WO2019095919A1 - Csi的传输方法及装置 - Google Patents

Csi的传输方法及装置 Download PDF

Info

Publication number
WO2019095919A1
WO2019095919A1 PCT/CN2018/110613 CN2018110613W WO2019095919A1 WO 2019095919 A1 WO2019095919 A1 WO 2019095919A1 CN 2018110613 W CN2018110613 W CN 2018110613W WO 2019095919 A1 WO2019095919 A1 WO 2019095919A1
Authority
WO
WIPO (PCT)
Prior art keywords
base station
indication information
csi
short pucch
domain resource
Prior art date
Application number
PCT/CN2018/110613
Other languages
English (en)
French (fr)
Inventor
鲁智
潘学明
沈晓冬
马景智
Original Assignee
维沃移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 维沃移动通信有限公司 filed Critical 维沃移动通信有限公司
Priority to US16/757,348 priority Critical patent/US20210194555A1/en
Priority to EP18877970.6A priority patent/EP3713341A4/en
Publication of WO2019095919A1 publication Critical patent/WO2019095919A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0619Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal using feedback from receiving side
    • H04B7/0621Feedback content
    • H04B7/0626Channel coefficients, e.g. channel state information [CSI]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0001Systems modifying transmission characteristics according to link quality, e.g. power backoff
    • H04L1/0023Systems modifying transmission characteristics according to link quality, e.g. power backoff characterised by the signalling
    • H04L1/0026Transmission of channel quality indication
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0001Systems modifying transmission characteristics according to link quality, e.g. power backoff
    • H04L1/0023Systems modifying transmission characteristics according to link quality, e.g. power backoff characterised by the signalling
    • H04L1/0027Scheduling of signalling, e.g. occurrence thereof
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/004Arrangements for detecting or preventing errors in the information received by using forward error control
    • H04L1/0056Systems characterized by the type of code used
    • H04L1/0061Error detection codes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • H04L5/0007Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT
    • H04L5/0012Hopping in multicarrier systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • H04L5/0057Physical resource allocation for CQI
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0091Signaling for the administration of the divided path
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0446Resources in time domain, e.g. slots or frames
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/12Wireless traffic scheduling
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/12Wireless traffic scheduling
    • H04W72/1263Mapping of traffic onto schedule, e.g. scheduled allocation or multiplexing of flows
    • H04W72/1268Mapping of traffic onto schedule, e.g. scheduled allocation or multiplexing of flows of uplink data flows
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/54Allocation or scheduling criteria for wireless resources based on quality criteria
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/10Connection setup
    • H04W76/11Allocation or use of connection identifiers

