WO2021098628A1 - 上行传输方法、配置方法、终端及网络侧设备 - Google Patents

上行传输方法、配置方法、终端及网络侧设备 Download PDF

Info

Publication number
WO2021098628A1
WO2021098628A1 PCT/CN2020/128939 CN2020128939W WO2021098628A1 WO 2021098628 A1 WO2021098628 A1 WO 2021098628A1 CN 2020128939 W CN2020128939 W CN 2020128939W WO 2021098628 A1 WO2021098628 A1 WO 2021098628A1
Authority
WO
WIPO (PCT)
Prior art keywords
uplink transmission
transmission
uplink
target
priority
Prior art date
Application number
PCT/CN2020/128939
Other languages
English (en)
French (fr)
Inventor
贺子健
李娜
陈晓航
Original Assignee
维沃移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 维沃移动通信有限公司 filed Critical 维沃移动通信有限公司
Publication of WO2021098628A1 publication Critical patent/WO2021098628A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/02Traffic management, e.g. flow control or congestion control
    • H04W28/04Error control
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/21Control channels or signalling for resource management in the uplink direction of a wireless link, i.e. towards the network
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/56Allocation or scheduling criteria for wireless resources based on priority criteria
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/56Allocation or scheduling criteria for wireless resources based on priority criteria
    • H04W72/563Allocation or scheduling criteria for wireless resources based on priority criteria of the wireless resources
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/20Manipulation of established connections
    • H04W76/27Transitions between radio resource control [RRC] states

Definitions

  • the embodiments of the present invention relate to the field of communication technologies, and in particular to an uplink transmission method, a configuration method, a terminal, and a network side device.
  • 5G fifth generation
  • the main scenarios of 5G include Enhance Mobile Broadband (eMBB), Ultra-Reliable and Low Latency Communications (URLLC), Massive Machine Type of Communication (mMTC), These scenarios put forward requirements for the system such as high reliability, low latency, large bandwidth, and wide coverage.
  • eMBB Enhance Mobile Broadband
  • URLLC Ultra-Reliable and Low Latency Communications
  • mMTC Massive Machine Type of Communication
  • Uplink transmissions configured for different services or different uplink transmissions configured for the same service may conflict in time and frequency domain resources, which will affect service performance. Therefore, in the case of an uplink transmission conflict, how to resolve the uplink transmission conflict is a problem to be solved urgently at present.
  • the embodiment of the present invention provides an uplink transmission method, a configuration method, a terminal and a network side device to solve the problem of uplink transmission conflict.
  • the present invention is implemented as follows:
  • an embodiment of the present invention provides an uplink transmission method, and the method includes:
  • an embodiment of the present invention provides a configuration method, which includes:
  • the RRC message is used to configure a target priority of the SRS, and the target priority is a priority that can be distinguished by the physical layer.
  • an embodiment of the present invention also provides a terminal, and the terminal includes:
  • the discarding module is configured to discard the first uplink transmission or the second uplink transmission according to the first rule in the case of a transmission conflict between the first uplink transmission and the second uplink transmission.
  • an embodiment of the present invention also provides a network-side device, where the network-side device includes:
  • the sending module is configured to send an RRC message, where the RRC message is used to configure a target priority of the SRS, and the target priority is a priority that can be distinguished by the physical layer.
  • an embodiment of the present invention also provides a terminal.
  • the terminal includes a processor, a memory, and a computer program stored on the memory and running on the processor, and the computer program is executed by the processor. When executed, the steps of the uplink transmission method as described above are realized.
  • embodiments of the present invention also provide a network-side device.
  • the network-side device includes a processor, a memory, and a computer program that is stored on the memory and can run on the processor.
  • the computer program is The processor implements the steps of the configuration method as described above when executed.
  • an embodiment of the present invention also provides a computer-readable storage medium having a computer program stored on the computer-readable storage medium, and when the computer program is executed by a processor, the above-mentioned uplink transmission applied to the terminal is realized.
  • the terminal when a transmission conflict occurs between the first uplink transmission and the second uplink transmission, the terminal discards the first uplink transmission or the second uplink transmission according to the first rule. Thereby, the problem of uplink transmission conflict can be solved, and the reliability of service performance can be improved.
  • Figure 1 is a structural diagram of a network system applicable to an embodiment of the present invention
  • FIG. 2 is a flowchart of an uplink transmission method provided by an embodiment of the present invention.
