs or instructions, etc., Modem processors mainly handle wireless communications, such as baseband processors. It can be understood that the foregoing modem processor may not be integrated into the processor 710 .
  • the radio frequency unit 701 is configured to receive configuration information, the configuration information includes a first indication field, and the first indication field is used to indicate a first index;
  • a processor 710 configured to determine a first number of time slots for uplink transmission and a second number of time slots for downlink transmission based on the first index.
  • the unique corresponding first index can be determined in advance according to the number of time slots for uplink and downlink transmission in different scenarios.
  • the network side device configures the format of the time slot, it can use the first The indication field indicates the first index, and the terminal determines the number of time slots for uplink transmission and the number of time slots for downlink transmission based on the first index.
  • the format of a greater number of time slots can be indicated through the index, when the number of time slots to be configured is large, the number of time slots in different formats can be effectively indicated through the first index, so that Effectively configure the format of each slot.
  • the terminal 700 provided in the embodiment of the present application can also implement various processes in the above embodiment of the time slot configuration method, and can achieve the same technical effect. To avoid repetition, details are not repeated here.
  • the embodiment of the present application also provides a network side device, including a processor and a communication interface, the communication interface is used to send configuration information, the configuration information includes a first indication field, and the first indication field is used to indicate the first index , the first index is used to determine the first number of time slots for uplink transmission and the second number of time slots for downlink transmission.
  • the network-side device embodiment corresponds to the above-mentioned network-side device method embodiment, and each implementation process and implementation method of the above-mentioned method embodiment can be applied to this network-side device embodiment, and can achieve the same technical effect.
  • the embodiment of the present application also provides a network side device.
  • the network device 800 includes: an antenna 81 , a radio frequency device 82 , and a baseband device 83 .
  • the antenna 81 is connected to a radio frequency device 82 .
  • the radio frequency device 82 receives information through the antenna 81, and sends the received information to the baseband device 83 for processing.
  • the baseband device 83 processes the information to be sent and sends it to the radio frequency device 82
  • the radio frequency device 82 processes the received information and sends it out through the antenna 81 .
  • the foregoing frequency band processing device may be located in the baseband device 83 , and the method performed by the network side device in the above embodiments may be implemented in the baseband device 83 , and the baseband device 83 includes a processor 84 and a memory 85 .
  • Baseband device 83 for example can comprise at least one baseband board, and this baseband board is provided with a plurality of chips, as shown in Fig. The network device operations shown in the above method embodiments.
  • the baseband device 83 may also include a network interface 86 for exchanging information with the radio frequency device 82, such as a common public radio interface (CPRI for short).
  • a network interface 86 for exchanging information with the radio frequency device 82, such as a common public radio interface (CPRI for short).
  • CPRI common public radio interface
  • the network-side device in the embodiment of the present invention also includes: instructions or programs stored in the memory 85 and operable on the processor 84, and the processor 84 calls the instructions or programs in the memory 85 to execute the modules shown in FIG. 5 To avoid duplication, the method of implementation and to achieve the same technical effect will not be repeated here.
  • the embodiment of the present application also provides a readable storage medium, the readable storage medium stores a program or an instruction, and when the program or instruction is executed by a processor, each process of the above embodiment of the time slot configuration method is implemented, and can achieve The same technical effects are not repeated here to avoid repetition.
  • the processor is the processor in the terminal described in the foregoing embodiments.
  • the readable storage medium includes computer readable storage medium, such as computer read-only memory (Read-Only Memory, ROM), random access memory (Random Access Memory, RAM), magnetic disk or optical disk, etc.
  • the embodiment of the present application further provides a chip, the chip includes a processor and a communication interface, the communication interface is coupled to the processor, and the processor is used to run programs or instructions to implement the above embodiment of the time slot configuration method Each process, and can achieve the same technical effect, in order to avoid repetition, will not repeat them here.
  • the chip mentioned in the embodiment of the present application may also be called a system-on-chip, a system-on-chip, a system-on-a-chip, or a system-on-a-chip.
  • the term “comprising”, “comprising” or any other variation thereof is intended to cover a non-exclusive inclusion such that a process, method, article or apparatus comprising a set of elements includes not only those elements, It also includes other elements not expressly listed, or elements inherent in the process, method, article, or device. Without further limitations, an element defined by the phrase “comprising a " does not preclude the presence of additional identical elements in the process, method, article, or apparatus comprising that element.
  • the scope of the methods and devices in the embodiments of the present application is not limited to performing functions in the order shown or discussed, and may also include performing functions in a substantially simultaneous manner or in reverse order according to the functions involved. Functions are performed, for example, the described methods may be performed in an order different from that described, and various steps may also be added, omitted, or combined. Additionally, features described with reference to certain examples may be combined in other examples.
  • the methods of the above embodiments can be implemented by means of software plus a necessary general-purpose hardware platform, and of course also by hardware, but in many cases the former is better implementation.
  • the technical solution of the present application can be embodied in the form of computer software products, which are stored in a storage medium (such as ROM/RAM, magnetic disk, etc.) , CD-ROM), including several instructions to make a terminal (which may be a mobile phone, a computer, a server, an air conditioner, or a network device, etc.) execute the methods described in the various embodiments of the present application.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请公开了一种时隙配置方法、终端及网络侧设备,属于终端通信技术领域,本申请实施例的方法包括:终端接收配置信息,配置信息中包括第一指示字段,第一指示字段用于指示第一索引;基于第一索引确定上行传输的第一时隙数目以及下行传输的第二时隙数目。

