WO2019007159A1 - 数据传输方法、发送设备和接收设备 - Google Patents

数据传输方法、发送设备和接收设备 Download PDF

Info

Publication number
WO2019007159A1
WO2019007159A1 PCT/CN2018/087848 CN2018087848W WO2019007159A1 WO 2019007159 A1 WO2019007159 A1 WO 2019007159A1 CN 2018087848 W CN2018087848 W CN 2018087848W WO 2019007159 A1 WO2019007159 A1 WO 2019007159A1
Authority
WO
WIPO (PCT)
Prior art keywords
time
frequency resource
data
antenna port
resource
Prior art date
Application number
PCT/CN2018/087848
Other languages
English (en)
French (fr)
Inventor
梁津垚
张鹏
李元杰
杨育波
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP18827346.0A priority Critical patent/EP3637665B1/en
Publication of WO2019007159A1 publication Critical patent/WO2019007159A1/zh
Priority to US16/734,808 priority patent/US11343056B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0044Arrangements for allocating sub-channels of the transmission path allocation of payload
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/02Channels characterised by the type of signal
    • H04L5/06Channels characterised by the type of signal the signals being represented by different frequencies
    • H04L5/10Channels characterised by the type of signal the signals being represented by different frequencies with dynamo-electric generation of carriers; with mechanical filters or demodulators
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • H04L5/0007Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT
    • H04L5/0008Wavelet-division
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • H04L5/0051Allocation of pilot signals, i.e. of signals known to the receiver of dedicated pilots, i.e. pilots destined for a single user or terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • H04L5/0057Physical resource allocation for CQI
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0091Signaling for the administration of the divided path
    • H04L5/0096Indication of changes in allocation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0446Resources in time domain, e.g. slots or frames
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0453Resources in frequency domain, e.g. a carrier in FDMA
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/12Wireless traffic scheduling
    • H04W72/1263Mapping of traffic onto schedule, e.g. scheduled allocation or multiplexing of flows
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • H04L5/0007Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation

Definitions

  • the embodiments of the present application relate to communications technologies, and in particular, to a data transmission method, a sending device, and a receiving device.
  • Future 5G communication systems can support different services.
  • the foregoing services may be, for example, enhanced mobile broadband (eMBB) services, mass machine type communication (mMTC) services, and ultra-reliable and low latency communications (URLLC).
  • eMBB enhanced mobile broadband
  • mMTC mass machine type communication
  • URLLC ultra-reliable and low latency communications
  • MBMS Multimedia Broadcast Multicast Service
  • a terminal device has a scenario in which a plurality of services coexist.
  • the time-frequency resources scheduled by the network device for transmitting the multiple service data may have overlapping frequency domain resources.
  • a network device transmits a URLLC service and an eMBB service to a terminal device
  • the network device preempts a part of the time-frequency resource for transmitting the eMBB service data to send the URLLC service data
  • the time-frequency resource used for transmitting the eMBB service data and the URLLC are sent.
  • a network device or a terminal device transmits different service data by using multiple time-frequency resources with overlapping frequency domain resources
  • a service for demodulating the transmission on the time-frequency resource is transmitted on each time-frequency resource.
  • Demodulation Reference Signal (DMRS) of the data is transmitted on each time-frequency resource.
  • the network device or the terminal device transmits the DMRS on the time-frequency resource corresponding to each service, so that the overhead of the DMRS is large, and the resource utilization rate is low.
  • the embodiment of the present application provides a data transmission method, a sending device, and a receiving device, which are used to reduce the overhead of DMRS and improve resource utilization.
  • an embodiment of the present application provides a data transmission method, where the method includes:
  • the receiving device receives the first data on the first time-frequency resource and the second data on the second time-frequency resource;
  • the receiving device uses a target mapped on a target frequency domain resource of the first time-frequency resource A DMRS demodulates the second data on the target frequency domain resource of the second time-frequency resource.
  • the sending device when the sending device needs to separately send the first data and the second data to the receiving device, the sending device may have overlapping target frequency domain resources in the first time-frequency resource and the second time-frequency resource. At the time of transmitting the second DMRS on the target frequency domain resource of the second time-frequency resource, the second data is sent to the receiving device. In this way, the overhead of the DMRS can be reduced, and the resource utilization can be improved.
  • the receiving device is a terminal device, and the method further includes:
  • the receiving device receives the first indication information that is sent by the network device, where the first indication information is used to indicate that the receiving device uses the first DMRS to demodulate and map the target frequency domain of the second time-frequency resource.
  • the second data on the resource is used to indicate that the receiving device uses the first DMRS to demodulate and map the target frequency domain of the second time-frequency resource.
  • the receiving device may determine, according to the first indication information, that the sending device overlaps the first time-frequency resource and the second time-frequency resource.
  • the target frequency domain resource of the second time-frequency resource is originally used to map the location of the second DMRS, and the target of the second data overlaps in the frequency domain between the first time-frequency resource and the second time-frequency resource is mapped.
  • the mapping is performed on the first time-frequency resource, so that the receiving device can use the mapping at the first time-frequency when the first time-frequency resource and the second time-frequency resource overlap the target frequency domain resource in the frequency domain.
  • the first DMRS on the target frequency domain resource of the resource is demodulated and mapped to the second data on the target frequency domain resource of the second time-frequency resource, ensuring that the receiving device can correctly demodulate the second data, thereby improving data demodulation efficiency.
  • the receiving, by using the first DMRS, the second data that is mapped on the target frequency domain resource of the second time-frequency resource includes:
  • the receiving device uses the first DMRS solution when the interval is less than a target frequency domain resource that satisfies a mapping relationship with the preset interval and the first time-frequency resource and the second time-frequency resource overlap in the frequency domain Aligning the second data on the target frequency domain resource of the second time-frequency resource, where the interval is an interval between the first time-frequency resource and the second time-frequency resource.
  • the receiving device may determine, according to the first indication information, that the sending device is in the first time-frequency according to the interval between the first time-frequency resource and the second time-frequency resource.
  • the target frequency domain resource of the second time-frequency resource is originally used to map the location of the second DMRS, and the second data is mapped to the first time-frequency resource and the first
  • the first time-frequency resource is used, so that the receiving device can overlap the target frequency of the first time-frequency resource and the second time-frequency resource in the frequency domain.
  • the first DMRS mapped on the target frequency domain resource of the first time-frequency resource is used to demodulate the second data mapped on the target frequency domain resource of the second time-frequency resource, thereby ensuring that the receiving device can correctly solve the solution. Adjust the second data to improve the data demodulation efficiency.
  • the receiving device is a terminal device, and the method further includes:
  • the receiving device receives the second indication information sent by the network device, where the second indication information is used to indicate the preset interval.
  • the data transmission method provided by the possible implementation manner enables the receiving device to obtain a preset interval in a flexible manner, and increases the usage scenario of the data transmission method.
  • the preset interval satisfies a mapping relationship with a moving speed of the terminal device and a channel time varying parameter of the terminal device.
  • the data transmission method provided by the possible implementation manner enables the receiving device to obtain a preset interval in a flexible manner, and increases the usage scenario of the data transmission method.
  • the receiving, by using the first DMRS, the second data that is mapped on the target frequency domain resource of the second time-frequency resource includes:
  • the receiving device uses the first Decoding a second data on a target frequency domain resource of the second time-frequency resource;
  • the first antenna port information is antenna port information used when the sending device sends the first data
  • the second antenna port information is an antenna port used by the sending device to send the second data information
  • the first antenna port information includes: a first antenna port number used by the sending device when the first data is sent, and/or at least one first antenna port number;
  • the second antenna port information includes: The number of second antenna ports and/or at least one second antenna port number used by the transmitting device to transmit the second data.
  • the data transmission method provided by the possible implementation, the first antenna port information and the second antenna port information, so that the receiving device can determine, according to the first indication information, the first time-frequency resource and the second time-frequency of the sending device.
  • the target frequency domain resource of the second time-frequency resource is originally used to map the location of the second DMRS, and the second data is mapped to the first time-frequency resource and the second time-frequency resource.
  • the mapping is used in the first time-frequency resource, so that the receiving device can use the mapping when the first time-frequency resource and the second time-frequency resource overlap the target frequency-domain resource in the frequency domain. Decoding the first DMRS on the target frequency domain resource of the first time-frequency resource to map the second data on the target frequency domain resource of the second time-frequency resource, ensuring that the receiving device can correctly demodulate the second data and improve Data demodulation efficiency.
  • the receiving device is a terminal device, and the method further includes:
  • the receiving device demodulates the second data mapped on the target frequency domain resource of the second time-frequency resource by using the first DMRS transmitted by the first antenna port number corresponding to the second antenna port number.
  • the second antenna port number used when the sending device sends the second data is different from any of the first antenna port numbers used when the sending device sends the first data
  • the receiving device may use the first DMRS transmitted by using the first antenna port number corresponding to the second antenna port number to demodulate the target frequency of the second time-frequency resource.
  • the second data on the domain resource. In this way, the signaling indication overhead can be reduced, and the receiving device still determines which DMRS on the antenna port number of the first data is used for demodulation.
  • the third indication information includes: an identifier of a first antenna port number corresponding to the second antenna port number.
  • the second antenna port number used when the sending device sends the second data is different from any of the first antenna port numbers used when the sending device sends the first data
  • the receiving device may determine, according to the identifier of the first antenna port number corresponding to the second antenna port number carried in the third indication information, that the second antenna port number corresponds to the second antenna port number.
  • the first antenna port number so that the second data transmitted on the target frequency domain resource of the second time-frequency resource can be demodulated using the first DMRS transmitted by the first antenna port number corresponding to the second antenna port number.
  • the signaling indication overhead can be reduced, and the receiving device still determines which DMRS on the antenna port number of the first data is used for demodulation.
  • the receiving, by using the first DMRS, the second data that is mapped on the target frequency domain resource of the second time-frequency resource includes:
  • the receiving device demodulates the second data mapped on the target frequency domain resource of the second time-frequency resource by using the first DMRS transmitted by the first antenna port number corresponding to the second antenna port number.
  • the second antenna port number used when the sending device sends the second data is different from any of the first antenna port numbers used when the sending device sends the first data
  • the receiving device may determine, according to the identifier of the second antenna port number, and the corresponding relationship between the preset second antenna port number and the first antenna port number. a first antenna port number corresponding to the second antenna port number, so that the first DMRS transmitted by using the first antenna port number corresponding to the second antenna port number may be demodulated and mapped on the target frequency domain resource of the second time-frequency resource. Second data. In this way, the signaling indication overhead can be reduced, and the receiving device still determines which DMRS on the antenna port number of the first data is used for demodulation.
  • the receiving device is a terminal device, and the method further includes:
  • fourth indication information that is sent by the network device, where the fourth indication information is used to indicate a ratio of a transmit power of the first DMRS to a transmit power of the second data.
  • the receiving device after receiving the fourth indication information, can accurately measure the channel on the first DMRS according to the ratio of the transmit power of the first DMRS to the transmit power of the two data. It is estimated that the receiving device can make an accurate channel estimation for the second data according to the first DMRS, which improves the accuracy of the second data demodulation.
  • an embodiment of the present application provides a data transmission method, where the method includes:
  • the sending device determines a first time-frequency resource for transmitting the first data and a second time-frequency resource for transmitting the second data;
  • the sending device sends the second data in the target frequency domain resource of the second time-frequency resource.
  • the sending device is a network device, and the method further includes:
  • the sending device sends the first indication information to the terminal device, where the first indication information is used to indicate that the terminal device uses the first DMRS demodulation mapped on the target frequency domain resource of the first time-frequency resource. Mapping second data on a target frequency domain resource of the second time-frequency resource.
  • the sending device sends the second data by using the target frequency domain resource of the second time-frequency resource, including:
  • the transmitting device uses the target frequency of the second time-frequency resource
  • the domain resource sends the second data, where the interval is an interval between the first time-frequency resource and the second time-frequency resource.
  • the sending device is a network device, and the method further includes:
  • the sending device sends second indication information to the terminal device, where the second indication information is used to indicate a preset interval.
  • the preset interval satisfies a mapping relationship with a moving speed of the terminal device and a channel time varying parameter of the terminal device.
  • the sending device sends the second data by using the target frequency domain resource of the second time-frequency resource, including:
  • the transmitting device uses the second time-frequency when the first antenna port information is the same as the second antenna port information, and the first time-frequency resource and the second time-frequency resource have overlapping target frequency domain resources.
  • the target frequency domain resource of the resource sends the second data;
  • the first antenna port information is antenna port information used when the sending device sends the first data
  • the second antenna port information is an antenna port used by the sending device to send the second data information
  • the first antenna port information includes: a first antenna port number used by the sending device when transmitting the first data, and/or at least one first antenna port number;
  • the second antenna port information includes: the sending device The number of second antenna ports and/or at least one second antenna port number used when transmitting the second data.
  • the sending device is a network device, and the method further includes:
  • the sending device sends third indication information to the terminal device, where the third indication information is used to determine a first antenna port number corresponding to the second antenna port number.
  • the third indication information includes: an identifier of a first antenna port number corresponding to the second antenna port number.
  • the sending device is a network device, and the method further includes:
  • the sending device sends fourth indication information to the terminal device, where the fourth indication information is used to indicate a ratio of a transmit power of the first DMRS to a transmit power of the second data.
  • an embodiment of the present application provides a data transmission system, where the system includes a sending device and a receiving device;
  • the sending device is configured to map the first data to the first target location on the first time-frequency resource, and to map the second data to the second target location on the second time-frequency resource, where the first target location is not The time-frequency resource location of the first pilot and the target time-frequency resource, where the target time-frequency resource is a time-frequency resource in which the first time-frequency resource and the second time-frequency resource overlap, and the second target location does not include a time-frequency resource location of the second pilot, where the time-frequency resource location of the second pilot does not include the target time-frequency resource;
  • the receiving device is configured to receive, by the first time-frequency resource, a first signal on a time-frequency resource other than the target time-frequency resource, and receive a second signal on the second time-frequency resource, where the The first signal includes a first pilot and first data, and the second signal includes second data;
  • the receiving device is further configured to demodulate the second data carried on the target time-frequency resource by using the first pilot.
  • an embodiment of the present application provides a data transmission method, where the method includes:
  • the first target location does not include the time-frequency resource location of the first pilot and the target time-frequency resource; the target time-frequency resource is a time-frequency resource in which the first time-frequency resource and the second time-frequency resource overlap.
  • the second target location does not include the time-frequency resource location of the second pilot, and the time-frequency resource location of the second pilot does not include the target time-frequency resource.
  • an embodiment of the present application provides a data transmission method, where the method includes:
  • the receiving device receives the first signal on the time-frequency resource except the target time-frequency resource, and receives the second signal on the second time-frequency resource, where the first target location does not include the first a time-frequency resource location of the pilot and a target time-frequency resource, where the target time-frequency resource is a time-frequency resource in which the first time-frequency resource and the second time-frequency resource overlap, and the second target location does not include the second a time-frequency resource location of the pilot, where the time-frequency resource location of the second pilot does not include the target time-frequency resource;
  • the first signal includes a first pilot and first data
  • the second signal includes a Two data;
  • the receiving device demodulates the second data carried on the target time-frequency resource by using the first pilot.
  • the embodiment of the present application provides a receiving device, which may be a network device, a terminal device, or a chip.
  • the receiving device can include:
  • a receiving module configured to receive first data on a first time-frequency resource, and receive second data on a second time-frequency resource;
  • a processing module configured to use, when the first time-frequency resource and the second time-frequency resource overlap target frequency domain resources in a frequency domain, use mapping on a target frequency domain resource of the first time-frequency resource
  • the first DMRS demodulates the second data mapped on the target frequency domain resource of the second time-frequency resource.
  • the receiving device is a terminal device, and the receiving module is further configured to receive first indication information sent by the network device, where the first indication information is used to indicate the receiving
  • the device demodulates the second data mapped on the target frequency domain resource of the second time-frequency resource by using the first DMRS.
  • the processing module is configured to: when the interval is smaller than the preset interval, and the first time-frequency resource and the second time-frequency resource overlap in the frequency domain, Decoding the second data mapped to the target frequency domain resource of the second time-frequency resource by using the first DMRS, where the interval is the first time-frequency resource and the second The interval between time-frequency resources.
  • the receiving device is a terminal device, and the receiving module is further configured to receive second indication information that is sent by the network device, where the second indication information is used to indicate the Set the interval.
  • the preset interval satisfies a mapping relationship with a moving speed of the terminal device and a channel time varying parameter of the terminal device.
  • the processing module is specifically configured to: the first antenna port information is the same as the second antenna port information, and the first time-frequency resource and the second time-frequency resource are in the frequency domain. And using the first DMRS to demodulate the second data mapped on the target frequency domain resource of the second time-frequency resource when the target frequency domain resource is overlapped;
  • the first antenna port information is antenna port information used when the sending device sends the first data
  • the second antenna port information is an antenna port used by the sending device to send the second data information
  • the first antenna port information includes: a first antenna port number used by the sending device when the first data is sent, and/or at least one first antenna port number;
  • the second antenna port information includes: The number of second antenna ports and/or at least one second antenna port number used by the transmitting device to transmit the second data.
  • the receiving device is a terminal device, and the receiving module is further configured to receive third indication information that is sent by the network device, where the third indication information is used to determine a first antenna port number corresponding to the second antenna port number;
  • the processing module is specifically configured to: demodulate, by using a first DMRS transmitted by using a first antenna port number corresponding to the second antenna port number, a second mapping on a target frequency domain resource of the second time-frequency resource. data.
  • the third indication information includes: an identifier of a first antenna port number corresponding to the second antenna port number.
  • the processing module is specifically configured to determine, according to the identifier of the second antenna port number, and the corresponding relationship between the preset second antenna port number and the first antenna port number. a first antenna port number corresponding to the second antenna port number, and demodulating and mapping the first time-frequency resource by using a first DMRS transmitted by using a first antenna port number corresponding to the second antenna port number The second data on the target frequency domain resource.
  • the receiving device is a terminal device, and the receiving module is further configured to receive fourth indication information that is sent by the network device, where the fourth indication information is used to indicate the The ratio of the transmission power of a DMRS to the transmission power of the two data.
  • the embodiment of the present application provides a sending device, where the sending device may be a network device, a terminal device, or a chip.
  • the sending device can include:
  • a processing module configured to determine a first time-frequency resource that sends the first data and a second time-frequency resource that sends the second data
  • the processing module is further configured to: when the first time-frequency resource and the second time-frequency resource have overlapping target frequency domain resources, instruct the sending module to send the target frequency domain resource of the second time-frequency resource Second data.
  • the sending device is a network device
  • the sending module is further configured to send the first indication information to the terminal device, where the first indication information is used to indicate that the terminal device is used by the terminal device.
  • the processing module is configured to: a target frequency domain resource that satisfies a mapping relationship between an interval and a preset interval, and the first time-frequency resource and the second time-frequency resource overlap. And transmitting, by the sending module, the second data by using the target frequency domain resource of the second time-frequency resource, where the interval is an interval between the first time-frequency resource and the second time-frequency resource.
  • the sending device is a network device
  • the sending module is further configured to send second indication information to the terminal device, where the second indication information is used to indicate a preset interval.
  • the preset interval satisfies a mapping relationship with a moving speed of the terminal device and a channel time varying parameter of the terminal device.
  • the processing module is specifically configured to: when the first antenna port information is the same as the second antenna port information, and the first time-frequency resource and the second time-frequency resource overlap.
  • the sending module is instructed to send the second data by using the target frequency domain resource of the second time-frequency resource;
  • the first antenna port information is antenna port information used when the sending device sends the first data
  • the second antenna port information is an antenna port used by the sending device to send the second data information
  • the first antenna port information includes: a first antenna port number used by the sending device when transmitting the first data, and/or at least one first antenna port number;
  • the second antenna port information includes: the sending device The number of second antenna ports and/or at least one second antenna port number used when transmitting the second data.
  • the sending device is a network device
  • the sending module is further configured to send third indication information to the terminal device, where the third indication information is used to determine the second The first antenna port number corresponding to the antenna port number.
  • the third indication information includes: an identifier of a first antenna port number corresponding to the second antenna port number.
  • the sending device is a network device
  • the sending module is further configured to send fourth indication information to the terminal device, where the fourth indication information is used to indicate the first DMRS The ratio of the transmitted power to the transmitted power of the two data.
  • the embodiment of the present application provides a sending device, where the sending device may be a network device, a terminal device, or a chip.
  • the sending device can include:
  • a processing module configured to map the first data to the first target location on the first time-frequency resource, and to map the second data to the second target location on the second time-frequency resource, where the first target location does not include a time-frequency resource location of the first pilot and a target time-frequency resource, where the target time-frequency resource is a time-frequency resource in which the first time-frequency resource and the second time-frequency resource overlap, and the second target location does not include the a time-frequency resource location of the second pilot, where the time-frequency resource location of the second pilot does not include the target time-frequency resource.
  • the ninth aspect, the embodiment of the present application provides a receiving device, which may be a network device, a terminal device, or a chip.
  • the receiving device can include:
  • a receiving module configured to receive, by the first time-frequency resource, a first signal on a time-frequency resource other than the target time-frequency resource, and receive a second signal on the second time-frequency resource, where the first target location does not include a time-frequency resource location of the first pilot and a target time-frequency resource, where the target time-frequency resource is a time-frequency resource in which the first time-frequency resource and the second time-frequency resource overlap, and the second target location does not include the location a time-frequency resource location of the second pilot, where the time-frequency resource location of the second pilot does not include the target time-frequency resource;
  • the first signal includes a first pilot and first data
  • the second The signal includes second data;
  • a processing module configured to demodulate the second data carried on the target time-frequency resource by using the first pilot.
  • the ninth aspect and the receiving device provided by each possible implementation manner of the ninth aspect can be beneficially seen in the above first aspect and the beneficial effects brought by the possible implementation manners of the first aspect, and no longer Narration.
  • the embodiment of the present application provides a receiving device, where the receiving device includes: a processor, a memory, and a receiver; the receiver is coupled to the processor, and the processor controls receiving by the receiver. action;
  • the memory is for storing computer executable program code, the program code comprising instructions; when the processor executes the instructions, the instructions cause the receiving device to perform data transmission as provided by the first aspect and the possible embodiments of the first aspect method.
  • an embodiment of the present application provides a sending device, where the sending device includes: a processor, a memory, and a transmitter; the transmitter is coupled to the processor, and the processor controls the Send action
  • the memory is for storing computer executable program code, the program code comprising instructions; when the processor executes the instructions, the instructions cause the transmitting device to perform data transmission as provided by the second aspect and the possible embodiments of the second aspect method.
  • the embodiment of the present application provides a receiving device, where the receiving device includes: a processor, a memory, and a receiver; the receiver is coupled to the processor, and the processor controls the receiver Receiving action
  • the memory is for storing computer executable program code, the program code comprising instructions; when the processor executes the instructions, the instructions cause the receiving device to perform data transmission as provided by the fifth and fifth possible embodiments method.
  • the embodiment of the present application provides a sending device, where the sending device includes: a processor, a memory, and a transmitter; the transmitter is coupled to the processor, and the processor controls the Send action
  • the memory is for storing computer executable program code, the program code comprising instructions; when the processor executes the instructions, the instructions cause the transmitting device to perform data transmission as provided by the fourth aspect and the possible embodiments of the fourth aspect method.
  • a fourteenth aspect of the embodiments of the present application provides a receiving device comprising at least one processing element (or chip) for performing the method of the above first aspect.
  • a fifteenth aspect of the embodiments of the present application provides a transmitting device comprising at least one processing element (or chip) for performing the method of the above second aspect.
  • a sixteenth aspect of the embodiments of the present application provides a transmitting device comprising at least one processing element (or chip) for performing the method of the above fourth aspect.
  • a seventeenth aspect of the embodiments of the present application provides a receiving device comprising at least one processing element (or chip) for performing the method of the above fifth aspect.
  • An eighteenth aspect of the embodiments of the present application provides a program for performing the method of the above first aspect when executed by a processor.
  • a nineteenth aspect of the embodiments of the present application provides a program for performing the method of the above second aspect when executed by a processor.
  • a twentieth aspect of the embodiments of the present application provides a program for performing the method of the above fourth aspect when executed by a processor.
  • a twenty-first aspect of the embodiments of the present application provides a program for executing the method of the above fifth aspect when executed by a processor.
  • a twenty-second aspect of the embodiments of the present application provides a program product, such as a computer readable storage medium, comprising the program of the eighteenth aspect.
  • a twenty-third aspect of the embodiments of the present application provides a program product, such as a computer readable storage medium, comprising the program of the nineteenth aspect.
  • a twenty-fourth aspect of the embodiments of the present application provides a program product, such as a computer readable storage medium, comprising the program of the twentieth aspect.
  • a twenty-fifth aspect of the embodiments of the present application provides a program product, such as a computer readable storage medium, comprising the program of the twenty-first aspect.
  • a twenty-sixth aspect of the present application provides a computer readable storage medium having instructions stored therein that, when run on a computer, cause the computer to perform the method of the first aspect described above.
  • a twenty-seventh aspect of the present application provides a computer readable storage medium having instructions stored therein that, when run on a computer, cause the computer to perform the method of the second aspect described above.
  • a twenty-eighth aspect of the present application provides a computer readable storage medium having instructions stored in a computer readable storage medium to cause the computer to perform the method of the fourth aspect described above.
  • a twenty-ninth aspect of the present application provides a computer readable storage medium having instructions stored in a computer readable storage medium to cause the computer to perform the method of the fifth aspect.
  • the sending device when the sending device needs to separately send the first data and the second data to the receiving device, the sending device may exist in the first time-frequency resource and the second time-frequency resource.
  • the location of the second DMRS is originally transmitted on the target frequency domain resource of the second time-frequency resource, and the second data is sent to the receiving device.
  • the overhead of the DMRS can be reduced, and the resource utilization can be improved. If the service with lower reliability uses the DMRS of the service with higher reliability, it can help improve the accuracy of data demodulation of the lower reliability service and increase the data rate of the service that does not send the DMRS. If the service with higher reliability uses the DMRS of the service with lower reliability, it can help improve the data rate of the service that does not send the DMRS.
  • FIG. 1 is a frame diagram of a communication system according to an embodiment of the present application.
  • FIG. 2 is a schematic diagram of a time-frequency resource according to an embodiment of the present application.
  • FIG. 3 is a signaling flowchart of a data transmission method according to an embodiment of the present application.
  • FIG. 4 is a schematic diagram of another time-frequency resource according to an embodiment of the present application.
  • FIG. 5 is a schematic diagram of still another time-frequency resource according to an embodiment of the present application.
  • FIG. 6 is a schematic diagram of still another time-frequency resource according to an embodiment of the present application.
  • FIG. 7 is a schematic diagram of still another time-frequency resource according to an embodiment of the present application.
  • FIG. 8 is a schematic diagram of still another time-frequency resource according to an embodiment of the present application.
  • FIG. 9 is a schematic diagram of still another time-frequency resource according to an embodiment of the present application.
  • FIG. 10 is a schematic diagram of an antenna port number according to an embodiment of the present application.
  • FIG. 11 is a schematic flowchart diagram of another data transmission method according to an embodiment of the present disclosure.
  • FIG. 12 is a schematic diagram of still another time-frequency resource according to an embodiment of the present application.
  • FIG. 13 is a schematic structural diagram of a receiving device according to an embodiment of the present disclosure.
  • FIG. 14 is a schematic structural diagram of a sending device according to an embodiment of the present disclosure.
  • FIG. 15 is a schematic structural diagram of another receiving device according to an embodiment of the present disclosure.
  • FIG. 16 is a schematic structural diagram of still another receiving device according to an embodiment of the present application.
  • FIG. 17 is a schematic structural diagram of another sending device according to an embodiment of the present disclosure.
  • FIG. 18 is a schematic structural diagram of a data transmission system according to an embodiment of the present application.
  • FIG. 19 is a structural block diagram of a terminal device provided by a mobile phone according to an embodiment of the present disclosure.
  • FIG. 1 is a schematic diagram of a communication system according to an embodiment of the present application.
  • the communication system includes: a network device 01 and a terminal device 02.
  • Network device 01 and terminal device 02 can communicate using one or more air interface technologies. among them,
  • the network device may be the foregoing base station, or various wireless access points, or may refer to a device in the access network that communicates with the terminal device through one or more sectors on the air interface.
  • the base station can be used to convert the received air frame to the IP packet as a router between the wireless terminal and the rest of the access network, wherein the remaining portion of the access network can include an Internet Protocol (IP) network.
  • IP Internet Protocol
  • the base station can also coordinate attribute management of the air interface.
  • the base station may be a Global System of Mobile communication (GSM) or a Base Transceiver Station (BTS) in Code Division Multiple Access (CDMA), or may be a wideband code division multiple access (
  • the base station (NodeB, NB) in the Wideband Code Division Multiple Access (WCDMA) may also be an evolved base station (Evolutional Node B, eNB or eNodeB) in Long Term Evolution (LTE), or a relay station or an access point.
  • LTE Long Term Evolution
  • LTE Long Term Evolution
  • Terminal device may be a wireless terminal or a wired terminal, the wireless terminal may be a device that provides voice and/or other service data connectivity to the user, a handheld device with wireless connectivity, or other processing device connected to the wireless modem. .
  • the wireless terminal can communicate with one or more core networks via a Radio Access Network (RAN), which can be a mobile terminal, such as a mobile phone (or "cellular" phone) and a computer with a mobile terminal.
  • RAN Radio Access Network
  • it may be a portable, pocket, handheld, computer built-in or in-vehicle mobile device that exchanges language and/or data with a wireless access network.
  • RAN Radio Access Network
  • the wireless terminal may also be referred to as a system, a subscriber unit, a subscriber station, a mobile station, a mobile station, a remote station, a remote terminal, and a remote terminal.
  • the access terminal, the user terminal (User Terminal), the user agent (User Agent), and the user device (User Device or User Equipment) are not limited herein.
  • the foregoing communication system may be an LTE communication system, or may be other communication systems in the future, and is not limited herein.
  • the future 5G communication system introduces eMBB service, URLLC service, mMTC service, and the like. Therefore, in the 5G communication system, there are scenarios in which multiple services coexist in uplink data communication and/or downlink data communication of the terminal device.
  • time-frequency resources for transmitting the multiple services may have overlapping frequency domain resources.
  • FIG. 2 is a schematic diagram of a time-frequency resource according to an embodiment of the present application.
  • the scenario in which the first service and the second service coexist is taken as an example, and it is assumed that the first time-frequency resource that maps the first service data and the second time-frequency resource that maps the second service data have overlapping frequency domain resources.
  • the sending device for example, the network device or the terminal device
  • the first data the first service data
  • all the frequency domains of the first time-frequency resource are used.
  • a first DMRS for demodulating the first data is transmitted on the resource.
  • the sending device sends the second service data (referred to as the second data) on the second time-frequency resource
  • the second DMRS for demodulating the second data is sent on all the frequency domain resources of the second time-frequency resource, so that DMRS has a large overhead and low resource utilization. Therefore, in consideration of the above problem, the embodiment of the present application provides a data transmission method, which is used to solve the technical problem that the DMRS has a large overhead.
  • the foregoing sending device and receiving device are not limited.
  • the sending device is a terminal device
  • the receiving device is a network device; or when the sending device is a network device, the receiving device is a terminal device.
  • the first service and the second service are not limited in the embodiment of the present application.
  • the first service is an eMBB service, and the second service is a URLLC service; or the first service is a multimedia service, and the second service is a control information service; or the first service is a URLLC service, and the second service is an eMBB service.
  • the foregoing second service may be a service with a higher latency requirement.
  • the embodiments of the present application can be used for downlink data communication, and can also be used for uplink data communication.
  • first and second may be used to describe different services in the embodiments of the present application, these services should not be limited to these terms. These terms are only used to distinguish each service from each other.
  • the first service may also be referred to as a second service without departing from the scope of the embodiments of the present application.
  • the second service may also be referred to as a first service.
