WO2021023298A1 - 旁链路测量结果获取方法、发送方法和终端 - Google Patents

旁链路测量结果获取方法、发送方法和终端 Download PDF

Info

Publication number
WO2021023298A1
WO2021023298A1 PCT/CN2020/107789 CN2020107789W WO2021023298A1 WO 2021023298 A1 WO2021023298 A1 WO 2021023298A1 CN 2020107789 W CN2020107789 W CN 2020107789W WO 2021023298 A1 WO2021023298 A1 WO 2021023298A1
Authority
WO
WIPO (PCT)
Prior art keywords
measurement result
measurement
information
terminal
feedback
Prior art date
Application number
PCT/CN2020/107789
Other languages
English (en)
French (fr)
Inventor
纪子超
塔玛拉卡拉盖施
孙鹏
邬华明
刘思綦
Original Assignee
维沃移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 维沃移动通信有限公司 filed Critical 维沃移动通信有限公司
Priority to KR1020227007554A priority Critical patent/KR20220046610A/ko
Priority to EP20851037.0A priority patent/EP4013104A4/en
Publication of WO2021023298A1 publication Critical patent/WO2021023298A1/zh
Priority to US17/665,785 priority patent/US20220159500A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/10Scheduling measurement reports ; Arrangements for measurement reports
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1812Hybrid protocols; Hybrid automatic repeat request [HARQ]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1829Arrangements specially adapted for the receiver end
    • H04L1/1832Details of sliding window management
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2602Signal structure
    • H04L27/26025Numerology, i.e. varying one or more of symbol duration, subcarrier spacing, Fourier transform size, sampling rate or down-clocking
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • H04L5/0055Physical resource allocation for ACK/NACK
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/08Testing, supervising or monitoring using real traffic
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/02Traffic management, e.g. flow control or congestion control
    • H04W28/0268Traffic management, e.g. flow control or congestion control using specific QoS parameters for wireless networks, e.g. QoS class identifier [QCI] or guaranteed bit rate [GBR]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0457Variable allocation of band or rate
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/25Control channels or signalling for resource management between terminals via a wireless link, e.g. sidelink
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W92/00Interfaces specially adapted for wireless communication networks
    • H04W92/16Interfaces between hierarchically similar devices
    • H04W92/18Interfaces between hierarchically similar devices between terminal devices