  • FIG. 3 is one of the schematic diagrams of uplink transmission according to an embodiment of the present invention.
  • FIG. 4 is the second schematic diagram of uplink transmission according to an embodiment of the present invention.
  • FIG. 5 is the third schematic diagram of uplink transmission according to an embodiment of the present invention.
  • Fig. 6a is the fourth schematic diagram of uplink transmission according to an embodiment of the present invention.
  • Figure 6b is the fifth schematic diagram of uplink transmission according to an embodiment of the present invention.
  • FIG. 7 is a flowchart of a configuration method provided by an embodiment of the present invention.
  • Figure 8 is one of the structural diagrams of a terminal provided by an embodiment of the present invention.
  • FIG. 9 is one of the structural diagrams of a network side device provided by an embodiment of the present invention.
  • FIG. 10 is a second structural diagram of a terminal provided by an embodiment of the present invention.
  • Fig. 11 is a second structural diagram of a network side device provided by an embodiment of the present invention.
  • first”, “second”, etc. in the present invention are used to distinguish similar objects, and are not necessarily used to describe a specific sequence or sequence.
  • the terms “including” and “having” and any variations of them are intended to cover non-exclusive inclusions.
  • a process, method, system, product, or device that includes a series of steps or units is not necessarily limited to those clearly listed. Those steps or units may include other steps or units that are not clearly listed or are inherent to these processes, methods, products, or equipment.
  • the use of "and/or" in the present invention means at least one of the connected objects, such as A and/or B and/or C, which means that it includes A alone, B alone, C alone, and both A and B exist, Both B and C exist, A and C exist, and A, B, and C all exist in 7 cases.
  • FIG. 1 is a structural diagram of a network system applicable to an embodiment of the present invention. As shown in FIG. 1, it includes a terminal 11 and a network-side device 12, where the terminal 11 and the network-side device 12 can be To communicate.
  • the terminal 11 may also be referred to as a UE (User Equipment, UE).
  • the terminal 11 can be a mobile phone, a tablet (Personal Computer), a laptop (Laptop Computer), a personal digital assistant (PDA), a mobile Internet device (Mobile Internet Device, MID), Wearable devices (Wearable Device) or in-vehicle devices, etc.
  • the network side device 12 may be a base station, a relay, or an access point.
  • the fifth generation (5 th -Generation, 5G) mobile communication system 1.
  • the fifth generation (5 th -Generation, 5G) mobile communication system 1.
  • 5G fifth generation
  • the main scenarios of 5G include Enhance Mobile Broadband (eMBB), Ultra-Reliable and Low Latency Communications (URLLC), Massive Machine Type of Communication (mMTC), These scenarios put forward requirements for the system such as high reliability, low latency, large bandwidth, and wide coverage.
  • eMBB Enhance Mobile Broadband
  • URLLC Ultra-Reliable and Low Latency Communications
  • mMTC Massive Machine Type of Communication
  • a longer time-domain scheduling unit is usually used for data transmission to improve transmission efficiency.
  • a shorter time domain scheduling unit is usually used to meet the requirements of ultra-short delay.
  • URLLC data Due to URLLC's low latency and high reliability requirements, URLLC data usually has a higher transmission priority.
  • SRS Sounding Reference Signal
  • SRS is used for uplink channel information acquisition, downlink channel information acquisition when channel disparity is satisfied, and uplink beam management.
  • the New Radio (NR) system supports periodic SRS (P-SRS), semi-persistent SRS (SP-SRS) and aperiodic SRS (A-SRS).
  • P-SRS can be configured by Radio Resource Control (RRC) and sent periodically;
  • SP-SRS can be configured by RRC, and Media Access Control (MAC) layer activation signaling is activated and activated. It is sent periodically;
  • A-SRS can be activated by Downlink Control Information (DCI) signaling.
  • DCI Downlink Control Information
  • the resource configuration of the Physical Uplink Control Channel (PUCCH) and the SRS overlap in the time domain, which will cause conflicts and require corresponding conflict resolution solutions.
  • the processing priority when SRS conflicts with different channels can be defined.
  • SRS conflicts with PUCCH the corresponding uplink transmission is selected according to the corresponding rules, and other uplink transmissions are discarded. Rules can include at least one of the following:
  • a ⁇ B means: when A conflicts with B, the processing priority of B is higher than the processing priority of A, and B is transmitted, and A is discarded.