  • first and second may be used to describe different data in the embodiments of the present application, the data should not be limited to these terms. These terms are only used to distinguish individual data from each other.
  • first data may also be referred to as second data without departing from the scope of the embodiments of the present application.
  • second data may also be referred to as first data.
  • the terminal device has two services, that is, the first service and the second service.
  • the following embodiments may be combined with each other, and the same or similar concepts or processes may not be described in some embodiments.
  • FIG. 3 is a signaling flowchart of a data transmission method according to an embodiment of the present application.
  • the embodiment relates to a location where the sending device sends the second DMRS on the target frequency domain resource of the second time-frequency resource when the first time-frequency resource and the second time-frequency resource have overlapping target frequency domain resources.
  • the process of transmitting the second data to the receiving device may include:
  • the sending device determines a first time-frequency resource that sends the first data and a second time-frequency resource that sends the second data.
  • the first data may be the first service data
  • the second data may be the second service data.
  • the first data is eMBB service data
  • the second data is URLLC service data.
  • the sending device may determine a first time-frequency resource for transmitting the first data and a second time for sending the second data. Time-frequency resources.
  • the sending device may receive downlink control information (Downlink Control Information (DCI), which is used by the network device to indicate the first time-frequency resource, and is used to indicate the second time-frequency resource.
  • DCI Downlink Control Information
  • the DCI obtains the first time-frequency resource and the second time-frequency resource, and details are not described herein.
  • the sending device sends the first data and the first DMRS to the receiving device by using the first time-frequency resource, and uses the second time-frequency resource.
  • the target frequency domain resource sends the second data to the receiving device, and uses the other frequency domain resources of the second time-frequency resource to send the second DMRS and the second data to the receiving device.
  • the target frequency domain resource of the transmitting device in the first time-frequency resource is the same as the subcarrier used when the transmitting device transmits data on the target frequency domain resource of the second time-frequency resource. Since the channel characteristics when the data is transmitted using the same subcarrier are the same, the receiving device can also demodulate the target frequency of the second time-frequency resource by using the first DMRS transmitted by the transmitting device on the target frequency domain resource of the first time-frequency resource. The second data transmitted on the domain resource.
  • the transmitting device may still map the first DMRS and the first data in an existing manner on the first time-frequency resource.
  • the sending device may map the second data originally used to map the second DMRS on the target frequency domain resource of the second time-frequency resource, and continue on the other frequency domain resources of the second time-frequency resource.
  • the second DMRS and the second data are mapped in an existing manner. In this way, the transmitting device can use the time-frequency resource originally used for transmitting the second DMRS to transmit the second data, which reduces the overhead of the DMRS and improves resource utilization.
  • the embodiment does not limit the manner in which the foregoing sending device maps the second data on the second time-frequency resource.
  • the transmitting device may first determine an available resource element (Resource Element, RE) for mapping the second data.
  • the available RE may include a time-frequency resource originally used to map the second DMRS on the target frequency domain resource of the second time-frequency resource.
  • the transmitting device may be in the available REs according to the pre-layered post-time domain post-frequency domain, or the pre-layer post-frequency domain post-time domain, or the pre-time domain post-frequency domain back layer, or the first frequency domain post-time domain.
  • the latter layer's RE mapping rules are mapped.
  • the foregoing sending device may also first determine a first available RE for mapping the second data.
  • the first available RE does not include a time-frequency resource that is originally used to map the second DMRS on the target frequency domain resource of the second time-frequency resource.
  • the sending device may be on the first available RE, according to the post-layer time domain post-frequency domain, or the first-layer post-frequency domain post-time domain, or the first-time domain post-frequency domain back layer, or the first frequency domain after-time
  • the mapping of RE mapping rules at the back of the domain is performed.
  • the transmitting device on the target frequency domain resource of the second time-frequency resource, is used to map the time-frequency resource of the second DMRS, according to the post-band time domain post-frequency domain, or the first-layer post-frequency domain post-time domain, Or, the RE mapping rule of the post-time domain post-frequency domain, or the pre-frequency domain post-time domain back layer mapping.
  • the receiving device receives the first data on the first time-frequency resource and the second data on the second time-frequency resource.
  • the receiving device demodulates the second data mapped to the target frequency domain resource of the second time-frequency resource by using the first DMRS mapped on the target frequency domain resource of the first time-frequency resource.
  • the receiving device by using the first time-frequency resource and the second time-frequency resource, can learn whether the first time-frequency resource and the second time-frequency resource have overlapping target frequency domain resources.
  • the receiving device may determine that the sending device does not map the second DMRS on the target frequency-domain resource of the second time-frequency resource.
  • the receiving device may demodulate the second data mapped to the target frequency domain resource of the second time-frequency resource by using the first DMRS mapped on the target frequency domain resource of the first time-frequency resource, Mapping a second DMRS on other frequency domain resources of the second time-frequency resource, and demodulating the second data mapped on the other frequency domain resources of the second time-frequency resource.
  • the receiving device may receive downlink control information (Downlink Control Information (DCI), which is used by the network device to indicate the first time-frequency resource, and is used to indicate the second time-frequency resource.
  • DCI Downlink Control Information
  • the DCI obtains the first time-frequency resource and the second time-frequency resource, and details are not described herein.
  • the sending device when the sending device needs to separately send the first data and the second data to the receiving device, the sending device may overlap the target frequency domain resource in the first time-frequency resource and the second time-frequency resource. At the time of transmitting the second DMRS on the target frequency domain resource of the second time-frequency resource, the second data is sent to the receiving device. In this way, the overhead of the DMRS can be reduced, and the resource utilization can be improved. If the service with lower reliability uses the DMRS of the service with higher reliability, it can help improve the accuracy of data demodulation of the lower reliability service and increase the data rate of the service that does not send the DMRS. If the service with higher reliability uses the DMRS of the service with lower reliability, it can help improve the data rate of the service that does not send the DMRS.
  • FIG. 4 is a schematic diagram of another time-frequency resource provided by an embodiment of the present application.
  • FIG. 5 is a schematic diagram of still another time-frequency resource according to an embodiment of the present application.
  • FIG. 4 shows that the network device uses different time slots to schedule the first service and the second service.
  • FIG. 5 shows that the network device uses the same time slot to schedule the first service and the second service.
  • the bandwidth used by the network device to schedule the second data is greater than the bandwidth used when scheduling the first data
  • the frequency domain resource of the second time-frequency resource and the first time-frequency are present. The case where all the frequency domain resources of the resource overlap.
  • the target frequency domain resource of the first time-frequency resource is all frequency domain resources of the first time-frequency resource
  • the target frequency-domain resource of the second time-frequency resource is all frequency of the first time-frequency resource.
  • the part of the domain resource overlap that is, the frequency domain resource corresponding to the dotted line frame in Figures 4 and 5).
  • the sending device may still map the first DMRS and the first data in an existing manner on the first time-frequency resource.
  • the transmitting device may map the second data on the target frequency domain resource of the second time-frequency resource, and continue mapping the second DMRS and the second data in the existing manner on the other frequency domain resources of the second time-frequency resource. That is, the location where the transmitting device originally used to map the second DMRS on the target frequency domain resource of the second time-frequency resource (ie, the black region in FIGS. 4 and 5) also maps the second data.
  • the receiving device receives the first data sent by the sending device on the first time-frequency resource, and after the second data sent on the second time-frequency resource, the receiving device can use the mapping at the first time-frequency.
  • a first DMRS ie, a first DMRS mapped on all frequency domain resources of the first time-frequency resource
  • a second transmission transmitted on the target frequency domain resource of the second time-frequency resource Data ie, the second data on the time-frequency resource mapped in the dashed box of FIG. 4 and FIG. 5
  • using the second DMRS mapped on the other frequency-domain resources of the second time-frequency resource and demodulating the mapping at the second time-frequency The second data on the other frequency domain resources of the resource.
  • the transmitting device can use the time-frequency resource originally used for transmitting the second DMRS to transmit the second data, which reduces the overhead of the DMRS and improves resource utilization.
  • FIG. 6 is a schematic diagram of still another time-frequency resource according to an embodiment of the present application.
  • FIG. 7 is a schematic diagram of still another time-frequency resource according to an embodiment of the present application.
  • FIG. 6 shows that the network device uses different time slots to schedule the first service and the second service.
  • FIG. 7 shows that the network device uses the same time slot to schedule the first service and the second service.
  • the bandwidth used by the network device to schedule the second data is smaller than the bandwidth used when scheduling the first data
  • the frequency domain resource of the first time-frequency resource and the second time-frequency are present. The case where all the frequency domain resources of the resource overlap.
  • the target frequency domain resource of the second time-frequency resource is all frequency domain resources of the second time-frequency resource
  • the target frequency domain resource of the first time-frequency resource is the full frequency of the second time-frequency resource. The part of the domain resource that overlaps.
  • the sending device may still map the first DMRS and the first data in an existing manner on the first time-frequency resource.
  • the transmitting device may map the second data on the target frequency domain resource of the second time-frequency resource (that is, all the frequency domain resources of the second time-frequency resource), and no longer map the second DMRS. That is, the location where the transmitting device originally used to map the second DMRS on the target frequency domain resource of the second time-frequency resource (ie, the black region in FIGS. 6 and 7) also maps the second data.
  • the receiving device receives the first data sent by the sending device on the first time-frequency resource, and after the second data sent on the second time-frequency resource, the receiving device can use the mapping at the first time-frequency.
  • the first DMRS on the target frequency domain resource of the resource (ie, the first DMRS mapped on the time-frequency resource in the dotted line frame of FIG. 6 and FIG. 7) is demodulated and transmitted on all frequency domain resources of the second time-frequency resource.
  • Second data Second data.
  • the transmitting device can use the time-frequency resource originally used for transmitting the second DMRS to transmit the second data, which reduces the overhead of the DMRS and improves resource utilization.
  • FIG. 8 is a schematic diagram of still another time-frequency resource according to an embodiment of the present application.
  • FIG. 9 is a schematic diagram of still another time-frequency resource according to an embodiment of the present application. 8 and 9 show that the network device uses different time slots to schedule the first service and the second service. As shown in FIG. 8 and FIG. 9 , the bandwidth used by the network device to schedule the second data is the same as the bandwidth used when scheduling the first data, that is, the target frequency domain resource of the second time-frequency resource is All frequency domain resources of the second time-frequency resource, and the target frequency domain resource of the first time-frequency resource is all frequency domain resources of the first time-frequency resource.
  • the first service preempts a part of the time-frequency resource of the second service, and the part of the time-frequency resource includes a time-frequency resource for mapping the second DMRS, that is, the network device uses the second time-frequency resource for mapping the second DMRS.
  • the time-frequency resource is rescheduled to the first service.
  • the first time-frequency resource includes a time-frequency resource that the second time-frequency resource is originally used to map the second DMRS.
  • the foregoing second DMRS may be a front-loaded second DMRS, or may be an additional second DMRS.
  • the first time-frequency resource includes a second time-frequency resource originally used to map a time-frequency resource of the front-loaded second DMRS
  • FIG. 9 shows that the first time-frequency resource includes a second time-frequency resource.
  • the resource is originally used to map the scene of the time-frequency resource of the additional second DMRS.
  • the sending device may still map the first DMRS and the first data in an existing manner on the first time-frequency resource.
  • the location of the second time-frequency resource that is originally used to map the second DMRS is preempted by the first service. Therefore, the sending device can only be on the target frequency domain resource of the second time-frequency resource (that is, the second time-frequency resource).
  • the second data is mapped on all frequency domain resources, and the second DMRS cannot be mapped.
  • the receiving device receives the first data sent by the sending device on the first time-frequency resource, and after the second data sent on the second time-frequency resource, the receiving device can use the mapping in the first The first DMRS on the target frequency domain resource of the time-frequency resource demodulates the second data transmitted on the target frequency domain resource of the second time-frequency resource. In this manner, after the receiving device preempts the second time-frequency resource for mapping the time-frequency resource of the second DMRS, the receiving device can use the first DMRS to demodulate the second data, thereby improving data transmission. effectiveness.
  • the embodiment relates to how the receiving device determines to use the first DMRS demodulation mapping mapped on the target frequency domain resource of the first time-frequency resource in the second time-frequency resource.
  • the process of the second data on the target frequency domain resource is not limited to,
  • the first mode is: when the receiving device is a terminal device, and the sending device is a network device, the receiving device may determine, according to the first indication information sent by the sending device, whether to use the target frequency domain resource mapped in the first time-frequency resource.
  • the first DMRS is demodulated to map the second data on the target frequency domain resource of the second time-frequency resource.
  • the sending device may send the first indication information to the receiving device.
  • the first indication information is used to indicate that the receiving device uses the first target frequency domain resource mapped to the first time-frequency resource when the first time-frequency resource and the second time-frequency resource have overlapping target frequency domain resources.
  • the DMRS demodulates the second data mapped on the target frequency domain resource of the second time-frequency resource.
  • the receiving device After receiving the first indication information, the receiving device, when the first time-frequency resource and the second time-frequency resource have overlapping target frequency domain resources, may be in the target frequency domain resource of the second time-frequency resource.
  • the second data is mapped for mapping the location of the second DMRS. Therefore, the receiving device, according to the first indication information, may determine, when the first time-frequency resource and the second time-frequency resource overlap the target frequency domain resource in the frequency domain, use the target frequency domain mapped in the first time-frequency resource.
  • the first DMRS on the resource demodulates the second data on the target frequency domain resource of the second time-frequency resource.
  • the sending device may send the first indication information to the receiving device by using the high layer signaling or the physical layer signaling, and the sending device may further send the first indication information to the receiving device by using downlink control signaling (for example, DCI).
  • downlink control signaling for example, DCI
  • the second mode the sending device may determine, according to the interval between the first time-frequency resource and the second time-frequency resource, whether the target frequency-domain resource that overlaps the first time-frequency resource and the second time-frequency resource in the frequency domain The second data is transmitted using the target frequency domain resource of the second time-frequency resource.
  • the receiving device may determine, according to an interval between the first time-frequency resource and the second time-frequency resource, when the first time-frequency resource and the second time-frequency resource overlap the target frequency-domain resource in the frequency domain, Whether to use the first DMRS mapped on the target frequency domain resource of the first time-frequency resource to demodulate the second data mapped on the target frequency domain resource of the second time-frequency resource.
  • the sending device may determine, according to the first time-frequency resource and the second time-frequency resource, between the first time-frequency resource and the second time-frequency resource.
  • interval may be an interval between a time domain start position of the first time-frequency resource and a time domain start position of the second time-frequency resource, and may also be a time domain termination position and a second time-frequency of the first time-frequency resource.
  • the interval between the time domain termination locations of the resources may also be between a time domain location for mapping the first DMRS on the first time-frequency resource and a time domain location for mapping the second DMRS on the second time-frequency resource.
  • the interval may also be a time interval between the first time-frequency resource and the second time-frequency resource determined by other existing methods.
  • the sending device determines that the target frequency domain resource of the second time-frequency resource is originally used when the first time-frequency resource and the second time-frequency resource have overlapping target frequency domain resources. Mapping the location of the second DMRS, mapping the second data. When the interval does not satisfy the mapping relationship with the preset interval, the sending device determines that the target frequency domain resource of the second time-frequency resource is originally used when the first time-frequency resource and the second time-frequency resource have overlapping target frequency domain resources. At the location where the second DMRS is mapped, the second DMRS is still mapped.
  • the mapping relationship mentioned above may be, for example, the interval is less than or equal to the preset interval, or the interval is less than or equal to half of the preset interval.
  • the receiving device may determine the interval between the first time-frequency resource and the second time-frequency resource according to the first time-frequency resource and the second time-frequency resource, and the implementation manner may refer to the foregoing sending device determining the first time-frequency. A description of the interval between the resource and the second time-frequency resource will not be described again.
  • the transmitting device uses the target frequency domain resource of the second time-frequency resource when the first time-frequency resource and the second time-frequency resource have overlapping target frequency domain resources.
  • the second data is mapped at a location where the second DMRS is mapped. Therefore, when the receiving device can determine that the first time-frequency resource and the second time-frequency resource have overlapping target frequency-domain resources, the target device uses the target frequency domain of the first time-frequency resource when the interval is less than or equal to the preset interval.
  • the first DMRS on the resource demodulates the second data on the target frequency domain resource of the second time-frequency resource.
  • the transmitting device does not use the target frequency domain resource of the second time-frequency resource when the first time-frequency resource and the second time-frequency resource have overlapping target frequency domain resources.
  • the second data is originally mapped for mapping the location of the second DMRS, but still mapping the second DMRS. Therefore, when the interval is greater than the preset interval, the receiving device determines that the target frequency domain resource that overlaps the first time-frequency resource and the second time-frequency resource does not use the target frequency domain that is mapped in the first time-frequency resource.
  • the first DMRS on the resource demodulates the second data on the target frequency domain resource of the second time-frequency resource.
  • the preset interval may be a predefined interval of the protocol.
  • the sending device may further send the second indication information to the receiving device.
  • the second indication information is used to indicate the preset interval. Therefore, the receiving device may obtain the preset interval by receiving the second indication information sent by the sending device.
  • the sending device may send the second indication information to the receiving device by using the high layer signaling or the physical layer signaling, and the sending device may further send the second indication information to the receiving device by using downlink control signaling (for example, DCI). .
  • DCI downlink control signaling
  • the receiving device may further determine the preset interval according to a moving speed of the terminal device and a channel time varying parameter of the terminal device. That is to say, the preset interval satisfies the mapping relationship with the moving speed of the terminal device and the channel time varying parameter of the terminal device.
  • the preset interval and the moving speed of the terminal device are inversely proportional. For example, when the moving speed is 3 km/h, the preset interval is 3symbol, and when the moving speed is 9 km/h, the preset interval is 1 symbol.
  • the preset interval and the doppler spread of the channel are inversely proportional, where the doppler spread describes the time-varying parameter of the channel.
  • the preset interval is inversely proportional to the product of the terminal device moving speed and the channel time varying parameter.
  • the interval between the first time-frequency resource and the second time-frequency resource is an interval between a time domain start position of the first time-frequency resource and a time-domain start position of the second time-frequency resource, where the interval is
  • the mapping between the preset intervals is an example in which the interval is less than or equal to the preset interval, and the preset interval is assumed to be three symbols, if the sending device is based on the time domain starting position of the first time-frequency resource and the second time-frequency resource.
  • the transmitting device may determine the second time-frequency
  • the target frequency domain resource of the resource is originally used to map the location of the second DMRS, and the second data is mapped.
  • the receiving device determines the time domain start position of the first time-frequency resource and the second time-frequency resource according to the time domain start position of the first time-frequency resource and the time domain start position of the second time-frequency resource.
  • the interval between the start positions of the domains is 2 symbols, and the receiving device may determine to use the target frequency domain mapped to the first time-frequency resource when the second DMRS is not detected on the target frequency domain resource of the second time-frequency resource.
  • the first DMRS on the resource demodulates the second data on the target frequency domain resource of the second time-frequency resource.
  • the sending device determines the time domain starting position of the first time-frequency resource and the time domain of the second time-frequency resource according to the time domain starting position of the first time-frequency resource and the time domain starting position of the second time-frequency resource
  • the interval between the start positions is 4 symbols
  • the transmitting device may determine that the target frequency domain resource of the second time-frequency resource is originally used to map the location of the second DMRS, and still map the second DMRS.
  • the receiving device determines the time domain start position of the first time-frequency resource and the second time-frequency resource according to the time domain start position of the first time-frequency resource and the time domain start position of the second time-frequency resource.
  • the interval between the start positions of the domains is 4 symbols, and the receiving device may determine that the second DMRS is not detected on the target frequency domain resource of the second time-frequency resource, and the target mapped to the first time-frequency resource is not used.
  • the first DMRS on the frequency domain resource demodulates the second data on the target frequency domain resource of the second time-frequency resource.
  • the third mode the sending device may determine the first time-frequency resource and the second time-frequency according to the first antenna port information used when transmitting the first data and the second antenna port information used when the second data is sent. Whether the second frequency data is transmitted by using the target frequency domain resource of the second time-frequency resource when the resource overlaps the target frequency domain resource in the frequency domain.
  • the receiving device may determine, according to the first antenna port information and the second antenna port information, whether to use the mapping when the first time-frequency resource and the second time-frequency resource overlap the target frequency domain resource in the frequency domain.
  • the first DMRS on the target frequency domain resource of the one time-frequency resource demodulates the second data on the target frequency domain resource of the second time-frequency resource.
  • the first antenna port information may include a first antenna port number and/or at least one first antenna port number used by the sending device when transmitting the first data.
  • the second antenna port information may include a second antenna port number and/or at least one second antenna port number used by the transmitting device to transmit the second data.
  • the transmitting device may determine, when the first antenna port information and the second antenna port information are the same, the target frequency of the second time-frequency resource when the first time-frequency resource and the second time-frequency resource have overlapping target frequency domain resources.
  • the domain resource is originally used to map the location of the second DMRS, and the second data is mapped.
  • the sending device may determine, when the first antenna port information and the second antenna port information are different, the target of the second time-frequency resource when the first time-frequency resource and the second time-frequency resource have overlapping target frequency domain resources.
  • the frequency domain resource is originally used to map the location of the second DMRS, and still maps the second DMRS.
  • the receiving device may determine, according to the first antenna port information and the second antenna port information, whether to use the first DMRS demodulated mapping on the target frequency domain resource of the first time-frequency resource in the second time-frequency resource.
  • the second data on the target frequency domain resource may be determined, according to the first antenna port information and the second antenna port information, whether to use the first DMRS demodulated mapping on the target frequency domain resource of the first time-frequency resource in the second time-frequency resource.
  • the transmitting device is in the target frequency domain of the second time-frequency resource when the first time-frequency resource and the second time-frequency resource have overlapping target frequency domain resources.
  • the resource is originally used to map the location of the second DMRS, mapping the second data. Therefore, when the first antenna port information and the second antenna port information are the same, the receiving device may determine that when the first time-frequency resource and the second time-frequency resource overlap the target frequency domain resource in the frequency domain, the mapping is used.
  • the first DMRS on the target frequency domain resource of the one time-frequency resource demodulates the second data on the target frequency domain resource of the second time-frequency resource.
  • the transmitting device does not target the second time-frequency resource when the first time-frequency resource and the second time-frequency resource have overlapping target frequency domain resources.
  • the frequency domain resource is originally used to map the second data of the location of the second DMRS, but still maps the second DMRS. Therefore, when the receiving device may determine that the first time-frequency resource and the second time-frequency resource overlap the target frequency-domain resource in the frequency domain, the first antenna port information and the second antenna port information are different, and the mapping is not used.
  • the first DMRS on the target frequency domain resource of the first time-frequency resource demodulates the second data on the target frequency domain resource of the second time-frequency resource.
  • the foregoing sending device may acquire the first antenna port information and the second antenna port information by using an existing manner. For example, when the sending device is a terminal device and the receiving device is a network device, the sending device may obtain the DCI for indicating the first antenna port information and the DCI for indicating the second antenna port information, which are sent by the receiving device.
  • the first antenna port information and the second antenna port information are not described herein.
  • the receiving device when the receiving device is a terminal device and the sending device is a network device, the receiving device may receive the DCI for indicating the first antenna port information and the DCI for indicating the second antenna port information, which are sent by the sending device, The foregoing first antenna port information and the second antenna port information are obtained, and details are not described herein again.
  • the sending device when the sending device needs to separately send the first data and the second data to the receiving device, the sending device may overlap the target frequency domain resource in the first time-frequency resource and the second time-frequency resource. At the time of transmitting the second DMRS on the target frequency domain resource of the second time-frequency resource, the second data is sent to the receiving device. In this way, the overhead of the DMRS can be reduced, and the resource utilization can be improved.
  • the embodiment relates to that the receiving device uses the first DMRS transmitted by using the first antenna port number corresponding to the second antenna port number, and demodulates and maps the second time-frequency resource.
  • the process of the second data on the target frequency domain resource may include the following two situations:
  • the second antenna port number used by the transmitting device to transmit the second data is a subset of any first antenna port number used by the transmitting device to transmit the first data.
  • the receiving device may use a first DMRS that is mapped on the target frequency domain resource of the first time-frequency resource and that is transmitted by using the first antenna port number that is the same as the second antenna port number, and demodulates the mapping.
  • the second data transmitted on the target frequency domain resource of the second time-frequency resource and transmitted using the second antenna port number.
  • the first antenna port number is assumed to be: Port 7, Port 8, Port 11, Port 13, and the second antenna port number includes: Port 7, Port 8, and the receiving device can use the target frequency mapped to the first time-frequency resource.
  • the first DMRS transmitted on the domain resource and using the Port 7 is demodulated and mapped to the target frequency domain resource of the second time-frequency resource, and the second data transmitted by using the Port 7 is used, and the target frequency domain mapped to the first time-frequency resource is used.
  • the first DMRS transmitted on the resource and using the Port 8 is demodulated and mapped to the target frequency domain resource of the second time-frequency resource, and the second data transmitted by the Port 8 is used.
  • the second antenna port number used by the sending device to send the second data is different from any of the first antenna port numbers used by the sending device to send the first data.
  • This situation can include the following two implementations:
  • the first implementation manner is: when the sending device is a network device, and the receiving device is a terminal device, the sending device may send the third indication information to the receiving device.
  • the third indication information is used to determine a first antenna port number corresponding to the second antenna port number.
  • the receiving device may use the target frequency of the first time-frequency resource when the first time-frequency resource and the second time-frequency resource overlap the target frequency domain resource in the frequency domain. Decoding and demodulating the second DMRS on the target frequency domain resource of the second time-frequency resource by using the first DMRS transmitted on the domain resource and using the first antenna port number corresponding to the second antenna port number indicated by the third indication information data.
  • the third indication information may indicate the first antenna port number corresponding to the second antenna port number to the receiving device by carrying the identifier of the first antenna port number corresponding to the second antenna port number.
  • the third indication information may carry an identifier of the first antenna port number corresponding to each second antenna port number, and indicate to the receiving device and each second The first antenna port number corresponding to the antenna port number.
  • the sending device may send the third indication information to the receiving device by using the high layer signaling or the physical layer signaling, and the sending device may further send the third indication information to the receiving device by using downlink control signaling (for example, DCI).
  • downlink control signaling for example, DCI
  • the protocol pre-defines the correspondence between the second antenna port number and the first antenna port number
  • the receiving device may be configured according to the identifier of the second antenna port number and the preset second antenna port number. Corresponding relationship of the first antenna port number determines a first antenna port number corresponding to the second antenna port number.
  • the receiving device may demodulate and map the second time-frequency resource by using the first DMRS that is mapped on the target frequency domain resource of the first time-frequency resource and transmitted by using the first antenna port number corresponding to the second antenna port number.
  • the correspondence between the second antenna port number predefined by the foregoing protocol and the first antenna port number is not limited.
  • the foregoing protocol may pre-define a first antenna port number corresponding to each second antenna port number.
  • the foregoing protocol may further define a correspondence rule between the first antenna port number and the second antenna port number.
  • the above protocol may predefine the corresponding rules of the second antenna port using the first antenna port in order from small to large.
  • the foregoing protocol may predefine a corresponding rule for using the first antenna port in order from the largest to the smallest for the second antenna port.
  • the first antenna port number includes: Port7, Port8, Port11, and Port13
  • the second antenna port number includes: Port9, Port10, Port12, and Port14
  • the first antenna port corresponding rule is used in order from the above-mentioned small to large.
  • the second antenna port number Port9 corresponds to the first antenna port number Port7
  • the second antenna port number Port10 corresponds to the first antenna port number Port8
  • the second antenna port number Port12 corresponds to the first antenna port number Port11.
  • the second antenna port number Port 14 corresponds to the first antenna port number Port13.
  • the receiving device may use the first DMRS mapped on the target frequency domain resource of the first time-frequency resource and use the Port 7 to perform demodulation and mapping on the target frequency domain resource of the second time-frequency resource, and use Port9. Transmitting the second data, using the first DMRS mapped on the target frequency domain resource of the first time-frequency resource and using Port8, demodulating and mapping on the target frequency domain resource of the second time-frequency resource, and transmitting by using Port10
  • the second data is mapped on the target frequency domain resource of the first time-frequency resource, and is demodulated and mapped on the target frequency domain resource of the second time-frequency resource and transmitted by using the first DMRS transmitted by the port 11.
  • the second data is demodulated and mapped on the target frequency domain resource of the second time-frequency resource by using the first DMRS mapped on the target frequency domain resource of the first time-frequency resource and transmitted by using the Port 14 Two data.
  • the first antenna port number includes: Port7, Port8, Port11, Port13
  • the second antenna port number includes: Port9 and Port10, when the first antenna port corresponding rule is used in order from the smallest to the largest, the foregoing
  • the second antenna port number Port9 corresponds to the first antenna port number Port7
  • the second antenna port number Port10 corresponds to the first antenna port number Port8. That is, the receiving device may use the first DMRS mapped on the target frequency domain resource of the first time-frequency resource and use the Port 7 to perform demodulation and mapping on the target frequency domain resource of the second time-frequency resource, and use Port9. Transmitting the second data, using the first DMRS mapped on the target frequency domain resource of the first time-frequency resource and using Port8, demodulating and mapping on the target frequency domain resource of the second time-frequency resource, and transmitting by using Port10 The second data.
  • the first antenna port number includes: Port7, Port8, Port11, and Port13
  • the second antenna port number includes: Port9, Port10, Port12, and Port14
  • the first antenna port is used in sequence from the above to the smallest.
  • the second antenna port number Port9 corresponds to the first antenna port number Port13
  • the second antenna port number Port10 corresponds to the first antenna port number Port11
  • the second antenna port number Port12 corresponds to the first antenna port number Port8.
  • the second antenna port number Port14 corresponds to the first antenna port number Port7.
  • the receiving device may use the first DMRS mapped on the target frequency domain resource of the first time-frequency resource and use the Port 7 to perform demodulation and mapping on the target frequency domain resource of the second time-frequency resource, and use Port14.
  • Transmitting the second data using the first DMRS mapped on the target frequency domain resource of the first time-frequency resource and using Port8, demodulating and mapping on the target frequency domain resource of the second time-frequency resource, and transmitting by using Port12
  • the second data is mapped on the target frequency domain resource of the first time-frequency resource, and is demodulated and mapped on the target frequency domain resource of the second time-frequency resource and transmitted by using the first DMRS transmitted by the port 11.
  • the second data is demodulated and mapped on the target frequency domain resource of the second time-frequency resource by using the first DMRS mapped on the target frequency domain resource of the first time-frequency resource and transmitted by Port9. Two data.
  • the first antenna port number includes: Port7, Port8, Port11, Port13
  • the second antenna port number includes: Port9 and Port10