Definitions

  • the embodiments of the present invention relate to the field of communications technologies, and in particular, to a channel state information (CSI) transmission method and apparatus.
  • CSI channel state information
  • the base station schedules the user equipment (User Equipment, UE)
  • the UE needs to be scheduled according to the channel state information CSI to obtain better performance. Therefore, the base station needs to acquire CSI information.
  • the process in which the base station needs to acquire the CSI information is that the base station can obtain the CSI periodically sent by the UE on the physical uplink control channel (PUCCH), or the physical uplink shared channel (PUSCH). Obtain periodic CSI, or aperiodic CSI.
  • PUCCH physical uplink control channel
  • PUSCH physical uplink shared channel
  • the periodic CSI does not accurately represent the current channel condition. Therefore, the CSI acquired by the base station may be inaccurate, resulting in inaccurate scheduling of the base station.
  • Embodiments of the present invention provide a CSI transmission method and apparatus to solve the problem of how to make the scheduling of a base station more accurate.
  • an embodiment of the present invention provides a method for transmitting a CSI, where the method includes: the base station sends indication information to the UE, where the indication information is used to indicate that the UE sends CSI to the base station; and the base station receives the short physics sent by the UE.
  • the uplink control channel is a short PUCCH, and the short PUCCH includes the CSI.
  • the embodiment of the present invention further provides a CSI transmission method, where the method includes: the user equipment UE receives the indication information sent by the base station, where the indication information is used to indicate that the UE sends CSI to the base station; And indicating, sending, to the base station, a short physical uplink control channel short PUCCH, where the short PUCCH includes the CSI.
  • the embodiment of the present invention further provides a base station, where the base station includes a sending module and a receiving module, where the sending module is configured to send indication information to the UE, where the indication information is used to indicate that the UE sends CSI to the base station;
  • the receiving module is configured to receive a short physical uplink control channel short PUCCH sent by the UE, where the short PUCCH includes the CSI.
  • the embodiment of the present invention further provides a UE, where the UE includes a receiving module and a sending module, where the receiving module is configured to receive indication information sent by the base station, where the indication information is used to indicate that the UE sends the CSI to the base station.
  • the sending module is configured to send, according to the indication information, a short physical uplink control information short PUCCH to the base station, where the short PUCCH includes the CSI.
  • an embodiment of the present invention provides a base station, including a processor, a memory, and a computer program stored on the memory and executable on the processor, where the computer program is implemented as the first The steps of the CSI transmission method described in the aspect.
  • an embodiment of the present invention provides a UE, including a processor, a memory, and a computer program stored on the memory and executable on the processor, where the computer program is implemented by the processor, such as the second The steps of the CSI transmission method described in the aspect.
  • an embodiment of the present invention provides a computer readable storage medium, where the computer readable storage medium stores a computer program, and when the computer program is executed by the processor, implements the CSI transmission method according to the first aspect.
  • the base station when the base station needs to schedule the UE, the base station may indicate that the UE reports the CSI by using the indication information, and the CSI reported by the UE can accurately reflect the current channel state, so that the base station can be made according to the current The channel state schedules the UE more accurately.
  • FIG. 1 is a schematic diagram of a communication system according to an embodiment of the present invention
  • FIG. 2 is a schematic diagram of interaction of a CSI transmission method according to an embodiment of the present invention.
  • FIG. 3 is a schematic diagram of a mirror frequency hopping pattern according to an embodiment of the present disclosure
  • FIG. 4 is a schematic structural diagram of a base station according to an embodiment of the present disclosure.
  • FIG. 5 is a schematic structural diagram of a user equipment UE according to an embodiment of the present disclosure.
  • FIG. 6 is a schematic structural diagram of hardware of a user equipment UE according to various embodiments of the present invention.
  • FIG. 7 is a schematic structural diagram of hardware of a base station according to various embodiments of the present invention.
  • GSM Global System of Mobile communication
  • CDMA Code Division Multiple Access
  • WCDMA Wideband Code Division Multiple Access
  • GPRS General Packet Radio Service
  • LTE Long Term Evolution
  • LTE-A Long Term Evolution-advanced
  • NR New Radio
  • a user equipment which may also be called a mobile terminal, a mobile user equipment, or the like, may be connected to one or more core networks (Core via a radio access network (RAN), for example, a Radio Access Network (RAN).
  • RAN radio access network
  • CN Radio Access Network
  • the user equipment can be a mobile terminal, such as a mobile phone (or "cellular" phone) and a computer with a mobile terminal, for example, can be portable, pocket, handheld, computer built in or car Mobile devices that exchange language and/or data with a wireless access network.
  • the base station may be a Base Transceiver Station (BTS) in GSM or CDMA, or may be a base station (NodeB) in WCDMA, or may be an evolved base station (eNB or e-NodeB, evolutional Node B) in LTE and
  • BTS Base Transceiver Station
  • NodeB base station
  • eNB evolved base station
  • gNB 5G base station
  • the following embodiments are described by using a base station or a gNB as an example.
  • FIG. 1 is a schematic diagram of a communication system according to an embodiment of the present invention.
  • the communication system includes a base station and a UE, and the base station may send indication information to the UE according to the requirement, for example, the base station determines that the UE needs to be scheduled, and indicates that the UE reports the CSI, the UE.
  • the CSI is reported according to the indication information. Since the CSI reported by the UE can accurately reflect the current channel state at this time, the base station can be caused to more accurately schedule the UE according to the current channel state.
  • the UE and the base station shown in FIG. 1 can perform the CSI transmission method in the embodiment of the present invention, which will be specifically described in the following method embodiments, and will not be described here.
  • one of the purposes of the CSI transmission method in the embodiment of the present invention is that the base station acquires aperiodic CSI information on the short PUCCH, that is, the UE sends the aperiodic CSI information to the base station on the short PUCCH.
  • the CSI transmission method provided by the embodiment of the present invention is exemplarily described below with reference to the UE and the base station shown in FIG.
  • FIG. 2 is a schematic diagram of interaction of a CSI transmission method according to an embodiment of the present invention. As shown in FIG. 2, the method may include steps 101-104:
  • Step 101 The base station sends indication information to the UE.
  • the indication information is used to instruct the UE to send CSI to the base station.
  • the indication information may include at least one of the following: a time interval, a start symbol of a short PUCCH, a length of a short PUCCH, a start resource block of a short PUCCH, and a resource occupied by a short PUCCH.
  • the time interval is the time interval between the time slot in which the UE receives the indication information and the time slot in which the UE sends the short PUCCH, and the hop
  • the frequency information is used to indicate whether the UE needs to perform frequency hopping when transmitting the short PUCCH.
  • the symbols in the embodiments of the present invention all refer to transmission symbols.
  • OFDM Orthogonal Frequency Division Multiplexing
  • the base station may send the indication information to the UE by using Downlink Control Information (DCI) in the Physical Downlink Control Channel (PDCCH). That is, the indication information can be carried in the DCI. Specifically, the indication information may be carried in a domain of the DCI. It can be understood that, in the embodiment of the present invention, when the indication information includes multiple items, the multiple indication information may be located in one domain (or called a field) of the DCI, or may be located in multiple domains of the DCI.
  • DCI Downlink Control Information
  • PDCCH Physical Downlink Control Channel
  • Table 1 is an example of indication information of a bearer of a DCI provided by an embodiment of the present invention.
  • Time interval refers to the time interval between the time slot that the base station configured for the UE receives the time slot of the DCI and the time slot that the UE sends the CSI.
  • the UE may determine the time when the UE sends the CSI to the base station according to the time interval.
  • the time interval configured by the base station for the UE may be any one of (0, 1x, 2x, 3x) shown in Table 1 above, where the value of x may be any predefined according to actual usage requirements. Value.
  • the UE may send CSI to the base station according to the time interval.
  • the field indicating the time interval can occupy 2 bits in the domain of the DCI.
  • the start symbol of the short PUCCH refers to a symbol of a short PUCCH used by the base station for the UE to transmit CSI (hereinafter referred to as CSI transmission resource).
  • the UE may determine, according to the start symbol, that the UE sends a symbol of the short PUCCH to the base station.
  • the starting symbol configured by the base station for the UE may be any one of 0-1-3 shown in Table 1 above.
  • the UE may send a short PUCCH to the base station starting from the start symbol. As shown in Table 1, the field indicating the start symbol can occupy 4 bits in the domain of DCI.
  • the length of the short PUCCH refers to the length of the PUCCH carrying the CSI. As shown in Table 1, the length of the short PUCCH is 1 symbol or 2 symbols. The length of the short PUCCH can occupy 1 bit in the domain of DCI.
  • the short PUCCH in the embodiment of the present invention is relative to the PUCCH (occupying 4 symbols - 14 symbols) commonly used in the prior art.
  • the short PUCCH generally refers to a PUCCH that occupies less symbols (ie, has a smaller length).
  • the PUCCH of 1 symbol or 2 symbols shown in Table 1 above can be understood as a short PUCCH.
  • the starting resource block of the short PUCCH is a frequency domain resource block for transmitting a short PUCCH configured by the base station for the UE.
  • the UE may determine, according to the starting resource block, that the UE sends a short PUCCH starting resource block to the base station.
  • the starting resource block configured by the base station for the UE may be any one of the 0-274 frequency domain resource blocks shown in Table 1 above.
  • the UE may send a short PUCCH to the base station starting from the starting resource block.
  • the field indicating the starting resource block can occupy 9 bits in the domain of the DCI.
  • the UE may start at any one of the resource blocks on the short PUCCH transmission resource configured by the base station for the UE.
  • a short PUCCH is sent on the symbol. If the indication information sent by the base station to the UE includes the foregoing start resource block and the foregoing start symbol, the UE may send the short PUCCH on the start symbol of the start resource block on the short PUCCH transmission resource configured by the base station for the UE. .
  • the UE may send the short PUCCH on any one of the start symbols of the initial resource block on the CSI transmission resource configured by the base station for the UE. Specifically, it can be determined according to actual use requirements, and is not limited by the embodiment of the present invention.
  • the number of resource blocks occupied by the short PUCCH refers to the total number of resource blocks of short PUCCH transmission resources configured by the base station for the UE.
  • the number of the resource blocks configured by the base station for the UE may be any one of 1-16 shown in Table 1 above.
  • the UE may send the short PUCCH to the base station according to the number of the resource blocks. As shown in Table 1, the field indicating the number of resource blocks can occupy 4 bits in the domain of the DCI.
  • Frequency hopping information refers to whether the UE configured by the base station for the UE needs to perform frequency hopping when transmitting CSI on the short PUCCH transmission resource.
  • the frequency hopping information configured by the base station for the UE may be indicated by an on/off. For example, “on” as shown in Table 1 indicates that the frequency hopping is required, that is, “off” as shown in Table 1. Indicates off, ie no frequency hopping is required.
  • the UE may determine, according to the hopping information, whether the UE needs to perform frequency hopping when transmitting CSI on the short PUCCH transmission resource. As shown in Table 1, the field indicating the frequency hopping information can occupy one bit in the domain of the DCI.
  • the frequency hopping in the embodiment of the present invention means that two symbols of the short PUCCH of two symbols are transmitted in different frequency domain resources to obtain a frequency diversity gain.
  • CRC value refers to the value that the base station sends for the UE for error checking. After receiving the DCI sent by the base station, the UE checks whether the DCI information is correctly received by using the CRC value. In addition, the CRC carries the identity (ID) of the UE, and the UE can confirm whether the DCI belongs to itself through the CRC value, and whether the DCI is destroyed due to the channel condition.
  • the UE may determine that the information is correctly received.
  • the UE may determine that the indication information is not correctly received.
  • Step 102 The UE receives the indication information sent by the base station.
  • Step 103 The UE sends a short PUCCH to the base station according to the indication information.
  • the short PUCCH includes CSI. That is, the UE may send the CSI bearer to the base station in the short PUCCH.
  • the UE may send the CSI to the base station according to the content indicated by the indication information.
  • the indication information indicates the time interval
  • the UE may determine, according to the time interval, a time point at which the UE starts to send CSI to the base station, and the UE may be at the time point.
  • the CSI is sent to the base station upon arrival.
  • the UE may determine, according to the indication information, a length of the short PUCCH in which the UE sends the CSI and a starting resource block of the PUCCH in the length. And the UE may send CSI to the base station on the initial resource block of the short PUCCH of the length.
  • Step 104 The base station receives the short PUCCH sent by the UE.
  • the base station may acquire the CSI from the short PUCCH.
  • the base station when the base station needs to perform scheduling on the UE, the base station may instruct the UE to report the CSI by using the indication information, and the CSI reported by the UE can accurately reflect the current channel state.
  • the base station is caused to schedule the UE more accurately according to the current channel state.
  • a possible implementation manner is that the foregoing step 101 is specifically implemented by the following step 101a, and the foregoing step 102 may be specifically implemented by the following step 102a.
