WO2018228409A1 - 控制信息的传输方法、终端设备和网络设备 - Google Patents

控制信息的传输方法、终端设备和网络设备 Download PDF

Info

Publication number
WO2018228409A1
WO2018228409A1 PCT/CN2018/090983 CN2018090983W WO2018228409A1 WO 2018228409 A1 WO2018228409 A1 WO 2018228409A1 CN 2018090983 W CN2018090983 W CN 2018090983W WO 2018228409 A1 WO2018228409 A1 WO 2018228409A1
Authority
WO
WIPO (PCT)
Prior art keywords
time
frequency resource
frequency
resource
value
Prior art date
Application number
PCT/CN2018/090983
Other languages
English (en)
French (fr)
Inventor
闫志宇
吕永霞
温容慧
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2018228409A1 publication Critical patent/WO2018228409A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • H04L5/0055Physical resource allocation for ACK/NACK
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0001Systems modifying transmission characteristics according to link quality, e.g. power backoff
    • H04L1/0023Systems modifying transmission characteristics according to link quality, e.g. power backoff characterised by the signalling
    • H04L1/0026Transmission of channel quality indication
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0001Systems modifying transmission characteristics according to link quality, e.g. power backoff
    • H04L1/0023Systems modifying transmission characteristics according to link quality, e.g. power backoff characterised by the signalling
    • H04L1/0027Scheduling of signalling, e.g. occurrence thereof
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • H04L5/0057Physical resource allocation for CQI
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0619Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal using feedback from receiving side
    • H04B7/0621Feedback content
    • H04B7/0626Channel coefficients, e.g. channel state information [CSI]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0619Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal using feedback from receiving side
    • H04B7/0621Feedback content
    • H04B7/0632Channel quality parameters, e.g. channel quality indicator [CQI]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0619Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal using feedback from receiving side
    • H04B7/0636Feedback format
    • H04B7/0639Using selective indices, e.g. of a codebook, e.g. pre-distortion matrix index [PMI] or for beam selection
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency

Definitions

  • the embodiments of the present invention relate to communication technologies, and in particular, to a method for transmitting control information, a terminal device, and a network device.
  • the terminal device may send uplink data to the network device based on the dynamic scheduling of the network device or the time-frequency resource of the semi-persistent scheduling.
  • a channel in which a terminal device transmits an uplink shared channel (UL-SCH) and/or uplink control information (UCI) to a network device is referred to as a physical uplink shared channel (PUSCH).
  • UL-SCH uplink shared channel
  • UCI uplink control information
  • PUSCH physical uplink shared channel
  • the terminal device needs to send a scheduling request to the network device when there is uplink data transmission.
  • the network device After receiving the scheduling request, the network device allocates a time-frequency resource for transmitting the PUSCH to the terminal device, and indicates, by using the control signaling, the allocated time-frequency resource of the PUSCH, so that the terminal device can be on the time-frequency resource.
  • the PUSCH is sent to the network device.
  • the terminal device needs to feed back uplink control information (UCI) to the base station.
  • the UCI may include at least one of a Scheduling Request (SR), a Channel State Information (CSI), and a Hybrid Automatic Repeat Request Acknowledgement (HARQ-ACK).
  • SR Scheduling Request
  • CSI Channel State Information
  • HARQ-ACK Hybrid Automatic Repeat Request Acknowledgement
  • the foregoing HARQ-ACK may include at least one of acknowledgement acknowledgement (ACK), negative acknowledgement (NACK), and discontinuous transmission (DTX).
  • the CSI may include at least one of a Channel Quality Indicator (CQI), beam setting information, a Rank Indication (RI), and a Precoding Matrix Indicator (PMI).
  • CQI Channel Quality Indicator
  • RI Rank Indication
  • PMI Precoding Matrix Indicator
  • the embodiment of the present application provides a method for transmitting control information, a terminal device, and a network device, which are used to solve the problem of how a terminal device in a 5G communication system transmits UCI on a PUSCH.
  • an embodiment of the present application provides a method for transmitting control information, where the method includes:
  • the terminal device determines a first time-frequency resource, where the first time-frequency resource is used by the terminal device to send a physical uplink shared channel to the network device;
  • the terminal device determines a second time-frequency resource, where the second time-frequency resource is used by the terminal device to send uplink control information to the network device, where the first time-frequency resource includes the second time-frequency resource;
  • the terminal device sends the uplink control information to the network device by using the second time-frequency resource.
  • the terminal device may determine, by using the first time-frequency resource, the second time-frequency resource for sending the uplink control information. Therefore, the terminal device can use the partial or all time-frequency resources on the first time-frequency resource to send uplink control information, so that the control information is transmitted in the 5G communication system.
  • the uplink control information includes at least one of the following information: hybrid automatic retransmission acknowledgement information HARQ-ACK, channel state information CSI;
  • the CSI includes at least one of the following: a channel quality indication CQI, beam setting information, a precoding matrix indication PMI, and a rank indication RI.
  • the terminal device may determine, by using the first time-frequency resource, the second time for sending any uplink control information.
  • the frequency resource is configured to enable the terminal device to send uplink control information by using part or all of the time-frequency resources on the first time-frequency resource, so that the control information is transmitted in the 5G communication system.
  • the second time-frequency resource includes a resource of the N-block frequency, where the value of the N and the frequency bandwidth of the first time-frequency resource satisfy a first mapping relationship.
  • the first mapping relationship includes a correspondence between a frequency width of the first time-frequency resource and a value of the N, where the N is a positive integer greater than or equal to 1.
  • the method for transmitting control information provided by the possible implementation manner, so that the terminal device can directly use the N blocks of resources allocated to multiple frequency domain locations of the first time-frequency resource when the frequency bandwidth of the first time-frequency resource is wide.
  • the frequency diversity gain of UCI can be obtained, thereby improving the transmission performance of UCI. Therefore, the terminal device transmits the above UCI regardless of whether the SC-FDMA-based waveform is used or the CP-OFDM-based waveform, as long as it is the second of the N-block resources including the plurality of frequency-domain locations dispersed to the first time-frequency resource.
  • the frequency diversity gain can be obtained, thereby improving the transmission performance of the UCI.
  • an offset value of a frequency start position of each block of the N blocks in frequency relative to a frequency start position of the first time-frequency resource is preset
  • the offset value of the frequency start position of each block of the N blocks in frequency relative to the frequency start position of the first time-frequency resource, and the frequency bandwidth of the first time-frequency resource is satisfied.
  • a second mapping relationship where the second mapping relationship includes an offset value of a frequency start position of each block of resources of the N block relative to a frequency start position of the first time-frequency resource, and the first The correspondence between the frequency widths of the one-time frequency resources.
  • the method for transmitting control information provided by the possible implementation manner, by constraining the frequency start position of each resource of the N block on the frequency, so that the terminal device can directly use the frequency bandwidth of the first time-frequency resource when the frequency width is wide.
  • the N-block resources dispersed in multiple frequency domain locations of the first time-frequency resource transmit UCI, and the frequency diversity gain of the UCI can be obtained, thereby improving the transmission performance of the UCI. Therefore, the terminal device transmits the above UCI regardless of whether the SC-FDMA-based waveform is used or the CP-OFDM-based waveform, as long as it is the second of the N-block resources including the plurality of frequency-domain locations dispersed to the first time-frequency resource.
  • the frequency diversity gain can be obtained, thereby improving the transmission performance of the UCI.
  • the terminal device determines the second time-frequency resource, including:
  • the terminal device Receiving, by the terminal device, the first information sent by the network device, where the first information is used to indicate that the second time-frequency resource comprises N blocks of resources on a frequency, and each of the N blocks of resources The frequency start position of the resource, where N is a positive integer greater than or equal to 1;
  • the method for transmitting control information provided by the possible implementation manner enables the terminal device to determine the frequency starting position of each block of resources in the frequency of the N blocks, which enriches the application scenario.
  • the length of the second time-frequency resource is a first length, where the length of the first length and the first time-frequency resource meets a third mapping relationship, where The third mapping relationship includes a correspondence between a length of time of the first time-frequency resource and the first length.
  • the method for transmitting the control information provided by the possible implementation manner, after the terminal device determines the first time-frequency resource that sends the physical uplink channel, the terminal device can determine the first time-frequency resource from the first time-frequency resource.
  • the second time-frequency resource that meets the third mapping relationship is configured to enable the terminal device to send the uplink control information by using part or all of the time-frequency resources on the first time-frequency resource, so as to implement the sending of the control information in the 5G communication system. .
  • the terminal device determines the second time-frequency resource, including:
  • the terminal device determines, according to the second information, a length of time of the second time-frequency resource to be a first length.
  • the method for transmitting the control information provided by the possible implementation manner enables the terminal device to determine the time length of the second time-frequency resource in a flexible manner, thereby enriching the application scenario.
  • the second time-frequency resource includes a resource of the M-block in time, where the value of the M and the time length of the first time-frequency resource satisfy a fourth mapping relationship, where The fourth mapping relationship includes a correspondence between a time length of the first time-frequency resource and a value of the M, where the M is a positive integer greater than or equal to 1.
  • the transmission method of the control information provided by the possible implementation manner enables the terminal device to transmit the UCI in the M block resource using multiple time positions dispersed to the first time-frequency resource to reduce the impact on the UL-SCH on the PUSCH. .
  • an offset value of a time start position of each block of the M resources in time resources relative to a time start position of the first time-frequency resource is preset. ,or,
  • the offset value of the time start position of each block of the M resources in time resources relative to the time start position of the first time-frequency resource, and the length of time of the first time-frequency resource Satisfying a fifth mapping relationship, where the fifth mapping relationship includes an offset value of a time start position of each block of the M resources in time resources relative to a time start position of the first time-frequency resource Correspondence relationship with the length of time of the first time-frequency resource.
  • the transmission method of the control information provided by the possible implementation manner enables the terminal device to transmit the UCI in the M block resource using multiple time positions dispersed to the first time-frequency resource to reduce the impact on the UL-SCH on the PUSCH. .
  • the terminal device determines the second time-frequency resource, including:
  • the terminal device Receiving, by the terminal device, the third information that is sent by the network device, where the third information is used to indicate that the second time-frequency resource includes a resource in an M-block time, and each resource in the M-block resource a time starting position, the M being a positive integer greater than or equal to 1;
  • the method for transmitting the control information provided by the possible implementation manner enables the terminal device to determine the time starting position of each of the M-block resources of the second time-frequency resource in a flexible manner and enrich the application scenario.
  • the second time-frequency resource includes L time-frequency resource units, and the value of the L is determined according to a scaling factor
  • the scale factor is a first value
  • the scale factor is a second value
  • the delay requirement and/or reliability requirement of the first service and the second service are different.
  • the size of the time-frequency unit in which the terminal device transmits the UL-SCH in the PUSCH can be adjusted, so that the PUSCH transmits the UL-SCH and the corresponding UCI.
  • the modulation and coding methods are different, so as to meet the different target reception performance requirements of UL-SCH and UCI.
  • the terminal device determines the second time-frequency resource, including:
  • the terminal device determines the value of the L according to the fourth information and the service to which the uplink control information belongs.
  • the method for transmitting the control information provided by the possible implementation manner enables the terminal device to determine the L time-frequency resource units of the second time-frequency resource in a flexible manner, which enriches the application scenario.
  • the method before the sending, by the terminal device, the uplink control information to the network device by using the second time-frequency resource, the method includes:
  • the terminal device maps the uplink control information to the second time-frequency resource according to a mapping manner of a preset rule.
  • the method for transmitting control information provided by the possible implementation manner so that the terminal device can map the uplink control information to the second time-frequency resource according to a mapping manner of a preset rule, so that the terminal device can use the Some or all of the time-frequency resources on the one-time-frequency resource send uplink control information, and the control information is transmitted in the 5G communication system.
  • the terminal device sequentially cascades the at least two types of information to the second time-frequency resource.
  • the method for transmitting the control information provided by the possible implementation manner, so that the terminal device can cascade the at least two types of information of the uplink control information to the second time-frequency resource, so that the terminal device can use the first Some or all time-frequency resources on the time-frequency resource send uplink control information, and the control information is transmitted in the 5G communication system.
  • an embodiment of the present application provides a method for transmitting control information, where the method includes:
  • the network device determines a first time-frequency resource, where the first time-frequency resource is used by the terminal device to send a physical uplink shared channel to the network device;
  • the network device determines a second time-frequency resource, where the second time-frequency resource is used by the terminal device to send uplink control information to the network device, where the first time-frequency resource includes the second time-frequency resource;
  • the uplink control information includes at least one of the following information: hybrid automatic retransmission acknowledgement information HARQ-ACK, channel state information CSI;
  • the CSI includes at least one of the following: a channel quality indication CQI, beam setting information, a precoding matrix indication PMI, and a rank indication RI.
  • the second time-frequency resource includes a resource of the N-block frequency, where the value of the N and the frequency bandwidth of the first time-frequency resource satisfy a first mapping relationship.
  • the first mapping relationship includes a correspondence between a frequency width of the first time-frequency resource and a value of the N, where the N is a positive integer greater than or equal to 1.
  • an offset value of a frequency start position of each block of the N blocks in frequency relative to a frequency start position of the first time-frequency resource is preset
  • the offset value of the frequency start position of each block of the N blocks in frequency relative to the frequency start position of the first time-frequency resource, and the frequency bandwidth of the first time-frequency resource is satisfied.
  • a second mapping relationship where the second mapping relationship includes an offset value of a frequency start position of each block of resources of the N block relative to a frequency start position of the first time-frequency resource, and the first The correspondence between the frequency widths of the one-time frequency resources.
  • the method further includes:
  • the network device sends the first information to the terminal device, where the first information is used to indicate that the second time-frequency resource includes N blocks of resources on a frequency, and each of the N blocks of resources The frequency start position, where N is a positive integer greater than or equal to one.
  • the length of the second time-frequency resource is a first length, where the length of the first length and the first time-frequency resource meets a third mapping relationship, where The third mapping relationship includes a correspondence between a length of time of the first time-frequency resource and the first length.
  • the method further includes:
  • the network device sends the second information to the terminal device, where the second information is used to indicate that the time length of the second time-frequency resource is the first length.
  • the second time-frequency resource includes a resource of the M-block in time, where the value of the M and the time length of the first time-frequency resource satisfy a fourth mapping relationship, where The fourth mapping relationship includes a correspondence between a time length of the first time-frequency resource and a value of the M, where the M is a positive integer greater than or equal to 1.
  • an offset value of a time start position of each block of the M resources in time resources relative to a time start position of the first time-frequency resource is preset. ,or,
  • the offset value of the time start position of each block of the M resources in time resources relative to the time start position of the first time-frequency resource, and the length of time of the first time-frequency resource Satisfying a fifth mapping relationship, where the fifth mapping relationship includes an offset value of a time start position of each block of the M resources in time resources relative to a time start position of the first time-frequency resource Correspondence relationship with the length of time of the first time-frequency resource.
  • the method further includes:
  • the network device sends third information to the terminal device, where the third information is used to indicate that the second time-frequency resource includes a resource in an M-block time, and each of the M-block resources The time starting position, the M being a positive integer greater than or equal to 1.
  • the second time-frequency resource includes L time-frequency resource units, and the value of the L is determined according to a scaling factor
  • the scale factor is a first value
  • the scale factor is a second value
  • the delay requirement and/or reliability requirement of the first service and the second service are different.
  • the method further includes:
  • the network device sends fourth information to the terminal device, where the fourth information is used to indicate a first value of the scale factor and a second value of the scale factor, and a first value of the scale factor Corresponding relationship between the value and the second value and the service to which the uplink control information belongs.
  • the second aspect and the method for transmitting control information provided by each possible implementation manner of the second aspect can be beneficially seen in the first aspect and the beneficial effects brought by the possible implementation manners of the first aspect, This will not be repeated here.
  • the embodiment of the present application provides a terminal device, where the terminal device includes:
  • a processing module configured to determine a first time-frequency resource and a second time-frequency resource, where the first time-frequency resource is used by the terminal device to send a physical uplink shared channel to the network device, where the second time-frequency resource is used by the The terminal device sends uplink control information to the network device, where the first time-frequency resource includes the second time-frequency resource;
  • a sending module configured to send the uplink control information to the network device by using the second time-frequency resource.
  • the uplink control information includes at least one of the following information: hybrid automatic retransmission acknowledgement information HARQ-ACK, channel state information CSI;
  • the CSI includes at least one of the following: a channel quality indication CQI, beam setting information, a precoding matrix indication PMI, and a rank indication RI.
  • the second time-frequency resource includes a resource of the N-block frequency, where the value of the N and the frequency bandwidth of the first time-frequency resource satisfy a first mapping relationship.
  • the first mapping relationship includes a correspondence between a frequency width of the first time-frequency resource and a value of the N, where the N is a positive integer greater than or equal to 1.
  • an offset value of a frequency start position of each block of the N blocks in frequency relative to a frequency start position of the first time-frequency resource is preset
  • the offset value of the frequency start position of each block of the N blocks in frequency relative to the frequency start position of the first time-frequency resource, and the frequency bandwidth of the first time-frequency resource is satisfied.
  • a second mapping relationship where the second mapping relationship includes an offset value of a frequency start position of each block of resources of the N block relative to a frequency start position of the first time-frequency resource, and the first The correspondence between the frequency widths of the one-time frequency resources.
  • the terminal device further includes:
  • a receiving module configured to receive first information sent by the network device, where the first information is used to indicate that the second time-frequency resource includes N blocks of resources on a frequency, and each of the N blocks of resources The frequency starting position of a resource, where N is a positive integer greater than or equal to 1;
  • the processing module is specifically configured to determine, according to the first information, a frequency start position of each of the N blocks of the second time-frequency resource.
  • the length of the second time-frequency resource is a first length, where the length of the first length and the first time-frequency resource meets a third mapping relationship, where The third mapping relationship includes a correspondence between a length of time of the first time-frequency resource and the first length.
  • the terminal device further includes:
  • a receiving module configured to receive second information sent by the network device, where the second information is used to indicate that the time length of the second time-frequency resource is a first length
  • the processing module is specifically configured to determine, according to the second information, a length of time of the second time-frequency resource to be a first length.
  • the second time-frequency resource includes a resource of the M-block in time, where the value of the M and the time length of the first time-frequency resource satisfy a fourth mapping relationship, where The fourth mapping relationship includes a correspondence between a time length of the first time-frequency resource and a value of the M, where the M is a positive integer greater than or equal to 1.
  • an offset value of a time start position of each block of the M resources in time resources relative to a time start position of the first time-frequency resource is preset. ,or,
  • the offset value of the time start position of each block of the M resources in time resources relative to the time start position of the first time-frequency resource, and the length of time of the first time-frequency resource Satisfying a fifth mapping relationship, where the fifth mapping relationship includes an offset value of a time start position of each block of the M resources in time resources relative to a time start position of the first time-frequency resource Correspondence relationship with the length of time of the first time-frequency resource.
  • the terminal device further includes:
  • a receiving module configured to receive third information sent by the network device, where the third information is used to indicate that the second time-frequency resource includes a resource in an M-block time, and each of the M-block resources The time starting position of the resource, where M is a positive integer greater than or equal to 1;
  • the processing module is specifically configured to determine, according to the third information, a time start position of each of the M block resources of the second time-frequency resource.
  • the second time-frequency resource includes L time-frequency resource units, and the value of the L is determined according to a scaling factor
  • the scale factor is a first value
  • the scale factor is a second value
  • the delay requirement and/or reliability requirement of the first service and the second service are different.
  • the terminal device further includes:
  • a receiving module configured to receive fourth information sent by the network device, where the fourth information is used to indicate a first value of the scaling factor and a second value of the scaling factor, and the scaling factor Corresponding relationship between the first value and the second value and the service to which the uplink control information belongs;
  • the processing module is specifically configured to determine the value of the L according to the fourth information and the service to which the uplink control information belongs.
  • the processing module is further configured to: before the sending module sends the uplink control information to the network device by using the second time-frequency resource, according to a preset rule mapping manner And mapping the uplink control information to the second time-frequency resource.
  • the processing module is further configured to: when the uplink control information includes at least two types of information, the at least two types of information are sequentially cascaded and then mapped to the second time-frequency resource. .
  • the embodiment of the present application provides a network device, where the network device includes:
  • a processing module configured to determine a first time-frequency resource and a second time-frequency resource, where the first time-frequency resource is used by the terminal device to send a physical uplink shared channel to the network device, where the second time-frequency resource is used by the The terminal device sends uplink control information to the network device, where the first time-frequency resource includes the second time-frequency resource;
  • the receiving module is configured to receive, by using the second time-frequency resource, the uplink control information sent by the terminal device.
  • the uplink control information includes at least one of the following information: hybrid automatic retransmission acknowledgement information HARQ-ACK, channel state information CSI;
  • the CSI includes at least one of the following: a channel quality indication CQI, beam setting information, a precoding matrix indication PMI, and a rank indication RI.
  • the second time-frequency resource includes a resource of the N-block frequency, where the value of the N and the frequency bandwidth of the first time-frequency resource satisfy a first mapping relationship.
  • the first mapping relationship includes a correspondence between a frequency width of the first time-frequency resource and a value of the N, where the N is a positive integer greater than or equal to 1.
  • an offset value of a frequency start position of each block of the N blocks in frequency relative to a frequency start position of the first time-frequency resource is preset
  • the offset value of the frequency start position of each block of the N blocks in frequency relative to the frequency start position of the first time-frequency resource, and the frequency bandwidth of the first time-frequency resource is satisfied.
  • a second mapping relationship where the second mapping relationship includes an offset value of a frequency start position of each block of resources of the N block relative to a frequency start position of the first time-frequency resource, and the first The correspondence between the frequency widths of the one-time frequency resources.
  • the network device further includes:
  • a sending module configured to send, to the terminal device, first information, where the first information is used to indicate that the second time-frequency resource includes N blocks of resources on a frequency, and each of the N blocks of resources The frequency start position of the resource, the N being a positive integer greater than or equal to one.
  • the length of the second time-frequency resource is a first length, where the length of the first length and the first time-frequency resource meets a third mapping relationship, where The third mapping relationship includes a correspondence between a length of time of the first time-frequency resource and the first length.
  • the network device further includes:
  • a sending module configured to send the second information to the terminal device, where the second information is used to indicate that the time length of the second time-frequency resource is a first length.
  • the second time-frequency resource includes a resource of the M-block in time, where the value of the M and the time length of the first time-frequency resource satisfy a fourth mapping relationship, where The fourth mapping relationship includes a correspondence between a time length of the first time-frequency resource and a value of the M, where the M is a positive integer greater than or equal to 1.
  • an offset value of a time start position of each block of the M resources in time resources relative to a time start position of the first time-frequency resource is preset. ,or,
  • the offset value of the time start position of each block of the M resources in time resources relative to the time start position of the first time-frequency resource, and the length of time of the first time-frequency resource Satisfying a fifth mapping relationship, where the fifth mapping relationship includes an offset value of a time start position of each block of the M resources in time resources relative to a time start position of the first time-frequency resource Correspondence relationship with the length of time of the first time-frequency resource.
  • the network device further includes:
  • a sending module configured to send third information to the terminal device, where the third information is used to indicate that the second time-frequency resource includes a resource in an M-block time, and each resource in the M-block resource The time starting position, the M being a positive integer greater than or equal to 1.
  • the second time-frequency resource includes L time-frequency resource units, and the value of the L is determined according to a scaling factor
  • the scale factor is a first value
  • the scale factor is a second value
  • the delay requirement and/or reliability requirement of the first service and the second service are different.
  • the network device further includes:
  • a sending module configured to send, to the terminal device, fourth information, where the fourth information is used to indicate a first value of the scaling factor and a second value of the scaling factor, and a Correspondence between a value and a second value and a service to which the uplink control information belongs.
  • an embodiment of the present application provides a terminal device, where the terminal device includes: a processor, a memory, a transmitter, and a receiver; the transmitter and the receiver are coupled to the processor, and the processor controls a sending action of the transmitter, the processor controlling a receiving action of the receiver;
  • the memory is for storing computer executable program code, the program code comprising instructions; when the processor executes the instructions, the instructions cause the terminal device to perform data transmission as provided by the first aspect and the possible embodiments of the first aspect method.
  • an embodiment of the present application provides a network device, where the network device includes: a processor, a memory, a receiver, and a transmitter; the transmitter and the receiver are coupled to the processor, and the processor controls a sending action of the transmitter, the processor controlling a receiving action of the receiver;
  • the memory is for storing computer executable program code, the program code comprising instructions; when the processor executes the instructions, the instructions cause the network device to perform data transmission as provided by the second aspect and the possible embodiments of the second aspect method.
  • a seventh aspect of the embodiments of the present application provides a terminal device, including at least one processing element (or chip) for performing the method of the above first aspect.
  • An eighth aspect of the embodiments of the present application provides a network device, comprising at least one processing element (or chip) for performing the method of the above second aspect.
  • a ninth aspect of the embodiments of the present application provides a program for performing the method of the above first aspect when executed by a processor.
  • a tenth aspect of the embodiments of the present application provides a program for performing the method of the above second aspect when executed by a processor.
  • An eleventh aspect of the present application provides a program product, such as a computer readable storage medium, comprising the program of the ninth aspect.
  • a twelfth aspect of the embodiments of the present application provides a program product, such as a computer readable storage medium, comprising the program of the tenth aspect.
  • a thirteenth aspect of the embodiments of the present application provides a computer readable storage medium having instructions stored in a computer, when executed on a computer, causing the computer to perform the method of the first aspect described above.
  • a fourteenth aspect of the embodiments of the present application provides a computer readable storage medium having instructions stored in a computer readable memory to cause the computer to perform the method of the second aspect described above.
  • the method for transmitting control information, the terminal device, and the network device provided by the embodiment of the present application.
  • the terminal device may determine, from the first time-frequency resource, the uplink control information.
  • the second time-frequency resource is configured to enable the terminal device to send uplink control information by using part or all of the time-frequency resources on the first time-frequency resource, so that the control information is sent in the 5G communication system.
  • FIG. 1 is a frame diagram of a communication system according to an embodiment of the present application.
  • FIG. 2 is a schematic flowchart of a method for transmitting control information according to an embodiment of the present application
  • FIG. 3 is a schematic diagram of a second time-frequency resource according to an embodiment of the present application.
  • FIG. 4 is a schematic diagram of another second time-frequency resource according to an embodiment of the present disclosure.
  • FIG. 5 is a schematic diagram of still another second time-frequency resource according to an embodiment of the present application.
  • FIG. 6 is a schematic diagram of still another second time-frequency resource according to an embodiment of the present application.
  • FIG. 7 is a schematic diagram of still another second time-frequency resource according to an embodiment of the present application.
  • FIG. 8 is a schematic diagram of still another second time-frequency resource according to an embodiment of the present application.
  • FIG. 9 is a schematic structural diagram of a terminal device according to an embodiment of the present disclosure.
  • FIG. 10 is a schematic structural diagram of a network device according to an embodiment of the present disclosure.
  • FIG. 11 is a schematic structural diagram of another terminal device according to an embodiment of the present disclosure.
  • FIG. 12 is a schematic structural diagram of another network device according to an embodiment of the present disclosure.
  • FIG. 13 is a structural block diagram of a terminal device provided by a mobile phone according to an embodiment of the present disclosure.
  • the terminal device may send the PUSCH to the network device based on the time-frequency resource of the PUSCH that is dynamically scheduled or semi-statically scheduled by the network device.
  • the network device schedules the transmission of the time-frequency resources of the PUSCH in a dynamic manner, the terminal device needs to send a scheduling request to the network device when there is uplink data transmission.
  • the network device allocates a time-frequency resource for transmitting the PUSCH to the terminal device, and indicates, by using the control signaling, the allocated time-frequency resource of the PUSCH, so that the terminal device can be on the time-frequency resource.
  • the PUSCH is sent to the network device.
  • the terminal device needs to feed back the UCI to the base station.
  • the UCI may include at least one of SR, CSI, HARQ-ACK, and the like.
  • the above HARQ-ACK may include at least one of ACK, NACK, and DTX.
  • the CSI may include at least one of CQI, beam setting information, RI, PMI, and the like.
  • the beam setting information may include at least one of a Quasi Co-Location (QCL) indication, transmit beam information, transmit and receive beam pair information, and the like.
  • the beam setting information may include at least one of a reference signal index, information corresponding to a reference signal index, and the like.
  • the information corresponding to the reference signal index may include: Reference Signal Receiving Power (RSRP) and Reference Signal Receiving Quality (RSRQ).
  • RSRP Reference Signal Receiving Power
  • RSRQ Reference Signal Receiving Quality
  • FIG. 1 is a schematic diagram of a communication system according to an embodiment of the present application.
  • the communication system includes: a network device 01 and a terminal device 02.
  • Network device 01 and terminal device 02 can communicate using one or more air interface technologies. among them,
  • Network device may be a base station, or various wireless access points, or may refer to a device in the access network that communicates with the terminal device over one or more sectors on the air interface.
  • the base station can be used to convert the received air frame to the IP packet as a router between the wireless terminal and the rest of the access network, wherein the remainder of the access network can include an Internet Protocol (IP) network.
  • IP Internet Protocol
  • the base station can also coordinate attribute management of the air interface.
  • the base station may be a Global System of Mobile communication (GSM) or a Base Transceiver Station (BTS) in Code Division Multiple Access (CDMA), or may be a wideband code division multiple access (
  • the base station (NodeB, NB) in the Wideband Code Division Multiple Access (WCDMA) may also be an evolved base station (Evolutional Node B, eNB or eNodeB) in Long Term Evolution (LTE), or a relay station or an access point.
  • gNB base station in a future 5G network, etc., is not limited herein.
  • Terminal device may be a wireless terminal or a wired terminal, the wireless terminal may be a device that provides voice and/or other service data connectivity to the user, a handheld device with wireless connectivity, or other processing device connected to the wireless modem. .
  • the wireless terminal can communicate with one or more core networks via a Radio Access Network (RAN), which can be a mobile terminal, such as a mobile phone (or "cellular" phone) and a computer with a mobile terminal.
  • RAN Radio Access Network
  • it may be a portable, pocket, handheld, computer built-in or in-vehicle mobile device that exchanges language and/or data with a wireless access network.
  • RAN Radio Access Network
  • the wireless terminal may also be referred to as a system, a subscriber unit, a subscriber station, a mobile station, a mobile station, a remote station, a remote terminal, and a remote terminal.
  • the access terminal, the user terminal (User Terminal), the user agent (User Agent), and the user device (User Device or User Equipment) are not limited herein.
  • the foregoing communication system may be an LTE communication system, or may be other communication systems in the future, and is not limited herein.
  • FIG. 2 is a schematic flowchart diagram of a method for transmitting control information according to an embodiment of the present application. This embodiment relates to a process of determining, by a terminal device, a time-frequency resource for transmitting a control channel on a time-frequency resource used when transmitting a data sharing channel. As shown in FIG. 2, the method may include:
  • the terminal device determines a first time-frequency resource, where the first time-frequency resource is used by the terminal device to send the PUSCH to the network device.
  • the foregoing PUSCH is used by the terminal device to send a physical channel of the UL-SCH and/or the UCI to the network device.
  • the other features of the PUSCH are not limited in this embodiment of the present application. It will be understood by those skilled in the art that the above physical channel, UL-SCH and UCI may still use the terms of PUSCH, UL-SCH and UCI in the 5G mobile communication system, and other terms may be used. Therefore, the naming of PUSCH, UL-SCH, and UCI in each communication system is not limited in the embodiment of the present application.
  • the embodiments of the present application are described by taking PUSCH, UL-SCH, and UCI as an example.
  • the terminal device can transmit the UL-SCH and or UCI on the PUSCH.
  • the terminal device may determine the first time-frequency resource according to the scheduling information that is sent by the network device to indicate the first time-frequency resource. For example, the terminal device may determine a frequency position, a position in time, and the like of the first time-frequency resource in the supported uplink bandwidth.
  • the network device may send the foregoing scheduling information to a terminal device by using a downlink control channel (for example, a physical downlink control channel).
  • the network device may carry the foregoing scheduling information in other high-level configuration information.
  • the terminal device determines a second time-frequency resource, where the second time-frequency resource is used by the terminal device to send the UCI to the network device, where the first time-frequency resource includes the second time-frequency resource.
  • the UCI mentioned above may include at least one of HARQ-ACK and channel state information CSI.