  • the receiving device may use the first DMRS mapped on the target frequency domain resource of the first time-frequency resource and use the Port 7 to perform demodulation and mapping on the target frequency domain resource of the second time-frequency resource, and use Port14. Transmitting the second data, using the first DMRS mapped on the target frequency domain resource of the first time-frequency resource and using Port8, demodulating and mapping on the target frequency domain resource of the second time-frequency resource, and transmitting by using Port12 The second data.
  • FIG. 10 is a schematic diagram of an antenna port number according to an embodiment of the present application.
  • the second antenna port (Port) number used when the transmitting device sends the second data is Port9
  • the first antenna port number used by the sending device to send the first data includes: Port7, Port8, and Port11. Port13 is an example.
  • the second antenna port number used by the sending device to send the second data is different from any of the first antenna port numbers used by the sending device to send the first data, and the number of the second antenna port is smaller than the number. The number of one antenna port.
  • the receiving device may determine, according to Port9, a preset correspondence between the second antenna port number and the first antenna port number.
  • the first antenna port number corresponding to Port9 (Port7 in this example).
  • the receiving device may demodulate the second data mapped on the target frequency domain resource of the second time-frequency resource by using the first DMRS mapped on the target frequency domain resource of the first time-frequency resource and using Port7.
  • the sending device may further send, to the receiving device, third indication information that carries the identifier of the port 7.
  • the receiving device can determine that the port 7 is an antenna port number corresponding to the port 9 according to the identifier of the port 7. Therefore, the receiving device may demodulate the second data mapped on the target frequency domain resource of the second time-frequency resource by using the first DMRS mapped on the target frequency domain resource of the first time-frequency resource and using Port7.
  • the sending device when the number of the second antenna ports used by the sending device to send the second data is different from the number of the first antenna ports used when the sending device sends the first data, the sending device is configured on the first time-frequency resource. The power used by the first DMRS transmitted is different from the power of the second data transmitted on the second time-frequency resource. Therefore, when the sending device is a network device and the receiving device is a terminal device, the sending device may further send fourth indication information to the receiving device. The fourth indication information is used to indicate a ratio of the transmit power of the first DMRS to the transmit power of the two data.
  • the receiving device can accurately measure the channel estimation on the first DMRS according to the ratio of the transmit power of the first DMRS to the transmit power of the two data, so that the receiving device can be based on the first
  • the DMRS makes an accurate channel estimation for the second data, which improves the accuracy of the second data demodulation.
  • the sending device may send the fourth indication information to the receiving device by using the high layer signaling or the physical layer signaling, and the sending device may further send the fourth indication information to the receiving device by using downlink control signaling (for example, DCI). .
  • the receiving device may further determine a power ratio between a transmit power of the first DMRS and a transmit power of the second data according to the number of the first antenna ports and the number of the second antenna ports. In this way, the receiving device can use the first DMRS to make an accurate channel estimation for the second data according to the power ratio and improve the demodulation accuracy of the second data.
  • the number of the first antenna ports is 4, that is, the first antenna port is #7#8#9#10
  • the number of the second antenna ports is 1, that is, the second antenna port is #7
  • the terminal determines the second DMRS.
  • the terminal determines that the power of the DMRS on the first DMRS #7 port is 1/4, and the power of the second data transmitted by the second antenna port is 1, so the first DMRS and the first The power ratio of the two data is 1/4.
  • the terminal increases the channel estimation result on the first DMRS by 4 times in power for demodulating the second data.
  • the second antenna port number used when the sending device sends the second data is different from any of the first antenna port numbers used by the sending device to send the first data, and the first
  • the receiving device may use the first DMRS transmitted by using the first antenna port number corresponding to the second antenna port number to demodulate the target frequency domain resource mapped to the second time-frequency resource.
  • the second data on. In this way, the signaling indication overhead can be reduced, and the receiving device still determines which DMRS on the antenna port number of the first data is used for demodulation.
  • the transmitting device may transmit the first data and the second data using different subcarrier spacings. Therefore, the foregoing sending device may determine, according to a physical resource block bundling (PRB bundling) configuration, or a subband (Bandwidth Part, BP) configuration, that the first DMRS is on the frequency domain resource of the first time-frequency resource.
  • PRB bundling physical resource block bundling
  • BP subband
  • the mapping manner determines the mapping manner of the second DMRS on the frequency domain resource of the second time-frequency resource.
  • the receiving device may be configured according to the current system's numerology (for example, there are several numerologies), or according to the configuration of the current system's subcarrier spacing (for example, there are several different subcarrier spacings). Or determining, according to the number of Fast Fourier Transformation Engine (FFT Engine) of the discrete Fourier transform engine (FFT Engine) that is received by the receiving device, the receiving device measures the channel estimation on the DMRS according to several subcarrier intervals.
  • FFT Engine Fast Fourier Transformation Engine
  • FFT Engine discrete Fourier transform engine
  • the first data is demodulated using a channel estimation result of the first DMRS measured according to the numerology of the first data
  • the second data is demodulated using a channel estimation result of the first DMRS measured according to the numerology of the second data, thereby deciphering the data
  • the numerology used for the first DMRS channel estimate used by the tone conforms to the numerology of the data.
  • the channel estimation by the first DMRS according to the multiple subcarrier intervals refers to the subsampling of the first DMRS. For example, the time-frequency resource pattern of the first DMRS is mapped for each RB, and the first DMRS is extracted by the interval RB.
  • the channel estimation under the double subcarrier spacing can be realized.
  • the first DMRS pattern when the 15KHz subcarrier spacing is used can obtain the first DMRS pattern when the 30KHz subcarrier spacing is obtained by the method.
  • the sending device may indicate, to the receiving device, a numerology configuration of the current system or a configuration of a subcarrier interval by using an indication information.
  • the indication information may be sent to the receiving device by using high layer signaling or physical layer signaling.
  • FIG. 11 is a schematic flowchart diagram of another data transmission method according to an embodiment of the present application. As shown in FIG. 11, the method may include:
  • the sending device maps the first data to the first target location on the first time-frequency resource, and maps the second data to the second target location on the second time-frequency resource.
  • the first target location does not include the time-frequency resource location and the target time-frequency resource of the first pilot
  • the second target location does not include the time-frequency resource location of the second pilot
  • the time-frequency resource location of the second pilot The target time-frequency resource is not included, and the target time-frequency resource is a time-frequency resource in which the first time-frequency resource and the second time-frequency resource overlap.
  • the first pilot and the second pilot may be a UE-specific demodulation reference signal, or may be a group-specific demodulation reference signal of the terminal device.
  • the above demodulation reference signal may be, for example, a DMRS.
  • the first pilot mapping is used to map the first pilot time-frequency resource, and the second pilot mapping is performed on the second time-frequency resource except the target time-frequency resource. It is dedicated to mapping the time-frequency resources of the first pilot.
  • the first data mapping is performed on the first time-frequency resource except the time-frequency resource of the first pilot and the target time-frequency resource
  • the second data is mapped on the second time-frequency resource except the time-frequency resource of the second pilot.
  • the target time-frequency resource is a time-frequency resource in which the first time-frequency resource and the second time-frequency resource overlap.
  • the frequency domain bandwidth of the target time-frequency resource may be smaller than the frequency domain bandwidth of the second time-frequency resource.
  • the bandwidth of the target time-frequency resource may also be equal to the frequency domain bandwidth of the second time-frequency resource.
  • FIG. 12 is a schematic diagram of still another time-frequency resource according to an embodiment of the present application.
  • the sequence of the second pilot may be generated according to the frequency domain width L of the second time-frequency resource, and then truncated to the lengths of L1 and L2, respectively mapping the non-target time-frequency resources on the second time-frequency resource. Location.
  • the sequence of the mapped second pilots at the non-target time-frequency resource locations are generated according to the lengths L1 and L2, respectively.
  • the first target location is all time-frequency resources on the first time-frequency resource except the time-frequency resource and the target time-frequency resource of the first pilot
  • the second target is The location is all time-frequency resources on the second time-frequency resource except the time-frequency resources where L1 and L2 are located.
  • the embodiment does not limit the manner in which the foregoing sending device maps the second data on the second time-frequency resource.
  • the transmitting device may first determine an available resource element (Resource Element, RE) for mapping the second data.
  • the available RE may include a time-frequency resource that is originally used to map the second pilot on the target time-frequency resource of the second time-frequency resource.
  • the transmitting device may be in the available REs according to the pre-layered post-time domain post-frequency domain, or the pre-layer post-frequency domain post-time domain, or the pre-time domain post-frequency domain back layer, or the first frequency domain post-time domain.
  • the latter layer's RE mapping rules are mapped.
  • the foregoing sending device may also first determine a first available RE for mapping the second data.
  • the first available RE does not include a time-frequency resource that is originally used to map the second pilot on the target time-frequency resource of the second time-frequency resource.
  • the sending device may be on the first available RE, according to the post-layer time domain post-frequency domain, or the first-layer post-frequency domain post-time domain, or the first-time domain post-frequency domain back layer, or the first frequency domain after-time
  • the mapping of RE mapping rules at the back of the domain is performed.
  • the transmitting device performs the time-frequency resource originally used for mapping the second pilot on the target time-frequency resource of the second time-frequency resource, according to the post-band time domain post-frequency domain, or the first-layer post-frequency domain post-time domain. Or, the RE mapping rule of the post-frequency domain back-end layer or the pre-frequency domain post-time domain back-layer layer is mapped.
  • the receiving device receives the first signal at the first target location on the first time-frequency resource, and receives the second signal at the second target location on the second time-frequency resource.
  • the first signal includes a first pilot and first data
  • the second signal includes second data
  • the receiving device demodulates the second data carried on the target time-frequency resource by using the first pilot.
  • the receiving device demodulates the second data that is carried on the target time-frequency resource by using the first pilot may be referred to the description of the foregoing embodiment, and details are not described herein again.
  • the receiving device when the receiving device originally receives the second pilot antenna port on the target frequency domain resource and the partial antenna port that receives the first pilot, the receiving device is the second pilot on the target frequency domain resource.
  • the precoding weight is the same as the precoding weight on the same antenna port as the portion of the first pilot.
  • the PRB bundling of the pilot used by the receiving device to demodulate the second data is the same as the PRB bundling of the first pilot. Therefore, when the second antenna port number and the partial antenna port number of the first antenna port are the same, the receiving device can assume the precoding right of the second antenna port and the precoding right on the same antenna port as the first antenna port. The values are the same, or the receiving device can assume that the PRB bundling of the pilot used to demodulate the second data is the same as the PRB bundling of the first pilot.
  • the sending device when the sending device needs to separately send the first data and the second data to the receiving device, the sending device may overlap the target time-frequency resource in the first time-frequency resource and the second time-frequency resource. At the time of transmitting the second DMRS on the target frequency domain resource of the second time-frequency resource, the second data is sent to the receiving device. In this way, the overhead of the DMRS can be reduced, and the resource utilization can be improved. If the service with lower reliability uses the DMRS of the service with higher reliability, it can help improve the accuracy of data demodulation of the lower reliability service and increase the data rate of the service that does not send the DMRS. If the service with higher reliability uses the DMRS of the service with lower reliability, it can help improve the data rate of the service that does not send the DMRS.
  • FIG. 13 is a schematic structural diagram of a receiving device according to an embodiment of the present disclosure. As shown in FIG. 13, the foregoing receiving device may include: a receiving module 11 and a processing module 12. among them,
  • the receiving module 11 is configured to receive first data on a first time-frequency resource and receive second data on a second time-frequency resource;
  • the processing module 12 is configured to use, when the first time-frequency resource and the second time-frequency resource overlap the target frequency domain resource in the frequency domain, on the target frequency domain resource of the first time-frequency resource.
  • the first DMRS demodulates the second data on the target frequency domain resource of the second time-frequency resource.
  • the receiving module 11 is further configured to receive first indication information sent by the network device, where the first indication information is used to indicate the The receiving device demodulates the second data mapped on the target frequency domain resource of the second time-frequency resource by using the first DMRS.
  • the processing module 12 is configured to: when the interval is smaller than the preset interval, and the first time-frequency resource and the second time-frequency resource overlap in the frequency domain, Decoding the second data mapped to the target frequency domain resource of the second time-frequency resource by using the first DMRS, where the interval is the first time-frequency resource and the second The interval between time-frequency resources.
  • the receiving module 11 is further configured to receive second indication information that is sent by the network device, where the second indication information is used to indicate the preset interval.
  • the preset interval satisfies a mapping relationship with a moving speed of the terminal device and a channel time varying parameter of the terminal device.
  • the processing module 12 is configured to: the first antenna port information is the same as the second antenna port information, and the first time-frequency resource and the second time-frequency resource are in the frequency domain. And using the first DMRS to demodulate the second data mapped on the target frequency domain resource of the second time-frequency resource; the first antenna port information is sent by the sending device when the target frequency domain resource is overlapped
  • the antenna port information used in the first data, the second antenna port information is antenna port information used when the sending device sends the second data;
  • the first antenna port information includes: a first antenna port number and/or at least one first antenna port number used by the sending device to send the first data;
  • the second antenna port information includes: when the sending device sends the second data The number of second antenna ports and/or at least one second antenna port number.
  • the receiving module 11 is further configured to receive third indication information that is sent by the network device, where the third indication information is used to determine The first antenna port number corresponding to the second antenna port number; the processing module 12 is specifically configured to use the first DMRS transmitted by using the first antenna port number corresponding to the second antenna port number, and demodulate the mapping in the The second data on the target frequency domain resource of the second time-frequency resource.
  • the foregoing third indication information may include: an identifier of the first antenna port number corresponding to the second antenna port number.
  • the processing module 12 is specifically configured to: according to the identifier of the second antenna port number, and the corresponding relationship between the preset second antenna port number and the first antenna port number, Determining a first antenna port number corresponding to the second antenna port number, and using a first DMRS transmitted by using a first antenna port number corresponding to the second antenna port number, demodulating a mapping at the second time frequency The second data on the target frequency domain resource of the resource.
  • the receiving module 11 is further configured to receive fourth indication information sent by the network device, where the fourth indication information is used to indicate the The ratio of the transmission power of the first DMRS to the transmission power of the two data.
  • the receiving device when the receiving device is a terminal device, the receiving device may be a network device. When the receiving device is a network device, the receiving device is a terminal device. Optionally, the receiving device may also be a chip.
  • the receiving device provided by the embodiment of the present application may perform the action of the receiving device in the foregoing method embodiment, and the implementation principle and the technical effect thereof are similar, and details are not described herein again.
  • FIG. 14 is a schematic structural diagram of a sending device according to an embodiment of the present disclosure.
  • the foregoing sending device may include: a processing module 21 and a sending module 22. among them,
  • the processing module 21 is configured to determine a first time-frequency resource that sends the first data and a second time-frequency resource that sends the second data;
  • the processing module 21 is further configured to: when the first time-frequency resource and the second time-frequency resource have overlapping target frequency domain resources, instruct the sending module 22 to target frequency domain of the second time-frequency resource The resource sends the second data.
  • the sending device is a network device
  • the sending module 22 is further configured to send the first indication information to the terminal device, where the first indication information is used to indicate that the terminal device uses the mapping.
  • the first DMRS on the target frequency domain resource of the first time-frequency resource demodulates the second data mapped on the target frequency domain resource of the second time-frequency resource.
  • the processing module 21 is configured to: when the interval and the preset interval meet the mapping relationship, and the target frequency domain resource that overlaps between the first time-frequency resource and the second time-frequency resource And transmitting, by the sending module 22, the second data by using the target frequency domain resource of the second time-frequency resource, where the interval is an interval between the first time-frequency resource and the second time-frequency resource.
  • the sending device is a network device
  • the sending module 22 is further configured to send the second indication information to the terminal device, where the second indication information is used to indicate a preset interval.
  • the preset interval satisfies a mapping relationship with a moving speed of the terminal device and a channel time varying parameter of the terminal device.
  • the processing module 21 is configured to: when the first antenna port information is the same as the second antenna port information, and the first time-frequency resource and the second time-frequency resource overlap.
  • the sending module is configured to send the second data by using the target frequency domain resource of the second time-frequency resource; the first antenna port information is used by the sending device to send the first data.
  • the second antenna port information is antenna port information used when the sending device sends the second data;
  • the first antenna port information includes: when the sending device sends the first data The number of first antenna ports used and/or at least one first antenna port number;
  • the second antenna port information includes: a number of second antenna ports used by the transmitting device to transmit the second data, and/or at least one Two antenna port numbers.
  • the sending device is a network device
  • the sending module 22 is further configured to send third indication information to the terminal device, where the third indication information is used to determine the second antenna.
  • the foregoing third indication information includes: an identifier of a first antenna port number corresponding to the second antenna port number.
  • the sending device is a network device
  • the sending module 22 is further configured to send fourth indication information to the terminal device, where the fourth indication information is used to indicate the first DMRS.
  • the sending device when the sending device is a terminal device, the receiving device may be a network device.
  • the sending device is a network device, the receiving device is a terminal device.
  • the foregoing sending device may also be a chip.
  • the sending device provided by the embodiment of the present application may perform the action of the sending device in the foregoing method embodiment, and the implementation principle and the technical effect are similar, and details are not described herein again.
  • Another aspect of the embodiment of the present application further provides a sending device, where the sending device may include a processing module.
  • the processing module is configured to map the first data to the first target location on the first time-frequency resource, and to map the second data to the second target location on the second time-frequency resource, where the first target location does not include a time-frequency resource location of the first pilot and a target time-frequency resource, where the target time-frequency resource is a time-frequency resource in which the first time-frequency resource and the second time-frequency resource overlap, and the second target location does not include the location
  • the foregoing sending device may be a terminal device or a network device.
  • the foregoing sending device may also be a chip.
  • the sending device provided by the embodiment of the present application may perform the action of the sending device in the foregoing method embodiment, and the implementation principle and the technical effect are similar, and details are not described herein again.
  • FIG. 15 is a schematic structural diagram of another receiving device according to an embodiment of the present disclosure.
  • the receiving device may include: a receiving module 31 and a processing module 32. among them,
  • the receiving module 31 is configured to receive, by the first time-frequency resource, a first signal on a time-frequency resource other than the target time-frequency resource, and receive a second signal on the second time-frequency resource, where the first target location is not The time-frequency resource location of the first pilot and the target time-frequency resource, where the target time-frequency resource is a time-frequency resource in which the first time-frequency resource and the second time-frequency resource overlap, and the second target location does not include a time-frequency resource location of the second pilot, where the time-frequency resource location of the second pilot does not include the target time-frequency resource; the first signal includes a first pilot and first data, where the The second signal includes the second data;
  • the processing module 32 is configured to demodulate the second data carried on the target time-frequency resource by using the first pilot.
  • the foregoing receiving device may be a terminal device or a network device.
  • the receiving device may also be a chip.
  • the receiving device provided by the embodiment of the present application may perform the action of the receiving device in the foregoing method embodiment, and the implementation principle and the technical effect thereof are similar, and details are not described herein again.
  • the actual implementation of the above sending module may be a transmitter, and the receiving module may be a receiver when actually implemented, and the processing module may be implemented by software in the form of a processing component call; or may be implemented in the form of hardware.
  • the processing module may be a separately set processing element, or may be integrated in one of the above-mentioned devices, or may be stored in the memory of the above device in the form of program code, by the above-mentioned transmitting device or receiving device.
  • a processing component calls and executes the functions of the above processing module.
  • all or part of these modules can be integrated or implemented independently.
  • the processing elements described herein can be an integrated circuit that has signal processing capabilities. In the implementation process, each step of the above method or each of the above modules may be completed by an integrated logic circuit of hardware in the processor element or an instruction in a form of software.
  • the above modules may be one or more integrated circuits configured to implement the above methods, such as one or more Application Specific Integrated Circuits (ASICs), or one or more microprocessors (digital) Signal processor, DSP), or one or more Field Programmable Gate Arrays (FPGAs).
  • ASICs Application Specific Integrated Circuits
  • DSP digital signal processor
  • FPGAs Field Programmable Gate Arrays
  • the processing component may be a general purpose processor, such as a central processing unit (CPU) or other processor that can call the program code.
  • CPU central processing unit
  • these modules can be integrated and implemented in the form of a system-on-a-chip (SOC).
  • SOC system-on-a-chip
  • FIG. 16 is a schematic structural diagram of still another receiving device according to an embodiment of the present application.
  • the receiving device may include a processor 41 (for example, a CPU), a memory 42, and a receiver 43.
  • the receiver 43 is coupled to the processor 41, and the processor 41 controls the receiving action of the receiver 43.
  • the memory 42 may include a high speed RAM memory, and may also include a non-volatile memory NVM, such as at least one disk memory, in which various instructions may be stored for performing various processing functions and implementing the methods of embodiments of the present application. step.
  • the receiving device in the embodiment of the present application may further include: a transmitter 44, a power source 45, a communication bus 46, and a communication port 47.
  • the receiver 43 and the transmitter 44 may be integrated in the transceiver of the receiving device or may be an independent transmitting and receiving antenna on the receiving device.
  • Communication bus 46 is used to implement a communication connection between components.
  • the communication port 47 is used to implement connection communication between the receiving device and other peripheral devices.
  • the memory 42 is used to store computer executable program code, and the program code includes instructions.
  • the instruction causes the processor 41 to perform the action processed in the foregoing method embodiment, so that the receiver
  • the implementation of the action in the foregoing method embodiment is similar to the technical effect, and details are not described herein again.
  • the sending device may be a network device.
  • the sending device is a terminal device.
  • FIG. 17 is a schematic structural diagram of another sending device according to an embodiment of the present disclosure.
  • the transmitting device may include a processor 51 (for example, a CPU), a memory 52, and a transmitter 54.
  • the transmitter 54 is coupled to the processor 51, and the processor 51 controls the transmitting operation of the transmitter 54.
  • the memory 52 may include a high speed RAM memory, and may also include a non-volatile memory NVM, such as at least one disk memory, in which various instructions may be stored for performing various processing functions and implementing the methods of embodiments of the present application. step.
  • the sending device involved in the embodiment of the present application may further include: a receiver 53, a power source 55, a communication bus 56, and a communication port 57.
  • the receiver 53 and the transmitter 54 may be integrated in the transceiver of the transmitting device or may be an independent transmitting and receiving antenna on the transmitting device.
  • Communication bus 56 is used to implement a communication connection between the components.
  • the communication port 57 is used to implement connection communication between the transmitting device and other peripheral devices.
  • the memory 52 is used to store computer executable program code, and the program code includes instructions.
  • the instruction causes the processor 51 to perform the action processed in the foregoing method embodiment to enable the transmitter.
  • the implementation of the action in the foregoing method embodiment is similar to the technical effect, and details are not described herein again.
  • the sending device when the sending device is a terminal device, the receiving device may be a network device.
  • the sending device is a network device, the receiving device is a terminal device.
  • FIG. 18 is a schematic structural diagram of a data transmission system according to an embodiment of the present application. As shown in Figure 18, the system includes a transmitting device 61 and a receiving device 62;
  • the sending device 61 is configured to map the first data to the first target location on the first time-frequency resource, and to map the second data to the second target location on the second time-frequency resource, where the first target location
  • the time-frequency resource location and the target time-frequency resource of the first pilot are not included, and the target time-frequency resource is a time-frequency resource in which the first time-frequency resource and the second time-frequency resource overlap, and the second target location is not Include a time-frequency resource location of the second pilot, where the time-frequency resource location of the second pilot does not include the target time-frequency resource;
  • the receiving device 62 is configured to receive, by the first time-frequency resource, a first signal on a time-frequency resource other than the target time-frequency resource, and receive a second signal on the second time-frequency resource;
  • the first signal includes a first pilot and first data
  • the second signal includes second data;
  • the receiving device 62 is further configured to demodulate the second data that is carried on the target time-frequency resource by using the first pilot.
  • the transmitting device in the data transmission system provided by the embodiment of the present application may perform the action of the sending device in the foregoing method embodiment, and the receiving device in the data transmission system may perform the action and the implementation principle of the receiving device in the foregoing method embodiment.
  • the effect is similar and will not be described here.
  • the terminal device in the embodiment of the present application may be a wireless terminal such as a mobile phone or a tablet computer. Therefore, the terminal device is used as a mobile phone as an example.
  • FIG. 19 is a structural block diagram of the terminal device provided by the embodiment of the present application. .
  • the mobile phone may include: a radio frequency (RF) circuit 1110, a memory 1120, an input unit 1130, a display unit 1140, a sensor 1150, an audio circuit 1160, a wireless fidelity (WiFi) module 1170, and processing.
  • RF radio frequency
  • the structure of the handset shown in FIG. 19 does not constitute a limitation to the handset, and may include more or less components than those illustrated, or some components may be combined, or different components may be arranged.
  • the RF circuit 1110 can be used for receiving and transmitting signals during the transmission or reception of information or during a call. For example, after receiving the downlink information of the base station, the processing is performed by the processor 1180. In addition, the uplink data is sent to the base station.
  • RF circuits include, but are not limited to, an antenna, at least one amplifier, a transceiver, a coupler, a Low Noise Amplifier (LNA), a duplexer, and the like.
  • LNA Low Noise Amplifier
  • RF circuitry 1110 can also communicate with the network and other devices via wireless communication. The above wireless communication may use any communication standard or protocol, including but not limited to Global System of Mobile communication (GSM), General Packet Radio Service (GPRS), Code Division Multiple Access (Code Division). Multiple Access (CDMA), Wideband Code Division Multiple Access (WCDMA), Long Term Evolution (LTE), e-mail, Short Messaging Service (SMS), and the like.
  • GSM Global System of Mobile communication
  • GPRS General
  • the memory 1120 can be used to store software programs and modules, and the processor 1180 executes various functional applications and data processing of the mobile phone by running software programs and modules stored in the memory 1120.
  • the memory 1120 may mainly include a storage program area and a storage data area, wherein the storage program area may store an operating system, an application required for at least one function (such as a sound playing function, an image playing function, etc.), and the like; the storage data area may be stored according to Data created by the use of the mobile phone (such as audio data, phone book, etc.).
  • memory 1120 can include high speed random access memory, and can also include non-volatile memory, such as at least one magnetic disk storage device, flash memory device, or other volatile solid state storage device.
  • the input unit 1130 can be configured to receive input numeric or character information and to generate key signal inputs related to user settings and function controls of the handset.
  • the input unit 1130 may include a touch panel 1131 and other input devices 1132.
  • the touch panel 1131 also referred to as a touch screen, can collect touch operations on or near the user (such as the user using a finger, a stylus, or the like on the touch panel 1131 or near the touch panel 1131. Operation), and drive the corresponding connecting device according to a preset program.
  • the touch panel 1131 may include two parts: a touch detection device and a touch controller.
  • the touch detection device detects the touch orientation of the user, and detects a signal brought by the touch operation, and transmits the signal to the touch controller; the touch controller receives the touch information from the touch detection device, converts the touch information into contact coordinates, and sends the touch information.
  • the processor 1180 is provided and can receive commands from the processor 1180 and execute them.
  • the touch panel 1131 can be implemented in various types such as resistive, capacitive, infrared, and surface acoustic waves.
  • the input unit 1130 may also include other input devices 1132.
  • other input devices 1132 may include, but are not limited to, one or more of a physical keyboard, function keys (such as volume control buttons, switch buttons, etc.), trackballs, mice, joysticks, and the like.
  • the display unit 1140 can be used to display information input by the user or information provided to the user as well as various menus of the mobile phone.
  • the display unit 1140 may include a display panel 1141.
  • the display panel 1141 may be configured in the form of a liquid crystal display (LCD), an organic light-emitting diode (OLED), or the like.
  • the touch panel 1131 can be overlaid on the display panel 1141. When the touch panel 1131 detects a touch operation thereon or nearby, the touch panel 1131 transmits to the processor 1180 to determine the type of the touch event, and then the processor 1180 is The type of touch event provides a corresponding visual output on display panel 1141.
  • touch panel 1131 and the display panel 1141 are used as two independent components to implement the input and input functions of the mobile phone in FIG. 10, in some embodiments, the touch panel 1131 and the display panel 1141 may be integrated. Realize the input and output functions of the phone.
  • the handset may also include at least one type of sensor 1150, such as a light sensor, motion sensor, and other sensors.
  • the light sensor may include an ambient light sensor and a proximity sensor, wherein the ambient light sensor may adjust the brightness of the display panel 1141 according to the brightness of the ambient light, and the light sensor may close the display panel 1141 and/or when the mobile phone moves to the ear. Or backlight.
  • the acceleration sensor can detect the acceleration of each direction (usually three axes). When it is still, it can detect the magnitude and direction of gravity. It can be used to identify the gesture of the mobile phone (such as horizontal and vertical screen switching, related games).
  • the mobile phone can also be configured with gyroscopes, barometers, hygrometers, thermometers, infrared sensors and other sensors, no longer repeat .
  • Audio circuitry 1160, speaker 1161, and microphone 1162 can provide an audio interface between the user and the handset.
  • the audio circuit 1160 can transmit the converted electrical data of the received audio data to the speaker 1161, and convert it into a sound signal output by the speaker 1161; on the other hand, the microphone 1162 converts the collected sound signal into an electrical signal, and the audio circuit 1160 After receiving, it is converted into audio data, and then processed by the audio data output processor 1180, transmitted to the other mobile phone via the RF circuit 1110, or outputted to the memory 1120 for further processing.
  • WiFi is a short-range wireless transmission technology.
  • the mobile phone can help users to send and receive emails, browse web pages and access streaming media through the WiFi module 1170, which provides users with wireless broadband Internet access.
  • FIG. 19 shows the WiFi module 1170, it can be understood that it does not belong to the essential configuration of the mobile phone, and may be omitted as needed within the scope of not changing the essence of the embodiment of the present application.
  • the processor 1180 is a control center for the handset, which connects various portions of the entire handset using various interfaces and lines, by executing or executing software programs and/or modules stored in the memory 1120, and invoking data stored in the memory 1120, The phone's various functions and processing data, so that the overall monitoring of the phone.
  • the processor 1180 may include one or more processing units; for example, the processor 1180 may integrate an application processor and a modem processor, where the application processor mainly processes an operating system, a user interface, an application, and the like.
  • the modem processor primarily handles wireless communications. It will be appreciated that the above described modem processor may also not be integrated into the processor 1180.
  • the handset also includes a power supply 1190 (such as a battery) that powers the various components.
  • a power supply 1190 (such as a battery) that powers the various components.
  • the power supply can be logically coupled to the processor 1180 via a power management system to manage charging, discharging, and power management functions through the power management system.
  • the mobile phone can also include a camera 1200, which can be a front camera or a rear camera.
  • the mobile phone may further include a Bluetooth module, a GPS module, and the like, and details are not described herein again.
  • the processor 1180 included in the mobile phone may be used to perform the foregoing data transmission method embodiment, and the implementation principle and technical effects are similar, and details are not described herein again.
  • a computer program product includes one or more computer instructions.
  • the computer can be a general purpose computer, a special purpose computer, a computer network, or other programmable device.
  • the computer instructions can be stored in a computer readable storage medium or transferred from one computer readable storage medium to another computer readable storage medium, for example, computer instructions can be wired from a website site, computer, server or data center (eg Coax, fiber, digital subscriber line (DSL) or wireless (eg, infrared, wireless, microwave, etc.) is transmitted to another website, computer, server, or data center.
  • the computer readable storage medium can be any available media that can be accessed by a computer or a data storage device such as a server, data center, or the like that includes one or more available media.
  • Useful media can be magnetic media (eg, floppy disk, hard disk, magnetic tape), optical media (eg, DVD), or semiconductor media (eg, Solid State Disk (SSD)).