  • Step 101a The base station sends the indication information to the UE by using the DCI.
  • the DCI can be a predefined DCI. It can be understood that, in the embodiment of the present invention, a dedicated DCI may be predefined, and the base station may send the indication information to the UE by using the dedicated DCI.
  • Step 102 The UE receives the indication information sent by the base station by using the DCI.
  • the CSI transmission method provided by the embodiment of the present invention further includes the step 105. This can be achieved by the following step 101b.
  • the above step 102 can be specifically implemented by the following step 102b.
  • Step 105 The base station uses the Radio Network Temporary Identity (RNTI) to scramble the DCI.
  • RNTI Radio Network Temporary Identity
  • the RNTI is allocated by the base station to the UE, and is used to distinguish the UE between the UE and the Evolved Universal Terrestrial Radio Access Network (EUTAN).
  • EUTAN Evolved Universal Terrestrial Radio Access Network
  • the RNTI is an identifier of an access layer, and can be divided into different types of RNTIs according to different functions, and each UE can simultaneously correspond to multiple RNTIs.
  • the RNTI can be specifically divided into a cell RNTI (Cell RNTI, C-RNTI) for dynamic scheduling of PDSCH transmission, a random access RNTI (Random Access RNTI, RA-RNTI) for random access response, RNTI (SI-RNTI) for identifying the transmission of a System Information Block (SIB) message, RNTI (P-RNTI) for identifying the transmission of a paging message, and for identifying a group transmission power control (transmission power) Control, TPC)
  • a group power RNTI (TPC-RNTI) of a user group that commands transmission and an RNTI (SPSC-RNTI) of a PDSCH transmission for semi-persistent scheduling, and the like.
  • the DCI in this implementation manner may be a DCI commonly used in the prior art.
  • Different scrambled DCIs can be obtained after scrambling DCI according to different RNTIs.
  • the UE can distinguish whether the DCI is the DCI used for the common scheduling or the DCI used to send the indication information in the embodiment of the present invention.
  • Step 101b After the base station performs scrambling, the DCI sends the indication information to the UE.
  • Step 102b After the UE is scrambled by the base station, the DCI receives the indication information sent by the base station.
  • the base station sends the indication information to the UE after the RNTI is scrambled by the RN, and the UE can determine that the DCI is the DCI for transmitting the indication information according to the RNTI, so that the UE can send the CSI to the base station according to the indication information.
  • a further possible implementation manner is that the foregoing step 101 is specifically implemented by the following step 101c, and the foregoing step 102 may be specifically implemented by the following step 102c.
  • Step 101c The base station sends the indication information to the UE by using an idle code point in the DCI.
  • the idle code point in the embodiment of the present invention refers to an idle bit or status bit in the domain of the DCI.
  • one domain of the DCI includes 8 bits or status bits and there are 2 free bits or status bits in the field, the 2 free bits or status bits may be referred to as idle code points.
  • the idle code point in the DCI may be an idle code point in the same domain of the DCI, or may be an idle code point in a different domain of the DCI. This is not specifically limited.
  • Step 102c The UE receives the indication information sent by the base station by using an idle code point in the DCI.
  • the base station may send indication information to the UE through the idle code point in the DCI, so that the UE may send the CSI to the base station according to the indication information.
  • the DCI in the foregoing one possible implementation manner is a predefined one dedicated DCI (that is, the DCI is dedicated to sending indication information).
  • the base station passes the dedicated The DCI sends an indication message to the UE.
  • the DCI in the other possible implementation is the DCI that is commonly used in the prior art (that is, the DCI is used for the base station to schedule the UE).
  • the base station sends the indication information to the UE after the RNTI is scrambled by using the RNTI. .
  • the DCI in the other possible implementation is also the DCI commonly used in the prior art (that is, the DCI is used for the base station to schedule the UE).
  • the base station sends the idle code point in the common DCI to the UE. Send instructions.
  • the indication information sent by the base station to the UE is further included.
  • the starting resource block of the frequency domain resource after the UE hops. That is, the UE may determine, according to the indication information, a starting resource block of the frequency domain resource after the UE hopping.
  • the foregoing indication information may further include a starting resource block of the frequency domain resource after the hopping of the UE (the second symbol of the short PUCCH), for example, R2, that is, the UE receives
  • the UE may determine the frequency f2 used by the starting resource block of the frequency hopped frequency domain resource according to the indication information.
  • the indication information includes the starting resource block of the frequency domain resource after the hopping of the UE
  • the field indicating the starting resource block of the frequency domain resource occupies a 9-bit overhead
  • the UE when the frequency hopping information is specifically used to indicate that the UE needs to perform frequency hopping when transmitting CSI on the short PUCCH, the UE may be configured according to a predefined frequency hopping mode. And determining a starting resource block of the frequency domain resource after the UE hops.
  • FIG. 3 is a schematic diagram of a mirror frequency hopping pattern provided by the present invention.
  • a predetermined frequency hopping mode is a mirror hopping mode, assuming that the UE is based on the first symbol of the short PUCCH of the current bandwidth portion.
  • the starting resource block determines the starting resource block of the second symbol, where the starting resource block of the second symbol is the starting resource block of the frequency domain resource after the UE hopping.
  • the parameter resource block includes a 0-274 symbol
  • the frequency corresponding to the resource block in the middle of the CSI resource block is f0
  • the frequency of the resource block of the first symbol of the short PUCCH is f1
  • the frequency hopping pattern of the pre-defined frequency hopping pattern may also be other frequency hopping modes, which is not specifically limited in this embodiment of the present invention.
  • the base station may send indication information to the UE by using the predefined DCI, where the indication information may be used to indicate a starting resource block of the frequency domain resource after the UE is hopped by the UE.
  • the time domain resource that the UE sends the short PUCCH (which is the first time domain resource described below) may be duplicated with the time domain resource that the UE sends other information or data, in order to
  • the following three possible implementation manners are provided in the embodiment of the present invention to avoid one of the transmission failures when the time domain resources are duplicated.
  • the short PUCCH transmission method may further include the following step 106 or the foregoing step 103 may be specifically implemented by the following steps 1031 to 1032 (not shown) Show).
  • Step 106 The UE discards the CSI.
  • Step 1031 The UE jointly encodes the CSI and the SR.
  • Step 1032 The UE sends a short PUCCH to the base station according to the indication information, where the short PUCCH includes the jointly coded CSI and the SR.
  • the joint coding in the embodiment of the present invention refers to that the UE encodes the CSI and the SR in the same resource, for example, A is CSI data, B is SR data, A and B are coded together, and then Transfer.
  • step 103 and step 106 may select one of the executions.
  • the UE may choose to discard the CSI and preferentially guarantee the transmission of the SR.
  • the UE may also perform the CSI and the SR first. The joint coding is then sent together to the base station.
  • the embodiment of the present invention provides The transmission method of the CSI may further include the above step 106 or the following step 107.
  • Step 107 The UE discards the uplink data.
  • the uplink data refers to data that the UE sends to the base station.
  • the uplink data is sent by the UE to the base station through the PUSCH, that is, the uplink data is carried in the PUSCH.
  • step 103 may be performed after step 107.
  • the UE may choose to discard the CSI, and preferentially guarantee the transmission of the uplink data; or the UE may also choose to discard the uplink data, and preferentially Guarantee the transmission of CSI.
  • the embodiment of the present invention provides The transmission method of the CSI may further include the above step 106.
  • the acknowledgement message in the embodiment of the present invention may be a message that the UE feeds back to the base station after receiving the indication information sent by the base station.
  • the acknowledgement message can be used to confirm to the base station whether the UE successfully receives the indication information.
  • the acknowledgement message may include an Acknowledgement (ACK) and a Negative Acknowledgement (NACK).
  • ACK indicates that the UE has successfully received the indication information.
  • the NACK indicates that the UE does not successfully receive the indication information. For example, when the UE checks the indication information, an error occurs, and the base station can confirm that the indication information needs to be retransmitted.
  • the UE may choose to discard the CSI, and preferentially guarantee the transmission of the acknowledgment message.
  • the foregoing embodiments are exemplified by the example that the UE sends the CSI to the base station as an example.
  • the UE may send the aperiodic CSI to the base station.
  • the UE may send the aperiodic CSI to the base station according to the indication information sent by the base station.
  • the aperiodic CSI can accurately reflect the current channel quality, because the aperiodic CSI is sent by the base station to indicate the current channel quality.
  • the base station can accurately estimate the current channel quality according to the aperiodic CSI, so that the base station can accurately schedule the UE.
  • the UE may send the aperiodic CSI to the base station under the indication information sent by the base station, and may send the current channel state information to the base station, so that the base station can perform more accurate scheduling according to the current information about the state information.
  • the base station 400 includes a sending module 401 and a receiving module 402.
  • the sending module 401 is configured to send indication information to the UE, where the indication information is used to instruct the UE to send CSI to the base station.
  • the receiving module 402 is configured to receive a short PUCCH sent by the UE, where the short PUCCH includes CSI.
  • the sending module 401 is specifically configured to send indication information to the UE by using the DCI, where the DCI is a predefined DCI.
  • the base station further includes a scrambling module 403.
  • the scrambling module 403 is configured to scramble the DCI by using the radio network temporary identifier RNTI.
  • the sending module 401 is further configured to perform scrambling by the scrambling module 403.
  • the DCI sends an indication message to the UE.
  • the sending module 401 is specifically configured to send the indication information to the UE by using an idle code point in the DCI.
  • the indication information includes at least one of the following: a time interval, a start symbol of a short PUCCH, a length of a short PUCCH, a start resource block of a short PUCCH, a quantity of resource blocks occupied by a short PUCCH, The frequency hopping information and the CRC value; the time interval is a time interval between the time slot in which the UE receives the indication information and the time slot in which the UE sends the short PUCCH, and the frequency hopping information is used to indicate whether the UE needs to perform frequency hopping when transmitting the short PUCCH.
  • the frequency hopping information is specifically used to indicate that the UE needs to perform frequency hopping when transmitting the short PUCCH, and the indication information further includes the starting resource block of the frequency domain resource after the hopping of the UE.
  • the CSI is an aperiodic CSI sent by the UE to the base station.
  • the UE may send the aperiodic CSI to the base station according to the indication information of the base station.
  • the aperiodic CSI can accurately reflect the current channel quality, because the aperiodic CSI is sent by the base station to indicate the current channel quality. Therefore, the base station obtains After the aperiodic CSI, the base station can accurately estimate the current channel quality according to the aperiodic CSI, so that the base station can accurately schedule the UE.
  • the base station 400 provided by the embodiment of the present invention can implement various processes implemented by the base station in the method embodiment of FIG. 1-4. To avoid repetition, details are not described herein again.
  • the embodiment of the present invention provides a base station, which can send indication information to the UE according to actual needs, and the receiving UE sends a short PUCCH including CSI to the base station according to the indication information, so that the base station can flexibly acquire CSI according to requirements, and obtain CSI energy compared to the existing period.
  • the channel state is determined more accurately and quickly, thereby facilitating the scheduling of the base station.
  • FIG. 5 is a schematic structural diagram of a UE according to an embodiment of the present invention.
  • the UE 500 includes a receiving module 501 and a sending module 502.
  • the receiving module 501 is configured to receive indication information sent by the base station, where the indication information is used to indicate that the UE sends the CSI to the base station.
  • the sending module 502 is configured to send, according to the indication information, a short PUCCH to the base station, where the short PUCCH includes the CSI.
  • the receiving module 501 is specifically configured to receive indication information sent by the base station by using the DCI, where the DCI is a predefined DCI.
  • the receiving module 501 is specifically configured to receive the indication information sent by the base station by using the DCI scrambled by the base station.
  • the receiving module 501 is specifically configured to receive the indication information sent by the base station by using the idle code point in the second DCI.
  • the indication information includes at least one of the following: a time interval, a start symbol of a short PUCCH, a length of a short PUCCH, a start resource block of a short PUCCH, a quantity of resource blocks occupied by a short PUCCH, The frequency hopping information and the CRC value; the time interval is a time interval between the time slot in which the UE receives the short PUCCH and the time slot in which the UE sends the CSI, and the frequency hopping information is used to indicate whether the UE needs to perform frequency hopping in sending the short PUCCH.
  • the frequency hopping information is used to indicate that the UE needs to perform frequency hopping when transmitting the short PUCCH, and the indication information further includes the starting resource block of the frequency domain resource after the hopping of the UE.
  • the frequency hopping information is specifically used to indicate that the UE needs to perform frequency hopping when transmitting the short PUCCH, and the indication information is specifically used to indicate that the UE needs to perform frequency hopping when sending the short PUCCH;