  • the CSI includes at least one of the following: CQI, beam setting information, PMI, and RI.
  • the other time-frequency resources in the first time-frequency resource are used by the terminal device to send the uplink shared channel UL-SCH.
  • the information carried in the UL-SCH includes uplink service data of the terminal device.
  • the capability of the terminal device may not support simultaneous transmission of the physical uplink control channel and the PUSCH; on the other hand, Intermodulation Interference (IMD) between the physical uplink control channel and the signal transmitted by the PUSCH may result in two channels.
  • IMD Intermodulation Interference
  • the terminal device may determine, in the time-frequency resource for transmitting the PUSCH, that a part of resources (second time-frequency resources) are used for transmitting the UCI, and the remaining time-frequency resources are sent by the UL-SCH.
  • the network device may also trigger the terminal device to send the UCI on the PUSCH by using a dynamic scheduling manner.
  • the UCI may be used to transmit part of the time-frequency resources (ie, the second time-frequency resource) in the first time-frequency resource. Therefore, after determining the first time-frequency resource, the foregoing terminal device may determine, from the first time-frequency resource, a second time-frequency resource for transmitting the UCI.
  • the terminal device may determine, in the first time-frequency resource, a second time-frequency resource corresponding thereto for each type of UCI.
  • the terminal device sends the UCI to the network device by using the second time-frequency resource.
  • the terminal device may send the UCI to the network device by using the second time-frequency resource, and divide the second time-frequency resource by using the first time-frequency resource.
  • the outer time-frequency resource transmits the UL-SCH. In this way, UCI can be transmitted on the PUSCH in a 5G communication system.
  • the network device may first determine that the terminal device sends the first time-frequency resource of the PUSCH, and then determine the second time-frequency resource for transmitting the UCI, so that the network device can receive the second time-frequency resource.
  • the UCI sent by the terminal device receives the UL-SCH sent by the terminal device on the time-frequency resource except the second time-frequency resource of the first time-frequency resource.
  • the method for transmitting control information provided by the embodiment of the present application, after determining that the first time-frequency resource of the physical uplink channel is sent, the terminal device may determine, from the first time-frequency resource, a second time-frequency for transmitting the uplink control information.
  • the resource is configured to enable the terminal device to send uplink control information by using part or all of the time-frequency resources on the first time-frequency resource, so that the control information is transmitted in the 5G communication system.
  • the foregoing terminal device may determine the second time-frequency resource for transmitting the UCI based on the following factors. specifically:
  • the resource on the symbol close to the DMRS can be considered as the second time-frequency resource to ensure that the demodulation performance of the control information can be improved when the terminal device transmits the UCI using the second time-frequency resource.
  • the UCI described above may be, for example, a UCI including a HARQ-ACK with higher reliability requirements and higher latency requirements.
  • the HARQ-ACK can obtain the most accurate channel estimation, and the network device can also obtain the UCI as early as possible to improve the overall delay performance of the system.
  • the terminal device feeding back the HARQ-ACK as early as possible can cause the network device to process the subsequent downlink transmission according to the feedback information of the HARQ-ACK as soon as possible, thereby shortening the delay of the downlink transmission.
  • a channel state feedback manner may be: after receiving the repetition data, the terminal device feeds back the CSI to the network device.
  • the network device After receiving the CSI, the network device adjusts the MCS based on the CSI.
  • the CSI mentioned here may be a low latency CSI (Low Latency-CSI, LL-CSI).
  • the LL-CSI is generated by the terminal device according to the demodulation reference signal corresponding to the downlink data after receiving the downlink data, and is channel quality information that can be quickly obtained and fed back without requiring the terminal device to perform data demodulation and decoding on the downlink data.
  • the LL-CSI is triggered by the terminal device receiving the downlink data, and the LL-CSI is measured based on the demodulation reference signal corresponding to the downlink data.
  • the LL-CSI Before the terminal device performs data demodulation and decoding on the downlink data, the LL-CSI can be fed back to the network device, so that the network device can adjust the scheduling manner of the downlink data in time for subsequent repeated transmission or retransmission, especially for downlink ultra-reliable.
  • LL-CSI can meet the low latency and high reliability requirements of URLLC data.
  • the LL-CSI may be an offset value of the MCS relative to the MCS previously used by the terminal device or an offset value of the CQI relative to the CQI previously reported by the terminal device, and the like.
  • the LL-CSI transmission can obtain the most accurate channel estimation by using the resource on the symbol close to the DMRS as the second time-frequency resource, and the network device can also obtain the network device as early as possible.
  • the LL-CSI is used to adjust the scheduling information of the downlink data transmission even.
  • the UCI described above may be, for example, a UCI including an RI in CSI.
  • the resources occupied by the UL-SCH transmitted in the PUSCH on the first time-frequency resource depend on how much resources are occupied by the CSI. That is, the resources occupied by the CSI are subtracted from the first time-frequency resource, and the remaining resources are the resources occupied by the UL-SCH in the PUSCH. Therefore, the network device needs to determine resources for the UL-SCH in the first time-frequency resource according to the resources occupied by the CSI to decode the UL-SCH transmitted on the PUSCH.
  • the network device needs to detect the RI as early as possible to determine the number of bits of the CQI/PMI, and further determine the resources occupied by the UL-SCH to demodulate the UL-SCH transmitted in the PUSCH.
  • the network device can demodulate the RI as early as possible to determine the number of bits of the CQI/PMI.
  • the future 5G communication system supports two kinds of uplink signal waveforms: single-carrier frequency-division multiple access (SC-FDMA) based waveform, cyclic prefix-based orthogonal frequency division multiplexing. (Cyclic Prefix Orthogonal Frequency Division Multiplexing, CP-OFDM) waveform.
  • SC-FDMA single-carrier frequency-division multiple access
  • CP-OFDM Cyclic Prefix Orthogonal Frequency Division Multiplexing
  • the UCI can be distributed to all the frequency resources of the first time-frequency resource through the processing of some discrete Fourier transforms to obtain the frequency diversity gain, which satisfies the UCI requirements for transmission performance.
  • the mapping position of the UCI on the first time-frequency resource is the position where the UCI is transmitted in the frequency domain. Therefore, when the UCI is transmitted using the waveform of the CP-OFDM, the frequency diversity gain cannot be obtained. Therefore, it is necessary to consider the resources of the multiple frequencies scattered to the first time-frequency resource as the second time-frequency resource, so that the terminal device can transmit the UCI regardless of the waveform of the SC-FDMA or the waveform of the CP-OFDM. Get a better frequency diversity gain.
  • the terminal device 2 needs to transmit a service with high reliability and delay requirement.
  • a service such as an eMBB service
  • the network device may schedule the terminal device 2 to occupy part of the resource allocated for the terminal device 1 to transmit data. Since the data of the service with high reliability and delay requirement is usually a resource with a short time length and a wide frequency, it is necessary to consider that the second time-frequency resource takes less time to minimize other terminal devices.
  • an emergency service is sent on a time-frequency resource, the impact on the UCI can be reduced or avoided by avoiding or reducing the resources occupying the second time-frequency resource in time.
  • the embodiment of the present application describes the foregoing second time-frequency resource, specifically:
  • the foregoing second time-frequency resource may include N blocks of resources on a frequency.
  • N is a positive integer greater than or equal to 1.
  • the second time-frequency resource is divided into N blocks of resources dispersed in multiple frequency domain locations of the first time-frequency resource.
  • the terminal device can directly use the N-block resources dispersed in multiple frequency-domain locations of the first time-frequency resource to send the UCI, so that the frequency diversity gain of the UCI can be obtained. , thereby improving the transmission performance of UCI.
  • the terminal device transmits the above UCI regardless of whether the SC-FDMA-based waveform is used or the CP-OFDM-based waveform, as long as it is the second of the N-block resources including the plurality of frequency-domain locations dispersed to the first time-frequency resource.
  • the frequency diversity gain can be obtained, thereby improving the transmission performance of the UCI.
  • the terminal device determines the value of N, and the frequency start position of each resource may include the following three modes:
  • the first mode the value of the foregoing N is determined by the terminal device according to the frequency width of the first time-frequency resource, and the frequency starting position of each of the resources of the N blocks in the frequency is relative to the first time-frequency.
  • the offset value of the frequency start position of the resource is preset.
  • the value of the N and the frequency bandwidth of the first time-frequency resource satisfy a first mapping relationship (that is, the first mapping relationship may include a correspondence between a frequency width of the first time-frequency resource and a value of N.
  • the offset value of the frequency start position of each of the resources of the N blocks in the frequency relative to the frequency start position of the first time-frequency resource is preset, and the terminal device may be according to the first mapping relationship. And determining the value of N by the frequency width of the first time-frequency resource.
  • the terminal device may offset the frequency start position of each of the preset N blocks of resources in the frequency with respect to the frequency start position of the first time-frequency resource, and the first time-frequency resource The frequency start positions are added to obtain the frequency start position of each of the N blocks of resources in the frequency.
  • the foregoing first mapping relationship may be, for example, as shown in Table 1 below:
  • the offset value of the frequency start position of each of the preset N blocks in the resources on the frequency relative to the frequency start position of the first time-frequency resource may be, for example, as shown in Table 2 below, specifically:
  • the foregoing W may be a frequency width of the first time-frequency resource, and the ⁇ W may be a preset threshold, and the preset threshold is less than W.
  • FIG. 3 is a schematic diagram of a second time-frequency resource according to an embodiment of the present application.
  • the terminal device may determine, according to the first time-frequency resource, the terminal device The frequency width of the one-time frequency resource and Table 1, determine that the value of N is 3. That is, the second time-frequency resource includes three resources on the frequency. Then, the terminal device may determine, according to the value of N and Table 2, the offset value of the frequency start position of the first block resource relative to the frequency start position of the first time-frequency resource in the resources of the three blocks in the frequency. 0, the offset value of the frequency start position of the second block resource relative to the frequency start position of the first time-frequency resource The offset value of the frequency start position of the third block resource relative to the frequency start position of the first time-frequency resource is W- ⁇ W.
  • the terminal device adds the offset value of the first block resource to the frequency start position of the first time-frequency resource to obtain the frequency start position of the first block resource
  • the offset value of the second block resource is Adding a frequency start position of the first time-frequency resource to obtain a frequency start position of the second block resource, and adding an offset value of the third block resource to a frequency start position of the first time-frequency resource, that is, The frequency start position of the third resource can be obtained.
  • the frequency start position of the first block resource is the frequency start position of the first time-frequency resource.
  • the frequency starting position of the second resource is the frequency starting position of the first time-frequency resource and The added value, the frequency start position of the third block resource is the value obtained by adding the frequency start position of the first time-frequency resource and W- ⁇ W.
  • the resources of the N blocks of the second time-frequency resource in frequency may be as shown in (C) of FIG.
  • the terminal device may determine, according to the frequency bandwidth of the first time-frequency resource and the table 1, after determining the first time-frequency resource.
  • the value of N is 1. That is, the second time-frequency resource includes one resource.
  • the terminal device may determine, according to the value of N and Table 2, that the offset value of the frequency start position of the one block resource relative to the frequency start position of the first time-frequency resource is 0.
  • the terminal device adds the offset value of the block resource to the frequency start position of the first time-frequency resource to obtain the frequency start position of the first block resource.
  • the frequency start position of the first block resource is the frequency start position of the first time-frequency resource.
  • the resources of the N blocks of the second time-frequency resource in frequency may be as shown in (a) of FIG.
  • the size of the first time-frequency resource shown in FIG. 3 and the frequency width of each of the N blocks of the second time-frequency resource in the frequency are only an indication, and the terminal device determines the second time. The way the size of the frequency resource will be introduced later.
  • Table 1 and Table 2 are only an example, and the first mapping relationship involved in the embodiment of the present application, and the frequency start of each resource in the resource of the preset N block in frequency.
  • the offset value of the position relative to the frequency start position of the first time-frequency resource is not limited to the above Tables 1 and 2.
  • the first mapping relationship and the offset value of the frequency start position of each block of the preset N blocks of resources in the frequency relative to the frequency start position of the first time-frequency resource may be presets.
  • the terminal device may also be sent to the terminal device by using high layer signaling or control signaling before the implementation of the embodiment.
  • the second mode the value of the above N, and the offset value of the frequency start position of each resource in the resource of the N block relative to the frequency start position of the first time-frequency resource, according to the The frequency width of a time-frequency resource is determined.
  • the value of the N and the frequency bandwidth of the first time-frequency resource satisfy a first mapping relationship (that is, the first mapping relationship may include a correspondence between a frequency width of the first time-frequency resource and a value of N. And an offset value of a frequency start position of each of the resources of the N blocks in the frequency relative to a frequency start position of the first time-frequency resource, and a frequency width of the first time-frequency resource satisfies a second The mapping relationship (ie, the second mapping relationship includes an offset value of a frequency start position of each of the resources of the N blocks in the frequency relative to a frequency start position of the first time-frequency resource and a frequency of the first time-frequency resource.
  • the terminal device may determine, according to the first mapping relationship, the second mapping relationship, and the frequency width of the first time-frequency resource, each of the resources of the N-block resources in the frequency.
  • the offset value of the frequency start position relative to the frequency start position of the first time-frequency resource may offset the frequency start position of each of the N blocks of resources in the frequency with respect to the frequency start position of the first time-frequency resource, and the frequency of the first time-frequency resource.
  • the starting positions are added to obtain the frequency starting position of each of the N blocks of resources in the frequency.
  • the foregoing second mapping relationship may be, for example, as shown in Table 3 below:
  • the terminal device may determine the frequency of the first time-frequency resource after determining the first time-frequency resource. Width and Table 3, determine that the value of N is 2. That is, the second time-frequency resource includes two resources on the frequency. At the same time, the terminal device may determine, according to Table 3, the resources of the two blocks in the frequency, the offset value of the frequency start position of the first block resource relative to the frequency start position of the first time-frequency resource is 0, and the second The offset value of the frequency start position of the block resource relative to the frequency start position of the first time-frequency resource is W- ⁇ W.
  • the terminal device adds the offset value of the first block resource to the frequency start position of the first time-frequency resource to obtain the frequency start position of the first block resource
  • the offset value of the second block resource is The frequency start positions of the first time-frequency resources are added to obtain the frequency start position of the second block resource.
  • the frequency start position of the first block resource is the frequency start position of the first time-frequency resource.
  • the frequency starting position of the second block resource is the value obtained by adding the frequency start position of the first time-frequency resource and W- ⁇ W. Then, in this example, the resources of the N blocks of the second time-frequency resource on the frequency may be as shown in (b) of FIG.
  • the foregoing Table 3 is only an example, and the first mapping relationship and the second mapping relationship involved in the embodiments of the present application are not limited to the foregoing Table 3.
  • the first mapping relationship and the offset value of the frequency start position of each block of the preset N blocks of resources in the frequency relative to the frequency start position of the first time-frequency resource may be presets.
  • the terminal device may also be sent to the terminal device by using high layer signaling or control signaling before the implementation of the embodiment.
  • the foregoing second mapping relationship may also implicitly indicate the value of N. Therefore, the terminal device may also adopt a second mapping relationship, and a frequency width of the first time-frequency resource, implicitly. Determine the value of N, and will not repeat them.
  • the third mode is: the value of the foregoing N, and the frequency start position of each resource in the resources of the N blocks in the frequency is determined according to the first information sent by the network device.
  • the network device may send, to the terminal device, a resource indicating that the second time-frequency resource includes N blocks on the frequency, and each of the N-block resources in the frequency
  • the first information of the frequency start position the terminal device may further determine, according to the first information sent by the network device, a value of N of the resource of the N block of the second time-frequency resource in the frequency, and the N block is at the frequency The starting position of the frequency of each resource in the resource.
  • the network device may send the first information to the terminal device in the scheduling authorization for scheduling the first time-frequency resource, or the network device sends the first information to the terminal device by using the high-layer signaling.
  • the mapping between the network device and the terminal device is pre-set with a value of N and a frequency starting position of each resource of the N blocks in the frequency.
  • the different correspondences may correspond to one identifier (for example, an index number).
  • the network device can indicate to the terminal device that the second time-frequency resource includes N blocks of resources in frequency by means of carrying the identifier in the first information, and each of the resources of the N blocks in the frequency. The starting position of the frequency. In this way, the signaling overhead when the network device sends the first information can be reduced.
  • the foregoing network device may also use the foregoing first mode and the second mode to determine the value of N and the frequency starting position of each resource, which is not described herein.
  • the above embodiment only enumerates three ways of determining the value of N, and the frequency start position of each block of resources.
  • the manner of determining the value of N provided by any of the above manners can also be combined with the manner of determining the frequency starting position of each resource by other manners.
  • the manner of determining the frequency start position of each resource provided by any of the foregoing manners may be combined with the manner of determining the value of N provided by other manners.
  • the value of N may be determined according to the foregoing first manner
  • the frequency starting position of each resource may be determined according to the foregoing second manner
  • the value of N may be determined according to the first manner, according to the third manner. Determine the frequency start position of each resource, etc., and will not be described again.
  • the foregoing second time-frequency resource includes N blocks of resources on a frequency, where the resources of the N blocks are discontinuous resources, or the J blocks in the resources of the N blocks are consecutive. Other NJ blocks are not continuous. Where J is not greater than N.
  • the length of the second time-frequency resource is a first length.
  • the length of time mentioned here is the number of symbols occupied by the time-frequency resource in the time domain.
  • the time length of the foregoing terminal device for determining the second time-frequency resource may include the following two methods:
  • the first mode the first length is determined by the terminal device according to the length of time of the first time-frequency resource.
  • the time length of the first length and the first time-frequency resource satisfies a third mapping relationship, that is, the third mapping relationship includes a correspondence between a time length of the first time-frequency resource and a first length
  • the foregoing terminal device may be configured according to the first The third mapping relationship and the length of time of the first time-frequency resource determine the first length.
  • the third mapping relationship described above may be, for example, as shown in Table 4 below:
  • Numbering Length of time of the first time-frequency resource First length 1 1 time slot 7 symbols 2 2 time slots 1 time slot 3 3 time slots 1.5 time slots
  • the above one time slot may include 14 symbols.
  • the terminal device may determine the first time according to the length of the first time-frequency resource and the table 4 after determining the first time-frequency resource.
  • the length is 1 time slot. That is, the time length of the second time-frequency resource is 1 time slot.
  • the foregoing Table 4 is only an example, and the third mapping relationship involved in the embodiment of the present application is not limited to the foregoing Table 4.
  • the third mapping relationship may be preset to the terminal device, and may be sent to the terminal device by using the high layer signaling or control signaling before the implementation of the embodiment.
  • the length of the first length and the third time-frequency resource meets the fourth mapping relationship, that is, the fourth mapping relationship includes the correspondence between the length of the third time-frequency resource and the first length, and the foregoing terminal device
  • the first length may be determined according to the fourth mapping relationship and the length of time of the third time-frequency resource.
  • the third time-frequency resource refers to a resource used by the terminal device to send the first physical uplink control channel.
  • the foregoing terminal device may send the UCI on the physical uplink control channel, but if the terminal device also needs to send the physical uplink shared channel at the same time.
  • the capability of the terminal device may not support simultaneous transmission of the physical uplink control channel and the physical uplink shared channel; on the other hand, intermodulation interference (IMD) between the signal sent by the physical uplink control channel and the physical uplink shared channel (IMD) It also causes poor reception performance of both channels. Therefore, the terminal device determines, in the time-frequency resource of the physical uplink shared channel, that a part of the resource is used to send the uplink control information.
  • IMD intermodulation interference
  • the length of the resource occupied by the physical uplink shared channel and the time length of the resource occupied by the physical uplink control channel when the physical uplink control channel is transmitted satisfy the fourth mapping relationship.
  • the first market price length and the third time-frequency resource have the same length of time.
  • the second mode the first length is determined according to the second information sent by the network device.
  • the network device may send, to the terminal device, second information indicating that the time length of the second time-frequency resource is the first length, where the terminal device sends the After the second information, the length of the second time-frequency resource is determined to be the first length according to the second information.
  • the network device may send the foregoing second information to the terminal device in the scheduling authorization for scheduling the first time-frequency resource, or the network device sends the second information to the terminal device by using the high-layer signaling.
  • a plurality of first time lengths are preset between the network device and the terminal device.
  • the first time length corresponds to one identifier (for example, an index number).
  • the network device can indicate to the terminal device that the length of the second time-frequency resource is the first length by carrying the identifier in the second information. In this way, the signaling overhead when the network device sends the second information can be reduced.
  • the third way the first length is preset.
  • the first length is a preset length, that is, the first length is a fixed value
  • the terminal device may directly determine that the time length of the second time-frequency resource is the first length.
  • the preset first length may be preset to the terminal device, and may be sent to the terminal device by using the high layer signaling or control signaling before the implementation of the embodiment.
  • the foregoing network device may also adopt the foregoing first manner and the third manner to determine the first length, and details are not described herein again.
  • the foregoing second time-frequency resource may include resources of the M block in time.
  • M is a positive integer greater than or equal to 1.
  • the time start position of each resource in the time resource of the M block may be constrained according to the symbol mapped by the DMRS, so that the second time-frequency resource is a resource on a symbol close to the DMRS. Therefore, when the terminal device transmits the UCI using the second time-frequency resource, the demodulation performance of the UCI can be improved.
  • the terminal device determines the value of the M, and the time start position of each resource in the M block resource may include the following three modes:
  • the first mode the value of the foregoing M is determined according to the length of time of the first time-frequency resource, and the time start position of each resource in the time-based resource of the M-block is relative to the first time-frequency resource.
  • the offset value of the time start position is preset.
  • the value of the foregoing M and the time length of the first time-frequency resource satisfy the fourth mapping relationship (that is, the fourth mapping relationship may include a correspondence between the length of the first time-frequency resource and the value of the M.
  • the offset value of the time start position of each of the resources of the M-block in the time resource relative to the time start position of the first time-frequency resource is preset, and the terminal device may be according to the fourth mapping relationship.
  • the length of time of the first time-frequency resource determining the value of M.
  • the terminal device may set an offset value of a time start position of each block of the M blocks in time resources with respect to a time start position of the first time-frequency resource, and a time of the first time-frequency resource The start positions are added to obtain the time start position of each of the resources of the M block in time.
  • the fourth mapping relationship described above may be, for example, as shown in Table 5 below:
  • the offset value of the time start position of each of the resources of the foregoing M blocks in the temporal resources relative to the time start position of the first time-frequency resource may be, for example, as shown in Table 6 below, specifically:
  • the foregoing T may be the length of time of the first time-frequency resource, where the ⁇ T may be a preset threshold, and the preset threshold may be determined according to the symbol of the DMRS, where the X may be the first symbol after the symbol of the DMRS The offset value of the symbol relative to the time start position of the first time-frequency resource.
  • the terminal device may determine, according to the first time-frequency resource, the terminal device according to the first time-frequency resource.
  • the length of time and Table 5, determine the value of M is 3. That is, the second time-frequency resource includes two blocks of resources in time.
  • the terminal device may determine, according to the value of M and Table 6, the offset value of the time start position of the first block resource relative to the time start position of the first time-frequency resource in the resources of the 2 blocks in time.
  • the offset value of the time start position of the second block resource relative to the time start position of the first time-frequency resource is T- ⁇ T.
  • the terminal device adds the offset value of the first block resource of the second time resource to the time start position of the first time-frequency resource, and obtains the first block of the two resources in time.
  • the time start position of the resource adding the offset value of the second block resource of the two resources in time to the time start position of the first time-frequency resource, and obtaining the second resource in time
  • the starting position of the time of the two resources is the value added by the time start position of the first time-frequency resource and X.
  • the time start position of the second block resource of the two blocks in time is the value obtained by adding the time start position of the first time-frequency resource to T- ⁇ T.
  • Table 5 and Table 6 are only an example, and the fourth mapping relationship involved in the embodiment of the present application, and the time start of each resource in the resource of the preset M block in time.
  • the offset value of the position relative to the time start position of the first time-frequency resource is not limited to the above Tables 5 and 6.
  • the fourth mapping relationship and the offset value of the time start position of each resource in the time resource of the preset M block relative to the time start position of the first time-frequency resource may be preset.
  • the terminal device may also be sent to the terminal device by using high layer signaling or control signaling before the implementation of the embodiment.
  • the second mode is: the value of the above M, and the offset value of the time start position of each resource in the time resource of the M block relative to the time start position of the first time-frequency resource, according to the The length of time of a time-frequency resource is determined.
  • the value of the foregoing M and the time length of the first time-frequency resource satisfy the fourth mapping relationship (that is, the fourth mapping relationship may include a correspondence between the length of the first time-frequency resource and the value of the M.
  • the offset value of the time start position of each of the resources of the M block in the temporal resource relative to the time start position of the first time-frequency resource, and the time length of the first time-frequency resource satisfy the fifth a mapping relationship (ie, the fifth mapping relationship includes an offset value of a time start position of each block of the M blocks in time resources relative to a time start position of the first time-frequency resource and the first time-frequency resource
  • the terminal device may determine, according to the fourth mapping relationship, the fifth mapping relationship, and the length of the first time-frequency resource, each value of the M value and the M-block resource in time.
  • the offset value of the time start position of the resource relative to the time start position of the first time-frequency resource may offset the time start position of each block of the M resources in the temporal resources with respect to the time start position of the first time-frequency resource, and the time of the first time-frequency resource.
  • the starting positions are added to obtain the time starting position of each of the resources of the M block in time.
  • the foregoing fifth mapping relationship may be, for example, as shown in Table 7 below:
  • the terminal device may determine, according to the first time-frequency resource, the terminal device according to the first time-frequency resource.
  • the length of time and Table 5, determine the value of M is 3. That is, the second time-frequency resource includes three blocks of resources in time.
  • the terminal device may determine, according to Table 7, the time-based resources of the three blocks, the offset value of the time start position of the first block resource relative to the time start position of the first time-frequency resource is X, and second The offset value of the time start position of the block resource relative to the time start position of the first time-frequency resource
  • the offset value of the time start position of the third block resource relative to the time start position of the first time-frequency resource is T- ⁇ T.
  • the terminal device adds the offset value of the first block resource of the three blocks of time resources to the time start position of the first time-frequency resource, thereby obtaining the three blocks in the time resource.
  • the frequency start position of the first block resource of the 3 blocks in time is the value of the time start position of the first time-frequency resource and X, and the 3 blocks are in time.
  • the starting position of the frequency of the second resource in the resource is the time starting position of the first time-frequency resource and
  • the added value, the frequency start position of the second block resource of the 3 blocks in time is the value obtained by adding the time start position of the first time-frequency resource and T- ⁇ T.
  • the foregoing Table 7 is only an example, and the fifth mapping relationship involved in the embodiment of the present application is not limited to the foregoing Table 7.
  • the foregoing fifth mapping relationship may be preset to the terminal device, and may also be sent to the terminal device by using the high layer signaling or control signaling before the implementation of the embodiment.
  • the fifth mapping relationship may also implicitly indicate the value of M. Therefore, the terminal device may further adopt a fifth mapping relationship and a time length of the first time-frequency resource, and implicitly Determine the value of M, and will not repeat them.
  • the third mode the value of the above M, and the time start position of each resource in the M-block resource in time is determined according to the third information sent by the network device.
  • the network device may send, to the terminal device, a resource for indicating that the second time-frequency resource includes the M-block in time, and each of the resources of the M-block in time resources.
  • the third information of the time start location the terminal device may further determine, according to the third information sent by the network device, the value of the M of the second time-frequency resource, and each resource of the M-block resource in time The starting position of the time.
  • the network device may send the foregoing third information to the terminal device in the scheduling authorization for scheduling the first time-frequency resource, or the network device sends the first information to the terminal device by using the high-layer signaling.
  • a correspondence between the value of M and the time start position of each resource in the time resource of the M block is pre-set between the network device and the terminal device.
  • the different correspondences may correspond to one identifier (for example, an index number).
  • the network device can indicate to the terminal device that the second time-frequency resource includes the M-block resource in time by means of carrying the identifier in the third information, and the resource of each of the M-block resources in time. The starting position of the time. In this way, the signaling overhead when the network device sends the third information can be reduced.
  • the foregoing network device may also use the first mode and the second mode to determine the value of M, and the time start position of each resource, which is not described herein.
  • the above embodiment only enumerates three values for determining M, and the manner in which the time start position of each resource is.
  • the manner of determining the value of M provided by any of the foregoing manners can also be combined with the manner of determining the time start position of each resource by other manners.
  • the manner of determining the time start position of each resource provided by any of the foregoing manners may also be combined with the manner of determining the value of M provided by other manners.
  • the value of M may be determined according to the foregoing first manner
  • the time starting position of each resource may be determined according to the foregoing second manner
  • the value of M may be determined according to the first manner, according to the third manner. Determine the starting position of each resource, etc., and will not repeat them.
  • the foregoing second time-frequency resource includes an M-block resource in time, the M-block resource in time is a discontinuous resource, or the I-block in the M-block frequency is continuous. Other MI blocks are not continuous. Where I is not greater than M.
  • the foregoing second time-frequency resource includes L time-frequency resource units.
  • the time-frequency resource unit referred to herein may be, for example, a resource element (Resource Element, RE).
  • An RE includes a symbol consisting of one symbol in time and one subcarrier on the frequency, and one RE can be used to transmit an encoded symbol of the uplink shared channel or uplink control information (Coded Symbol).
  • the value of the above L may be determined according to a scaling factor ( ⁇ offset ).
  • the terminal device may determine the number L of time-frequency resource units of the second time-frequency resource according to ⁇ offset and the following formula (1).
  • the above formula (1) can be, for example, as follows:
  • O represents the number of bits of the UCI
  • G represents the number of resource elements included in the PUSCH
  • T represents the number of bits included in the UL-SCH transmitted in the PUSCH.
  • the size of the time-frequency unit in which the terminal device transmits the UL-SCH in the PUSCH can be adjusted.
  • the modulation and coding schemes corresponding to the transmission of the UL-SCH and the transmission of the UCI in the PUSCH are made different, so that the target reception performance of the UL-SCH and the UCI is different.
  • the future 5G communication system includes a variety of services. Different services have different delay requirements and/or reliability requirements. Therefore, in this embodiment, the scale factors for determining the number of resource units for transmitting UCI in the PUSCH are different according to different services, so as to meet the different requirements of UCI for delay requirements and/or reliability of different services. For example, when the UCI is the UCI corresponding to the first service, the scale factor is the first value, and when the UCI is the UCI corresponding to the second service, the scale factor is the second value. The delay requirement and/or the reliability requirement of the first service and the second service are different.
  • the network device may indicate, to the terminal device, the ⁇ offset (eg, the first value) corresponding to the eMBB service and the ⁇ offset (eg, the second value) corresponding to the URLLC service by using the fourth information. .
  • the first value may be used to determine the number of time-frequency resource units for transmitting the second time-frequency resource of the UCI.