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请实施例提供一种数据传输方法、发送设备和接收设备,该方法包括:接收设备在第一时频资源上接收第一数据,在第二时频资源上接收第二数据;当第一时频资源和第二时频资源在频域上重叠的目标频域资源时,接收设备使用映射在第一时频资源的目标频域资源上的第一DMRS解调映射在第二时频资源的目标频域资源上的第二数据。本申请实施例提供的数据传输方法、发送设备和接收设备,在发送设备需要向接收设备分别发送第一数据和第二数据时,发送设备可以在第一时频资源和第二时频资源存在重叠的目标频域资源时,在第二时频资源的目标频域资源上原本发送第二DMRS的位置,能够降低DMRS的开销,进而能够提高资源利用率。

Description

数据传输方法、发送设备和接收设备
本申请要求于2017年07月07日提交中国专利局、申请号为201710552734.4、申请名称为“数据传输方法、发送设备和接收设备”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请实施例涉及通信技术,尤其涉及一种数据传输方法、发送设备和接收设备。
背景技术
未来5G通信系统可以支持不同的业务。上述所说的业务例如可以为增强的移动宽带(enhanced Mobile Broadband,eMBB)业务、海量机器类型通信(massive Machine Type Communication,mMTC)业务、超可靠低延迟通信(Ultra-reliable and low latency communications,URLLC)业务、多媒体广播多播(Multimedia Broadcast Multicast Service,MBMS)业务和定位业务等。因此,在5G通信系统中,终端设备会有多个业务共存的场景。
当终端设备的上行数据通信和/或下行数据通信中有多个业务共存时,网络设备所调度的用于传输该多个业务数据的时频资源可能会出现重叠的频域资源。以网络设备向终端设备传输URLLC业务和eMBB业务为例,当网络设备抢占用于发送eMBB业务数据的部分时频资源发送URLLC业务数据时,发送eMBB业务数据时所使用的时频资源与发送URLLC业务数据时所使用的时频资源就会存在重叠的频域资源。
目前,网络设备或终端设备在使用上述存在重叠的频域资源的多个时频资源传输不同的业务数据时,会在每个时频资源上传输用于解调该时频资源上传输的业务数据的解调参考信号(Demodulation Reference Signal,DMRS)。但是,网络设备或终端设备在对应每个业务的时频资源上均传输DMRS,使得DMRS的开销较大,资源利用率较低。
发明内容
本申请实施例提供一种数据传输方法、发送设备和接收设备,用于降低DMRS的开销,提高资源利用率。
第一方面,本申请实施例提供一种数据传输方法,该方法包括:
接收设备在第一时频资源上接收第一数据,在第二时频资源上接收第二数据;
当所述第一时频资源和所述第二时频资源在频域上重叠的目标频域资源时,所述接收设备使用映射在所述第一时频资源的目标频域资源上的第一DMRS解调映射在所述第二时频资源的目标频域资源上的第二数据。
通过第一方面提供的数据传输方法,在发送设备需要向接收设备分别发送第一数据和第二数据时,发送设备可以在第一时频资源和第二时频资源存在重叠的目标频域资源时,在第二时频资源的目标频域资源上原本发送第二DMRS的位置,向接收设备发送第二数据。 通过这种方式,能够降低DMRS的开销,进而能够提高资源利用率。
在一种可能的实施方式中,所述接收设备为终端设备,所述方法还包括:
所述接收设备接收所述网络设备发送的第一指示信息,所述第一指示信息用于指示所述接收设备使用所述第一DMRS解调映射在所述第二时频资源的目标频域资源上的第二数据。
通过该可能的实施方式提供的数据传输方法,通过接收该第一指示信息,使得接收设备根据该第一指示信息,可以确定发送设备在第一时频资源和第二时频资源存在重叠的目标频域资源时,会在第二时频资源的目标频域资源原本用于映射第二DMRS的位置,映射第二数据在第一时频资源和第二时频资源在频域上重叠的目标频域资源时,使用映射在第一时频资源,从而使得接收设备可以在第一时频资源和第二时频资源在频域上重叠的目标频域资源时,使用映射在第一时频资源的目标频域资源上的第一DMRS解调映射在第二时频资源的目标频域资源上的第二数据,确保了接收设备可以正确的解调第二数据,提高了数据解调效率。
在一种可能的实施方式中,所述接收设备使用所述第一DMRS解调映射在所述第二时频资源的目标频域资源上的第二数据,包括:
当间隔小于与预设间隔满足映射关系、且所述第一时频资源和所述第二时频资源在频域上重叠的目标频域资源时,所述接收设备使用所述第一DMRS解调映射在所述第二时频资源的目标频域资源上的第二数据,所述间隔为所述第一时频资源与所述第二时频资源之间的间隔。
通过该可能的实施方式提供的数据传输方法,通过第一时频资源与所述第二时频资源之间的间隔,使得接收设备根据该第一指示信息,可以确定发送设备在第一时频资源和第二时频资源存在重叠的目标频域资源时,会在第二时频资源的目标频域资源原本用于映射第二DMRS的位置,映射第二数据在第一时频资源和第二时频资源在频域上重叠的目标频域资源时,使用映射在第一时频资源,从而使得接收设备可以在第一时频资源和第二时频资源在频域上重叠的目标频域资源时,使用映射在第一时频资源的目标频域资源上的第一DMRS解调映射在第二时频资源的目标频域资源上的第二数据,确保了接收设备可以正确的解调第二数据,提高了数据解调效率。
在一种可能的实施方式中,所述接收设备为终端设备,所述方法还包括:
所述接收设备接收所述网络设备发送的第二指示信息,所述第二指示信息用于指示所述预设间隔。
通过该可能的实施方式提供的数据传输方法,使得接收设备获取预设间隔的方式灵活多样,增加该数据传输方法的使用场景。
在一种可能的实施方式中,所述预设间隔与终端设备的移动速度、所述终端设备的信道时变参数满足映射关系。
通过该可能的实施方式提供的数据传输方法,使得接收设备获取预设间隔的方式灵活多样,增加该数据传输方法的使用场景。
在一种可能的实施方式中,所述接收设备使用所述第一DMRS解调映射在所述第二时频资源的目标频域资源上的第二数据,包括:
当第一天线端口信息与第二天线端口信息相同、且所述第一时频资源和所述第二时频 资源在频域上重叠的目标频域资源时,所述接收设备使用所述第一DMRS解调映射在所述第二时频资源的目标频域资源上的第二数据;
所述第一天线端口信息为所述发送设备发送所述第一数据时所使用的天线端口信息,所述第二天线端口信息为所述发送设备发送所述第二数据时所使用的天线端口信息;
所述第一天线端口信息包括:所述发送设备发送所述第一数据时所使用的第一天线端口数目和/或至少一个第一天线端口号;所述第二天线端口信息包括:所述发送设备发送所述第二数据时所使用的第二天线端口数目和/或至少一个第二天线端口号。
通过该可能的实施方式提供的数据传输方法,通过第一天线端口信息与第二天线端口信息,使得接收设备根据该第一指示信息,可以确定发送设备在第一时频资源和第二时频资源存在重叠的目标频域资源时,会在第二时频资源的目标频域资源原本用于映射第二DMRS的位置,映射第二数据在第一时频资源和第二时频资源在频域上重叠的目标频域资源时,使用映射在第一时频资源,从而使得接收设备可以在第一时频资源和第二时频资源在频域上重叠的目标频域资源时,使用映射在第一时频资源的目标频域资源上的第一DMRS解调映射在第二时频资源的目标频域资源上的第二数据,确保了接收设备可以正确的解调第二数据,提高了数据解调效率。
在一种可能的实施方式中,所述接收设备为终端设备,所述方法还包括:
所述接收设备接收所述网络设备发送的第三指示信息,所述第三指示信息用于确定与所述第二天线端口号对应的第一天线端口号;
所述接收设备使用所述第一DMRS解调映射在所述第二时频资源的目标频域资源上的第二数据,包括:
所述接收设备使用与所述第二天线端口号对应的第一天线端口号传输的第一DMRS,解调映射在所述第二时频资源的目标频域资源上的第二数据。
通过该可能的实施方式提供的数据传输方法,在发送设备发送第二数据时所使用的第二天线端口号与发送设备发送第一数据时所使用的任一第一天线端口号均不相同、且第二天线端口数目小于第一天线端口数目时,上述接收设备可以使用与第二天线端口号对应的第一天线端口号传输的第一DMRS,解调映射在第二时频资源的目标频域资源上的第二数据。通过这种方式,能够减少信令指示开销,接收设备仍确定了第二数据使用的是哪个第一数据的天线端口号上的DMRS进行解调。
在一种可能的实施方式中,所述第三指示信息包括:与所述第二天线端口号对应的第一天线端口号的标识。
通过该可能的实施方式提供的数据传输方法,在发送设备发送第二数据时所使用的第二天线端口号与发送设备发送第一数据时所使用的任一第一天线端口号均不相同、且第二天线端口数目小于第一天线端口数目时,上述接收设备可以根据第三指示信息所携带的与第二天线端口号对应的第一天线端口号的标识,确定与第二天线端口号对应的第一天线端口号,从而可以使用与第二天线端口号对应的第一天线端口号传输的第一DMRS,解调映射在第二时频资源的目标频域资源上的第二数据。通过这种方式,能够减少信令指示开销,接收设备仍确定了第二数据使用的是哪个第一数据的天线端口号上的DMRS进行解调。
在一种可能的实施方式中,所述接收设备使用所述第一DMRS解调映射在所述第二时频资源的目标频域资源上的第二数据,包括:
所述接收设备根据所述第二天线端口号的标识,以及,预设的第二天线端口号与第一天线端口号的对应关系,确定与所述第二天线端口号对应的第一天线端口号;
所述接收设备使用与所述第二天线端口号对应的第一天线端口号传输的第一DMRS,解调映射在所述第二时频资源的目标频域资源上的第二数据。
通过该可能的实施方式提供的数据传输方法,在发送设备发送第二数据时所使用的第二天线端口号与发送设备发送第一数据时所使用的任一第一天线端口号均不相同、且第二天线端口数目小于第一天线端口数目时,上述接收设备可以根据第二天线端口号的标识,以及,预设的第二天线端口号与第一天线端口号的对应关系,确定与第二天线端口号对应的第一天线端口号,从而可以使用与第二天线端口号对应的第一天线端口号传输的第一DMRS,解调映射在第二时频资源的目标频域资源上的第二数据。通过这种方式,能够减少信令指示开销,接收设备仍确定了第二数据使用的是哪个第一数据的天线端口号上的DMRS进行解调。
在一种可能的实施方式中,所述接收设备为终端设备,所述方法还包括:
所述接收设备接收所述网络设备发送的第四指示信息,所述第四指示信息用于指示所述第一DMRS的发送功率与所述二数据的发送功率的比值。
通过该可能的实施方式提供的数据传输方法,接收设备在接收到该第四指示信息后,可以根据第一DMRS的发送功率与二数据的发送功率的比值,准确的测量第一DMRS上的信道估计,从而使得接收设备可以根据第一DMRS对第二数据做出准确的信道估计,提高了第二数据解调的准确率。
第二方面,本申请实施例提供一种数据传输方法,该方法包括:
发送设备确定发送第一数据的第一时频资源和发送第二数据的第二时频资源;
当所述第一时频资源和所述第二时频资源存在重叠的目标频域资源时,所述发送设备在所述第二时频资源的目标频域资源发送第二数据。
在一种可能的实施方式中,所述发送设备为网络设备,所述方法还包括:
所述发送设备向所述终端设备发送第一指示信息,所述第一指示信息用于指示所述终端设备使用映射在所述第一时频资源的目标频域资源上的第一DMRS解调映射在所述第二时频资源的目标频域资源上的第二数据。
在一种可能的实施方式中,所述发送设备使用所述第二时频资源的目标频域资源发送第二数据,包括:
当间隔与预设间隔满足映射关系、且所述第一时频资源和所述第二时频资源存在重叠的目标频域资源时,所述发送设备使用所述第二时频资源的目标频域资源发送第二数据,所述间隔为所述第一时频资源与所述第二时频资源之间的间隔。
在一种可能的实施方式中,所述发送设备为网络设备,所述方法还包括:
所述发送设备向所述终端设备发送第二指示信息,所述第二指示信息用于指示预设间隔。
在一种可能的实施方式中,所述预设间隔与终端设备的移动速度、所述终端设备的信道时变参数满足映射关系。
在一种可能的实施方式中,所述发送设备使用所述第二时频资源的目标频域资源发送第二数据,包括:
当第一天线端口信息与第二天线端口信息相同、且所述第一时频资源和所述第二时频资源存在重叠的目标频域资源时,所述发送设备使用所述第二时频资源的目标频域资源发送第二数据;
所述第一天线端口信息为所述发送设备发送所述第一数据时所使用的天线端口信息,所述第二天线端口信息为所述发送设备发送所述第二数据时所使用的天线端口信息;
所述第一天线端口信息包括:所述发送设备发送第一数据时所使用的第一天线端口数目和/或至少一个第一天线端口号;所述第二天线端口信息包括:所述发送设备发送第二数据时所使用的第二天线端口数目和/或至少一个第二天线端口号。
在一种可能的实施方式中,所述发送设备为网络设备,所述方法还包括:
所述发送设备向所述终端设备发送第三指示信息,所述第三指示信息用于确定与所述第二天线端口号对应的第一天线端口号。
在一种可能的实施方式中,所述第三指示信息包括:与所述第二天线端口号对应的第一天线端口号的标识。
在一种可能的实施方式中,所述发送设备为网络设备,所述方法还包括:
所述发送设备向所述终端设备发送第四指示信息,所述第四指示信息用于指示所述第一DMRS的发送功率与所述二数据的发送功率的比值。
上述第二方面以及第二方面的各可能的实施方式所提供的数据传输方法,其有益效果可以参见上述第一方面和第一方面的各可能的实施方式所带来的有益效果,在此不再赘述。
第三方面,本申请实施例提供一种数据传输系统,该系统包括发送设备和接收设备;
所述发送设备,用于在第一时频资源上的第一目标位置映射第一数据,在第二时频资源上的第二目标位置映射第二数据,其中,所述第一目标位置不包括所述第一导频的时频资源位置和目标时频资源,所述目标时频资源为第一时频资源和第二时频资源重叠的时频资源,所述第二目标位置不包括所述第二导频的时频资源位置,所述第二导频的时频资源位置不包括所述目标时频资源;
所述接收设备,用于在第一时频资源除所述目标时频资源之外的时频资源上接收第一信号,在所述第二时频资源上接收第二信号;其中,所述第一信号包括第一导频和第一数据,所述第二信号包括第二数据;
所述接收设备还用于使用所述第一导频对承载在所述目标时频资源上的第二数据进行解调。
上述第三方面所提供的数据传输系统,其有益效果可以参见上述第一方面和第一方面的各可能的实施方式,以及,上述第二方面和第二方面的各可能的实施方式所带来的有益效果,在此不再赘述。
第四方面,本申请实施例提供一种数据传输方法,该方法包括:
发送设备在第一时频资源上的第一目标位置映射第一数据,在第二时频资源上的第二目标位置映射第二数据;
其中,所述第一目标位置不包括所述第一导频的时频资源位置和目标时频资源;所述目标时频资源为第一时频资源和第二时频资源重叠的时频资源,所述第二目标位置不包括所述第二导频的时频资源位置,所述第二导频的时频资源位置不包括所述目标时频资源。
上述第四方面所提供的数据传输方法,其有益效果可以参见上述第二方面和第二方面 的各可能的实施方式所带来的有益效果,在此不再赘述。
第五方面,本申请实施例提供一种数据传输方法,该方法包括:
接收设备在第一时频资源除目标时频资源之外的时频资源上接收第一信号,在第二时频资源上接收第二信号;其中,所述第一目标位置不包括所述第一导频的时频资源位置和目标时频资源,所述目标时频资源为第一时频资源和第二时频资源重叠的时频资源,所述第二目标位置不包括所述第二导频的时频资源位置,所述第二导频的时频资源位置不包括所述目标时频资源;所述第一信号包括第一导频和第一数据,所述第二信号包括第二数据;
所述接收设备使用所述第一导频对承载在所述目标时频资源上的第二数据进行解调。
上述第五方面所提供的数据传输方法,其有益效果可以参见上述第一方面和第一方面的各可能的实施方式所带来的有益效果,在此不再赘述。
第六方面,本申请实施例提供一种接收设备,该发送设备可以是网络设备,还可以是终端设备,还可以是芯片。该接收设备可以包括:
接收模块,用于在第一时频资源上接收第一数据,在第二时频资源上接收第二数据;
处理模块,用于在所述第一时频资源和所述第二时频资源在频域上重叠的目标频域资源时,使用映射在所述第一时频资源的目标频域资源上的第一DMRS解调映射在所述第二时频资源的目标频域资源上的第二数据。
在一种可能的实施方式中,所述接收设备为终端设备,则所述接收模块,还用于接收所述网络设备发送的第一指示信息,所述第一指示信息用于指示所述接收设备使用所述第一DMRS解调映射在所述第二时频资源的目标频域资源上的第二数据。
在一种可能的实施方式中,所述处理模块,具体用于在间隔小于与预设间隔满足映射关系、且所述第一时频资源和所述第二时频资源在频域上重叠的目标频域资源时,使用所述第一DMRS解调映射在所述第二时频资源的目标频域资源上的第二数据,所述间隔为所述第一时频资源与所述第二时频资源之间的间隔。
在一种可能的实施方式中,所述接收设备为终端设备,则所述接收模块,还用于接收所述网络设备发送的第二指示信息,所述第二指示信息用于指示所述预设间隔。
在一种可能的实施方式中,所述预设间隔与终端设备的移动速度、所述终端设备的信道时变参数满足映射关系。
在一种可能的实施方式中,所述处理模块,具体用于在第一天线端口信息与第二天线端口信息相同、且所述第一时频资源和所述第二时频资源在频域上重叠的目标频域资源时,使用所述第一DMRS解调映射在所述第二时频资源的目标频域资源上的第二数据;
所述第一天线端口信息为所述发送设备发送所述第一数据时所使用的天线端口信息,所述第二天线端口信息为所述发送设备发送所述第二数据时所使用的天线端口信息;
所述第一天线端口信息包括:所述发送设备发送所述第一数据时所使用的第一天线端口数目和/或至少一个第一天线端口号;所述第二天线端口信息包括:所述发送设备发送所述第二数据时所使用的第二天线端口数目和/或至少一个第二天线端口号。
在一种可能的实施方式中,所述接收设备为终端设备,则所述接收模块,还用于接收所述网络设备发送的第三指示信息,所述第三指示信息用于确定与所述第二天线端口号对应的第一天线端口号;
所述处理模块,具体用于使用与所述第二天线端口号对应的第一天线端口号传输的第 一DMRS,解调映射在所述第二时频资源的目标频域资源上的第二数据。
在一种可能的实施方式中,所述第三指示信息包括:与所述第二天线端口号对应的第一天线端口号的标识。
在一种可能的实施方式中,所述处理模块,具体用于根据所述第二天线端口号的标识,以及,预设的第二天线端口号与第一天线端口号的对应关系,确定与所述第二天线端口号对应的第一天线端口号,并使用与所述第二天线端口号对应的第一天线端口号传输的第一DMRS,解调映射在所述第二时频资源的目标频域资源上的第二数据。
在一种可能的实施方式中,所述接收设备为终端设备,则所述接收模块,还用于接收所述网络设备发送的第四指示信息,所述第四指示信息用于指示所述第一DMRS的发送功率与所述二数据的发送功率的比值。
上述第六方面以及第六方面的各可能的实施方式所提供的接收设备,其有益效果可以参见上述第一方面和第一方面的各可能的实施方式所带来的有益效果,在此不再赘述。
第七方面,本申请实施例提供一种发送设备,该发送设备可以是网络设备,还可以是终端设备,还可以是芯片。该发送设备可以包括:
处理模块,用于确定发送第一数据的第一时频资源和发送第二数据的第二时频资源;
所述处理模块,还用于在所述第一时频资源和所述第二时频资源存在重叠的目标频域资源时,指示发送模块在所述第二时频资源的目标频域资源发送第二数据。
在一种可能的实施方式中,所述发送设备为网络设备,所述发送模块,还用于向所述终端设备发送第一指示信息,所述第一指示信息用于指示所述终端设备使用映射在所述第一时频资源的目标频域资源上的第一DMRS解调映射在所述第二时频资源的目标频域资源上的第二数据。
在一种可能的实施方式中,所述处理模块,具体用于在间隔与预设间隔满足映射关系、且所述第一时频资源和所述第二时频资源存在重叠的目标频域资源时,指示所述发送模块使用所述第二时频资源的目标频域资源发送第二数据,所述间隔为所述第一时频资源与所述第二时频资源之间的间隔。
在一种可能的实施方式中,所述发送设备为网络设备,所述发送模块,还用于向所述终端设备发送第二指示信息,所述第二指示信息用于指示预设间隔。
在一种可能的实施方式中,所述预设间隔与终端设备的移动速度、所述终端设备的信道时变参数满足映射关系。
在一种可能的实施方式中,所述处理模块,具体用于在第一天线端口信息与第二天线端口信息相同、且所述第一时频资源和所述第二时频资源存在重叠的目标频域资源时,指示所述发送模块使用所述第二时频资源的目标频域资源发送第二数据;
所述第一天线端口信息为所述发送设备发送所述第一数据时所使用的天线端口信息,所述第二天线端口信息为所述发送设备发送所述第二数据时所使用的天线端口信息;
所述第一天线端口信息包括:所述发送设备发送第一数据时所使用的第一天线端口数目和/或至少一个第一天线端口号;所述第二天线端口信息包括:所述发送设备发送第二数据时所使用的第二天线端口数目和/或至少一个第二天线端口号。
在一种可能的实施方式中,所述发送设备为网络设备,所述发送模块,还用于向所述终端设备发送第三指示信息,所述第三指示信息用于确定与所述第二天线端口号对应的第 一天线端口号。
在一种可能的实施方式中,所述第三指示信息包括:与所述第二天线端口号对应的第一天线端口号的标识。
在一种可能的实施方式中,所述发送设备为网络设备,所述发送模块,还用于向所述终端设备发送第四指示信息,所述第四指示信息用于指示所述第一DMRS的发送功率与所述二数据的发送功率的比值。
上述第七方面以及第七方面的各可能的实施方式所提供的发送设备,其有益效果可以参见上述第二方面和第二方面的各可能的实施方式所带来的有益效果,在此不再赘述。
第八方面,本申请实施例提供一种发送设备,该发送设备可以是网络设备,还可以是终端设备,还可以是芯片。该发送设备可以包括:
处理模块,用于在第一时频资源上的第一目标位置映射第一数据,在第二时频资源上的第二目标位置映射第二数据,其中,所述第一目标位置不包括所述第一导频的时频资源位置和目标时频资源,所述目标时频资源为第一时频资源和第二时频资源重叠的时频资源,所述第二目标位置不包括所述第二导频的时频资源位置,所述第二导频的时频资源位置不包括所述目标时频资源。
上述第八方面以及第八方面的各可能的实施方式所提供的发送设备,其有益效果可以参见上述第二方面和第二方面的各可能的实施方式所带来的有益效果,在此不再赘述。
第九方面,本申请实施例提供一种接收设备,该发送设备可以是网络设备,还可以是终端设备,还可以是芯片。该接收设备可以包括:
接收模块,用于在第一时频资源除目标时频资源之外的时频资源上接收第一信号,在第二时频资源上接收第二信号;其中,所述第一目标位置不包括所述第一导频的时频资源位置和目标时频资源,所述目标时频资源为第一时频资源和第二时频资源重叠的时频资源,所述第二目标位置不包括所述第二导频的时频资源位置,所述第二导频的时频资源位置不包括所述目标时频资源;所述第一信号包括第一导频和第一数据,所述第二信号包括第二数据;
处理模块,用于使用所述第一导频对承载在所述目标时频资源上的第二数据进行解调。
上述第九方面以及第九方面的各可能的实施方式所提供的接收设备,其有益效果可以参见上述第一方面和第一方面的各可能的实施方式所带来的有益效果,在此不再赘述。
第十方面,本申请实施例提供一种接收设备,所述接收设备包括:处理器、存储器、接收器;所述接收器耦合至所述处理器,所述处理器控制所述接收器的接收动作;
其中,存储器用于存储计算机可执行程序代码,程序代码包括指令;当处理器执行指令时,指令使所述接收设备执行如第一方面和第一方面的各可能的实施方式所提供的数据传输方法。
第十一方面,本申请实施例提供一种发送设备,所述发送设备包括:处理器、存储器、发送器;所述发送器耦合至所述处理器,所述处理器控制所述发送器的发送动作;
其中,存储器用于存储计算机可执行程序代码,程序代码包括指令;当处理器执行指令时,指令使所述发送设备执行如第二方面和第二方面的各可能的实施方式所提供的数据传输方法。
第十二方面,本申请实施例提供一种接收设备,所述接收设备包括:处理器、存储器、 接收器;所述接收器耦合至所述处理器,所述处理器控制所述接收器的接收动作;
其中,存储器用于存储计算机可执行程序代码,程序代码包括指令;当处理器执行指令时,指令使所述接收设备执行如第五方面和第五方面的各可能的实施方式所提供的数据传输方法。
第十三方面,本申请实施例提供一种发送设备,所述发送设备包括:处理器、存储器、发送器;所述发送器耦合至所述处理器,所述处理器控制所述发送器的发送动作;
其中,存储器用于存储计算机可执行程序代码,程序代码包括指令;当处理器执行指令时,指令使所述发送设备执行如第四方面和第四方面的各可能的实施方式所提供的数据传输方法。
本申请实施例第十四方面提供一种接收设备,包括用于执行以上第一方面的方法的至少一个处理元件(或芯片)。
本申请实施例第十五方面提供一种发送设备,包括用于执行以上第二方面的方法的至少一个处理元件(或芯片)。
本申请实施例第十六方面提供一种发送设备,包括用于执行以上第四方面的方法的至少一个处理元件(或芯片)。
本申请实施例第十七方面提供一种接收设备,包括用于执行以上第五方面的方法的至少一个处理元件(或芯片)。
本申请实施例第十八方面提供一种程序,该程序在被处理器执行时用于执行以上第一方面的方法。
本申请实施例第十九方面提供一种程序,该程序在被处理器执行时用于执行以上第二方面的方法。
本申请实施例第二十方面提供一种程序,该程序在被处理器执行时用于执行以上第四方面的方法。
本申请实施例第二十一方面提供一种程序,该程序在被处理器执行时用于执行以上第五方面的方法。
本申请实施例第二十二方面提供一种程序产品,例如计算机可读存储介质,包括第十八方面的程序。
本申请实施例第二十三方面提供一种程序产品,例如计算机可读存储介质,包括第十九方面的程序。
本申请实施例第二十四方面提供一种程序产品,例如计算机可读存储介质,包括第二十方面的程序。
本申请实施例第二十五方面提供一种程序产品,例如计算机可读存储介质,包括第二十一方面的程序。
本申请实施例第二十六方面提供一种计算机可读存储介质,计算机可读存储介质中存储有指令,当其在计算机上运行时,使得计算机执行上述第一方面的方法。
本申请实施例第二十七方面提供一种计算机可读存储介质,计算机可读存储介质中存储有指令,当其在计算机上运行时,使得计算机执行上述第二方面的方法。
本申请实施例第二十八方面提供一种计算机可读存储介质,计算机可读存储介质中存储有指令,当其在计算机上运行时,使得计算机执行上述第四方面的方法。
本申请实施例第二十九方面提供一种计算机可读存储介质,计算机可读存储介质中存储有指令,当其在计算机上运行时,使得计算机执行上述第五方面的方法。
本申请实施例提供的数据传输方法、发送设备和接收设备,在发送设备需要向接收设备分别发送第一数据和第二数据时,发送设备可以在第一时频资源和第二时频资源存在重叠的目标频域资源时,在第二时频资源的目标频域资源上原本发送第二DMRS的位置,向接收设备发送第二数据。通过这种方式,能够降低DMRS的开销,进而能够提高资源利用率。若可靠性较低的业务使用可靠性较高的业务的DMRS,则可以帮助提升可靠性较低业务的数据解调的准确性并提高不发送DMRS的业务的数据率。若可靠性较高的业务使用可靠性较低的业务的DMRS,则可以帮助提升不发送DMRS的业务的数据率。
附图说明
图1为本申请实施例所涉及的一种通信系统的框架图;
图2为本申请实施例提供的一种时频资源示意图;
图3为本申请实施例提供的一种数据传输方法的信令流程图;
图4为本申请实施例提供的另一种时频资源的示意图;
图5为本申请实施例提供的又一种时频资源的示意图;
图6为本申请实施例提供的又一种时频资源的示意图;
图7为本申请实施例提供的又一种时频资源的示意图;
图8为本申请实施例提供的又一种时频资源的示意图;
图9为本申请实施例提供的又一种时频资源的示意图;
图10为本申请实施例提供的一种天线端口号的示意图;
图11为本申请实施例提供的另一种数据传输方法的流程示意图;
图12为本申请实施例提供的又一种时频资源的示意图;
图13为本申请实施例提供的一种接收设备的结构示意图;
图14为本申请实施例提供的一种发送设备的结构示意图;
图15为本申请实施例提供的另一种接收设备的结构示意图;
图16为本申请实施例提供的又一种接收设备的结构示意图;
图17为本申请实施例提供的另一种发送设备的结构示意图;
图18为本申请实施例提供的一种数据传输系统的结构示意图;
图19为本申请实施例提供的终端设备为手机时的结构框图。
具体实施方式
图1为本申请实施例所涉及的一种通信系统的框架图。如图1所示,该通信系统包括:网络设备01和终端设备02。网络设备01和终端设备02可以使用一个或多个空口技术进行通信。其中,
网络设备:可以是前述基站,或者各种无线接入点,或者可以是指接入网中在空中接口上通过一个或多个扇区与终端设备进行通信的设备。基站可用于将收到的空中帧与IP分组进行相互转换,作为无线终端与接入网的其余部分之间的路由器,其中接入网的其余部 分可包括网际协议(IP)网络。基站还可协调对空中接口的属性管理。例如,基站可以是全球移动通讯(Global System of Mobile communication,GSM)或码分多址(Code Division Multiple Access,CDMA)中的基站(Base Transceiver Station,BTS),也可以是宽带码分多址(Wideband Code Division Multiple Access,WCDMA)中的基站(NodeB,NB),还可以是长期演进(Long Term Evolution,LTE)中的演进型基站(Evolutional Node B,eNB或eNodeB),或者中继站或接入点,或者未来5G网络中的基站gNB等,在此并不限定。
终端设备:可以是无线终端也可以是有线终端,无线终端可以是指向用户提供语音和/或其他业务数据连通性的设备,具有无线连接功能的手持式设备、或连接到无线调制解调器的其他处理设备。无线终端可以经无线接入网(Radio Access Network,RAN)与一个或多个核心网进行通信,无线终端可以是移动终端,如移动电话(或称为“蜂窝”电话)和具有移动终端的计算机,例如,可以是便携式、袖珍式、手持式、计算机内置的或者车载的移动装置,它们与无线接入网交换语言和/或数据。例如,个人通信业务(Personal Communication Service,PCS)电话、无绳电话、会话发起协议(Session Initiation Protocol,SIP)话机、无线本地环路(Wireless Local Loop,WLL)站、个人数字助理(Personal Digital Assistant,PDA)等设备。无线终端也可以称为系统、订户单元(Subscriber Unit)、订户站(Subscriber Station),移动站(Mobile Station)、移动台(Mobile)、远程站(Remote Station)、远程终端(Remote Terminal)、接入终端(Access Terminal)、用户终端(User Terminal)、用户代理(User Agent)、用户设备(User Device or User Equipment),在此不作限定。