  • the processing priority of A-SRS is higher than the processing priority of PUCCH (PUCCH with CSI) carrying channel state information (CSI); the processing priority of PUCCH with CSI is higher than that of P- The processing priority of SRS and SP-SRS.
  • HARQ-ACK bearer Hybrid Automatic Repeat reQuest Acknowledgement
  • SR Scheduling Request
  • PRACH Physical Random Access Channel
  • PRACH is mainly used to establish wireless connection, uplink synchronization, SR and other functions during initial access.
  • the UE cannot transmit PRACH and physical uplink shared channel (Physical Uplink Shared Channel) PUSCH/PUCCH/SRS in the same time slot (Slot); or, the end symbol of PUSCH/PUCCH/SRS on the previous slot and PRACH on the current slot
  • the UE needs to discard one of PUSCH/PUCCH/SRS and PRACH transmission; or, the interval between the end symbol of the PRACH of the current slot and the start symbol of the PUSCH/PUCCH/SRS of the next slot is short
  • the UE needs to discard one of PUSCH/PUCCH/SRS and PRACH transmission.
  • N may be related to the subcarrier spacing (SubCarrier Space, SCS) of the uplink bandwidth part (Bandwidth Part, BWP) activated by the UE.
  • SCS subcarrier Space
  • BWP bandwidth part
  • the uplink transmission method in the embodiment of the present invention will be described below.
  • Fig. 2 is a flowchart of an uplink transmission method according to an embodiment of the present invention.
  • the uplink transmission method in the embodiment of the present invention is applied to a terminal.
  • the uplink transmission method may include the following steps:
  • Step 201 In the case of a transmission conflict between the first uplink transmission and the second uplink transmission, discard the first uplink transmission or the second uplink transmission according to a first rule.
  • the terminal may discard one of the first uplink transmission and the second uplink transmission according to the first rule, and transmit the The other one of the first uplink transmission and the second uplink transmission.
  • the terminal when a transmission conflict occurs between the first uplink transmission and the second uplink transmission, the terminal discards the first uplink transmission or the second uplink transmission according to a first rule. Thereby, the problem of uplink transmission conflict can be solved, and the reliability of service performance can be improved.
  • the discarding of the first uplink transmission or the second uplink transmission according to the first rule may include two implementation manners:
  • Embodiment 1 Discard the first uplink transmission or the second uplink transmission according to the target priority of the first uplink transmission and the second uplink transmission, and the target priority is a priority that can be distinguished by the physical layer level.
  • the second embodiment is to discard the first uplink transmission or the second uplink transmission according to the transmission functions of the first uplink transmission and the second uplink transmission.
  • the discarding the first uplink transmission or the second uplink transmission according to the target priority of the first uplink transmission and the second uplink transmission includes at least one of the following:
  • the target priority of the first uplink transmission is different from the target priority of the second uplink transmission, discard the uplink with the lower target priority in the first uplink transmission and the second uplink transmission transmission;
  • the target priority of the first uplink transmission is the same as the target priority of the second uplink transmission, discard the transmission channel with the lower priority in the first uplink transmission and the second uplink transmission Uplink transmission.
  • the terminal may discard the first uplink transmission and the second uplink transmission.
  • the uplink transmission with the lower target priority is transmitted, and the uplink transmission with the higher target priority in the first uplink transmission and the second uplink transmission is transmitted, thereby ensuring the reliable transmission of the uplink transmission with the higher target priority Sex.
  • the terminal may further combine the priority of the transmission channel in the first uplink transmission and the second uplink transmission. Discard the uplink transmission with the lower priority of the transmission channel in the first uplink transmission and the second uplink transmission, and transmit the higher priority of the transmission channel in the first uplink transmission and the second uplink transmission Therefore, the transmission reliability of the uplink transmission with the higher priority of the transmission channel can be guaranteed.
  • the target priority can be distinguished by the physical layer. Therefore, the target priority can also be referred to as the physical layer distinguished priority. It should be noted that the target priority can also be referred to as other naming, and the present invention is not affected by naming.
  • the target priority of the uplink transmission is related to the service corresponding to the uplink transmission.
  • the service corresponding to the uplink transmission can be understood as: the service of the uplink transmission service.
  • service 1 can be regarded as the service corresponding to uplink transmission 1.