  • the second value may be used to determine the number of time-frequency resource units of the second time-frequency resource that sends the UCI.
  • the foregoing network device may also use the foregoing manner to determine the value of L by using a scaling factor, and details are not described herein again.
  • the above formula (1) is only one way of determining the number L of time-frequency resource units of the second time-frequency resource according to the scale factor.
  • the terminal device and the network device may also determine the number L of time-frequency resource units of the second time-frequency resource by using a scale factor in other existing manners, and details are not described herein again.
  • the correspondence between the value of the foregoing scaling factor and the service to which the UCI belongs may be preset on the terminal device.
  • the terminal device may further receive fourth information that is sent by the network device to indicate the corresponding relationship, so that the terminal device may determine the value of L according to the fourth information and the service to which the UCI belongs.
  • the terminal device receives the fourth information sent by the network device, where the fourth information is used to indicate the first value of the scale factor and the second value of the scale factor, and the first value and the second value of the scale factor and the uplink control information Correspondence of the business to which it belongs.
  • the terminal device first determines whether the first factor value or the second value of the scale factor should be used according to the fourth information and the service to which the UCI belongs, and then determines the value of L according to the value of the scale factor.
  • the network device may send the fourth information to the terminal device in the scheduling authorization for scheduling the first time-frequency resource, or the network device sends the fourth information to the terminal device by using the high-layer signaling.
  • the foregoing terminal device may determine, by using the manner listed in the foregoing AD, that the second time-frequency resource includes a resource of N blocks in a frequency, a starting position of a frequency of each of the resources of the N blocks, and a second time-frequency resource.
  • the resource of the M block, the time start position of each of the resources of the M block, and the second time-frequency resource includes, in time, the total length of the resources of the M block (ie, the first length)
  • the specific location of the second time-frequency resource on the first time-frequency resource may be determined according to part or all of the information. That is, the specific locations of the L time-frequency resource units on the first time-frequency resource.
  • the terminal device includes, according to the time length of the second time-frequency resource, a first length, the second time-frequency resource includes N blocks of resources, and a starting position of a frequency of each of the N-block resources.
  • the first preset rule determines, on the first time-frequency resource, a location of the L time-frequency resource units included in the second time-frequency resource in the first time-frequency resource.
  • the first mapping rule is chronologically mapped on the highest frequency resource among the first block resources in the N block resources.
  • FIG. 4 is a schematic diagram of another second time-frequency resource according to an embodiment of the present application.
  • the terminal device may first determine each time-frequency resource unit located on the highest frequency in chronological order on the highest frequency of the first block resource. . Then, the terminal device determines each time-frequency resource unit located on the highest frequency in chronological order on the highest frequency of the second block resource. Then, the terminal device determines each time-frequency resource unit located on the second highest frequency in chronological order on the second highest frequency of the first block resource. Then, the terminal device determines each time-frequency resource unit located at the secondary high frequency in chronological order on the second highest frequency of the second block resource. And so on, until the location of the last time-frequency resource unit (ie, number 31) of the 31 time-frequency resource units is determined.
  • the terminal device includes, according to the time length of the second time-frequency resource, a first length, the second time-frequency resource includes N blocks of resources, and a starting position of a frequency of each of the N-block resources. And determining, according to the first preset rule, a location of the L time-frequency resource units included in the second time-frequency resource in the first time-frequency resource on the first time-frequency resource.
  • the foregoing first preset rule may include, for example, the foregoing L time-frequency resource units according to the frequency of the N blocks first according to the frequency from high to low, and then the M resources are discontinuous at the time resource according to the early time.
  • the late order corresponds in turn to the first time-frequency resource unit.
  • the corresponding position of the L time-frequency resource units is the position of the second time-frequency unit in the first time-frequency unit.
  • FIG. 5 is a schematic diagram of still another second time-frequency resource according to an embodiment of the present application.
  • the terminal device may first determine the first one in the first symbol of the first block resource according to the frequency from high to low. Each time-frequency resource unit on the symbol. Then, the terminal device determines each time-frequency resource unit located on the first symbol in the order of frequency from high to low on the first symbol of the second block resource. Then, the terminal device determines each time-frequency resource unit located on the second symbol in the order of frequency from high to low on the first symbol of the first block resource.
  • the terminal device determines each time-frequency resource unit located on the second symbol in the order of the frequency from high to low on the second symbol of the second block resource. And so on, until the location of the last time-frequency resource unit (ie, number 31) of the 31 time-frequency resource units is determined.
  • the second time-frequency resource includes N blocks of resources in frequency
  • the second time-frequency resource includes resources of the M block in time
  • the second time-frequency resource includes, in time, the total length (ie, the first length) of the resources of the M block in time;
  • the number of time-frequency resource units included in the second time-frequency resource is the number of time-frequency resource units included in the second time-frequency resource.
  • the foregoing first preset rule includes, but is not limited to, the preset rule listed in this embodiment, and the second time-frequency resource is determined by using some preset rule according to the foregoing information, which belongs to the embodiment of the present application.
  • the terminal device may map the uplink control information to the second time-frequency resource according to the second preset rule.
  • the second preset rule mentioned herein may be a mapping rule of the frequency after the first time, or may be a mapping rule of the time after the frequency.
  • the step of determining, by the terminal device, the location of the second time-frequency resource in the first time-frequency resource, and the step of mapping, by the second preset rule, the uplink control information to the second time-frequency resource may be in any order. At the same time.
  • control information UCI includes multiple types of information
  • the method for determining the second time-frequency resource by the terminal device may be applied to the result of sequentially cascading various information.
  • the UCI includes a first UCI (HARQ-ACK), a second UCI (RI), and a third UCI (CQI-PMI), and the foregoing terminal device may use the first UCI-encoded data sequence and the second UCI-coded data sequence.
  • the third UCI-encoded data sequence is sequentially cascaded and mapped to the second time-frequency resource. That is, the encoded data sequences of the plurality of types of information are sequentially cascaded to form a total encoded data sequence. Then, the terminal device may map the total encoded data sequence to the second time-frequency resource to send the UCI to the network device by using the second time-frequency resource.
  • the first UCI encoded data sequence is:
  • the second UCI encoded data sequence is:
  • the third UCI encoded data sequence is:
  • the UBI-encoded data sequence formed by the first UCI-encoded data sequence, the second UCI-encoded data sequence, and the third UCI-encoded data sequence may be:
  • FIG. 6 is a schematic diagram of still another second time-frequency resource according to an embodiment of the present application.
  • FIG. 7 is a schematic diagram of still another second time-frequency resource according to an embodiment of the present application.
  • Each A in the UCI-encoded data sequence may be data that can be carried by one RB, or may be data that can be carried by one RE, and may be determined according to the granularity of the mapping.
  • the foregoing terminal device may adopt the mapping rule of the frequency after the first time to the above The mapping is performed, that is, the manner shown in FIG. 7, and details are not described herein again.
  • the foregoing terminal device may adopt a mapping rule of a first frequency after time, and on the second time-frequency resource, The mapping is performed, that is, the manner shown in FIG. 6, and details are not described herein again.
  • the terminal when the terminal performs mapping by using a time-first frequency, the terminal may be mapped in a higher manner by using a random mapping manner on the same frequency, and then mapped in a higher manner. This type of push until the mapping of all data is completed.
  • the frequency mapping when the terminal performs mapping by using the first frequency and the time, the frequency mapping may be performed on the same time domain symbol by using a random mapping manner, and then the random mapping is performed on the second time domain symbol. The way the frequency map is full, and so on, until all data is mapped.
  • the mapping may be performed in a random manner on the second time-frequency resource. This embodiment does not limit how to map UCI on the second time-frequency resource.
  • the terminal device may further determine the second time-frequency.
  • the method of the resource is applied to each UCI.
  • the second time-frequency resource determined by the foregoing terminal device as the first UCI (HARQ-ACK), the second UCI (RI), and the third UCI (CQI-PMI) on the first time-frequency resource, for example,
  • determining, by the first UCI, a second time-frequency resource for transmitting the first UCI, and determining, for the second UCI determines a second time-frequency resource for transmitting the third UCI for the third UCI.
  • the terminal device may use the first time-frequency mapping rule to encode the first UCI encoded data sequence on the second time-frequency resource corresponding to the first UCI. Map.
  • the terminal device may use the mapping rule of the first frequency and the time to encode the first UCI encoded data sequence on the second time-frequency resource corresponding to the first UCI. Map.
  • the terminal device may use the mapping rule of the time-first frequency to the second UCI-coded data sequence on the second time-frequency resource corresponding to the second UCI. Map.
  • the terminal device may use the mapping rule of the first frequency and the time, and the second UCI encoded data sequence on the second time-frequency resource corresponding to the second UCI Map.
  • the terminal device may use the mapping rule of the time-first frequency to the third UCI-coded data sequence on the second time-frequency resource corresponding to the third UCI. Map.
  • the terminal device may use the mapping rule of the first frequency and the time, and the third UCI encoded data sequence on the second time-frequency resource corresponding to the third UCI. Map.
  • FIG. 8 is a schematic diagram of still another second time-frequency resource according to an embodiment of the present application.
  • the terminal device determines, on the first time-frequency resource, a second time-frequency resource for transmitting the first UCI for the first UCI, and a second time-frequency resource for transmitting the second UCI for the second UCI.
  • the terminal device After the third UCI determines the second time-frequency resource for transmitting the third UCI, the terminal device performs the first UCI-coded data sequence in the first UCI second time-frequency resource in the first-frequency-time-time mapping manner.
  • the specific location of each UCI-encoded data sequence on the second time-frequency resource may be as shown in FIG. 8(a).
  • the first UCI encoded data sequence is used in the first time-frequency resource of the first UCI when the terminal device maps the frequency in the first time and the later time.
  • mapping the second time-frequency resource of the second UCI, and the data sequence encoded by the second UCI Mapping, the second time-frequency resource of the third UCI, the data sequence encoded by the third UCI After mapping, the specific location of each UCI-encoded data sequence on the second time-frequency resource may be as shown in FIG. 8(b).
  • the first time-frequency resource in FIG. 8(a) and FIG. 8(b) includes a total of seven time-domain symbols, and the vertical whole is the frequency-domain width of the first time-frequency resource, and the first symbol is the mapped DRMS.
  • the first dotted frame according to the frequency from top to bottom is the second time-frequency resource of the first UCI
  • the second dotted frame is the second time-frequency resource of the second UCI
  • the third The dashed box is the second time-frequency resource of the third UCI, and then the same resources as the first dotted box are the second time-frequency resources of the first UCI, and the same resources as the second dotted box are the same.
  • the second time-frequency resource of the second UCI is the second time-frequency resource of the third UCI. It should be noted that FIG. 8 is only a schematic diagram. In this embodiment, resource elements that are ultimately mapped on the second time-frequency resource by each UCI are not limited.
  • the method for transmitting control information provided by the embodiment of the present application, after determining the first time-frequency resource for transmitting the data sharing channel, the terminal device may determine, from the first time-frequency resource, the second time for sending the control information.
  • the frequency resource is such that the terminal device can use the partial time-frequency resource on the first time-frequency resource to send control information, so that the control information is transmitted in the 5G communication system.
  • FIG. 9 is a schematic structural diagram of a terminal device according to an embodiment of the present disclosure.
  • the foregoing terminal device may include: a processing module 11 and a sending module 12.
  • the foregoing terminal device may further include: a receiving module 13. among them,
  • the processing module 11 is configured to determine a first time-frequency resource and a second time-frequency resource, where the first time-frequency resource is used by the terminal device to send a physical uplink shared channel to the network device, where the second time-frequency resource is used.
  • the terminal device sends uplink control information to the network device, where the first time-frequency resource includes the second time-frequency resource;
  • the sending module 12 is configured to send the uplink control information to the network device by using the second time-frequency resource.
  • the uplink control information includes at least one of the following information: hybrid automatic repeat acknowledgement information HARQ-ACK, and channel state information CSI.
  • the CSI may include at least one of the following: a channel quality indicator CQI, beam setting information, a precoding matrix indicator PMI, and a rank indicator RI.
  • the foregoing second time-frequency resource includes a resource of the N-block frequency, where the value of the N and the frequency bandwidth of the first time-frequency resource satisfy a first mapping relationship, where the first mapping relationship includes A correspondence between a frequency width of the first time-frequency resource and a value of the N, wherein the N is a positive integer greater than or equal to 1.
  • an offset value of a frequency start position of each block of the N blocks in frequency relative to a frequency start position of the first time-frequency resource is preset; or, the N An offset value of a frequency start position of each block of the resource relative to a frequency start position of the first time-frequency resource, and a frequency width of the first time-frequency resource satisfies a second mapping relationship,
  • the second mapping relationship includes an offset value of a frequency start position of each block of the N blocks on a frequency relative to a frequency start position of the first time-frequency resource, and the first time-frequency resource.
  • the receiving module 13 is configured to receive first information sent by the network device, where the first information is used to indicate that the second time-frequency resource includes N blocks of resources on a frequency, and the N a frequency initial position of each of the block resources, wherein the N is a positive integer greater than or equal to 1; the processing module 11 is configured to determine, according to the first information, the second time-frequency resource. The frequency start position of each resource in the N block resource.
  • the length of the second time-frequency resource is a first length, where the length of the first length and the first time-frequency resource meets a third mapping relationship, where the third mapping relationship includes Corresponding relationship between the length of time of the first time-frequency resource and the first length.
  • the receiving module 13 is configured to receive the second information that is sent by the network device, where the second information is used to indicate that the time length of the second time-frequency resource is the first length; Specifically, the determining, according to the second information, the length of time of the second time-frequency resource is a first length.
  • the foregoing second time-frequency resource includes a resource of the M-block in time, where the value of the M and the time length of the first time-frequency resource satisfy a fourth mapping relationship, where the fourth mapping relationship includes A correspondence between a length of time of the first time-frequency resource and a value of the M, where the M is a positive integer greater than or equal to 1.
  • the offset value of the time start position of each of the time resources of the M block relative to the time start position of the first time frequency resource is preset, or And an offset value of a time start position of each of the resources in the time resource relative to a time start position of the first time-frequency resource, and a time length of the first time-frequency resource satisfies a fifth mapping relationship, where the fifth mapping relationship includes an offset value of a time start position of each block of the M resources in time resources relative to a time start position of the first time-frequency resource Corresponding relationship between the lengths of time of the first time-frequency resource.
  • the receiving module 13 is configured to receive third information that is sent by the network device, where the third information is used to indicate that the second time-frequency resource includes a resource in an M-block time, and the M a time start position of each of the block resources, wherein the M is a positive integer greater than or equal to 1; the processing module 11 is configured to determine, according to the third information, the M of the second time-frequency resource. The starting point of the time of each resource in the block resource.
  • the foregoing second time-frequency resource includes L time-frequency resource units, and the value of the L is determined according to a scaling factor; when the uplink control information is corresponding to the first service, the scaling factor is the first The value is the second value when the uplink control information is corresponding to the second service; the delay requirement and/or the reliability requirement of the first service and the second service are different.
  • the receiving module 13 is configured to receive fourth information that is sent by the network device, where the fourth information is used to indicate a first value of the scaling factor and a second value of the scaling factor. And the corresponding relationship between the first value and the second value of the scale factor and the service to which the uplink control information belongs; the processing module 11 is specifically configured to: according to the fourth information and the uplink control information The business determines the value of the L.
  • the processing module 11 is further configured to: before the sending module 12 sends the uplink control information to the network device by using the second time-frequency resource, according to a mapping manner of a preset rule, The uplink control information is mapped to the second time-frequency resource.
  • the processing module 11 is further configured to: the uplink control information includes at least two types of information, and the at least two types of information are sequentially cascaded and then mapped to the second time-frequency resource.
  • the terminal device provided by the embodiment of the present application may perform the action of the terminal device in the foregoing method embodiment, and the implementation principle and the technical effect are similar, and details are not described herein again.
  • FIG. 10 is a schematic structural diagram of a network device according to an embodiment of the present disclosure.
  • the foregoing network device may include: a processing module 21 and a receiving module 22.
  • the foregoing terminal device may further include: a sending module 23. among them,
  • the processing module 21 is configured to determine a first time-frequency resource and a second time-frequency resource, where the first time-frequency resource is used by the terminal device to send a physical uplink shared channel to the network device, where the second time-frequency resource is used The terminal device sends uplink control information to the network device, where the first time-frequency resource includes the second time-frequency resource;
  • the receiving module 22 is configured to receive, by using the second time-frequency resource, the uplink control information sent by the terminal device.
  • the uplink control information includes at least one of the following information: hybrid automatic repeat acknowledgement information HARQ-ACK, and channel state information CSI.
  • the CSI may include at least one of the following: a channel quality indicator CQI, beam setting information, a precoding matrix indicator PMI, and a rank indicator RI.
  • the second time-frequency resource includes a resource of the N-block frequency, where the value of the N and the frequency bandwidth of the first time-frequency resource satisfy a first mapping relationship, where the first mapping relationship includes a correspondence between a frequency width of the first time-frequency resource and a value of the N, where N is a positive integer greater than or equal to 1.
  • an offset value of a frequency start position of each block of the N blocks in frequency relative to a frequency start position of the first time-frequency resource is preset; or, the N An offset value of a frequency start position of each block of the resource relative to a frequency start position of the first time-frequency resource, and a frequency width of the first time-frequency resource satisfies a second mapping relationship,
  • the second mapping relationship includes an offset value of a frequency start position of each block of the N blocks on a frequency relative to a frequency start position of the first time-frequency resource, and the first time-frequency resource.
  • the sending module 23 is configured to send, to the terminal device, first information, where the first information is used to indicate that the second time-frequency resource includes N blocks of resources on a frequency, and the N The frequency start position of each block resource in the block resource, and the N is a positive integer greater than or equal to 1.
  • the length of the second time-frequency resource is a first length, where the length of the first length and the first time-frequency resource meets a third mapping relationship, where the third mapping relationship includes Determining a correspondence between a length of time of the first time-frequency resource and the first length.
  • the sending module 23 is configured to send the second information to the terminal device, where the second information is used to indicate that the time length of the second time-frequency resource is a first length.
  • the foregoing second time-frequency resource includes a resource of the M-block in time, where the value of the M and the time length of the first time-frequency resource satisfy a fourth mapping relationship, where the fourth mapping relationship includes A correspondence between a length of time of the first time-frequency resource and a value of the M, where the M is a positive integer greater than or equal to 1.
  • the offset value of the time start position of each block of the M resources in time resources relative to the time start position of the first time-frequency resource is preset, or The offset value of the time start position of each block of the M resources in time resources relative to the time start position of the first time-frequency resource, and the length of time of the first time-frequency resource Satisfying a fifth mapping relationship, where the fifth mapping relationship includes an offset value of a time start position of each block of the M resources in time resources relative to a time start position of the first time-frequency resource Correspondence relationship with the length of time of the first time-frequency resource.
  • the foregoing sending module 23 is configured to send third information to the terminal device, where the third information is used to indicate that the second time-frequency resource includes a resource in an M-block time, and the M The time starting position of each resource in the block resource, the M being a positive integer greater than or equal to 1.
  • the foregoing second time-frequency resource includes L time-frequency resource units, and the value of the L is determined according to a scaling factor; when the uplink control information is corresponding to the first service, the scaling factor is the first The value is the second value when the uplink control information is corresponding to the second service; the delay requirement and/or the reliability requirement of the first service and the second service are different.
  • the sending module 23 is configured to send, to the terminal device, fourth information, where the fourth information is used to indicate a first value of the scaling factor and a second value of the scaling factor, and Corresponding relationship between the first value and the second value of the scale factor and the service to which the uplink control information belongs.
  • the network device provided by the embodiment of the present application may perform the action of the network device in the foregoing method embodiment, and the implementation principle and the technical effect are similar, and details are not described herein again.
  • the above implementation module may be a transmitter when the actual implementation is implemented, and may be a receiver when the receiving module is actually implemented.
  • the processing module can be implemented in software in the form of processing component calls; it can also be implemented in hardware.
  • the processing module may be a separately set processing component, or may be integrated in one of the above-mentioned devices, or may be stored in the memory of the above device in the form of program code, by the terminal device or the network device.
  • a processing component calls and executes the functions of the above processing module.
  • all or part of these modules can be integrated or implemented independently.
  • the processing elements described herein can be an integrated circuit with signal processing capabilities. In the implementation process, each step of the above method or each of the above modules may be completed by an integrated logic circuit of hardware in the processor element or an instruction in a form of software.
  • the above modules may be one or more integrated circuits configured to implement the above methods, such as one or more Application Specific Integrated Circuits (ASICs), or one or more microprocessors (digital) Signal processor, DSP), or one or more Field Programmable Gate Arrays (FPGAs).
  • ASICs Application Specific Integrated Circuits
  • DSP digital signal processor
  • FPGAs Field Programmable Gate Arrays
  • the processing component may be a general purpose processor, such as a central processing unit (CPU) or other processor that can call the program code.
  • CPU central processing unit
  • these modules can be integrated and implemented in the form of a system-on-a-chip (SOC).
  • SOC system-on-a-chip
  • FIG. 11 is a schematic structural diagram of another terminal device according to an embodiment of the present disclosure.
  • the terminal device may include a processor 31 (for example, a CPU), a memory 32, and a transmitter 34.
  • the transmitter 34 is coupled to the processor 31, and the processor 31 controls the transmitting action of the transmitter 34.
  • the memory 32 may include a high speed RAM memory, and may also include a non-volatile memory NVM, such as at least one disk memory, in which various instructions may be stored for performing various processing functions and implementing the methods of embodiments of the present application. step.
  • the terminal device involved in the embodiment of the present application may further include: a receiver 33, a power source 35, a communication bus 36, and a communication port 37.
  • the receiver 33 and the transmitter 34 may be integrated in the transceiver of the terminal device or may be an independent transceiver antenna on the terminal device.
  • Communication bus 36 is used to implement a communication connection between components.
  • the communication port 37 is used to implement connection communication between the terminal device and other peripheral devices.
  • the memory 32 is used to store computer executable program code, and the program code includes instructions.
  • the instruction causes the processor 31 to perform the action processed in the foregoing method embodiment to enable the transmitter.
  • the action sent in the foregoing method embodiment is performed, so that the receiver performs the action received in the foregoing method embodiment, and the implementation principle and the technical effect are similar, and details are not described herein again.
  • FIG. 12 is a schematic structural diagram of another network device according to an embodiment of the present disclosure.
  • the network device may include a processor 41 (for example, a CPU), a memory 42, and a receiver 43.
  • the receiver 43 is coupled to the processor 41, and the processor 41 controls the receiving action of the receiver 43.
  • the memory 42 may include a high speed RAM memory, and may also include a non-volatile memory NVM, such as at least one disk memory, in which various instructions may be stored for performing various processing functions and implementing the methods of embodiments of the present application. step.
  • the network device involved in the embodiment of the present application may further include: a transmitter 44, a power source 45, a communication bus 46, and a communication port 47.
  • the receiver 43 and the transmitter 44 may be integrated in the transceiver of the network device or may be an independent transceiver antenna on the network device.
  • Communication bus 46 is used to implement a communication connection between components.
  • the communication port 47 is used to implement connection communication between the network device and other peripheral devices.
  • the memory 42 is used to store computer executable program code, and the program code includes instructions.
  • the instruction causes the processor 41 to perform the action processed in the foregoing method embodiment, so that the receiver The action received in the foregoing method embodiment is performed, so that the transmitter performs the action sent in the foregoing method embodiment, and the implementation principle and the technical effect are similar, and details are not described herein again.
  • the terminal device in the embodiment of the present application may be a wireless terminal such as a mobile phone or a tablet computer. Therefore, the terminal device is used as a mobile phone as an example.
  • FIG. 13 is a structural block diagram of the terminal device provided by the embodiment of the present disclosure. .
  • the mobile phone may include: a radio frequency (RF) circuit 1110, a memory 1120, an input unit 1130, a display unit 1140, a sensor 1150, an audio circuit 1160, a wireless fidelity (WiFi) module 1170, and processing.
  • RF radio frequency
  • the structure of the handset shown in FIG. 13 does not constitute a limitation to the handset, and may include more or less components than those illustrated, or some components may be combined, or different components may be arranged.
  • the RF circuit 1110 can be used for receiving and transmitting signals during the transmission or reception of information or during a call. For example, after receiving the downlink information of the base station, the processing is performed by the processor 1180. In addition, the uplink data is sent to the base station.
  • RF circuits include, but are not limited to, an antenna, at least one amplifier, a transceiver, a coupler, a Low Noise Amplifier (LNA), a duplexer, and the like.
  • LNA Low Noise Amplifier
  • RF circuitry 1110 can also communicate with the network and other devices via wireless communication. The above wireless communication may use any communication standard or protocol, including but not limited to Global System of Mobile communication (GSM), General Packet Radio Service (GPRS), Code Division Multiple Access (Code Division). Multiple Access (CDMA), Wideband Code Division Multiple Access (WCDMA), Long Term Evolution (LTE), e-mail, Short Messaging Service (SMS), and the like.
  • GSM Global System of Mobile communication
  • GPRS General
  • the memory 1120 can be used to store software programs and modules, and the processor 1180 executes various functional applications and data processing of the mobile phone by running software programs and modules stored in the memory 1120.
  • the memory 1120 may mainly include a storage program area and a storage data area, wherein the storage program area may store an operating system, an application required for at least one function (such as a sound playing function, an image playing function, etc.), and the like; the storage data area may be stored according to Data created by the use of the mobile phone (such as audio data, phone book, etc.).
  • memory 1120 can include high speed random access memory, and can also include non-volatile memory, such as at least one magnetic disk storage device, flash memory device, or other volatile solid state storage device.
  • the input unit 1130 can be configured to receive input numeric or character information and to generate key signal inputs related to user settings and function controls of the handset.
  • the input unit 1130 may include a touch panel 1131 and other input devices 1132.
  • the touch panel 1131 also referred to as a touch screen, can collect touch operations on or near the user (such as the user using a finger, a stylus, or the like on the touch panel 1131 or near the touch panel 1131. Operation), and drive the corresponding connecting device according to a preset program.
  • the touch panel 1131 may include two parts: a touch detection device and a touch controller.
  • the touch detection device detects the touch orientation of the user, and detects a signal brought by the touch operation, and transmits the signal to the touch controller; the touch controller receives the touch information from the touch detection device, converts the touch information into contact coordinates, and sends the touch information.
  • the processor 1180 is provided and can receive commands from the processor 1180 and execute them.
  • the touch panel 1131 can be implemented in various types such as resistive, capacitive, infrared, and surface acoustic waves.
  • the input unit 1130 may also include other input devices 1132.
  • other input devices 1132 may include, but are not limited to, one or more of a physical keyboard, function keys (such as volume control buttons, switch buttons, etc.), trackballs, mice, joysticks, and the like.
  • the display unit 1140 can be used to display information input by the user or information provided to the user as well as various menus of the mobile phone.
  • the display unit 1140 may include a display panel 1141.
  • the display panel 1141 may be configured in the form of a liquid crystal display (LCD), an organic light-emitting diode (OLED), or the like.
  • the touch panel 1131 can be overlaid on the display panel 1141. When the touch panel 1131 detects a touch operation thereon or nearby, the touch panel 1131 transmits to the processor 1180 to determine the type of the touch event, and then the processor 1180 is The type of touch event provides a corresponding visual output on display panel 1141.
  • touch panel 1131 and the display panel 1141 are used as two independent components to implement the input and input functions of the mobile phone in FIG. 10, in some embodiments, the touch panel 1131 and the display panel 1141 may be integrated. Realize the input and output functions of the phone.
  • the handset may also include at least one type of sensor 1150, such as a light sensor, motion sensor, and other sensors.
  • the light sensor may include an ambient light sensor and a proximity sensor, wherein the ambient light sensor may adjust the brightness of the display panel 1141 according to the brightness of the ambient light, and the light sensor may close the display panel 1141 and/or when the mobile phone moves to the ear. Or backlight.
  • the acceleration sensor can detect the acceleration of each direction (usually three axes). When it is still, it can detect the magnitude and direction of gravity. It can be used to identify the gesture of the mobile phone (such as horizontal and vertical screen switching, related games).
  • the mobile phone can also be configured with gyroscopes, barometers, hygrometers, thermometers, infrared sensors and other sensors, no longer repeat .
  • Audio circuitry 1160, speaker 1161, and microphone 1162 can provide an audio interface between the user and the handset.
  • the audio circuit 1160 can transmit the converted electrical data of the received audio data to the speaker 1161, and convert it into a sound signal output by the speaker 1161; on the other hand, the microphone 1162 converts the collected sound signal into an electrical signal, and the audio circuit 1160 After receiving, it is converted into audio data, and then processed by the audio data output processor 1180, transmitted to the other mobile phone via the RF circuit 1110, or outputted to the memory 1120 for further processing.
  • WiFi is a short-range wireless transmission technology.
  • the mobile phone can help users to send and receive emails, browse web pages and access streaming media through the WiFi module 1170, which provides users with wireless broadband Internet access.
  • FIG. 13 shows the WiFi module 1170, it can be understood that it does not belong to the essential configuration of the mobile phone, and may be omitted as needed within the scope of not changing the essence of the embodiment of the present application.
  • the processor 1180 is a control center for the handset, which connects various portions of the entire handset using various interfaces and lines, by executing or executing software programs and/or modules stored in the memory 1120, and invoking data stored in the memory 1120, The phone's various functions and processing data, so that the overall monitoring of the phone.
  • the processor 1180 may include one or more processing units; for example, the processor 1180 may integrate an application processor and a modem processor, where the application processor mainly processes an operating system, a user interface, an application, and the like.
  • the modem processor primarily handles wireless communications. It will be appreciated that the above described modem processor may also not be integrated into the processor 1180.
  • the handset also includes a power supply 1190 (such as a battery) that powers the various components.
  • a power supply 1190 (such as a battery) that powers the various components.
  • the power supply can be logically coupled to the processor 1180 via a power management system to manage charging, discharging, and power management functions through the power management system.
  • the mobile phone can also include a camera 1200, which can be a front camera or a rear camera.
  • the mobile phone may further include a Bluetooth module, a GPS module, and the like, and details are not described herein again.
  • the processor 1180 included in the mobile phone may be used to perform the foregoing method for transmitting the control information.
  • the implementation principle and technical effects are similar, and details are not described herein.
  • a computer program product includes one or more computer instructions.
  • the computer can be a general purpose computer, a special purpose computer, a computer network, or other programmable device.
  • the computer instructions can be stored in a computer readable storage medium or transferred from one computer readable storage medium to another computer readable storage medium, for example, computer instructions can be wired from a website site, computer, server or data center (eg Coax, fiber, digital subscriber line (DSL) or wireless (eg, infrared, wireless, microwave, etc.) is transmitted to another website, computer, server, or data center.
  • the computer readable storage medium can be any available media that can be accessed by a computer or a data storage device such as a server, data center, or the like that includes one or more available media.
  • Useful media can be magnetic media (eg, floppy disk, hard disk, magnetic tape), optical media (eg, DVD), or semiconductor media (eg, Solid State Disk (SSD)).