  • the UE further includes a determining module 503; 503. Determine, according to a predefined frequency hopping mode, a starting resource block of a frequency domain resource after the UE hops.
  • the first time domain resource and the second time domain resource part are the same, the first time domain resource is that the UE sends the CSI time domain resource to the base station, and the second time domain resource is that the UE sends the scheduling request to the base station.
  • the time domain resource of the SR; the short PUCCH specifically includes the jointly coded CSI and SR.
  • the first time domain resource and the third time domain resource part are the same, the first time domain resource is that the UE sends the CSI time domain resource to the base station, and the third time domain resource is that the UE sends the uplink data to the base station.
  • the time domain resource; the sending module 502 is further configured to discard the uplink data.
  • the CSI is an aperiodic CSI sent by the UE to the base station.
  • the UE 500 provided by the embodiment of the present invention can implement various processes implemented by the UE in the method embodiment of FIG. 1-5. To avoid repetition, details are not described herein again.
  • the UE After receiving the indication information sent by the base station, the UE sends a short PUCCH including the CSI to the base station according to the indication information, so that the base station can flexibly acquire the CSI according to the requirement, and send the CSI to the base station compared to the existing period.
  • the CSI sends CSI to the base station according to the needs of the base station, so that the base station can more accurately determine the channel state, thereby facilitating the base station to perform scheduling.
  • FIG. 6 is a schematic diagram of a hardware structure of a UE that implements various embodiments of the present invention.
  • the UE 600 includes, but is not limited to, a radio frequency unit 601, a network module 602, an audio output unit 603, an input unit 604, a sensor 605, and a display unit 606.
  • the UE structure shown in FIG. 6 does not constitute a limitation to the UE, and the UE may include more or less components than the illustration, or combine some components, or different component arrangements.
  • the UE includes, but is not limited to, a mobile phone, a tablet computer, a notebook computer, a palmtop computer, an in-vehicle terminal, a wearable device, and a pedometer.
  • the radio unit 601 is configured to receive indication information sent by the base station, where the indication information is used to indicate that the UE sends CSI to the base station, and according to the indication information, send a short physical uplink control channel short PUCCH to the base station, where the short PUCCH includes the CSI.
  • the UE After receiving the indication information sent by the base station, the UE sends a short PUCCH including the CSI to the base station according to the indication information, so that the base station can flexibly acquire the CSI according to the requirement, and send the CSI to the base station compared to the existing period.
  • the CSI sends CSI to the base station according to the needs of the base station, so that the base station can more accurately determine the channel state, thereby facilitating the base station to perform scheduling.
  • the radio frequency unit 601 can be used for receiving and transmitting signals during the transmission and reception of information or during a call. Specifically, after receiving downlink data from the base station, the processing is performed on the processor 610; The uplink data is sent to the base station.
  • radio frequency unit 601 includes, but is not limited to, an antenna, at least one amplifier, a transceiver, a coupler, a low noise amplifier, a duplexer, and the like.
  • the radio unit 601 can also communicate with the network and other devices through a wireless communication system.
  • the UE provides wireless broadband Internet access to the user through the network module 602, such as helping the user to send and receive emails, browse web pages, and access streaming media.
  • the audio output unit 603 can convert the audio data received by the radio frequency unit 601 or the network module 602 or stored in the memory 609 into an audio signal and output as a sound. Moreover, the audio output unit 603 can also provide audio output (eg, call signal reception sound, message reception sound, etc.) associated with a particular function performed by the UE 600.
  • the audio output unit 603 includes a speaker, a buzzer, a receiver, and the like.
  • the input unit 604 is for receiving an audio or video signal.
  • the input unit 604 may include a graphics processing unit (GPU) 6041 and a microphone 6042 that images an still picture or video obtained by an image capturing device (such as a camera) in a video capturing mode or an image capturing mode.
  • the data is processed.
  • the processed image frame can be displayed on display unit 606.
  • the image frames processed by the graphics processor 6041 may be stored in the memory 609 (or other storage medium) or transmitted via the radio unit 601 or the network module 602.
  • the microphone 6042 can receive sound and can process such sound as audio data.
  • the processed audio data can be converted to a format output that can be transmitted to the mobile communication base station via the radio unit 601 in the case of a telephone call mode.
  • the UE 600 also includes at least one type of sensor 605, such as a light sensor, motion sensor, and other sensors.
  • the light sensor includes an ambient light sensor and a proximity sensor, wherein the ambient light sensor can adjust the brightness of the display panel 6061 according to the brightness of the ambient light, and the proximity sensor can close the display panel 6061 and/or when the UE 600 moves to the ear. Backlighting.
  • the accelerometer sensor can detect the acceleration of each direction (usually three axes), and the magnitude and direction of gravity can be detected at rest, which can be used to identify the posture of the UE (such as horizontal and vertical screen switching, related games, Magnetometer attitude calibration), vibration recognition related functions (such as pedometer, tapping), etc.; sensor 605 may also include fingerprint sensor, pressure sensor, iris sensor, molecular sensor, gyroscope, barometer, hygrometer, thermometer, infrared Sensors, etc., will not be described here.
  • the display unit 606 is for displaying information input by the user or information provided to the user.
  • the display unit 606 can include a display panel 6061.
  • the display panel 6061 can be configured in the form of a liquid crystal display (LCD), an organic light-emitting diode (OLED), or the like.
  • the user input unit 607 can be configured to receive input numeric or character information and to generate key signal inputs related to user settings and function control of the UE.
  • the user input unit 607 includes a touch panel 6071 and other input devices 6072.
  • the touch panel 6071 also referred to as a touch screen, can collect touch operations on or near the user (such as a user using a finger, a stylus, or the like on the touch panel 6071 or near the touch panel 6071. operating).
  • the touch panel 6071 may include two parts of a touch detection device and a touch controller.
  • the touch detection device detects the touch orientation of the user, and detects a signal brought by the touch operation, and transmits the signal to the touch controller; the touch controller receives the touch information from the touch detection device, converts the touch information into contact coordinates, and sends the touch information.
  • the processor 610 receives the commands from the processor 610 and executes them.
  • the touch panel 6071 can be implemented in various types such as resistive, capacitive, infrared, and surface acoustic waves.
  • the user input unit 607 may also include other input devices 6072.
  • the other input device 6072 may include, but is not limited to, a physical keyboard, function keys (such as a volume control button, a switch button, etc.), a trackball, a mouse, and a joystick, and details are not described herein.
  • the touch panel 6071 can be overlaid on the display panel 6061.
  • the touch panel 6071 detects a touch operation thereon or nearby, the touch panel 6071 transmits to the processor 610 to determine the type of the touch event, and then the processor 610 according to the touch.
  • the type of event provides a corresponding visual output on display panel 6061.
  • the touch panel 6071 and the display panel 6061 are two independent components to implement the input and output functions of the UE, in some embodiments, the touch panel 6071 may be integrated with the display panel 6061.
  • the input and output functions of the UE are implemented, and are not limited herein.
  • the interface unit 608 is an interface in which an external device is connected to the UE 600.
  • the external device may include a wired or wireless headset port, an external power (or battery charger) port, a wired or wireless data port, a memory card port, a port for connecting a device having an identification module, and an audio input/output. (I/O) port, video I/O port, headphone port, and more.
  • the interface unit 608 can be configured to receive input (eg, data information, power, etc.) from an external device and transmit the received input to one or more components within the UE 600 or can be used to transfer between the UE 600 and an external device. data.
  • Memory 609 can be used to store software programs as well as various data.
  • the memory 609 may mainly include a storage program area and a storage data area, wherein the storage program area may store an operating system, an application required for at least one function (such as a sound playing function, an image playing function, etc.), and the like; the storage data area may be stored according to Data created by the use of the mobile phone (such as audio data, phone book, etc.).
  • memory 609 can include high speed random access memory, and can also include non-volatile memory, such as at least one magnetic disk storage device, flash memory device, or other volatile solid state storage device.
  • Processor 610 is the control center of the UE, which connects various portions of the entire UE using various interfaces and lines, by executing or executing software programs and/or modules stored in memory 609, and invoking data stored in memory 609, The UE performs various functions and processes data to monitor the UE as a whole.
  • the processor 610 may include one or more processing units; preferably, the processor 160 may integrate an application processor and a modem processor, wherein the application processor mainly processes an operating system, a user interface, an application, etc., and performs modulation and demodulation.
  • the processor primarily handles wireless communications. It can be understood that the above modem processor may not be integrated into the processor 610.
  • the UE 600 may further include a power source 611 (such as a battery) for supplying power to various components.
  • a power source 611 such as a battery
  • the power source 611 may be logically connected to the processor 610 through a power management system to manage charging, discharging, power consumption management, etc. through the power management system.
  • the UE 600 includes some functional modules not shown, and details are not described herein again.
  • FIG. 7 is a schematic diagram showing the hardware structure of a base station implementing the embodiments of the present invention.
  • the base station 700 includes a processor 701, a transceiver 702, a memory 703, a user interface 704, and a bus interface.
  • the transceiver 702 is configured to send indication information to the UE, where the indication information is used to indicate that the UE sends CSI to the base station, and the short physical uplink control channel short PUCCH sent by the UE is received, and the short PUCCH includes CSI.
  • the embodiment of the present invention provides a base station, which can send indication information to the UE according to actual needs, and the receiving UE sends a short PUCCH including CSI to the base station according to the indication information, so that the base station can flexibly acquire CSI according to requirements, and obtain CSI energy compared to the existing period.
  • the channel state is determined more accurately and quickly, thereby facilitating the scheduling of the base station.
  • the bus architecture may include any number of interconnected buses and bridges, specifically linked by one or more processors represented by the processor 701 and various circuits of the memory represented by the memory 703. .
  • the bus architecture can also link various other circuits such as peripherals, voltage regulators, and power management circuits, which are well known in the art and, therefore, will not be further described herein.
  • the bus interface provides an interface.
  • Transceiver 702 can be a plurality of components, including a transmitter and a receiver, providing means for communicating with various other devices on a transmission medium.
  • the user interface 704 may also be an interface capable of externally connecting the required devices, including but not limited to a keypad, a display, a speaker, a microphone, a joystick, and the like.
  • the processor 701 is responsible for managing the bus architecture and general processing, and the memory 703 can store data used by the processor 701 in performing operations.
  • the base station 700 also includes some functional modules not shown, which are not described herein again.
  • an embodiment of the present invention further provides a UE, including a processor 610, a memory 609, a computer program stored on the memory 609 and executable on the processor 610, where the computer program is executed by the processor 610
  • a UE including a processor 610, a memory 609, a computer program stored on the memory 609 and executable on the processor 610, where the computer program is executed by the processor 610
  • the embodiment of the present invention further provides a base station, including a processor 701, a memory 703, a computer program stored on the memory 703 and operable on the processor 701, and the computer program is implemented by the processor 701 to implement the foregoing.
  • a base station including a processor 701, a memory 703, a computer program stored on the memory 703 and operable on the processor 701, and the computer program is implemented by the processor 701 to implement the foregoing.
  • a base station including a processor 701, a memory 703, a computer program stored on the memory 703 and operable on the processor 701, and the computer program is implemented by the processor 701 to implement the foregoing.
  • the embodiment of the present invention further provides a computer readable storage medium.
  • the computer readable storage medium stores a computer program. When the computer program is executed by the processor, the processes of the CSI transmission method embodiment are implemented, and the same can be achieved. Technical effects, to avoid repetition, will not be repeated here.
  • the computer readable storage medium such as a read-only memory (ROM), a random access memory (RAM), a magnetic disk, or an optical disk.
  • the foregoing embodiment method can be implemented by means of software plus a necessary general hardware platform, and of course, can also be through hardware, but in many cases, the former is better.
  • Implementation Based on such understanding, the technical solution of the present invention, which is essential or contributes to the prior art, may be embodied in the form of a software product stored in a storage medium (such as ROM/RAM, disk,
  • the optical disc includes a number of instructions for causing a UE (which may be a cell phone, computer, server, air conditioner, or network device, etc.) to perform the methods described in various embodiments of the present invention.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Quality & Reliability (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本发明实施例提供CSI的传输方法及装置,应用于基站,以解决如何使得基站的调度更加准确。该方法包括:向UE发送指示信息,该指示信息用于指示该UE向该基站发送CSI;接收该UE发送的短PUCCH,该短PUCCH中包括该CSI。在本发明实施例中,当基站需要对UE进行调度时,基站可以通过指示信息指示UE上报CSI,而由于此时UE上报的CSI能够准确地反映当前的信道状态,因此,可以使得基站根据当前的信道状态更加准确地调度UE。