Description

时隙配置方法、终端及网络侧设备
交叉引用
本发明要求在2021年09月07日提交中国专利局、申请号为202111044382.4、发明名称为“时隙配置方法、终端及网络侧设备”的中国专利申请的优先权,该申请的全部内容通过引用结合在本发明中。
技术领域
本申请属于终端通信技术领域,具体涉及一种时隙配置方法、终端及网络侧设备。
背景技术
在通信系统中,终端和网络侧设备可以使用不同的子载波间隔(Subcarrier Spacing,SCS)进行数据和控制信道的传输。通常,针对不同的子载波间隔而言,一帧内可以包括多个时隙(slot),为了支持更加灵活的调度,特别是在时分双工(Time Division Duplexing,TDD)系统中,可以对每帧内的时隙设计不同的时隙格式,并在通信时由网络侧设备对每帧内的时隙的格式进行配置。其中,时隙的格式具体可以包括以下三种:一个时隙仅用于下行传输、或仅用于上行传输、或为一个混合时隙,网络侧设备在对时隙的格式进行配置时,可以配置用于上行传输的时隙数目以及用于下行传输的时隙数目,其余未配置的时隙可以是灵活的时隙。
目前,通信系统中引入了更高频率的SCS,在SCS的频率较高的情况下,需要配置的时隙数目会急剧增加,这样,网络侧设备在基于目前的方案对每帧内的时隙的格式进行配置时,可能会出现无法对某些时隙的格式进行有效配置的问题。
发明内容
本申请实施例提供一种时隙配置方法、终端及网络侧设备,能够解决在需要配置的时隙数目较多的情况下,网络侧设备基于目前的方案可能无法对每个时隙的格式进行有效配置的问题。
第一方面,提供了一种时隙配置方法,该方法包括:
终端接收配置信息,所述配置信息中包括第一指示字段,所述第一指示字段用于指示第一索引;
基于所述第一索引确定上行传输的第一时隙数目以及下行传输的第二时隙数目。
第二方面,提供了一种时隙配置装置,该装置包括:
接收模块,用于接收配置信息,所述配置信息中包括第一指示字段,所述第一指示字段用于指示第一索引;
确定模块,用于基于所述第一索引确定上行传输的第一时隙数目以及下行传输的第二时隙数目。
第三方面,提供了一种时隙配置方法,该方法包括:
网络侧设备发送配置信息;
其中,所述配置信息中包括第一指示字段,所述第一指示字段用于指示第一索引,所述第一索引用于确定上行传输的第一时隙数目以及下行传输的第二时隙数目。
第四方面,提供了一种时隙配置装置,该装置包括:
发送模块,用于发送配置信息;
其中,所述配置信息中包括第一指示字段,所述第一指示字段用于指示第一索引,所述第一索引用于确定上行传输的第一时隙数目以及下行传输的第二时隙数目。
第五方面,提供了一种终端,该终端包括处理器、存储器及存储在所述 存储器上并可在所述处理器上运行的程序或指令,所述程序或指令被所述处理器执行时实现如第一方面所述的方法的步骤。
第六方面,提供了一种终端,包括处理器及通信接口,其中,所述通信接口用于接收配置信息,所述配置信息中包括第一指示字段,所述第一指示字段用于指示第一索引;所述处理器用于基于所述第一索引确定上行传输的第一时隙数目以及下行传输的第二时隙数目。
第七方面,提供了一种网络侧设备,该网络侧设备包括处理器、存储器及存储在所述存储器上并可在所述处理器上运行的程序或指令,所述程序或指令被所述处理器执行时实现如第三方面所述的方法的步骤。
第八方面,提供了一种网络侧设备,包括处理器及通信接口,其中,所述通信接口用于发送配置信息,所述配置信息中包括第一指示字段,所述第一指示字段用于指示第一索引,所述第一索引用于确定上行传输的第一时隙数目以及下行传输的第二时隙数目。
第九方面,提供了一种可读存储介质,所述可读存储介质上存储程序或指令,所述程序或指令被处理器执行时实现如第一方面所述的方法的步骤,或者实现如第三方面所述的方法的步骤。
第十方面,提供了一种芯片,所述芯片包括处理器和通信接口,所述通信接口和所述处理器耦合,所述处理器用于运行程序或指令,实现如第一方面所述的方法,或实现如第三方面所述的方法。
第十一方面,提供了一种计算机程序/程序产品,所述计算机程序/程序产品被存储在非易失的存储介质中,所述程序/程序产品被至少一个处理器执行以实现如第一方面所述的方法的步骤,或实现如第三方面所述的方法的步骤。
在本申请实施例中,可以预先针对不同场景下的上下行传输的时隙数目确定唯一对应的第一索引,网络侧设备在对时隙的格式进行配置时,可以通过配置信息中的第一指示字段指示第一索引,由终端基于第一索引确定上行传输的时隙数目和下行传输的时隙数目。这样,由于通过索引的方式可以对 更多数目的时隙的格式进行指示,因此,在需要配置的时隙数目较多时,通过第一索引可以对不同格式的时隙数目进行有效指示,从而可以对每个时隙的格式进行有效配置。
附图说明
图1是根据本申请实施例的无线通信系统的示意图;
图2是根据本申请实施例的时隙配置方法的示意性流程图;
图3是根据本申请实施例的时隙配置方法的示意性流程图;
图4是根据本申请实施例的时隙配置装置的结构示意图;
图5是根据本申请实施例的时隙配置装置的结构示意图;
图6是根据本申请实施例的通信设备的结构示意图;
图7是根据本申请实施例的终端的结构示意图;
图8是根据本申请实施例的网络侧设备的结构示意图。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚描述,显然,所描述的实施例是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员所获得的所有其他实施例,都属于本申请保护的范围。
本申请的说明书和权利要求书中的术语“第一”、“第二”等是用于区别类似的对象,而不用于描述特定的顺序或先后次序。应该理解这样使用的术语在适当情况下可以互换,以便本申请的实施例能够以除了在这里图示或描述的那些以外的顺序实施,且“第一”、“第二”所区别的对象通常为一类,并不限定对象的个数,例如第一对象可以是一个,也可以是多个。此外,说明书以及权利要求中“和/或”表示所连接对象的至少其中之一,字符“/”一般表示前后关联对象是一种“或”的关系。
值得指出的是,本申请实施例所描述的技术不限于长期演进型(Long Term Evolution,LTE)/LTE的演进(LTE-Advanced,LTE-A)系统,还可用于其他无线通信系统,诸如码分多址(Code Division Multiple Access,CDMA)、时分多址(Time Division Multiple Access,TDMA)、频分多址(Frequency Division Multiple Access,FDMA)、正交频分多址(Orthogonal Frequency Division Multiple Access,OFDMA)、单载波频分多址(Single-carrier Frequency-Division Multiple Access,SC-FDMA)和其他系统。本申请实施例中的术语“系统”和“网络”常被可互换地使用,所描述的技术既可用于以上提及的系统和无线电技术,也可用于其他系统和无线电技术。以下描述出于示例目的描述了新空口(New Radio,NR)系统,并且在以下大部分描述中使用NR术语,但是这些技术也可应用于NR系统应用以外的应用,如第6代(6 th Generation,6G)通信系统。
图1示出本申请实施例可应用的一种无线通信系统的框图。无线通信系统包括终端11和网络侧设备12。其中,终端11也可以称作终端设备或者用户终端(User Equipment,UE),终端11可以是手机、平板电脑(Tablet Personal Computer)、膝上型电脑(Laptop Computer)或称为笔记本电脑、个人数字助理(Personal Digital Assistant,PDA)、掌上电脑、上网本、超级移动个人计算机(ultra-mobile personal computer,UMPC)、移动上网装置(Mobile Internet Device,MID)、可穿戴式设备(Wearable Device)或车载设备(VUE)、行人终端(PUE)等终端侧设备,可穿戴式设备包括:智能手表、手环、耳机、眼镜等。需要说明的是,在本申请实施例并不限定终端11的具体类型。网络侧设备12可以是基站或核心网,其中,基站可被称为节点B、演进节点B、接入点、基收发机站(Base Transceiver Station,BTS)、无线电基站、无线电收发机、基本服务集(Basic Service Set,BSS)、扩展服务集(Extended Service Set,ESS)、B节点、演进型B节点(eNB)、家用B节点、家用演进型B节点、无线局域网(Wireless Local Area Network,WLAN)接入点、无 线保真(Wireless Fidelity,WiFi)节点、发送接收点(Transmitting Receiving Point,TRP)或所述领域中其他某个合适的术语,只要达到相同的技术效果,所述基站不限于特定技术词汇,需要说明的是,在本申请实施例中仅以NR系统中的基站为例,但是并不限定基站的具体类型。