Definitions

  • the present disclosure relates to the field of communication technology, and in particular, to a method for obtaining sidelink measurement results, a method for sending and a terminal.
  • Some communication systems support sidelink (or translated as secondary link, side link, side link, direct communication link, etc.) transmission, that is, data transmission can be directly performed on the physical layer between terminals. Furthermore, some communication systems (for example: 5G communication systems) support unicast, multicast, and broadcast communication in sidelink to support more comprehensive service types. However, sidelink is mainly used for data transmission and does not support sidelink measurement, which makes the transmission performance of sidelink relatively poor.
  • the embodiments of the present disclosure provide a method for obtaining a sidelink measurement result, a sending method, and a terminal to solve the problem of poor transmission performance of the sidelink.
  • some embodiments of the present disclosure provide a sidelink measurement result acquisition method, which is applied to a first terminal, and includes:
  • the associated information of the measurement result corresponds to the measurement signal associated with the measurement result; wherein the associated information includes at least one of the following:
  • the HARQ feedback information is HARQ feedback information sent together with the measurement result, and the HARQ feedback information is the same as The measurement signal has a corresponding relationship.
  • some embodiments of the present disclosure provide a method for sending sidelink measurement results, which is applied to a second terminal, including:
  • the associated information of the measurement result corresponds to the measurement signal associated with the measurement result; wherein, the associated information includes at least one of the following:
  • the HARQ feedback information is HARQ feedback information sent together with the measurement result, and the HARQ feedback information has a corresponding relationship with the measurement signal.
  • some embodiments of the present disclosure provide a terminal, where the terminal is a first terminal and includes:
  • the obtaining module is configured to obtain the measurement result of the sidelink, and the associated information of the measurement result corresponds to the measurement signal associated with the measurement result; wherein the associated information includes at least one of the following:
  • the HARQ feedback information is HARQ feedback information sent together with the measurement result, and the HARQ feedback information has a corresponding relationship with the measurement signal.
  • some embodiments of the present disclosure provide a terminal, where the terminal is a second terminal, including:
  • the sending module is configured to send the measurement result of the sidelink, and the associated information of the measurement result corresponds to the measurement signal associated with the measurement result; wherein the associated information includes at least one of the following:
  • the HARQ feedback information is HARQ feedback information sent together with the measurement result, and the HARQ feedback information has a corresponding relationship with the measurement signal.
  • some embodiments of the present disclosure provide a terminal, where the terminal is a first terminal and includes: a memory, a processor, and a program stored in the memory and running on the processor.
  • the program is executed by the processor, the steps in the sidelink measurement result obtaining method provided by some embodiments of the present disclosure are implemented.
  • some embodiments of the present disclosure provide a terminal.
  • the terminal is a second terminal and includes a memory, a processor, and a program stored on the memory and running on the processor.
  • the program is executed by the processor, the steps in the sidelink measurement result sending method provided by some embodiments of the present disclosure are implemented.
  • some embodiments of the present disclosure provide a computer-readable storage medium with a computer program stored on the computer-readable storage medium.
  • the computer program is executed by a processor, the The steps in the sidelink measurement result acquisition method, or the steps in the sidelink measurement result sending method provided by some embodiments of the present disclosure are implemented when the computer program is executed by the processor.
  • a sidelink measurement result is obtained, and the associated information of the measurement result corresponds to the measurement signal associated with the measurement result; wherein the associated information includes at least one of the following: feedback window, identification information, The feedback resource and HARQ feedback information, the HARQ feedback information is HARQ feedback information sent together with the measurement result, and the HARQ feedback information has a corresponding relationship with the measurement signal.
  • the associated information includes at least one of the following: feedback window, identification information, The feedback resource and HARQ feedback information
  • the HARQ feedback information is HARQ feedback information sent together with the measurement result
  • the HARQ feedback information has a corresponding relationship with the measurement signal.
  • Figure 1 is a structural diagram of a network system to which some embodiments of the present disclosure are applicable;
  • FIG. 2 is a flowchart of a method for obtaining a sidelink measurement result according to some embodiments of the present disclosure
  • FIG. 3 is a schematic diagram of sidelink measurement result feedback provided by some embodiments of the present disclosure.
  • Fig. 4 is another schematic diagram of sidelink measurement result feedback provided by some embodiments of the present disclosure.
  • FIG. 5 is a flowchart of a method for sending sidelink measurement results according to some embodiments of the present disclosure
  • FIG. 6 is a structural diagram of a terminal provided by some embodiments of the present disclosure.
  • FIG. 7 is another structural diagram of a terminal provided by some embodiments of the present disclosure.
  • FIG. 8 is another structural diagram of a terminal provided by some embodiments of the present disclosure.
  • words such as “exemplary” or “for example” are used as examples, illustrations, or illustrations. Any embodiment or design solution described as “exemplary” or “for example” in the embodiments of the present disclosure should not be construed as being more preferable or advantageous than other embodiments or design solutions. To be precise, words such as “exemplary” or “for example” are used to present related concepts in a specific manner.
  • the sidelink measurement result acquisition method, transmission method, and terminal provided by some embodiments of the present disclosure can be applied to a wireless communication system.
  • the wireless communication system may be a 5G system, or an evolved Long Term Evolution (eLTE) system or a Long Term Evolution (LTE) system, or a subsequent evolved communication system.
  • eLTE evolved Long Term Evolution
  • LTE Long Term Evolution
  • FIG. 1 is a structural diagram of a network system applicable to some embodiments of the present disclosure. As shown in FIG. 1, it includes a terminal 11, a terminal 12, and a control node 13, wherein one of the terminal 11 and the terminal 12
  • the communication between the control node 13 and the terminal can be carried out through the air interface (Uu) interface and the uplink and downlink (uplink and downlink) can be communicated through the PC5 interface.
  • Uu air interface
  • uplink and downlink uplink and downlink
  • the terminal 11 and the terminal 12 may be user equipment (UE) or other terminal-side devices, such as mobile phones, tablet computers (Tablet Personal Computer), laptop computers (Laptop Computer), personal digital assistants (personal digital assistants, PDA), mobile internet device (Mobile Internet Device, MID), wearable device (Wearable Device), smart car, in-vehicle equipment, or robot and other terminal-side devices.
  • UE user equipment
  • Tablet Personal Computer Tablet Personal Computer
  • laptop computers laptop computers
  • PDA personal digital assistants
  • mobile internet device Mobile Internet Device, MID
  • wearable device wearable device
  • smart car in-vehicle equipment, or robot and other terminal-side devices. It should be noted that in some embodiments of the present disclosure, it is not Limit the specific type of terminal.
  • the aforementioned control node 13 may be a network device, such as a 4G base station, or a 5G base station, or a base station of a later version, or a base station in other communication systems, or it is called Node B, Evolved Node B, or Transmission Reception Point (Transmission Reception). Point, TRP), or access point (Access Point, AP), or other vocabulary in the field, as long as the same technical effect is achieved, the network device is not limited to a specific technical vocabulary.
  • control node 13 may be some Integrated Access Backhaul (IAB), or some sidelink terminal, relay (relay), road side unit (Road Side Unit, RSU), of course, it can also be It is some other network facilities similar to RSU or IAB. Further, some control nodes 13 may support sidelink or Uu link, and may also support sidelink and Uu link at the same time, which is not limited in some embodiments of the present disclosure. It should be noted that in some embodiments of the present disclosure, the specific type of the control node 13 is not limited.
  • FIG. 2 is a flowchart of a method for obtaining a sidelink measurement result according to some embodiments of the present disclosure.
  • the first terminal of the method includes the following steps:
  • Step 201 Obtain a sidelink measurement result, and the associated information of the measurement result corresponds to the measurement signal associated with the measurement result; wherein the associated information includes at least one of the following:
  • the HARQ feedback information is HARQ feedback information sent together with the measurement result, and the HARQ feedback information has a corresponding relationship with the measurement signal.
  • the first terminal is a terminal that sends the measurement signal.
  • the above-mentioned sidelink measurement result refers to the measurement result obtained by measuring the sidelink, and the above-mentioned measurement signal is the measurement signal sent on the sidelink.
  • Obtaining the measurement result of the sidelink may be receiving the measurement result of the sidelink on the sidelink.
  • the measurement result may be the measurement result sent by the second terminal on the sidelink, and the second terminal is the terminal that receives the measurement signal; or
  • Receiving sidelink measurement results sent by other nodes other than the second terminal such as receiving sidelink measurement results forwarded by the control node or other transit terminal, specifically, such as the second terminal sending the sidelink measurement result to the control node or other transit terminal ,
  • the control node or other transit terminal forwards the measurement result of the sidelink to the first terminal.
  • the correlation information of the measurement result and the measurement signal associated with the measurement result may correspond to the correlation information and the measurement signal. Specifically, it can be understood that the correlation information can identify the measurement result, or the measurement result is associated
  • the measurement signal of includes the measurement signal corresponding to the above-mentioned associated information. Therefore, the first terminal can use the associated information to identify the measurement signal associated with the measurement result, thereby avoiding sidelink transmission adjustment errors, thereby avoiding subsequent data transmission failures, and improving sidelink transmission performance.
  • the above-mentioned associated information corresponds to the above-mentioned measurement signal
  • the above-mentioned associated information can also be understood as the associated information of the above-mentioned measurement signal, but the first terminal can obtain the associated information by obtaining the above-mentioned measurement result to identify the measurement signal .
  • the measurement signal may be a channel state indication reference signal (CSI-RS), a demodulation reference signal (Demodulation Reference Signal, DMRS), and a side link system information block ( Sidelink System Information Block, S-SSB) and other measurement signals; and the measurement result can be channel state indication (CSI), channel quality indication (Channel Quality Indication, CQI), precoding matrix indication (Precoding Matrix Indicator, PMI), CSI-RS resource indicator (CSI-RS resource indicator, CRI), Synchronous block resource indicator (SS/PSBCH Block Resource indicator, SSBRI), layer indicator (Layer Indicator, LI), rank indicator ( At least one of Rank Indication (RI) and Reference Signal Receiving Power (RSRP).
  • CSI-RS channel state indication reference signal
  • CQI channel quality indication
  • Precoding Matrix Indicator, PMI precoding Matrix Indicator
  • CRI Channel Quality Indication
  • SS/PSBCH Block Resource indicator SS/PSBCH Block Resource indicator
  • SSBRI Synchronous block
  • the feedback window may be the feedback window where the measurement result is located, and the window may be a time domain window.
  • These feedback windows are associated with the measurement signal. For example, the corresponding relationship between the feedback window and the measurement signal is pre-configured, or the measurement signal is sent Start the feedback window when the signal is signaled.
  • the aforementioned identification information may be one or more identification information associated with the aforementioned measurement result, for example: the measurement result is carried, or the message sending the measurement result includes the measurement result and identification information, and the identification information is associated with the measurement signal, for example: these The identification information can be used to indicate the measurement signal;
  • the above feedback resources may be the resources used for the above measurement result feedback. These resources may be one or more of frequency domain, time domain, or code domain resources, and these feedback resources are associated with measurement signals, for example: these feedback resources are associated with The measurement signal is pre-configured with a corresponding relationship, or these feedback resources are allocated when the measurement signal is sent;
  • the above-mentioned HARQ feedback information is the HARQ feedback information sent together with the measurement result, which may be carried by the measurement result, or the message for sending the measurement result includes the measurement result and HARQ feedback information.
  • the corresponding relationship between the HARQ feedback information and the measurement signal may be: the type or identifier of the data corresponding to the HARQ feedback information has a corresponding relationship with the measurement signal, or the data transmission and the measurement signal corresponding to the HARQ feedback information are controlled by the same control.
  • Signaling indication, or the transmission of the HARQ feedback information and the measurement signal are indicated by the same control signaling, or the data corresponding to the HARQ feedback information is sent together with the measurement signal, or the data corresponding to the HARQ feedback information carries the measurement signal.
  • the sidelink can be measured through the above steps, and the associated measurement signal of the measurement result is determined according to the above-mentioned correlation information of the measurement result, thereby improving the transmission performance of the sidelink and avoiding sidelink transmission. Adjustment error.
  • the measurement signal sent by the first terminal is associated with at least one feedback window, and the measurement signal associated with the measurement result includes:
  • the measurement signal associated with the feedback window of the measurement result is the measurement signal associated with the feedback window of the measurement result.
  • each measurement signal is associated with at least one feedback window.
  • at least one feedback window is associated with the window length N, which is used to receive measurement feedback. In this way, when the measurement result is received, the associated measurement signal can be determined through the feedback window where the measurement result is located.
  • the at least one feedback window associated with the measurement signal sent by the first terminal may include:
  • At least one feedback window is activated, wherein the attribute of the at least one feedback window may be related to at least one of the following parameters:
  • Terminal processing capability resource pool configuration, bandwidth part (Band Width Part, BWP) parameter set (numerology), BWP subcarrier spacing (SCS), carrier numerology, carrier SCS, cell numerology and cell SCS.
  • BWP bandwidth part
  • SCS BWP subcarrier spacing
  • the above attribute may include at least one of the start time of the feedback window and the length of the window.
  • the terminal processing capability may be the processing capability of the first terminal or the processing capability of the second terminal
  • the resource pool configuration may be the sidelink resource pool configuration
  • the BWP, carrier, and cell may be the BWP, carrier, and cell of the sidelink.
  • the above attribute may be related to the above at least one parameter.
  • the above attribute may be determined by the above at least one item.
  • the window length N is not less than the processing delay of the terminal, or the start time T of the window is the measurement signal sending time + the terminal's Processing delay, or different BWP, carrier or resource pool configuration, or different numerology may have different processing delay or window length, or different terminal types may have different processing delay or window length.
  • a parameter may correspond to an attribute value, or a parameter may correspond to an attribute value range or attribute reference value.
  • the attributes of the at least one feedback window are fixed, or the attributes of the at least one feedback window are dynamically adjusted according to Quality of Service (QoS) requirements, channel status, or link congestion .
  • QoS Quality of Service
  • the aforementioned QoS requirements can be priority, delay, reliability requirements, etc.
  • the aforementioned link congestion can be the channel busy ratio (CBR) or the channel occupancy ratio (Channel occupancy ratio, CR) measurement result and many more.
  • CBR channel busy ratio
  • CR Channel occupancy ratio
  • the attribute of the feedback window may be fixed and unchanged, for example, one parameter corresponds to one attribute value; and the above dynamic adjustment may be that the attribute corresponding to a parameter can be dynamically adjusted, for example, :
  • a parameter corresponds to an attribute value range or attribute reference value, which can be dynamically adjusted within this range or based on the attribute reference value.
  • the window length of the feedback window can be fixed length, for example, determined by protocol definition or network configuration; or variable length, such as according to QoS requirements or channel
  • the state or link congestion condition dynamically adjusts the window length (for example, when the link is congested, a longer window is used).
  • the time unit granularity of the feedback window may be a radio frame, a subframe, a time slot (slot), a sub-slot (sub-slot), a symbol (symbol), etc.
  • the length can be based on system time (system frame number, SFN), sidelink time (direct frame number, DFN), or effective time domain information of the resource pool, etc.
  • the feedback window may be configured by the control node, or directly negotiated between the sending terminal and the receiving terminal, or protocol definition or pre-configuration, etc.
  • the first terminal no longer waits for the measurement result of the measurement signal associated with the at least one feedback window.
  • the first terminal After the first terminal sends the measurement signal, it starts the feedback window at time T;
  • the first terminal considers that the window time has passed:
  • the first terminal receives at least one valid measurement feedback within the window, it is considered that the window time has passed, and the timer can be stopped at this time;
  • the window time is exceeded and the first terminal still does not receive measurement feedback, it is considered that the window time has passed, and it can be confirmed that the timer has expired at this time.
  • the first terminal does not send the second measurement signal.
  • the second terminal After receiving the measurement signal, the second terminal can feed back the measurement result in the window (at time T+N). For example: You can start a timer with a length of N and stop the timer after sending feedback. If the second terminal cannot provide feedback within this window (for example, because it cannot obtain sidelink resources for transmission, or because of half-duplex restrictions, Send feedback, or the feedback transmission fails, or the power is limited and the feedback cannot be sent, etc.), the second terminal can discard the measurement result and not feedback outside the window. In addition, if the timer expires and the transmission is still not successful, the measurement result can also be discarded.
  • the second terminal can abandon the previously received measurement signal and measurement result, re-determine the window start time, and feedback the associated new measurement within the window The measurement result of the signal. For example: you can restart a timer of length N.
  • the resource for sending the measurement signal may be obtained by the first terminal through resource sensing and reservation, or may be allocated by the control node.
  • the resource for sending measurement feedback may be acquired by the second terminal through resource sensing and reservation, or may be allocated by the control node.
  • the following is an example with the first terminal being UE1, the second terminal being UE2, and the measurement signal being CSI-RS, including the following:
  • UE1 and UE2 perform sidelink transmission, UE1 configures CSI-RS measurement signals for UE2 to measure, and the feedback window is 4 slots in length;
  • UE1 sends CSI-RS1 at time T1 and waits for UE2 to feedback;
  • UE2 measures CSI-RS1, obtains resources at time T1+3, and feeds back the measurement result of CSI-RS1 to UE1;
  • UE1 sends CSI-RS2 at T2 and waits for UE2 to feedback;
  • UE2 measures CSI-RS2, but within the window [T2, T2+4] does not obtain resources, does not feed back to UE1, and discards the measurement result;
  • UE1 does not receive feedback until T2+4, so it no longer waits for feedback from UE2, and sends CSI-RS3 to UE2 at the subsequent time T3;
  • the above is only an example with a fixed window length of 4 slots.
  • the length can also be dynamically changed. For example, if the CBR measurement shows that the link is congested, a longer window is used (because it may be difficult for the UE to reserve Send resources), if the link is idle, then use a shorter window.
  • the first terminal For each received measurement result, the first terminal knows its associated CSI-RS;
  • the feedback overhead is low, and the measurement result feedback only needs to carry the measurement result itself, without any other information (for example, associated identification information, etc.);
  • control signaling overhead is low, and the control signaling (for example, SCI) indicating the measurement signal does not need to carry additional indications (for example, the allocation index in the SCI, etc.).
  • the associated information includes the identification information:
  • the identification information is used to correlate measurement signals, and the measurement signals associated with the measurement results include: measurement signals associated with the identification information; or
  • the identification information is used to correlate parameter information of a measurement signal, and the measurement signal associated with the measurement result includes: a measurement signal corresponding to the parameter information associated with the identification information.
  • the identification information used to correlate the measurement signal may be that the identification information is used to identify the measurement signal associated with the measurement result.
  • the identification information is used to associate a specific measurement signal, so that the first terminal can know which measurement signal is associated with the measurement result through the identification information, and whether the second terminal missed which measurement signal.
  • the identification information used to correlate the parameter information of the measurement signal may be that the identification information is used to identify the parameter information of the measurement signal associated with the measurement result, so that the specific measurement signal can be determined through the parameter information.
  • the above parameter information may include at least one of the following:
  • Time domain information frequency domain information, code domain information, identification, feedback window information, control signaling information, and the time interval relative to the transmission moment of the measurement result.
  • the above-mentioned time domain information may be the subframe, slot/sub-slot or symbol number of the measurement signal, etc.
  • the above-mentioned frequency domain information may be the starting physical resource block (PRB) or sub-channel of the measurement signal.
  • the above code domain information may be the sequence of the measurement signal or the scrambling sequence or the orthogonal mask (orthogonal cover code, OCC) sequence, etc.
  • the above feedback window information may be associated with the measurement signal
  • the information of the feedback window such as start time domain information, window length, etc., or control signaling information may be the allocation index in the SCI or the HARQ process number or the resource location or index of the SCI, etc.