Description

CSI的传输方法及装置
本申请要求于2017年11月17日提交中国专利局、申请号为201711149045.5、申请名称为“CSI的传输方法及装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本发明实施例涉及通信技术领域,尤其涉及信道状态信息(Channel State Information,CSI)的传输方法及装置。
背景技术
通常,基站对用户设备(User Equipment,UE)调度时,需要根据信道状态信息CSI对UE进行调度,以获得更好的性能。因此基站需要获取CSI信息。
目前,基站需要获取CSI信息的流程为基站可以在物理上行链路控制信道(Physical Uplink Control Channel,PUCCH)上获取UE周期性发送的CSI,或者通过物理下行共享信道(Physical Uplink share Channel,PUSCH)获得周期性CSI,或者非周期性CSI。
然而,当基站对UE频繁进行调度时,周期性CSI并不能准确地表示当前的信道状况,因此可能导致基站获取的CSI并不准确,导致基站的调度不准确。
发明内容
本发明实施例提供一种CSI的传输方法及装置,以解决如何使得基站的调度更加准确的问题。
第一方面,本发明实施例提供一种CSI的传输方法,该方法包括:基站向UE发送指示信息,该指示信息用于指示该UE向该基站发送CSI;该基站接收该UE发送的短物理上行链路控制信道短PUCCH,该短PUCCH中包括该CSI。
第二方面,本发明实施例还提供了一种CSI的传输方法,该方法包括:用户设备UE接收基站发送的指示信息,该指示信息用于指示该UE向该基站发送CSI;该UE根据该指示信息,向该基站发送短物理上行链路控制信道短PUCCH,该短PUCCH中包括该CSI。
第三方面,本发明实施例还提供了一种基站,该基站包括发送模块和接收模块;该发送模块,用于向UE发送指示信息,该指示信息用于指示该UE向该基站发送CSI;该接收模块,用于接收该UE发送的短物理上行链路控制信道短PUCCH,该短PUCCH中包括该CSI。
第四方面,本发明实施例还提供了一种UE,该UE包括接收模块和发送模块;该 接收模块,用于接收基站发送的指示信息,该指示信息用于指示该UE向该基站发送CSI;该发送模块,用于根据该指示信息,向该基站发送短物理上行链路控制信息短PUCCH,该短PUCCH包括该CSI。
第五方面,本发明实施例提供了一种基站,包括处理器、存储器及存储在该存储器上并可在该处理器上运行的计算机程序,该计算机程序被该处理器执行时实现如第一方面所述的CSI的传输方法的步骤。
第六方面,本发明实施例提供了一种UE,包括处理器、存储器及存储在该存储器上并可在该处理器上运行的计算机程序,该计算机程序被该处理器执行时实现如第二方面所述的CSI的传输方法的步骤。
第七方面,本发明实施例提供了一种计算机可读存储介质,该计算机可读存储介质上存储计算机程序,该计算机程序被处理器执行时实现如第一方面所述的CSI的传输方法的步骤,或该计算机程序被处理器执行时实现如第二方面所述的CSI的传输方法的步骤。
在本发明实施例中,当基站需要对UE进行调度时,基站可以通过指示信息指示UE上报CSI,而由于此时UE上报的CSI能够准确地反映当前的信道状态,因此,可以使得基站根据当前的信道状态更加准确地调度UE。
附图说明
此处所说明的附图用来提供对本发明的进一步理解,构成本发明的一部分,本发明的示意性实施例及其说明用于解释本发明,并不构成对本发明的不当限定。在附图中:
图1为本发明实施例提供的一种通信系统的示意图;
图2为本发明实施例提供的一种CSI的传输方法交互示意图;
图3为本发明实施例提供的一种镜像跳频(mirror frequency hopping)样式的示意图;
图4为本发明实施例提供的一种基站的结构示意图;
图5为本发明实施例提供的一种用户设备UE的结构示意图;
图6为本发明各个实施例的一种用户设备UE的硬件结构示意图;
图7为本发明各个实施例的一种基站的硬件结构示意图。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
需要说明的是,本文中的“/”表示或的意思,例如,A/B可以表示A或B;本文中的“和/或”仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。“多个”是指两个或 多于两个。
需要说明的是,本发明实施例中,“示例性的”或者“例如”等词用于表示作例子、例证或说明。本发明实施例中被描述为“示例性的”或者“例如”的任何实施例或设计方案不应被解释为比其它实施例或设计方案更优选或更具优势。确切而言,使用“示例性的”或者“例如”等词旨在以具体方式呈现相关概念。
本发明的技术方案,可以应用于各种通信系统,例如:全球移动通讯系统(Global System of Mobile communication,GSM),码分多址(Code Division Multiple Access,CDMA)系统,宽带码分多址(Wideband Code Division Multiple Access,WCDMA)系统,通用分组无线业务(General Packet Radio Service,GPRS)系统,长期演进(Long Term Evolution,LTE)/增强长期演进(Long Term Evolution-advanced,LTE-A)系统,新空口(New Radio,NR)系统等,然后所述领域技术人员可以理解,本发明的实施例不限于上述通信系统的应用。
终端设备(User Equipment,UE),也可称之为移动终端(Mobile Terminal)、移动用户设备等,可以经无线接入网(例如,Radio Access Network,RAN)与一个或多个核心网(Core Network,CN)进行通信,用户设备可以是移动终端,如移动电话(或称为“蜂窝”电话)和具有移动终端的计算机,例如,可以是便携式、袖珍式、手持式、计算机内置的或者车载的移动装置,它们与无线接入网交换语言和/或数据。
基站,可以是GSM或CDMA中的基站(Base Transceiver Station,BTS),也可以是WCDMA中的基站(NodeB),还可以是LTE中的演进型基站(eNB或e-NodeB,evolutional Node B)及5G基站(gNB),以及后续演进版本的基站,本发明并不以用词为限定,但为描述方便,下述实施例以基站,或者称之为gNB为例进行说明。
以下结合附图,详细说明本发明各实施例提供的技术方案。
图1为本发明实施例提供的一种通信系统的示意图,该通信系统包括基站和UE,基站可以根据需要(例如基站确定需要对UE进行调度)向UE发送指示信息,指示UE上报CSI,UE在接收到基站发送的该指示信息后根据该指示信息上报CSI。由于此时UE上报的CSI能够准确地反映当前的信道状态,因此,可以使得基站根据当前的信道状态更加准确地调度UE。
如图1所示的UE和基站均可执行本发明实施例中的CSI的传输方法,具体将在下述方法实施例中进行详细地说明,在此不再阐述。
需要说明的是,本发明实施例中的CSI的传输方法,目的之一为用于基站在短PUCCH上获取非周期性CSI信息,即UE在短PUCCH上向基站发送非周期性CSI信息。
下面结合图1中所示的UE和基站对本发明实施例提供的CSI的传输方法进行示例性的说明。
图2为本发明实施例提供的一种CSI的传输方法的交互示意图。如图2所示,该方法可以包括步骤101-步骤104:
步骤101、基站向UE发送指示信息。
其中,该指示信息用于指示UE向基站发送CSI。
可选的,本发明实施例中,该指示信息可以包括下述的至少一项:时间间隔、短PUCCH的起始符号、短PUCCH的长度、短PUCCH的起始资源块、短PUCCH占用的资源块的 数量、跳频信息以及循环冗余校验(Cyclic Redundancy Check,CRC)值;时间间隔为UE接收到指示信息的时隙到UE发送所述短PUCCH的时隙之间的时间间隔,跳频信息用于指示UE发送短PUCCH时是否需要跳频。
需要说明的是,本发明实施例中的符号均是指传输符号。例如,正交频分复用(Orthogonal Frequency Division Multiplexing,OFDM)符号等。
可选的,本发明实施例中,基站可以通过物理下行控制信道(Physical Downlink Control Channel,PDCCH)中的下行控制信息(Downlink Control Information,DCI)向UE发送指示信息。即该指示信息可以承载在DCI中。具体的,该指示信息可以承载在DCI的域中。可以理解,本发明实施例中,当指示信息包括多项时,多项指示信息可以位于DCI的一个域(或称为字段)(field)中,也可以为位于DCI的多个域中。
示例性的,表1为本发明实施例提供的DCI的承载的指示信息的一种示例。
表1
指示信息 值的范围 所占位数
时间间隔 (0,1x,2x,3x) 2bits
短PUCCH的起始符号 0-13个符号 4bits
短PUCCH的长度 1或2符号 1bits
短PUCCH的起始资源块 0-274 9bits
短PUCCH占用的资源块的数量 1-16 4bits
跳频信息 开/关(on/off) 1bits
CRC值   2bits
下面再对表1中的各个指示信息进行说明。
时间间隔:是指基站为UE配置的UE接收到DCI的时隙到UE发送CSI的时隙之间的时间间隔。UE可以根据该时间间隔确定UE向基站发送CSI的时间。示例性的,基站为UE配置的该时间间隔可以为上述表1所示的(0,1x,2x,3x)中的任意一个数值,其中,x的值可以为根据实际使用需求预定义的任意数值。UE接收到基站配置的该时间间隔之后,UE可以根据该时间间隔向基站发送CSI。如表1所示,表示时间间隔的字段在DCI的域中可以占2个比特位。
短PUCCH(short PUCCH)的起始符号:是指基站为UE配置的用于UE发送CSI的资源(以下均简称CSI传输资源)短PUCCH的符号。UE可以根据该起始符号确定UE向基站发送短PUCCH的符号。示例性的,基站为UE配置的该起始符号可以为上述表1所示的0-13中的任意一个符号。UE接收到基站配置的该起始符号之后,UE可以从该起始符号开始向基站发送短PUCCH。如表1所示,表示起始符号的字段在DCI的域中可以占4个比特位。
短PUCCH的长度:是指承载CSI的PUCCH的长度。如表1所示,短PUCCH的长度为1个符号或者2个符号。短PUCCH的长度在DCI的域中可以占1个比特位。
需要说明的是,本发明实施例中的短PUCCH是相对于现有技术中常用的PUCCH(占用4个符号-14个符号)而言的。该短PUCCH通常是指占用符号比较少(即长度比较小)的PUCCH。例如,上述表1所示的占1个符号或者2个符号的PUCCH可以理解为短PUCCH。
短PUCCH的起始资源块:是指基站为UE配置的发送短PUCCH的频域资源块。UE可以根据该起始资源块确定UE向基站发送短PUCCH起始资源块。示例性的,基站为UE配置的该起始资源块可以为上述表1所示的0-274个频域资源块中的任意一个资源块。UE接收到基站配置的该起始资源块之后,UE可以从该起始资源块开始向基站发送短PUCCH。如表1所示,表示起始资源块的字段在DCI的域中可以占9个比特位。
可以理解,如果基站向UE发送的指示信息中包括上述起始符号,不包括上述起始资源块,那么,UE可以在基站为UE配置的短PUCCH传输资源上的任意一个资源块的该起始符号上发送短PUCCH。如果基站向UE发送的指示信息中包括上述起始资源块和上述起始符号,那么UE可以在基站为UE配置的短PUCCH传输资源上的该起始资源块的该起始符号上发送短PUCCH。如果基站向UE发送的指示信息中包括上述起始资源块,那么UE可以在基站为UE配置的CSI传输资源上的该起始资源块的任意一个起始符号上发送短PUCCH。具体的,可以根据实际使用需求确定,本发明实施例不作限定。
短PUCCH占用的资源块的数量:是指基站为UE配置的短PUCCH传输资源的资源块的总个数。示例性的,基站为UE配置的该资源块的数量可以为上述表1所示的1-16中的任意一个数值。UE接收到基站配置的该资源块的数量之后,UE可以根据该资源块的数量向基站发送短PUCCH。如表1所示,表示资源块的数量的字段在DCI的域中可以占4个比特位。
跳频信息:是指基站为UE配置的UE在短PUCCH传输资源上发送CSI时是否需要跳频。示例性的,基站为UE配置的该跳频信息可以通过一个开/关来指示,例如,如表1所示的“on”表示开,即需要跳频,如表1所示的“off”表示关,即不需要跳频。UE接收到基站配置的该跳频信息之后,UE可以根据该跳频信息确定UE在短PUCCH传输资源上发送CSI时是否需要跳频。如表1所示,表示跳频信息的字段在DCI的域中可以占1个比特位。
其中,本发明实施例中的跳频是指两符号的短PUCCH的两个符号在不同的频域资源传输从而获得频率分集增益。
CRC值:是指基站为UE发送的用于差错校验的数值。UE接收到基站发送的DCI之后,通过CRC值校验DCI信息是否正确接收。此外,CRC中携带UE的身份标识(ID),UE通过CRC值能够确认该DCI是否是属于自己的,同时该DCI是否因为信道条件的关系被破坏。