Abstract

本申请实施例提供一种控制信息的传输方法、终端设备和网络设备,该方法包括:终端设备确定第一时频资源,所述第一时频资源用于所述终端设备向网络设备发送物理上行共享信道;所述终端设备确定第二时频资源,所述第二时频资源用于所述终端设备向所述网络设备发送上行控制信息,所述第一时频资源包括所述第二时频资源;所述终端设备通过所述第二时频资源向所述网络设备发送所述上行控制信息。本申请实施例提供的控制信息的传输方法、终端设备和网络设备,终端设备可以使用第一时频资源上的部分或者全部时频资源发送上行控制信息,实现了在5G通信系统中的控制信息的发送。

Description

控制信息的传输方法、终端设备和网络设备
本申请要求于2017年06月16日提交中国专利局、申请号为201710459595.0、申请名称为“控制信息的传输方法和终端设备”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请实施例涉及通信技术,尤其涉及一种控制信息的传输方法、终端设备和网络设备。
背景技术
在未来5G通信系统中,终端设备可以基于网络设备动态调度或半静态调度的时频资源,向网络设备发送上行数据。终端设备向网络设备发送上行共享信道(Uplink Sshared Channel,UL-SCH)和/或上行控制信息(Uplink Control Information,UCI)的信道称为物理上行共享信道(Physical Uplink Shared Channel,PUSCH)。网络设备在采用动态的方式为终端设备调度发送PUSCH的时频资源时,终端设备需要在有上行数据传输时,先向网络设备发送调度请求。网络设备接收到调度请求后,会为终端设备分配发送PUSCH的时频资源,并通过控制信令向终端设备指示所分配的发送PUSCH的时频资源,以使得终端设备可以在该时频资源上向网络设备发送PUSCH。
为了支持上述动态调度及下行的多输入多输出(Multiple Input Multiple Output,MIMO)传输及混合自动重传等技术,终端设备需要向基站反馈上行控制信息(Uplink Control Information,UCI)。其中,上述UCI可以包括调度请求(Scheduling Request,SR)、信道状态信息(Channel State Information,CSI)、混合自动重传确认信息(Hybrid Automatic Repeat Request Acknowledgement,HARQ-ACK)等中的至少一种。上述HARQ-ACK可以包括确认应答信息(Acknowledgment,ACK)、否认应答信息(Negative Acknowledgement,NACK)和不连续发送(Discontinuous Transmission,DTX)中的至少一种。上述CSI可以包括信道质量指示(Channel Quality Indicator,CQI)、波束设置信息、秩指示(Rank Indication,RI)和预编码矩阵指示(Precoding Matrix Indicator,PMI)等中的至少一种。
然而,在5G通信系统中,终端设备如何在PUSCH上发送上述UCI,是一个亟待解决的问题。
发明内容
本申请实施例提供一种控制信息的传输方法、终端设备和网络设备,用于解决5G通信系统中的终端设备如何在PUSCH上发送UCI的问题。
第一方面,本申请实施例提供一种控制信息的传输方法,该方法包括:
终端设备确定第一时频资源,所述第一时频资源用于所述终端设备向网络设备发送物 理上行共享信道;
所述终端设备确定第二时频资源,所述第二时频资源用于所述终端设备向所述网络设备发送上行控制信息,所述第一时频资源包括所述第二时频资源;
所述终端设备通过所述第二时频资源向所述网络设备发送所述上行控制信息。
通过第一方面提供的控制信息的传输方法,终端设备在确定发送物理上行信道的第一时频资源之后,可以从第一时频资源中确定出用于发送上行控制信息的第二时频资源,以使得终端设备可以使用第一时频资源上的部分或者全部时频资源发送上行控制信息,实现了在5G通信系统中的控制信息的发送。
在一种可能的实施方式中,所述上行控制信息包括下述至少一种信息:混合自动重传确认信息HARQ-ACK、信道状态信息CSI;
所述CSI包括下述至少一项:信道质量指示CQI、波束设置信息、预编码矩阵指示PMI、秩指示RI。
通过第一方面提供的控制信息的传输方法,终端设备在确定发送物理上行信道的第一时频资源之后,可以从第一时频资源中确定出用于发送任一上行控制信息的第二时频资源,以使得终端设备可以使用第一时频资源上的部分或者全部时频资源发送上行控制信息,实现了在5G通信系统中的控制信息的发送。
在一种可能的实施方式中,所述第二时频资源包括N块在频率上的资源,其中,N的取值与所述第一时频资源的频率宽度满足第一映射关系,所述第一映射关系包括所述第一时频资源的频率宽度与所述N的取值之间的对应关系,所述N为大于或等于1的正整数。
通过该可能的实施方式提供的控制信息的传输方法,使得终端设备可以在第一时频资源的频率宽度较宽时,直接使用分散到第一时频资源的多个频域位置的N块资源发送UCI,即可获取到UCI的频率分集增益,进而提高了UCI的传输性能。因此,终端设备不管是采用基于SC-FDMA的波形,还是采用基于CP-OFDM的波形发送上述UCI,只要是在包括分散到第一时频资源的多个频域位置的N块资源的第二时频资源上发送UCI,都可以获取到频率分集增益,进而提高了UCI的传输性能。
在一种可能的实施方式中,所述N块在频率上的每一块资源的频率起始位置相对于所述第一时频资源的频率起始位置的偏移值是预设的;
或者,所述N块在频率上的每一块资源的频率起始位置相对于所述第一时频资源的频率起始位置的偏移值,与,所述第一时频资源的频率宽度满足第二映射关系,所述第二映射关系包括所述N块在频率上的每一块资源的频率起始位置相对于所述第一时频资源的频率起始位置的偏移值与所述第一时频资源的频率宽度之间的对应关系。
通过该可能的实施方式提供的控制信息的传输方法,通过约束N块在频率上的每一块资源的频率起始位置,使得终端设备可以在第一时频资源的频率宽度较宽时,直接使用分散到第一时频资源的多个频域位置的N块资源发送UCI,即可获取到UCI的频率分集增益,进而提高了UCI的传输性能。因此,终端设备不管是采用基于SC-FDMA的波形,还是采用基于CP-OFDM的波形发送上述UCI,只要是在包括分散到第一时频资源的多个频域位置的N块资源的第二时频资源上发送UCI,都可以获取到频率分集增益,进而提高了UCI的传输性能。
在一种可能的实施方式中,所述终端设备确定第二时频资源,包括:
所述终端设备接收所述网络设备发送的第一信息,所述第一信息用于指示所述第二时频资源包括N块在频率上的资源,以及,所述N块资源中的每一块资源的频率起始位置,所述N为大于或等于1的正整数;
所述终端设备根据所述第一信息,确定所述第二时频资源的N块资源中的每一块资源的频率起点位置。
通过该可能的实施方式提供的控制信息的传输方法,使得终端设备确定N块在频率上的每一块资源的频率起始位置的方式灵活多样,丰富了应用场景。
在一种可能的实施方式中,所述第二时频资源的时间长度为第一长度,其中,所述第一长度与所述第一时频资源的时间长度满足第三映射关系,所述第三映射关系包括所述第一时频资源的时间长度和所述第一长度的对应关系。
通过该可能的实施方式提供的控制信息的传输方法,使得终端设备在确定发送物理上行信道的第一时频资源之后,可以从第一时频资源中确定出与所述第一时频资源的时间长度满足第三映射关系的第二时频资源,以使得终端设备可以使用第一时频资源上的部分或者全部时频资源发送上行控制信息,实现了在5G通信系统中的控制信息的发送。
在一种可能的实施方式中,所述终端设备确定第二时频资源,包括:
所述终端设备接收所述网络设备发送的第二信息,所述第二信息用于指示所述第二时频资源的时间长度为第一长度;
所述终端设备根据所述第二信息,确定所述第二时频资源的时间长度为第一长度。
通过该可能的实施方式提供的控制信息的传输方法,使得终端设备确定第二时频资源的时间长度的方式灵活多样,丰富了应用场景。
在一种可能的实施方式中,所述第二时频资源包括M块在时间上的资源,其中,M的取值与所述第一时频资源的时间长度满足第四映射关系,所述第四映射关系包括所述第一时频资源的时间长度和所述M的取值之间的对应关系,所述M为大于或等于1的正整数。
通过该可能的实施方式提供的控制信息的传输方法,使得终端设备可以在使用分散到第一时频资源的多个时间位置的M块资源发送UCI,以减少对PUSCH上的UL-SCH的影响。
在一种可能的实施方式中,所述M块在时间上的资源中的每一块资源的时间起始位置相对于所述第一时频资源的时间起始位置的偏移值是预设的,或者,
所述M块在时间上的资源中的每一块资源的时间起始位置相对于所述第一时频资源的时间起始位置的偏移值,与,所述第一时频资源的时间长度满足第五映射关系,所述第五映射关系包括所述M块在时间上的资源中的每一块资源的时间起始位置相对于所述第一时频资源的时间起始位置的偏移值与所述第一时频资源的时间长度之间的对应关系。
通过该可能的实施方式提供的控制信息的传输方法,使得终端设备可以在使用分散到第一时频资源的多个时间位置的M块资源发送UCI,以减少对PUSCH上的UL-SCH的影响。
在一种可能的实施方式中,所述终端设备确定第二时频资源,包括:
所述终端设备接收所述网络设备发送的第三信息,所述第三信息用于指示所述第二时频资源包括M块时间上的资源,以及,所述M块资源中的每一块资源的时间起点位置,所述M为大于或等于1的正整数;
所述终端设备根据所述第三信息,确定所述第二时频资源的M块资源中的每一块资源的时间起点位置。
通过该可能的实施方式提供的控制信息的传输方法,使得终端设备确定第二时频资源的M块资源中的每一块资源的时间起点位置的方式灵活多样,丰富了应用场景。
在一种可能的实施方式中,所述第二时频资源包括L个时频资源单元,所述L的取值根据比例因子确定;
所述上行控制信息对应第一业务时,所述比例因子为第一取值;
所述上行控制信息对应第二业务时,所述比例因子为第二取值;
所述第一业务与所述第二业务的时延要求和/或可靠性要求不同。
通过该可能的实施方式提供的控制信息的传输方法,通过设置比例因子,可以调整终端设备在PUSCH中发送UL-SCH的时频单元的大小,使得PUSCH中发送UL-SCH和发送UCI所对应的调制编码方式不同,从而满足UL-SCH和UCI不同的目标接收性能的需求。
在一种可能的实施方式中,所述终端设备确定第二时频资源,包括:
所述终端设备接收所述网络设备发送的第四信息,所述第四信息用于指示所述比例因子的第一取值和所述比例因子的第二取值,以及所述比例因子的第一取值和第二取值与所述上行控制信息所属的业务的对应关系;
所述终端设备根据所述第四信息和所述上行控制信息所属的业务,确定所述L的取值。
通过该可能的实施方式提供的控制信息的传输方法,使得终端设备确定第二时频资源的L个时频资源单元的方式灵活多样,丰富了应用场景。
在一种可能的实施方式中,所述终端设备通过所述第二时频资源向所述网络设备发送所述上行控制信息之前,包括:
所述终端设备按照预设规则的映射方式,将所述上行控制信息映射到所述第二时频资源上。
通过该可能的实施方式提供的控制信息的传输方法,使得终端设备可以根据预设规则的映射方式,将所述上行控制信息映射到所述第二时频资源上,以使得终端设备可以使用第一时频资源上的部分或者全部时频资源发送上行控制信息,实现了在5G通信系统中的控制信息的发送。
在一种可能的实施方式中,若所述上行控制信息包括至少两种信息,所述终端设备将所述至少两种信息依次级联后映射到所述第二时频资源上。
通过该可能的实施方式提供的控制信息的传输方法,使得终端设备可以将上行控制信息的至少两种信息依次级联后映射到所述第二时频资源上,以使得终端设备可以使用第一时频资源上的部分或者全部时频资源发送上行控制信息,实现了在5G通信系统中的控制信息的发送。
第二方面,本申请实施例提供一种控制信息的传输方法,该方法包括:
网络设备确定第一时频资源,所述第一时频资源用于终端设备向所述网络设备发送物理上行共享信道;
所述网络设备确定第二时频资源,所述第二时频资源用于所述终端设备向所述网络设备发送上行控制信息,所述第一时频资源包括所述第二时频资源;
所述网络设备在所述第二时频资源上接收所述终端设备发送的所述上行控制信息。
在一种可能的实施方式中,所述上行控制信息包括下述至少一种信息:混合自动重传确认信息HARQ-ACK、信道状态信息CSI;
所述CSI包括下述至少一项:信道质量指示CQI、波束设置信息、预编码矩阵指示PMI、秩指示RI。
在一种可能的实施方式中,所述第二时频资源包括N块在频率上的资源,其中,N的取值与所述第一时频资源的频率宽度满足第一映射关系,所述第一映射关系包括所述第一时频资源的频率宽度与所述N的取值之间的对应关系,所述N为大于或等于1的正整数。
在一种可能的实施方式中,所述N块在频率上的每一块资源的频率起始位置相对于所述第一时频资源的频率起始位置的偏移值是预设的;
或者,所述N块在频率上的每一块资源的频率起始位置相对于所述第一时频资源的频率起始位置的偏移值,与,所述第一时频资源的频率宽度满足第二映射关系,所述第二映射关系包括所述N块在频率上的每一块资源的频率起始位置相对于所述第一时频资源的频率起始位置的偏移值与所述第一时频资源的频率宽度之间的对应关系。
在一种可能的实施方式中,所述方法还包括:
所述网络设备向所述终端设备发送第一信息,所述第一信息用于指示所述第二时频资源包括N块在频率上的资源,以及,所述N块资源中的每一块资源的频率起始位置,所述N为大于或等于1的正整数。
在一种可能的实施方式中,所述第二时频资源的时间长度为第一长度,其中,所述第一长度与所述第一时频资源的时间长度满足第三映射关系,所述第三映射关系包括所述第一时频资源的时间长度和所述第一长度的对应关系。
在一种可能的实施方式中,所述方法还包括:
所述网络设备向所述终端设备发送第二信息,所述第二信息用于指示所述第二时频资源的时间长度为第一长度。
在一种可能的实施方式中,所述第二时频资源包括M块在时间上的资源,其中,M的取值与所述第一时频资源的时间长度满足第四映射关系,所述第四映射关系包括所述第一时频资源的时间长度和所述M的取值之间的对应关系,所述M为大于或等于1的正整数。
在一种可能的实施方式中,所述M块在时间上的资源中的每一块资源的时间起始位置相对于所述第一时频资源的时间起始位置的偏移值是预设的,或者,
所述M块在时间上的资源中的每一块资源的时间起始位置相对于所述第一时频资源的时间起始位置的偏移值,与,所述第一时频资源的时间长度满足第五映射关系,所述第五映射关系包括所述M块在时间上的资源中的每一块资源的时间起始位置相对于所述第一时频资源的时间起始位置的偏移值与所述第一时频资源的时间长度之间的对应关系。
在一种可能的实施方式中,所述方法还包括:
所述网络设备向所述终端设备发送第三信息,所述第三信息用于指示所述第二时频资源包括M块时间上的资源,以及,所述M块资源中的每一块资源的时间起点位置,所述M为大于或等于1的正整数。
在一种可能的实施方式中,所述第二时频资源包括L个时频资源单元,所述L的取值根据比例因子确定;
所述上行控制信息对应第一业务时,所述比例因子为第一取值;
所述上行控制信息对应第二业务时,所述比例因子为第二取值;
所述第一业务与所述第二业务的时延要求和/或可靠性要求不同。
在一种可能的实施方式中,所述方法还包括:
所述网络设备向所述终端设备发送第四信息,所述第四信息用于指示所述比例因子的第一取值和所述比例因子的第二取值,以及所述比例因子的第一取值和第二取值与所述上行控制信息所属的业务的对应关系。
上述第二方面以及第二方面的各可能的实施方式所提供的控制信息的传输方法,其有益效果可以参见上述第一方面和第一方面的各可能的实施方式所带来的有益效果,在此不再赘述。
第三方面,本申请实施例提供一种终端设备,该终端设备包括:
处理模块,用于确定第一时频资源和第二时频资源,所述第一时频资源用于所述终端设备向网络设备发送物理上行共享信道,所述第二时频资源用于所述终端设备向所述网络设备发送上行控制信息,所述第一时频资源包括所述第二时频资源;
发送模块,用于通过所述第二时频资源向所述网络设备发送所述上行控制信息。
在一种可能的实施方式中,所述上行控制信息包括下述至少一种信息:混合自动重传确认信息HARQ-ACK、信道状态信息CSI;
所述CSI包括下述至少一项:信道质量指示CQI、波束设置信息、预编码矩阵指示PMI、秩指示RI。
在一种可能的实施方式中,所述第二时频资源包括N块在频率上的资源,其中,N的取值与所述第一时频资源的频率宽度满足第一映射关系,所述第一映射关系包括所述第一时频资源的频率宽度与所述N的取值之间的对应关系,所述N为大于或等于1的正整数。
在一种可能的实施方式中,所述N块在频率上的每一块资源的频率起始位置相对于所述第一时频资源的频率起始位置的偏移值是预设的;
或者,所述N块在频率上的每一块资源的频率起始位置相对于所述第一时频资源的频率起始位置的偏移值,与,所述第一时频资源的频率宽度满足第二映射关系,所述第二映射关系包括所述N块在频率上的每一块资源的频率起始位置相对于所述第一时频资源的频率起始位置的偏移值与所述第一时频资源的频率宽度之间的对应关系。
在一种可能的实施方式中,所述终端设备,还包括:
接收模块,用于接收所述网络设备发送的第一信息,所述第一信息用于指示所述第二时频资源包括N块在频率上的资源,以及,所述N块资源中的每一块资源的频率起始位置,所述N为大于或等于1的正整数;
所述处理模块,具体用于根据所述第一信息,确定所述第二时频资源的N块资源中的每一块资源的频率起点位置。
在一种可能的实施方式中,所述第二时频资源的时间长度为第一长度,其中,所述第一长度与所述第一时频资源的时间长度满足第三映射关系,所述第三映射关系包括所述第一时频资源的时间长度和所述第一长度的对应关系。
在一种可能的实施方式中,所述终端设备,还包括:
接收模块,用于接收所述网络设备发送的第二信息,所述第二信息用于指示所述第二 时频资源的时间长度为第一长度;
所述处理模块,具体用于根据所述第二信息,确定所述第二时频资源的时间长度为第一长度。
在一种可能的实施方式中,所述第二时频资源包括M块在时间上的资源,其中,M的取值与所述第一时频资源的时间长度满足第四映射关系,所述第四映射关系包括所述第一时频资源的时间长度和所述M的取值之间的对应关系,所述M为大于或等于1的正整数。
在一种可能的实施方式中,所述M块在时间上的资源中的每一块资源的时间起始位置相对于所述第一时频资源的时间起始位置的偏移值是预设的,或者,
所述M块在时间上的资源中的每一块资源的时间起始位置相对于所述第一时频资源的时间起始位置的偏移值,与,所述第一时频资源的时间长度满足第五映射关系,所述第五映射关系包括所述M块在时间上的资源中的每一块资源的时间起始位置相对于所述第一时频资源的时间起始位置的偏移值与所述第一时频资源的时间长度之间的对应关系。
在一种可能的实施方式中,所述终端设备,还包括:
接收模块,用于接收所述网络设备发送的第三信息,所述第三信息用于指示所述第二时频资源包括M块时间上的资源,以及,所述M块资源中的每一块资源的时间起点位置,所述M为大于或等于1的正整数;
所述处理模块,具体用于根据所述第三信息,确定所述第二时频资源的M块资源中的每一块资源的时间起点位置。
在一种可能的实施方式中,所述第二时频资源包括L个时频资源单元,所述L的取值根据比例因子确定;
所述上行控制信息对应第一业务时,所述比例因子为第一取值;
所述上行控制信息对应第二业务时,所述比例因子为第二取值;
所述第一业务与所述第二业务的时延要求和/或可靠性要求不同。
在一种可能的实施方式中,所述终端设备,还包括:
接收模块,用于接收所述网络设备发送的第四信息,所述第四信息用于指示所述比例因子的第一取值和所述比例因子的第二取值,以及所述比例因子的第一取值和第二取值与所述上行控制信息所属的业务的对应关系;
所述处理模块,具体用于根据所述第四信息和所述上行控制信息所属的业务,确定所述L的取值。
在一种可能的实施方式中,所述处理模块,还用于在所述发送模块通过所述第二时频资源向所述网络设备发送所述上行控制信息之前,按照预设规则的映射方式,将所述上行控制信息映射到所述第二时频资源上。
在一种可能的实施方式中,所述处理模块,还用于在所述上行控制信息包括至少两种信息,将所述至少两种信息依次级联后映射到所述第二时频资源上。
上述第三方面以及第三方面的各可能的实施方式所提供的终端设备,其有益效果可以参见上述第一方面和第一方面的各可能的实施方式所带来的有益效果,在此不再赘述。
第四方面,本申请实施例提供一种网络设备,该网络设备包括:
处理模块,用于确定第一时频资源和第二时频资源,所述第一时频资源用于终端设备向所述网络设备发送物理上行共享信道,所述第二时频资源用于所述终端设备向所述网络 设备发送上行控制信息,所述第一时频资源包括所述第二时频资源;
接收模块,用于在所述第二时频资源上接收所述终端设备发送的所述上行控制信息。
在一种可能的实施方式中,所述上行控制信息包括下述至少一种信息:混合自动重传确认信息HARQ-ACK、信道状态信息CSI;
所述CSI包括下述至少一项:信道质量指示CQI、波束设置信息、预编码矩阵指示PMI、秩指示RI。
在一种可能的实施方式中,所述第二时频资源包括N块在频率上的资源,其中,N的取值与所述第一时频资源的频率宽度满足第一映射关系,所述第一映射关系包括所述第一时频资源的频率宽度与所述N的取值之间的对应关系,所述N为大于或等于1的正整数。
在一种可能的实施方式中,所述N块在频率上的每一块资源的频率起始位置相对于所述第一时频资源的频率起始位置的偏移值是预设的;
或者,所述N块在频率上的每一块资源的频率起始位置相对于所述第一时频资源的频率起始位置的偏移值,与,所述第一时频资源的频率宽度满足第二映射关系,所述第二映射关系包括所述N块在频率上的每一块资源的频率起始位置相对于所述第一时频资源的频率起始位置的偏移值与所述第一时频资源的频率宽度之间的对应关系。
在一种可能的实施方式中,所述网络设备,还包括:
发送模块,用于向所述终端设备发送第一信息,所述第一信息用于指示所述第二时频资源包括N块在频率上的资源,以及,所述N块资源中的每一块资源的频率起始位置,所述N为大于或等于1的正整数。
在一种可能的实施方式中,所述第二时频资源的时间长度为第一长度,其中,所述第一长度与所述第一时频资源的时间长度满足第三映射关系,所述第三映射关系包括所述第一时频资源的时间长度和所述第一长度的对应关系。
在一种可能的实施方式中,所述网络设备,还包括:
发送模块,用于向所述终端设备发送第二信息,所述第二信息用于指示所述第二时频资源的时间长度为第一长度。
在一种可能的实施方式中,所述第二时频资源包括M块在时间上的资源,其中,M的取值与所述第一时频资源的时间长度满足第四映射关系,所述第四映射关系包括所述第一时频资源的时间长度和所述M的取值之间的对应关系,所述M为大于或等于1的正整数。
在一种可能的实施方式中,所述M块在时间上的资源中的每一块资源的时间起始位置相对于所述第一时频资源的时间起始位置的偏移值是预设的,或者,
所述M块在时间上的资源中的每一块资源的时间起始位置相对于所述第一时频资源的时间起始位置的偏移值,与,所述第一时频资源的时间长度满足第五映射关系,所述第五映射关系包括所述M块在时间上的资源中的每一块资源的时间起始位置相对于所述第一时频资源的时间起始位置的偏移值与所述第一时频资源的时间长度之间的对应关系。
在一种可能的实施方式中,所述网络设备,还包括:
发送模块,用于向所述终端设备发送第三信息,所述第三信息用于指示所述第二时频资源包括M块时间上的资源,以及,所述M块资源中的每一块资源的时间起点位置,所述M为大于或等于1的正整数。
在一种可能的实施方式中,所述第二时频资源包括L个时频资源单元,所述L的取值 根据比例因子确定;
所述上行控制信息对应第一业务时,所述比例因子为第一取值;
所述上行控制信息对应第二业务时,所述比例因子为第二取值;
所述第一业务与所述第二业务的时延要求和/或可靠性要求不同。
在一种可能的实施方式中,所述网络设备,还包括:
发送模块,用于向所述终端设备发送第四信息,所述第四信息用于指示所述比例因子的第一取值和所述比例因子的第二取值,以及所述比例因子的第一取值和第二取值与所述上行控制信息所属的业务的对应关系。
上述第四方面以及第四方面的各可能的实施方式所提供的网络设备,其有益效果可以参见上述第二方面和第二方面的各可能的实施方式所带来的有益效果,在此不再赘述。
第五方面,本申请实施例提供一种终端设备,所述终端设备包括:处理器、存储器、发送器和接收器;所述发送器和接收器耦合至所述处理器,所述处理器控制所述发送器的发送动作,所述处理器控制所述接收器的接收动作;
其中,存储器用于存储计算机可执行程序代码,程序代码包括指令;当处理器执行指令时,指令使所述终端设备执行如第一方面和第一方面的各可能的实施方式所提供的数据传输方法。
第六方面,本申请实施例提供一种网络设备,所述网络设备包括:处理器、存储器、接收器和发送器;所述发送器和接收器耦合至所述处理器,所述处理器控制所述发送器的发送动作,所述处理器控制所述接收器的接收动作;
其中,存储器用于存储计算机可执行程序代码,程序代码包括指令;当处理器执行指令时,指令使所述网络设备执行如第二方面和第二方面的各可能的实施方式所提供的数据传输方法。
本申请实施例第七方面提供一种终端设备,包括用于执行以上第一方面的方法的至少一个处理元件(或芯片)。
本申请实施例第八方面提供一种网络设备,包括用于执行以上第二方面的方法的至少一个处理元件(或芯片)。
本申请实施例第九方面提供一种程序,该程序在被处理器执行时用于执行以上第一方面的方法。
本申请实施例第十方面提供一种程序,该程序在被处理器执行时用于执行以上第二方面的方法。
本申请实施例第十一方面提供一种程序产品,例如计算机可读存储介质,包括第九方面的程序。
本申请实施例第十二方面提供一种程序产品,例如计算机可读存储介质,包括第十方面的程序。
本申请实施例第十三方面提供一种计算机可读存储介质,计算机可读存储介质中存储有指令,当其在计算机上运行时,使得计算机执行上述第一方面的方法。
本申请实施例第十四方面提供一种计算机可读存储介质,计算机可读存储介质中存储有指令,当其在计算机上运行时,使得计算机执行上述第二方面的方法。
本申请实施例提供的控制信息的传输方法、终端设备和网络设备,终端设备在确定发 送物理上行信道的第一时频资源之后,可以从第一时频资源中确定出用于发送上行控制信息的第二时频资源,以使得终端设备可以使用第一时频资源上的部分或者全部时频资源发送上行控制信息,实现了在5G通信系统中的控制信息的发送。
附图说明
图1为本申请实施例所涉及的一种通信系统的框架图;
图2为本申请实施例提供的一种控制信息的传输方法的流程示意图;
图3为本申请实施例提供的一种第二时频资源的示意图;
图4为本申请实施例提供的另一种第二时频资源的示意图;
图5为本申请实施例提供的又一种第二时频资源的示意图;
图6为本申请实施例提供的又一种第二时频资源的示意图;
图7为本申请实施例提供的又一种第二时频资源的示意图;
图8为本申请实施例提供的又一种第二时频资源的示意图;
图9为本申请实施例提供的一种终端设备的结构示意图;
图10为本申请实施例提供的一种网络设备的结构示意图;
图11为本申请实施例提供的另一种终端设备的结构示意图;
图12为本申请实施例提供的另一种网络设备的结构示意图;
图13为本申请实施例提供的终端设备为手机时的结构框图。
具体实施方式
在未来5G通信系统中,终端设备可以基于网络设备动态调度或半静态调度的发送PUSCH的时频资源,向网络设备发送PUSCH。网络设备在采用动态的方式为终端设备调度发送PUSCH的时频资源时,终端设备需要在有上行数据传输时,先向网络设备发送调度请求。网络设备接收到调度请求后,会为终端设备分配发送PUSCH的时频资源,并通过控制信令向终端设备指示所分配的发送PUSCH的时频资源,以使得终端设备可以在该时频资源上向网络设备发送PUSCH。
为了支持上述动态调度及下行的MIMO传输及混合自动重传等技术,终端设备需要向基站反馈UCI。其中,上述UCI可以包括SR、CSI、HARQ-ACK等中的至少一种。上述HARQ-ACK可以包括ACK、NACK和DTX中的至少一种。上述CSI可以包括CQI、波束设置信息、RI和PMI等中的至少一种。上述波束设置信息可以包括准共址(Quasi Co-Location,QCL)指示,发射波束信息、收发波束对信息等中的至少一种。或者,上述波束设置信息可以包括参考信号索引、参考信号索引对应的信息等中的至少一种。其中,参考信号索引对应的信息可以包括:参考信号接收功率(Reference Signal Receiving Power,RSRP)、参考信号接收质量(Reference Signal Receiving Quality,RSRQ)。
然而,在5G通信系统中,终端设备如何在PUSCH上发送上述UCI,是一个亟待解决的问题。
图1为本申请实施例所涉及的一种通信系统的框架图。如图1所示,该通信系统包括:网络设备01和终端设备02。网络设备01和终端设备02可以使用一个或多个空口技术进 行通信。其中,
网络设备:可以是基站,或者各种无线接入点,或者可以是指接入网中在空中接口上通过一个或多个扇区与终端设备进行通信的设备。基站可用于将收到的空中帧与IP分组进行相互转换,作为无线终端与接入网的其余部分之间的路由器,其中接入网的其余部分可包括网际协议(IP)网络。基站还可协调对空中接口的属性管理。例如,基站可以是全球移动通讯(Global System of Mobile communication,GSM)或码分多址(Code Division Multiple Access,CDMA)中的基站(Base Transceiver Station,BTS),也可以是宽带码分多址(Wideband Code Division Multiple Access,WCDMA)中的基站(NodeB,NB),还可以是长期演进(Long Term Evolution,LTE)中的演进型基站(Evolutional Node B,eNB或eNodeB),或者中继站或接入点,或者未来5G网络中的基站(gNB)等,在此并不限定。
终端设备:可以是无线终端也可以是有线终端,无线终端可以是指向用户提供语音和/或其他业务数据连通性的设备,具有无线连接功能的手持式设备、或连接到无线调制解调器的其他处理设备。无线终端可以经无线接入网(Radio Access Network,RAN)与一个或多个核心网进行通信,无线终端可以是移动终端,如移动电话(或称为“蜂窝”电话)和具有移动终端的计算机,例如,可以是便携式、袖珍式、手持式、计算机内置的或者车载的移动装置,它们与无线接入网交换语言和/或数据。例如,个人通信业务(Personal Communication Service,PCS)电话、无绳电话、会话发起协议(Session Initiation Protocol,SIP)话机、无线本地环路(Wireless Local Loop,WLL)站、个人数字助理(Personal Digital Assistant,PDA)等设备。无线终端也可以称为系统、订户单元(Subscriber Unit)、订户站(Subscriber Station),移动站(Mobile Station)、移动台(Mobile)、远程站(Remote Station)、远程终端(Remote Terminal)、接入终端(Access Terminal)、用户终端(User Terminal)、用户代理(User Agent)、用户设备(User Device or User Equipment),在此不作限定。
需要说明的是,上述通信系统可以是LTE通信系统,也可以是未来其他通信系统,在此不作限制。
下面以该通信系统为例,通过一些实施例对本申请实施例的技术方案进行详细说明。下面这几个实施例可以相互结合,对于相同或相似的概念或过程可能在某些实施例不再赘述。
图2为本申请实施例提供的一种控制信息的传输方法的流程示意图。本实施例涉及的是终端设备如何在发送数据共享信道时所使用的时频资源上,确定出发送控制信道的时频资源的过程。如图2所示,该方法可以包括:
S101、终端设备确定第一时频资源,其中,第一时频资源用于终端设备向网络设备发送PUSCH。
具体的,上述PUSCH用于终端设备向网络设备发送UL-SCH和/或UCI的物理信道。本申请实施例对于PUSCH的其它特征不做限定。本领域技术人员可以理解的是,上述物理信道、UL-SCH和UCI在5G移动通信系统可能仍然沿用PUSCH、UL-SCH和UCI的术语,也可能采用其他的术语。因此,本申请实施例对PUSCH、UL-SCH和UCI在各个通信系统中的命名不作限定。本申请实施例以PUSCH、UL-SCH和UCI为例进行说明。终端设备可以在PUSCH上发送UL-SCH和或UCI。