  • the measurement signal associated with the measurement result can be determined by using at least one of the above parameters.
  • MOD modular operation
  • the obtaining the measurement result includes:
  • the measurement result message carrying one or more measurement results and identification information of each measurement result.
  • the payload of the measurement result message may carry one or more measurement results, and identification information of each measurement result, and the Payload has a fixed size or a variable size, wherein the Payload is a In the case of changing the size, the measurement result message also carries a quantity indication of the measurement result.
  • the payload of the measurement result can be designed in the following way:
  • a fixed-size payload regardless of the number of measurement results that the second terminal actually needs to feedback, the payload can be divided into N parts, and each part contains one or more measurement results and (optional) identification information associated with the measurement results .
  • each part can be arranged and constructed according to the time sequence or frequency domain sequence or type or grouping of the measurement results, and for the part without corresponding measurement results, the second terminal can fill in a special value (for example, an invalid value);
  • the payload of variable size can be the Media Access Control Control Element (MAC CE) or piggyback in the PSSCH; if it is MAC CE, MAC CE contains valid feedback measurement results Quantity indication, and identification information associated with each measurement result (optional) the measurement result; if piggyback is in the PSSCH, the feedback includes identification information associated with multiple measurement results and (optional) the measurement result; Or, the feedback includes a fixed-size part indicating the number of feedback results, and a variable-size part including identification information associated with each measurement result and (optionally) the measurement result.
  • MAC CE Media Access Control Control Element
  • piggyback in the PSSCH
  • the feedback includes identification information associated with multiple measurement results and (optional) the measurement result
  • the feedback includes a fixed-size part indicating the number of feedback results, and a variable-size part including identification information associated with each measurement result and (optionally) the measurement result.
  • the first terminal may obtain one or more measurement results. For example, after the first terminal sends a measurement signal, it waits for measurement feedback from the second terminal, and before receiving valid measurement feedback, the first terminal The terminal can still send a new measurement signal; after receiving the measurement signal, the second terminal feeds back the measurement result to the first terminal.
  • One feedback can carry one or more measurement results, and each result is associated with one or a group of identification information ( For example, ID).
  • the second terminal may feed back only one or part of the results.
  • the priority can be the time sequence of the associated measurement signal (for example, the earlier or later the measurement signal is sent, the higher the priority, etc.), or the indication in the scheduling indication (for example, SCI) QoS information, or the resource allocation properties of the measurement signal (for example, the larger the bandwidth of the measurement signal, the higher the priority).
  • the second terminal may also combine the measurement results of the group of measurement signals and feed back, for example, measure multiple measurement signals in the group, and perform operations such as averaging or filtering the results to obtain a combined measurement result and feed it back.
  • the above-mentioned parameter information overlap may be part or all of the above-mentioned at least one item of parameter information.
  • the second terminal can expect (or think, assume) that there is at least one time interval between the transmission of these two measurement signals, that is, a first terminal will not send the same identifier within a feedback window The measurement signal to the same second terminal.
  • the following is an example with the first terminal being UE1, the second terminal being UE2, and the measurement signal being CSI-RS, including the following:
  • UE1 and UE2 perform sidelink transmission, and UE1 configures CSI-RS measurement signals for UE2 to measure;
  • UE1 sends CSI-RS1 and CSI-RS2 to UE2 at T1 and T2 respectively, as shown in Figure 3;
  • UE2 obtains resources at T3 and T4, and feeds back the measurement results of CSI-RS1 and CSI-RS2 to UE1, as shown in Figure 3;
  • Each feedback result carries identification information of the measurement result and the associated CSI-RS, for example, the slot MOD P for sending the CSI-RS, or the initial sub-channel index MOD Q for sending the CSI-RS.
  • P and Q are predefined constants.
  • the first terminal For each received measurement result feedback, according to the identification information in the feedback, the first terminal knows the measurement signal associated with the measurement result. Whether the second terminal missed a certain CSI-RS or the first terminal did not receive a certain measurement feedback, the first terminal can find out which transmission failed;
  • the measurement signal transmission delay is low, and multiple measurement signals can be sent continuously for measurement, which is beneficial to improve the measurement accuracy;
  • control signaling overhead is low, and the control signaling (for example, SCI) indicating the measurement signal does not need to carry additional indications (for example, the allocation index in the SCI, etc.).
  • the first terminal is UE1
  • the second terminal is UE2
  • the measurement signal is CSI-RS for example, including the following content:
  • UE1 and UE2 perform sidelink transmission, and UE1 configures CSI-RS measurement signals for UE2 to measure;
  • UE1 sends CSI-RS1 and CSI-RS2 to UE2 at T1 and T2 respectively, as shown in Figure 4;
  • UE2 obtains the resource at time T3 and feeds back the measurement results of CSI-RS1 and CSI-RS2 to UE1 at the same time, as shown in Figure 4;
  • the feedback result carries a measurement result.
  • the measurement result is that UE2 combines the measurement results of CSI-RS1 and CSI-RS2 to obtain a better and more accurate result; for example, CSI-RS1 is occupied Sub-channels 0-9 and CSI-RS2 occupy sub-channels 10-19.
  • the wideband measurement results fed back by UE2 are more accurate than those based on CSI-RS1 or CSI-RS2 because they measure sub-channels 0-19.
  • the first terminal For each received measurement result feedback, according to the identification information in the feedback, the first terminal knows the measurement result associated with the measurement result. If the second terminal misses a certain measurement signal, the first terminal can find out which transmission was lost;
  • the measurement signal transmission delay is low, and multiple measurement signals can be sent continuously for measurement, which is beneficial to improve the measurement accuracy;
  • control signaling overhead is low, and the control signaling (for example, SCI) indicating the measurement signal does not need to carry additional indications (for example, the allocation index in the SCI, etc.).
  • the feedback resource for the measurement result is allocated when the first terminal sends the measurement signal, and the measurement signal associated with the measurement result includes:
  • the measurement signal corresponding to the feedback resource of the measurement result is the measurement signal corresponding to the feedback resource of the measurement result.
  • the measurement signal when the first terminal sends a measurement signal, the measurement signal is allocated as a feedback resource for the measurement result, so that the first terminal obtains the measurement result of the second terminal from the resource and uses the feedback of the measurement result.
  • Resources determine the measurement signal associated with the measurement result. For example, when the first terminal sends a measurement signal, it allocates resources for the second terminal to send measurement feedback.
  • the first terminal may indicate the measurement signal in the control signaling (for example, SCI, MAC CE, or RRC), and indicate ( Including reservation and allocation) sidelink resources are allocated to the second terminal.
  • the indicator measurement signal and the indicator resource may be the same or different control signaling, for example, the SCI indicates the measurement signal, and the MAC CE indicates the sidelink resource.
  • the identity of the second terminal may be carried in the signaling indicating resource reservation, for example, the MAC CE indicates the sidelink resource and the terminal transmitting feedback information on the resource at the same time.
  • the aforementioned feedback resources can be used to send data, and the measurement results are carried in the data feedback, so that resources can be saved.
  • the second terminal uses the resource to send data (which may be to the first terminal or other terminals, may be unicast or multicast, etc.), and at the same time uses the data to carry measurement feedback.
  • one or more measurement results can be carried in one feedback.
  • each result can be associated with one or a set of identification information. For details, please refer to the corresponding description of the above identification information implementation, which will not be repeated here.
  • the unrestricted feedback resource can be used to send data.
  • the above feedback resource can be used only to feed back measurement results, but not to send data.
  • the following is an example with the first terminal being UE1, the second terminal being UE2, and the measurement signal being CSI-RS, including the following:
  • UE1 and UE2 perform sidelink transmission, and UE1 configures CSI-RS measurement signals for UE2 to measure;
  • UE1 sends a PSSCH to UE2 at time T1, and indicates CSI-RS transmission in the SCI that schedules the PSSCH.
  • the SCI reserves the resources for subsequent time T2 for UE2;
  • UE2 receives the SCI, measures the CSI-RS, and feeds back the measurement result on the resource reserved by the SCI at time T2.
  • the first terminal knows the measurement signal associated with the measurement result. If the second terminal misses the transmission at time T1, the resources reserved by the first terminal at time T2 will not receive the data from the second terminal, so it can be found that the transmission is lost;
  • the measurement signal transmission delay is low, and multiple measurement signals can be sent continuously for measurement, which is beneficial to improve the measurement accuracy;
  • the association information includes the HARQ feedback information
  • the data sent by the first terminal carries a measurement signal
  • the measurement signal associated with the measurement result includes:
  • the measurement signal carried by the data corresponding to the HARQ feedback information of the measurement result is the measurement signal carried by the data corresponding to the HARQ feedback information of the measurement result.
  • the above-mentioned HARQ feedback information is HARQ feedback information for the data sent by the first terminal. Since the data sent by the first terminal carries measurement signals, and the feedback information is the HARQ feedback information sent together with the measurement results, the first After receiving the measurement result and HARQ feedback information, the terminal can determine the corresponding data, and then determine the corresponding measurement signal.
  • the first terminal sends Physical Sidelink Shared Channel (PSSCH) data, and carries measurement signals to the second terminal, and the first terminal can perform control signaling (for example, SCI, MAC CE, or RRC). ) Indicates PSSCH resources and measurement signals.
  • PSSCH Physical Sidelink Shared Channel
  • control signaling for example, SCI, MAC CE, or RRC.
  • the second terminal When the second terminal receives the PSSCH data, demodulates the PSSCH data, and measures the measurement signal associated with the PSSCH, then the second terminal simultaneously sends the HARQ feedback of the PSSCH data and the measurement feedback of the measurement signal associated with the PSSCH data.
  • the second terminal may use HARQ feedback physical sidelink feedback channel (Physical Sidelink Feedback Channel, PSFCH) resource for transmission, or carry it in PSSCH resource for transmission.
  • PSFCH Physical Sidelink Feedback Channel
  • multiple candidate PSFCHs may be pre-configured, and the second terminal selects one of the PSFCHs to feed back HARQ feedback information, and expresses the above measurement results through the PSFCH that feeds back HARQ feedback information, that is, the first terminal receives HARQ feedback information to obtain To the above measurement results.
  • PSFCH-0 and PSFCH-1 are pre-configured, and when the second terminal feeds back the measurement result, if the measurement result is 0, select PSFCH-0 to send HARQ feedback information to indicate the measurement result 0 through PSFCH-0, otherwise, select PSFCH-1 is sent to indicate measurement result 1 through PSFCH-1.
  • the above measurement result 0 and measurement result 1 may be a measurement result index, and the first terminal can determine the specific measurement result content through the index; of course, the specific value of the measurement result may also be 0 or 1.
  • the above measurement results 0 and 1 are only examples.
  • N candidate PSFCHs can be configured, which represents N measurement results.
  • one or more measurement results can be carried in one feedback.
  • each result can be associated with one or a set of identification information.
  • identification information please refer to the corresponding description of the above identification information implementation. , Do not repeat it here.
  • the first terminal receives the HARQ feedback and the measurement feedback, and can determine the measurement signal associated with the measurement feedback according to the associated PSSCH data transmission.
  • the following is an example with the first terminal being UE1, the second terminal being UE2, and the measurement signal being CSI-RS, including the following:
  • UE1 and UE2 perform sidelink transmission, and UE1 configures a CSI-RS measurement signal for UE2 to measure.
  • UE1 sends PSSCH to UE2 at time T1, and indicates CSI-RS transmission in the SCI that schedules the PSSCH
  • UE2 receives the SCI, demodulates the PSSCH, and measures the CSI-RS
  • UE2 carries the measurement result in the PSFCH channel used for HARQ feedback.
  • the first terminal For each received measurement result feedback, the first terminal knows the measurement signal associated with the measurement result. If the second terminal misses the transmission at time T1, the first terminal will not receive feedback from the second terminal at time T2, so it can be found that the transmission is lost;
  • the measurement signal transmission delay is low, and multiple measurement signals can be sent continuously for measurement, which is beneficial to improve the measurement accuracy;
  • the measurement signal sent by the first terminal is associated with a feedback window
  • the first terminal can still send new measurement signals before receiving valid measurement feedback
  • the second terminal After receiving the measurement signal, the second terminal feeds back the measurement result to the first terminal;
  • the second terminal can abandon part of the measurement results or feed back the combined measurement. For example, if the identifiers of the two signals are the same, they can abandon it, or take the average Signal measurement value. Or, if the second terminal receives multiple measurement signals sent by the first terminal within the window, the second terminal may carry one or more measurement results in one feedback, for example, the identifier of the measurement signal is different; in addition, each measurement result One piece of identification information can be associated.
  • the second terminal may discard the measurement result and not feed back the result to the first terminal.
  • a measurement result may be a measurement result of one or more measurement signals, that is, a measurement result may be associated with one or more Measure the signal.
  • the second terminal may measure the multiple measurement signals within the feedback window time to obtain one measurement result. This helps to improve the accuracy of wideband measurement.
  • the feedback of the measurement result can be carried in the PSSCH or transmitted in the PSFCH channel, or the measurement result can be expressed by the PSFCH selected and used by the second terminal.
  • the PSFCH selected and used by the second terminal please refer to the corresponding description of the above-mentioned pre-configured multiple candidate PSFCHs.
  • the present disclosure does not limit the specific implementation of feedback measurement results.
  • the sidelink measurement result acquisition method provided in some embodiments of the present disclosure can be used to feedback measurement results between terminals under sidelink, and can clarify the correlation between the measurement signal and the measurement result, thereby solving the problem that the measurement signal cannot be determined between the terminals.
  • the correlation with the measurement results leads to problems of link transmission adjustment errors and subsequent data transmission failures.
  • the correlation between the measurement signal and the measurement result can be determined by one or more of the following methods:
  • the measurement feedback contains one or more measurement reports, and each measurement report contains the measurement result and the identification information of the measurement signal associated with the result (for example, the initial PRB/sub-channel index of the CSI-RS);
  • the first terminal When the first terminal sends a measurement signal, it reserves resources for the second terminal to feed back the measurement result;
  • the second terminal When sending the data HARQ feedback, the second terminal multiplexes the measurement result and the HARQ feedback together for transmission.
  • FIG. 5 is a flowchart of a method for sending sidelink measurement results according to some embodiments of the present disclosure. The method is applied to a second terminal, as shown in FIG. 5, and includes the following steps:
  • Step 501 Send the measurement result of the sidelink, wherein the associated information of the measurement result corresponds to the measurement signal associated with the measurement result, and the associated information includes at least one of the following:
  • the HARQ feedback information is HARQ feedback information sent together with the measurement result, and the HARQ feedback information has a corresponding relationship with the measurement signal.
  • sending sidelink measurement results can be sending sidelink measurement results on sidelink, such as sending sidelink measurement results directly to the first terminal on sidelink, or sending sidelink measurement results to the control node Or other transit terminal, the control node or other transit terminal forwards the sidelink measurement result to the first terminal.
  • the measurement signal received by the second terminal is associated with at least one feedback window, and the measurement signal associated with the measurement result includes:
  • the measurement signal associated with the feedback window of the measurement result is the measurement signal associated with the feedback window of the measurement result.
  • the at least one feedback window associated with the measurement signal received by the second terminal includes:
  • At least one feedback window is started, wherein the attribute of the at least one feedback window is related to at least one of the following parameters:
  • Terminal processing capabilities resource pool configuration, BWP numerology, BWP SCS, carrier numerology, carrier SCS, cell numerology and cell SCS.
  • the attribute of the at least one feedback window is fixed, or the attribute of the at least one feedback window is dynamically adjusted according to the quality of service QoS requirement, the channel state or the link congestion condition.
  • the second terminal if the second terminal cannot feed back the measurement result within the at least one feedback window, discard the measurement result; and/or
  • the second terminal If the second terminal receives a new measurement signal in the at least one feedback window, the second terminal discards the measurement signal and measurement result corresponding to the at least one feedback window, and starts the new measurement signal association At least one feedback window of the feedback window, and feedback the measurement result of the new measurement signal.
  • the associated information includes the identification information:
  • the identification information is used to correlate measurement signals, and the measurement signals associated with the measurement results include: measurement signals associated with the identification information; or
  • the identification information is used to correlate parameter information of a measurement signal, and the measurement signal associated with the measurement result includes: a measurement signal corresponding to the parameter information associated with the identification information.
  • the parameter information includes at least one of the following:
  • Time domain information frequency domain information, code domain information, identification, feedback window information, control signaling information, and the time interval relative to the transmission moment of the measurement result.
  • At least one measurement result of the multiple measurement results is fed back, or the multiple measurement results are combined, and the combined measurement result is fed back.
  • the sending the measurement result includes:
  • the measurement result message carrying one or more measurement results and identification information of each measurement result.
  • the payload of the measurement result message carries one or more measurement results and identification information of each measurement result, and the payload has a fixed size or a variable size, where the payload is variable In the case of size, the measurement result message also carries a quantity indication of the measurement result.
  • the second terminal acquires the feedback resource with the measurement result when receiving the measurement signal, and the second terminal sends the feedback resource on the feedback resource.
  • the measurement result the association information includes the feedback resource
  • the feedback resource is used to send data, and the second terminal sends the data of the measurement result carried on the feedback resource.
  • the association information includes the HARQ feedback information
  • the data received by the second terminal carries a measurement signal, and the measurement result of the measurement signal is fed back together with the HARQ feedback information of the data.
  • this embodiment is used as an implementation on the second terminal side corresponding to the embodiment shown in FIG. 2.
  • the transmission performance of the sidelink can also be improved, and errors in sidelink transmission adjustment can also be avoided.
  • FIG. 6 is a structural diagram of a terminal provided by some embodiments of the present disclosure.
  • the terminal is the first terminal.
  • the terminal 600 includes:
  • the obtaining module 601 is configured to obtain a measurement result of the sidelink, and the associated information of the measurement result corresponds to the measurement signal associated with the measurement result; wherein the associated information includes at least one of the following:
  • the HARQ feedback information is HARQ feedback information sent together with the measurement result, and the HARQ feedback information has a corresponding relationship with the measurement signal.
  • the measurement signal sent by the first terminal is associated with at least one feedback window, and the measurement signal associated with the measurement result includes:
  • the measurement signal associated with the feedback window of the measurement result is the measurement signal associated with the feedback window of the measurement result.
  • the at least one feedback window associated with the measurement signal sent by the first terminal includes:
  • At least one feedback window is activated, wherein the attribute of the at least one feedback window is related to at least one of the following parameters:
  • Terminal processing capabilities resource pool configuration, BWP numerology, BWP SCS, carrier numerology, carrier SCS, cell numerology and cell SCS.
  • the attribute of the at least one feedback window is fixed, or the attribute of the at least one feedback window is dynamically adjusted according to the quality of service QoS requirement, the channel state or the link congestion condition.
  • the first terminal no longer waits for the measurement result of the measurement signal associated with the at least one feedback window.
  • the associated information includes the identification information:
  • the identification information is used to correlate measurement signals, and the measurement signals associated with the measurement results include: measurement signals associated with the identification information; or
  • the identification information is used to correlate parameter information of a measurement signal, and the measurement signal associated with the measurement result includes: a measurement signal corresponding to the parameter information associated with the identification information.
  • the parameter information includes at least one of the following:
  • Time domain information frequency domain information, code domain information, identification, feedback window information, control signaling information, and the time interval relative to the transmission moment of the measurement result.
  • the obtaining module 601 is configured to obtain a measurement result message, the measurement result message carrying one or more measurement results, and identification information of each measurement result .
  • the payload of the measurement result message carries one or more measurement results and identification information of each measurement result, and the payload is a fixed size or a variable size, where the payload is a variable size
  • the measurement result message also carries a quantity indication of the measurement result.