可以理解,当UE判断CRC值能够匹配DCI的信息时,UE可以确定该信息正确接收;当UE判断CRC值不匹配DCI的信息时,UE可以确定该指示信息未正确接收。
步骤102、UE接收基站发送的该指示信息。
步骤103、UE根据该指示信息,向基站发送短PUCCH。
其中,该短PUCCH中包括CSI。即UE可以将CSI承载在短PUCCH中发送给基站。
UE接收到基站发送的指示信息之后,UE可以根据该指示信息指示的内容向基站发送CSI。示例性的,当该指示信息指示上述时间间隔时,UE在接收到基站发送的该指示信息之后,UE可以根据该时间间隔确定UE开始向基站发送CSI的时间点,且UE可以在该时间点到来时开始向基站发送CSI。当该指示信息指示UE在短PUCCH上发送CSI的起始资源块和短PUCCH的长度时,UE可以根据该指示信息确定UE发送CSI的短PUCCH的 长度以及在该长度的PUCCH的起始资源块,且UE可以在该长度的短PUCCH的该起始资源块上向基站发送CSI。
步骤104、基站接收UE发送的短PUCCH。
本发明实施例中,基站接收到UE发送的短PUCCH之后,基站可以从该短PUCCH中获取CSI。
本发明实施例提供的CSI的传输方法,当基站需要对UE进行调度时,基站可以通过指示信息指示UE上报CSI,而由于此时UE上报的CSI能够准确地反映当前的信道状态,因此,可以使得基站根据当前的信道状态更加准确地调度UE。
在本发明实施例提供的CSI的传输方法中,一种可能的实现方式是,上述步骤101具体可以通过下述的步骤101a实现,上述步骤102具体可以通过下述的步骤102a实现。
步骤101a、基站通过DCI向UE发送指示信息。
其中,该DCI可以为预定义的DCI。可以理解,本发明实施例中,可以预定义一个专用的DCI,基站可以通过该专用的DCI向UE发送指示信息。
步骤102a、UE通过DCI接收基站发送的指示信息。
在本发明实施例提供的CSI的传输方法中,另一种可能的实现方式是,在上述步骤101之前,本发明实施例提供的CSI的传输方法还包括步骤105,此时,上述步骤101具体可以通过下述的步骤101b实现,上述步骤102具体可以通过下述的步骤102b实现。
步骤105、基站采用无线网络临时标识(Radio Network Temporary Identity,RNTI)对DCI加扰。
其中,RNTI为基站为UE分配的,用于在UE和演进的通用陆基无线接入网(Evolved Universal Terrestrial Radio Access Network,EUTAN)中区分UE。RNTI是在接入层(access layer)的标识,根据功能不同,可划分为不同种类的RNTI,每个UE可以同时对应多个RNTI。根据RNTI的功能,RNTI具体可分为用于动态调度的PDSCH传输的小区RNTI(Cell RNTI,C-RNTI)、用于随机接入响应的随机存取RNTI(Random Access RNTI,RA-RNTI)、用于标识系统消息块(System Information Block,SIB)消息的传输的RNTI(SI-RNTI)、用于标识寻呼消息的传输的RNTI(P-RNTI)、用于标识组传输功控(transmission power control,TPC)命令传输的用户组的组功控RNTI(TPC-RNTI)和用于半持续调度的PDSCH传输的RNTI(SPSC-RNTI)等。
需要说明的是,本实现方式中的DCI可以为现有技术中常用的DCI。根据不同RNTI对DCI加扰后可以得到不同的加扰后DCI。这样,UE接收到基站发送的加扰后DCI之后,UE可以根据RNTI区分该DCI是用于常用调度的DCI还是本发明实施例中用于发送指示信息的DCI。
步骤101b、基站通过加扰后DCI向UE发送指示信息。
步骤102b、UE通过基站加扰后DCI接收基站发送的指示信息。
基于该方案,基站通过RNTI加扰后DCI向UE发送指示信息,可以使得UE根据该RNTI确定该DCI是用于发送指示信息的DCI,从而UE可以根据该指示信息向基站发送CSI。
在本发明实施例提供的CSI的传输方法中,再一种可能的实现方式是,上述步骤101具体可以通过下述的步骤101c实现,上述步骤102具体可以通过下述的步骤102c实现。
步骤101c、基站通过DCI中的空闲码点向UE发送指示信息。
需要说明的是,本发明实施例中的空闲码点是指DCI的域中空闲的比特位或状态位。例如,假设DCI的一个域包括8个比特位或状态位,且该域中有2个空闲的比特位或状态位,则该2个空闲的比特位或状态位可以称为空闲码点。
可选的,本发明实施例中,上述DCI中的空闲码点可以为该DCI的同一个域中的空闲码点,也可以为该DCI的不同域中的空闲码点,本发明实施例对此不作具体限定。
步骤102c、UE通过DCI中的空闲码点接收基站发送的指示信息。
基于该方案,基站可以通过DCI中的空闲码点向UE发送指示信息,从而使得UE可以根据该指示信息向基站发送CSI。
可以理解,本发明实施例中,上述一种可能的实现方式中的DCI为预定义的一个专用的DCI(即该DCI专用于发送指示信息),在这种实现方式中,基站通过该专用的DCI向UE发送指示信息。上述另一种可能的实现方式中的DCI为现有技术常用的DCI(即该DCI用于基站调度UE),在这种实现方式中,基站通过采用RNTI加扰后该DCI向UE发送指示信息。上述再一种可能的实现方式中的DCI也为现有技术常用的DCI(即该DCI用于基站调度UE),在这种实现方式中,基站通过该常用的DCI中的空闲码点向UE发送指示信息。
可选的,本发明实施例中,第一种可能的实现方式中,当上述跳频信息具体用于指示UE在短PUCCH上发送CSI时需要跳频时,基站向UE发送的指示信息还包括UE跳频后频域资源的起始资源块。即UE可以根据该指示信息,确定UE跳频后频域资源的起始资源块。
示例性的,假设基站为UE配置的UE在短PUCCH上发送CSI的起始资源块(短PUCCH的第一个符号)为R1,该起始资源块使用的频率为f1,则当上述跳频信息指示UE在短PUCCH上发送CSI时需要跳频时,上述指示信息还可以包括UE跳频后频域资源的起始资源块(短PUCCH的第二个符号),例如R2,即UE接收到指示信息之后,UE根据该指示信息可以确定跳频后的频域资源的起始资源块使用的频率f2。
可选的,当指示信息中包括UE跳频后频域资源的起始资源块时,表示频域资源的起始资源块的字段占用9比特的开销(overhead)。
可选的,本发明实施例中,第二种可能的实现方式中,当上述跳频信息具体用于指示UE在短PUCCH上发送CSI时需要跳频时,UE可以根据预定义的跳频模式,确定UE跳频后的频域资源的起始资源块。
例如,图3为本发明提供的一种镜像跳频(mirror frequency hopping)样式的示意图,当预定的跳频模式为镜像跳频模式时,假设UE根据当前带宽部分的短PUCCH的第一个符号的起始资源块确定第二个符号的起始资源块,其中第二个符号的起始资源块即为UE跳频后的频域资源的起始资源块。假设参量资源块包括0-274符号为发送CSI资源块最中间的资源块对应的频率为f0,当短PUCCH的第一个符号的资源块对应的频率为f1,则第二个符号的资源块为274符号对应的频率为f2,其中,f0-f1=f2-f0。
需要说明的是,本发明实施例中仅以镜像跳频模式为例进行说明,预定义的跳频模式(frequency hopping pattern)也可以为其他跳频模式,本发明实施例对此不作具体限定。
基于该方案,基站可以使用预定义的DCI向UE发送指示信息,指示信息可用于指示 UE在定UE跳频后的频域资源的起始资源块。
本发明实施例中,基站通过指示信息指示UE发送CSI之后,UE发送短PUCCH的时域资源(为下述的第一时域资源)可能和UE发送其它信息或者数据的时域资源重复,为了避免两者时域资源重复时可能导致其中一个发送失败,本发明实施例提供以下三种可能的实现方式。
一种可能的实现方式中,当第一时域资源(即UE向基站发送短PUCCH的时域资源)和第二时域资源(即UE向基站发送调度请求(Scheduling Request,SR)的时域资源)部分相同时,在上述步骤102之后,本发明实施例提供的短PUCCH的传输方法还可以包括下述的步骤106或者上述步骤103具体可以通过下述的步骤1031-步骤1032实现(图未示)。
步骤106、UE丢弃CSI。
步骤1031、UE将CSI和SR联合编码。
步骤1032、UE根据指示信息,向基站发送短PUCCH,其中,短PUCCH中包括联合编码后的CSI和SR。
需要说明的是,本发明实施例中的联合编码指的是UE将CSI和SR在同一个资源中编码,比如,A为CSI的数据,B为SR的数据,将A和B一起编码,然后进行传输。
需要说明的是,本发明实施例中,步骤103和步骤106可选择其一执行。
基于该方案,当UE发送CSI的时域资源和向基站发送调度请求SR的时域资源部分相同时,UE可以选择丢弃CSI,优先保证SR的传输;或者,UE也可将CSI和SR先进行联合编码然后一起发送给基站。
另一种可能的实现方式中,当第一时域资源和第三时域资源(即UE向基站发送上行数据的时域资源)部分相同时,在上述步骤102之后,本发明实施例提供的CSI的传输方法还可以包括上述的步骤106或者下述的步骤107。
步骤107、UE丢弃上行数据。
需要说明的是,上行数据指的是UE向基站发送的数据。该上行数据是UE通过PUSCH向基站发送的,即该PUSCH中承载有该上行数据。
需要说明的是,本发明实施例中,步骤107之后还可执行步骤103。
基于该方案,当UE发送CSI的时域资源和UE向基站发送上行数据的时域资源部分相同时,UE可以选择丢弃CSI,优先保证上行数据的传输;或者UE也可以选择丢弃上行数据,优先保证CSI的传输。
再一种可能的实现方式中,当第一时域资源和第四时域资源(即UE向基站发送确认消息的时域资源)部分相同时,在上述步骤102之后,本发明实施例提供的CSI的传输方法还可以包括上述的步骤106。
其中,本发明实施例中的确认消息可以为UE接收到基站发送的指示信息后向基站反馈的消息。该确认消息可以用于向基站确认UE是否成功接收该指示信息。该确认消息可以包括确认(Acknowledgement,ACK)和丢包重传(Negative Acknowledgement,NACK)。ACK表示UE已经成功接收该指示信息。NACK表示UE未成功接收该指示信息,如UE对该指示信息校验时出现错误等,此时基站可以确认需要重传指示信息。
基于该方案,当UE发送CSI的时域资源和UE向基站发送确认消息的时域资源部分相同时,UE可以选择丢弃CSI,优先保证确认消息的传输。
本发明实施例中,上述各个实施方式是以UE向基站发送一次CSI为例进行示例性的说明的,具体实现时,UE可以向基站发送非周期CSI。
基于该方案,UE可以根据基站发送的指示信息向基站发送非周期CSI,由于非周期CSI是基站指示UE发送时UE才发送,因此非周期CSI可以准确地反映当前的信道质量,如此,基站获取到非周期CSI之后,基站可以根据该非周期CSI准确地估算当前的信道质量,从而基站可以准确地对UE进行调度。
基于该方案,UE可以在基站发送的指示信息下向基站发送非周期性的CSI,可以向基站发送当前的信道状态信息,使得基站可以根据当前的信达状态信息进行更加准确的调度。
图4为本发明实施例提供的一种基站的结构示意图,基站400包括发送模块401和接收模块402;发送模块401,用于向UE发送指示信息,指示信息用于指示UE向基站发送CSI;接收模块402,用于接收UE发送的短PUCCH,短PUCCH中包括CSI。
一种可能的实现方式中,发送模块401,具体用于通过DCI向UE发送指示信息,该DCI为预定义的DCI。
一种可能的实现方式中,基站还包括加扰模块403;加扰模块403,用于采用无线网络临时标识RNTI对DCI加扰;发送模块401,还用于通过加扰模块403加扰后的DCI向UE发送指示信息。
一种可能的实现方式中,发送模块401,具体用于通过DCI中的空闲码点向UE发送指示信息。
一种可能的实现方式中,指示信息包括下述的至少一项:时间间隔、短PUCCH的起始符号、短PUCCH的长度、短PUCCH的起始资源块、短PUCCH占用的资源块的数量、跳频信息以及CRC值;时间间隔为UE接收到指示信息的时隙到UE发送短PUCCH的时隙之间的时间间隔,跳频信息用于指示UE发送短PUCCH时是否需要跳频。
一种可能的实现方式中,跳频信息具体用于指示UE发送短PUCCH时需要跳频,指示信息还包括UE跳频后的频域资源的起始资源块。
一种可能的实现方式中,CSI是UE向基站发送的非周期CSI。
基于该方案,UE可以根据基站的指示信息向基站发送非周期CSI,由于非周期CSI是基站指示UE发送时UE才发送,因此非周期CSI可以准确地反映当前的信道质量,如此,基站获取到非周期CSI之后,基站可以根据该非周期CSI准确地估算当前的信道质量,从而基站可以准确地对UE进行调度。
本发明实施例提供的基站400能够实现图1-4的方法实施例中基站实现的各个过程,为避免重复,这里不再赘述。
本发明实施例提供基站,可以根据实际需要向UE发送指示信息,接收UE根据指示信息向基站发送包括CSI的短PUCCH,可以使得基站灵活根据需要获取CSI,相比于现有的周期获取CSI能更加准确快速确定信道状态,进而便于基站进行调度。