目前,在TDD通信系统中,网络侧设备在对时隙格式进行配置时,可以采用TDD-上行(Uplink,UL)-下行(Downlink,DL)-ConfigCommon进行配置。具体地,网络侧设备可以通过指示域nrofDownlinkSlots指示下行传输的时隙数目,使用指示域nrofUplinkSlots指示上行传输的时隙数目,其余时隙可以是灵活时隙(在上行/下行链路的传输周期和SCS确定的情况下,每帧内的时隙数目是固定的,网络侧设备指示了上行传输和下行传输的时隙数目后,剩余数目的时隙即为灵活时隙的数目)。其中,nrofDownlinkSlots和nrofUplinkSlots中均包括特定数量的比特。
在SCS的频率较高的情况下,需要配置的时隙数目会急剧增加,这样,网络侧设备在使用nrofDownlinkSlots和nrofUplinkSlots分别指示下行传输的时隙数目和上行传输的时隙数目时,受限于nrofDownlinkSlots和nrofUplinkSlots中的比特数目,将会出现无法配置其中一部分时隙的格式的问题。
以SCS频率为480KHz和960KHz,传输周期为10ms为例,当SCS的频率为480KHz传输周期为10ms时,一帧内的时隙数目为320个,由于上行传输的时隙数目最大可以是320个(此时下行传输的时隙数目为0),下行传输的时隙数目最大也可以是320个(此时上行传输的时隙数目为0),因此,上述两个指示域nrofDownlinkSlots和nrofUplinkSlots中可以各包含9个比特,由此可以对每个时隙的格式进行有效配置。然而,当SCS的频率为960KHz传输周期为10ms时,一帧内的时隙数目将增加至640个,在这种情况下,若采用9比特的nrofDownlinkSlots和nrofUplinkSlots分别是指下行传输的时隙数目和上行传输的时隙数目,则最多可以指示512个上行传输/下行 传输的时隙数目,在上行传输/下行传输的时隙数目大于512时,将无法通过nrofDownlinkSlots和nrofUplinkSlots进行有效指示。
针对目前可能出现的无法对某些时隙的格式进行有效配置的问题,本申请实施例提供一种时隙配置方法、终端及网络侧设备,考虑到通过索引的方式可以指示更多场景下不同的上下行传输时隙的数目,可以预先针对不同场景下的上下行传输的时隙数目确定唯一对应的第一索引,网络侧设备在对时隙的格式进行配置时,可以通过配置信息中的第一指示字段指示第一索引,由终端基于第一索引确定上行传输的时隙数目和下行传输的时隙数目。这样,由于通过索引的方式可以对更多数目的时隙的格式进行指示,因此,在需要配置的时隙数目较多时,通过第一索引可以对不同格式的时隙数目进行有效指示,从而可以对每个时隙的格式进行有效配置。
下面结合附图,通过一些实施例及其应用场景对本申请实施例提供的时隙配置方法、终端及网络侧设备进行详细地说明。
如图2所示,本申请实施例提供一种时隙配置方法200,该方法可以由终端执行,换言之,该方法可以由安装在终端的软件或硬件来执行,该方法包括如下步骤。
S202:终端接收配置信息,配置信息中包括第一指示字段,第一指示字段用于指示第一索引。
在S202中,网络侧设备可以预先针对不同场景下的上下行传输的时隙数目确定对应的第一索引,该第一索引可以对应唯一的上行传输的时隙数据和唯一下行传输的时隙数目。这样,在对时隙格式进行配置时,网络侧设备可以向终端设备发送配置信息,该配置信息中包括第一指示字段,该第一指示字段用于指示第一索引。
上述第一指示字段可以由一个指示域组成,也可以由多个指示域组成。可选地,该多个指示域可以是现有技术中的TDD-UL-DL-ConfigurationCommon配置中的两个指示域nrofDownlinkSlots 和nrofUplinkSlots。第一指示字段中可以包括多个比特,该多个比特可以用于指示第一索引。可选地,多个比特的最大值可以大于第一索引的最大值,第一索引的最大值可以理解为不同上下行传输的时隙数目的组合数。
网络侧设备在向终端发送配置信息后,终端可以接收来自网络侧设备的上述配置信息。
S204:基于第一索引确定上行传输的第一时隙数目以及下行传输的第二时隙数目。
终端在接收到配置信息后,可以基于配置信息指示的第一索引确定上行传输的时隙数目以及下行传输的时隙数目。这里为了区别,可以由第一时隙数目表示上行传输的时隙数目,由第二时隙数目表示下行传输的时隙数目。
本实施例中,终端在基于第一索引确定第一时隙数目和第二时隙数目时,至少可以通过两种方式实现,以下将分别针对这两种实现方式进行说明。
第一种实现方式:
终端可以基于第一索引和预定义的第一函数确定第一时隙数目,基于第一索引和预定义的第二函数确定第二时隙数目。
上述第一函数可以与第一时隙数目、时隙总数以及第一索引有关,即该第一函数可以表征第一时隙数目与时隙总数以及第一索引之间的函数关系。第二函数可以与第二时隙数目和第一索引有关,即第二函数可以表征第二时隙数目与第一索引之间的函数关系。时隙总数可以基于当前的SCS和上下行链路的传输周期确定得到。
或者也可以是,上述第一函数与第一时隙数目和第一索引有关,该第一函数可以表征第一时隙数目与第一索引之间的函数关系。第二函数与第二时隙数目、时隙总数以及和第一索引有关,该第二函数可以表征第二时隙数目与时隙总数以及第一索引之间的函数关系。
上述第一函数和第二函数可以由协议预定义,且基于第一函数和第一索引可以确定唯一的第一时隙数目,基于第二函数和第一索引可以确定唯一的 第二时隙数目。
为了便于理解,以下可以以需要配置的时隙数目为640个(可以对应SCS为960KHz,传输周期为10ms)、第一指示字段中包括18个比特(可以是nrofDownlinkSlots和nrofUplinkSlots中的比特)为例,对网络侧设备如何确定得到(或协议如何预定义)第一函数和第二函数以及终端如何基于第一函数和第二函数确定第一时隙数目和第二时隙数目进行说明。
在dl-UL-TransmissionPeriodicity周期内总共有640个时隙的情况下,考虑到所有可能的上下行传输的时隙数目,可以得到18个比特所指示的第一索引x和不同上下行传输的时隙数目之间的对应关系,如下表1所示。
表1
第一索引x 第一时隙数目Y1 第二时隙数目Y2
000…00 M 0
000…01 M-1 0
000…10 M-1 1
  M-2 0
  M-2 1
  M-2 2
  …….  
  0 M-1
111…11 0 M
上述表1中的M为639。从表1可以看出,所有可能的上下行传输的时隙数目的组合共有1+2+……+640=205120种。考虑到18个比特对应的最大索引为2 18-1=262143,大于205120,因此,可以使用18个比特指示的第一索引表示205120种组合,且每种组合可以对应一个第一索引,一个第一索引可以对应唯一的第一时隙数目Y1和唯一的一个第二时隙数目Y2。有鉴于此,可以将第一时隙数目Y1用含有第一索引x的函数进行表示,第二时隙数目 Y2则可以通过第一时隙数目Y1以及第一索引x共同推导得出。
第一函数和第二函数的推导过程可以如下:
假设表1中相同的第一时隙数目Y1对应一组i,则x与i之间的关系可以表示为如下公式:
Figure PCTCN2022117378-appb-000001
基于上述公式可以推导出i的公式:
Figure PCTCN2022117378-appb-000002
由于i是整数,因此基于上述i的公式可以确定得到i与第一索引x之间的如下关系等式:
Figure PCTCN2022117378-appb-000003
由于相同的第一时隙数目可以对应一组i,因此,第一时隙数目Y1可以表示为如下公式:
Figure PCTCN2022117378-appb-000004
M为时隙总数减一后的值,在时隙总数为640的情况下,M为639。
对于第二时隙数目Y2而言,Y2与第一索引x的关系可以表示为如下公式:
Figure PCTCN2022117378-appb-000005
对上述Y2的公式进行推导,可以得到Y2与第一索引x之间的如下等式关系:
Figure PCTCN2022117378-appb-000006
基于上述推导过程可以确定,第一函数为:
Figure PCTCN2022117378-appb-000007
第二 函数为:
Figure PCTCN2022117378-appb-000008
基于相同的推导方式,还可以确定第一函数为:
Figure PCTCN2022117378-appb-000009
第二函数为:
Figure PCTCN2022117378-appb-000010
基于上述第一函数和第二函数,终端在基于第一索引确定第一时隙数目和第二时隙数目时,可以基于第一函数确定唯一的第一时隙数目,基于第二函数确定唯一的第二时隙数目。
需要说明的是,上述第一函数和第二函数的公式推导过程以时隙总数为640个为例进行的说明,在时隙总数为其他数目的情况下,也可以基于相同的方法推导出第一函数和第二函数,这里不再对其他时隙总数下的第一函数和第二函数的推导过程进行一一举例说明。
第二种实现方式:
终端可以基于第一索引和预定义的第一公式确定第二索引。若第二索引小于第一指定值,则可以基于第一索引和预定义的第三函数确定第一时隙数目,以及基于第一索引和预定义的第四函数确定第二时隙数目。若第二索引大于或等于第一指定值,则可以基于第一索引和预定义的第五函数确定第一时隙数目,以及基于第一索引和预定义的第六函数确定第二时隙数目。
上述第一指定值可以基于时隙总数确定,具体可以由网络侧设备预先配置或由协议预定义,时隙总数由SCS和上下行链路的传输周期确定。可选地,第一指定值可以等于时隙总数减一。
第一公式与第一索引以及第二指定值有关,第二指定值也可以基于时隙总数确定,具体由网络侧设备预先配置或由协议预定义。其中,第一指定值与第二指定值可以相同,也可以不同。
上述第三函数、第四函数、第五函数和第六函数均与第一索引和第二指定值有关,但是这四个函数与第一索引和第二指定值之间的函数关系不同。 具体地,第三函数表征的是第一时隙数目与第一索引以及第二指定值之间的第一函数关系,第四函数表征的是第二时隙数目与第一索引以及第二指定值之间的第二函数关系,第五函数表征的是第一时隙数目与第一索引以及第二指定值之间的第三函数关系,第六函数表征的是第二时隙数目与第一索引以及第二指定值之间的第四函数关系。
上述第三函数、第四函数、第五函数和第六函数可以由协议预定义,且基于第三函数、第一索引和第二指定值可以确定唯一的第一时隙数目,基于第四函数、第一索引和第二指定值可以确定唯一的第二时隙数目,基于第五函数、第一索引和第二指定值可以确定唯一的第一时隙数目,基于第六函数、第一索引和第二指定值可以确定唯一的第二时隙数目。
在一种可能的实现方式中,可以参照类似索引值(起始位置和长度标志值Start and length indicator value,简称为SLIV)的计算方式确定第一索引,进而得到上述第三函数、第四函数、第五函数和第六函数。具体实现方式如下。
首先,可以针对第一时隙数目和第二时隙数目设置边界值A,A为正整数。可选地,A可以由时隙总数确定,具体可以表示为:
Figure PCTCN2022117378-appb-000011
Figure PCTCN2022117378-appb-000012
B为整数,取值可以为-1、0或1等,具体由网络侧设备预先配置或由协议预定义,M由时隙总数确定,可选地,M可以等于时隙总数减一。
其次,参照SLIV的计算方式,可以得到第一索引x,具体如下:
if 0=<Y1<=A
x=M*(Y1+Q)+Y2+N
Else A<Y1<=M
x=M*(M–Y1+G)+M–Y2+H。
或者,也可以是:
if 0=<Y2<=A
x=M*(Y2+Q)+Y1+N
Else A<Y2<=M
x=M*(M–Y2+G)+M–Y1+H。
上述Q、N、G和H均为整数,且Q、N、G和H中的至少一项可由网络侧设备配置,或由协议预定义。可选地,Q、N、G、H和上述M、A可以满足以下关系式:
N+Q<0,G+H>=0,A>=(M+1-MQ-N)/(M-1)。
在时隙总数为M的情况下,不同的上下行传输的时隙数目的组合数量可以表示为如下公式:
Figure PCTCN2022117378-appb-000013
需要说明的是,网络侧设备在配置第一索引时,所使用的多个比特对应的最大数值需要大于上述组合数量。
终端在接收到第一索引后,可以基于预定义的第一公式确定第二索引。可选地,第一公式可以表示为
Figure PCTCN2022117378-appb-000014
其中,M可以视为上述第二指定值,具体为时隙总数减一。
在确定第二索引后,若第二索引小于上述第一指定值,则可以确定第一时隙数目和边界值A的大小关系为0=<Y1<=A,此时可以得到
Figure PCTCN2022117378-appb-000015
Y2=x%M-N。若第二索引大于或等于上述第一指定值,则可以确定第一时隙数目和边界值A的大小关系为A<Y1<=M,此时,可以得到
Figure PCTCN2022117378-appb-000016
Y2=M+H-x%M。
或者,在确定第二索引后,若第二索引小于上述第一指定值,则可以确定第二时隙数目和边界值A的大小关系为0=<Y2<=A,此时,可以得到Y1=x%M-N,
Figure PCTCN2022117378-appb-000017
若第二索引大于或等于上述第一指定值,则可以确定第一时隙数目和边界值A的大小关系为A<Y1<=M,此时,可以得到Y1=M+H-x%M,
Figure PCTCN2022117378-appb-000018
通过上述步骤,终端可以基于第一索引确定唯一的第一时隙数目和唯一的第二时隙数目。其中,第三函数为:
Figure PCTCN2022117378-appb-000019
第四函数为:Y2=x%M-N,或,第三函数为:Y1=x%M-N,第四函数为:
Figure PCTCN2022117378-appb-000020
第五函数为:
Figure PCTCN2022117378-appb-000021
第六函数为:Y2=M+H-x%M,或,第五函数为:Y1=M+H-x%M,第六函数为:
Figure PCTCN2022117378-appb-000022
在本申请实施例中,可以预先针对不同场景下的上下行传输的时隙数目确定唯一对应的第一索引,网络侧设备在对时隙的格式进行配置时,可以通过配置信息中的第一指示字段指示第一索引,由终端基于第一索引确定上行传输的时隙数目和下行传输的时隙数目。这样,由于通过索引的方式可以对更多数目的时隙的格式进行指示,因此,在需要配置的时隙数目较多时,通过第一索引可以对不同格式的时隙数目进行有效指示,从而可以对每个时隙的格式进行有效配置。
如图3所示,本申请实施例提供一种时隙配置方法300,该方法可以由网络侧设备执行,换言之,该方法可以由安装在网络侧设备的软件或硬件来执行,该方法包括如下步骤。
S302:网络侧设备发送配置信息,配置信息中包括第一指示字段,第一指示字段用于指示第一索引,第一索引用于确定上行传输的第一时隙数目以及下行传输的第二时隙数目。
在S302中,网络侧设备可以预先针对不同场景下的上下行传输的时隙数目确定对应的第一索引,该第一索引可以对应唯一的上行传输的时隙数据和唯一下行传输的时隙数目。这样,在对时隙格式进行配置时,网络侧设备可以向终端设备发送配置信息,该配置信息中包括第一指示字段,该第一指示字段用于指示第一索引。
上述第一指示字段可以由一个指示域组成,也可以由多个指示域组成。可选地,该多个指示域可以是现有技术中的 TDD-UL-DL-ConfigurationCommon配置中的两个指示域nrofDownlinkSlots和nrofUplinkSlots。第一指示字段中可以包括多个比特,该多个比特可以用于指示第一索引。可选地,多个比特的最大值可以大于第一索引的最大值,第一索引的最大值可以理解为不同上下行传输的时隙数目的组合数。
在一种实现方式中,上述第一索引用于确定第一时隙数目和第二时隙数目具体可以是,第一索引和预定义的第一函数用于确定第一时隙数目,第一索引和预定义的第二函数用于确定第二时隙数目。其中,第一函数与第一时隙数目、时隙总数以及第一索引,可以表征第一时隙数目与时隙总数以及第一索引之间的函数关系。第二函数与第二时隙数目和第一索引有关,可以表征第二时隙数目与第一索引之间的函数关系,时隙总数由SCS的传输周期确定。或者也可以是,第一函数与第一时隙数目和第一索引有关,该第一函数可以表征第一时隙数目与第一索引之间的函数关系。第二函数与第二时隙数目、时隙总数以及和第一索引有关,该第二函数可以表征第二时隙数目与时隙总数以及第一索引之间的函数关系。