  • the feedback resource for the measurement result is allocated when the first terminal sends the measurement signal, and the measurement signal associated with the measurement result includes:
  • the measurement signal corresponding to the feedback resource of the measurement result is the measurement signal corresponding to the feedback resource of the measurement result.
  • the feedback resource is used to send data, and the measurement result is carried in the data feedback.
  • the association information includes the HARQ feedback information
  • the data sent by the first terminal carries a measurement signal
  • the measurement signal associated with the measurement result includes:
  • the measurement signal carried by the data corresponding to the HARQ feedback information of the measurement result is the measurement signal carried by the data corresponding to the HARQ feedback information of the measurement result.
  • the terminal provided by some embodiments of the present disclosure can implement each process implemented by the first terminal in the method embodiment of FIG. 2. In order to avoid repetition, details are not repeated here, and the transmission performance of sidelink can be improved, and sidelink transmission adjustment can also be avoided. Something went wrong.
  • FIG. 7 is a structural diagram of a terminal provided by some embodiments of the present disclosure.
  • the terminal is a second terminal.
  • the terminal 700 includes:
  • the sending module 701 is configured to send a sidelink measurement result, and the associated information of the measurement result corresponds to the measurement signal associated with the measurement result; wherein the associated information includes at least one of the following:
  • the HARQ feedback information is HARQ feedback information sent together with the measurement result, and the HARQ feedback information has a corresponding relationship with the measurement signal.
  • the measurement signal received by the second terminal is associated with at least one feedback window, and the measurement signal associated with the measurement result includes:
  • the measurement signal associated with the feedback window of the measurement result is the measurement signal associated with the feedback window of the measurement result.
  • the at least one feedback window associated with the measurement signal received by the second terminal includes:
  • At least one feedback window is started, wherein the attribute of the at least one feedback window is related to at least one of the following parameters:
  • Terminal processing capabilities resource pool configuration, BWP numerology, BWP SCS, carrier numerology, carrier SCS, cell numerology and cell SCS.
  • the attribute of the at least one feedback window is fixed, or the attribute of the at least one feedback window is dynamically adjusted according to the quality of service QoS requirement, the channel state or the link congestion condition.
  • the second terminal if the second terminal cannot feed back the measurement result within the at least one feedback window, discard the measurement result; and/or
  • the second terminal If the second terminal receives a new measurement signal in the at least one feedback window, the second terminal discards the measurement signal and measurement result corresponding to the at least one feedback window, and starts the new measurement signal association At least one feedback window of the feedback window, and feedback the measurement result of the new measurement signal.
  • the associated information includes the identification information:
  • the identification information is used to correlate measurement signals, and the measurement signals associated with the measurement results include: measurement signals associated with the identification information; or
  • the identification information is used to correlate parameter information of a measurement signal, and the measurement signal associated with the measurement result includes: a measurement signal corresponding to the parameter information associated with the identification information.
  • the parameter information includes at least one of the following:
  • Time domain information frequency domain information, code domain information, identification, feedback window information, control signaling information, and the time interval relative to the transmission moment of the measurement result.
  • At least one measurement result of the multiple measurement results is fed back, or the multiple measurement results are combined, and the combined measurement result is fed back.
  • the sending module 701 is configured to send a measurement result message, the measurement result message carrying one or more measurement results, and identification information of each measurement result .
  • the payload of the measurement result message carries one or more measurement results and identification information of each measurement result, and the payload is a fixed size or a variable size, where the payload is a variable size
  • the measurement result message also carries a quantity indication of the measurement result.
  • the second terminal acquires the feedback resource with the measurement result when receiving the measurement signal, and the second terminal sends the feedback resource on the feedback resource.
  • the measurement result the association information includes the feedback resource
  • the feedback resource is used to send data, and the second terminal sends the data of the measurement result carried on the feedback resource.
  • the association information includes the HARQ feedback information
  • the data received by the second terminal carries a measurement signal, and the measurement result of the measurement signal is fed back together with the HARQ feedback information of the data.
  • the terminal provided by some embodiments of the present disclosure can implement each process implemented by the first terminal in the method embodiment of FIG. 5. In order to avoid repetition, details are not repeated here, and the transmission performance of sidelink can be improved, and sidelink transmission adjustment can also be avoided. Error.
  • FIG. 8 is a schematic diagram of the hardware structure of a terminal that implements various embodiments of the present disclosure.
  • the terminal 800 includes but is not limited to: a radio frequency unit 801, a network module 802, an audio output unit 803, an input unit 804, a sensor 805, a display unit 806, a user input unit 807, an interface unit 808, a memory 809, a processor 810, and a power supply 811 and other components.
  • a radio frequency unit 801 includes but is not limited to: a radio frequency unit 801, a network module 802, an audio output unit 803, an input unit 804, a sensor 805, a display unit 806, a user input unit 807, an interface unit 808, a memory 809, a processor 810, and a power supply 811 and other components.
  • the terminal includes, but is not limited to, a mobile phone, a tablet computer, a notebook computer, a palmtop computer, a vehicle-mounted terminal, a robot, a wearable device, and a pedometer.
  • the radio frequency unit 801 is configured to obtain a sidelink measurement result, and the associated information of the measurement result corresponds to the measurement signal associated with the measurement result; wherein the associated information includes at least one of the following:
  • the HARQ feedback information is HARQ feedback information sent together with the measurement result, and the HARQ feedback information has a corresponding relationship with the measurement signal.
  • the measurement signal sent by the first terminal is associated with at least one feedback window, and the measurement signal associated with the measurement result includes:
  • the measurement signal associated with the feedback window of the measurement result is the measurement signal associated with the feedback window of the measurement result.
  • the at least one feedback window associated with the measurement signal sent by the first terminal includes:
  • At least one feedback window is started, wherein the attribute of the at least one feedback window is related to at least one of the following parameters:
  • Terminal processing capabilities resource pool configuration, BWP numerology, BWP SCS, carrier numerology, carrier SCS, cell numerology and cell SCS.
  • the attribute of the at least one feedback window is fixed, or the attribute of the at least one feedback window is dynamically adjusted according to the quality of service QoS requirement, the channel state or the link congestion condition.
  • the first terminal no longer waits for the measurement result of the measurement signal associated with the at least one feedback window.
  • the associated information includes the identification information:
  • the identification information is used to correlate measurement signals, and the measurement signals associated with the measurement results include: measurement signals associated with the identification information; or
  • the identification information is used to correlate parameter information of a measurement signal, and the measurement signal associated with the measurement result includes: a measurement signal corresponding to the parameter information associated with the identification information.
  • the parameter information includes at least one of the following:
  • Time domain information frequency domain information, code domain information, identification, feedback window information, control signaling information, and the time interval relative to the transmission moment of the measurement result.
  • the obtaining the measurement result includes:
  • the measurement result message carrying one or more measurement results and identification information of each measurement result.
  • the payload of the measurement result message carries one or more measurement results and identification information of each measurement result, and the payload has a fixed size or a variable size, where the payload is variable In the case of size, the measurement result message also carries a quantity indication of the measurement result.
  • the feedback resource for the measurement result is allocated when the first terminal sends the measurement signal, and the measurement signal associated with the measurement result includes:
  • the measurement signal corresponding to the feedback resource of the measurement result is the measurement signal corresponding to the feedback resource of the measurement result.
  • the feedback resource is used to send data, and the measurement result is carried in the data feedback.
  • the HARQ feedback information is HARQ feedback information sent together with the measurement result, and the data sent by the first terminal carries the measurement signal, so
  • the measurement signals associated with the measurement results include:
  • the measurement signal carried by the data corresponding to the HARQ feedback information of the measurement result is the measurement signal carried by the data corresponding to the HARQ feedback information of the measurement result.
  • the radio frequency unit 801 is configured to send sidelink measurement results, and the associated information of the measurement results corresponds to the measurement signal associated with the measurement results; wherein the associated information includes at least one of the following:
  • the HARQ feedback information is HARQ feedback information sent together with the measurement result, and the HARQ feedback information has a corresponding relationship with the measurement signal.
  • the measurement signal received by the second terminal is associated with at least one feedback window, and the measurement signal associated with the measurement result includes:
  • the measurement signal associated with the feedback window of the measurement result is the measurement signal associated with the feedback window of the measurement result.
  • the at least one feedback window associated with the measurement signal received by the second terminal includes:
  • At least one feedback window is started, wherein the attribute of the at least one feedback window is related to at least one of the following parameters:
  • Terminal processing capabilities resource pool configuration, BWP numerology, BWP SCS, carrier numerology, carrier SCS, cell numerology and cell SCS.
  • the attribute of the at least one feedback window is fixed, or the attribute of the at least one feedback window is dynamically adjusted according to the quality of service QoS requirement, the channel state or the link congestion condition.
  • the second terminal if the second terminal cannot feed back the measurement result within the at least one feedback window, discard the measurement result; and/or
  • the second terminal If the second terminal receives a new measurement signal in the at least one feedback window, the second terminal discards the measurement signal and measurement result corresponding to the at least one feedback window, and starts the new measurement signal association At least one feedback window of the feedback window, and feedback the measurement result of the new measurement signal.
  • the associated information includes the identification information:
  • the identification information is used to correlate measurement signals, and the measurement signals associated with the measurement results include: measurement signals associated with the identification information; or
  • the identification information is used to correlate parameter information of a measurement signal, and the measurement signal associated with the measurement result includes: a measurement signal corresponding to the parameter information associated with the identification information.
  • the parameter information includes at least one of the following:
  • Time domain information frequency domain information, code domain information, identification, feedback window information, control signaling information, and the time interval relative to the transmission moment of the measurement result.
  • At least one measurement result of the multiple measurement results is fed back, or the multiple measurement results are combined, and the combined measurement result is fed back.
  • the sending the measurement result includes:
  • the measurement result message carrying one or more measurement results and identification information of each measurement result.
  • the payload of the measurement result message carries one or more measurement results and identification information of each measurement result, and the payload has a fixed size or a variable size, where the payload is variable In the case of size, the measurement result message also carries a quantity indication of the measurement result.
  • the second terminal acquires the feedback resource with the measurement result when receiving the measurement signal, and the second terminal sends the feedback resource on the feedback resource.
  • the measurement result the association information includes the feedback resource
  • the feedback resource is used to send data, and the second terminal sends the data of the measurement result carried on the feedback resource.
  • the association information includes the HARQ feedback information
  • the data received by the second terminal carries a measurement signal, and the measurement result of the measurement signal is fed back together with the HARQ feedback information of the data.
  • the above terminal can improve the transmission performance of the sidelink, and can also avoid errors in the sidelink transmission adjustment.
  • the radio frequency unit 801 can be used to receive and send signals during the process of sending and receiving information or talking. Specifically, the downlink data from the base station is received and processed by the processor 810; in addition, , Send the uplink data to the base station.
  • the radio frequency unit 801 includes, but is not limited to, an antenna, at least one amplifier, a transceiver, a coupler, a low noise amplifier, a duplexer, and the like.
  • the radio frequency unit 801 can also communicate with the network and other devices through a wireless communication system.
  • the terminal provides users with wireless broadband Internet access through the network module 802, such as helping users to send and receive emails, browse web pages, and access streaming media.
  • the audio output unit 803 can convert the audio data received by the radio frequency unit 801 or the network module 802 or stored in the memory 809 into audio signals and output them as sounds. Moreover, the audio output unit 803 may also provide audio output related to a specific function performed by the terminal 800 (for example, call signal reception sound, message reception sound, etc.).
  • the audio output unit 803 includes a speaker, a buzzer, a receiver, and the like.
  • the input unit 804 is used to receive audio or video signals.
  • the input unit 804 may include a graphics processing unit (GPU) 8041 and a microphone 8042.
  • the graphics processor 8041 is configured to monitor images of still pictures or videos obtained by an image capture device (such as a camera) in the video capture mode or the image capture mode. Data is processed.
  • the processed image frame may be displayed on the display unit 806.
  • the image frame processed by the graphics processor 8041 may be stored in the memory 809 (or other storage medium) or sent via the radio frequency unit 801 or the network module 802.
  • the microphone 8042 can receive sound, and can process such sound into audio data.
  • the processed audio data can be converted into a format that can be sent to the mobile communication base station via the radio frequency unit 801 for output in the case of a telephone call mode.
  • the terminal 800 further includes at least one sensor 805, such as a light sensor, a motion sensor, and other sensors.
  • the light sensor includes an ambient light sensor and a proximity sensor.
  • the ambient light sensor can adjust the brightness of the display panel 8061 according to the brightness of the ambient light.
  • the proximity sensor can close the display panel 8061 and/or when the terminal 800 is moved to the ear. Or backlight.
  • the accelerometer sensor can detect the magnitude of acceleration in various directions (usually three-axis), and can detect the magnitude and direction of gravity when stationary, and can be used to identify terminal posture (such as horizontal and vertical screen switching, related games, Magnetometer attitude calibration), vibration recognition related functions (such as pedometer, percussion), etc.; sensor 805 can also include fingerprint sensor, pressure sensor, iris sensor, molecular sensor, gyroscope, barometer, hygrometer, thermometer, infrared Sensors, etc., will not be repeated here.
  • the display unit 806 is used to display information input by the user or information provided to the user.
  • the display unit 806 may include a display panel 8061, and the display panel 8061 may be configured in the form of a liquid crystal display (LCD), an organic light-emitting diode (OLED), etc.
  • LCD liquid crystal display
  • OLED organic light-emitting diode
  • the user input unit 807 can be used to receive inputted numeric or character information and generate key signal inputs related to user settings and function control of the terminal.
  • the user input unit 807 includes a touch panel 8071 and other input devices 8072.
  • the touch panel 8071 also called a touch screen, can collect user touch operations on or near it (for example, the user uses any suitable objects or accessories such as fingers, stylus, etc.) on the touch panel 8071 or near the touch panel 8071. operating).
  • the touch panel 8071 may include two parts: a touch detection device and a touch controller.
  • the touch detection device detects the user's touch position, detects the signal brought by the touch operation, and transmits the signal to the touch controller; the touch controller receives the touch information from the touch detection device, converts it into contact coordinates, and then sends it To the processor 810, the command sent by the processor 810 is received and executed.
  • the touch panel 8071 can be implemented in multiple types such as resistive, capacitive, infrared, and surface acoustic wave.
  • the user input unit 807 may also include other input devices 8072.
  • other input devices 8072 may include, but are not limited to, a physical keyboard, function keys (such as volume control buttons, switch buttons, etc.), trackball, mouse, and joystick, which will not be repeated here.
  • the touch panel 8071 can cover the display panel 8061.
  • the touch panel 8071 detects a touch operation on or near it, it transmits it to the processor 810 to determine the type of the touch event.
  • the type of event provides corresponding visual output on the display panel 8061.
  • the touch panel 8071 and the display panel 8061 are used as two independent components to realize the input and output functions of the terminal, in some embodiments, the touch panel 8071 and the display panel 8061 can be integrated. Realize the input and output functions of the terminal, which are not limited here.
  • the interface unit 808 is an interface for connecting an external device with the terminal 800.
  • the external device may include a wired or wireless headset port, an external power source (or battery charger) port, a wired or wireless data port, a memory card port, a port for connecting a device with an identification module, audio input/output (I/O) port, video I/O port, headphone port, etc.
  • the interface unit 808 can be used to receive input (for example, data information, power, etc.) from an external device and transmit the received input to one or more elements in the terminal 800 or can be used to communicate between the terminal 800 and the external device. Transfer data between.
  • the memory 809 can be used to store software programs and various data.
  • the memory 809 may mainly include a program storage area and a data storage area.
  • the program storage area may store an operating system, an application program required by at least one function (such as a sound playback function, an image playback function, etc.), etc.; Data (such as audio data, phone book, etc.) created by the use of mobile phones.
  • the memory 809 may include a high-speed random access memory, and may also include a non-volatile memory, such as at least one magnetic disk storage device, a flash memory device, or other volatile solid-state storage devices.
  • the processor 810 is the control center of the terminal. It uses various interfaces and lines to connect the various parts of the entire terminal. It executes by running or executing software programs and/or modules stored in the memory 809, and calling data stored in the memory 809. Various functions of the terminal and processing data, so as to monitor the terminal as a whole.
  • the processor 810 may include one or more processing units; optionally, the processor 810 may integrate an application processor and a modem processor.
  • the application processor mainly processes the operating system, user interface, and application programs, etc.
  • the adjustment processor mainly deals with wireless communication. It can be understood that the foregoing modem processor may not be integrated into the processor 810.
  • the terminal 800 may also include a power source 811 (such as a battery) for supplying power to various components.
  • a power source 811 such as a battery
  • the power source 811 may be logically connected to the processor 810 through a power management system, so as to manage charging, discharging, and power consumption management through the power management system And other functions.
  • the terminal 800 includes some functional modules not shown, which will not be repeated here.
  • some embodiments of the present disclosure further provide a terminal, including a processor 810, a memory 809, a computer program stored on the memory 809 and capable of running on the processor 810, and the computer program is executed by the processor 810.
  • a terminal including a processor 810, a memory 809, a computer program stored on the memory 809 and capable of running on the processor 810, and the computer program is executed by the processor 810.
  • Some embodiments of the present disclosure further provide a computer-readable storage medium on which a computer program is stored.
  • the computer program is executed by a processor, the sidelink measurement result acquisition method provided by some embodiments of the present disclosure is implemented or, when the computer program is executed by the processor, the steps in the sidelink measurement result sending method provided by some embodiments of the present disclosure are implemented, and the same technical effect can be achieved. To avoid repetition, details are not repeated here.
  • the computer readable storage medium such as read-only memory (Read-Only Memory, ROM for short), random access memory (Random Access Memory, RAM for short), magnetic disk or optical disk, etc.
  • modules, units, sub-modules, sub-units, etc. can be implemented in one or more application specific integrated circuits (ASICs), digital signal processors (Digital Signal Processing, DSP), digital signal processing equipment ( DSP Device, DSPD), Programmable Logic Device (PLD), Field-Programmable Gate Array (Field-Programmable Gate Array, FPGA), general-purpose processors, controllers, microcontrollers, microprocessors, Other electronic units or combinations thereof that perform the functions described in this application.
  • ASICs application specific integrated circuits
  • DSP Digital Signal Processing
  • DSP Device digital signal processing equipment
  • PLD Programmable Logic Device
  • Field-Programmable Gate Array Field-Programmable Gate Array
  • FPGA Field-Programmable Gate Array
  • the technical solution of the present disclosure essentially or the part that contributes to the existing technology can be embodied in the form of a software product, and the computer software product is stored in a storage medium (such as ROM/RAM, magnetic disk, The optical disc) includes several instructions to make a terminal (which can be a mobile phone, a computer, a server, an air conditioner, or a network device, etc.) execute the methods described in the various embodiments of the present disclosure.
  • a terminal which can be a mobile phone, a computer, a server, an air conditioner, or a network device, etc.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Physics & Mathematics (AREA)
  • Mathematical Physics (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本公开实施例提供一种sidelink测量结果获取方法、发送方法和终端,该方法包括:获取sidelink的测量结果,所述测量结果的关联信息与所述测量结果关联的测量信号对应;其中,所述关联信息包括如下至少一项:反馈窗口、标识信息、反馈资源和HARQ反馈信息,所述HARQ反馈信息为与所述测量结果一起发送的HARQ反馈信息,且所述HARQ反馈信息与测量信号具有对应关系。