图5为本发明实施例提供的一种UE的结构示意图,UE 500包括接收模块501和发送模块502;接收模块501,用于接收基站发送的指示信息,指示信息用于指示UE向基站发送CSI;发送模块502,用于根据指示信息,向基站发送短PUCCH,短PUCCH中包括CSI。
一种可能的实现方式中,接收模块501,具体用于通过DCI接收基站发送的指示信息, 该DCI为预定义的DCI。
一种可能的实现方式中,接收模块501,具体用于通过基站加扰的DCI接收基站发送的指示信息。
一种可能的实现方式中,接收模块501,具体用于通过第二DCI中的空闲码点接收基站发送的指示信息。
一种可能的实现方式中,指示信息包括下述的至少一项:时间间隔、短PUCCH的起始符号、短PUCCH的长度、短PUCCH的起始资源块、短PUCCH占用的资源块的数量、跳频信息以及CRC值;时间间隔为UE接收到短PUCCH的时隙到UE发送CSI的时隙之间的时间间隔,跳频信息用于指示UE在发送短PUCCH是否需要跳频。
一种可能的实现方式中,跳频信息用于指示UE在发送短PUCCH时需要跳频,指示信息还包括UE跳频后的频域资源的起始资源块。
一种可能的实现方式中,跳频信息具体用于指示UE在发送短PUCCH时需要跳频,指示信息具体用于指示UE在发送短PUCCH时需要跳频;UE还包括确定模块503;确定模块503,用于根据预定义的跳频模式,确定UE跳频后的频域资源的起始资源块。
一种可能的实现方式中,第一时域资源和第二时域资源部分相同,第一时域资源为UE向基站发送CSI的时域资源,第二时域资源为UE向基站发送调度请求SR的时域资源;短PUCCH中具体包括联合编码后的CSI和SR。
一种可能的实现方式中,第一时域资源和第三时域资源部分相同,第一时域资源为UE向基站发送CSI的时域资源,第三时域资源为UE向基站发送上行数据的时域资源;发送模块502,还用于丢弃上行数据。
一种可能的实现方式中,CSI是UE向基站发送的非周期性CSI。
本发明实施例提供的UE 500能够实现图1-5的方法实施例中UE实现的各个过程,为避免重复,这里不再赘述。
本发明实施例提供的UE,UE在接收到基站发送的指示信息后,根据指示信息向基站发送包括CSI的短PUCCH,可以使得基站灵活根据需要获取CSI,相比于现有的周期向基站发送CSI,根据基站的需要向基站发送CSI可以使得基站更加准确确定信道状态,进而便于基站进行调度。
图6为实现本发明各个实施例的一种UE的硬件结构示意图,该UE 600包括但不限于:射频单元601、网络模块602、音频输出单元603、输入单元604、传感器605、显示单元606、用户输入单元607、接口单元608、存储器609、处理器610、以及电源611等部件。本领域技术人员可以理解,图6中示出的UE结构并不构成对UE的限定,UE可以包括比图示更多或更少的部件,或者组合某些部件,或者不同的部件布置。在本发明实施例中,UE包括但不限于手机、平板电脑、笔记本电脑、掌上电脑、车载终端、可穿戴设备、以及计步器等。
其中,射频单元601,用于接收基站发送的指示信息,指示信息用于指示UE向所述基站发送CSI;根据指示信息,向基站发送短物理上行链路控制信道短PUCCH,短PUCCH中包括该CSI。
本发明实施例提供的UE,UE在接收到基站发送的指示信息后,根据指示信息向基站发送包括CSI的短PUCCH,可以使得基站灵活根据需要获取CSI,相比于现有的周期向基 站发送CSI,根据基站的需要向基站发送CSI可以使得基站更加准确确定信道状态,进而便于基站进行调度。
应理解的是,本发明实施例中,射频单元601可用于收发信息或通话过程中,信号的接收和发送,具体的,将来自基站的下行数据接收后,给处理器610处理;另外,将上行的数据发送给基站。通常,射频单元601包括但不限于天线、至少一个放大器、收发信机、耦合器、低噪声放大器、双工器等。此外,射频单元601还可以通过无线通信系统与网络和其他设备通信。
UE通过网络模块602为用户提供了无线的宽带互联网访问,如帮助用户收发电子邮件、浏览网页和访问流式媒体等。
音频输出单元603可以将射频单元601或网络模块602接收的或者在存储器609中存储的音频数据转换成音频信号并且输出为声音。而且,音频输出单元603还可以提供与UE600执行的特定功能相关的音频输出(例如,呼叫信号接收声音、消息接收声音等等)。音频输出单元603包括扬声器、蜂鸣器以及受话器等。
输入单元604用于接收音频或视频信号。输入单元604可以包括图形处理器(Graphics Processing Unit,GPU)6041和麦克风6042,图形处理器6041对在视频捕获模式或图像捕获模式中由图像捕获装置(如摄像头)获得的静态图片或视频的图像数据进行处理。处理后的图像帧可以显示在显示单元606上。经图形处理器6041处理后的图像帧可以存储在存储器609(或其它存储介质)中或者经由射频单元601或网络模块602进行发送。麦克风6042可以接收声音,并且能够将这样的声音处理为音频数据。处理后的音频数据可以在电话通话模式的情况下转换为可经由射频单元601发送到移动通信基站的格式输出。
UE 600还包括至少一种传感器605,比如光传感器、运动传感器以及其他传感器。具体地,光传感器包括环境光传感器及接近传感器,其中,环境光传感器可根据环境光线的明暗来调节显示面板6061的亮度,接近传感器可在UE600移动到耳边时,关闭显示面板6061和/或背光。作为运动传感器的一种,加速计传感器可检测各个方向上(一般为三轴)加速度的大小,静止时可检测出重力的大小及方向,可用于识别UE姿态(比如横竖屏切换、相关游戏、磁力计姿态校准)、振动识别相关功能(比如计步器、敲击)等;传感器605还可以包括指纹传感器、压力传感器、虹膜传感器、分子传感器、陀螺仪、气压计、湿度计、温度计、红外线传感器等,在此不再赘述。
显示单元606用于显示由用户输入的信息或提供给用户的信息。显示单元606可包括显示面板6061,可以采用液晶显示器(Liquid Crystal Display,LCD)、有机发光二极管(Organic Light-Emitting Diode,OLED)等形式来配置显示面板6061。
用户输入单元607可用于接收输入的数字或字符信息,以及产生与UE的用户设置以及功能控制有关的键信号输入。具体地,用户输入单元607包括触控面板6071以及其他输入设备6072。触控面板6071,也称为触摸屏,可收集用户在其上或附近的触摸操作(比如用户使用手指、触笔等任何适合的物体或附件在触控面板6071上或在触控面板6071附近的操作)。触控面板6071可包括触摸检测装置和触摸控制器两个部分。其中,触摸检测装置检测用户的触摸方位,并检测触摸操作带来的信号,将信号传送给触摸控制器;触摸控制器从触摸检测装置上接收触摸信息,并将它转换成触点坐标,再送给处理器610,接收处理器610发来的命令并加以执行。此外,可以采用电阻式、电容式、红外线以及表 面声波等多种类型实现触控面板6071。除了触控面板6071,用户输入单元607还可以包括其他输入设备6072。具体地,其他输入设备6072可以包括但不限于物理键盘、功能键(比如音量控制按键、开关按键等)、轨迹球、鼠标、操作杆,在此不再赘述。
进一步的,触控面板6071可覆盖在显示面板6061上,当触控面板6071检测到在其上或附近的触摸操作后,传送给处理器610以确定触摸事件的类型,随后处理器610根据触摸事件的类型在显示面板6061上提供相应的视觉输出。虽然在图6中,触控面板6071与显示面板6061是作为两个独立的部件来实现UE的输入和输出功能,但是在某些实施例中,可以将触控面板6071与显示面板6061集成而实现UE的输入和输出功能,具体此处不做限定。
接口单元608为外部装置与UE600连接的接口。例如,外部装置可以包括有线或无线头戴式耳机端口、外部电源(或电池充电器)端口、有线或无线数据端口、存储卡端口、用于连接具有识别模块的装置的端口、音频输入/输出(I/O)端口、视频I/O端口、耳机端口等等。接口单元608可以用于接收来自外部装置的输入(例如,数据信息、电力等等)并且将接收到的输入传输到UE600内的一个或多个元件或者可以用于在UE600和外部装置之间传输数据。
存储器609可用于存储软件程序以及各种数据。存储器609可主要包括存储程序区和存储数据区,其中,存储程序区可存储操作系统、至少一个功能所需的应用程序(比如声音播放功能、图像播放功能等)等;存储数据区可存储根据手机的使用所创建的数据(比如音频数据、电话本等)等。此外,存储器609可以包括高速随机存取存储器,还可以包括非易失性存储器,例如至少一个磁盘存储器件、闪存器件、或其他易失性固态存储器件。
处理器610是UE的控制中心,利用各种接口和线路连接整个UE的各个部分,通过运行或执行存储在存储器609内的软件程序和/或模块,以及调用存储在存储器609内的数据,执行UE的各种功能和处理数据,从而对UE进行整体监控。处理器610可包括一个或多个处理单元;优选的,处理器160可集成应用处理器和调制解调处理器,其中,应用处理器主要处理操作系统、用户界面和应用程序等,调制解调处理器主要处理无线通信。可以理解的是,上述调制解调处理器也可以不集成到处理器610中。
UE 600还可以包括给各个部件供电的电源611(比如电池),优选的,电源611可以通过电源管理系统与处理器610逻辑相连,从而通过电源管理系统实现管理充电、放电、以及功耗管理等功能。
另外,UE 600包括一些未示出的功能模块,在此不再赘述。
图7为实现本发明各个实施例的一种基站的硬件结构示意图,该基站700包括:处理器701、收发机702、存储器703、用户接口704和总线接口。
其中,收发机702用于向UE发送指示信息,指示信息用于指示UE向所述基站发送CSI;接收UE发送的短物理上行链路控制信道短PUCCH,短PUCCH中包括CSI。
本发明实施例提供基站,可以根据实际需要向UE发送指示信息,接收UE根据指示信息向基站发送包括CSI的短PUCCH,可以使得基站灵活根据需要获取CSI,相比于现有的周期获取CSI能更加准确快速确定信道状态,进而便于基站进行调度。
本发明实施例中,在图7中,总线架构可以包括任意数量的互联的总线和桥,具体由处理器701代表的一个或多个处理器和存储器703代表的存储器的各种电路链接在一起。 总线架构还可以将诸如外围设备、稳压器和功率管理电路等之类的各种其他电路链接在一起,这些都是本领域所公知的,因此,本文不再对其进行进一步描述。总线接口提供接口。收发机702可以是多个元件,即包括发送机和接收机,提供用于在传输介质上与各种其他装置通信的单元。针对不同的用户设备,用户接口704还可以是能够外接内接需要设备的接口,连接的设备包括但不限于小键盘、显示器、扬声器、麦克风、操纵杆等。处理器701负责管理总线架构和通常的处理,存储器703可以存储处理器701在执行操作时所使用的数据。
另外,基站700还包括一些未示出的功能模块,在此不再赘述。
可选的,本发明实施例还提供一种UE,包括处理器610,存储器609,存储在存储器609上并可在所述处理器610上运行的计算机程序,该计算机程序被处理器610执行时实现上述CSI的传输方法实施例的各个过程,且能达到相同的技术效果,为避免重复,这里不再赘述。
可选的,本发明实施例还提供一种基站,包括处理器701,存储器703,存储在存储器703上并可在处理器701上运行的计算机程序,该计算机程序被处理器701执行时实现上述CSI的传输方法实施例的各个过程,且能达到相同的技术效果,为避免重复,这里不再赘述。
本发明实施例还提供一种计算机可读存储介质,计算机可读存储介质上存储有计算机程序,该计算机程序被处理器执行时实现上述CSI的传输方法实施例的各个过程,且能达到相同的技术效果,为避免重复,这里不再赘述。其中,所述的计算机可读存储介质,如只读存储器(Read-Only Memory,简称ROM)、随机存取存储器(Random Access Memory,简称RAM)、磁碟或者光盘等。
需要说明的是,在本文中,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者装置不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者装置所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括该要素的过程、方法、物品或者装置中还存在另外的相同要素。
通过以上的实施方式的描述,本领域的技术人员可以清楚地了解到上述实施例方法可借助软件加必需的通用硬件平台的方式来实现,当然也可以通过硬件,但很多情况下前者是更佳的实施方式。基于这样的理解,本发明的技术方案本质上或者说对现有技术做出贡献的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质(如ROM/RAM、磁碟、光盘)中,包括若干指令用以使得一台UE(可以是手机,计算机,服务器,空调器,或者网络设备等)执行本发明各个实施例所述的方法。
上面结合附图对本发明的实施例进行了描述,但是本发明并不局限于上述的具体实施方式,上述的具体实施方式仅仅是示意性的,而不是限制性的,本领域的普通技术人员在本发明的启示下,在不脱离本发明宗旨和权利要求所保护的范围情况下,还可做出很多形式,均属于本发明的保护之内。