在本实施例中,上述终端设备可以根据网络设备发送的、用于指示第一时频资源的调度信息,确定第一时频资源。例如,终端设备可以确定第一时频资源在所支持的上行带宽中的频率位置、在时间上的位置等。可选的,网络设备可以将上述调度信息携带在下行控制信道(例如:物理下行控制信道)中发送给终端设备。或者,网络设备可以将上述调度信息携带在其它高层的配置信息中。
S102、终端设备确定第二时频资源,其中,第二时频资源用于终端设备向网络设备发送UCI,第一时频资源包括第二时频资源。
其中,上述所说的UCI可以包括HARQ-ACK、信道状态信息CSI中的至少一种。其中,CSI包括下述至少一项:CQI、波束设置信息、PMI、RI。第一时频资源中的其它时频资源用于终端设备发送上行共享信道UL-SCH。UL-SCH中承载的信息包括终端设备的上行业务数据。
一方面,终端设备的能力可能不支持物理上行控制信道和PUSCH同时发送;另一方面,在物理上行控制信道和PUSCH发送的信号之间的互调干扰(Intermodulation Interference,IMD)会导致两个信道的接收性能较差。因此,终端设备可以在发送PUSCH的时频资源中确定一部分资源(第二时频资源)用于发送UCI,剩余的时频资源发送UL-SCH。或者,网络设备也可以通过动态调度方式触发终端设备在PUSCH上发送UCI。也就是说,在本实施例中,上述UCI可以占用第一时频资源中的部分时频资源(即第二时频资源)发送。因此,上述终端设备在确定第一时频资源之后,可以从第一时频资源中确定出用于发送UCI的第二时频资源。可选的,在终端设备发送的UCI包括多种类型时,终端设备可以在第一时频资源中,为每种类型的UCI确定与其对应的第二时频资源。
S103、终端设备通过第二时频资源向网络设备发送UCI。
具体的,上述终端设备在从第一时频资源中确定第二时频资源之后,可以通过该第二时频资源向网络设备发送上述UCI,通过第一时频资源除第二时频资源之外的时频资源发送UL-SCH。通过这种方式,可以在5G通信系统中实现PUSCH上发送UCI。
相应地,上述网络设备在接收UCI时,也可以先确定终端设备发送PUSCH的第一时频资源,进而确定发送UCI的第二时频资源,从而使得网络设备可以在第二时频资源上接收终端设备发送的UCI,在第一时频资源除第二时频资源之外的时频资源上接收终端设备发送的UL-SCH。
本申请实施例提供的控制信息的传输方法,上述终端设备在确定发送物理上行信道的第一时频资源之后,可以从第一时频资源中确定出用于发送上行控制信息的第二时频资源,以使得终端设备可以使用第一时频资源上的部分或者全部时频资源发送上行控制信息,实现了在5G通信系统中的控制信息的发送。
在5G通信系统中,为满足上行数据的管道化处理流程,DMRS一般位于PUSCH中靠前的符号。因此,上述终端设备可以基于如下因素,确定用于发送UCI的第二时频资源。具体地:
首先,由于在靠近DMRS的符号上发送UCI可以获得较好的信道估计性能。因此,可以考虑将靠近DMRS的符号上的资源作为第二时频资源,以确保终端设备在使用第二时频资源发送UCI时,可以提高控制信息的解调性能。
例如,上述UCI例如可以为包括可靠性要求较高和时延要求较高的HARQ-ACK的UCI。通过将靠近DMRS的符号上的资源作为第二时频资源,可以使HARQ-ACK获得最精确的信道估计,同时还可以使网络设备尽早获得该UCI,以提高系统的整体时延性能。示例性的,终端设备尽早反馈HARQ-ACK可使得网络设备尽早根据该HARQ-ACK的反馈信息处理后续的下行传输,缩短了下行传输的时延。
例如,为了在苛刻的时延要求下满足可靠性,可以采用多次重复传输的技术。根据下行信道质量在下行数据发送之前确定需要重传的次数和调制编码方式。例如,通过4次重复传输来获取可靠性增益。理论上,白噪声信道下,数据每重复一次可获取3dB的可靠性提升。重复次数可以是预先配置的,也可以是由ACK反馈来实现终止。但如果多次重复传输均采用相同的调制与编码策略(Modulation and Coding Scheme,MCS),则无法应对信道质量随时间的变化情况,导致重复传输对可靠性提升效果减弱。因此,一种信道状态反馈方式可以为:终端设备收到重传(Repetition)数据后,向网络设备反馈CSI。网络设备接收到该CSI后,就会基于该CSI调整MCS。不同于终端设备周期性发送的CSI,这里所说的CSI可以为一种低时延CSI(Low Latency-CSI,LL-CSI)。LL-CSI是终端设备接收下行数据后根据该下行数据对应的解调参考信号生成的,是不需要终端设备对该下行数据进行数据解调解码就可以快速获得并反馈的信道质量信息。LL-CSI由终端设备接收到下行数据触发,并且LL-CSI是基于下行数据对应的解调参考信号测量得到的。在终端设备对该下行数据进行数据解调解码之前即可向网络设备反馈LL-CSI,便于网络设备在后续重复传输或者重传时及时调整该下行数据的调度方式,特别是对于下行的超可靠低时延通信数据来说,LL-CSI可以满足URLLC数据的低时延和高可靠性需求。例如,LL-CSI可以是MCS相对于终端设备之前使用的MCS的偏移值或CQI相对于终端设备之前上报的CQI的偏移值等。当上述UCI为包括LL-CSI的UCI时,通过将靠近DMRS的符号上的资源作为第二时频资源,可以使LL-CSI的传输获得最精确的信道估计,同时还可以使网络设备尽早获得该LL-CSI,以即使调整下行数据传输的调度信息。
例如,上述所说的UCI例如可以为包括CSI中RI的UCI。由于PUSCH中发送的UL-SCH在第一时频资源上占用的资源依赖于CSI占用了多少资源。即,在第一时频资源中减去CSI占用的资源,剩下的资源才是PUSCH中被UL-SCH占用的资源。因此,网络设备需要根据CSI所占用的资源,确定第一时频资源中用于UL-SCH的资源,以对在PUSCH上传输的UL-SCH进行解码。另外,由于CSI中的CQI/PMI的比特数依赖于半静态配置的RI,且RI的比特数是终端设备半静态确定的。所以,网络设备需要尽早检测出RI,才能确定CQI/PMI的比特数,进而确定UL-SCH占用的资源,以解调PUSCH中传输的UL-SCH。通过上述将靠近DMRS的符号上的资源作为第二时频资源,以将UCI映射到靠近DMRS的符号上的资源方式,可以使网络设备尽早解调得到RI,从而确定CQI/PMI的比特数,以及解调PUSCH上传输的UL-SCH,提高数据发送的效率。需要说明的是,由于上述HARQ-ACK在第一时频资源上采用打孔的方式进行传输,所以HARQ-ACK并不会对PUSCH中传输的UL-SCH的解码造成影响。
其次,未来5G通信系统支持两种上行信号波形,分别为:基于单载波频分多址(Single-carrier Frequency-Division Multiple Access,SC-FDMA)的波形、基于循环前缀的正交频分复用(Cyclic Prefix Orthogonal Frequency Division Multiplexing,CP-OFDM)的波 形。在采用SC-FDMA的波形发送UCI时,通过一些离散傅里叶变换的处理,可以将UCI分散到第一时频资源的所有频率资源上,以获取频率分集增益,满足UCI对传输性能的需求。但是,在采用CP-OFDM的波形发送UCI时,UCI在第一时频资源上的映射位置即为UCI在频域上传输的位置。因而,在采用CP-OFDM的波形发送UCI时,无法获取到频率分集增益。因此,需要考虑将散到第一时频资源的多个频率的资源作为第二时频资源,以使终端设备不论采用SC-FDMA的波形,还是采用CP-OFDM的波形发送UCI,都可以尽量获取到较好的频率分集增益。
另外,对于上行业务,在网络设备调度终端设备1发送对可靠性和时延要求较低的业务(例如eMBB业务)的数据之后,若终端设备2需要发送可靠性和时延要求较高的业务(例如URLLC业务)的数据时,网络设备可能会调度终端设备2占用分配给终端设备1的部分资源发送数据。由于可靠性和时延要求较高的业务的数据通常是时间长度很短但频率很宽的资源,因此,需要考虑第二时频资源占用较少的时间长度,以尽量减少其他终端设备在第一时频资源上发送紧急业务时,只要避免或者减少占用第二时频资源在时间上的资源,就可以降低或者避免对UCI的影响。
考虑上述因素,本申请实施例对上述第二时频资源进行说明,具体地:
A、在频域上,上述第二时频资源可以包括N块在频率上的资源。其中,N为大于或等于1的正整数。
由于频率分集增益仅在频率宽度较宽时才能体现,因此,在本实施例中,通过将上述第二时频资源划分成分散到第一时频资源的多个频域位置的N块资源的方式,使得终端设备可以在第一时频资源的频率宽度较宽时,直接使用分散到第一时频资源的多个频域位置的N块资源发送UCI,即可获取到UCI的频率分集增益,进而提高了UCI的传输性能。因此,终端设备不管是采用基于SC-FDMA的波形,还是采用基于CP-OFDM的波形发送上述UCI,只要是在包括分散到第一时频资源的多个频域位置的N块资源的第二时频资源上发送UCI,都可以获取到频率分集增益,进而提高了UCI的传输性能。
上述终端设备确定N的取值,以及,每一块资源的频率起始位置可以包括如下三种方式:
第一种方式:上述N的取值为终端设备根据第一时频资源的频率宽度所确定的,上述N块在频率上的资源中的每一块资源的频率起始位置相对于第一时频资源的频率起始位置的偏移值为预设的。
具体的,上述N的取值与第一时频资源的频率宽度满足第一映射关系(即,上述第一映射关系可以包括第一时频资源的频率宽度与N的取值之间的对应关系)、且N块在频率上的资源中的每一块资源的频率起始位置相对于第一时频资源的频率起始位置的偏移值为预设的,上述终端设备可以根据第一映射关系和第一时频资源的频率宽度,确定N的取值。同时,终端设备可以将预设的N块在频率上的资源中的每一块资源的频率起始位置相对于第一时频资源的频率起始位置的偏移值,与,第一时频资源的频率起始位置相加,以得到N块在频率上的资源中的每一块资源的频率起始位置。
示例性的,上述第一映射关系例如可以如下述表1所示:
表1
Figure PCTCN2018090983-appb-000001
Figure PCTCN2018090983-appb-000002
上述预设的N块在频率上的资源中的每一块资源的频率起始位置相对于第一时频资源的频率起始位置的偏移值例如可以如下述表2所示,具体地:
表2
Figure PCTCN2018090983-appb-000003
其中,上述W可以为第一时频资源的频率宽度,上述ΔW可以为预设的阈值,该预设的阈值小于W。
图3为本申请实施例提供的一种第二时频资源的示意图。如图3所示,以上述第一时频资源的频率宽度大于第二频率宽度且小于或等于第三频率宽度为例,则上述终端设备在确定第一时频资源后,终端设备可以根据第一时频资源的频率宽度和表1,确定N的取值为3。即,第二时频资源包括3块在频率上的资源。然后,终端设备可以根据N的取值与表2,确定该3块在频率上的资源中,第一块资源的频率起始位置相对于第一时频资源的频率起始位置的偏移值为0,第二块资源的频率起始位置相对于第一时频资源的频率起始位置的偏移值为
Figure PCTCN2018090983-appb-000004
第三块资源的频率起始位置相对于第一时频资源的频率起始位置的偏移值为W-ΔW。
这样,终端设备将第一块资源的偏移值与第一时频资源的频率起始位置相加,即可得到第一块资源的频率起始位置,将第二块资源的偏移值与第一时频资源的频率起始位置相加,即可得到第二块资源的频率起始位置,将第三块资源的偏移值与第一时频资源的频率起始位置相加,即可得到第三块资源的频率起始位置。在本示例中,第一块资源的频率起始位置即为第一时频资源的频率起始位置。第二块资源的频率起始位置即为第一时频资源的频率起始位置与
Figure PCTCN2018090983-appb-000005
相加后的值,第三块资源的频率起始位置即为第一时频资源的频率起始位置与W-ΔW相加后的值。在该示例下,第二时频资源的N块在频率上的资源可以如图3中的(C)所示。
以上述第一时频资源的频率宽度小于或等于第一频率宽度为例,则上述终端设备在确定第一时频资源后,终端设备可以根据第一时频资源的频率宽度和表1,确定N的取值为1。即,第二时频资源包括1块资源。然后,终端设备可以根据N的取值与表2,确定该1块资源的频率起始位置相对于第一时频资源的频率起始位置的偏移值为0。这样,终端设备将该块资源的偏移值与第一时频资源的频率起始位置相加,即可得到第一块资源的频率起始位置。在本示例中,第一块资源的频率起始位置即为第一时频资源的频率起始位置。在该示例下,第二时频资源的N块在频率上的资源可以如图3中的(a)所示。
其中,图3所示的第一时频资源的大小、以及,第二时频资源的N块在频率上的资源中的每一块资源的频率宽度仅是一种示意,终端设备确定第二时频资源的大小的方式将在后续介绍。
需要强调的是,上述表1和表2仅是一种示例,本申请实施例所涉及的第一映射关系,以及,预设的N块在频率上的资源中的每一块资源的频率起始位置相对于第一时频资源的频率起始位置的偏移值并不以上述表1和表2为限。另外,上述第一映射关系、以及预设的N块在频率上的资源中的每一块资源的频率起始位置相对于第一时频资源的频率起始位置的偏移值,可以为预设在终端设备的,还可以为在实施本实施例之前,网络设备通过高层信令或控制信令发送给终端设备的等。
第二种方式:上述N的取值、与、N块在频率上的资源中的每一块资源的频率起始位置相对于第一时频资源的频率起始位置的偏移值,为根据第一时频资源的频率宽度所确定的。
具体的,上述N的取值与第一时频资源的频率宽度满足第一映射关系(即,上述第一映射关系可以包括第一时频资源的频率宽度与N的取值之间的对应关系),上述N块在频率上的资源中的每一块资源的频率起始位置相对于第一时频资源的频率起始位置的偏移值、与、第一时频资源的频率宽度满足第二映射关系(即第二映射关系包括N块在频率上的资源中的每一块资源的频率起始位置相对于第一时频资源的频率起始位置的偏移值与第一时频资源的频率宽度之间的对应关系),上述终端设备可以根据第一映射关系、第二映射关系和第一时频资源的频率宽度,确定N的取值和N块在频率上的资源中的每一块资源的频率起始位置相对于第一时频资源的频率起始位置的偏移值。然后,终端设备可以将该N块在频率上的资源中的每一块资源的频率起始位置相对于第一时频资源的频率起始位置的偏移值,与,第一时频资源的频率起始位置相加,以得到N块在频率上的资源中的每一块资源的频率起始位置。
则在该实现方式下,上述第二映射关系例如可以如下述表3所示:
表3
Figure PCTCN2018090983-appb-000006
以上述第一时频资源的频率宽度大于第一频率宽度且小于或等于第二频率宽度为例,则上述终端设备在确定第一时频资源后,终端设备可以根据第一时频资源的频率宽度和表3,确定N的取值为2。即,第二时频资源包括2块在频率上的资源。同时,终端设备可以根据表3,确定该2块在频率上的资源中,第一块资源的频率起始位置相对于第一时频资源的频率起始位置的偏移值为0,第二块资源的频率起始位置相对于第一时频资源的频率 起始位置的偏移值为W-ΔW。
这样,终端设备将第一块资源的偏移值与第一时频资源的频率起始位置相加,即可得到第一块资源的频率起始位置,将第二块资源的偏移值与第一时频资源的频率起始位置相加,即可得到第二块资源的频率起始位置。在本示例中,第一块资源的频率起始位置即为第一时频资源的频率起始位置。第二块资源的频率起始位置即为第一时频资源的频率起始位置与W-ΔW相加后的值。则在该示例下,第二时频资源的N块在频率上的资源可以如图3中的(b)所示。
需要强调的是,上述表3仅是一种示例,本申请实施例所涉及的第一映射关系和第二映射关系并不以上述表3为限。另外,上述第一映射关系、以及预设的N块在频率上的资源中的每一块资源的频率起始位置相对于第一时频资源的频率起始位置的偏移值,可以为预设在终端设备的,还可以为在实施本实施例之前,网络设备通过高层信令或控制信令发送给终端设备的等。
如上述表3所示,上述第二映射关系还可以隐式的指示N的取值,因此,上述终端设备还可以通过第二映射关系,以及,第一时频资源的频率宽度,隐式的确定N的取值,对此不再赘述。
第三种方式:上述N的取值,以及,N块在频率上的资源中的每一块资源的频率起始位置为根据网络设备所发送的第一信息确定的。
上述网络设备可以在确定第二时频资源之后,向终端设备发送用于指示第二时频资源包括N块在频率上的资源,以及,该N块在频率上的资源中的每一块资源的频率起始位置的第一信息,上述终端设备还可以根据网络设备发送的第一信息,确定第二时频资源的N块在频率上的资源的N的取值,以及,该N块在频率上的资源中的每一块资源的频率起始位置。具体实现时,网络设备可以将上述第一信息携带在用于调度第一时频资源的调度授权中发送给终端设备,或者,网络设备通过高层信令将上述第一信息发送给终端设备。
可选的,上述网络设备与终端设备之间预设有N的取值、N块在频率上的资源中的每一块资源的频率起始位置的对应关系。其中,不同对应关系可以对应一个标识(例如:索引号)。这样,网络设备可以通过在第一信息中携带标识的方式,向终端设备指示第二时频资源包括N块在频率上的资源,以及,该N块在频率上的资源中的每一块资源的频率起始位置。通过这种方式,可以降低网络设备发送第一信息时的信令开销。
需要说明的是,上述网络设备也可以采用上述第一种方式和第二种方式,确定N的取值,以及,每一块资源的频率起始位置,对此不再赘述。
另外,虽然上述实施例仅列举了三种确定N的取值,以及,每一块资源的频率起始位置的方式。但是,本领域技术人员可以理解的是,上述任一种方式所提供的确定N的取值的方式,还可以与其他方式所提供的确定每一块资源的频率起始位置的方式相结合。或者,上述任一种方式所提供的确定每一块资源的频率起始位置的方式,还可以与其他方式所提供的确定N的取值的方式相结合。例如,可以根据上述第一种方式确定N的取值,根据上述第二种方式确定每一块资源的频率起始位置,或者,可以根据第一种方式确定N的取值,根据第三种方式确定每一块资源的频率起始位置等,对此不再赘述。
可选的,上述第二时频资源包括N块在频率上的资源,该N块在频率上的资源是不连续的资源,或者,该N块频率上的资源中的J块是连续的,其它N-J块不连续。其中,J 不大于N。
B、在时域上,上述第二时频资源的时间长度为第一长度。其中,这里所说的时间长度为时频资源在时域上所占的符号的个数。
上述终端设备确定第二时频资源的时间长度可以包括如下两种方式:
第一种方式:上述第一长度为终端设备根据第一时频资源的时间长度所确定的。
具体的,第一长度与第一时频资源的时间长度满足第三映射关系(即第三映射关系包括第一时频资源的时间长度和第一长度的对应关系),上述终端设备可以根据第三映射关系和第一时频资源的时间长度,确定第一长度。
示例性的,上述第三映射关系例如可以如下述表4所示:
表4
编号 第一时频资源的时间长度 第一长度
1 1个时隙 7个符号
2 2个时隙 1个时隙
3 3个时隙 1.5个时隙
其中,上述1个时隙可以包括14个符号。
以上述第一时频资源的时间长度为2个时隙为例,则上述终端设备在确定第一时频资源后,终端设备可以根据第一时频资源的时间长度和表4,确定第一长度为1个时隙。即,第二时频资源的时间长度为1个时隙。
需要强调的是,上述表4仅是一种示例,本申请实施例所涉及的第三映射关系并不以上述表4为限。另外,上述第三映射关系可以为预设在终端设备的,还可以为在实施本实施例之前,网络设备通过高层信令或控制信令发送给终端设备的等。
或者,可选的,第一长度与第三时频资源的时间长度满足第四映射关系(即第四映射关系包括第三时频资源的时间长度和第一长度的对应关系),上述终端设备可以根据第四映射关系和第三时频资源的时间长度,确定第一长度。第三时频资源指的是终端设备用于发送第一物理上行控制信道的资源。
如前文所述,上述终端设备可以在物理上行控制信道发送UCI,但是,如果终端设备同时还需要发送物理上行共享信道。一方面,终端设备的能力可能不支持物理上行控制信道和物理上行共享信道同时发送;另一方面,在物理上行控制信道和物理上行共享信道发送的信号之间的互调干扰(Intermodulation Interference,IMD)也会导致两个信道的接收性能都较差。因此,终端设备在物理上行共享信道的时频资源中确定一部分资源用于发送上行控制信息。考虑这些上行控制信息的时延要求,其在物理上行共享信道被传输时占用的资源的时间长度和其在物理上行控制信道被传输时占用的资源的时间长度满足第四映射关系。以保证上行控制信息的时延要求。特别的,第一市价长度和第三时频资源的时间长度相等。
第二种方式:上述第一长度为根据网络设备所发送的第二信息确定的。
具体的,上述网络设备在确定第二时频资源之后,可以向终端设备发送用于指示第二时频资的时间长度为第一长度的第二信息,上述终端设备在接收网络设备发送的第二信息后,可以根据该第二信息,确定第二时频资源的时间长度为第一长度。具体实现时,网络 设备可以将上述第二信息携带在用于调度第一时频资源的调度授权中发送给终端设备,或者,网络设备通过高层信令将上述第二信息发送给终端设备。
可选的,上述网络设备与终端设备之间预设有多个第一时间长度。其中,每个第一时间长度对应一个标识(例如:索引号)。这样,网络设备可以通过在第二信息中携带标识的方式,向终端设备指示第二时频资源的时间长度为第一长度。通过这种方式,可以降低网络设备发送第二信息时的信令开销。
第三种方式:上述第一长度为预设的。
具体的,上述第一长度为预设的长度,即第一长度为固定值,上述终端设备可以直接确定第二时频资源的时间长度为第一长度。其中,该预设的第一长度可以为预设在终端设备的,还可以为在实施本实施例之前,网络设备通过高层信令或控制信令发送给终端设备的等。
需要说明的是,上述网络设备也可以采用上述第一种方式和第三种方式,确定第一长度,对此不再赘述。
C、在时域上,上述第二时频资源可以包括M块在时间上的资源。其中,M为大于或等于1的正整数。
具体实现时,可以根据DMRS所映射的符号,约束M块在时间上的资源中的每一块资源的时间起点位置,以使得第二时频资源为靠近DMRS的符号上的资源。因此,终端设备在使用该第二时频资源发送UCI时,可以提高UCI的解调性能。
则上述终端设备确定M的取值,以及,M块资源中的每一块资源的时间起点位置可以包括如下三种方式:
第一种方式:上述M的取值为根据第一时频资源的时间长度所确定的,上述M块在时间上的资源中的每一块资源的时间起始位置相对于第一时频资源的时间起始位置的偏移值为预设的。
具体的,上述M的取值与第一时频资源的时间长度满足第四映射关系(即,上述第四映射关系可以包括第一时频资源的时间长度和M的取值之间的对应关系)、且M块在时间上的资源中的每一块资源的时间起始位置相对于第一时频资源的时间起始位置的偏移值为预设的,上述终端设备可以根据第四映射关系和第一时频资源的时间长度,确定M的取值。然后,终端设备可以将M块在时间上的资源中的每一块资源的时间起始位置相对于第一时频资源的时间起始位置的偏移值,与,第一时频资源的时间起始位置相加,以得到M块在时间上的资源中的每一块资源的时间起始位置。
示例性的,上述第四映射关系例如可以如下述表5所示:
表5
Figure PCTCN2018090983-appb-000007
上述预设的M块在时间上的资源中的每一块资源的时间起始位置相对于第一时频资 源的时间起始位置的偏移值例如可以如下述表6所示,具体地:
表6
Figure PCTCN2018090983-appb-000008
其中,上述T可以为第一时频资源的时间长度,上述ΔT可以为预设的阈值,该预设的阈值可以根据DMRS所在的符号确定,上述X可以为DMRS所在的符号之后的第一个符号相对于第一时频资源的时间起始位置的偏移值。
以上述第一时频资源的时间长度大于第一时间阈值,且小于或等于第二时间阈值为例,则上述终端设备在确定第一时频资源后,终端设备可以根据第一时频资源的时间长度和表5,确定M的取值为3。即,第二时频资源包括2块在时间上的资源。然后,终端设备可以根据M的取值与表6,确定该2块在时间上的资源中,第一块资源的时间起始位置相对于第一时频资源的时间起始位置的偏移值为X,第二块资源的时间起始位置相对于第一时频资源的时间起始位置的偏移值为T-ΔT。
这样,终端设备将该2块在时间上的资源的第一块资源的偏移值与第一时频资源的时间起始位置相加,即可得到2块在时间上的资源的第一块资源的时间起始位置,将2块在时间上的资源的第二块资源的偏移值与第一时频资源的时间起始位置相加,即可得到2块在时间上的资源的第二块资源的时间起始位置。在本示例中,该2块在时间上的资源中的第一块资源的时间起始位置即为第一时频资源的时间起始位置与X相加后的值。该2块在时间上的资源中的第二块资源的时间起始位置即为第一时频资源的时间起始位置与T-ΔT相加后的值。
需要强调的是,上述表5和表6仅是一种示例,本申请实施例所涉及的第四映射关系,以及,预设的M块在时间上的资源中的每一块资源的时间起始位置相对于第一时频资源的时间起始位置的偏移值并不以上述表5和表6为限。另外,上述第四映射关系、以及预设的M块在时间上的资源中的每一块资源的时间起始位置相对于第一时频资源的时间起始位置的偏移值,可以为预设在终端设备的,还可以为在实施本实施例之前,网络设备通过高层信令或控制信令发送给终端设备的等。
第二种方式:上述M的取值、与、M块在时间上的资源中的每一块资源的时间起始位置相对于第一时频资源的时间起始位置的偏移值,为根据第一时频资源的时间长度所确定的。
具体的,上述M的取值与第一时频资源的时间长度满足第四映射关系(即,上述第四映射关系可以包括第一时频资源的时间长度和M的取值之间的对应关系),上述M块在时间上的资源中的每一块资源的时间起始位置相对于第一时频资源的时间起始位置的偏移值、与、第一时频资源的时间长度满足第五映射关系(即,第五映射关系包括M块在时间上的资源中的每一块资源的时间起始位置相对于第一时频资源的时间起始位置的偏移值与第一时频资源的时间长度之间的对应关系),上述终端设备可以根据第四映射关系、第五映射关系和第一时频资源的时间长度,确定M的取值和M块在时间上的资源中的每一块资源的时间起始位置相对于第一时频资源的时间起始位置的偏移值。然后,终端设备可以将该M块在时间上的资源中的每一块资源的时间起始位置相对于第一时频资源的时 间起始位置的偏移值,与,第一时频资源的时间起始位置相加,以得到M块在时间上的资源中的每一块资源的时间起始位置。
则在该实现方式下,上述第五映射关系例如可以如下述表7所示:
表7
Figure PCTCN2018090983-appb-000009
以上述第一时频资源的时间长度大于第二时间阈值,且小于或等于第三时间阈值为例,则上述终端设备在确定第一时频资源后,终端设备可以根据第一时频资源的时间长度和表5,确定M的取值为3。即,第二时频资源包括3块在时间上的资源。同时,终端设备可以根据表7,确定该3块在时间上的资源中,第一块资源的时间起始位置相对于第一时频资源的时间起始位置的偏移值为X,第二块资源的时间起始位置相对于第一时频资源的时间起始位置的偏移值为
Figure PCTCN2018090983-appb-000010
第三块资源的时间起始位置相对于第一时频资源的时间起始位置的偏移值为T-ΔT。
这样,终端设备将该3块在时间上的资源中的第一块资源的偏移值与第一时频资源的时间起始位置相加,即可得到该3块在时间上的资源中的第一块资源的时间起始位置,将该3块在时间上的资源中的第二块资源的偏移值与第一时频资源的时间起始位置相加,即可得到该3块在时间上的资源中的第二块资源的时间起始位置,将该3块在时间上的资源中的第三块资源的偏移值与第一时频资源的时间起始位置相加,即可得到该3块在时间上的资源中的第三块资源的时间起始位置。在本示例中,该3块在时间上的资源中的第一块资源的频率起始位置即为第一时频资源的时间起始位置与X相加后的值,该3块在时间上的资源中的第二块资源的频率起始位置即为第一时频资源的时间起始位置与
Figure PCTCN2018090983-appb-000011
相加后的值,该3块在时间上的资源中的第二块资源的频率起始位置即为第一时频资源的时间起始位置与T-ΔT相加后的值。
需要强调的是,上述表7仅是一种示例,本申请实施例所涉及的第五映射关系并不以上述表7为限。另外,上述第五映射关系可以为预设在终端设备的,还可以为在实施本实施例之前,网络设备通过高层信令或控制信令发送给终端设备的等。
如上述表7所示,上述第五映射关系还可以隐式的指示M的取值,因此,上述终端设备还可以通过第五映射关系,以及,第一时频资源的时间长度,隐式的确定M的取值,对此不再赘述。
第三种方式:上述M的取值,以及,M块在时间上的资源中的每一块资源的时间起始位置为根据网络设备所发送的第三信息确定的。
上述网络设备在确定第二时频资源之后,可以向终端设备发送用于指示第二时频资源包括M块在时间上的资源,以及,该M块在时间上的资源中的每一块资源的时间起始位 置的第三信息,上述终端设备还可以根据网络设备发送的第三信息,确定第二时频资源的M的取值,以及,该M块在时间上的资源中的每一块资源的时间起始位置。具体实现时,网络设备可以将上述第三信息携带在用于调度第一时频资源的调度授权中发送给终端设备,或者,网络设备通过高层信令将上述第一信息发送给终端设备。
可选的,上述网络设备与终端设备之间预设有M的取值、M块在时间上的资源中的每一块资源的时间起始位置之间的对应关系。其中,不同对应关系可以对应一个标识(例如:索引号)。这样,网络设备可以通过在第三信息中携带标识的方式,向终端设备指示第二时频资源包括M块在时间上的资源,以及,该M块在时间上的资源中的每一块资源的时间起始位置。通过这种方式,可以降低网络设备发送第三信息时的信令开销。
需要说明的是,上述网络设备也可以采用上述第一种方式和第二种方式,确定M的取值,以及,每一块资源的时间起始位置,对此不再赘述。
另外,虽然上述实施例仅列举了三种确定M的取值,以及,每一块资源的时间起始位置的方式。但是,本领域技术人员可以理解的是,上述任一种方式所提供的确定M的取值的方式,还可以与其他方式所提供的确定每一块资源的时间起始位置的方式相结合。或者,上述任一种方式所提供的确定每一块资源的时间起始位置的方式,还可以与其他方式所提供的确定M的取值的方式相结合。例如,可以根据上述第一种方式确定M的取值,根据上述第二种方式确定每一块资源的时间起始位置,或者,可以根据第一种方式确定M的取值,根据第三种方式确定每一块资源的时间起始位置等,对此不再赘述。
可选的,上述第二时频资源包括M块在时间上的资源,该M块在时间上的资源是不连续的资源,或者,该M块频率上的资源中的I块是连续的,其它M-I块不连续。其中I不大于M。
D、上述第二时频资源包括L个时频资源单元。其中,这里所说的时频资源单元例如可以为资源元素(Resource Element,RE)。一个RE包括时间上的一个符号和频率上的一个子载波构成的资源,一个RE可以用于传输上行共享信道或者上行控制信息的一个编码后的符号(Coded Symbol)。
具体的,上述L的取值可以根据比例因子(β offset)确定。具体实现时,上述终端设备可以根据β offset,以及下述公式(1),确定第二时频资源的时频资源单元的数量L。其中,上述公式(1)例如可以如下所示:
Figure PCTCN2018090983-appb-000012
其中,上述O表示UCI的比特数,G表示PUSCH包括的资源单元的数量,T表示PUSCH中发送的UL-SCH所包括的比特数。
通过设置β offset的方式,可以调整终端设备在PUSCH中发送UL-SCH的时频单元的大小。使得PUSCH中发送UL-SCH和发送UCI所对应的调制编码方式不同,从而满足UL-SCH和UCI不同的目标接收性能的需求。
未来5G通信系统包括多种业务。不同业务对时延要求和/或可靠性要求不同。因此,在本实施例中,不同业务对应的用于确定PUSCH中发送UCI的资源单元的个数的比例因子不同,以满足不同业务的UCI对时延要求和/或可靠性的不同要求。例如:在UCI为第一业务对应的UCI时,比例因子为第一取值,在UCI为第二业务对应的UCI时,比例因 子为第二取值。其中,第一业务与第二业务的时延要求和/或可靠性要求不同。
以第一业务为eMBB业务、第二业务为URLLC业务来说,由于eMBB业务对传输可靠性和时延的要求低于URLLC业务,所以,eMBB业务和URLLC业务对与其对应的UCI的传输性能的要求也就不同。因此,网络设备可以在确定第二时频资源之后,通过第四信息向终端设备指示eMBB业务对应的β offset(例如:第一取值)和URLLC业务对应的β offset(例如第二取值)。这样,当终端设备确定当前发送的UCI对应eMBB业务时,可以采用第一取值,确定发送该UCI的第二时频资源的时频资源单元的数量。当终端设备确定当前发送的UCI对应URLLC业务时,可以采用第二取值,确定发送UCI的第二时频资源的时频资源单元的数量。