上述第一函数和第二函数可以由网络侧设备预先配置或由协议预定义。在一种可能的实现方式中,上述第一函数和第二函数的具体推导过程可以参见图2所示实施例中的相应内容,这里不再重复说明。
在另一种实现方式中,上述第一索引还用于通过预定义的第一公式确定第二索引。在这种情况下,第一索引用于确定第一时隙数目和第二时隙数目,具体可以是在第二索引小于第一指定值的情况下,第一索引和预定义的第三函数用于确定第一时隙数目,第一索引和预定义的第四函数用于确定第二时隙数目。在第二索引大于或等于第一指定值的情况下,第一索引和预定义的第五函数用于确定第一时隙数目,第一索引和预定义的第六函数用于确定第二时隙数目。其中,第一指定值可以基于时隙总数确定,具体由网络侧设备预先配置或由协议预定义,时隙总数可由当前的SCS和传输周期确定。
上述第一公式与第一索引以及第二指定值有关,第二指定值基于时隙总 数确定。第三函数第四函数、第五函数和第六函数均与第一索引和第二指定值有关,其中,第三函数表征第一时隙数目与第一索引以及第二指定值之间的第一函数关系。第四函数表征第二时隙数目与第一索引以及第二指定值之间的第二函数关系。第五函数表征第一时隙数目与第一索引以及第二指定值之间的第三函数关系。第六函数表征第二时隙数目与第一索引以及第二指定值之间的第四函数关系。
在一种可能的实现方式中,第三函数、第四函数、第五函数和第六函数可以参照类似索引值(起始位置和长度标志值,简称为SLIV)的计算方式确定,具体可以参见图2所示实施例中的相应内容,这里不再重复说明。
本实施例中,网络侧设备在将配置信息发送给终端后,终端可以基于配置信息中指示的第一索引确定对应的第一时隙数目和第二时隙数目,具体实现方式可以参见图2所示的实施例,这里也不再重复说明。
在本申请实施例中,可以预先针对不同场景下的上下行传输的时隙数目确定唯一对应的第一索引,网络侧设备在对时隙的格式进行配置时,可以通过配置信息中的第一指示字段指示第一索引,由终端基于第一索引确定上行传输的时隙数目和下行传输的时隙数目。这样,由于通过索引的方式可以对更多数目的时隙的格式进行指示,因此,在需要配置的时隙数目较多时,通过第一索引可以对不同格式的时隙数目进行有效指示,从而可以对每个时隙的格式进行有效配置。
需要说明的是,本申请实施例提供的时隙配置方法,执行主体可以为时隙配置装置,或者,该时隙配置中的用于执行时隙配置的方法的控制模块。本申请实施例中以时隙配置装置执行时隙配置方法为例,说明本申请实施例提供的时隙配置装置。
图4是根据本申请实施例的时隙配置装置的结构示意图,该装置可以对应于其他实施例中的终端。如图4所示,装置400包括如下模块。
接收模块401,用于接收配置信息,所述配置信息中包括第一指示字段, 所述第一指示字段用于指示第一索引;
确定模块402,用于基于所述第一索引确定上行传输的第一时隙数目以及下行传输的第二时隙数目。
可选的,作为一个实施例,所述第一指示字段由一个或多个指示域组成,所述第一指示字段中包括多个比特,所述多个比特用于指示所述第一索引。
可选的,作为一个实施例,所述确定模块402,还用于:
基于所述第一索引和预定义的第一函数确定所述第一时隙数目;
基于所述第一索引和预定义的第二函数确定所述第二时隙数目。
可选的,作为一个实施例,所述第一函数表征所述第一时隙数目与时隙总数以及所述第一索引之间的函数关系,所述第二函数表征所述第二时隙数目与所述第一索引之间的函数关系,所述时隙总数由子载波间隔SCS和传输周期确定;或,
所述第一函数表征所述第一时隙数目与所述第一索引之间的函数关系,所述第二函数表征所述第二时隙数目与所述时隙总数以及所述第一索引之间的函数关系。
可选的,作为一个实施例,所述确定模块402,还用于:
基于所述第一索引和预定义的第一公式确定第二索引;
在所述第二索引小于第一指定值的情况下,基于所述第一索引和预定义的第三函数确定所述第一时隙数目,以及基于所述第一索引和预定义的第四函数确定所述第二时隙数目;
在所述第二索引大于或等于所述第一指定值的情况下,基于所述第一索引和预定义的第五函数确定所述第一时隙数目,以及基于所述第一索引和预定义的第六函数确定所述第二时隙数目;
其中,所述第一指定值基于时隙总数确定,所述时隙总数由SCS和传输周期确定。
可选的,作为一个实施例,所述第一公式与所述第一索引以及第二指定 值有关;
所述第三函数表征所述第一时隙数目与所述第一索引以及所述第二指定值之间的第一函数关系,所述第四函数表征所述第二时隙数目与所述第一索引以及所述第二指定值之间的第二函数关系;
所述第五函数表征所述第一时隙数目与所述第一索引以及所述第二指定值之间的第三函数关系,所述第六函数表征所述第二时隙数目与所述第一索引以及所述第二指定值之间的第四函数关系;
其中,所述第二指定值基于时隙总数确定,所述时隙总数由SCS和传输周期确定。
根据本申请实施例的装置400可以参照对应本申请实施例的方法200的流程,并且,该装置400中的各个单元/模块和上述其他操作和/或功能分别为了实现方法200中的相应流程,并且能够达到相同或等同的技术效果,为了简洁,在此不再赘述。
图5是根据本申请实施例的时隙配置装置的结构示意图,该装置可以对应于其他实施例中的网络侧设备。如图5所示,装置500包括如下模块。
发送模块501,用于发送配置信息;
其中,所述配置信息中包括第一指示字段,所述第一指示字段用于指示第一索引,所述第一索引用于确定上行传输的第一时隙数目以及下行传输的第二时隙数目。
可选的,作为一个实施例,所述第一指示字段由一个或多个指示域组成,所述第一指示字段中包括多个比特,所述多个比特用于指示所述第一索引。
可选的,作为一个实施例,所述第一索引和预定义的第一函数用于确定所述第一时隙数目;
所述第一索引和预定义的第二函数用于确定所述第二时隙数目。
可选的,作为一个实施例,所述第一函数表征所述第一时隙数目与时隙总数以及所述第一索引之间的函数关系,所述第二函数表征所述第二时隙数 目与所述第一索引之间的函数关系,所述时隙总数由SCS和传输周期确定;或,
所述第一函数表征所述第一时隙数目与所述第一索引之间的函数关系,所述第二函数表征所述第二时隙数目与所述时隙总数以及所述第一索引之间的函数关系。
可选的,作为一个实施例,所述第一索引还用于通过预定义的第一公式确定第二索引;
在所述第二索引小于第一指定值的情况下,所述第一索引和预定义的第三函数用于确定所述第一时隙数目,所述第一索引和预定义的第四函数用于确定所述第二时隙数目;
在所述第二索引大于或等于所述第一指定值的情况下,所述第一索引和预定义的第五函数用于确定所述第一时隙数目,所述第一索引和预定义的第六函数用于确定所述第二时隙数目;
其中,所述第一指定值基于时隙总数确定,所述时隙总数由SCS和传输周期确定。
可选的,作为一个实施例,所述第一公式与所述第一索引以及第二指定值有关;
所述第三函数表征所述第一时隙数目与所述第一索引以及所述第二指定值之间的第一函数关系,所述第四函数表征所述第二时隙数目与所述第一索引以及所述第二指定值之间的第二函数关系;
所述第五函数表征所述第一时隙数目与所述第一索引以及所述第二指定值之间的第三函数关系,所述第六函数表征所述第二时隙数目与所述第一索引以及所述第二指定值之间的第四函数关系;
其中,所述第二指定值基于时隙总数确定,所述时隙总数由SCS和传输周期确定。
根据本申请实施例的装置500可以参照对应本申请实施例的方法300的 流程,并且,该装置500中的各个单元/模块和上述其他操作和/或功能分别为了实现方法300中的相应流程,并且能够达到相同或等同的技术效果,为了简洁,在此不再赘述。
本申请实施例中的时隙配置装置可以是装置,具有操作系统的装置或电子设备,也可以是终端中的部件、集成电路、或芯片。该装置或电子设备可以是移动终端,也可以为非移动终端。示例性的,移动终端可以包括但不限于上述所列举的终端11的类型,非移动终端可以为服务器、网络附属存储器(Network Attached Storage,NAS)、个人计算机(personal computer,PC)、电视机(television,TV)、柜员机或者自助机等,本申请实施例不作具体限定。
本申请实施例提供的时隙配置装置能够实现图2至图3的方法实施例实现的各个过程,并达到相同的技术效果,为避免重复,这里不再赘述。
可选的,如图6所示,本申请实施例还提供一种通信设备600,包括处理器601,存储器602,存储在存储器602上并可在所述处理器601上运行的程序或指令,例如,该通信设备600为终端时,该程序或指令被处理器601执行时实现上述时隙配置方法实施例的各个过程,且能达到相同的技术效果。该通信设备600为网络侧设备时,该程序或指令被处理器601执行时实现上述时隙配置方法实施例的各个过程,且能达到相同的技术效果,为避免重复,这里不再赘述。