Description

旁链路测量结果获取方法、发送方法和终端
相关申请的交叉引用
本申请主张在2019年8月8日在中国提交的中国专利申请号No.201910731324.5的优先权,其全部内容通过引用包含于此。
技术领域
本公开涉及通信技术领域,尤其涉及一种sidelink测量结果获取方法、发送方法和终端。
背景技术
一些通信系统中支持旁链路(sidelink,或译为副链路、侧链路、边链路、直接通信链路等)传输,即终端之间可以直接在物理层上进行数据传输。进一步的,在一些通信系统(例如:5G通信系统中)支持在sidelink进行单播、组播和广播通信,以支持更加全面的业务类型。但sidelink主要是进行数据传输,不支持sidelink的测量,从而使得sidelink的传输性能比较差。
发明内容
本公开实施例提供一种sidelink测量结果获取方法、发送方法和终端,以解决sidelink的传输性能比较差的问题。
第一方面,本公开的一些实施例提供一种sidelink测量结果获取方法,应用于第一终端,包括:
获取sidelink的测量结果,所述测量结果的关联信息与所述测量结果关联的测量信号对应;其中,所述关联信息包括如下至少一项:
反馈窗口、标识信息、反馈资源和混合自动重传请求(Hybrid Automatic Repeat Request,HARQ)反馈信息,所述HARQ反馈信息为与所述测量结果一起发送的HARQ反馈信息,且所述HARQ反馈信息与测量信号具有对应关系。
第二方面,本公开的一些实施例提供一种sidelink测量结果发送方法,应 用于第二终端,包括:
发送sidelink的测量结果,所述测量结果的关联信息与所述测量结果关联的测量信号对应;其中,所述关联信息包括如下至少一项:
反馈窗口、标识信息、反馈资源和HARQ反馈信息,所述HARQ反馈信息为与所述测量结果一起发送的HARQ反馈信息,且所述HARQ反馈信息与测量信号具有对应关系。
第三方面,本公开的一些实施例提供一种终端,所述终端为第一终端,包括:
获取模块,用于获取sidelink的测量结果,所述测量结果的关联信息与所述测量结果关联的测量信号对应;其中,所述关联信息包括如下至少一项:
反馈窗口、标识信息、反馈资源和HARQ反馈信息,所述HARQ反馈信息为与所述测量结果一起发送的HARQ反馈信息,且所述HARQ反馈信息与测量信号具有对应关系。
第四方面,本公开的一些实施例提供一种终端,所述终端为第二终端,包括:
发送模块,用于发送sidelink的测量结果,所述测量结果的关联信息与所述测量结果关联的测量信号对应;其中,所述关联信息包括如下至少一项:
反馈窗口、标识信息、反馈资源和HARQ反馈信息,所述HARQ反馈信息为与所述测量结果一起发送的HARQ反馈信息,且所述HARQ反馈信息与测量信号具有对应关系。
第五方面,本公开的一些实施例提供一种终端,所述终端为第一终端,包括:存储器、处理器及存储在所述存储器上并可在所述处理器上运行的程序,所述程序被所述处理器执行时实现本公开的一些实施例提供的sidelink测量结果获取方法中的步骤。
第六方面,本公开的一些实施例提供一种终端,所述终端为第二终端,包括:存储器、处理器及存储在所述存储器上并可在所述处理器上运行的程序,所述程序被所述处理器执行时实现本公开的一些实施例提供的sidelink测量结果发送方法中的步骤。
第七方面,本公开的一些实施例提供一种计算机可读存储介质,所述计 算机可读存储介质上存储有计算机程序,所述计算机程序被处理器执行时实现本公开的一些实施例提供的sidelink测量结果获取方法中的步骤,或者,所述计算机程序被处理器执行时实现本公开的一些实施例提供的sidelink测量结果发送方法中的步骤。
本公开的一些实施例中,获取sidelink的测量结果,所述测量结果的关联信息与所述测量结果关联的测量信号对应;其中,所述关联信息包括如下至少一项:反馈窗口、标识信息、反馈资源和HARQ反馈信息,所述HARQ反馈信息为与所述测量结果一起发送的HARQ反馈信息,且所述HARQ反馈信息与测量信号具有对应关系。从而可以实现对sidelink进行测量,并依据测量结果的关联信息确定所述测量结果的关联的测量信号,从而提高sidelink的传输性能,且还可以避免sidelink传输调整出错。
附图说明
图1是本公开的一些实施例可应用的网络系统的结构图;
图2是本公开的一些实施例提供的sidelink测量结果获取方法的流程图;
图3是本公开的一些实施例提供的sidelink测量结果反馈的示意图;
图4是本公开的一些实施例提供的sidelink测量结果反馈的另一示意图;
图5是本公开的一些实施例提供的sidelink测量结果发送方法的流程图;
图6是本公开的一些实施例提供的终端的结构图;
图7是本公开的一些实施例提供的终端的另一结构图;以及
图8是本公开的一些实施例提供的终端的另一结构图。
具体实施方式
下面将结合本公开实施例中的附图,对本公开实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本公开一部分实施例,而不是全部的实施例。基于本公开中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本公开保护的范围。
本申请的说明书和权利要求书中的术语“包括”以及它的任何变形,意图在于覆盖不排他的包含,例如,包含了一系列步骤或单元的过程、方法、 系统、产品或设备不必限于清楚地列出的那些步骤或单元,而是可包括没有清楚地列出的或对于这些过程、方法、产品或设备固有的其它步骤或单元。此外,说明书以及权利要求中使用“和/或”表示所连接对象的至少其中之一,例如A和/或B,表示包含单独A,单独B,以及A和B都存在三种情况。
在本公开实施例中,“示例性的”或者“例如”等词用于表示作例子、例证或说明。本公开实施例中被描述为“示例性的”或者“例如”的任何实施例或设计方案不应被解释为比其它实施例或设计方案更优选或更具优势。确切而言,使用“示例性的”或者“例如”等词旨在以具体方式呈现相关概念。
下面结合附图介绍本公开的实施例。本公开的一些实施例提供的sidelink测量结果获取方法、发送方法和终端可以应用于无线通信系统中。该无线通信系统可以为5G系统,或者演进型长期演进(Evolved Long Term Evolution,eLTE)系统或者长期演进(Long Term Evolution,LTE)系统,或者后续演进通信系统等。
请参见图1,图1是本公开的一些实施例可应用的一种网络系统的结构图,如图1所示,包括终端11、终端12和控制节点13,其中,终端11和终端12之间可以通过PC5接口并使用sidelink通信,控制节点13和终端(包含终端11和终端12)之间可以通过空口(Uu)接口并使用上下行链路(uplink and downlink)进行通信。终端11和终端12可以是用户终端(User Equipment,UE)或者其他终端侧设备,例如:手机、平板电脑(Tablet Personal Computer)、膝上型电脑(Laptop Computer)、个人数字助理(personal digital assistant,PDA)、移动上网装置(Mobile Internet Device,MID)、可穿戴式设备(Wearable Device)、智能汽车、车载设备或者机器人等终端侧设备,需要说明的是,在本公开的一些实施例中并不限定终端的具体类型。上述控制节点13可以是网络设备,例如:4G基站,或者5G基站,或者以后版本的基站,或者其他通信系统中的基站,或者称之为节点B,演进节点B,或者传输接收点(Transmission Reception Point,TRP),或者接入点(Access Point,AP),或者所述领域中其他词汇,只要达到相同的技术效果,所述网络设备不限于特定技术词汇。或者,上述控制节点13可以是一些集成接入回程节点 (Integrated Access Backhaul,IAB),还可以是一些sidelink终端、中继(relay),路边单元(Road Side Unit,RSU),当然,也可以是一些类似RSU或者IAB的其他网络设施。进一步的,一些控制节点13可能支持sidelink或Uu链路,也可能同时支持sidelink和Uu链路,对此本公开的一些实施例不作限定。需要说明的是,在本公开的一些实施例中并不限定控制节点13的具体类型。
请参见图2,图2是本公开的一些实施例提供的一种sidelink测量结果获取方法的流程图,该方法第一终端,如图2所示,包括以下步骤:
步骤201、获取sidelink的测量结果,所述测量结果的关联信息与所述测量结果关联的测量信号对应;其中,所述关联信息包括如下至少一项:
反馈窗口、标识信息、反馈资源和HARQ反馈信息,所述HARQ反馈信息为与所述测量结果一起发送的HARQ反馈信息,且所述HARQ反馈信息与测量信号具有对应关系。
其中,上述第一终端为发送上述测量信号的终端。
上述sidelink的测量结果是指针对sidelink进行测量得到的测量结果,上述测量信号是在sidelink发送的测量信号。而获取sidelink的测量结果可以是在sidelink上接收sidelink的测量结果,例如:上述测量结果可以是接收第二终端在sidelink上发送的测量结果,第二终端为接收上述测量信号的终端;或者,可以是接收第二终端之外的其他节点发送的sidelink的测量结果,如接收控制节点或者其他中转终端转发的sidelink的测量结果,具体如第二终端将sidelink的测量结果发送给控制节点或者其他中转终端,由控制节点或者其他中转终端向第一终端转发sidelink的测量结果。
而上述测量结果的关联信息与所述测量结果关联的测量信号对应可以是,上述关联信息与上述测量信号存在对应关系,具体可以理解为,该关联信息可以识别出上述测量结果,或者测量结果关联的测量信号包括上述关联信息对应的测量信号。从而上述第一终端可以使用上述关联信息识别出上述测量结果关联的测量信号,进而避免sidelink传输调整出错,进而避免后续数据传输失败,以提高sidelink的传输性能。
需要说明的是,由于上述关联信息与上述测量信号对应,从而上述关联信息也可以理解为上述测量信号的关联信息,只是,第一终端可以通过获取 上述测量结果得到该关联信息,以识别测量信号。
另外,本公开的一些实施例中,测量信号可以是信道状态指示参考信号(Channel state indication reference signal,CSI-RS)、解调参考信号(Demodulation Reference Signal,DMRS)和旁链路系统信息块(Sidelink System Information Block,S-SSB)等等测量信号中的至少一项;而测量结果可以是信道状态指示(Channel state indication,CSI)、信道质量指示(Channel Quality Indication,CQI)、预编码矩阵指示(Precoding Matrix Indicator,PMI)、CSI-RS资源指示(CSI-RS resource indicator,CRI)、同步块资源指示(SS/PSBCH Block Resource indicator,SSBRI)、层指示(Layer Indicator,LI)、秩指示(Rank Indication,RI)和参考信号接收功率(Reference Signal Receiving Power,RSRP)等中的至少一项。
其中,上述反馈窗口可以是上述测量结果所在的反馈窗口,该窗口可以是一个时域窗口,这些反馈窗口与测量信号关联,例如:预先配置好反馈窗口与测量信号的对应关系,或者在发送测量信号时启动反馈窗口。
而上述标识信息可以是上述测量结果关联的一个或者多个标识信息,例如:测量结果携带的,或者发送测量结果的消息中包括测量结果和标识信息,这些标识信息与测量信号关联,例如:这些标识信息可以用于指示测量信号;
而上述反馈资源可以是上述测量结果反馈所使用的资源,这些资源可以是频域或者时域或者码域资源中的一个或多个,且这些反馈资源与测量信号关联,例如:这些反馈资源与测量信号预先配置有对应关系,或者这些反馈资源是测量信号发送时分配;
其中,上述HARQ反馈信息为与所述测量结果一起发送的HARQ反馈信息可以是测量结果携带的,或者发送测量结果的消息中包括测量结果和HARQ反馈信息。而上述HARQ反馈信息与测量信号具有对应关系可以是:上述HARQ反馈信息对应的数据的类型或者标识与测量信号具备有对应有关系,或者上述HARQ反馈信息对应的数据传输与测量信号由相同的控制信令指示,或者上述HARQ反馈信息的传输与测量信号由相同的控制信令指示,或者上述HARQ反馈信息对应的数据与测量信号一起发送,或者上述HARQ反馈信息对应的数据携带有测量信号等。
本公开的一些实施例中,通过上述步骤可以实现对sidelink进行测量,并依据测量结果的上述关联信息确定所述测量结果的关联的测量信号,从而提高sidelink的传输性能,且还可以避免sidelink传输调整出错。
下面分别对反馈窗口、标识信息、反馈资源和HARQ反馈信息进行详细说明:
可选的,在所述关联信息包括所述反馈窗口的情况下,所述第一终端发送的测量信号关联至少一个反馈窗口,所述测量结果关联的测量信号,包括:
所述测量结果的反馈窗口关联的测量信号。
该实施方式中,第一终端发送测量信号时,每个测量信号关联有至少一个反馈窗口,例如:对于测量信号,关联至少一个反馈窗口,窗口长度为N,用于接收测量反馈。这样,当接收到测量结果,就可以通过测量结果所在反馈窗口,确定其关联的测量信号。
在一种实现方式中,上述第一终端发送的测量信号关联至少一个反馈窗口可以包括:
所述第一终端发送的测量信号后,启动的至少一个反馈窗口,其中,所述至少一个反馈窗口的属性可以与如下至少一项参数相关:
终端处理能力、资源池配置、带宽部分(Band Width Part,BWP)的参数集(numerology)、BWP的子载波间隔(subcarrier spacing,SCS)、载波的numerology、载波的SCS、小区的numerology和小区的SCS。
其中,上述属性可以包括反馈窗口的起始时间和窗口长度中的至少一项。
上述终端处理能力可以是上述第一终端的处理能力或者第二终端的处理能力,上述资源池配置可以是上述sidelink的资源池配置,上述BWP、载波和小区可以是上述sidelink的BWP、载波和小区。
上述属性与上述至少一项参数相关可以是,上述属性由上述至少一项确定,例如:窗口长度N不小于终端的处理时延,或者,窗口的起始时间T为测量信号发送时间+终端的处理时延,或者,不同BWP、载波或资源池配置,或不同的numerology可以有不同的处理时延或窗口长度,或者不同终端类型可以有不同的处理时延或窗口长度。
需要说明的是,上述参数与属性的关系可以预先配置,或者控制节点指 示等。另外,一个参数可以是与一个属性值对应的,或者一个参数可以是与一个属性值范围或者属性参考值对应。
在一种实现方式中,所述至少一个反馈窗口的属性固定不变,或者,所述至少一个反馈窗口的属性根据服务质量(Quality of Service,QoS)需求、信道状态或链路拥塞情况动态调整。
其中,上述QoS需求可以是优先级、时延、可靠度要求等等,而上述链路拥塞情况可以是信道繁忙比率(channel busy ratio,CBR)或信道占用比率(Channel occupancy ratio,CR)测量结果等等。
另外,上述反馈窗口的属性固定不变可以是,针对一个参数对应的属性固定不变,例如:一个参数对应一个属性值;而上述动态调整可以是,针对一个参数对应的属性可以动态调整,例如:一个参数对应一个属性值范围或者属性参考值,可以在该范围内动态调整,或者基于该属性参考值动态调整。
例如:对于某个参数(资源池配置或载波或numerology等等),反馈窗口的窗口长度可以是固定长度的,例如,由协议定义或网络配置确定;或可变长度,如根据QoS需求或信道状态或链路拥塞情况动态调整窗长(例如,当链路拥塞时,使用更长的窗口)。
需要说明的是,本公开的一些实施例中,反馈窗口的时间单位粒度可以是无线帧、子帧、时隙(slot)、子时隙(sub-slot)、符号(symbol)等等,窗口长度可以是基于系统时间(system frame number,SFN),sidelink时间(direct frame number,DFN),或资源池的有效时域信息等等。
另外,反馈窗口可以是由控制节点配置,或者在发送终端和接收终端间直接协商,或协议定义或预配置等等。
在一种实现方式中,若所述至少一个反馈窗口超时,且未获取到测量结果,则所述第一终端不再等待所述至少一个反馈窗口关联的测量信号的测量结果。
这样可以实现,在反馈窗口内未接收到测量结果,则确定该测量信号的反馈结果反馈失败,从而不再等待,以避免第一终端继续等待浪费资源。
例如:第一终端发送测量信号后,在T时刻启动反馈窗口;
其中,在T+N的窗口内等待接收终端的测量反馈,且可以是启动长度为 N的定时器;
当满足以下任一条件时,第一终端认为窗口时间已过:
如果第一终端在窗口内收到至少一个有效的测量反馈,则认为窗口时间已过,此时可以停止定时器;
如果超过窗口时间,第一终端仍然没有收到测量反馈,则认为窗口时间已过,此时可以确认定时器发生超时。
如果超过窗口时间,则不再等待第一终端关联该测量信号的反馈。
进一步的,在上述测量信号的至少一个反馈窗口内,第一终端不发送第二个测量信号。
而第二终端在收到测量信号后,可以在窗口内(T+N时刻内)反馈测量结果。例如:可以启动长度为N的定时器,并在发送反馈后停止该定时器,如果第二终端在该窗口内无法反馈(例如,由于没能获取sidelink资源进行传输,或由于半双工限制无法发送反馈,或反馈发送失败,或功率受限无法发送反馈,等等),则第二终端可以丢弃该测量结果,不在窗口外反馈。另外,如果定时器超时仍然没有发送成功,也可以丢弃该测量结果。
如果第二终端在窗口内接收到第一终端发送的新的测量信号,第二终端可以放弃之前收到的测量信号与测量结果,重新确定窗口起始时间,并在窗口内反馈关联新的测量信号的测量结果。例如:可以重启长度为N的定时器。
需要说明的是,本公开的一些实施例中,发送测量信号的资源,可以是第一终端通过资源感知(sensing)、预留获取的,也可以是控制节点分配的。而发送测量反馈的资源,可以是第二终端通过资源感知(sensing)、预留获取的,也可以是控制节点分配的。
下面以第一终端为UE1,第二终端为UE2,测量信号为CSI-RS进行举例说明,包括以下内容:
1、UE1与UE2进行sidelink传输,UE1配置了CSI-RS测量信号给UE2测量,反馈窗口长度为4个slot;
2、UE1在T1时刻发送CSI-RS1,等待UE2反馈;
3、UE2对CSI-RS1进行测量,在T1+3时刻获取到资源,向UE1反馈CSI-RS1的测量结果;
4、UE1在T2时刻发送CSI-RS2,等待UE2反馈;
5、UE2对CSI-RS2进行测量,但在窗口内[T2,T2+4]没有获取到资源,没有向UE1反馈,并丢弃该测量结果;
6、UE1到T2+4为止没有收到反馈,从而不再等待UE2的反馈,在后续T3时刻发送CSI-RS3给UE2;
其中,上述仅是以窗口长度固定为4个slot进行举例说明,该长度也可以动态变化,例如,如果CBR测量显示链路拥塞,则使用较长的窗口(因为此时UE可能难以预留到发送资源),如果链路较空闲,则则使用较短的窗口。
需要说明的是,通过反馈窗口的方式,可以达到如下效果:
对于每一个收到的测量结果,第一终端都清楚它关联的CSI-RS;
反馈开销低,测量结果反馈只需要携带测量结果本身,不需要任何其他信息(例如,关联的标识信息等等);
控制信令开销低,指示测量信号的控制信令(例如,SCI)不需要携带额外指示(例如,SCI中的分配索引等)。
可选的,在所述关联信息包括所述标识信息的情况下:
所述标识信息用于关联测量信号,所述测量结果关联的测量信号包括:所述标识信息关联的测量信号;或者
所述标识信息用于关联测量信号的参数信息,所述测量结果关联的测量信号包括:所述标识信息关联的参数信息对应的测量信号。
其中,上述标识信息用于关联测量信号可以是,上述标识信息用于识别出测量结果关联的测量信号。例如:标识信息用于关联一个特定的测量信号,从而第一终端可以通过该标识信息得知测量结果与哪个测量信号关联,以及第二终端是否漏检了哪个测量信号。
而上述标识信息用于关联测量信号的参数信息可以是,上述标识信息用于识别出测量结果关联的测量信号的参数信息,从而通过该参数信息可以确定具体的测量信号。