  • the target priority of the uplink transmission may be related to the delay requirement of the service corresponding to the uplink transmission.
  • the target priority used for the uplink transmission of the URLLC service may be higher than the target priority used for the uplink transmission of the eMBB service, thereby ensuring the transmission reliability of the uplink transmission of the service with a high delay requirement.
  • the first uplink transmission may be a sounding reference signal SRS, and the target priority of the SRS may be configured through a radio resource control RRC message.
  • SRS sounding reference signal
  • RRC message radio resource control
  • the first uplink transmission may specifically be P-SRS or SP-SRS.
  • its target priority can be determined in other ways, such as through DCI configuration, but it is not limited to this.
  • the network-side device can configure the target priority of the SRS through an RRC message, so that the flexibility of determining the priority of the RSR can be improved.
  • the target priority of the SRS configured in the RRC message may be high priority or low priority, which may be specifically determined according to actual conditions, which is not limited in the present invention.
  • the network side device may configure the target priority of the SRS according to the service corresponding to the SRS. Further, considering the low latency requirement of the URLLC service, the target priority of the SRS when the URLLC service is used for ultra-reliable and low-latency communication may be higher than the target priority when the SRS is used to enhance the mobile broadband eMBB service , which can reduce the transmission delay of URLLC services.
  • the target priority of the SRS may also be agreed upon by an agreement. In this way, compared to configuring through RRC messages, signaling overhead can be reduced.
  • the first uplink transmission is physical random access channel PRACH transmission; the first uplink transmission or the second uplink transmission is discarded according to the transmission function of the first uplink transmission and the second uplink transmission.
  • Uplink transmission including at least one of the following:
  • the PRACH transmission is a PRACH transmission used for uplink synchronization, discarding the second uplink transmission;
  • the PRACH transmission is a PRACH transmission used for scheduling a request SR
  • the second uplink transmission is a target uplink transmission
  • the PRACH transmission is a PRACH transmission used for scheduling request SR
  • the second uplink transmission is not a target uplink transmission, discarding the second uplink transmission
  • the target uplink transmission includes the physical uplink control channel PUCCH transmission carrying the HARQ-ACK of the hybrid automatic repeat request response.
  • the terminal may not pay attention to the second uplink transmission, always discard the second uplink transmission, and transmit the PRACH transmission , To ensure the reliability of PRACH transmission.
  • the terminal In the case that the PRACH transmission is a PRACH transmission used for scheduling a request SR, the terminal also needs to further pay attention to the second uplink transmission, and determine whether the second uplink transmission is a target uplink transmission.
  • the terminal may discard the PRACH transmission and transmit the target uplink transmission; in the case that the second uplink transmission is not the target uplink transmission, the terminal The second uplink transmission may be discarded and the PRACH transmission may be transmitted.
  • the target uplink transmission may, but is not limited to, include PUCCH transmission carrying HARQ-ACK, that is, PUCCH with HARQ-ACK.
  • the first uplink transmission and the second uplink transmission are configured to be transmitted in a target time slot, the target time slot includes P sub-time slots, and P is a positive integer.
  • the target time slot is a time slot configured with sub-slots.
  • the target time slot may include P sub-time slots, and P is a positive integer.
  • the number of symbols occupied by each sub-slot can be configured by the network side device, but it is not limited to this.
  • the first uplink transmission and the second uplink transmission may be transmitted conflict, transmission conflict may not occur.
  • the first uplink transmission and the second uplink transmission are configured for transmission in a target time slot
  • the first uplink transmission and the second uplink transmission have a transmission conflict, but no transmission conflict occurs. Description.
  • the occurrence of a transmission conflict between the first uplink transmission and the second uplink transmission includes any one of the following:
  • the first uplink transmission and the second uplink transmission are configured to be transmitted on the same sub-slot of the target time slot, and the transmission resource of the first uplink transmission and the transmission resource of the second uplink transmission are separated
  • the number of symbols is less than N, and N is a positive integer
  • the first uplink transmission and the second uplink transmission are configured to be transmitted in a target time slot, and the transmission resources of the first uplink transmission and the transmission resources of the second uplink transmission partially or completely overlap in symbols;
  • the target time slot includes P sub-time slots, and P is a positive integer.