本申请实施例还提供一种终端,包括处理器和通信接口,通信接口用于接收配置信息,所述配置信息中包括第一指示字段,所述第一指示字段用于指示第一索引,处理器用于基于所述第一索引确定上行传输的第一时隙数目以及下行传输的第二时隙数目。该终端实施例是与上述终端侧方法实施例对应的,上述方法实施例的各个实施过程和实现方式均可适用于该终端实施例中,且能达到相同的技术效果。具体地,图7为实现本申请实施例的一种终端的硬件结构示意图。
该终端700包括但不限于:射频单元701、网络模块702、音频输出单元703、输入单元704、传感器705、显示单元706、用户输入单元707、接口单元708、存储器709、以及处理器710等中的至少部分部件。
本领域技术人员可以理解,终端700还可以包括给各个部件供电的电源(比如电池),电源可以通过电源管理系统与处理器710逻辑相连,从而通过电源管理系统实现管理充电、放电、以及功耗管理等功能。图7中示出的终端结构并不构成对终端的限定,终端可以包括比图示更多或更少的部件,或者组合某些部件,或者不同的部件布置,在此不再赘述。
应理解的是,本申请实施例中,输入单元704可以包括图形处理器(Graphics Processing Unit,GPU)7041和麦克风7042,图形处理器7041对在视频捕获模式或图像捕获模式中由图像捕获装置(如摄像头)获得的静态图片或视频的图像数据进行处理。显示单元706可包括显示面板7061,可以采用液晶显示器、有机发光二极管等形式来配置显示面板7061。用户输入单元707包括触控面板7071以及其他输入设备7072。触控面板7071,也称为触摸屏。触控面板7071可包括触摸检测装置和触摸控制器两个部分。其他输入设备7072可以包括但不限于物理键盘、功能键(比如音量控制按键、开关按键等)、轨迹球、鼠标、操作杆,在此不再赘述。
本申请实施例中,射频单元701将来自网络侧设备的下行数据接收后,给处理器710处理;另外,将上行的数据发送给网络侧设备。通常,射频单元701包括但不限于天线、至少一个放大器、收发信机、耦合器、低噪声放大器、双工器等。
存储器709可用于存储软件程序或指令以及各种数据。存储器709可主要包括存储程序或指令区和存储数据区,其中,存储程序或指令区可存储操作系统、至少一个功能所需的应用程序或指令(比如声音播放功能、图像播放功能等)等。此外,存储器709可以包括高速随机存取存储器,还可以包括非易失性存储器,其中,非易失性存储器可以是只读存储器(Read-Only  Memory,ROM)、可编程只读存储器(Programmable ROM,PROM)、可擦除可编程只读存储器(Erasable PROM,EPROM)、电可擦除可编程只读存储器(Electrically EPROM,EEPROM)或闪存。例如至少一个磁盘存储器件、闪存器件、或其他非易失性固态存储器件。
处理器710可包括一个或多个处理单元;可选的,处理器710可集成应用处理器和调制解调处理器,其中,应用处理器主要处理操作系统、用户界面和应用程序或指令等,调制解调处理器主要处理无线通信,如基带处理器。可以理解的是,上述调制解调处理器也可以不集成到处理器710中。
其中,射频单元701,用于接收配置信息,所述配置信息中包括第一指示字段,所述第一指示字段用于指示第一索引;
处理器710,用于基于所述第一索引确定上行传输的第一时隙数目以及下行传输的第二时隙数目。
在本申请实施例中,可以预先针对不同场景下的上下行传输的时隙数目确定唯一对应的第一索引,网络侧设备在对时隙的格式进行配置时,可以通过配置信息中的第一指示字段指示第一索引,由终端基于第一索引确定上行传输的时隙数目和下行传输的时隙数目。这样,由于通过索引的方式可以对更多数目的时隙的格式进行指示,因此,在需要配置的时隙数目较多时,通过第一索引可以对不同格式的时隙数目进行有效指示,从而可以对每个时隙的格式进行有效配置。
本申请实施例提供的终端700还可以实现上述时隙配置方法实施例的各个过程,且能达到相同的技术效果,为避免重复,这里不再赘述。
本申请实施例还提供一种网络侧设备,包括处理器和通信接口,通信接口用于发送配置信息,所述配置信息中包括第一指示字段,所述第一指示字段用于指示第一索引,所述第一索引用于确定上行传输的第一时隙数目以及下行传输的第二时隙数目。该网络侧设备实施例是与上述网络侧设备方法实施例对应的,上述方法实施例的各个实施过程和实现方式均可适用于该网络 侧设备实施例中,且能达到相同的技术效果。
具体地,本申请实施例还提供了一种网络侧设备。如图8所示,该网络设备800包括:天线81、射频装置82、基带装置83。天线81与射频装置82连接。在上行方向上,射频装置82通过天线81接收信息,将接收的信息发送给基带装置83进行处理。在下行方向上,基带装置83对要发送的信息进行处理,并发送给射频装置82,射频装置82对收到的信息进行处理后经过天线81发送出去。
上述频带处理装置可以位于基带装置83中,以上实施例中网络侧设备执行的方法可以在基带装置83中实现,该基带装置83包括处理器84和存储器85。
基带装置83例如可以包括至少一个基带板,该基带板上设置有多个芯片,如图8所示,其中一个芯片例如为处理器84,与存储器85连接,以调用存储器85中的程序,执行以上方法实施例中所示的网络设备操作。
该基带装置83还可以包括网络接口86,用于与射频装置82交互信息,该接口例如为通用公共无线接口(common public radio interface,简称CPRI)。
具体地,本发明实施例的网络侧设备还包括:存储在存储器85上并可在处理器84上运行的指令或程序,处理器84调用存储器85中的指令或程序执行图5所示各模块执行的方法,并达到相同的技术效果,为避免重复,故不在此赘述。
本申请实施例还提供一种可读存储介质,所述可读存储介质上存储有程序或指令,该程序或指令被处理器执行时实现上述时隙配置方法实施例的各个过程,且能达到相同的技术效果,为避免重复,这里不再赘述。
其中,所述处理器为上述实施例中所述的终端中的处理器。所述可读存储介质,包括计算机可读存储介质,如计算机只读存储器(Read-Only Memory,ROM)、随机存取存储器(Random Access Memory,RAM)、磁碟或者光盘等。
本申请实施例另提供了一种芯片,所述芯片包括处理器和通信接口,所述通信接口和所述处理器耦合,所述处理器用于运行程序或指令,实现上述时隙配置方法实施例的各个过程,且能达到相同的技术效果,为避免重复,这里不再赘述。
应理解,本申请实施例提到的芯片还可以称为系统级芯片,系统芯片,芯片系统或片上系统芯片等。
需要说明的是,在本文中,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者装置不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者装置所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括该要素的过程、方法、物品或者装置中还存在另外的相同要素。此外,需要指出的是,本申请实施方式中的方法和装置的范围不限按示出或讨论的顺序来执行功能,还可包括根据所涉及的功能按基本同时的方式或按相反的顺序来执行功能,例如,可以按不同于所描述的次序来执行所描述的方法,并且还可以添加、省去、或组合各种步骤。另外,参照某些示例所描述的特征可在其他示例中被组合。
通过以上的实施方式的描述,本领域的技术人员可以清楚地了解到上述实施例方法可借助软件加必需的通用硬件平台的方式来实现,当然也可以通过硬件,但很多情况下前者是更佳的实施方式。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分可以以计算机软件产品的形式体现出来,该计算机软件产品存储在一个存储介质(如ROM/RAM、磁碟、光盘)中,包括若干指令用以使得一台终端(可以是手机,计算机,服务器,空调器,或者网络设备等)执行本申请各个实施例所述的方法。
上面结合附图对本申请的实施例进行了描述,但是本申请并不局限于上述的具体实施方式,上述的具体实施方式仅仅是示意性的,而不是限制性的, 本领域的普通技术人员在本申请的启示下,在不脱离本申请宗旨和权利要求所保护的范围情况下,还可做出很多形式,均属于本申请的保护之内。