其中,上述参数信息可以包括如下至少一项:
时域信息、频域信息、码域信息、标识、反馈窗口信息、控制信令信息和相对于所述测量结果的传输时刻的时间间隔。
其中,上述时域信息可以是测量信号的子帧、slot/sub-slot或symbol编号等等,而上述频域信息可以是测量信号的起始物理资源模块(Physical Resource Block,PRB)或子信道索引(sub-channel index)等等,上述码域信息可以是测量信号的序列或加扰序列或正交掩码(orthogonal cover code,OCC)序列等等,上述反馈窗口信息可以是测量信号关联的反馈窗口的信息,如起始时域信息、窗口长度等等,或控制信令信息可以是SCI中的分配索引或HARQ进程号或SCI的资源位置或index等等。
该实施方式中,可以通过上述至少一项参数确定测量结果关联的测量信号。
另外,为了减少开销,上述标识信息可以是上述至少一项参数信息经过特定运算的结果,例如:对slot index或sub-channel index求模运算(MOD)的结果,例如:上述标识信息=slot index mod K,K是定义/(预)配置的。
可选的,在所述关联信息包括所述标识信息的情况下,所述获取测量结果,包括:
获取测量结果消息,所述测量结果消息携带有一个或者多个测量结果,以及每个测量结果的标识信息。
其中,所述测量结果消息的载荷(Payload)可以携带一个或者多个测量结果,以及每个测量结果的标识信息,且所述Payload为固定大小或者可变大小,其中,在所述Payload为可变大小的情况下,所述测量结果消息还携带有测量结果的数量指示。
这样,可以实现如果第二终端反馈测量结果时,一次反馈中可以携带多个测量结果,则可以用以下方式设计测量结果的payload:
一、固定大小的Payload,不管第二终端实际需要反馈的测量结果的数量,Payload可以分成N个部分,每个部分包含一个或多个测量结果与(可选的)该测量结果关联的标识信息。另外,可以按照测量结果的时间顺序或频域顺序或类型或分组等排列构造,且对于没有对应测量结果的部分,第二终端可以填充一个特殊值(例如,无效值);
二、可变大小的payload,可以是媒体接入控制层控制单元(Media Access Control Control Element,MAC CE)或携带(piggyback)在PSSCH中;如 果是MAC CE,MAC CE包含有效的反馈测量结果的数量指示,以及每个测量结果与(可选的)该测量结果关联的标识信息;如果piggyback在PSSCH中,则反馈中包含多个测量结果与(可选的)该测量结果关联的标识信息;或者,反馈中包含一个固定大小部分,指示反馈结果的数量,以及一个可变大小的部分,包含每个测量结果与(可选的)该测量结果关联的标识信息。
例如:在上述步骤201中第一终端可以获取到一个或者多个测量结果,例如:第一终端在发送测量信号后,等待第二终端的测量反馈,且在收到有效测量反馈前,第一终端仍然可以发送新的测量信号;第二终端在收到测量信号后,向第一终端反馈测量结果,一次反馈中可以携带一个或多个测量结果,每个结果关联一个或一组标识信息(例如,ID)。
进一步的,如果有测量结果关联的标识信息相同,第二终端可以只反馈其中一个或部分结果。例如:可以按优先级排序选择,优先级可以是关联的测量信号的时间顺序(例如,越早或越晚发送的测量信号,优先级越高等等),或调度指示(例如,SCI)中指示的QoS信息,或测量信号的资源分配属性(例如,测量信号的带宽越大,则优先级越高)。
或者,第二终端也可以合并该组测量信号的测量结果并反馈,例如,对该组内的多个测量信号进行测量,将结果经过平均或滤波等操作得到一个合并的测量结果并反馈。
进一步的,有所述参数信息重叠的多个测量信号的发送时间存在时间间隔,这样在一些场景中,有效地避免反馈错误。其中,上述参数信息重叠可以是上述至少一个项参数信息中的部分或者全部重叠,例如:如果两个测量信号间有部分或者全部属性重叠(例如,测量信号包含了相同的带宽、PRB、sub-channel或起始频域位置等),则第二终端可以预期(或认为、假设)这两个测量信号的发送至少有一个时间间隔,即一个第一终端在一个反馈窗口内不会发送相同标识的测量信号给同一个第二终端。
下面以第一终端为UE1,第二终端为UE2,测量信号为CSI-RS进行举例说明,包括以下内容:
1、UE1与UE2进行sidelink传输,UE1配置了CSI-RS测量信号给UE2测量;
2、UE1在T1、T2时刻分别发送CSI-RS1、CSI-RS2给UE2,如图3所示;
3、UE2在T3、T4时刻获取到资源,向UE1反馈CSI-RS1、CSI-RS2的测量结果,如图3所示;
4、每个反馈结果中携带了测量结果与关联的CSI-RS的标识信息,例如,发送CSI-RS的slot MOD P,或发送CSI-RS的起始sub-channel index MOD Q。P、Q是预定义的常量。
需要说明的是,通过标识信息的方式,可以达到如下效果:
对于每一个收到的测量结果反馈,根据反馈中的标识信息,第一终端都清楚该测量结果关联的测量信号。不管是第二终端漏检了某一个CSI-RS,还是第一终端没收到某一个测量反馈,第一终端都能够发现具体是哪个传输失败了;
测量信号发送延迟低,可以连续发送多个测量信号用于测量,有利于提高测量精度;
控制信令开销低,指示测量信号的控制信令(例如,SCI)不需要携带额外指示(例如,SCI中的分配索引等)。
下面再以第一终端为UE1,第二终端为UE2,测量信号为CSI-RS进行举例说明,包括以下内容:
1、UE1与UE2进行sidelink传输,UE1配置了CSI-RS测量信号给UE2测量;
2、UE1在T1、T2时刻分别发送CSI-RS1、CSI-RS2给UE2,如图4所示;
3.UE2在T3时刻获取到资源,向UE1同时反馈CSI-RS1、CSI-RS2的测量结果,如图4所示;
其中,反馈结果中携带了反馈的测量结果的数量(=2),以及每个测量结果与关联的CSI-RS的标识信息;
或者,还有一种情况是反馈结果中携带了一个测量结果,该测量结果是UE2合并了CSI-RS1与CSI-RS2的测量结果,从而获得更好更精确的结果;例如,CSI-RS1占用了子信道0-9,CSI-RS2占用了子信道10-19,UE2反 馈的宽带(wideband)测量结果由于测量了子信道0-19,因而比单独基于CSI-RS1或CSI-RS2更为准确。
需要说明的是,通过标识信息的方式,可以达到如下效果:
对于每一个收到的测量结果反馈,根据反馈中的标识信息,第一终端都清楚该测量结果关联的测量结果。如果第二终端漏检了某一个测量信号,第一终端可以发现具体是哪个传输丢失了;
测量信号发送延迟低,可以连续发送多个测量信号用于测量,有利于提高测量精度;
控制信令开销低,指示测量信号的控制信令(例如,SCI)不需要携带额外指示(例如,SCI中的分配索引等)。
可选的,在所述关联信息包括所述反馈资源的情况下,所述第一终端发送测量信号时分配有测量结果的反馈资源,所述测量结果关联的测量信号,包括:
所述测量结果的反馈资源对应的测量信号。
该实施方式中,可以是第一终端在发送测量信号时,为该测量信号分配为测量结果的反馈资源,从而第一终端从该资源获取第二终端的测量结果,并通过测量结果使用的反馈资源,确定测量结果关联的测量信号。例如:第一终端发送测量信号时,为第二终端分配资源用于发送测量反馈,第一终端可以是在控制信令(例如,SCI,MAC CE,或RRC)中指示测量信号,同时指示(包括预留、分配)了sidelink资源给第二终端。
另外,指示测量信号与指示资源可以是相同或不同的控制信令,例如SCI指示测量信号,而MAC CE指示sidelink资源。且第二终端的标识可以携带在指示资源预留的信令中,例如MAC CE同时指示sidelink资源和在该资源上传输反馈信息的终端。
进一步的,上述反馈资源可以用于发送数据,所述测量结果携带在所述数据反馈,这样可以节约资源。
例如:第二终端使用该资源发送数据(可以是给第一终端或其他终端,可以是单播或组播等等),并同时使用数据携带测量反馈。且一次反馈中可以携带一个或多个测量结果,当携带多个结果时,每个结果可以关联一个或一 组标识信息,具体可以参见上述标识信息的实施方式的相应说明,此处不作赘述。
需要说明的是,不作限定反馈资源可以用于发送数据,例如:上述反馈资源可以是仅用于反馈测量结果,而不用于发送数据。
下面以第一终端为UE1,第二终端为UE2,测量信号为CSI-RS进行举例说明,包括以下内容:
1、UE1与UE2进行sidelink传输,UE1配置了CSI-RS测量信号给UE2测量;
2、UE1在T1时刻给UE2发送PSSCH,在调度该PSSCH的SCI中指示有CSI-RS发送,同时,该SCI预留了后续T2时刻的资源给UE2;
3、UE2收到该SCI,对CSI-RS进行测量,并在T2时刻在SCI预留的资源反馈测量结果。
需要说明的是,通过反馈资源的方式,可以达到如下效果:
对于每一个收到的测量结果反馈,第一终端都清楚该测量结果关联的测量信号。如果第二终端漏检了T1时刻的传输,第一终端在T2时刻预留的资源不会收到第二终端的数据,因此可以发现传输丢失了;
测量信号发送延迟低,可以连续发送多个测量信号用于测量,有利于提高测量精度;
反馈开销低。
可选的,在所述关联信息包括所述HARQ反馈信息的情况下,所述第一终端发送的数据携带测量信号,所述测量结果关联的测量信号,包括:
所述测量结果的HARQ反馈信息对应的数据所携带的测量信号。
其中,上述HARQ反馈信息是对第一终端发送的数据的HARQ反馈信息,由于第一终端发送的数据携带有测量信号,且反馈信息为与所述测量结果一起发送的HARQ反馈信息,这样第一终端接收到测量结果和HARQ反馈信息,就可以确定对应的数据,进而确定对应的测量信号。
例如:第一终端发送物理旁链路共享信道(Physical Sidelink Shared Channel,PSSCH)数据,并携带测量信号给第二终端,且第一终端可以在控制信令(例如,SCI,MAC CE,或RRC)中指示PSSCH资源以及测量信号。
当第二终端接收到该PSSCH数据,并解调PSSCH数据,测量PSSCH关联的测量信号,之后,第二终端同时发送该PSSCH数据的HARQ反馈以及关联该PSSCH数据的测量信号的测量反馈。其中,第二终端可以使用HARQ反馈的物理旁链路反馈信道(Physical Sidelink Feedback Channel,PSFCH)资源进行发送,或携带在PSSCH资源中发送。
另外,还可以是预先配置多个候选的PSFCH,第二终端选择其中一个PSFCH反馈HARQ反馈信息,通过反馈HARQ反馈信息的PSFCH来表示上述测量结果,即第一终端通过接收HARQ反馈信息,以获取到上述测量结果。例如,预先配置了PSFCH-0与PSFCH-1,第二终端反馈测量结果时,如果反馈测量结果0,选择PSFCH-0发送HARQ反馈信息,以通过PSFCH-0来表示测量结果0,否则,选择PSFCH-1发送,以通过PSFCH-1来表示测量结果1。
需要说明的是,上述测量结果0和测量结果1可以是一种测量结果索引,第一终端通过该索引可以确定具体的测量结果内容;当然,也可以是测量结果具体值为0或者为1,且上述测量结果0和1仅是举例说明,例如:可以配置N个候选的PSFCH,这样表示N个测量结果。
同样,该实施方式中,一次反馈中可以携带一个或多个测量结果,当携带多个结果时,每个结果可以关联一个或一组标识信息,具体可以参见上述标识信息的实施方式的相应说明,此处不作赘述。
第一终端接收HARQ反馈以及测量反馈,根据关联的PSSCH数据传输可以确定该测量反馈关联的测量信号。
下面以第一终端为UE1,第二终端为UE2,测量信号为CSI-RS进行举例说明,包括以下内容:
1、UE1与UE2进行sidelink传输,UE1配置了CSI-RS测量信号给UE2测量。
2、UE1在T1时刻给UE2发送PSSCH,在调度该PSSCH的SCI中指示有CSI-RS发送
3、UE2收到该SCI,对PSSCH进行解调,并对CSI-RS进行测量
4.UE2在T2时刻,在用于HARQ反馈的PSFCH信道中一起携带测 量结果。
需要说明的是,通过HARQ反馈信息的方式,可以达到如下效果:
对于每一个收到的测量结果反馈,第一终端都清楚该测量结果关联的测量信号。如果第二终端漏检了T1时刻的传输,第一终端在T2时刻不会收到第二终端的反馈,因此可以发现传输丢失了;
测量信号发送延迟低,可以连续发送多个测量信号用于测量,有利于提高测量精度;
反馈开销低。
需要说明的是,上述反馈窗口、标识信息、反馈资源和HARQ反馈信息的实施方式是可以相互结合实现的,例如:以反馈窗口和标识信息相结合为例:
第一终端发送的测量信号关联一个反馈窗口;
且第一终端在收到有效测量反馈前,仍然可以发送新的测量信号;
第二终端在收到测量信号后,向第一终端反馈测量结果;
如果第二终端在窗口内接收到第一终端发送多个测量信号,则第二终端可以放弃部分测量结果,或反馈合并的测量,例如:如果两个信号的标识相同,可以放弃,或者取平均信号测量值。或者,如果第二终端在窗口内接收到第一终端发送多个测量信号,第二终端可以一次反馈中可以携带一个或多个测量结果,例如,测量信号的标识不同;另外,每个测量结果可以关联一个标识信息。
且如果测量结果超过反馈窗口,则第二终端可以丢弃该测量结果,不向第一终端反馈该结果。
需要说明的是,本公开的一些实施例中,一次测量结果(或者称作一个测量结果)可以是对一个或多个测量信号的测量结果,也就是说,一个测量结果可以关联一个或者多个测量信号。当测量结果关联多个测量信号时,第二终端可以在反馈窗口时间内测量多个测量信号来获得一个测量结果。从而有利于提高宽带(wideband)测量的精度。
另外,测量结果的反馈可以是携带在PSSCH中,或在PSFCH信道中传输,或者可以通过第二终端选择并使用的PSFCH来表示测量结果,具体可以 参见上述预先配置多个候选的PSFCH的相应说明,本公开并不作限定反馈测量结果的具体实现方式。
本公开的一些实施例中提供的sidelink测量结果获取方法,可以用于sidelink下终端之间反馈测量结果,可以明确测量信号与测量结果之间的关联关系,从而解决了终端间由于无法确定测量信号与测量结果之间的关联关系,导致链路传输调整出错以及后续数据传输失败的问题。
具体可以通过以下一个或多个方法确定测量信号与测量结果之间的关联关系:
1、对于测量信号定义反馈窗口,第二终端只在反馈窗口内反馈测量结果;
2、测量反馈中包含一个或多个测量报告,每个测量报告包含测量结果以及该结果关联的测量信号的标识信息(例如,CSI-RS的起始PRB/sub-channel index);
3、第一终端在发送测量信号时,为第二终端预留资源用于反馈测量结果;
4、第二终端在发送数据HARQ反馈时,把测量结果与HARQ反馈复用在一起发送。
请参见图5,图5是本公开的一些实施例提供的一种sidelink测量结果发送方法的流程图,该方法应用于第二终端,如图5所示,包括以下步骤:
步骤501、发送sidelink的测量结果,其中,所述测量结果的关联信息与所述测量结果关联的测量信号对应,所述关联信息包括如下至少一项:
反馈窗口、标识信息、反馈资源和HARQ反馈信息,所述HARQ反馈信息为与所述测量结果一起发送的HARQ反馈信息,且所述HARQ反馈信息与测量信号具有对应关系。
需要说明的是,上述发送sidelink的测量结果可以是,在sidelink上发送sidelink的测量结果,如在sidelink上向第一终端直接发送sidelink的测量结果,或者可以是将sidelink的测量结果发送给控制节点或者其他中转终端,由控制节点或者其他中转终端向第一终端转发sidelink的测量结果。
可选的,在所述关联信息包括所述反馈窗口的情况下,所述第二终端接收的测量信号关联至少一个反馈窗口,所述测量结果关联的测量信号,包括:
所述测量结果的反馈窗口关联的测量信号。
可选的,所述第二终端接收的测量信号关联至少一个反馈窗口包括:
所述第二终端接收的测量信号后,启动的至少一个反馈窗口,其中,所述至少一个反馈窗口的属性与如下至少一项参数相关:
终端处理能力、资源池配置、BWP的numerology、BWP的SCS、载波的numerology、载波的SCS、小区的numerology和小区的SCS。
可选的,所述至少一个反馈窗口的属性固定不变,或者,所述至少一个反馈窗口的属性根据服务质量QoS需求、信道状态或链路拥塞情况动态调整。
可选的,若所述第二终端在所述至少一个反馈窗口内无法反馈测量结果,则丢弃所述测量结果;和/或
若所述第二终端在所述至少一个反馈窗口接收到新的测量信号,则所述第二终端丢弃所述至少一个反馈窗口对应的测量信号和测量结果,并开启所述新的测量信号关联的至少一个反馈窗口,以及反馈所述新的测量信号的测量结果。
可选的,在所述关联信息包括所述标识信息的情况下:
所述标识信息用于关联测量信号,所述测量结果关联的测量信号包括:所述标识信息关联的测量信号;或者
所述标识信息用于关联测量信号的参数信息,所述测量结果关联的测量信号包括:所述标识信息关联的参数信息对应的测量信号。
可选的,所述参数信息包括如下至少一项:
时域信息、频域信息、码域信息、标识、反馈窗口信息、控制信令信息和相对于所述测量结果的传输时刻的时间间隔。
可选的,有所述参数信息重叠的多个测量信号的发送时间存在时间间隔。
可选的,若存在标识信息相同的多个测量结果,则反馈所述多个测量结果中的至少一个测量结果,或者将所述多个测量结果合并,并反馈合并后的测量结果。
可选的,在所述关联信息包括所述标识信息的情况下,所述发送测量结果,包括:
发送测量结果消息,所述测量结果消息携带有一个或者多个测量结果,以及每个测量结果的标识信息。
可选的,所述测量结果消息的载荷Payload携带一个或者多个测量结果,以及每个测量结果的标识信息,且所述Payload为固定大小或者可变大小,其中,在所述Payload为可变大小的情况下,所述测量结果消息还携带有测量结果的数量指示。
可选的,在所述关联信息包括所述反馈资源的情况下,所述第二终端接收测量信号时获取有所述测量结果的所述反馈资源,所述第二终端在所述反馈资源发送所述测量结果。
可选的,所述反馈资源用于发送数据,所述第二终端在所述反馈资源上发送携带的所述测量结果的数据。
可选的,在所述关联信息包括所述HARQ反馈信息的情况下,所述第二终端接收的数据携带测量信号,所述测量信号的测量结果与所述数据的HARQ反馈信息一起反馈。
需要说明的是,本实施例作为与图2所示的实施例中对应的第二终端侧的实施方式,其具体的实施方式可以参见图2所示的实施例的相关说明,以为避免重复说明,本实施例不再赘述。本实施例中,同样可以提高sidelink的传输性能,且还可以避免sidelink传输调整出错。
请参见图6,图6是本公开的一些实施例提供的一种终端的结构图,该终端为第一终端,如图6所示,终端600,包括:
获取模块601,用于获取sidelink的测量结果,所述测量结果的关联信息与所述测量结果关联的测量信号对应;其中,所述关联信息包括如下至少一项:
反馈窗口、标识信息、反馈资源和HARQ反馈信息,所述HARQ反馈信息为与所述测量结果一起发送的HARQ反馈信息,且所述HARQ反馈信息与测量信号具有对应关系。
可选的,在所述关联信息包括所述反馈窗口的情况下,所述第一终端发送的测量信号关联至少一个反馈窗口,所述测量结果关联的测量信号,包括:
所述测量结果的反馈窗口关联的测量信号。
可选的,所述第一终端发送的测量信号关联至少一个反馈窗口包括:
所述第一终端发送的测量信号后,启动的至少一个反馈窗口,其中,所 述至少一个反馈窗口的属性与如下至少一项参数相关:
终端处理能力、资源池配置、BWP的numerology、BWP的SCS、载波的numerology、载波的SCS、小区的numerology和小区的SCS。
可选的,所述至少一个反馈窗口的属性固定不变,或者,所述至少一个反馈窗口的属性根据服务质量QoS需求、信道状态或链路拥塞情况动态调整。
可选的,若所述至少一个反馈窗口超时,且未获取到测量结果,则所述第一终端不再等待所述至少一个反馈窗口关联的测量信号的测量结果。
可选的,在所述关联信息包括所述标识信息的情况下:
所述标识信息用于关联测量信号,所述测量结果关联的测量信号包括:所述标识信息关联的测量信号;或者
所述标识信息用于关联测量信号的参数信息,所述测量结果关联的测量信号包括:所述标识信息关联的参数信息对应的测量信号。
可选的,所述参数信息包括如下至少一项:
时域信息、频域信息、码域信息、标识、反馈窗口信息、控制信令信息和相对于所述测量结果的传输时刻的时间间隔。