Claims (35)

  1. 一种信道状态信息CSI的传输方法,所述方法用于基站,其特征在于,包括:
    向用户设备UE发送指示信息,所述指示信息用于指示所述UE向所述基站发送CSI;以及
    接收所述UE发送的短物理上行链路控制信道PUCCH,其中,所述短PUCCH中包括所述CSI。
  2. 根据权利要求1所述的方法,其特征在于,向UE发送指示信息,包括:
    通过下行控制信息DCI向所述UE发送所述指示信息,所述DCI为预定义的DCI。
  3. 根据权利要求1所述的方法,其特征在于,向UE发送指示信息之前,所述方法还包括:
    采用无线网络临时标识RNTI对DCI加扰;
    向所述UE发送指示信息,包括:
    通过加扰后的所述DCI向所述UE发送所述指示信息。
  4. 根据权利要求1所述的方法,其特征在于,向UE发送指示信息,包括:
    通过DCI中的空闲码点向所述UE发送所述指示信息。
  5. 根据权利要求1至4中任一项所述的方法,其特征在于,
    所述指示信息包括下述的至少一项:时间间隔、所述短PUCCH的起始符号、所述短PUCCH的长度、所述短PUCCH的起始资源块、所述短PUCCH占用的资源块的数量、跳频信息以及循环冗余校验CRC值;所述时间间隔为所述UE接收到所述指示信息的时隙到所述UE发送所述短PUCCH的时隙之间的时间间隔,所述跳频信息用于指示所述UE发送所述短PUCCH时是否需要跳频。
  6. 根据权利要求5所述的方法,其特征在于,
    所述跳频信息用于指示所述UE发送所述短PUCCH时需要跳频,所述指示信息还包括所述UE跳频后的频域资源的起始资源块。
  7. 根据权利要求1所述的方法,其特征在于,
    所述CSI是所述UE向所述基站发送的非周期CSI。
  8. 一种信道状态信息CSI的传输方法,所述方法用于用户设备UE,其特征在于,所述方法包括:
    接收基站发送的指示信息,所述指示信息用于指示所述UE向所述基站发送CSI;已经
    根据所述指示信息,向所述基站发送短物理上行链路控制信道PUCCH,所述短PUCCH中包括所述CSI。
  9. 根据权利要求8所述的方法,其特征在于,接收基站发送的指示信息,包括:
    通过下行控制信息DCI接收所述基站发送的所述指示信息,所述DCI为预定义的DCI。
  10. 根据权利要求8所述的方法,其特征在于,接收基站发送的指示信息,包括:
    通过所述基站加扰后的DCI接收所述基站发送的所述指示信息。
  11. 根据权利要求8所述的方法,其特征在于,接收基站发送的指示信息,包括:
    通过DCI中的空闲码点接收所述基站发送的所述指示信息。
  12. 根据权利要求8至11中任一项所述的方法,其特征在于,
    所述指示信息包括下述的至少一项:时间间隔、所述短PUCCH的起始符号、所述短PUCCH的长度、所述短PUCCH的起始资源块、所述短PUCCH占用的资源块的数量、跳频信息以及循环冗余校验CRC值;所述时间间隔为所述UE接收到所述指示信息的时隙到所述UE发送所述短PUCCH的时隙之间的时间间隔,所述跳频信息用于指示所述UE发送所述短PUCCH时是否需要跳频。
  13. 根据权利要求12所述的方法,其特征在于,
    所述跳频信息用于指示所述UE发送所述短PUCCH时需要跳频,所述指示信息还包括所述UE跳频后的频域资源的起始资源块。
  14. 根据权利要求12所述的方法,其特征在于,所述跳频信息用于指示所述UE发送所述短PUCCH时需要跳频;所述方法还包括:
    根据预定义的跳频模式,确定所述UE跳频后的频域资源的起始资源块。
  15. 根据权利要求8所述的方法,其特征在于,第一时域资源和第二时域资源部分相同,所述第一时域资源为所述UE向所述基站发送所述CSI的时域资源,所述第二时域资源为所述UE向所述基站发送调度请求SR的时域资源;以及
    所述短PUCCH中包括联合编码后的所述CSI和所述SR。
  16. 根据权利要求8所述的方法,其特征在于,第一时域资源和第三时域资源部分相同,所述第一时域资源为所述UE向所述基站发送所述CSI的时域资源,所述第三时域资源为所述UE向所述基站发送上行数据的时域资源;所述方法还包括:
    丢弃所述上行数据。
  17. 根据权利要求8所述的方法,其特征在于,
    所述CSI是所述UE向所述基站发送的非周期性CSI。
  18. 一种基站,其特征在于,所述基站包括发送模块和接收模块;
    所述发送模块,用于向用户设备UE发送指示信息,所述指示信息用于指示所述UE向所述基站发送信道状态信息CSI;
    所述接收模块,用于接收所述UE发送的短物理上行链路控制信道PUCCH,所述短PUCCH中包括所述CSI。
  19. 根据权利要求18所述的基站,其特征在于,
    所述发送模块,用于通过下行控制信息DCI向所述UE发送所述指示信息,所述DCI为预定义的DCI。
  20. 根据权利要求18所述的基站,其特征在于,所述基站还包括加扰模块;
    所述加扰模块,用于采用无线网络临时标识RNTI对DCI加扰;
    所述发送模块,用于通过所述加扰模块加扰后的所述DCI向所述UE发送所述指示信息。
  21. 根据权利要求18所述的基站,其特征在于,
    所述发送模块,用于通过DCI中的空闲码点向所述UE发送所述指示信息。
  22. 根据权利要求18至21中任一项所述的基站,其特征在于,
    所述指示信息包括下述的至少一项:时间间隔、所述短PUCCH的起始符号、所述短PUCCH的长度、所述短PUCCH的起始资源块、所述短PUCCH占用的资源块的 数量、跳频信息以及循环冗余校验CRC值;所述时间间隔为所述UE接收到所述指示信息的时隙到所述UE发送所述短PUCCH的时隙之间的时间间隔,所述跳频信息用于指示所述UE发送所述短PUCCH时是否需要跳频。
  23. 根据权利要求22所述的基站,其特征在于,
    所述跳频信息用于指示所述UE发送所述短PUCCH时需要跳频,所述指示信息还包括所述UE跳频后的频域资源的起始资源块。
  24. 一种用户设备UE,其特征在于,所述UE包括接收模块和发送模块;
    所述接收模块,用于接收基站发送的指示信息,所述指示信息用于指示所述UE向所述基站发送信道状态信息CSI;以及
    所述发送模块,用于根据所述接收模块接收的所述指示信息,向所述基站发送短物理上行链路控制信息PUCCH,所述短PUCCH中包括所述CSI。
  25. 根据权利要求24所述的UE,其特征在于,
    所述接收模块,用于通过下行控制信息DCI接收所述基站发送的所述指示信息,所述DCI为预定义的DCI。
  26. 根据权利要求24所述的UE,其特征在于,
    所述接收模块,用于通过所述基站加扰后的DCI接收所述基站发送的所述指示信息。
  27. 根据权利要求24所述的UE,其特征在于,
    所述接收模块,用于通过DCI中的空闲码点接收所述基站发送的所述指示信息。
  28. 根据权利要求24至27中任一项所述的UE,其特征在于,
    所述指示信息包括下述的至少一项:时间间隔、所述短PUCCH的起始符号、所述短PUCCH的长度、所述短PUCCH的起始资源块、所述短PUCCH占用的资源块的数量、跳频信息以及循环冗余校验CRC值;所述时间间隔为所述UE接收到所述指示信息的时隙到所述UE发送所述短PUCCH的时隙之间的时间间隔,所述跳频信息用于指示所述UE发送所述短PUCCH时是否需要跳频。
  29. 根据权利要求28所述的UE,其特征在于,
    所述跳频信息用于指示所述UE发送所述短PUCCH时需要跳频,所述指示信息还包括所述UE跳频后的频域资源的起始资源块。
  30. 根据权利要求28所述的UE,其特征在于,所述跳频信息用于指示所述UE发送所述短PUCCH时需要跳频,所述UE还包括确定模块;
    所述确定模块,用于根据预定义的跳频模式,确定所述UE跳频后的频域资源的起始资源块。
  31. 根据权利要求24所述的UE,其特征在于,第一时域资源和第二时域资源部分相同,所述第一时域资源为所述UE向所述基站发送所述CSI的时域资源,所述第二时域资源为所述UE向所述基站发送调度请求SR的时域资源;以及
    所述短PUCCH中具体包括联合编码后的所述CSI和所述SR。
  32. 根据权利要求24所述的UE,其特征在于,第一时域资源和第三时域资源部分相同,所述第一时域资源为所述UE向所述基站发送所述CSI的时域资源,所述第三时域资源为所述UE向所述基站发送上行数据的时域资源;以及
    所述发送模块,还用于丢弃所述上行数据。
  33. 一种基站,其特征在于,所述基站包括处理器、存储器及存储在所述存储器上并可在所述处理器上运行的计算机程序,所述计算机程序被所述处理器执行时实现如权利要求1至7中任一项所述的信道状态信息CSI的传输方法的步骤。
  34. 一种用户设备UE,其特征在于,所述UE包括处理器、存储器及存储在所述存储器上并可在所述处理器上运行的计算机程序,所述计算机程序被所述处理器执行时实现如权利要求8至17中任一项所述的信道状态信息CSI的传输方法的步骤。
  35. 一种计算机可读存储介质,其特征在于,所述计算机可读存储介质上存储计算机程序,所述计算机程序被处理器执行时实现如权利要求8至17中任一项所述的信道状态信息CSI的传输方法的步骤。
PCT/CN2018/110613 2017-11-17 2018-10-17 Csi的传输方法及装置 WO2019095919A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US16/757,348 US20210194555A1 (en) 2017-11-17 2018-10-17 Channel state information transmission method and apparatus
EP18877970.6A EP3713341A4 (en) 2017-11-17 2018-10-17 CSI TRANSMISSION PROCESS AND DEVICE

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201711149045.5A CN109802753A (zh) 2017-11-17 2017-11-17 Csi的传输方法及装置
CN201711149045.5 2017-11-17

Publications (1)

Publication Number Publication Date
WO2019095919A1 true WO2019095919A1 (zh) 2019-05-23

Family

ID=66540075

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/110613 WO2019095919A1 (zh) 2017-11-17 2018-10-17 Csi的传输方法及装置

Country Status (4)

Country Link
US (1) US20210194555A1 (zh)
EP (1) EP3713341A4 (zh)
CN (1) CN109802753A (zh)
WO (1) WO2019095919A1 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109995485B (zh) * 2017-12-29 2021-05-11 电信科学技术研究院 一种上行控制信息的传输方法及装置
CN110035520B (zh) * 2018-01-12 2021-10-15 维沃移动通信有限公司 数据传输方法、解扰方法、解调方法及设备
WO2021168664A1 (zh) * 2020-02-25 2021-09-02 北京小米移动软件有限公司 通信方法、装置及计算机存储介质
CN114765859A (zh) * 2020-12-31 2022-07-19 维沃移动通信有限公司 数据传输方法、装置及通信设备

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105227277A (zh) * 2010-10-28 2016-01-06 Lg电子株式会社 用于发送控制信息的方法和装置
CN108282304A (zh) * 2017-01-06 2018-07-13 华为技术有限公司 信息传输方法、终端及网络侧设备
CN108347782A (zh) * 2017-01-25 2018-07-31 电信科学技术研究院 一种上行控制信息发送、接收方法、终端及基站
CN108633051A (zh) * 2017-03-24 2018-10-09 中兴通讯股份有限公司 确定数据传输资源的方法、装置、终端、基站及设备

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018503293A (ja) * 2014-12-08 2018-02-01 エルジー エレクトロニクス インコーポレイティド 5個を超えるセルをキャリアアグリゲーションによって使用する時のpucch送信方法及びユーザ装置
AR103887A1 (es) * 2015-03-09 2017-06-14 ERICSSON TELEFON AB L M (publ) Canal pucch breve en canal spucch de enlace ascendente
EP4120614B1 (en) * 2016-01-06 2024-03-20 Apple Inc. Ul (uplink) control design for unlicensed spectrum
EP3449591A4 (en) * 2016-04-25 2019-11-20 Intel IP Corporation COMMON PDCCH (CPDCCH) TRANSFERRED ON AN UNLICENSED CARRIER
JP6959910B2 (ja) * 2016-04-28 2021-11-05 シャープ株式会社 端末装置、基地局装置、および、通信方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105227277A (zh) * 2010-10-28 2016-01-06 Lg电子株式会社 用于发送控制信息的方法和装置
CN108282304A (zh) * 2017-01-06 2018-07-13 华为技术有限公司 信息传输方法、终端及网络侧设备
CN108347782A (zh) * 2017-01-25 2018-07-31 电信科学技术研究院 一种上行控制信息发送、接收方法、终端及基站
CN108633051A (zh) * 2017-03-24 2018-10-09 中兴通讯股份有限公司 确定数据传输资源的方法、装置、终端、基站及设备

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3713341A4 *

Also Published As

Publication number Publication date
EP3713341A4 (en) 2021-01-06
CN109802753A (zh) 2019-05-24
EP3713341A1 (en) 2020-09-23
US20210194555A1 (en) 2021-06-24

Similar Documents

Publication Publication Date Title
US11510211B2 (en) Sidelink operation method and terminal
CN109963326B (zh) 控制信道监听方法、监听指示方法、终端及网络设备
EP3965497B1 (en) Uplink control information sending and receiving methods, terminal, and network side device
WO2019196690A1 (zh) 旁链路的传输方法和终端
CN113573256B (zh) 信息反馈、资源调度方法、终端及网络设备
WO2019095919A1 (zh) Csi的传输方法及装置
US20220141690A1 (en) Transmission method and communication device
US20220014343A1 (en) Indication method, terminal device, and network-side device
CN110034862B (zh) 一种下行反馈方法、移动通信终端及网络侧设备
CN111277381B (zh) 物理下行控制信道监听、监听配置方法、终端及网络设备
CN110719635A (zh) 一种信道检测指示方法、终端及网络设备
US20220150720A1 (en) Dci transmission method and communication device
US20220141775A1 (en) Information transmission method and terminal
CN113472487A (zh) Harq-ack反馈的触发方法、反馈方法及设备
CN112583533B (zh) Harq-ack反馈的获取、发送、终端及网络侧设备
WO2020119243A1 (zh) 物理上行控制信道传输方法、网络侧设备和终端
KR20210121248A (ko) 비면허 스펙트럼의 상향링크 전송 방법, 단말 및 네트워크 장치
WO2019214420A1 (zh) 业务调度方法、终端及网络设备
CN113225817A (zh) 调度方法、终端及网络侧设备
US11736327B2 (en) Uplink transmission method and terminal
CN111800864B (zh) 物理上行链路控制信道传输方法、装置、设备及介质
CN111836311B (zh) 能力协商方法、终端及网络设备
CN113543215B (zh) 一种冲突资源判断方法、终端和网络设备
CN113473605A (zh) 一种冲突资源确定方法和终端
CN109803420B (zh) Csi传输资源的配置方法及装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18877970

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018877970

Country of ref document: EP

Effective date: 20200617