Claims (27)

  1. 一种时隙配置方法,包括:
    终端接收配置信息,所述配置信息中包括第一指示字段,所述第一指示字段用于指示第一索引;
    基于所述第一索引确定上行传输的第一时隙数目以及下行传输的第二时隙数目。
  2. 根据权利要求1所述的方法,其中,
    所述第一指示字段由一个或多个指示域组成,所述第一指示字段中包括多个比特,所述多个比特用于指示所述第一索引。
  3. 根据权利要求1所述的方法,其中,基于所述第一索引确定所述第一时隙数目以及所述第二时隙数目,包括:
    基于所述第一索引和预定义的第一函数确定所述第一时隙数目;
    基于所述第一索引和预定义的第二函数确定所述第二时隙数目。
  4. 根据权利要求3所述的方法,其中,
    所述第一函数表征所述第一时隙数目与时隙总数以及所述第一索引之间的函数关系,所述第二函数表征所述第二时隙数目与所述第一索引之间的函数关系,所述时隙总数由子载波间隔SCS和传输周期确定;或,
    所述第一函数表征所述第一时隙数目与所述第一索引之间的函数关系,所述第二函数表征所述第二时隙数目与所述时隙总数以及所述第一索引之间的函数关系。
  5. 根据权利要求1所述的方法,其中,基于所述第一索引确定所述第一时隙数目以及所述第二时隙数目,包括:
    基于所述第一索引和预定义的第一公式确定第二索引;
    在所述第二索引小于第一指定值的情况下,基于所述第一索引和预定义的第三函数确定所述第一时隙数目,以及基于所述第一索引和预定义的第四函数确定所述第二时隙数目;
    在所述第二索引大于或等于所述第一指定值的情况下,基于所述第一索引和预定义的第五函数确定所述第一时隙数目,以及基于所述第一索引和预定义的第六函数确定所述第二时隙数目;
    其中,所述第一指定值基于时隙总数确定,所述时隙总数由SCS和传输周期确定。
  6. 根据权利要求5所述的方法,其中,
    所述第一公式与所述第一索引以及第二指定值有关;
    所述第三函数表征所述第一时隙数目与所述第一索引以及所述第二指定值之间的第一函数关系,所述第四函数表征所述第二时隙数目与所述第一索引以及所述第二指定值之间的第二函数关系;
    所述第五函数表征所述第一时隙数目与所述第一索引以及所述第二指定值之间的第三函数关系,所述第六函数表征所述第二时隙数目与所述第一索引以及所述第二指定值之间的第四函数关系;
    其中,所述第二指定值基于时隙总数确定,所述时隙总数由SCS和传输周期确定。
  7. 一种时隙配置方法,包括:
    网络侧设备发送配置信息;
    其中,所述配置信息中包括第一指示字段,所述第一指示字段用于指示第一索引,所述第一索引用于确定上行传输的第一时隙数目以及下行传输的第二时隙数目。
  8. 根据权利要求7所述的方法,其中,
    所述第一指示字段由一个或多个指示域组成,所述第一指示字段中包括多个比特,所述多个比特用于指示所述第一索引。
  9. 根据权利要求7所述的方法,其中,
    所述第一索引和预定义的第一函数用于确定所述第一时隙数目;
    所述第一索引和预定义的第二函数用于确定所述第二时隙数目。
  10. 根据权利要求9所述的方法,其中,
    所述第一函数表征所述第一时隙数目与时隙总数以及所述第一索引之间的函数关系,所述第二函数表征所述第二时隙数目与所述第一索引之间的函数关系,所述时隙总数由SCS和传输周期确定;或,
    所述第一函数表征所述第一时隙数目与所述第一索引之间的函数关系,所述第二函数表征所述第二时隙数目与所述时隙总数以及所述第一索引之间的函数关系。
  11. 根据权利要求7所述的方法,其中,
    所述第一索引还用于通过预定义的第一公式确定第二索引;
    在所述第二索引小于第一指定值的情况下,所述第一索引和预定义的第三函数用于确定所述第一时隙数目,所述第一索引和预定义的第四函数用于确定所述第二时隙数目;
    在所述第二索引大于或等于所述第一指定值的情况下,所述第一索引和预定义的第五函数用于确定所述第一时隙数目,所述第一索引和预定义的第六函数用于确定所述第二时隙数目;
    其中,所述第一指定值基于时隙总数确定,所述时隙总数由SCS和传输周期确定。
  12. 根据权利要求11所述的方法,其中,
    所述第一公式与所述第一索引以及第二指定值有关;
    所述第三函数表征所述第一时隙数目与所述第一索引以及所述第二指定值之间的第一函数关系,所述第四函数表征所述第二时隙数目与所述第一索引以及所述第二指定值之间的第二函数关系;
    所述第五函数表征所述第一时隙数目与所述第一索引以及所述第二指定值之间的第三函数关系,所述第六函数表征所述第二时隙数目与所述第一索引以及所述第二指定值之间的第四函数关系;
    其中,所述第二指定值基于时隙总数确定,所述时隙总数由SCS和传输周期确定。
  13. 一种时隙配置装置,包括:
    接收模块,用于接收配置信息,所述配置信息中包括第一指示字段,所述第一指示字段用于指示第一索引;
    确定模块,用于基于所述第一索引确定上行传输的第一时隙数目以及下行传输的第二时隙数目。
  14. 根据权利要求13所述的装置,其中,
    所述第一指示字段由一个或多个指示域组成,所述第一指示字段中包括多个比特,所述多个比特用于指示所述第一索引。
  15. 根据权利要求13所述的装置,其中,所述确定模块,还用于:
    基于所述第一索引和预定义的第一函数确定所述第一时隙数目;
    基于所述第一索引和预定义的第二函数确定所述第二时隙数目。
  16. 根据权利要求15所述的装置,其中,
    所述第一函数表征所述第一时隙数目与时隙总数以及所述第一索引之间的函数关系,所述第二函数表征所述第二时隙数目与所述第一索引之间的函数关系,所述时隙总数由子载波间隔SCS和传输周期确定;或,
    所述第一函数表征所述第一时隙数目与所述第一索引之间的函数关系,所述第二函数表征所述第二时隙数目与所述时隙总数以及所述第一索引之间的函数关系。
  17. 根据权利要求13所述的装置,其中,所述确定模块,还用于:
    基于所述第一索引和预定义的第一公式确定第二索引;
    在所述第二索引小于第一指定值的情况下,基于所述第一索引和预定义的第三函数确定所述第一时隙数目,以及基于所述第一索引和预定义的第四函数确定所述第二时隙数目;
    在所述第二索引大于或等于所述第一指定值的情况下,基于所述第一索引和预定义的第五函数确定所述第一时隙数目,以及基于所述第一索引和预定义的第六函数确定所述第二时隙数目;
    其中,所述第一指定值基于时隙总数确定,所述时隙总数由SCS和传输周期确定。
  18. 根据权利要求17所述的装置,其中,
    所述第一公式与所述第一索引以及第二指定值有关;
    所述第三函数表征所述第一时隙数目与所述第一索引以及所述第二指定值之间的第一函数关系,所述第四函数表征所述第二时隙数目与所述第一索引以及所述第二指定值之间的第二函数关系;
    所述第五函数表征所述第一时隙数目与所述第一索引以及所述第二指定值之间的第三函数关系,所述第六函数表征所述第二时隙数目与所述第一索引以及所述第二指定值之间的第四函数关系;
    其中,所述第二指定值基于时隙总数确定,所述时隙总数由SCS和传输周期确定。
  19. 一种时隙配置装置,包括:
    发送模块,用于发送配置信息;
    其中,所述配置信息中包括第一指示字段,所述第一指示字段用于指示第一索引,所述第一索引用于确定上行传输的第一时隙数目以及下行传输的第二时隙数目。
  20. 根据权利要求19所述的装置,其中,
    所述第一指示字段由一个或多个指示域组成,所述第一指示字段中包括多个比特,所述多个比特用于指示所述第一索引。
  21. 根据权利要求19所述的装置,其中,
    所述第一索引和预定义的第一函数用于确定所述第一时隙数目;
    所述第一索引和预定义的第二函数用于确定所述第二时隙数目。
  22. 根据权利要求21所述的装置,其中,
    所述第一函数表征所述第一时隙数目与时隙总数以及所述第一索引之间的函数关系,所述第二函数表征所述第二时隙数目与所述第一索引之间的函数关系,所述时隙总数由SCS和传输周期确定;或,
    所述第一函数表征所述第一时隙数目与所述第一索引之间的函数关系,所述第二函数表征所述第二时隙数目与所述时隙总数以及所述第一索引之间 的函数关系。
  23. 根据权利要求19所述的装置,其中,
    所述第一索引还用于通过预定义的第一公式确定第二索引;
    在所述第二索引小于第一指定值的情况下,所述第一索引和预定义的第三函数用于确定所述第一时隙数目,所述第一索引和预定义的第四函数用于确定所述第二时隙数目;
    在所述第二索引大于或等于所述第一指定值的情况下,所述第一索引和预定义的第五函数用于确定所述第一时隙数目,所述第一索引和预定义的第六函数用于确定所述第二时隙数目;
    其中,所述第一指定值基于时隙总数确定,所述时隙总数由SCS和传输周期确定。
  24. 根据权利要求23所述的装置,其中,
    所述第一公式与所述第一索引以及第二指定值有关;
    所述第三函数表征所述第一时隙数目与所述第一索引以及所述第二指定值之间的第一函数关系,所述第四函数表征所述第二时隙数目与所述第一索引以及所述第二指定值之间的第二函数关系;
    所述第五函数表征所述第一时隙数目与所述第一索引以及所述第二指定值之间的第三函数关系,所述第六函数表征所述第二时隙数目与所述第一索引以及所述第二指定值之间的第四函数关系;
    其中,所述第二指定值基于时隙总数确定,所述时隙总数由SCS和传输周期确定。
  25. 一种终端,包括处理器,存储器及存储在所述存储器上并可在所述处理器上运行的程序或指令,所述程序或指令被所述处理器执行时实现如权利要求1-6任一项所述的时隙配置方法的步骤。
  26. 一种网络侧设备,包括处理器,存储器及存储在所述存储器上并可在所述处理器上运行的程序或指令,所述程序或指令被所述处理器执行时实现如权利要求7-12任一项所述的时隙配置方法的步骤。
  27. 一种可读存储介质,所述可读存储介质上存储程序或指令,所述程序或指令被处理器执行时实现如权利要求1-6任一项所述的时隙配置方法,或者实现如权利要求7-12任一项所述的时隙配置方法的步骤。
PCT/CN2022/117378 2021-09-07 2022-09-06 时隙配置方法、终端及网络侧设备 WO2023036151A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111044382.4A CN115776726A (zh) 2021-09-07 2021-09-07 时隙配置方法、终端及网络侧设备
CN202111044382.4 2021-09-07