需要说明的是,上述通信系统可以是LTE通信系统,也可以是未来其他通信系统,在此不作限制。
以5G通信系统为例,未来5G通信系统引入了eMBB业务、URLLC业务、mMTC业务等。因此,在5G通信系统中,终端设备的上行数据通信和/或下行数据通信中会有多个业务共存的场景。当终端设备有多个业务共存时,用于传输该多个业务的时频资源可能会出现重叠的频域资源。
图2为本申请实施例提供的一种时频资源示意图。如图2所示,以第一业务和第二业务共存的场景为例,假定映射第一业务数据的第一时频资源和映射第二业务数据的第二时频资源存在重叠的频域资源,则现有技术中,发送设备(例如:网络设备或终端设备)在第一时频资源上发送第一业务数据(简称:第一数据)时,会在第一时频资源的所有频域资源上发送用于解调第一数据的第一DMRS。发送设备在第二时频资源上发送第二业务数据(简称:第二数据)时,会在第二时频资源的所有频域资源上发送用于解调第二数据的第二DMRS,使得DMRS的开销较大,资源利用率较低。因此,考虑到上述问题,本申请实施例提供一种数据传输方法,用于解决上述DMRS的开销较大的技术问题。
需要说明的是,本申请实施例对上述发送设备和接收设备不限定。例如,当发送设备为终端设备时,接收设备为网络设备;或者,当发送设备为网络设备时,接收设备为终端设备。
需要说明的是,本申请实施例对上述第一业务和第二业务不限定。例如,第一业务是eMBB业务,第二业务是URLLC业务;或者,第一业务是多媒体业务,第二业务是控制信息业务;或者,第一业务是URLLC业务,第二业务是eMBB业务等。可选的,上述第二业 务可以为时延要求较高的业务。本申请实施例可用于下行数据通信,也可用于上行数据通信。
应当理解,尽管在本申请实施例中可能采用术语第一、第二来描述不同的业务,但这些业务不应限于这些术语。这些术语仅用来将各个业务彼此区分开。例如,在不脱离本申请实施例范围的情况下,第一业务也可以被称为第二业务,类似地,第二业务也可以被称为第一业务。
应当理解,尽管在本申请实施例中可能采用术语第一、第二来描述不同的数据,但这些数据不应限于这些术语。这些术语仅用来将各个数据彼此区分开。例如,在不脱离本申请实施例范围的情况下,第一数据也可以被称为第二数据,类似地,第二数据也可以被称为第一数据。
应当理解,本申请实施例中使用的术语“和/或”仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,本文中字符“/”,一般表示前后关联对象是一种“或”的关系。
下面以终端设备有两个业务(即第一业务和第二业务)共存的场景为例,通过一些实施例对本申请实施例的技术方案进行详细说明。下面这几个实施例可以相互结合,对于相同或相似的概念或过程可能在某些实施例不再赘述。
图3为本申请实施例提供的一种数据传输方法的信令流程图。本实施例涉及的是发送设备在第一时频资源和第二时频资源存在重叠的目标频域资源时,发送设备在第二时频资源的目标频域资源上原本发送第二DMRS的位置,向接收设备发送第二数据的过程。如图3所示,该方法可以包括:
S101、发送设备确定发送第一数据的第一时频资源和发送第二数据的第二时频资源。
其中,上述第一数据可以为第一业务数据,第二数据可以为第二业务数据。例如,第一数据为eMBB业务数据,第二数据为URLLC业务数据等。在本实施例中,当发送设备需要向接收设备分别发送第一数据和第二数据时,发送设备可以确定用于发送第一数据的第一时频资源和用于发送第二数据的第二时频资源。
可选的,当上述发送设备为终端设备时,发送设备可以通过接收网络设备发送的用于指示第一时频资源的下行控制信息(Downlink Control Information,DCI)和用于指示第二时频资源的DCI,获取上述第一时频资源和第二时频资源,对此不再赘述。
S102、当第一时频资源和第二时频资源存在重叠的目标频域资源时,发送设备使用第一时频资源向接收设备发送第一数据和第一DMRS,使用第二时频资源的目标频域资源向接收设备发送第二数据,使用第二时频资源的其他频域资源向接收设备发送第二DMRS和第二数据。
具体的,由于同一频域资源所对应的子载波相同,所以当第一时频资源和第二时频资源存在重叠的目标频域资源时,发送设备在第一时频资源的目标频域资源上传输数据时所使用的子载波,与,发送设备在第二时频资源的目标频域资源上传输数据时所使用的子载波相同。由于使用相同子载波传输数据时的信道特性相同,所以接收设备使用发送设备在第一时频资源的目标频域资源上传输的第一DMRS,也能够解调出第二时频资源的目标频域资源上传输的第二数据。
因此,在第一时频资源和第二时频资源存在重叠的目标频域资源时,上述发送设备可 以在第一时频资源上仍然采用现有的方式映射第一DMRS和第一数据。而对于第二时频资源,发送设备可以在第二时频资源的目标频域资源上原本用于映射第二DMRS的位置映射第二数据,在第二时频资源的其他频域资源上继续采用现有的方式映射第二DMRS和第二数据。通过这种方式,使得发送设备可以使用原本用于传输第二DMRS的时频资源传输第二数据,降低了DMRS的开销,提高了资源利用率。
其中,本实施例不限定上述发送设备在第二时频资源上映射第二数据的方式。例如,发送设备可以先确定用于映射第二数据的可用资源元素(Resource Element,RE)。该可用RE可以包括第二时频资源的目标频域资源上原本用于映射第二DMRS的时频资源。然后,发送设备可以在这些可用RE上,按照先层后时域后频域,或先层后频域后时域、或、先时域后频域后层、或、先频域后时域后层的RE映射规则进行映射。
或者,上述发送设备还可以先确定用于映射第二数据的第一可用RE。该第一可用RE不包括第二时频资源的目标频域资源上原本用于映射第二DMRS的时频资源。然后,发送设备可以在第一可用RE上,按照先层后时域后频域,或先层后频域后时域、或、先时域后频域后层、或、先频域后时域后层的RE映射规则进行映射。然后,发送设备再在第二时频资源的目标频域资源上原本用于映射第二DMRS的时频资源上,按照先层后时域后频域,或先层后频域后时域、或、先时域后频域后层、或、先频域后时域后层的RE映射规则进行映射。
S103、接收设备在第一时频资源上接收第一数据,在第二时频资源上接收第二数据。
S104、接收设备使用映射在第一时频资源的目标频域资源上的第一DMRS解调映射在第二时频资源的目标频域资源上的第二数据。
具体的,上述接收设备通过第一时频资源和第二时频资源,可以获知第一时频资源和第二时频资源是否存在重叠的目标频域资源。在第一时频资源和第二时频资源存在重叠的目标频域资源接收设备时,上述接收设备可以确定发送设备在第二时频资源的目标频域资源上没有映射第二DMRS。因此,在该场景下,上述接收设备可以使用映射在第一时频资源的目标频域资源上的第一DMRS解调映射在第二时频资源的目标频域资源上的第二数据,使用映射在第二时频资源的其他频域资源上的第二DMRS,解调映射在第二时频资源的其他频域资源上的第二数据。
可选的,当上述接收设备为终端设备时,接收设备可以通过接收网络设备发送的用于指示第一时频资源的下行控制信息(Downlink Control Information,DCI)和用于指示第二时频资源的DCI,获取上述第一时频资源和第二时频资源,对此不再赘述。
本申请实施例提供的数据传输方法,在发送设备需要向接收设备分别发送第一数据和第二数据时,发送设备可以在第一时频资源和第二时频资源存在重叠的目标频域资源时,在第二时频资源的目标频域资源上原本发送第二DMRS的位置,向接收设备发送第二数据。通过这种方式,能够降低DMRS的开销,进而能够提高资源利用率。若可靠性较低的业务使用可靠性较高的业务的DMRS,则可以帮助提升可靠性较低业务的数据解调的准确性并提高不发送DMRS的业务的数据率。若可靠性较高的业务使用可靠性较低的业务的DMRS,则可以帮助提升不发送DMRS的业务的数据率。
下面结合几个具体的场景来说明本申请实施例所提供的数据传输方法。具体地,
第一种场景:图4为本申请实施例提供的另一种时频资源的示意图。图5为本申请实 施例提供的又一种时频资源的示意图。图4示出的是上述网络设备采用不同的时隙调度第一业务和第二业务。图5示出的是上述网络设备采用相同的时隙调度第一业务和第二业务。如图4和图5所示,当上述网络设备调度第二数据时所使用的带宽大于调度第一数据时所使用的带宽时,存在上述第二时频资源的频域资源与第一时频资源的全部频域资源重叠的情况。在该场景下,上述第一时频资源的目标频域资源即为第一时频资源的全部频域资源,上述第二时频资源的目标频域资源为与第一时频资源的全部频域资源重叠的部分(即图4和图5中虚线框所对应的频域资源)。
则上述发送设备可以在第一时频资源上仍然采用现有的方式映射第一DMRS和第一数据。发送设备可以在第二时频资源的目标频域资源上映射第二数据,在第二时频资源的其他频域资源上继续采用现有的方式映射第二DMRS和第二数据。也就是说,发送设备在第二时频资源的目标频域资源上原本用于映射第二DMRS的位置(即图4和图5中的黑色区域)也映射了第二数据。相应地,上述接收设备在接收到发送设备在第一时频资源上发送的第一数据,以及,在第二时频资源上发送的第二数据之后,接收设备可以使用映射在第一时频资源的目标频域资源上的第一DMRS(即映射在第一时频资源的所有频域资源上的第一DMRS),解调在第二时频资源的目标频域资源上传输的第二数据(即映射在图4和图5虚线框中时频资源上的第二数据),使用映射在第二时频资源的其他频域资源上的第二DMRS,解调映射在第二时频资源的其他频域资源上的第二数据。
通过这种方式,使得发送设备可以使用原本用于传输第二DMRS的时频资源传输第二数据,降低了DMRS的开销,提高了资源利用率。
第二种场景:图6为本申请实施例提供的又一种时频资源的示意图。图7为本申请实施例提供的又一种时频资源的示意图。图6示出的是上述网络设备采用不同的时隙调度第一业务和第二业务。图7示出的是上述网络设备采用相同的时隙调度第一业务和第二业务。如图6和图7所示,当上述网络设备调度第二数据时所使用的带宽小于调度第一数据时所使用的带宽,则存在上述第一时频资源的频域资源与第二时频资源的全部频域资源重叠的情况。在该场景下,上述第二时频资源的目标频域资源即为第二时频资源的全部频域资源,上述第一时频资源的目标频域资源为与第二时频资源的全部频域资源重叠的部分。
则上述发送设备可以在第一时频资源上仍然采用现有的方式映射第一DMRS和第一数据。发送设备可以在第二时频资源的目标频域资源上(即第二时频资源的所有频域资源上)映射第二数据,不再映射第二DMRS。也就是说,发送设备在第二时频资源的目标频域资源上原本用于映射第二DMRS的位置(即图6和图7中的黑色区域)也映射了第二数据。相应地,上述接收设备在接收到发送设备在第一时频资源上发送的第一数据,以及,在第二时频资源上发送的第二数据之后,接收设备可以使用映射在第一时频资源的目标频域资上的第一DMRS(即映射在图6和图7虚线框中的时频资源上的第一DMRS),解调在第二时频资源的所有频域资源上传输的第二数据。
通过这种方式,使得发送设备可以使用原本用于传输第二DMRS的时频资源传输第二数据,降低了DMRS的开销,提高了资源利用率。
第三种场景:图8为本申请实施例提供的又一种时频资源的示意图。图9为本申请实施例提供的又一种时频资源的示意图。图8和图9示出的是上述网络设备采用不同的时隙调度第一业务和第二业务。如图8和图9所示,以上述网络设备调度第二数据时所使用的 带宽与调度第一数据时所使用的带宽相同为例,即上述第二时频资源的目标频域资源即为第二时频资源的全部频域资源,上述第一时频资源的目标频域资源为第一时频资源的全部频域资源。
假定第一业务抢占了第二业务的部分时频资源、且该部分时频资源包括用于映射第二DMRS的时频资源,即上述网络设备将第二时频资源用于映射第二DMRS的时频资源重新调度给第一业务。此时,第一时频资源包括第二时频资源原本用于映射第二DMRS的时频资源。其中,上述所说的第二DMRS可以为前置(front-loaded)第二DMRS,还可以为额外的(additional)第二DMRS。图8示出的是第一时频资源包括第二时频资源原本用于映射front-loaded第二DMRS的时频资源的场景,图9示出的是第一时频资源包括第二时频资源原本用于映射additional第二DMRS的时频资源的场景。
则在该场景下,上述发送设备可以在第一时频资源上仍然采用现有的方式映射第一DMRS和第一数据。此时,由于第二时频资源上原本用于映射第二DMRS的位置被第一业务抢占,因此,发送设备只能在第二时频资源的目标频域资源上(即第二时频资源的所有频域资源上)映射第二数据,无法映射第二DMRS。在该场景下,上述接收设备在接收到发送设备在第一时频资源上发送的第一数据,以及,在第二时频资源上发送的第二数据之后,接收设备可以使用映射在第一时频资源的目标频域资源上的第一DMRS,解调在第二时频资源的目标频域资源上传输的第二数据。通过这种方式,使得接收设备在第一业务抢占了第二时频资源用于映射第二DMRS的时频资源进行发送后,接收设备可以使用第一DMRS解调第二数据,提高了数据传输效率。
进一步地,在上述实施例的基础上,本实施例涉及的是上述接收设备如何确定使用映射在第一时频资源的目标频域资源上的第一DMRS解调映射在第二时频资源的目标频域资源上的第二数据的过程。具体地,
第一种方式:当上述接收设备为终端设备、发送设备为网络设备时,上述接收设备可以根据发送设备所发送的第一指示信息,确定是否使用映射在第一时频资源的目标频域资源上的第一DMRS解调映射在第二时频资源的目标频域资源上的第二数据。
具体的,上述发送设备可以向接收设备发送第一指示信息。其中,上述第一指示信息用于指示接收设备在第一时频资源和第二时频资源存在重叠的目标频域资源时,使用映射在第一时频资源的目标频域资源上的第一DMRS解调映射在第二时频资源的目标频域资源上的第二数据。
上述接收设备在接收到该第一指示信息之后,说明发送设备在第一时频资源和第二时频资源存在重叠的目标频域资源时,会在第二时频资源的目标频域资源原本用于映射第二DMRS的位置,映射第二数据。因此,上述接收设备根据该第一指示信息,可以确定在第一时频资源和第二时频资源在频域上重叠的目标频域资源时,使用映射在第一时频资源的目标频域资源上的第一DMRS解调映射在第二时频资源的目标频域资源上的第二数据。
具体实现时,上述发送设备可以通过高层信令或物理层信令向接收设备发送该第一指示信息,上述发送设备还可以通过下行控制信令(例如DCI)向接收设备发送该第一指示信息。
第二种方式:上述发送设备可以根据第一时频资源和第二时频资源之间的间隔,确定是否在第一时频资源和第二时频资源在频域上重叠的目标频域资源时,使用第二时频资源 的目标频域资源发送第二数据。相应地,上述接收设备可以根据第一时频资源和第二时频资源之间的间隔,确定在第一时频资源和所述第二时频资源在频域上重叠的目标频域资源时,是否使用映射在第一时频资源的目标频域资源上的第一DMRS解调映射在第二时频资源的目标频域资源上的第二数据。
具体的,上述发送设备在确定第一时频资源和第二时频资源后,可以根据第一时频资源和第二时频资源,确定第一时频资源和第二时频资源之间的间隔。例如,上述间隔可以为第一时频资源的时域起点位置和第二时频资源的时域起点位置之间的间隔,还可以为第一时频资源的时域终止位置和第二时频资源的时域终止位置之间的间隔,还可以为第一时频资源上用于映射第一DMRS的时域位置和第二时频资源上用于映射第二DMRS的时域位置之间的间隔,还可以是采用现有的其他方式确定的第一时频资源和第二时频资源之间的时间间隔。
当该间隔与预设间隔满足映射关系时,发送设备确定在第一时频资源和第二时频资源存在重叠的目标频域资源时,在第二时频资源的目标频域资源原本用于映射第二DMRS的位置,映射第二数据。当该间隔与预设间隔不满足映射关系时,发送设备确定在第一时频资源和第二时频资源存在重叠的目标频域资源时,在第二时频资源的目标频域资源原本用于映射第二DMRS的位置,仍然映射第二DMRS。其中,上述所说的映射关系例如可以为:间隔小于或等于预设间隔,或者,间隔小于或等于预设间隔的一半等。
相应地,上述接收设备可以根据第一时频资源和第二时频资源,确定第一时频资源和第二时频资源之间的间隔,其实现方式可以参见上述发送设备确定第一时频资源和第二时频资源之间的间隔的描述,对此不再赘述。
当该间隔与预设间隔满足映射关系时,说明发送设备在第一时频资源和第二时频资源存在重叠的目标频域资源时,会在第二时频资源的目标频域资源原本用于映射第二DMRS的位置,映射第二数据。因此,上述接收设备可以该间隔小于或等于预设间隔时,确定在第一时频资源和第二时频资源存在重叠的目标频域资源时,使用映射在第一时频资源的目标频域资源上的第一DMRS解调映射在第二时频资源的目标频域资源上的第二数据。
当该间隔与预设间隔不满足映射关系时,说明发送设备在第一时频资源和第二时频资源存在重叠的目标频域资源时,不会在第二时频资源的目标频域资源原本用于映射第二DMRS的位置映射第二数据,而是仍然映射第二DMRS。因此,上述接收设备可以该间隔大于预设间隔时,确定在第一时频资源和第二时频资源存在重叠的目标频域资源时,也不使用映射在第一时频资源的目标频域资源上的第一DMRS解调映射在第二时频资源的目标频域资源上的第二数据。
可选的,上述预设间隔可以为协议预定义的间隔。在一些实施例中,当上述接收设备为终端设备,发送设备为网络设备时,上述发送设备还可以向接收设备发送第二指示信息。其中,第二指示信息用于指示该预设间隔。因此,上述接收设备可以通过接收发送设备发送的第二指示信息的方式,获取到该预设间隔。具体实现时,上述发送设备可以通过高层信令或物理层信令向接收设备发送该第二指示信息,上述发送设备还可以通过下行控制信令(例如DCI)向接收设备发送该第二指示信息。在一些实施例中,上述接收设备还可以根据终端设备的移动速度、终端设备的信道时变参数,确定上述预设间隔。也就是说,上述预设间隔与终端设备的移动速度、终端设备的信道时变参数满足映射关系。比如,预设 间隔和终端设备的移动速度是反比关系,例如,移动速度为3km/h时,预设间隔为3symbol,当移动速度为9km/h时,预设间隔为1symbol。比如,预设间隔和信道的doppler spread是反比关系,其中doppler spread描述的是信道的时变参数。比如,预设间隔与终端设备移动速度和信道时变参数乘积成反比关系。
示例性的,以第一时频资源和第二时频资源之间的间隔为第一时频资源的时域起点位置和第二时频资源的时域起点位置之间的间隔,上述间隔与预设间隔之间的映射关系为间隔小于或等于预设间隔为例,假定上述预设间隔为3个符号,若发送设备根据第一时频资源的时域起始位置与第二时频资源的时域起始位置,确定第一时频资源的时域起始位置与第二时频资源的时域起始位置之间的间隔为2个符号,则发送设备可以确定在第二时频资源的目标频域资源原本用于映射第二DMRS的位置,映射第二数据。相应地,接收设备根据第一时频资源的时域起始位置与第二时频资源的时域起始位置,确定第一时频资源的时域起始位置与第二时频资源的时域起始位置之间的间隔为2个符号,则接收设备可以确定在第二时频资源的目标频域资源上未检测到第二DMRS时,使用映射在第一时频资源的目标频域资源上的第一DMRS解调映射在第二时频资源的目标频域资源上的第二数据。
若发送设备根据第一时频资源的时域起始位置与第二时频资源的时域起始位置,确定第一时频资源的时域起始位置与第二时频资源的时域起始位置之间的间隔为4个符号,则发送设备可以确定在第二时频资源的目标频域资源原本用于映射第二DMRS的位置,仍然映射第二DMRS。相应地,接收设备根据第一时频资源的时域起始位置与第二时频资源的时域起始位置,确定第一时频资源的时域起始位置与第二时频资源的时域起始位置之间的间隔为4个符号,则接收设备可以确定在第二时频资源的目标频域资源上未检测到第二DMRS时,也不使用映射在第一时频资源的目标频域资源上的第一DMRS解调映射在第二时频资源的目标频域资源上的第二数据。
第三种方式:上述发送设备可以根据发送第一数据时所使用的第一天线端口信息和发送第二数据时所使用的第二天线端口信息,确定在第一时频资源和第二时频资源在频域上重叠的目标频域资源时,是否使用第二时频资源的目标频域资源发送第二数据。相应地,上述接收设备可以根据第一天线端口信息和第二天线端口信息,确定在第一时频资源和第二时频资源在频域上重叠的目标频域资源时,是否使用映射在第一时频资源的目标频域资源上的第一DMRS解调映射在第二时频资源的目标频域资源上的第二数据。
其中,上述第一天线端口信息可以包括发送设备发送第一数据时所使用的第一天线端口数目和/或至少一个第一天线端口号。上述第二天线端口信息可以包括发送设备发送第二数据时所使用的第二天线端口数目和/或至少一个第二天线端口号。
上述发送设备可以在第一天线端口信息和第二天线端口信息相同时,确定在第一时频资源和第二时频资源存在重叠的目标频域资源时,在第二时频资源的目标频域资源原本用于映射第二DMRS的位置,映射第二数据。上述发送设备可以在第一天线端口信息和第二天线端口信息不相同时,确定在第一时频资源和第二时频资源存在重叠的目标频域资源时,在第二时频资源的目标频域资源原本用于映射第二DMRS的位置,仍然映射第二DMRS。
相应地,上述接收设备可以根据第一天线端口信息和第二天线端口信息,确定是否使用映射在第一时频资源的目标频域资源上的第一DMRS解调映射在第二时频资源的目标频域资源上的第二数据。
当第一天线端口信息和第二天线端口信息相同时,说明发送设备在第一时频资源和第二时频资源存在重叠的目标频域资源时,会在第二时频资源的目标频域资源原本用于映射第二DMRS的位置,映射第二数据。因此,上述接收设备可以在第一天线端口信息和第二天线端口信息相同时,确定在第一时频资源和第二时频资源在频域上重叠的目标频域资源时,使用映射在第一时频资源的目标频域资源上的第一DMRS解调映射在第二时频资源的目标频域资源上的第二数据。
当第一天线端口信息和第二天线端口信息不相同时,说明发送设备在第一时频资源和第二时频资源存在重叠的目标频域资源时,不会在第二时频资源的目标频域资源原本用于映射第二DMRS的位置映射第二数据,而是仍然映射第二DMRS。因此,上述接收设备可以第一天线端口信息和第二天线端口信息不相同时,确定在第一时频资源和第二时频资源在频域上重叠的目标频域资源时,也不使用映射在第一时频资源的目标频域资源上的第一DMRS解调映射在第二时频资源的目标频域资源上的第二数据。
具体实现时,上述发送设备可以采用现有的方式,获取上述第一天线端口信息和第二天线端口信息。例如,当上述发送设备为终端设备,接收设备为网络设备时,上述发送设备可以通过接收接收设备发送的用于指示第一天线端口信息的DCI和用于指示第二天线端口信息的DCI,获取上述第一天线端口信息和第二天线端口信息,对此不再赘述。相应地,当上述接收设备为终端设备,发送设备为网络设备时,上述接收设备可以通过接收发送设备发送的用于指示第一天线端口信息的DCI和用于指示第二天线端口信息的DCI,获取上述第一天线端口信息和第二天线端口信息,对此不再赘述。
本申请实施例提供的数据传输方法,在发送设备需要向接收设备分别发送第一数据和第二数据时,发送设备可以在第一时频资源和第二时频资源存在重叠的目标频域资源时,在第二时频资源的目标频域资源上原本发送第二DMRS的位置,向接收设备发送第二数据。通过这种方式,能够降低DMRS的开销,进而能够提高资源利用率。
进一步地,在上述实施例的基础上,本实施例涉及的是上述接收设备使用与第二天线端口号对应的第一天线端口号传输的第一DMRS,解调映射在第二时频资源的目标频域资源上的第二数据的过程。则上述S104可以包括如下两种情况:
第一种情况:发送设备发送第二数据时所使用的第二天线端口号为发送设备发送第一数据时所使用的任一第一天线端口号的子集。
则在该实现方式下,上述接收设备可以使用映射在第一时频资源的目标频域资源上、且使用与第二天线端口号相同的第一天线端口号传输的第一DMRS,解调映射在第二时频资源的目标频域资源上、且使用该第二天线端口号传输的第二数据。
示例性的,假定第一天线端口号包括:端口(Port)7、Port8、Port11、Port13,第二天线端口号包括:Port7、Port8,则接收设备可以使用映射在第一时频资源的目标频域资源上、且使用Port7传输的第一DMRS,解调映射在第二时频资源的目标频域资源上、且使用Port7传输的第二数据,使用映射在第一时频资源的目标频域资源上、且使用Port8传输的第一DMRS,解调映射在第二时频资源的目标频域资源上、且使用Port8传输的第二数据。
第二种情况:发送设备发送第二数据时所使用的第二天线端口号与发送设备发送第一数据时所使用的任一第一天线端口号均不相同。该情况可以包括如下两种实现方式:
第一种实现方式:当上述发送设备为网络设备,接收设备为终端设备时,上述发送设备可以向接收设备发送第三指示信息。其中,该第三指示信息用于确定与第二天线端口号对应的第一天线端口号。则上述接收设备在接收到该第三指示信息后,可以在第一时频资源和第二时频资源在频域上重叠的目标频域资源时,使用映射在第一时频资源的目标频域资源上、且使用第三指示信息所指示的与第二天线端口号对应的第一天线端口号传输的第一DMRS,解调映射在第二时频资源的目标频域资源上的第二数据。
具体实现时,上述第三指示信息可以通过携带与第二天线端口号对应的第一天线端口号的标识的方式,向接收设备指示与第二天线端口号对应的第一天线端口号。可选的,当第二天线端口号为多个时,上述第三指示信息可以携带有与每个第二天线端口号对应的第一天线端口号的标识,向接收设备指示与每个第二天线端口号对应的第一天线端口号。
具体实现时,上述发送设备可以通过高层信令或物理层信令向接收设备发送该第三指示信息,上述发送设备还可以通过下行控制信令(例如DCI)向接收设备发送该第三指示信息。
第二种实现方式:协议预定义了第二天线端口号与第一天线端口号的对应关系,则上述接收设备可以根据第二天线端口号的标识,以及,预设的第二天线端口号与第一天线端口号的对应关系,确定与第二天线端口号对应的第一天线端口号。然后,接收设备可以使用映射在第一时频资源的目标频域资源上、且使用与第二天线端口号对应的第一天线端口号传输的第一DMRS,解调映射在第二时频资源的目标频域资源上的第二数据。
需要说明的是,本实施例并不限定上述协议预定义的第二天线端口号与第一天线端口号的对应关系。可选的,上述协议可以预定义与每个第二天线端口号一一对应的第一天线端口号。上述协议还可以预定义第一天线端口号与第二天线端口号的对应规则。例如,上述协议可以预定义第二天线端口按从小到大依次使用第一天线端口的对应规则。上述协议可以预定义第二天线端口按从大到小依次使用第一天线端口的对应规则。
示例性的,假定第一天线端口号包括:Port7、Port8、Port11、Port13,第二天线端口号包括:Port9、Port10、Port12、Port14,则在采用上述从小到大依次使用第一天线端口对应规则时,上述第二天线端口号Port9与第一天线端口号Port7对应,上述第二天线端口号Port10与第一天线端口号Port8对应,上述第二天线端口号Port12与第一天线端口号Port11对应,上述第二天线端口号Port14与第一天线端口号Port13对应。也就是说,接收设备可以使用映射在第一时频资源的目标频域资源上、且使用Port7传输的第一DMRS,解调映射在第二时频资源的目标频域资源上、且使用Port9传输的第二数据,使用映射在第一时频资源的目标频域资源上、且使用Port8传输的第一DMRS,解调映射在第二时频资源的目标频域资源上、且使用Port10传输的第二数据,使用映射在第一时频资源的目标频域资源上、且使用Port11传输的第一DMRS,解调映射在第二时频资源的目标频域资源上、且使用Port12传输的第二数据,使用映射在第一时频资源的目标频域资源上、且使用Port13传输的第一DMRS,解调映射在第二时频资源的目标频域资源上、且使用Port14传输的第二数据。
示例性的,假定第一天线端口号包括:Port7、Port8、Port11、Port13,第二天线端口号包括:Port9、Port10,则在采用上述从小到大依次使用第一天线端口对应规则时,上述第二天线端口号Port9与第一天线端口号Port7对应,上述第二天线端口号Port10与第一 天线端口号Port8对应。也就是说,接收设备可以使用映射在第一时频资源的目标频域资源上、且使用Port7传输的第一DMRS,解调映射在第二时频资源的目标频域资源上、且使用Port9传输的第二数据,使用映射在第一时频资源的目标频域资源上、且使用Port8传输的第一DMRS,解调映射在第二时频资源的目标频域资源上、且使用Port10传输的第二数据。
示例性的,假定第一天线端口号包括:Port7、Port8、Port11、Port13,第二天线端口号包括:Port9、Port10、Port12、Port14,则在采用上述从大到小依次使用第一天线端口对应规则时,上述第二天线端口号Port9与第一天线端口号Port13对应,上述第二天线端口号Port10与第一天线端口号Port11对应,上述第二天线端口号Port12与第一天线端口号Port8对应,上述第二天线端口号Port14与第一天线端口号Port7对应。也就是说,接收设备可以使用映射在第一时频资源的目标频域资源上、且使用Port7传输的第一DMRS,解调映射在第二时频资源的目标频域资源上、且使用Port14传输的第二数据,使用映射在第一时频资源的目标频域资源上、且使用Port8传输的第一DMRS,解调映射在第二时频资源的目标频域资源上、且使用Port12传输的第二数据,使用映射在第一时频资源的目标频域资源上、且使用Port11传输的第一DMRS,解调映射在第二时频资源的目标频域资源上、且使用Port10传输的第二数据,使用映射在第一时频资源的目标频域资源上、且使用Port13传输的第一DMRS,解调映射在第二时频资源的目标频域资源上、且使用Port9传输的第二数据。