可选的,有所述参数信息重叠的多个测量信号的发送时间存在时间间隔。
可选的,在所述关联信息包括所述标识信息的情况下,获取模块601用于获取测量结果消息,所述测量结果消息携带有一个或者多个测量结果,以及每个测量结果的标识信息。
可选的,所述测量结果消息的Payload携带一个或者多个测量结果,以及每个测量结果的标识信息,且所述Payload为固定大小或者可变大小,其中,在所述Payload为可变大小的情况下,所述测量结果消息还携带有测量结果的数量指示。
可选的,在所述关联信息包括所述反馈资源的情况下,所述第一终端发送测量信号时分配有测量结果的反馈资源,所述测量结果关联的测量信号,包括:
所述测量结果的反馈资源对应的测量信号。
可选的,所述反馈资源用于发送数据,所述测量结果携带在所述数据反馈。
可选的,在所述关联信息包括所述HARQ反馈信息的情况下,所述第一终端发送的数据携带测量信号,所述测量结果关联的测量信号,包括:
所述测量结果的HARQ反馈信息对应的数据所携带的测量信号。
本公开的一些实施例提供的终端能够实现图2的方法实施例中第一终端实现的各个过程,为避免重复,这里不再赘述,且可以提高sidelink的传输性能,且还可以避免sidelink传输调整出错。
请参见图7,图7是本公开的一些实施例提供的一种终端的结构图,该终端为第二终端,如图7所示,终端700包括:
发送模块701,用于发送sidelink的测量结果,所述测量结果的关联信息与所述测量结果关联的测量信号对应;其中,所述关联信息包括如下至少一项:
反馈窗口、标识信息、反馈资源和HARQ反馈信息,所述HARQ反馈信息为与所述测量结果一起发送的HARQ反馈信息,且所述HARQ反馈信息与测量信号具有对应关系。
可选的,在所述关联信息包括所述反馈窗口的情况下,所述第二终端接收的测量信号关联至少一个反馈窗口,所述测量结果关联的测量信号,包括:
所述测量结果的反馈窗口关联的测量信号。
可选的,所述第二终端接收的测量信号关联至少一个反馈窗口包括:
所述第二终端接收的测量信号后,启动的至少一个反馈窗口,其中,所述至少一个反馈窗口的属性与如下至少一项参数相关:
终端处理能力、资源池配置、BWP的numerology、BWP的SCS、载波的numerology、载波的SCS、小区的numerology和小区的SCS。
可选的,所述至少一个反馈窗口的属性固定不变,或者,所述至少一个反馈窗口的属性根据服务质量QoS需求、信道状态或链路拥塞情况动态调整。
可选的,若所述第二终端在所述至少一个反馈窗口内无法反馈测量结果,则丢弃所述测量结果;和/或
若所述第二终端在所述至少一个反馈窗口接收到新的测量信号,则所述第二终端丢弃所述至少一个反馈窗口对应的测量信号和测量结果,并开启所述新的测量信号关联的至少一个反馈窗口,以及反馈所述新的测量信号的测 量结果。
可选的,在所述关联信息包括所述标识信息的情况下:
所述标识信息用于关联测量信号,所述测量结果关联的测量信号包括:所述标识信息关联的测量信号;或者
所述标识信息用于关联测量信号的参数信息,所述测量结果关联的测量信号包括:所述标识信息关联的参数信息对应的测量信号。
可选的,所述参数信息包括如下至少一项:
时域信息、频域信息、码域信息、标识、反馈窗口信息、控制信令信息和相对于所述测量结果的传输时刻的时间间隔。
可选的,有所述参数信息重叠的多个测量信号的发送时间存在时间间隔。
可选的,若存在标识信息相同的多个测量结果,则反馈所述多个测量结果中的至少一个测量结果,或者将所述多个测量结果合并,并反馈合并后的测量结果。
可选的,在所述关联信息包括所述标识信息的情况下,发送模块701用于发送测量结果消息,所述测量结果消息携带有一个或者多个测量结果,以及每个测量结果的标识信息。
可选的,所述测量结果消息的Payload携带一个或者多个测量结果,以及每个测量结果的标识信息,且所述Payload为固定大小或者可变大小,其中,在所述Payload为可变大小的情况下,所述测量结果消息还携带有测量结果的数量指示。
可选的,在所述关联信息包括所述反馈资源的情况下,所述第二终端接收测量信号时获取有所述测量结果的所述反馈资源,所述第二终端在所述反馈资源发送所述测量结果。
可选的,所述反馈资源用于发送数据,所述第二终端在所述反馈资源上发送携带的所述测量结果的数据。
可选的,在所述关联信息包括所述HARQ反馈信息的情况下,所述第二终端接收的数据携带测量信号,所述测量信号的测量结果与所述数据的HARQ反馈信息一起反馈。
本公开的一些实施例提供的终端能够实现图5的方法实施例中第一终端 实现的各个过程,为避免重复,这里不再赘述,且可以提高sidelink的传输性能,且还可以避免sidelink传输调整出错。
图8为实现本公开各个实施例的一种终端的硬件结构示意图,
该终端800包括但不限于:射频单元801、网络模块802、音频输出单元803、输入单元804、传感器805、显示单元806、用户输入单元807、接口单元808、存储器809、处理器810、以及电源811等部件。本领域技术人员可以理解,图8中示出的终端结构并不构成对终端的限定,终端可以包括比图示更多或更少的部件,或者组合某些部件,或者不同的部件布置。在本公开的一些实施例中,终端包括但不限于手机、平板电脑、笔记本电脑、掌上电脑、车载终端、机器人、可穿戴设备、以及计步器等。
在上述终端为第一终端的情况下:
射频单元801,用于获取sidelink的测量结果,所述测量结果的关联信息与所述测量结果关联的测量信号对应;其中,所述关联信息包括如下至少一项:
反馈窗口、标识信息、反馈资源和HARQ反馈信息,所述HARQ反馈信息为与所述测量结果一起发送的HARQ反馈信息,且所述HARQ反馈信息与测量信号具有对应关系。
可选的,在所述关联信息包括所述反馈窗口的情况下,所述第一终端发送的测量信号关联至少一个反馈窗口,所述测量结果关联的测量信号,包括:
所述测量结果的反馈窗口关联的测量信号。
可选的,所述第一终端发送的测量信号关联至少一个反馈窗口包括:
所述第一终端发送的测量信号后,启动的至少一个反馈窗口,其中,所述至少一个反馈窗口的属性与如下至少一项参数相关:
终端处理能力、资源池配置、BWP的numerology、BWP的SCS、载波的numerology、载波的SCS、小区的numerology和小区的SCS。
可选的,所述至少一个反馈窗口的属性固定不变,或者,所述至少一个反馈窗口的属性根据服务质量QoS需求、信道状态或链路拥塞情况动态调整。
可选的,若所述至少一个反馈窗口超时,且未获取到测量结果,则所述第一终端不再等待所述至少一个反馈窗口关联的测量信号的测量结果。
可选的,在所述关联信息包括所述标识信息的情况下:
所述标识信息用于关联测量信号,所述测量结果关联的测量信号包括:所述标识信息关联的测量信号;或者
所述标识信息用于关联测量信号的参数信息,所述测量结果关联的测量信号包括:所述标识信息关联的参数信息对应的测量信号。
可选的,所述参数信息包括如下至少一项:
时域信息、频域信息、码域信息、标识、反馈窗口信息、控制信令信息和相对于所述测量结果的传输时刻的时间间隔。
可选的,有所述参数信息重叠的多个测量信号的发送时间存在时间间隔。
可选的,在所述关联信息包括所述标识信息的情况下,所述获取测量结果,包括:
获取测量结果消息,所述测量结果消息携带有一个或者多个测量结果,以及每个测量结果的标识信息。
可选的,所述测量结果消息的载荷Payload携带一个或者多个测量结果,以及每个测量结果的标识信息,且所述Payload为固定大小或者可变大小,其中,在所述Payload为可变大小的情况下,所述测量结果消息还携带有测量结果的数量指示。
可选的,在所述关联信息包括所述反馈资源的情况下,所述第一终端发送测量信号时分配有测量结果的反馈资源,所述测量结果关联的测量信号,包括:
所述测量结果的反馈资源对应的测量信号。
可选的,所述反馈资源用于发送数据,所述测量结果携带在所述数据反馈。
可选的,在所述关联信息包括所述HARQ反馈信息的情况下,所述HARQ反馈信息为与所述测量结果一起发送的HARQ反馈信息,所述第一终端发送的数据携带测量信号,所述测量结果关联的测量信号,包括:
所述测量结果的HARQ反馈信息对应的数据所携带的测量信号。
在上述终端为第二终端的情况下:
射频单元801,用于发送sidelink的测量结果,所述测量结果的关联信息 与所述测量结果关联的测量信号对应;其中,所述关联信息包括如下至少一项:
反馈窗口、标识信息、反馈资源和HARQ反馈信息,所述HARQ反馈信息为与所述测量结果一起发送的HARQ反馈信息,且所述HARQ反馈信息与测量信号具有对应关系。
可选的,在所述关联信息包括所述反馈窗口的情况下,所述第二终端接收的测量信号关联至少一个反馈窗口,所述测量结果关联的测量信号,包括:
所述测量结果的反馈窗口关联的测量信号。
可选的,所述第二终端接收的测量信号关联至少一个反馈窗口包括:
所述第二终端接收的测量信号后,启动的至少一个反馈窗口,其中,所述至少一个反馈窗口的属性与如下至少一项参数相关:
终端处理能力、资源池配置、BWP的numerology、BWP的SCS、载波的numerology、载波的SCS、小区的numerology和小区的SCS。
可选的,所述至少一个反馈窗口的属性固定不变,或者,所述至少一个反馈窗口的属性根据服务质量QoS需求、信道状态或链路拥塞情况动态调整。
可选的,若所述第二终端在所述至少一个反馈窗口内无法反馈测量结果,则丢弃所述测量结果;和/或
若所述第二终端在所述至少一个反馈窗口接收到新的测量信号,则所述第二终端丢弃所述至少一个反馈窗口对应的测量信号和测量结果,并开启所述新的测量信号关联的至少一个反馈窗口,以及反馈所述新的测量信号的测量结果。
可选的,在所述关联信息包括所述标识信息的情况下:
所述标识信息用于关联测量信号,所述测量结果关联的测量信号包括:所述标识信息关联的测量信号;或者
所述标识信息用于关联测量信号的参数信息,所述测量结果关联的测量信号包括:所述标识信息关联的参数信息对应的测量信号。
可选的,所述参数信息包括如下至少一项:
时域信息、频域信息、码域信息、标识、反馈窗口信息、控制信令信息和相对于所述测量结果的传输时刻的时间间隔。
可选的,有所述参数信息重叠的多个测量信号的发送时间存在时间间隔。
可选的,若存在标识信息相同的多个测量结果,则反馈所述多个测量结果中的至少一个测量结果,或者将所述多个测量结果合并,并反馈合并后的测量结果。
可选的,在所述关联信息包括所述标识信息的情况下,所述发送测量结果,包括:
发送测量结果消息,所述测量结果消息携带有一个或者多个测量结果,以及每个测量结果的标识信息。
可选的,所述测量结果消息的载荷Payload携带一个或者多个测量结果,以及每个测量结果的标识信息,且所述Payload为固定大小或者可变大小,其中,在所述Payload为可变大小的情况下,所述测量结果消息还携带有测量结果的数量指示。
可选的,在所述关联信息包括所述反馈资源的情况下,所述第二终端接收测量信号时获取有所述测量结果的所述反馈资源,所述第二终端在所述反馈资源发送所述测量结果。
可选的,所述反馈资源用于发送数据,所述第二终端在所述反馈资源上发送携带的所述测量结果的数据。
可选的,在所述关联信息包括所述HARQ反馈信息的情况下,所述第二终端接收的数据携带测量信号,所述测量信号的测量结果与所述数据的HARQ反馈信息一起反馈。
上述终端可以提高sidelink的传输性能,且还可以避免sidelink传输调整出错。
应理解的是,本公开的一些实施例中,射频单元801可用于收发信息或通话过程中,信号的接收和发送,具体的,将来自基站的下行数据接收后,给处理器810处理;另外,将上行的数据发送给基站。通常,射频单元801包括但不限于天线、至少一个放大器、收发信机、耦合器、低噪声放大器、双工器等。此外,射频单元801还可以通过无线通信系统与网络和其他设备通信。
终端通过网络模块802为用户提供了无线的宽带互联网访问,如帮助用 户收发电子邮件、浏览网页和访问流式媒体等。
音频输出单元803可以将射频单元801或网络模块802接收的或者在存储器809中存储的音频数据转换成音频信号并且输出为声音。而且,音频输出单元803还可以提供与终端800执行的特定功能相关的音频输出(例如,呼叫信号接收声音、消息接收声音等等)。音频输出单元803包括扬声器、蜂鸣器以及受话器等。
输入单元804用于接收音频或视频信号。输入单元804可以包括图形处理器(Graphics Processing Unit,GPU)8041和麦克风8042,图形处理器8041对在视频捕获模式或图像捕获模式中由图像捕获装置(如摄像头)获得的静态图片或视频的图像数据进行处理。处理后的图像帧可以显示在显示单元806上。经图形处理器8041处理后的图像帧可以存储在存储器809(或其它存储介质)中或者经由射频单元801或网络模块802进行发送。麦克风8042可以接收声音,并且能够将这样的声音处理为音频数据。处理后的音频数据可以在电话通话模式的情况下转换为可经由射频单元801发送到移动通信基站的格式输出。
终端800还包括至少一种传感器805,比如光传感器、运动传感器以及其他传感器。具体地,光传感器包括环境光传感器及接近传感器,其中,环境光传感器可根据环境光线的明暗来调节显示面板8061的亮度,接近传感器可在终端800移动到耳边时,关闭显示面板8061和/或背光。作为运动传感器的一种,加速计传感器可检测各个方向上(一般为三轴)加速度的大小,静止时可检测出重力的大小及方向,可用于识别终端姿态(比如横竖屏切换、相关游戏、磁力计姿态校准)、振动识别相关功能(比如计步器、敲击)等;传感器805还可以包括指纹传感器、压力传感器、虹膜传感器、分子传感器、陀螺仪、气压计、湿度计、温度计、红外线传感器等,在此不再赘述。
显示单元806用于显示由用户输入的信息或提供给用户的信息。显示单元806可包括显示面板8061,可以采用液晶显示器(Liquid Crystal Display,LCD)、有机发光二极管(Organic Light-Emitting Diode,OLED)等形式来配置显示面板8061。
用户输入单元807可用于接收输入的数字或字符信息,以及产生与终端 的用户设置以及功能控制有关的键信号输入。具体地,用户输入单元807包括触控面板8071以及其他输入设备8072。触控面板8071,也称为触摸屏,可收集用户在其上或附近的触摸操作(比如用户使用手指、触笔等任何适合的物体或附件在触控面板8071上或在触控面板8071附近的操作)。触控面板8071可包括触摸检测装置和触摸控制器两个部分。其中,触摸检测装置检测用户的触摸方位,并检测触摸操作带来的信号,将信号传送给触摸控制器;触摸控制器从触摸检测装置上接收触摸信息,并将它转换成触点坐标,再送给处理器810,接收处理器810发来的命令并加以执行。此外,可以采用电阻式、电容式、红外线以及表面声波等多种类型实现触控面板8071。除了触控面板8071,用户输入单元807还可以包括其他输入设备8072。具体地,其他输入设备8072可以包括但不限于物理键盘、功能键(比如音量控制按键、开关按键等)、轨迹球、鼠标、操作杆,在此不再赘述。
进一步的,触控面板8071可覆盖在显示面板8061上,当触控面板8071检测到在其上或附近的触摸操作后,传送给处理器810以确定触摸事件的类型,随后处理器810根据触摸事件的类型在显示面板8061上提供相应的视觉输出。虽然在图8中,触控面板8071与显示面板8061是作为两个独立的部件来实现终端的输入和输出功能,但是在某些实施例中,可以将触控面板8071与显示面板8061集成而实现终端的输入和输出功能,具体此处不做限定。
接口单元808为外部装置与终端800连接的接口。例如,外部装置可以包括有线或无线头戴式耳机端口、外部电源(或电池充电器)端口、有线或无线数据端口、存储卡端口、用于连接具有识别模块的装置的端口、音频输入/输出(I/O)端口、视频I/O端口、耳机端口等等。接口单元808可以用于接收来自外部装置的输入(例如,数据信息、电力等等)并且将接收到的输入传输到终端800内的一个或多个元件或者可以用于在终端800和外部装置之间传输数据。
存储器809可用于存储软件程序以及各种数据。存储器809可主要包括存储程序区和存储数据区,其中,存储程序区可存储操作系统、至少一个功能所需的应用程序(比如声音播放功能、图像播放功能等)等;存储数据区可存储根据手机的使用所创建的数据(比如音频数据、电话本等)等。此外, 存储器809可以包括高速随机存取存储器,还可以包括非易失性存储器,例如至少一个磁盘存储器件、闪存器件、或其他易失性固态存储器件。
处理器810是终端的控制中心,利用各种接口和线路连接整个终端的各个部分,通过运行或执行存储在存储器809内的软件程序和/或模块,以及调用存储在存储器809内的数据,执行终端的各种功能和处理数据,从而对终端进行整体监控。处理器810可包括一个或多个处理单元;可选的,处理器810可集成应用处理器和调制解调处理器,其中,应用处理器主要处理操作系统、用户界面和应用程序等,调制解调处理器主要处理无线通信。可以理解的是,上述调制解调处理器也可以不集成到处理器810中。
终端800还可以包括给各个部件供电的电源811(比如电池),可选的,电源811可以通过电源管理系统与处理器810逻辑相连,从而通过电源管理系统实现管理充电、放电、以及功耗管理等功能。
另外,终端800包括一些未示出的功能模块,在此不再赘述。
可选的,本公开的一些实施例还提供一种终端,包括处理器810,存储器809,存储在存储器809上并可在所述处理器810上运行的计算机程序,该计算机程序被处理器810执行时实现上述sidelink测量结果获取方法或者sidelink测量结果发送方法实施例的各个过程,且能达到相同的技术效果,为避免重复,这里不再赘述。
本公开的一些实施例还提供一种计算机可读存储介质,计算机可读存储介质上存储有计算机程序,该计算机程序被处理器执行时实现本公开的一些实施例提供的sidelink测量结果获取方法中的步骤,或者,该计算机程序被处理器执行时实现本公开的一些实施例提供的sidelink测量结果发送方法中的步骤,且能达到相同的技术效果,为避免重复,这里不再赘述。其中,所述的计算机可读存储介质,如只读存储器(Read-Only Memory,简称ROM)、随机存取存储器(Random Access Memory,简称RAM)、磁碟或者光盘等。
可以理解的是,本公开的一些实施例描述的这些实施例可以用硬件、软件、固件、中间件、微码或其组合来实现。对于硬件实现,模块、单元、子模块、子单元等可以实现在一个或多个专用集成电路(Application Specific Integrated Circuits,ASIC)、数字信号处理器(Digital Signal Processing,DSP)、 数字信号处理设备(DSP Device,DSPD)、可编程逻辑设备(Programmable Logic Device,PLD)、现场可编程门阵列(Field-Programmable Gate Array,FPGA)、通用处理器、控制器、微控制器、微处理器、用于执行本申请所述功能的其它电子单元或其组合中。
需要说明的是,在本文中,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者装置不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者装置所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括该要素的过程、方法、物品或者装置中还存在另外的相同要素。
通过以上的实施方式的描述,本领域的技术人员可以清楚地了解到上述实施例方法可借助软件加必需的通用硬件平台的方式来实现,当然也可以通过硬件,但很多情况下前者是更佳的实施方式。基于这样的理解,本公开的技术方案本质上或者说对现有技术做出贡献的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质(如ROM/RAM、磁碟、光盘)中,包括若干指令用以使得一台终端(可以是手机,计算机,服务器,空调器,或者网络设备等)执行本公开各个实施例所述的方法。
上面结合附图对本公开的实施例进行了描述,但是本公开并不局限于上述的具体实施方式,上述的具体实施方式仅仅是示意性的,而不是限制性的,本领域的普通技术人员在本公开的启示下,在不脱离本公开宗旨和权利要求所保护的范围情况下,还可做出很多形式,均属于本公开的保护之内。