需要说明的是,上述网络设备也可以采用上述方式,利用比例因子确定L的取值,对此不再赘述。但是,本领域技术人员可以理解的是,上述公式(1)只是根据比例因子确定第二时频资源的时频资源单元的数量L的一种方式。终端设备和网络设备还可以采用现有的其他方式,利用比例因子确定第二时频资源的时频资源单元的数量L,对此不再赘述。
可选的,上述比例因子的取值与UCI所属的业务的对应关系可以为预设在终端设备上的。在一些实施例中,终端设备还可以接收网络设备发送的用于指示该对应关系的第四信息,以使得终端设备可以根据第四信息和UCI所属的业务,确定L的取值。终端设备接收网络设备发送的第四信息,第四信息用于指示比例因子的第一取值和比例因子的第二取值,以及比例因子的第一取值和第二取值与上行控制信息所属的业务的对应关系。即,终端设备根据第四信息和UCI所属的业务,先确定应该使用比例因子是第一取值还是使用比例因子的第二取值,进而根据比例因子的取值,确定L的取值。具体实现时,网络设备可以将上述第四信息携带在用于调度第一时频资源的调度授权中发送给终端设备,或者,网络设备通过高层信令将上述第四信息发送给终端设备。
上述终端设备通过上述A-D所列举的方式,可以确定出第二时频资源在频率上包括N块的资源、该N块的资源中的每一块资源的频率的起始位置,第二时频资源在时间上包括M块的资源、该M块的资源中的每一块资源的时间起点位置,第二时频资源在时间上包括M块的资源在时间上所占的总长度(即第一长度),以及,第二时频资源所包括的时频资源单元的个数之后,可以根据这些信息中的部分或者全部,确定出第二时频资源在第一时频资源上的具体位置。即,L个时频资源单元在第一时频资源上的具体位置。
例如,上述终端设备根据第二时频资源的时间长度为第一长度、第二时频资源在频率上包括N块资源、以及该N块资源中的每一块资源的频率的起始位置,按照第一预设规则,在第一时频资源上确定出第二时频资源包括的L个时频资源单元在第一时频资源内的位置。下述图中均以第一长度为3个符号,N=2,N=2块资源的起始位置分别为F1和F2,L=31。第一映射规则为在N块资源中的第1块资源中频率最高的资源上按照时间先后顺序映射。
图4为本申请实施例提供的另一种第二时频资源的示意图。如图4所示,在采用图4所示的第一映射规则时,上述终端设备可以先在第1块资源的最高频率上,按照时间先后顺序确定位于最高频率上的每个时频资源单元。然后,上述终端设备在第2块资源的最高频率上,按照时间先后顺序确定位于最高频率上的每个时频资源单元。然后,上述终端设备在第1块资源的次高频率上,按照时间先后顺序确定位于次高频率上的每个时频资源单元。然后,上述终端设备在第2块资源的次高频率上,按照时间先后顺序确定位于次高频 率上的每个时频资源单元。依次类推,直至确定31个时频资源单元的最后一个时频资源单元(即编号31)所在的位置。
再例如,上述终端设备根据第二时频资源的时间长度为第一长度、第二时频资源在频率上包括N块资源、以及该N块资源中的每一块资源的频率的起始位置,按照第一预设规则,在第一时频资源上确定出第二时频资源包括的L个时频资源单元在第一时频资源内的位置。下图中以第一长度为3个符号,N=2,N=2块资源的其实位置分别为F1和F2,L=31。则终端设备确定
Figure PCTCN2018090983-appb-000013
这里P是第一长度包括的符号个数,P=3,那么Q=5。
其中,上述所说的第一预设规则,例如可以包括将上述L个时频资源单元按照先在N块的资源按照频率从高到低,后在M块不连续的时间资源按照从早到晚的顺序依次对应到第一时频资源单元中。按照该顺序,该L个时频资源单元的对应位置即为第二时频单元在第一时频单元中的位置。
图5为本申请实施例提供的又一种第二时频资源的示意图。如图5所示,在采用图5所示的第一映射规则时,上述终端设备可以先在第1块资源的第一个符号上,按照频率从高到低的先后顺序确定位于第一个符号上的每个时频资源单元。然后,上述终端设备在第2块资源的第一个符号上,按照频率从高到低的先后顺序确定位于第一个符号上的每个时频资源单元。然后,上述终端设备在第1块资源的第一个符号上,按照频率从高到低的先后顺序确定位于第2个符号上的每个时频资源单元。然后,上述终端设备在第2块资源的第2个符号上,按照频率从高到低的先后顺序确定位于第2个符号上的每个时频资源单元。依次类推,直至确定31个时频资源单元的最后一个时频资源单元(即编号31)所在的位置。
本领域人员可以理解的是,上述终端设备可以根据下述信息中的至少两种,以及某一第一预设规则,确定出第二时频资源在第一时频资源上的具体位置:
第二时频资源在频率上包括N块的资源;
该N块的资源中的每一块资源的频率的起始位置;
第二时频资源在时间上包括M块的资源;
该M块的资源中的每一块资源的时间起点位置;
第二时频资源在时间上包括M块的资源在时间上所占的总长度(即第一长度);
第二时频资源所包括的时频资源单元的个数。
需要说明的是,上述第一预设规则包括但不限于本实施例所列举的预设规则,只要是根据上述信息,采用某种预设规则确定第二时频资源,都属于本申请实施例所保护的范围。
上述终端设备在从第一时频资源上确定出在第二时频资源的具体位置之后,可以按照第二预设规则将上行控制信息映射到第二时频资源上。可选的,这里所说的第二预设规则可以为先时间后频率的映射规则,还可以为先频率后时间的映射规则。
需要说明的是,上述终端设备确定第二时频资源在第一时频资源内的位置、以及第二预设规则将上行控制信息映射到第二时频资源上的步骤可以是不分先后,同时进行的。
可以理解,当上述控制信息UCI包括多种信息时,上述所说的终端设备确定第二时频资源的方法可以应用于各种信息依次级联后的结果。
以UCI包括第一UCI(HARQ-ACK)、第二UCI(RI)、第三UCI(CQI-PMI),上述终端设备可以将第一UCI编码后的数据序列、第二UCI编码后的数据序列和第三UCI 编码后的数据序列依次级联后映射到第二时频资源上。即,将多种信息的编码后的数据序列依次级联,形成一个总的编码后的数据序列。然后,终端设备可以将该总的编码后的数据序列映射到第二时频资源上,以通过第二时频资源向网络设备发送该UCI。
假定第一UCI编码后的数据序列为:
Figure PCTCN2018090983-appb-000014
第二UCI编码后的数据序列为:
Figure PCTCN2018090983-appb-000015
第三UCI编码后的数据序列为:
Figure PCTCN2018090983-appb-000016
则上述端设备可以将第一UCI编码后的数据序列、第二UCI编码后的数据序列和第三UCI编码后的数据序列依次级联后所形成的UCI编码后的数据序列为:
Figure PCTCN2018090983-appb-000017
Figure PCTCN2018090983-appb-000018
记为
Figure PCTCN2018090983-appb-000019
图6为本申请实施例提供的又一种第二时频资源的示意图。图7为本申请实施例提供的又一种第二时频资源的示意图。以上述UCI编码后的数据序列中的每个A可以为一个RB可以承载的数据,也可以为一个RE可以承载的数据,具体可以根据映射的粒度确定。然后,上述终端设备可以采用先时间后频率的映射规则对上述
Figure PCTCN2018090983-appb-000020
进行映射,即图7所示的方式,对此不再赘述。或者,上述终端设备可以采用先频率后时间的映射规则,在第二时频资源上对上述
Figure PCTCN2018090983-appb-000021
进行映射,即图6所示的方式,对此不再赘述。
另外,在一些实施例中,上述终端在采用先时间后频率的方式进行映射时,可以采用在同一频率上,采用随机映射的方式将时间映射满之后,再在更高的方式进行映射,以此类推,直至完成所有数据的映射。相应地,上述终端在采用先频率后时间的方式进行映射时,可以采用在同一时域符号上,采用随机映射的方式将频率映射满之后,再在第二个时域符号上采用随机映射的方式将频率映射满,以此类推,直至完成所有数据的映射。可选的,还可以在第二时频资源上,完全采用随机的方式进行映射等。本实施例对如何在第二时频资源上映射UCI不进行限定。
可以理解,在终端设备在第一时频资源上,采用上述所说的方式,分别为多个UCI确定该UCI对应的第二时频资源时,上述终端设备还可以将上述确定第二时频资源的方法应用于各UCI。
以上述终端设备在第一时频资源上,分别为第一UCI(HARQ-ACK)、第二UCI(RI)、第三UCI(CQI-PMI)确定第二时频资源为例,即,在第一时频资源上,根据上述实施例所说的确定第二时频资源的方式,分别为第一UCI确定用于发送第一UCI的第二时频资源,为第二UCI确定用于发送第二UCI的第二时频资源,为第三UCI确定用于发送第三UCI的第二时频资源。
然后,上述终端设备可以采用先时间后频率的映射规则,在第一UCI对应的第二时频资源上,对第一UCI编码后的数据序列
Figure PCTCN2018090983-appb-000022
进行映射。或者,上述终端设备可以采用先频率后时间的映射规则,在第一UCI对应的第二时频资源上,对第一UCI编码后的数据序列
Figure PCTCN2018090983-appb-000023
进行映射。
相应地,上述终端设备可以采用先时间后频率的映射规则,在第二UCI对应的第二时频资源上,对第二UCI编码后的数据序列
Figure PCTCN2018090983-appb-000024
进行映射。或者,上述终端设备可以采用先频率后时间的映射规则,在第二UCI对应的第二时频资源上,对第二 UCI编码后的数据序列
Figure PCTCN2018090983-appb-000025
进行映射。
相应地,上述终端设备可以采用先时间后频率的映射规则,在第三UCI对应的第二时频资源上,对第三UCI编码后的数据序列
Figure PCTCN2018090983-appb-000026
进行映射。或者,上述终端设备可以采用先频率后时间的映射规则,在第三UCI对应的第二时频资源上,对第三UCI编码后的数据序列
Figure PCTCN2018090983-appb-000027
进行映射。
图8为本申请实施例提供的又一种第二时频资源的示意图。上述终端设备在第一时频资源上,分别为第一UCI确定用于发送第一UCI的第二时频资源,为第二UCI确定用于发送第二UCI的第二时频资源,为第三UCI确定用于发送第三UCI的第二时频资源之后,上述终端设备以先频率后时间的映射方式,在第一UCI的第二时频资源,对第一UCI编码后的数据序列
Figure PCTCN2018090983-appb-000028
进行映射,在第二UCI的第二时频资源,对第二UCI编码后的数据序列
Figure PCTCN2018090983-appb-000029
进行映射,在第三UCI的第二时频资源,对第三UCI编码后的数据序列
Figure PCTCN2018090983-appb-000030
进行映射之后,各UCI编码后的数据序列在第二时频资源上的具体位置可以如图8(a)所示。当上述终端设备以先时间后频率的映射方式,在第一UCI的第二时频资源,对第一UCI编码后的数据序列
Figure PCTCN2018090983-appb-000031
进行映射,在第二UCI的第二时频资源,对第二UCI编码后的数据序列
Figure PCTCN2018090983-appb-000032
进行映射,在第三UCI的第二时频资源,对第三UCI编码后的数据序列
Figure PCTCN2018090983-appb-000033
进行映射之后,各UCI编码后的数据序列在第二时频资源上的具体位置可以如图8(b)所示。
其中,图8(a)和图8(b)中第一时频资源一共包括7个时域符号,竖向整体为第一时频资源的频域宽度,第一个符号为映射的DRMS。从第二个符号开始,按照频率从上往下的第一个虚线方框为第一UCI的第二时频资源,第二虚线方框为第二UCI的第二时频资源,第三个虚线方框为第三UCI的第二时频资源,然后下述与第一虚线方框相同的资源均为第一UCI的第二时频资源,与第二虚线方框相同的资源均为第二UCI的第二时频资源,与第三虚线方框相同的资源均为第三UCI的第二时频资源。需要说明的是,图8仅为一种示意,本实施例对各个UCI最终映射在第二时频资源上的资源单元不做限定。
本申请实施例提供的控制信息的传输方法,上述终端设备在确定用于发送数据共享信道的第一时频资源之后,可以从第一时频资源中确定出用于发送控制信息的第二时频资源,以使得终端设备可以使用第一时频资源上的部分时频资源发送控制信息,实现了在5G通信系统中的控制信息的发送。
图9为本申请实施例提供的一种终端设备的结构示意图。如图9所示,上述终端设备可以包括:处理模块11和发送模块12。可选的,上述终端设备还可以包括:接收模块13。其中,
处理模块11,用于确定第一时频资源和第二时频资源,所述第一时频资源用于所述终端设备向网络设备发送物理上行共享信道,所述第二时频资源用于所述终端设备向所述网络设备发送上行控制信息,所述第一时频资源包括所述第二时频资源;
发送模块12,用于通过所述第二时频资源向所述网络设备发送所述上行控制信息。
其中,上述上行控制信息包括下述至少一种信息:混合自动重传确认信息HARQ-ACK、信道状态信息CSI。可选的,CSI可以包括下述至少一项:信道质量指示CQI、波束设置信息、预编码矩阵指示PMI、秩指示RI。
可选的,上述第二时频资源包括N块在频率上的资源,其中,N的取值与所述第一时频资源的频率宽度满足第一映射关系,所述第一映射关系包括所述第一时频资源的频率宽度与所述N的取值之间的对应关系,所述N为大于或等于1的正整数。在一些实施例中,所述N块在频率上的每一块资源的频率起始位置相对于所述第一时频资源的频率起始位置的偏移值是预设的;或者,所述N块在频率上的每一块资源的频率起始位置相对于所述第一时频资源的频率起始位置的偏移值,与,所述第一时频资源的频率宽度满足第二映射关系,所述第二映射关系包括所述N块在频率上的每一块资源的频率起始位置相对于所述第一时频资源的频率起始位置的偏移值与所述第一时频资源的频率宽度之间的对应关系。
示例性的,接收模块13,用于接收所述网络设备发送的第一信息,所述第一信息用于指示所述第二时频资源包括N块在频率上的资源,以及,所述N块资源中的每一块资源的频率起始位置,所述N为大于或等于1的正整数;则上述处理模块11,具体用于根据所述第一信息,确定所述第二时频资源的N块资源中的每一块资源的频率起点位置。
可选的,上述述第二时频资源的时间长度为第一长度,其中,所述第一长度与所述第一时频资源的时间长度满足第三映射关系,所述第三映射关系包括所述第一时频资源的时间长度和所述第一长度的对应关系。
示例性的,上述接收模块13,用于接收所述网络设备发送的第二信息,所述第二信息用于指示所述第二时频资源的时间长度为第一长度;则上述处理模块11,具体用于根据所述第二信息,确定所述第二时频资源的时间长度为第一长度。
可选的,上述第二时频资源包括M块在时间上的资源,其中,M的取值与所述第一时频资源的时间长度满足第四映射关系,所述第四映射关系包括所述第一时频资源的时间长度和所述M的取值之间的对应关系,所述M为大于或等于1的正整数。在一些实施例中,上述M块在时间上的资源中的每一块资源的时间起始位置相对于所述第一时频资源的时间起始位置的偏移值是预设的,或者,上述M块在时间上的资源中的每一块资源的时间起始位置相对于所述第一时频资源的时间起始位置的偏移值,与,所述第一时频资源的时间长度满足第五映射关系,所述第五映射关系包括所述M块在时间上的资源中的每一块资源的时间起始位置相对于所述第一时频资源的时间起始位置的偏移值与所述第一时频资源的时间长度之间的对应关系。
示例性的,上述接收模块13,用于接收所述网络设备发送的第三信息,所述第三信息用于指示所述第二时频资源包括M块时间上的资源,以及,所述M块资源中的每一块资源的时间起点位置,所述M为大于或等于1的正整数;则上述处理模块11,具体用于根据所述第三信息,确定所述第二时频资源的M块资源中的每一块资源的时间起点位置。
可选的,上述所述第二时频资源包括L个时频资源单元,所述L的取值根据比例因子确定;所述上行控制信息对应第一业务时,所述比例因子为第一取值;所述上行控制信息对应第二业务时,所述比例因子为第二取值;所述第一业务与所述第二业务的时延要求和/或可靠性要求不同。
示例性的,上述接收模块13,用于接收所述网络设备发送的第四信息,所述第四信息用于指示所述比例因子的第一取值和所述比例因子的第二取值,以及所述比例因子的第一取值和第二取值与所述上行控制信息所属的业务的对应关系;则上述处理模块11,具体用于根据所述第四信息和所述上行控制信息所属的业务,确定所述L的取值。
可选的,上述处理模块11,还用于在所述发送模块12通过所述第二时频资源向所述网络设备发送所述上行控制信息之前,按照预设规则的映射方式,将所述上行控制信息映射到所述第二时频资源上。
可选的,上述处理模块11,还用于在所述上行控制信息包括至少两种信息,将所述至少两种信息依次级联后映射到所述第二时频资源上。
本申请实施例提供的终端设备,可以执行上述方法实施例中终端设备的动作,其实现原理和技术效果类似,在此不再赘述。
图10为本申请实施例提供的一种网络设备的结构示意图。如图10所示,上述网络设备可以包括:处理模块21和接收模块22。可选的,上述终端设备还可以包括:发送模块23。其中,
处理模块21,用于确定第一时频资源和第二时频资源,所述第一时频资源用于终端设备向所述网络设备发送物理上行共享信道,所述第二时频资源用于所述终端设备向所述网络设备发送上行控制信息,所述第一时频资源包括所述第二时频资源;
接收模块22,用于在所述第二时频资源上接收所述终端设备发送的所述上行控制信息。
其中,上述上行控制信息包括下述至少一种信息:混合自动重传确认信息HARQ-ACK、信道状态信息CSI。可选的,CSI可以包括下述至少一项:信道质量指示CQI、波束设置信息、预编码矩阵指示PMI、秩指示RI。
可选的,所述第二时频资源包括N块在频率上的资源,其中,N的取值与所述第一时频资源的频率宽度满足第一映射关系,所述第一映射关系包括所述第一时频资源的频率宽度与所述N的取值之间的对应关系,所述N为大于或等于1的正整数。在一些实施例中,所述N块在频率上的每一块资源的频率起始位置相对于所述第一时频资源的频率起始位置的偏移值是预设的;或者,所述N块在频率上的每一块资源的频率起始位置相对于所述第一时频资源的频率起始位置的偏移值,与,所述第一时频资源的频率宽度满足第二映射关系,所述第二映射关系包括所述N块在频率上的每一块资源的频率起始位置相对于所述第一时频资源的频率起始位置的偏移值与所述第一时频资源的频率宽度之间的对应关系。
示例性的,上述发送模块23,用于向所述终端设备发送第一信息,所述第一信息用于指示所述第二时频资源包括N块在频率上的资源,以及,所述N块资源中的每一块资源的频率起始位置,所述N为大于或等于1的正整数。
可选的,上述第二时频资源的时间长度为第一长度,其中,所述第一长度与所述第一时频资源的时间长度满足第三映射关系,所述第三映射关系包括所述第一时频资源的时间长度和所述第一长度的对应关系。
示例性的,上述发送模块23,用于向所述终端设备发送第二信息,所述第二信息用于指示所述第二时频资源的时间长度为第一长度。
可选的,上述第二时频资源包括M块在时间上的资源,其中,M的取值与所述第一时频资源的时间长度满足第四映射关系,所述第四映射关系包括所述第一时频资源的时间长度和所述M的取值之间的对应关系,所述M为大于或等于1的正整数。在一些实施例中,所述M块在时间上的资源中的每一块资源的时间起始位置相对于所述第一时频资源的时间起始位置的偏移值是预设的,或者,所述M块在时间上的资源中的每一块资源的时间 起始位置相对于所述第一时频资源的时间起始位置的偏移值,与,所述第一时频资源的时间长度满足第五映射关系,所述第五映射关系包括所述M块在时间上的资源中的每一块资源的时间起始位置相对于所述第一时频资源的时间起始位置的偏移值与所述第一时频资源的时间长度之间的对应关系。
示例性的,上述发送模块23,用于向所述终端设备发送的第三信息,所述第三信息用于指示所述第二时频资源包括M块时间上的资源,以及,所述M块资源中的每一块资源的时间起点位置,所述M为大于或等于1的正整数。
可选的,上述所述第二时频资源包括L个时频资源单元,所述L的取值根据比例因子确定;所述上行控制信息对应第一业务时,所述比例因子为第一取值;所述上行控制信息对应第二业务时,所述比例因子为第二取值;所述第一业务与所述第二业务的时延要求和/或可靠性要求不同。
示例性的,上述发送模块23,用于向所述终端设备发送第四信息,所述第四信息用于指示所述比例因子的第一取值和所述比例因子的第二取值,以及所述比例因子的第一取值和第二取值与所述上行控制信息所属的业务的对应关系。
本申请实施例提供的网络设备,可以执行上述方法实施例中网络设备的动作,其实现原理和技术效果类似,在此不再赘述。
需要说明的是,应理解以上发送模块实际实现时可以为发送器,接收模块实际实现时可以为接收器。而处理模块可以以软件通过处理元件调用的形式实现;也可以以硬件的形式实现。例如,处理模块可以为单独设立的处理元件,也可以集成在上述装置的某一个芯片中实现,此外,也可以以程序代码的形式存储于上述装置的存储器中,由上述终端设备或网络设备的某一个处理元件调用并执行以上处理模块的功能。此外这些模块全部或部分可以集成在一起,也可以独立实现。这里所述的处理元件可以是一种集成电路,具有信号的处理能力。在实现过程中,上述方法的各步骤或以上各个模块可以通过处理器元件中的硬件的集成逻辑电路或者软件形式的指令完成。
例如,以上这些模块可以是被配置成实施以上方法的一个或多个集成电路,例如:一个或多个特定集成电路(Application Specific Integrated Circuit,ASIC),或,一个或多个微处理器(digital signal processor,DSP),或,一个或者多个现场可编程门阵列(Field Programmable Gate Array,FPGA)等。再如,当以上某个模块通过处理元件调度程序代码的形式实现时,该处理元件可以是通用处理器,例如中央处理器(Central Processing Unit,简称CPU)或其它可以调用程序代码的处理器。再如,这些模块可以集成在一起,以片上系统(system-on-a-chip,简称SOC)的形式实现。
图11为本申请实施例提供的另一种终端设备的结构示意图。如图11所示,该终端设备可以包括:处理器31(例如CPU)、存储器32、发送器34;发送器34耦合至处理器31,处理器31控制发送器34的发送动作。存储器32可能包含高速RAM存储器,也可能还包括非易失性存储器NVM,例如至少一个磁盘存储器,存储器32中可以存储各种指令,以用于完成各种处理功能以及实现本申请实施例的方法步骤。可选的,本申请实施例涉及的终端设备还可以包括:接收器33、电源35、通信总线36以及通信端口37。接收器33和发送器34可以集成在终端设备的收发信机中,也可以为终端设备上独立的收发天线。 通信总线36用于实现元件之间的通信连接。上述通信端口37用于实现终端设备与其他外设之间进行连接通信。
在本申请实施例中,上述存储器32用于存储计算机可执行程序代码,程序代码包括指令;当处理器31执行指令时,指令使处理器31执行上述方法实施例中处理的动作,使发送器执行上述方法实施例中发送的动作,使接收器执行上述方法实施例中接收的动作,其实现原理和技术效果类似,在此不再赘述。
图12为本申请实施例提供的另一种网络设备的结构示意图。如图12所示,该网络设备可以包括:处理器41(例如CPU)、存储器42、接收器43;接收器43耦合至处理器41,处理器41控制接收器43的接收动作。存储器42可能包含高速RAM存储器,也可能还包括非易失性存储器NVM,例如至少一个磁盘存储器,存储器42中可以存储各种指令,以用于完成各种处理功能以及实现本申请实施例的方法步骤。可选的,本申请实施例涉及的网络设备还可以包括:发送器44、电源45、通信总线46以及通信端口47。接收器43和发送器44可以集成在网络设备的收发信机中,也可以为网络设备上独立的收发天线。通信总线46用于实现元件之间的通信连接。上述通信端口47用于实现网络设备与其他外设之间进行连接通信。
在本申请实施例中,上述存储器42用于存储计算机可执行程序代码,程序代码包括指令;当处理器41执行指令时,指令使处理器41执行上述方法实施例中处理的动作,使接收器执行上述方法实施例中接收的动作,使发送器执行上述方法实施例中发送的动作,其实现原理和技术效果类似,在此不再赘述。
正如上述实施例,本申请实施例涉及的终端设备可以是手机、平板电脑等无线终端,因此,以终端设备为手机为例:图13为本申请实施例提供的终端设备为手机时的结构框图。参考图13,该手机可以包括:射频(Radio Frequency,RF)电路1110、存储器1120、输入单元1130、显示单元1140、传感器1150、音频电路1160、无线保真(wireless fidelity,WiFi)模块1170、处理器1180、以及电源1190等部件。本领域技术人员可以理解,图13中示出的手机结构并不构成对手机的限定,可以包括比图示更多或更少的部件,或者组合某些部件,或者不同的部件布置。
下面结合图13对手机的各个构成部件进行具体的介绍:
RF电路1110可用于收发信息或通话过程中,信号的接收和发送,例如,将基站的下行信息接收后,给处理器1180处理;另外,将上行的数据发送给基站。通常,RF电路包括但不限于天线、至少一个放大器、收发信机、耦合器、低噪声放大器(Low Noise Amplifier,LNA)、双工器等。此外,RF电路1110还可以通过无线通信与网络和其他设备通信。上述无线通信可以使用任一通信标准或协议,包括但不限于全球移动通讯系统(Global System of Mobile communication,GSM)、通用分组无线服务(General Packet Radio Service,GPRS)、码分多址(Code Division Multiple Access,CDMA)、宽带码分多址(Wideband Code Division Multiple Access,WCDMA)、长期演进(Long Term Evolution,LTE))、电子邮件、短消息服务(Short Messaging Service,SMS)等。
存储器1120可用于存储软件程序以及模块,处理器1180通过运行存储在存储器1120 的软件程序以及模块,从而执行手机的各种功能应用以及数据处理。存储器1120可主要包括存储程序区和存储数据区,其中,存储程序区可存储操作系统、至少一个功能所需的应用程序(比如声音播放功能、图像播放功能等)等;存储数据区可存储根据手机的使用所创建的数据(比如音频数据、电话本等)等。此外,存储器1120可以包括高速随机存取存储器,还可以包括非易失性存储器,例如至少一个磁盘存储器件、闪存器件、或其他易失性固态存储器件。
输入单元1130可用于接收输入的数字或字符信息,以及产生与手机的用户设置以及功能控制有关的键信号输入。具体地,输入单元1130可包括触控面板1131以及其他输入设备1132。触控面板1131,也称为触摸屏,可收集用户在其上或附近的触摸操作(比如用户使用手指、触笔等任何适合的物体或附件在触控面板1131上或在触控面板1131附近的操作),并根据预先设定的程式驱动相应的连接装置。可选的,触控面板1131可包括触摸检测装置和触摸控制器两个部分。其中,触摸检测装置检测用户的触摸方位,并检测触摸操作带来的信号,将信号传送给触摸控制器;触摸控制器从触摸检测装置上接收触摸信息,并将它转换成触点坐标,再送给处理器1180,并能接收处理器1180发来的命令并加以执行。此外,可以采用电阻式、电容式、红外线以及表面声波等多种类型实现触控面板1131。除了触控面板1131,输入单元1130还可以包括其他输入设备1132。具体地,其他输入设备1132可以包括但不限于物理键盘、功能键(比如音量控制按键、开关按键等)、轨迹球、鼠标、操作杆等中的一种或多种。
显示单元1140可用于显示由用户输入的信息或提供给用户的信息以及手机的各种菜单。显示单元1140可包括显示面板1141,可选的,可以采用液晶显示器(Liquid Crystal Display,LCD)、有机发光二极管(Organic Light-Emitting Diode,OLED)等形式来配置显示面板1141。进一步的,触控面板1131可覆盖于显示面板1141之上,当触控面板1131检测到在其上或附近的触摸操作后,传送给处理器1180以确定触摸事件的类型,随后处理器1180根据触摸事件的类型在显示面板1141上提供相应的视觉输出。虽然在图10中,触控面板1131与显示面板1141是作为两个独立的部件来实现手机的输入和输入功能,但是在某些实施例中,可以将触控面板1131与显示面板1141集成而实现手机的输入和输出功能。
手机还可包括至少一种传感器1150,比如光传感器、运动传感器以及其他传感器。具体地,光传感器可包括环境光传感器及接近传感器,其中,环境光传感器可根据环境光线的明暗来调节显示面板1141的亮度,光传感器可在手机移动到耳边时,关闭显示面板1141和/或背光。作为运动传感器的一种,加速度传感器可检测各个方向上(一般为三轴)加速度的大小,静止时可检测出重力的大小及方向,可用于识别手机姿态的应用(比如横竖屏切换、相关游戏、磁力计姿态校准)、振动识别相关功能(比如计步器、敲击)等;至于手机还可配置的陀螺仪、气压计、湿度计、温度计、红外线传感器等其他传感器,在此不再赘述。
音频电路1160、扬声器1161以及传声器1162可提供用户与手机之间的音频接口。音频电路1160可将接收到的音频数据转换后的电信号,传输到扬声器1161,由扬声器1161转换为声音信号输出;另一方面,传声器1162将收集的声音信号转换为电信号,由音频电路1160接收后转换为音频数据,再将音频数据输出处理器1180处理后,经RF电路1110 以发送给比如另一手机,或者将音频数据输出至存储器1120以便进一步处理。
WiFi属于短距离无线传输技术,手机通过WiFi模块1170可以帮助用户收发电子邮件、浏览网页和访问流式媒体等,它为用户提供了无线的宽带互联网访问。虽然图13示出了WiFi模块1170,但是可以理解的是,其并不属于手机的必须构成,完全可以根据需要在不改变本申请实施例的本质的范围内而省略。
处理器1180是手机的控制中心,利用各种接口和线路连接整个手机的各个部分,通过运行或执行存储在存储器1120内的软件程序和/或模块,以及调用存储在存储器1120内的数据,执行手机的各种功能和处理数据,从而对手机进行整体监控。可选的,处理器1180可包括一个或多个处理单元;例如,处理器1180可集成应用处理器和调制解调处理器,其中,应用处理器主要处理操作系统、用户界面和应用程序等,调制解调处理器主要处理无线通信。可以理解的是,上述调制解调处理器也可以不集成到处理器1180中。
手机还包括给各个部件供电的电源1190(比如电池),可选的,电源可以通过电源管理系统与处理器1180逻辑相连,从而通过电源管理系统实现管理充电、放电、以及功耗管理等功能。
手机还可以包括摄像头1200,该摄像头可以为前置摄像头,也可以为后置摄像头。尽管未示出,手机还可以包括蓝牙模块、GPS模块等,在此不再赘述。
在本申请实施例中,该手机所包括的处理器1180可以用于执行上述控制信息的传输方法实施例,其实现原理和技术效果类似,在此不再赘述。
在上述实施例中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。计算机程序产品包括一个或多个计算机指令。在计算机上加载和执行计算机程序指令时,全部或部分地产生按照本发明实施例的流程或功能。计算机可以是通用计算机、专用计算机、计算机网络、或者其他可编程装置。计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,计算机指令可以从一个网站站点、计算机、服务器或数据中心通过有线(例如同轴电缆、光纤、数字用户线(DSL))或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。计算机可读存储介质可以是计算机能够存取的任何可用介质或者是包含一个或多个可用介质集成的服务器、数据中心等数据存储设备。可用介质可以是磁性介质,(例如,软盘、硬盘、磁带)、光介质(例如,DVD)、或者半导体介质(例如固态硬盘Solid State Disk(SSD))等。