Publications (1)

Publication Number Publication Date
WO2023036151A1 true WO2023036151A1 (zh) 2023-03-16

Family

ID=85387681

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/117378 WO2023036151A1 (zh) 2021-09-07 2022-09-06 时隙配置方法、终端及网络侧设备

Country Status (2)

Country Link
CN (1) CN115776726A (zh)
WO (1) WO2023036151A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109802778A (zh) * 2017-11-16 2019-05-24 华为技术有限公司 一种指示和确定时域资源的方法、装置及系统
CN110536449A (zh) * 2019-08-16 2019-12-03 中兴通讯股份有限公司 无线通信资源指示方法、装置和系统
US10820305B2 (en) * 2016-07-13 2020-10-27 Lg Electronics Inc. Method and device for transceiving wireless signal in wireless communication system
WO2020227995A1 (zh) * 2019-05-15 2020-11-19 Oppo广东移动通信有限公司 一种d2d系统中的通信方法及终端设备、网络设备

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10820305B2 (en) * 2016-07-13 2020-10-27 Lg Electronics Inc. Method and device for transceiving wireless signal in wireless communication system
CN109802778A (zh) * 2017-11-16 2019-05-24 华为技术有限公司 一种指示和确定时域资源的方法、装置及系统
WO2020227995A1 (zh) * 2019-05-15 2020-11-19 Oppo广东移动通信有限公司 一种d2d系统中的通信方法及终端设备、网络设备
CN110536449A (zh) * 2019-08-16 2019-12-03 中兴通讯股份有限公司 无线通信资源指示方法、装置和系统

Also Published As

Publication number Publication date
CN115776726A (zh) 2023-03-10

Similar Documents

Publication Publication Date Title
WO2022214013A1 (zh) 资源确定方法、装置、终端、网络侧设备及存储介质
US20210168834A1 (en) Determining method, terminal, and network device
WO2022194249A1 (zh) Harq ack反馈方法、装置、终端及存储介质
WO2022206554A1 (zh) 传输方向的确定方法、装置、终端及网络侧设备
EP4228335A1 (en) Energy-saving indication method, apparatus and device, and readable storage medium
WO2022083634A1 (zh) 资源配置方法、装置、设备及可读存储介质
WO2022253312A1 (zh) 上行数据传输方法、装置、终端及介质
US20240040511A1 (en) Uplink power determination method, terminal and non-transitory readable storage medium
WO2022017409A1 (zh) 上行传输方法、装置及相关设备
US20230421338A1 (en) Random access method and apparatus, terminal and storage medium
US20230189259A1 (en) Resource transmission method, resource transmission apparatus, and communications device
WO2023036151A1 (zh) 时隙配置方法、终端及网络侧设备
WO2023036142A1 (zh) 时隙配置方法、终端及网络侧设备
WO2022206593A1 (zh) Pdcch监听处理方法、监听配置方法及相关设备
WO2022242677A1 (zh) 波束应用时间的确定方法、装置及通信设备
WO2023207976A1 (zh) 物理随机接入信道传输资源确定方法、装置、终端和设备
WO2023078330A1 (zh) 信息确定方法、装置、终端及可读存储介质
WO2022242557A1 (zh) 控制信道监测方法和设备
EP4274145A1 (en) Control channel configuration method and apparatus, and communication device
WO2023134668A1 (zh) Srs端口映射方法、装置及终端
WO2022237743A1 (zh) Pusch重复传输方法和设备
WO2023066341A1 (zh) 信息配置方法、装置、网络侧设备及终端
WO2022028458A1 (zh) 确定数据处理时间的方法、终端设备和网络设备
WO2023143428A1 (zh) 信息传输方法、设备、终端及网络侧设备
WO2023051609A1 (zh) 下行控制信道监测方法、装置及通信设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22866614

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22866614

Country of ref document: EP

Kind code of ref document: A1