Claims (32)

  1. 一种旁链路sidelink测量结果获取方法,应用于第一终端,包括:
    获取sidelink的测量结果,所述测量结果的关联信息与所述测量结果关联的测量信号对应;其中,所述关联信息包括如下至少一项:
    反馈窗口、标识信息、反馈资源和混合自动重传请求HARQ反馈信息,所述HARQ反馈信息为与所述测量结果一起发送的HARQ反馈信息,且所述HARQ反馈信息与测量信号具有对应关系。
  2. 如权利要求1所述的方法,其中,在所述关联信息包括所述反馈窗口的情况下,所述第一终端发送的测量信号关联至少一个反馈窗口,所述测量结果关联的测量信号,包括:
    所述测量结果的反馈窗口关联的测量信号。
  3. 如权利要求2所述的方法,其中,所述第一终端发送的测量信号关联至少一个反馈窗口包括:
    所述第一终端发送的测量信号后,启动的至少一个反馈窗口,其中,所述至少一个反馈窗口的属性与如下至少一项参数相关:
    终端处理能力、资源池配置、带宽部分BWP的参数集numerology、BWP的子载波间隔SCS、载波的numerology、载波的SCS、小区的numerology和小区的SCS。
  4. 如权利要求2所述的方法,其中,所述至少一个反馈窗口的属性固定不变,或者,所述至少一个反馈窗口的属性根据服务质量QoS需求、信道状态或链路拥塞情况动态调整。
  5. 如权利要求2所述的方法,其中,若所述至少一个反馈窗口超时,且未获取到测量结果,则所述第一终端不再等待所述至少一个反馈窗口关联的测量信号的测量结果。
  6. 如权利要求1所述的方法,其中,在所述关联信息包括所述标识信息的情况下:
    所述标识信息用于关联测量信号,所述测量结果关联的测量信号包括:所述标识信息关联的测量信号;或者
    所述标识信息用于关联测量信号的参数信息,所述测量结果关联的测量信号包括:所述标识信息关联的参数信息对应的测量信号。
  7. 如权利要求6所述的方法,其中,所述参数信息包括如下至少一项:
    时域信息、频域信息、码域信息、标识、反馈窗口信息、控制信令信息和相对于所述测量结果的传输时刻的时间间隔。
  8. 如权利要求7所述的方法,其中,有所述参数信息重叠的多个测量信号的发送时间存在时间间隔。
  9. 如权利要求1所述的方法,其中,在所述关联信息包括所述标识信息的情况下,所述获取测量结果,包括:
    获取测量结果消息,所述测量结果消息携带有一个或者多个测量结果,以及每个测量结果的标识信息。
  10. 如权利要求9所述的方法,其中,所述测量结果消息的载荷Payload携带一个或者多个测量结果,以及每个测量结果的标识信息,且所述Payload为固定大小或者可变大小,其中,在所述Payload为可变大小的情况下,所述测量结果消息还携带有测量结果的数量指示。
  11. 如权利要求1所述的方法,其中,在所述关联信息包括所述反馈资源的情况下,所述第一终端发送测量信号时分配有测量结果的反馈资源,所述测量结果关联的测量信号,包括:
    所述测量结果的反馈资源对应的测量信号。
  12. 如权利要求11所述的方法,其中,所述反馈资源用于发送数据,所述测量结果携带在所述数据反馈。
  13. 如权利要求1所述的方法,其中,在所述关联信息包括所述HARQ反馈信息的情况下,所述第一终端发送的数据携带测量信号,所述测量结果关联的测量信号,包括:
    所述测量结果的HARQ反馈信息对应的数据所携带的测量信号。
  14. 一种旁链路sidelink测量结果发送方法,应用于第二终端,包括:
    发送sidelink的测量结果,所述测量结果的关联信息与所述测量结果关联的测量信号对应;其中,所述关联信息包括如下至少一项:
    反馈窗口、标识信息、反馈资源和HARQ反馈信息,所述HARQ反馈信 息为与所述测量结果一起发送的HARQ反馈信息,且所述HARQ反馈信息与测量信号具有对应关系。
  15. 如权利要求14所述的方法,其中,在所述关联信息包括所述反馈窗口的情况下,所述第二终端接收的测量信号关联至少一个反馈窗口,所述测量结果关联的测量信号,包括:
    所述测量结果的反馈窗口关联的测量信号。
  16. 如权利要求15所述的方法,其中,所述第二终端接收的测量信号关联至少一个反馈窗口包括:
    所述第二终端接收的测量信号后,启动的至少一个反馈窗口,其中,所述至少一个反馈窗口的属性与如下至少一项参数相关:
    终端处理能力、资源池配置、BWP的numerology、BWP的SCS、载波的numerology、载波的SCS、小区的numerology和小区的SCS。
  17. 如权利要求15所述的方法,其中,所述至少一个反馈窗口的属性固定不变,或者,所述至少一个反馈窗口的属性根据服务质量QoS需求、信道状态或链路拥塞情况动态调整。
  18. 如权利要求15所述的方法,其中,若所述第二终端在所述至少一个反馈窗口内无法反馈测量结果,则丢弃所述测量结果;和/或
    若所述第二终端在所述至少一个反馈窗口接收到新的测量信号,则所述第二终端丢弃所述至少一个反馈窗口对应的测量信号和测量结果,并开启所述新的测量信号关联的至少一个反馈窗口,以及反馈所述新的测量信号的测量结果。
  19. 如权利要求14所述的方法,其中,在所述关联信息包括所述标识信息的情况下:
    所述标识信息用于关联测量信号,所述测量结果关联的测量信号包括:所述标识信息关联的测量信号;或者
    所述标识信息用于关联测量信号的参数信息,所述测量结果关联的测量信号包括:所述标识信息关联的参数信息对应的测量信号。
  20. 如权利要求19所述的方法,其中,所述参数信息包括如下至少一项:
    时域信息、频域信息、码域信息、标识、反馈窗口信息、控制信令信息 和相对于所述测量结果的传输时刻的时间间隔。
  21. 如权利要求20所述的方法,其中,有所述参数信息重叠的多个测量信号的发送时间存在时间间隔。
  22. 如权利要求19所述的方法,其中,若存在标识信息相同的多个测量结果,则反馈所述多个测量结果中的至少一个测量结果,或者将所述多个测量结果合并,并反馈合并后的测量结果。
  23. 如权利要求14所述的方法,其中,在所述关联信息包括所述标识信息的情况下,所述发送测量结果,包括:
    发送测量结果消息,所述测量结果消息携带有一个或者多个测量结果,以及每个测量结果的标识信息。
  24. 如权利要求23所述的方法,其中,所述测量结果消息的载荷Payload携带一个或者多个测量结果,以及每个测量结果的标识信息,且所述Payload为固定大小或者可变大小,其中,在所述Payload为可变大小的情况下,所述测量结果消息还携带有测量结果的数量指示。
  25. 如权利要求14所述的方法,其中,在所述关联信息包括所述反馈资源的情况下,所述第二终端接收测量信号时获取有所述测量结果的所述反馈资源,所述第二终端在所述反馈资源发送所述测量结果。
  26. 如权利要求25所述的方法,其中,所述反馈资源用于发送数据,所述第二终端在所述反馈资源上发送携带的所述测量结果的数据。
  27. 如权利要求14所述的方法,其中,在所述关联信息包括所述HARQ反馈信息的情况下,所述第二终端接收的数据携带测量信号,所述测量信号的测量结果与所述数据的HARQ反馈信息一起反馈。
  28. 一种终端,所述终端为第一终端,包括:
    获取模块,用于获取sidelink的测量结果,所述测量结果的关联信息与所述测量结果关联的测量信号对应;其中,所述关联信息包括如下至少一项:
    反馈窗口、标识信息、反馈资源和HARQ反馈信息,所述HARQ反馈信息为与所述测量结果一起发送的HARQ反馈信息,且所述HARQ反馈信息与测量信号具有对应关系。
  29. 一种终端,所述终端为第二终端,包括:
    发送模块,用于发送sidelink的测量结果,所述测量结果的关联信息与所述测量结果关联的测量信号对应;其中,所述关联信息包括如下至少一项:
    反馈窗口、标识信息、反馈资源和HARQ反馈信息,所述HARQ反馈信息为与所述测量结果一起发送的HARQ反馈信息,且所述HARQ反馈信息与测量信号具有对应关系。
  30. 一种终端,所述终端为第一终端,包括:存储器、处理器及存储在所述存储器上并可在所述处理器上运行的程序,所述程序被所述处理器执行时实现如权利要求1至13中任一项所述的sidelink测量结果获取方法中的步骤。
  31. 一种终端,所述终端为第二终端,包括:存储器、处理器及存储在所述存储器上并可在所述处理器上运行的程序,所述程序被所述处理器执行时实现如权利要求14至27中任一项所述的sidelink测量结果发送方法中的步骤。
  32. 一种计算机可读存储介质,其中,所述计算机可读存储介质上存储有计算机程序,所述计算机程序被处理器执行时实现如权利要求1至13中任一项所述的sidelink测量结果获取方法中的步骤,或者,所述计算机程序被处理器执行时实现如权利要求14至27中任一项所述的sidelink测量结果发送方法中的步骤。
PCT/CN2020/107789 2019-08-08 2020-08-07 旁链路测量结果获取方法、发送方法和终端 WO2021023298A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
KR1020227007554A KR20220046610A (ko) 2019-08-08 2020-08-07 사이드링크 측정 결과의 획득 방법, 송신 방법 및 단말
EP20851037.0A EP4013104A4 (en) 2019-08-08 2020-08-07 METHOD FOR ACQUISITION AND TRANSMISSION OF LATERAL LINK MEASUREMENT RESULT, AND TERMINAL
US17/665,785 US20220159500A1 (en) 2019-08-08 2022-02-07 Sidelink measurement result obtaining method, sidelink measurement result sending method, and terminal

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910731324.5 2019-08-08
CN201910731324.5A CN111836303B (zh) 2019-08-08 2019-08-08 一种sidelink测量结果获取方法、发送方法和终端

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/665,785 Continuation US20220159500A1 (en) 2019-08-08 2022-02-07 Sidelink measurement result obtaining method, sidelink measurement result sending method, and terminal

Publications (1)

Publication Number Publication Date
WO2021023298A1 true WO2021023298A1 (zh) 2021-02-11

Family

ID=72911662

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/107789 WO2021023298A1 (zh) 2019-08-08 2020-08-07 旁链路测量结果获取方法、发送方法和终端

Country Status (5)

Country Link
US (1) US20220159500A1 (zh)
EP (1) EP4013104A4 (zh)
KR (1) KR20220046610A (zh)
CN (1) CN111836303B (zh)
WO (1) WO2021023298A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11711452B2 (en) * 2021-06-02 2023-07-25 Qualcomm Incorporated Multiplexing sidelink and radio access traffic

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20180054237A1 (en) * 2016-08-19 2018-02-22 Yung-Lan TSENG Access mechanism for proximity-based service ue-to-network relay service
CN108702244A (zh) * 2016-04-01 2018-10-23 英特尔公司 用于低复杂度设备到设备(d2d)通信的链路适配
CN109644455A (zh) * 2018-11-29 2019-04-16 北京小米移动软件有限公司 Csi测量反馈方法、装置及存储介质

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106900005A (zh) * 2017-04-01 2017-06-27 宇龙计算机通信科技(深圳)有限公司 一种资源参数测量方法、装置及基站
EP3989460B1 (en) * 2017-06-14 2024-01-03 Sony Group Corporation Apparatus and method for determining whether to provide a csi report
CN109246659A (zh) * 2017-06-15 2019-01-18 中兴通讯股份有限公司 一种通信控制方法、装置及计算机可读存储介质
CN111656722B (zh) * 2018-01-12 2023-11-10 瑞典爱立信有限公司 用于无线电接入网络的控制信令的方法和节点
JP7137638B2 (ja) * 2018-12-27 2022-09-14 株式会社Nttドコモ 端末、方法、及びシステム
CN111435871A (zh) * 2019-01-11 2020-07-21 华为技术有限公司 一种旁链路中的反馈资源确定方法及设备
US11044066B2 (en) * 2019-03-19 2021-06-22 Lg Electronics Inc. Method and apparatus transmitting sidelink CSI
US11973555B2 (en) * 2019-07-17 2024-04-30 Samsung Electronics Co., Ltd Method and device for measuring and reporting channel state in sidelink communication

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108702244A (zh) * 2016-04-01 2018-10-23 英特尔公司 用于低复杂度设备到设备(d2d)通信的链路适配
US20180054237A1 (en) * 2016-08-19 2018-02-22 Yung-Lan TSENG Access mechanism for proximity-based service ue-to-network relay service
CN109644455A (zh) * 2018-11-29 2019-04-16 北京小米移动软件有限公司 Csi测量反馈方法、装置及存储介质

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
INTERDIGITAL.INC: "Physical Layer Procedures for NR V2X Sidelink", 3GPP TSG RAN WG1 #98BIS R1-1911280, 7 October 2019 (2019-10-07), XP051790049 *
SAMSUNG: "On Sidelink CSI Procedure", 3GPP TSG RAN WG1 #97 R1-1906949, 3 May 2019 (2019-05-03), XP051708984 *
See also references of EP4013104A4 *

Also Published As

Publication number Publication date
US20220159500A1 (en) 2022-05-19
CN111836303A (zh) 2020-10-27
EP4013104A1 (en) 2022-06-15
EP4013104A4 (en) 2022-08-17
CN111836303B (zh) 2022-08-02
KR20220046610A (ko) 2022-04-14

Similar Documents

Publication Publication Date Title
US11510211B2 (en) Sidelink operation method and terminal
CN111132329B (zh) 一种资源指示方法、设备及系统
CN110166206B (zh) 一种harq-ack码本的确定方法和终端
WO2021218742A1 (zh) 信息反馈、资源调度方法、终端及网络设备
CN111818659B (zh) sidelink信息发送方法、接收方法、终端和控制节点
CN111262670B (zh) 一种混合自动重传确认反馈信息传输方法和终端设备
US20220271892A1 (en) Information transmission method and terminal
WO2020088585A1 (zh) 副链路连接建立、资源分配方法、终端及网络侧设备
WO2021063281A1 (zh) 旁链路资源的确定方法及终端
WO2021027482A1 (zh) 信息传输方法及终端
WO2019095919A1 (zh) Csi的传输方法及装置
CN111181706A (zh) 混合自动重传请求确认的发送方法和终端
WO2020119243A1 (zh) 物理上行控制信道传输方法、网络侧设备和终端
WO2020063452A1 (zh) 一种资源调度方法和装置
CN109802902B (zh) 一种物理资源块捆绑大小确定方法、终端设备及网络设备
WO2021147794A1 (zh) 频域资源处理方法、频域资源配置方法及相关设备
WO2021023298A1 (zh) 旁链路测量结果获取方法、发送方法和终端
CN110890942A (zh) 一种旁链路信息反馈方法及终端
CN110868760B (zh) 一种传输方法及终端设备
CN111435903B (zh) 信息发送方法、接收方法、终端及网络设备
CN111615085B (zh) 资源获取方法、第一终端和第二终端
CN116073872A (zh) Csi传输方法、触发csi传输的方法及相关设备
WO2021088908A1 (zh) 传输处理方法和终端
CN111835460B (zh) 一种mcs值的确定方法及相关设备
WO2021098628A1 (zh) 上行传输方法、配置方法、终端及网络侧设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20851037

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20227007554

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2020851037

Country of ref document: EP

Effective date: 20220309