Claims (31)

  1. 一种控制信息的发送方法,其特征在于,所述方法包括:
    确定第一时频资源,所述第一时频资源用于终端设备向网络设备发送物理上行共享信道;
    确定第二时频资源,所述第二时频资源用于所述终端设备向所述网络设备发送上行控制信息,所述第一时频资源包括所述第二时频资源;
    通过所述第二时频资源向所述网络设备发送所述上行控制信息。
  2. 根据权利要求1所述的方法,其特征在于,所述上行控制信息包括下述至少一种信息:混合自动重传确认信息HARQ-ACK、信道状态信息CSI;
    所述CSI包括下述至少一项:信道质量指示CQI、波束设置信息、预编码矩阵指示PMI、秩指示RI。
  3. 根据权利要求1或2所述的方法,其特征在于,
    所述第二时频资源包括N块在频率上的资源,其中,N的取值与所述第一时频资源的频率宽度满足第一映射关系,所述第一映射关系包括所述第一时频资源的频率宽度与所述N的取值之间的对应关系,所述N为大于或等于1的正整数。
  4. 根据权利要求1或2所述的方法,其特征在于,所确定第二时频资源,包括:
    接收所述网络设备发送的第一信息,所述第一信息用于指示所述第二时频资源包括N块在频率上的资源,以及,所述N块资源中的每一块资源的频率起始位置,所述N为大于或等于1的正整数;
    根据所述第一信息,确定所述第二时频资源的N块资源中的每一块资源的频率起点位置。
  5. 根据权利要求1-4任意一项所述的方法,其特征在于,所述确定第二时频资源,包括:
    接收所述网络设备发送的第二信息,所述第二信息用于指示所述第二时频资源的时间长度为第一长度;
    根据所述第二信息,确定所述第二时频资源的时间长度为第一长度。
  6. 根据权利要求1-5任意一项所述的方法,其特征在于,
    所述第二时频资源包括M块在时间上的资源,其中,M的取值与所述第一时频资源的时间长度满足第四映射关系,所述第四映射关系包括所述第一时频资源的时间长度和所述M的取值之间的对应关系,所述M为大于或等于1的正整数。
  7. 根据权利要求1-6任意一项所述的方法,其特征在于,
    所述第二时频资源包括L个时频资源单元,所述L的取值根据比例因子确定;
    所述上行控制信息对应第一业务时,所述比例因子为第一取值;
    所述上行控制信息对应第二业务时,所述比例因子为第二取值;
    所述第一业务与所述第二业务的时延要求和/或可靠性要求不同。
  8. 根据权利要求7所述的方法,其特征在于,所述确定第二时频资源,包括:
    接收所述网络设备发送的第四信息,所述第四信息用于指示所述比例因子的第一取值和所述比例因子的第二取值,以及所述比例因子的第一取值和第二取值与所述上行控制信 息所属的业务的对应关系;
    根据所述第四信息和所述上行控制信息所属的业务,确定所述L的取值。
  9. 一种控制信息的接收方法,其特征在于,所述方法包括:
    确定第一时频资源,所述第一时频资源用于接收终端设备发送的物理上行共享信道;
    确定第二时频资源,所述第二时频资源用于接收所述终端设备发送的上行控制信息,所述第一时频资源包括所述第二时频资源;
    在所述第二时频资源上接收所述终端设备发送的所述上行控制信息。
  10. 根据权利要求9所述的方法,其特征在于,所述上行控制信息包括下述至少一种信息:混合自动重传确认信息HARQ-ACK、信道状态信息CSI;
    所述CSI包括下述至少一项:信道质量指示CQI、波束设置信息、预编码矩阵指示PMI、秩指示RI。
  11. 根据权利要求9或10所述的方法,其特征在于,所述第二时频资源包括N块在频率上的资源,其中,N的取值与所述第一时频资源的频率宽度满足第一映射关系,所述第一映射关系包括所述第一时频资源的频率宽度与所述N的取值之间的对应关系,所述N为大于或等于1的正整数。
  12. 根据权利要求9或10所述的方法,其特征在于,所述方法还包括:
    向所述终端设备发送第一信息,所述第一信息用于指示所述第二时频资源包括N块在频率上的资源,以及,所述N块资源中的每一块资源的频率起始位置,所述N为大于或等于1的正整数。
  13. 根据权利要求9-12任一项所述的方法,其特征在于,所述方法还包括:
    向所述终端设备发送第二信息,所述第二信息用于指示所述第二时频资源的时间长度为第一长度。
  14. 根据权利要求根据权利要求9-13任一项所述的方法,其特征在于,
    所述第二时频资源包括M块在时间上的资源,其中,M的取值与所述第一时频资源的时间长度满足第四映射关系,所述第四映射关系包括所述第一时频资源的时间长度和所述M的取值之间的对应关系,所述M为大于或等于1的正整数。
  15. 根据权利要求根据权利要求9-14任一项所述的方法,其特征在于,
    所述第二时频资源包括L个时频资源单元,所述L的取值根据比例因子确定;
    所述上行控制信息对应第一业务时,所述比例因子为第一取值;
    所述上行控制信息对应第二业务时,所述比例因子为第二取值;
    所述第一业务与所述第二业务的时延要求和/或可靠性要求不同。
  16. 根据权利要求15所述的方法,其特征在于,所述方法还包括:
    向所述终端设备发送第四信息,所述第四信息用于指示所述比例因子的第一取值和所述比例因子的第二取值,以及所述比例因子的第一取值和第二取值与所述上行控制信息所属的业务的对应关系。
  17. 一种控制信息的发送装置,包括:
    处理模块,用于确定第一时频资源和第二时频资源,所述第一时频资源用于所述终端设备向网络设备发送物理上行共享信道,所述第二时频资源用于所述终端设备向所述网络设备发送上行控制信息,所述第一时频资源包括所述第二时频资源;
    发送模块,用于通过所述第二时频资源向所述网络设备发送所述上行控制信息。
  18. 根据权利要求17所述的装置,其特征在于,所述上行控制信息包括下述至少一种信息:混合自动重传确认信息HARQ-ACK、信道状态信息CSI;
    所述CSI包括下述至少一项:信道质量指示CQI、波束设置信息、预编码矩阵指示PMI、秩指示RI。
  19. 根据权利要求17或18所述的装置,其特征在于,
    所述第二时频资源包括N块在频率上的资源,其中,N的取值与所述第一时频资源的频率宽度满足第一映射关系,所述第一映射关系包括所述第一时频资源的频率宽度与所述N的取值之间的对应关系,所述N为大于或等于1的正整数。
  20. 根据权利要求17或18所述的装置,其特征在于,还包括:
    接收模块,用于接收所述网络设备发送的第一信息,所述第一信息用于指示所述第二时频资源包括N块在频率上的资源,以及,所述N块资源中的每一块资源的频率起始位置,所述N为大于或等于1的正整数;
    所述处理模块,具体用于根据所述第一信息,确定所述第二时频资源的N块资源中的每一块资源的频率起点位置。
  21. 根据权利要求17-20任一项所述的装置,其特征在于,还包括:
    接收模块,用于接收所述网络设备发送的第二信息,所述第二信息用于指示所述第二时频资源的时间长度为第一长度;
    所述处理模块,具体用于根据所述第二信息,确定所述第二时频资源的时间长度为第一长度。
  22. 根据权利要求17-21任一项所述的装置,其特征在于,所述第二时频资源包括M块在时间上的资源,其中,M的取值与所述第一时频资源的时间长度满足第四映射关系,所述第四映射关系包括所述第一时频资源的时间长度和所述M的取值之间的对应关系,所述M为大于或等于1的正整数。
  23. 根据权利要求17-22任一项所述的装置,其特征在于,
    所述第二时频资源包括L个时频资源单元,所述L的取值根据比例因子确定;
    所述上行控制信息对应第一业务时,所述比例因子为第一取值;
    所述上行控制信息对应第二业务时,所述比例因子为第二取值;
    所述第一业务与所述第二业务的时延要求和/或可靠性要求不同。
  24. 一种控制信息的接收装置,包括:
    处理模块,用于确定第一时频资源和第二时频资源,所述第一时频资源用于终端设备向所述网络设备发送物理上行共享信道,所述第二时频资源用于所述终端设备向所述网络设备发送上行控制信息,所述第一时频资源包括所述第二时频资源;
    接收模块,用于在所述第二时频资源上接收所述终端设备发送的所述上行控制信息。
  25. 根据权利要求24所述的装置,其特征在于,所述上行控制信息包括下述至少一种信息:混合自动重传确认信息HARQ-ACK、信道状态信息CSI;
    所述CSI包括下述至少一项:信道质量指示CQI、波束设置信息、预编码矩阵指示PMI、秩指示RI。
  26. 根据权利要求24或25所述的装置,其特征在于,所述第二时频资源包括N块在 频率上的资源,其中,N的取值与所述第一时频资源的频率宽度满足第一映射关系,所述第一映射关系包括所述第一时频资源的频率宽度与所述N的取值之间的对应关系,所述N为大于或等于1的正整数。
  27. 根据权利要求24或25所述的装置,其特征在于,还包括:
    发送模块,用于向所述终端设备发送第一信息,所述第一信息用于指示所述第二时频资源包括N块在频率上的资源,以及,所述N块资源中的每一块资源的频率起始位置,所述N为大于或等于1的正整数。
  28. 根据权利要求24-27任一项所述的装置,其特征在于,还包括:
    发送模块,用于向所述终端设备发送第二信息,所述第二信息用于指示所述第二时频资源的时间长度为第一长度。
  29. 根据权利要求24-27任一项所述的装置,其特征在于,
    所述第二时频资源包括M块在时间上的资源,其中,M的取值与所述第一时频资源的时间长度满足第四映射关系,所述第四映射关系包括所述第一时频资源的时间长度和所述M的取值之间的对应关系,所述M为大于或等于1的正整数。
  30. 根据权利要求24-29任一项所述的装置,其特征在于,
    所述第二时频资源包括L个时频资源单元,所述L的取值根据比例因子确定;
    所述上行控制信息对应第一业务时,所述比例因子为第一取值;
    所述上行控制信息对应第二业务时,所述比例因子为第二取值;
    所述第一业务与所述第二业务的时延要求和/或可靠性要求不同。
  31. 一种计算机可读存储介质,所述计算机可读存储介质中存储有指令,当其在计算机上运行时,使得计算机执行如权利要求1至16中任一项所述的方法。
PCT/CN2018/090983 2017-06-16 2018-06-13 控制信息的传输方法、终端设备和网络设备 WO2018228409A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710459595.0A CN109150457B (zh) 2017-06-16 2017-06-16 控制信息的传输方法和终端设备
CN201710459595.0 2017-06-16

Publications (1)

Publication Number Publication Date
WO2018228409A1 true WO2018228409A1 (zh) 2018-12-20

Family

ID=64660470

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/090983 WO2018228409A1 (zh) 2017-06-16 2018-06-13 控制信息的传输方法、终端设备和网络设备

Country Status (2)

Country Link
CN (1) CN109150457B (zh)
WO (1) WO2018228409A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113746591A (zh) * 2020-05-27 2021-12-03 上海朗帛通信技术有限公司 一种被用于无线通信的用户设备、基站中的方法和装置

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110535504A (zh) * 2019-03-29 2019-12-03 中兴通讯股份有限公司 信息映射方法、获取方法及相关设备

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101977099A (zh) * 2010-10-29 2011-02-16 中兴通讯股份有限公司 一种上行信道的发送方法、基站和用户设备
WO2014179964A1 (zh) * 2013-05-09 2014-11-13 富士通株式会社 上行控制信息的传输方法、用户设备以及基站
CN104348591A (zh) * 2013-08-01 2015-02-11 中兴通讯股份有限公司 一种上行控制信息的发送方法及用户设备、基站
CN104348589A (zh) * 2013-07-23 2015-02-11 电信科学技术研究院 一种传输反馈信息的方法和装置
CN104601303A (zh) * 2013-10-30 2015-05-06 电信科学技术研究院 上行控制信息的发送方法和装置、以及接收方法和装置

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102013938B (zh) * 2009-12-07 2012-07-04 华为技术有限公司 传输上行控制信息的方法和装置
JP5714693B2 (ja) * 2010-03-22 2015-05-07 サムスン エレクトロニクス カンパニー リミテッド 物理データチャネルでのユーザ機器からの制御及びデータ情報の多重化
WO2017000900A1 (zh) * 2015-06-30 2017-01-05 华为技术有限公司 传输信息的方法和设备

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101977099A (zh) * 2010-10-29 2011-02-16 中兴通讯股份有限公司 一种上行信道的发送方法、基站和用户设备
WO2014179964A1 (zh) * 2013-05-09 2014-11-13 富士通株式会社 上行控制信息的传输方法、用户设备以及基站
CN104348589A (zh) * 2013-07-23 2015-02-11 电信科学技术研究院 一种传输反馈信息的方法和装置
CN104348591A (zh) * 2013-08-01 2015-02-11 中兴通讯股份有限公司 一种上行控制信息的发送方法及用户设备、基站
CN104601303A (zh) * 2013-10-30 2015-05-06 电信科学技术研究院 上行控制信息的发送方法和装置、以及接收方法和装置

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113746591A (zh) * 2020-05-27 2021-12-03 上海朗帛通信技术有限公司 一种被用于无线通信的用户设备、基站中的方法和装置
CN113746591B (zh) * 2020-05-27 2024-04-12 上海朗帛通信技术有限公司 一种被用于无线通信的用户设备、基站中的方法和装置

Also Published As

Publication number Publication date
CN109150457B (zh) 2022-03-08
CN109150457A (zh) 2019-01-04

Similar Documents

Publication Publication Date Title
WO2018202159A1 (zh) 一种发送上行信息的方法、终端设备以及接入网设备
WO2019047019A1 (zh) 信息传输方法及相关产品
US20210168834A1 (en) Determining method, terminal, and network device
WO2021013090A1 (zh) 旁链路信息发送方法、接收方法、终端和控制节点
WO2018219011A1 (zh) 一种数据传输方法及通信设备
JP2011515948A (ja) アップリンクにおける半永続的配分の動的スケジューリングの上書き
CN112492647B (zh) 一种dci调度方法、设备及系统
WO2019007159A1 (zh) 数据传输方法、发送设备和接收设备
US10382243B2 (en) OFDM subframe transmission method and device using determined transport block sizes
WO2018027997A1 (zh) 上行信号传输方法、终端设备和网络设备
WO2018201938A1 (zh) 资源映射方法、网络设备和终端设备
WO2021027562A1 (zh) 频域资源分配方法、网络侧设备及终端
WO2018171708A1 (zh) 数据传输方法和终端设备
WO2022152072A1 (zh) 信道信息发送方法、信道信息接收方法及相关设备
WO2019028843A1 (zh) 信息传输方法及相关产品
JP7125431B6 (ja) フィードバック応答情報の長さ確定方法及び関連製品
WO2018228409A1 (zh) 控制信息的传输方法、终端设备和网络设备
CN110139390B (zh) 资源调度指示方法、终端及网络设备
EP3611860B1 (en) Data transmission and related product
WO2018177049A1 (zh) 数据传输方法、终端设备和网络设备
WO2022028583A1 (zh) 传输方法及装置
WO2021147764A1 (zh) 信道状态信息csi上报方法、终端及计算机可读存储介质
WO2022253312A1 (zh) 上行数据传输方法、装置、终端及介质
CN108811108B (zh) 控制信道的发送方法、终端设备和网络设备
WO2023280212A1 (zh) 信道状态信息csi上报处理方法、接收方法及相关设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18816924

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18816924

Country of ref document: EP

Kind code of ref document: A1