  • the first uplink transmission and the second uplink transmission are configured to be transmitted on the same sub-slot of the target time slot, and the In the case where the number of symbols between the transmission resource of the first uplink transmission and the transmission resource of the second uplink transmission is less than N, it may be considered that a transmission conflict occurs between the first uplink transmission and the second uplink transmission.
  • the terminal may discard the first uplink transmission and the second uplink transmission according to the transmission functions of the first uplink transmission and the second uplink transmission. For one of the second uplink transmissions, the other is transmitted.
  • the method further includes:
  • That no transmission conflict occurs between the first uplink transmission and the second uplink transmission includes at least one of the following:
  • the first uplink transmission and the second uplink transmission are configured to be transmitted in different sub-slots of the target time slot;
  • the first uplink transmission and the second uplink transmission are configured to be transmitted on the same sub-slot of the target time slot, and the transmission resource of the first uplink transmission and the transmission resource of the second uplink transmission are separated
  • the number of symbols is greater than or equal to N, where N is a positive integer.
  • the terminal can be in the target time slot
  • the transmission of the first uplink transmission and the second uplink transmission is completed, so that the reliability of uplink transmission can be improved.
  • N is a positive integer, which can be specifically determined according to actual requirements, which is not limited in the embodiment of the present invention.
  • the value of N is determined based on the subcarrier spacing SCS of the BWP of the active bandwidth part of the terminal. In this case, the determination of the value of N may refer to the foregoing description for details, which will not be repeated here.
  • URLLC services Due to the low latency and high reliability requirements of URLLC scenarios, URLLC services generally have a higher transmission priority.
  • the physical layer can be defined to distinguish priorities to ensure the performance requirements of URLLC services.
  • URLLC introduces the sub-Slot configuration, there are multiple PUCCHs in the same Slot, and a PRACH in the Slot may conflict with one or more PUCCHs on the sub-Slot. You can define the PRACH and PUCCH in the sub-Slot. The conflict resolution method improves the impact of PRACH on PUCCH transmission.
  • the present invention provides an uplink transmission conflict processing method, which specifically includes:
  • P/SP-SRS Defines the priority of the physical layer distinction of P/SP-SRS.
  • RRC configures P/SP-SRS, the priority is determined according to different services.
  • the channel priority is compared, and the channel with the lower channel priority is discarded.
  • the channel priority can be:
  • UE can transmit PUCCH and PRACH.
  • the UE can transmit PUCCH and PRACH.
  • the UE When PRACH and PUCCH are in the same sub-Slot, and PRACH and PUCCH partially overlap, all overlap, or the number of separated symbols is less than N, the UE only transmits one of PUSCH and PRACH.
  • the PUCCH is transmitted preferentially according to the UCI carried by the PUCCH.
  • PUCCH contains HARQ-ACK.
  • RRC configures the priority of physical layer differentiation of P/SP-SRS to be high, and RRC configures the priority of physical layer differentiation of a certain SR to be low.
  • the S/SP-SRS conflicts with the SR in the time domain, the S/SP-SRS is transmitted first.
  • the priority of physical layer differentiation of RRC configured with P/SP-SRS is high, and the priority of physical layer differentiation of RRC configured with a certain SR is also high, that is, P/SP-SRS
  • the priority of the physical layer distinction is equal to the priority of the SR physical layer distinction.
  • the priority of the SR is higher than the channel priority of the S/SP-SRS.
  • the base station configures PRACH to occupy part of the symbols of the Slot, and no symbols on some sub-Slots are occupied by PRACH, and both PUCCH and PRACH on the sub-Slot can be transmitted.
  • a sub-Slot is configured with 2 symbols, and PRACH transmission and PUCCH transmission are configured to be transmitted on different sub-Slots. Therefore, PRACH transmission and PUCCH transmission can be completed on the target time slot.
  • the base station configures PRACH to occupy part of the symbols of the Slot, and the symbols on the sub-Slot are occupied by PRACH. If the interval between the symbols occupied by the PUCCH on the sub-Slot and the PRACH is greater than Or equal to 2 symbols, the terminal can transmit PUCCH and PRACH at the same time.
  • a sub-Slot is configured with 7 symbols.
  • PRACH transmission and the first PUCCH transmission (from left to right) are configured in the first sub-Slot transmission, but the end symbol of the PRACH transmission is the same as the first PUCCH.
  • the interval of the start symbol of the transmission is 2 symbols, therefore, the PRACH transmission and the first PUCCH transmission can be completed on the first sub-Slot.