示例性的,假定第一天线端口号包括:Port7、Port8、Port11、Port13,第二天线端口号包括:Port9、Port10,则在采用上述从大到小依次使用第一天线端口对应规则时,上述第二天线端口号Port9与第一天线端口号Port13对应,上述第二天线端口号Port10与第一天线端口号Port11对应。也就是说,接收设备可以使用映射在第一时频资源的目标频域资源上、且使用Port7传输的第一DMRS,解调映射在第二时频资源的目标频域资源上、且使用Port14传输的第二数据,使用映射在第一时频资源的目标频域资源上、且使用Port8传输的第一DMRS,解调映射在第二时频资源的目标频域资源上、且使用Port12传输的第二数据。
图10为本申请实施例提供的一种天线端口号的示意图。如图10所示,以发送设备发送第二数据时所使用的第二天线端口(Port)号为Port9,发送设备发送第一数据时所使用的第一天线端口号包括:Port7、Port8、Port11、Port13为例。在该场景下,发送设备发送第二数据时所使用的第二天线端口号与发送设备发送第一数据时所使用的任一第一天线端口号均不相同、且第二天线端口数目小于第一天线端口数目。
若协议预定义了第二天线端口号与第一天线端口号的对应关系,则上述接收设备可以根据Port9,以及,预设的第二天线端口号与第一天线端口号的对应关系,确定与Port9对应的第一天线端口号(在本示例中为Port7)。然后,接收设备可以使用映射在第一时频资源的目标频域资源上、且使用Port7传输的第一DMRS,解调映射在第二时频资源的目标频域资源上的第二数据。
可选的,若上述发送设备为网络设备,接收设备为终端设备,则上述发送设备还可以向接收设备发送携带有Port7的标识的第三指示信息。这样,接收设备在接收到该第三指示信息后,可以根据该Port7的标识,确定该Port7为与Port9对应的天线端口号。因此, 接收设备可以使用映射在第一时频资源的目标频域资源上、且使用Port7传输的第一DMRS,解调映射在第二时频资源的目标频域资源上的第二数据。
需要说明的是,在发送设备发送第二数据时所使用的第二天线端口数目与发送设备发送第一数据时所使用的第一天线端口数目不同时,发送设备在第一时频资源上所发送的第一DMRS所使用的功率与在第二时频资源上所发送的第二数据的发送功率不同。因此,当上述发送设备为网络设备,接收设备为终端设备时,上述发送设备还可以向接收设备发送第四指示信息。其中,该第四指示信息用于指示第一DMRS的发送功率与二数据的发送功率的比值。这样,接收设备在接收到该第四指示信息后,可以根据第一DMRS的发送功率与二数据的发送功率的比值,准确的测量第一DMRS上的信道估计,从而使得接收设备可以根据第一DMRS对第二数据做出准确的信道估计,提高了第二数据解调的准确率。具体实现时,上述发送设备可以通过高层信令或物理层信令向接收设备发送该第四指示信息,上述发送设备还可以通过下行控制信令(例如DCI)向接收设备发送该第四指示信息。
在一些实施例中,上述接收设备还可以根据第一天线端口数目与第二天线端口数目,确定第一DMRS的发送功率和第二数据的发送功率之间的功率比值。这样,接收设备可以根据该功率比值使用第一DMRS对第二数据做出准确的信道估计并提高第二数据的解调准确率。比如,第一天线端口数目为4,即,第一天线端口为#7#8#9#10,第二天线端口数目为1,即,第二天线端口为#7,则终端确定第二DMRS使用第一DMRS的#7号端口,终端确定了第一DMRS#7号端口上DMRS的功率为1/4,而第二天线端口发送的第二数据的功率为1,因此第一DMRS和第二数据的功率比为1/4。终端在解调第二数据时,将第一DMRS上的信道估计结果在计算时提升4倍功率用于解调第二数据。
本申请实施例提供的数据传输方法,在发送设备发送第二数据时所使用的第二天线端口号与发送设备发送第一数据时所使用的任一第一天线端口号均不相同、且第二天线端口数目小于第一天线端口数目时,上述接收设备可以使用与第二天线端口号对应的第一天线端口号传输的第一DMRS,解调映射在第二时频资源的目标频域资源上的第二数据。通过这种方式,能够减少信令指示开销,接收设备仍确定了第二数据使用的是哪个第一数据的天线端口号上的DMRS进行解调。
另外,在一些实施例中,上述发送设备可能使用不同的子载波间隔发送第一数据和第二数据。因此,上述发送设备可以根据物理资源块绑定(Physical Resource Block bundling,PRB bundling)配置、或、子带(Bandwidth Part,BP)配置,确定第一DMRS在第一时频资源的频域资源上的映射方式,确定第二DMRS在第二时频资源的频域资源上的映射方式。
这样,接收设备在接收到第一DMRS后,可以根据当前系统的numerology配置(例如:有几个numerology)、或者根据当前系统的子载波间隔的配置(例如:有几个不同的子载波间隔)、或者根据接收设备所开启的离散傅氏变换的快速算法引擎(Fast Fourier Transformation engine,FFT engine)的个数,确定接收设备根据几种子载波间隔测量DMRS上的信道估计。第一数据使用按照第一数据的numerology测量的第一DMRS的信道估计结果进行解调,第二数据使用按照第二数据的numerology测量的第一DMRS的信道估计结果进行解调,从而使数据解调所用的第一DMRS信道估计所用的numerology符合该数据的numerology。第一DMRS按照多种子载波间隔进行信道估计是指第一DMRS的下采 样(subsampling),比如,第一DMRS的时频资源图样是每个RB均映射,通过间隔RB抽取第一DMRS的图样,可以实现一倍子载波间隔下的信道估计,如15KHz子载波间隔时的第一DMRS图样可以通过该方法获得30KHz子载波间隔时的第一DMRS图样。这使得接收设备可以对第一数据和第二数据做出准确的信道估计,提高了数据解调的准确率。具体实现时,发送设备可以通过一个指示信息向接收设备指示当前系统的numerology配置、或子载波间隔的配置。可选的,该指示信息可以通过高层信令或物理层信令发送给接收设备。
图11为本申请实施例提供的另一种数据传输方法的流程示意图。如图11所示,该方法可以包括:
S201、发送设备在第一时频资源上的第一目标位置映射第一数据,在第二时频资源上的第二目标位置映射第二数据。
其中,第一目标位置不包括所述第一导频的时频资源位置和目标时频资源,第二目标位置不包括第二导频的时频资源位置,第二导频的时频资源位置不包括目标时频资源,目标时频资源为第一时频资源和第二时频资源重叠的时频资源。
上述第一导频和第二导频可以是终端设备专用的(UE-specific)的解调参考信号,也可以是终端设备所在的组(UE group-specific)的解调参考信号。例如,上述解调参考信号可以为如DMRS。在本实施例中,上述第一导频映射在第一时频资源专门用于映射第一导频的时频资源上,第二导频映射在第二时频资源上除目标时频资源外专门用于映射第一导频的时频资源上。
第一数据映射在第一时频资源上除第一导频的时频资源和目标时频资源上,第二数据映射在第二时频资源上除第二导频的时频资源上。目标时频资源是第一时频资源和第二时频资源重叠的时频资源。目标时频资源的频域带宽可以小于第二时频资源的频域带宽。目标时频资源的带宽也可以等于第二时频资源的频域带宽。
图12为本申请实施例提供的又一种时频资源的示意图。如图12所示,第二导频的序列可以按照第二时频资源的频域宽度L生成,再截短为L1和L2长度,分别映射在第二时频资源上的非目标时频资源位置上。或者,在非目标时频资源位置上的映射的第二导频的序列分别按照长度L1和L2生成。
如图12所示,上述所说的第一目标位置为第一时频资源上除第一导频所在时频资源和目标时频资源之外的所有时频资源,上述所说的第二目标位置为第二时频资源上除L1和L2所在时频资源之外的所有时频资源。
其中,本实施例不限定上述发送设备在第二时频资源上映射第二数据的方式。例如,发送设备可以先确定用于映射第二数据的可用资源元素(Resource Element,RE)。该可用RE可以包括第二时频资源的目标时频资源上原本用于映射第二导频的时频资源。然后,发送设备可以在这些可用RE上,按照先层后时域后频域,或先层后频域后时域、或、先时域后频域后层、或、先频域后时域后层的RE映射规则进行映射。
或者,上述发送设备还可以先确定用于映射第二数据的第一可用RE。该第一可用RE不包括第二时频资源的目标时频资源上原本用于映射第二导频的时频资源。然后,发送设备可以在第一可用RE上,按照先层后时域后频域,或先层后频域后时域、或、先时域后频域后层、或、先频域后时域后层的RE映射规则进行映射。然后,发送设备再在第二时 频资源的目标时频资源上原本用于映射第二导频的时频资源上,按照先层后时域后频域,或先层后频域后时域、或、先时域后频域后层、或、先频域后时域后层的RE映射规则进行映射。
S202、接收设备在第一时频资源上的第一目标位置接收第一信号,在第二时频资源上的第二目标位置接收第二信号。
其中,所述第一信号包括第一导频和第一数据,所述第二信号包括第二数据。
S203、接收设备使用第一导频对承载在目标时频资源上的第二数据进行解调。
其中,接收设备如何使用第一导频对承载在目标时频资源上的第二数据进行解调可以参见前述实施例的描述,对此不再赘述。
需要说明的是,当接收设备原本在目标频域资源上接收第二导频的天线端口和接收第一导频的部分天线端口相同时,上述接收设备在目标频域资源上第二导频的预编码权值和第一导频的部分相同的天线端口上的预编码权值相同。在该场景下,接收设备用于解调第二数据的导频的PRB bundling和第一导频的PRB bundling相同。因此,当第二天线端口号和第一天线端口的部分天线端口号相同时,接收设备可以假设第二天线端口的预编码权值和第一天线端口的部分相同的天线端口上的预编码权值相同,或,接收设备可以假设用于解调第二数据的导频的PRB bundling和第一导频的PRB bundling相同等。
本申请实施例提供的数据传输方法,在发送设备需要向接收设备分别发送第一数据和第二数据时,发送设备可以在第一时频资源和第二时频资源存在重叠的目标时频资源时,在第二时频资源的目标频域资源上原本发送第二DMRS的位置,向接收设备发送第二数据。通过这种方式,能够降低DMRS的开销,进而能够提高资源利用率。若可靠性较低的业务使用可靠性较高的业务的DMRS,则可以帮助提升可靠性较低业务的数据解调的准确性并提高不发送DMRS的业务的数据率。若可靠性较高的业务使用可靠性较低的业务的DMRS,则可以帮助提升不发送DMRS的业务的数据率。
图13为本申请实施例提供的一种接收设备的结构示意图。如图13所示,上述接收设备可以包括:接收模块11和处理模块12。其中,
接收模块11,用于在第一时频资源上接收第一数据,在第二时频资源上接收第二数据;
处理模块12,用于在所述第一时频资源和所述第二时频资源在频域上重叠的目标频域资源时,使用映射在所述第一时频资源的目标频域资源上的第一DMRS解调映射在所述第二时频资源的目标频域资源上的第二数据。
可选的,在一些实施例中,在所述接收设备为终端设备时,接收模块11,还用于接收所述网络设备发送的第一指示信息,所述第一指示信息用于指示所述接收设备使用所述第一DMRS解调映射在所述第二时频资源的目标频域资源上的第二数据。
可选的,在一些实施例中,处理模块12,具体用于在间隔小于与预设间隔满足映射关系、且所述第一时频资源和所述第二时频资源在频域上重叠的目标频域资源时,使用所述第一DMRS解调映射在所述第二时频资源的目标频域资源上的第二数据,所述间隔为所述第一时频资源与所述第二时频资源之间的间隔。可选的,在所述接收设备为终端设备时,接收模块11,还用于接收所述网络设备发送的第二指示信息,所述第二指示信息用于指示所述预设间隔。可选的,所述预设间隔与终端设备的移动速度、所述终端设备的信道时变参数满足映射关系。
可选的,在一些实施例中,处理模块12,具体用于在第一天线端口信息与第二天线端口信息相同、且所述第一时频资源和所述第二时频资源在频域上重叠的目标频域资源时,使用所述第一DMRS解调映射在所述第二时频资源的目标频域资源上的第二数据;所述第一天线端口信息为所述发送设备发送所述第一数据时所使用的天线端口信息,所述第二天线端口信息为所述发送设备发送所述第二数据时所使用的天线端口信息;所述第一天线端口信息包括:所述发送设备发送所述第一数据时所使用的第一天线端口数目和/或至少一个第一天线端口号;所述第二天线端口信息包括:所述发送设备发送所述第二数据时所使用的第二天线端口数目和/或至少一个第二天线端口号。
可选的,在一些实施例中,在所述接收设备为终端设备时,接收模块11,还用于接收所述网络设备发送的第三指示信息,所述第三指示信息用于确定与所述第二天线端口号对应的第一天线端口号;则上述处理模块12,具体用于使用与所述第二天线端口号对应的第一天线端口号传输的第一DMRS,解调映射在所述第二时频资源的目标频域资源上的第二数据。示例性的,上述第三指示信息可以包括:与所述第二天线端口号对应的第一天线端口号的标识。
可选的,在一些实施例中,所述处理模块12,具体用于根据所述第二天线端口号的标识,以及,预设的第二天线端口号与第一天线端口号的对应关系,确定与所述第二天线端口号对应的第一天线端口号,并使用与所述第二天线端口号对应的第一天线端口号传输的第一DMRS,解调映射在所述第二时频资源的目标频域资源上的第二数据。
可选的,在一些实施例中,在所述接收设备为终端设备时,接收模块11,还用于接收所述网络设备发送的第四指示信息,所述第四指示信息用于指示所述第一DMRS的发送功率与所述二数据的发送功率的比值。
需要说明的是,在上述接收设备为终端设备时,上述接收设备可以为网络设备。在上述接收设备为网络设备时,上述接收设备为终端设备。可选的,上述接收设备还可以为芯片。
本申请实施例提供的接收设备,可以执行上述方法实施例中接收设备的动作,其实现原理和技术效果类似,在此不再赘述。
图14为本申请实施例提供的一种发送设备的结构示意图。如图14所示,上述发送设备可以包括:处理模块21和发送模块22。其中,
处理模块21,用于确定发送第一数据的第一时频资源和发送第二数据的第二时频资源;
所述处理模块21,还用于在所述第一时频资源和所述第二时频资源存在重叠的目标频域资源时,指示发送模块22在所述第二时频资源的目标频域资源发送第二数据。
可选的,在一些实施例中,在发送设备为网络设备,发送模块22,还用于向所述终端设备发送第一指示信息,所述第一指示信息用于指示所述终端设备使用映射在所述第一时频资源的目标频域资源上的第一DMRS解调映射在所述第二时频资源的目标频域资源上的第二数据。
可选的,在一些实施例中,处理模块21,具体用于在间隔与预设间隔满足映射关系、且所述第一时频资源和所述第二时频资源存在重叠的目标频域资源时,指示所述发送模块22使用所述第二时频资源的目标频域资源发送第二数据,所述间隔为所述第一时频资源与所述第二时频资源之间的间隔。可选的,在发送设备为网络设备,发送模块22,还用于向 所述终端设备发送第二指示信息,所述第二指示信息用于指示预设间隔。可选的,所述预设间隔与终端设备的移动速度、所述终端设备的信道时变参数满足映射关系。
可选的,在一些实施例中,处理模块21,具体用于在第一天线端口信息与第二天线端口信息相同、且所述第一时频资源和所述第二时频资源存在重叠的目标频域资源时,指示所述发送模块使用所述第二时频资源的目标频域资源发送第二数据;所述第一天线端口信息为所述发送设备发送所述第一数据时所使用的天线端口信息,所述第二天线端口信息为所述发送设备发送所述第二数据时所使用的天线端口信息;所述第一天线端口信息包括:所述发送设备发送第一数据时所使用的第一天线端口数目和/或至少一个第一天线端口号;所述第二天线端口信息包括:所述发送设备发送第二数据时所使用的第二天线端口数目和/或至少一个第二天线端口号。
可选的,在一些实施例中,在发送设备为网络设备,发送模块22,还用于向所述终端设备发送第三指示信息,所述第三指示信息用于确定与所述第二天线端口号对应的第一天线端口号。示例性的,上述第三指示信息包括:与所述第二天线端口号对应的第一天线端口号的标识。
可选的,在一些实施例中,在发送设备为网络设备,发送模块22,还用于向所述终端设备发送第四指示信息,所述第四指示信息用于指示所述第一DMRS的发送功率与所述二数据的发送功率的比值。
需要说明的是,在上述发送设备为终端设备时,上述接收设备可以为网络设备。在上述发送设备为网络设备时,上述接收设备为终端设备。可选的,上述发送设备还可以为芯片。
本申请实施例提供的发送设备,可以执行上述方法实施例中发送设备的动作,其实现原理和技术效果类似,在此不再赘述。
本申请实施例另一方面还提供了一种发送设备,该发送设备可以包括处理模块。该处理模块,用于在第一时频资源上的第一目标位置映射第一数据,在第二时频资源上的第二目标位置映射第二数据,其中,所述第一目标位置不包括所述第一导频的时频资源位置和目标时频资源,所述目标时频资源为第一时频资源和第二时频资源重叠的时频资源,所述第二目标位置不包括所述第二导频的时频资源位置,所述第二导频的时频资源位置不包括所述目标时频资源。
需要说明的是,上述发送设备可以为终端设备或网络设备。可选的,上述发送设备还可以为芯片。
本申请实施例提供的发送设备,可以执行上述方法实施例中发送设备的动作,其实现原理和技术效果类似,在此不再赘述。
图15为本申请实施例提供的另一种接收设备的结构示意图。如图15所示,上述接收设备可以包括:接收模块31和处理模块32。其中,
接收模块31,用于在第一时频资源除目标时频资源之外的时频资源上接收第一信号,在第二时频资源上接收第二信号;其中,所述第一目标位置不包括所述第一导频的时频资源位置和目标时频资源,所述目标时频资源为第一时频资源和第二时频资源重叠的时频资源,所述第二目标位置不包括所述第二导频的时频资源位置,所述第二导频的时频资源位置不包括所述目标时频资源;所述第一信号包括第一导频和第一数据,所述第二信号包括 第二数据;
处理模块32,用于使用所述第一导频对承载在所述目标时频资源上的第二数据进行解调。
需要说明的是,上述接收设备可以为终端设备或网络设备。可选的,上述接收设备还可以为芯片。
本申请实施例提供的接收设备,可以执行上述方法实施例中接收设备的动作,其实现原理和技术效果类似,在此不再赘述。
需要说明的是,应理解以上发送模块实际实现时可以为发送器,接收模块实际实现时可以为接收器,而处理模块可以以软件通过处理元件调用的形式实现;也可以以硬件的形式实现。例如,处理模块可以为单独设立的处理元件,也可以集成在上述装置的某一个芯片中实现,此外,也可以以程序代码的形式存储于上述装置的存储器中,由上述发送设备或接收设备的某一个处理元件调用并执行以上处理模块的功能。此外这些模块全部或部分可以集成在一起,也可以独立实现。这里所述的处理元件可以是一种集成电路,具有信号的处理能力。在实现过程中,上述方法的各步骤或以上各个模块可以通过处理器元件中的硬件的集成逻辑电路或者软件形式的指令完成。
例如,以上这些模块可以是被配置成实施以上方法的一个或多个集成电路,例如:一个或多个特定集成电路(Application Specific Integrated Circuit,ASIC),或,一个或多个微处理器(digital signal processor,DSP),或,一个或者多个现场可编程门阵列(Field Programmable Gate Array,FPGA)等。再如,当以上某个模块通过处理元件调度程序代码的形式实现时,该处理元件可以是通用处理器,例如中央处理器(Central Processing Unit,简称CPU)或其它可以调用程序代码的处理器。再如,这些模块可以集成在一起,以片上系统(system-on-a-chip,简称SOC)的形式实现。
图16为本申请实施例提供的又一种接收设备的结构示意图。如图16所示,该接收设备可以包括:处理器41(例如CPU)、存储器42、接收器43;接收器43耦合至处理器41,处理器41控制接收器43的接收动作。存储器42可能包含高速RAM存储器,也可能还包括非易失性存储器NVM,例如至少一个磁盘存储器,存储器42中可以存储各种指令,以用于完成各种处理功能以及实现本申请实施例的方法步骤。可选的,本申请实施例涉及的接收设备还可以包括:发送器44、电源45、通信总线46以及通信端口47。接收器43和发送器44可以集成在接收设备的收发信机中,也可以为接收设备上独立的收发天线。通信总线46用于实现元件之间的通信连接。上述通信端口47用于实现接收设备与其他外设之间进行连接通信。
在本申请实施例中,上述存储器42用于存储计算机可执行程序代码,程序代码包括指令;当处理器41执行指令时,指令使处理器41执行上述方法实施例中处理的动作,使接收器执行上述方法实施例中接收的动作,其实现原理和技术效果类似,在此不再赘述。
需要说明的是,在上述接收设备为终端设备时,上述发送设备可以为网络设备。在上述接收设备为网络设备时,上述发送设备为终端设备。
图17为本申请实施例提供的另一种发送设备的结构示意图。如图17所示,该发送设备可以包括:处理器51(例如CPU)、存储器52、发送器54;发送器54耦合至处理器51,处理器51控制发送器54的发送动作。存储器52可能包含高速RAM存储器,也可能还包 括非易失性存储器NVM,例如至少一个磁盘存储器,存储器52中可以存储各种指令,以用于完成各种处理功能以及实现本申请实施例的方法步骤。可选的,本申请实施例涉及的发送设备还可以包括:接收器53、电源55、通信总线56以及通信端口57。接收器53和发送器54可以集成在发送设备的收发信机中,也可以为发送设备上独立的收发天线。通信总线56用于实现元件之间的通信连接。上述通信端口57用于实现发送设备与其他外设之间进行连接通信。
在本申请实施例中,上述存储器52用于存储计算机可执行程序代码,程序代码包括指令;当处理器51执行指令时,指令使处理器51执行上述方法实施例中处理的动作,使发送器执行上述方法实施例中发送的动作,其实现原理和技术效果类似,在此不再赘述。
需要说明的是,在上述发送设备为终端设备时,上述接收设备可以为网络设备。在上述发送设备为网络设备时,上述接收设备为终端设备。
图18为本申请实施例提供的一种数据传输系统的结构示意图。如图18所示,该系统包括发送设备61和接收设备62;
所述发送设备61,用于在第一时频资源上的第一目标位置映射第一数据,在第二时频资源上的第二目标位置映射第二数据,其中,所述第一目标位置不包括所述第一导频的时频资源位置和目标时频资源,所述目标时频资源为第一时频资源和第二时频资源重叠的时频资源,所述第二目标位置不包括所述第二导频的时频资源位置,所述第二导频的时频资源位置不包括所述目标时频资源;
所述接收设备62,用于在第一时频资源除所述目标时频资源之外的时频资源上接收第一信号,在所述第二时频资源上接收第二信号;其中,所述第一信号包括第一导频和第一数据,所述第二信号包括第二数据;
所述接收设备62,还用于使用所述第一导频对承载在所述目标时频资源上的第二数据进行解调。
本申请实施例提供的数据传输系统中的发送设备,可以执行上述方法实施例中发送设备的动作,数据传输系统中的接收设备,可以执行上述方法实施例中接收设备的动作其实现原理和技术效果类似,在此不再赘述。
正如上述实施例,本申请实施例涉及的终端设备可以是手机、平板电脑等无线终端,因此,以终端设备为手机为例:图19为本申请实施例提供的终端设备为手机时的结构框图。参考图19,该手机可以包括:射频(Radio Frequency,RF)电路1110、存储器1120、输入单元1130、显示单元1140、传感器1150、音频电路1160、无线保真(wireless fidelity,WiFi)模块1170、处理器1180、以及电源1190等部件。本领域技术人员可以理解,图19中示出的手机结构并不构成对手机的限定,可以包括比图示更多或更少的部件,或者组合某些部件,或者不同的部件布置。
下面结合图19对手机的各个构成部件进行具体的介绍:
RF电路1110可用于收发信息或通话过程中,信号的接收和发送,例如,将基站的下行信息接收后,给处理器1180处理;另外,将上行的数据发送给基站。通常,RF电路包括但不限于天线、至少一个放大器、收发信机、耦合器、低噪声放大器(Low Noise Amplifier,LNA)、双工器等。此外,RF电路1110还可以通过无线通信与网络和其他设备通信。上述无线通信可以使用任一通信标准或协议,包括但不限于全球移动通讯系统(Global System  of Mobile communication,GSM)、通用分组无线服务(General Packet Radio Service,GPRS)、码分多址(Code Division Multiple Access,CDMA)、宽带码分多址(Wideband Code Division Multiple Access,WCDMA)、长期演进(Long Term Evolution,LTE))、电子邮件、短消息服务(Short Messaging Service,SMS)等。
存储器1120可用于存储软件程序以及模块,处理器1180通过运行存储在存储器1120的软件程序以及模块,从而执行手机的各种功能应用以及数据处理。存储器1120可主要包括存储程序区和存储数据区,其中,存储程序区可存储操作系统、至少一个功能所需的应用程序(比如声音播放功能、图像播放功能等)等;存储数据区可存储根据手机的使用所创建的数据(比如音频数据、电话本等)等。此外,存储器1120可以包括高速随机存取存储器,还可以包括非易失性存储器,例如至少一个磁盘存储器件、闪存器件、或其他易失性固态存储器件。
输入单元1130可用于接收输入的数字或字符信息,以及产生与手机的用户设置以及功能控制有关的键信号输入。具体地,输入单元1130可包括触控面板1131以及其他输入设备1132。触控面板1131,也称为触摸屏,可收集用户在其上或附近的触摸操作(比如用户使用手指、触笔等任何适合的物体或附件在触控面板1131上或在触控面板1131附近的操作),并根据预先设定的程式驱动相应的连接装置。可选的,触控面板1131可包括触摸检测装置和触摸控制器两个部分。其中,触摸检测装置检测用户的触摸方位,并检测触摸操作带来的信号,将信号传送给触摸控制器;触摸控制器从触摸检测装置上接收触摸信息,并将它转换成触点坐标,再送给处理器1180,并能接收处理器1180发来的命令并加以执行。此外,可以采用电阻式、电容式、红外线以及表面声波等多种类型实现触控面板1131。除了触控面板1131,输入单元1130还可以包括其他输入设备1132。具体地,其他输入设备1132可以包括但不限于物理键盘、功能键(比如音量控制按键、开关按键等)、轨迹球、鼠标、操作杆等中的一种或多种。
显示单元1140可用于显示由用户输入的信息或提供给用户的信息以及手机的各种菜单。显示单元1140可包括显示面板1141,可选的,可以采用液晶显示器(Liquid Crystal Display,LCD)、有机发光二极管(Organic Light-Emitting Diode,OLED)等形式来配置显示面板1141。进一步的,触控面板1131可覆盖于显示面板1141之上,当触控面板1131检测到在其上或附近的触摸操作后,传送给处理器1180以确定触摸事件的类型,随后处理器1180根据触摸事件的类型在显示面板1141上提供相应的视觉输出。虽然在图10中,触控面板1131与显示面板1141是作为两个独立的部件来实现手机的输入和输入功能,但是在某些实施例中,可以将触控面板1131与显示面板1141集成而实现手机的输入和输出功能。
手机还可包括至少一种传感器1150,比如光传感器、运动传感器以及其他传感器。具体地,光传感器可包括环境光传感器及接近传感器,其中,环境光传感器可根据环境光线的明暗来调节显示面板1141的亮度,光传感器可在手机移动到耳边时,关闭显示面板1141和/或背光。作为运动传感器的一种,加速度传感器可检测各个方向上(一般为三轴)加速度的大小,静止时可检测出重力的大小及方向,可用于识别手机姿态的应用(比如横竖屏切换、相关游戏、磁力计姿态校准)、振动识别相关功能(比如计步器、敲击)等;至于手机还可配置的陀螺仪、气压计、湿度计、温度计、红外线传感器等其他传感器,在此不再 赘述。
音频电路1160、扬声器1161以及传声器1162可提供用户与手机之间的音频接口。音频电路1160可将接收到的音频数据转换后的电信号,传输到扬声器1161,由扬声器1161转换为声音信号输出;另一方面,传声器1162将收集的声音信号转换为电信号,由音频电路1160接收后转换为音频数据,再将音频数据输出处理器1180处理后,经RF电路1110以发送给比如另一手机,或者将音频数据输出至存储器1120以便进一步处理。
WiFi属于短距离无线传输技术,手机通过WiFi模块1170可以帮助用户收发电子邮件、浏览网页和访问流式媒体等,它为用户提供了无线的宽带互联网访问。虽然图19示出了WiFi模块1170,但是可以理解的是,其并不属于手机的必须构成,完全可以根据需要在不改变本申请实施例的本质的范围内而省略。
处理器1180是手机的控制中心,利用各种接口和线路连接整个手机的各个部分,通过运行或执行存储在存储器1120内的软件程序和/或模块,以及调用存储在存储器1120内的数据,执行手机的各种功能和处理数据,从而对手机进行整体监控。可选的,处理器1180可包括一个或多个处理单元;例如,处理器1180可集成应用处理器和调制解调处理器,其中,应用处理器主要处理操作系统、用户界面和应用程序等,调制解调处理器主要处理无线通信。可以理解的是,上述调制解调处理器也可以不集成到处理器1180中。
手机还包括给各个部件供电的电源1190(比如电池),可选的,电源可以通过电源管理系统与处理器1180逻辑相连,从而通过电源管理系统实现管理充电、放电、以及功耗管理等功能。
手机还可以包括摄像头1200,该摄像头可以为前置摄像头,也可以为后置摄像头。尽管未示出,手机还可以包括蓝牙模块、GPS模块等,在此不再赘述。
在本申请实施例中,该手机所包括的处理器1180可以用于执行上述数据传输方法实施例,其实现原理和技术效果类似,在此不再赘述。
在上述实施例中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。计算机程序产品包括一个或多个计算机指令。在计算机上加载和执行计算机程序指令时,全部或部分地产生按照本发明实施例的流程或功能。计算机可以是通用计算机、专用计算机、计算机网络、或者其他可编程装置。计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,计算机指令可以从一个网站站点、计算机、服务器或数据中心通过有线(例如同轴电缆、光纤、数字用户线(DSL))或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。计算机可读存储介质可以是计算机能够存取的任何可用介质或者是包含一个或多个可用介质集成的服务器、数据中心等数据存储设备。可用介质可以是磁性介质,(例如,软盘、硬盘、磁带)、光介质(例如,DVD)、或者半导体介质(例如固态硬盘Solid State Disk(SSD))等。

Claims (43)

  1. 一种数据传输方法,其特征在于,所述方法包括:
    接收设备在第一时频资源上接收第一数据,在第二时频资源上接收第二数据;
    当所述第一时频资源和所述第二时频资源在频域上重叠的目标频域资源时,所述接收设备使用映射在所述第一时频资源的目标频域资源上的第一DMRS解调映射在所述第二时频资源的目标频域资源上的第二数据。
  2. 根据权利要求1所述的方法,其特征在于,所述接收设备为终端设备,所述方法还包括:
    所述接收设备接收所述网络设备发送的第一指示信息,所述第一指示信息用于指示所述接收设备使用所述第一DMRS解调映射在所述第二时频资源的目标频域资源上的第二数据。
  3. 根据权利要求1所述的方法,其特征在于,所述接收设备使用所述第一DMRS解调映射在所述第二时频资源的目标频域资源上的第二数据,包括:
    当间隔小于与预设间隔满足映射关系、且所述第一时频资源和所述第二时频资源在频域上重叠的目标频域资源时,所述接收设备使用所述第一DMRS解调映射在所述第二时频资源的目标频域资源上的第二数据,所述间隔为所述第一时频资源与所述第二时频资源之间的间隔。
  4. 根据权利要求3所述的方法,其特征在于,所述接收设备为终端设备,所述方法还包括:
    所述接收设备接收所述网络设备发送的第二指示信息,所述第二指示信息用于指示所述预设间隔。
  5. 根据权利要求3所述的方法,其特征在于,所述预设间隔与终端设备的移动速度、所述终端设备的信道时变参数满足映射关系。
  6. 根据权利要求1所述的方法,其特征在于,所述接收设备使用所述第一DMRS解调映射在所述第二时频资源的目标频域资源上的第二数据,包括:
    当第一天线端口信息与第二天线端口信息相同、且所述第一时频资源和所述第二时频资源在频域上重叠的目标频域资源时,所述接收设备使用所述第一DMRS解调映射在所述第二时频资源的目标频域资源上的第二数据;
    所述第一天线端口信息为所述发送设备发送所述第一数据时所使用的天线端口信息,所述第二天线端口信息为所述发送设备发送所述第二数据时所使用的天线端口信息;
    所述第一天线端口信息包括:所述发送设备发送所述第一数据时所使用的第一天线端口数目和/或至少一个第一天线端口号;所述第二天线端口信息包括:所述发送设备发送所述第二数据时所使用的第二天线端口数目和/或至少一个第二天线端口号。
  7. 根据权利要求1-6任一项所述的方法,其特征在于,所述接收设备为终端设备,所述方法还包括:
    所述接收设备接收所述网络设备发送的第三指示信息,所述第三指示信息用于确定与所述第二天线端口号对应的第一天线端口号;
    所述接收设备使用所述第一DMRS解调映射在所述第二时频资源的目标频域资源上 的第二数据,包括:
    所述接收设备使用与所述第二天线端口号对应的第一天线端口号传输的第一DMRS,解调映射在所述第二时频资源的目标频域资源上的第二数据。
  8. 根据权利要求7所述的方法,其特征在于,所述第三指示信息包括:与所述第二天线端口号对应的第一天线端口号的标识。
  9. 根据权利要求1-6任一项所述的方法,其特征在于,所述接收设备使用所述第一DMRS解调映射在所述第二时频资源的目标频域资源上的第二数据,包括:
    所述接收设备根据所述第二天线端口号的标识,以及,预设的第二天线端口号与第一天线端口号的对应关系,确定与所述第二天线端口号对应的第一天线端口号;
    所述接收设备使用与所述第二天线端口号对应的第一天线端口号传输的第一DMRS,解调映射在所述第二时频资源的目标频域资源上的第二数据。
  10. 根据权利要求1-9任一项所述的方法,其特征在于,所述接收设备为终端设备,所述方法还包括:
    所述接收设备接收所述网络设备发送的第四指示信息,所述第四指示信息用于指示所述第一DMRS的发送功率与所述二数据的发送功率的比值。
  11. 一种数据传输方法,其特征在于,所述方法包括:
    发送设备确定发送第一数据的第一时频资源和发送第二数据的第二时频资源;
    当所述第一时频资源和所述第二时频资源存在重叠的目标频域资源时,所述发送设备在所述第二时频资源的目标频域资源发送第二数据。
  12. 根据权利要求11所述的方法,其特征在于,所述发送设备为网络设备,所述方法还包括:
    所述发送设备向所述终端设备发送第一指示信息,所述第一指示信息用于指示所述终端设备使用映射在所述第一时频资源的目标频域资源上的第一DMRS解调映射在所述第二时频资源的目标频域资源上的第二数据。
  13. 根据权利要求11所述的方法,其特征在于,所述发送设备使用所述第二时频资源的目标频域资源发送第二数据,包括:
    当间隔与预设间隔满足映射关系、且所述第一时频资源和所述第二时频资源存在重叠的目标频域资源时,所述发送设备使用所述第二时频资源的目标频域资源发送第二数据,所述间隔为所述第一时频资源与所述第二时频资源之间的间隔。
  14. 根据权利要求13所述的方法,其特征在于,所述发送设备为网络设备,所述方法还包括:
    所述发送设备向所述终端设备发送第二指示信息,所述第二指示信息用于指示预设间隔。
  15. 根据权利要求13所述的方法,其特征在于,所述预设间隔与终端设备的移动速度、所述终端设备的信道时变参数满足映射关系。
  16. 根据权利要求11所述的方法,其特征在于,所述发送设备使用所述第二时频资源的目标频域资源发送第二数据,包括:
    当第一天线端口信息与第二天线端口信息相同、且所述第一时频资源和所述第二时频资源存在重叠的目标频域资源时,所述发送设备使用所述第二时频资源的目标频域资源发 送第二数据;
    所述第一天线端口信息为所述发送设备发送所述第一数据时所使用的天线端口信息,所述第二天线端口信息为所述发送设备发送所述第二数据时所使用的天线端口信息;
    所述第一天线端口信息包括:所述发送设备发送第一数据时所使用的第一天线端口数目和/或至少一个第一天线端口号;所述第二天线端口信息包括:所述发送设备发送第二数据时所使用的第二天线端口数目和/或至少一个第二天线端口号。
  17. 根据权利要求11-16任一项所述的方法,其特征在于,所述发送设备为网络设备,所述方法还包括:
    所述发送设备向所述终端设备发送第三指示信息,所述第三指示信息用于确定与所述第二天线端口号对应的第一天线端口号。
  18. 根据权利要求17所述的方法,其特征在于,所述第三指示信息包括:与所述第二天线端口号对应的第一天线端口号的标识。
  19. 根据权利要求11-18任一项所述的方法,其特征在于,所述发送设备为网络设备,所述方法还包括:
    所述发送设备向所述终端设备发送第四指示信息,所述第四指示信息用于指示所述第一DMRS的发送功率与所述二数据的发送功率的比值。
  20. 一种数据传输系统,其特征在于,所述系统包括发送设备和接收设备;
    所述发送设备,用于在第一时频资源上的第一目标位置映射第一数据,在第二时频资源上的第二目标位置映射第二数据,其中,所述第一目标位置不包括所述第一导频的时频资源位置和目标时频资源,所述目标时频资源为第一时频资源和第二时频资源重叠的时频资源,所述第二目标位置不包括所述第二导频的时频资源位置,所述第二导频的时频资源位置不包括所述目标时频资源;
    所述接收设备,用于在第一时频资源除所述目标时频资源之外的时频资源上接收第一信号,在所述第二时频资源上接收第二信号;其中,所述第一信号包括第一导频和第一数据,所述第二信号包括第二数据;
    所述接收设备,还用于使用所述第一导频对承载在所述目标时频资源上的第二数据进行解调。
  21. 一种数据传输方法,其特征在于,所述方法包括:
    发送设备在第一时频资源上的第一目标位置映射第一数据,在第二时频资源上的第二目标位置映射第二数据;
    其中,所述第一目标位置不包括所述第一导频的时频资源位置和目标时频资源;所述目标时频资源为第一时频资源和第二时频资源重叠的时频资源,所述第二目标位置不包括所述第二导频的时频资源位置,所述第二导频的时频资源位置不包括所述目标时频资源。
  22. 一种数据传输方法,其特征在于,所述方法包括:
    接收设备在第一时频资源除目标时频资源之外的时频资源上接收第一信号,在第二时频资源上接收第二信号;其中,所述第一目标位置不包括所述第一导频的时频资源位置和目标时频资源,所述目标时频资源为第一时频资源和第二时频资源重叠的时频资源,所述第二目标位置不包括所述第二导频的时频资源位置,所述第二导频的时频资源位置不包括所述目标时频资源;所述第一信号包括第一导频和第一数据,所述第二信号包括第二数据;
    所述接收设备使用所述第一导频对承载在所述目标时频资源上的第二数据进行解调。
  23. 一种接收设备,其特征在于,所述设备包括:
    接收模块,用于在第一时频资源上接收第一数据,在第二时频资源上接收第二数据;
    处理模块,用于在所述第一时频资源和所述第二时频资源在频域上重叠的目标频域资源时,使用映射在所述第一时频资源的目标频域资源上的第一DMRS解调映射在所述第二时频资源的目标频域资源上的第二数据。
  24. 根据权利要求23所述的设备,其特征在于,所述接收设备为终端设备,则所述接收模块,还用于接收所述网络设备发送的第一指示信息,所述第一指示信息用于指示所述接收设备使用所述第一DMRS解调映射在所述第二时频资源的目标频域资源上的第二数据。
  25. 根据权利要求23所述的设备,其特征在于,所述处理模块,具体用于在间隔小于与预设间隔满足映射关系、且所述第一时频资源和所述第二时频资源在频域上重叠的目标频域资源时,使用所述第一DMRS解调映射在所述第二时频资源的目标频域资源上的第二数据,所述间隔为所述第一时频资源与所述第二时频资源之间的间隔。
  26. 根据权利要求25所述的设备,其特征在于,所述接收设备为终端设备,则所述接收模块,还用于接收所述网络设备发送的第二指示信息,所述第二指示信息用于指示所述预设间隔。
  27. 根据权利要求25所述的设备,其特征在于,所述预设间隔与终端设备的移动速度、所述终端设备的信道时变参数满足映射关系。
  28. 根据权利要求23所述的设备,其特征在于,所述处理模块,具体用于在第一天线端口信息与第二天线端口信息相同、且所述第一时频资源和所述第二时频资源在频域上重叠的目标频域资源时,使用所述第一DMRS解调映射在所述第二时频资源的目标频域资源上的第二数据;
    所述第一天线端口信息为所述发送设备发送所述第一数据时所使用的天线端口信息,所述第二天线端口信息为所述发送设备发送所述第二数据时所使用的天线端口信息;
    所述第一天线端口信息包括:所述发送设备发送所述第一数据时所使用的第一天线端口数目和/或至少一个第一天线端口号;所述第二天线端口信息包括:所述发送设备发送所述第二数据时所使用的第二天线端口数目和/或至少一个第二天线端口号。
  29. 根据权利要求23-28任一项所述的设备,其特征在于,所述接收设备为终端设备,则所述接收模块,还用于接收所述网络设备发送的第三指示信息,所述第三指示信息用于确定与所述第二天线端口号对应的第一天线端口号;
    所述处理模块,具体用于使用与所述第二天线端口号对应的第一天线端口号传输的第一DMRS,解调映射在所述第二时频资源的目标频域资源上的第二数据。
  30. 根据权利要求29所述的设备,其特征在于,所述第三指示信息包括:与所述第二天线端口号对应的第一天线端口号的标识。
  31. 根据权利要求23-28任一项所述的设备,其特征在于,所述处理模块,具体用于根据所述第二天线端口号的标识,以及,预设的第二天线端口号与第一天线端口号的对应关系,确定与所述第二天线端口号对应的第一天线端口号,并使用与所述第二天线端口号对应的第一天线端口号传输的第一DMRS,解调映射在所述第二时频资源的目标频域资源 上的第二数据。
  32. 根据权利要求23-31任一项所述的设备,其特征在于,所述接收设备为终端设备,则所述接收模块,还用于接收所述网络设备发送的第四指示信息,所述第四指示信息用于指示所述第一DMRS的发送功率与所述二数据的发送功率的比值。
  33. 一种发送设备,其特征在于,所述发送设备包括:
    处理模块,用于确定发送第一数据的第一时频资源和发送第二数据的第二时频资源;
    所述处理模块,还用于在所述第一时频资源和所述第二时频资源存在重叠的目标频域资源时,指示发送模块在所述第二时频资源的目标频域资源发送第二数据。
  34. 根据权利要求33所述的设备,其特征在于,所述发送设备为网络设备,所述发送模块,还用于向所述终端设备发送第一指示信息,所述第一指示信息用于指示所述终端设备使用映射在所述第一时频资源的目标频域资源上的第一DMRS解调映射在所述第二时频资源的目标频域资源上的第二数据。
  35. 根据权利要求33所述的设备,其特征在于,所述处理模块,具体用于在间隔与预设间隔满足映射关系、且所述第一时频资源和所述第二时频资源存在重叠的目标频域资源时,指示所述发送模块使用所述第二时频资源的目标频域资源发送第二数据,所述间隔为所述第一时频资源与所述第二时频资源之间的间隔。
  36. 根据权利要求35所述的设备,其特征在于,所述发送设备为网络设备,所述发送模块,还用于向所述终端设备发送第二指示信息,所述第二指示信息用于指示预设间隔。
  37. 根据权利要求35所述的设备,其特征在于,所述预设间隔与终端设备的移动速度、所述终端设备的信道时变参数满足映射关系。
  38. 根据权利要求33所述的设备,其特征在于,所述处理模块,具体用于在第一天线端口信息与第二天线端口信息相同、且所述第一时频资源和所述第二时频资源存在重叠的目标频域资源时,指示所述发送模块使用所述第二时频资源的目标频域资源发送第二数据;
    所述第一天线端口信息为所述发送设备发送所述第一数据时所使用的天线端口信息,所述第二天线端口信息为所述发送设备发送所述第二数据时所使用的天线端口信息;
    所述第一天线端口信息包括:所述发送设备发送第一数据时所使用的第一天线端口数目和/或至少一个第一天线端口号;所述第二天线端口信息包括:所述发送设备发送第二数据时所使用的第二天线端口数目和/或至少一个第二天线端口号。
  39. 根据权利要求33-38任一项所述的设备,其特征在于,所述发送设备为网络设备,所述发送模块,还用于向所述终端设备发送第三指示信息,所述第三指示信息用于确定与所述第二天线端口号对应的第一天线端口号。
  40. 根据权利要求39所述的设备,其特征在于,所述第三指示信息包括:与所述第二天线端口号对应的第一天线端口号的标识。
  41. 根据权利要求33-40任一项所述的设备,其特征在于,所述发送设备为网络设备,所述发送模块,还用于向所述终端设备发送第四指示信息,所述第四指示信息用于指示所述第一DMRS的发送功率与所述二数据的发送功率的比值。
  42. 一种发送设备,其特征在于,所述发送设备包括:
    处理模块,用于在第一时频资源上的第一目标位置映射第一数据,在第二时频资源上 的第二目标位置映射第二数据,其中,所述第一目标位置不包括所述第一导频的时频资源位置和目标时频资源,所述目标时频资源为第一时频资源和第二时频资源重叠的时频资源,所述第二目标位置不包括所述第二导频的时频资源位置,所述第二导频的时频资源位置不包括所述目标时频资源。
  43. 一种接收设备,其特征在于,所述接收设备包括:
    接收模块,用于在第一时频资源除目标时频资源之外的时频资源上接收第一信号,在第二时频资源上接收第二信号;其中,所述第一目标位置不包括所述第一导频的时频资源位置和目标时频资源,所述目标时频资源为第一时频资源和第二时频资源重叠的时频资源,所述第二目标位置不包括所述第二导频的时频资源位置,所述第二导频的时频资源位置不包括所述目标时频资源;所述第一信号包括第一导频和第一数据,所述第二信号包括第二数据;
    处理模块,用于使用所述第一导频对承载在所述目标时频资源上的第二数据进行解调。
PCT/CN2018/087848 2017-07-07 2018-05-22 数据传输方法、发送设备和接收设备 WO2019007159A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP18827346.0A EP3637665B1 (en) 2017-07-07 2018-05-22 Data transmission method and receiving device
US16/734,808 US11343056B2 (en) 2017-07-07 2020-01-06 Data transmission method, sending device, and receiving device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710552734.4 2017-07-07
CN201710552734.4A CN109217998B (zh) 2017-07-07 2017-07-07 数据传输方法、发送设备和接收设备

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/734,808 Continuation US11343056B2 (en) 2017-07-07 2020-01-06 Data transmission method, sending device, and receiving device

Publications (1)

Publication Number Publication Date
WO2019007159A1 true WO2019007159A1 (zh) 2019-01-10

Family

ID=64949690

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/087848 WO2019007159A1 (zh) 2017-07-07 2018-05-22 数据传输方法、发送设备和接收设备

Country Status (4)

Country Link
US (1) US11343056B2 (zh)
EP (1) EP3637665B1 (zh)
CN (1) CN109217998B (zh)
WO (1) WO2019007159A1 (zh)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111096014A (zh) 2017-12-14 2020-05-01 Oppo广东移动通信有限公司 确定传输资源的方法、终端设备和网络设备
CN112261723B (zh) * 2018-03-30 2022-10-28 Oppo广东移动通信有限公司 上行控制信息传输方法及装置
CN110830195B (zh) * 2018-08-09 2021-10-01 华为技术有限公司 一种信息的处理方法和通信装置
CN112970312A (zh) * 2019-02-11 2021-06-15 Oppo广东移动通信有限公司 一种资源指示方法、终端设备及网络设备
US11864234B2 (en) * 2019-08-08 2024-01-02 Qualcomm Incorporated Beam-based channel access procedures
CN111796260B (zh) * 2019-08-12 2023-09-12 维沃移动通信有限公司 一种测距方法及设备
CN114128197B (zh) * 2019-08-19 2023-09-01 华为技术有限公司 一种侧行链路通信方法及装置
CN111258295A (zh) * 2020-01-15 2020-06-09 重庆长安汽车股份有限公司 验证大数据采集和上传准确性的系统及方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101931437A (zh) * 2009-06-19 2010-12-29 松下电器产业株式会社 无线通信系统中的解调参考信号设置方法及装置
WO2014098523A1 (en) * 2012-12-21 2014-06-26 Samsung Electronics Co., Ltd. Methods and apparatus for identification of small cells
CN106470487A (zh) * 2015-08-19 2017-03-01 中国移动通信集团公司 功率分配指示方法、相关设备和系统
CN106559194A (zh) * 2015-09-25 2017-04-05 夏普株式会社 用户设备、基站及相关方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140133395A1 (en) * 2012-11-09 2014-05-15 Samsung Electronics Co. Ltd Methods and apparatus for identification of small cells
WO2017018759A1 (ko) * 2015-07-24 2017-02-02 엘지전자 주식회사 하향링크 신호 수신 방법 및 사용자기기와, 하향링크 신호 전송 방법 및 기지국
WO2017171528A1 (ko) * 2016-04-01 2017-10-05 엘지전자 주식회사 무선 통신 시스템에서 단말에 의해 수행되는 v2x 통신 방법 및 상기 방법을 이용하는 단말
WO2018220854A1 (ja) * 2017-06-02 2018-12-06 株式会社Nttドコモ ユーザ端末及び無線通信方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101931437A (zh) * 2009-06-19 2010-12-29 松下电器产业株式会社 无线通信系统中的解调参考信号设置方法及装置
WO2014098523A1 (en) * 2012-12-21 2014-06-26 Samsung Electronics Co., Ltd. Methods and apparatus for identification of small cells
CN106470487A (zh) * 2015-08-19 2017-03-01 中国移动通信集团公司 功率分配指示方法、相关设备和系统
CN106559194A (zh) * 2015-09-25 2017-04-05 夏普株式会社 用户设备、基站及相关方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3637665A4

Also Published As

Publication number Publication date
US11343056B2 (en) 2022-05-24
CN109217998A (zh) 2019-01-15
EP3637665A4 (en) 2020-06-03
US20200145174A1 (en) 2020-05-07
EP3637665A1 (en) 2020-04-15
CN109217998B (zh) 2021-05-14
EP3637665B1 (en) 2022-04-06

Similar Documents

Publication Publication Date Title
WO2019007159A1 (zh) 数据传输方法、发送设备和接收设备
WO2020001380A1 (zh) 定位参考信号传输方法、终端及网络设备
CN110166192B (zh) 小区处理方法、终端设备及网络设备
CN110475364B (zh) 一种非周期跟踪参考信号的接收方法及终端
WO2018082397A1 (zh) 一种确定参考信号映射的时域资源的方法和装置
WO2019072077A1 (zh) 解调参考信号传输方法、网络设备及终端
US20210168834A1 (en) Determining method, terminal, and network device
WO2021093707A1 (zh) 测量配置方法、装置及系统
WO2018201938A1 (zh) 资源映射方法、网络设备和终端设备
WO2020134188A1 (zh) 上行信号发送方法及设备
WO2018082693A1 (zh) Csi上报方法、装置以及设备
CN110868240A (zh) Pusch重复传输时的跳频方法、终端及网络设备
EP4271066A1 (en) Positioning capability reporting method, terminal device, and network device
CN109075927B (zh) 下行数据传输方法和装置
WO2018053801A1 (zh) 一种资源映射方法、发送端以及接收端
WO2016145637A1 (zh) 一种数据传输的方法及设备
WO2017193268A1 (zh) 上行数据传输方法、终端设备和网络设备
JP7352560B2 (ja) Csiリソースタイプの決定方法、端末及びネットワーク側装置
WO2018228409A1 (zh) 控制信息的传输方法、终端设备和网络设备
WO2022268197A1 (zh) 定位处理方法、定位参考信号发送方法、装置及设备
WO2021023298A1 (zh) 旁链路测量结果获取方法、发送方法和终端
CN110890950B (zh) 信号处理方法、接入网设备以及终端设备
WO2020119697A1 (zh) Csi测量方法及装置
CN108811108B (zh) 控制信道的发送方法、终端设备和网络设备
CN110972299A (zh) 一种上行控制信息传输方法、终端和网络设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18827346

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018827346

Country of ref document: EP

Effective date: 20200107