  • the second PUCCH transmission is configured in the second sub-Slot transmission, so that the terminal can complete the PRACH transmission, the first PUCCH transmission, and the second PUCCH transmission in the target time slot.
  • the base station configures PRACH for uplink synchronization and occupies part of the symbols of the Slot. If the PUCCH and PRACH partially or completely overlap, the terminal transmits PRACH first.
  • a sub-Slot is configured with 7 symbols
  • the PRACH transmission for uplink synchronization and the first PUCCH transmission are configured in the first sub-Slot transmission
  • the end symbol of the PRACH transmission It overlaps with the start symbol of the first PUCCH transmission. Therefore, the terminal can discard the first PUCCH transmission and transmit the PRACH transmission for uplink synchronization.
  • the second PUCCH transmission is configured in the second sub-Slot transmission, so that the terminal can complete the PRACH transmission and the second PUCCH transmission in the target time slot.
  • the base station When a Slot is configured with multiple sub-Slots, the base station configures PRACH for SR, occupying part of the symbols of the Slot, and configures PUCCH on the sub-Slot to include HARQ-ACK feedback. If PUCCH and PRACH partially or completely overlap, PUCCH is transmitted first.
  • a sub-Slot is configured with 7 symbols.
  • the PRACH transmission for SR and the first PUCCH transmission are configured in the first sub-Slot transmission, and the end symbol of the PRACH transmission is the same as The start symbol of the first PUCCH transmission overlaps, and the first PUCCH carries HARQ-ACK. Therefore, the terminal can discard the PRACH transmission and transmit the first PUCCH transmission.
  • the second PUCCH transmission is configured in the second sub-Slot transmission, so that the terminal can complete the first PUCCH transmission and the second PUCCH transmission in the target time slot.
  • the base station configures PRACH to occupy part of the symbols of the Slot, and there are symbols on the sub-Slot that are occupied by PRACH. If the PUCCH on the sub-Slot is occupied by the symbol and the PRACH interval Less than 2 symbols, the terminal only transmits one of PUCCH and PRACH.
  • a sub-Slot is configured with 7 symbols
  • PRACH transmission and the first PUCCH transmission are configured in the first sub-Slot transmission
  • the end symbol of PRACH transmission is the same as the first PUCCH.
  • the interval of the start symbol of the transmission is 1 symbol, which is less than 2 symbols. Therefore, the terminal needs to discard the PRACH transmission and complete the first PUCCH transmission on the first sub-Slot.
  • the second PUCCH transmission is configured in the second sub-Slot transmission, so that the terminal can complete the first PUCCH transmission and the second PUCCH transmission in the target time slot.
  • the priority when there are two service transmissions with different priorities, the priority is distinguished by defining the physical layer of P/SP-SRS, and the conflict handling method in the case of uplink channel conflict is given in combination with the channel priority.
  • the priority of P/SP-SRS can be configured through RRC; the uplink transmission with high service priority can be guaranteed, and the uplink transmission with low service priority can be discarded; in the case of the same service priority, the uplink transmission with high channel priority can be guaranteed. Discard upstream transmissions with low channel priority.
  • the processing behavior of the conflict between PRACH and PUCCH in the sub-Slot is defined when the sub-Slot is configured, which is specifically:
  • PUCCH and PRACH are in different sub-slots, UE can transmit PUCCH and PRACH;
  • the UE can transmit PUCCH and PRACH;
  • the PUCCH and the PRACH overlap, all overlap, or the number of symbols spaced is less than N.
  • the UE transmits only one of the PUCCH and the PRACH, and the priority of the uplink transmission is determined according to the priority of the PUCCH.
  • the embodiment of the present invention solves the problem of P/SP-SRS configuration with different priorities under different services, solves the limitation of PRACH on one or more PUCCH transmissions under sub-Slot configuration, and guarantees the performance requirements of URLLC services.
  • FIG. 7 is a flowchart of a configuration method provided by an embodiment of the present invention.
  • the configuration method of the embodiment of the present invention is applied to a network side device.
  • the configuration method may include the following steps:
  • Step 701 Send an RRC message, where the RRC message is used to configure a target priority of the SRS, and the target priority is a priority that can be distinguished by the physical layer.
  • the target priority of the SRS can be configured through the RRC message, so that the terminal can resolve the uplink conflict according to the target priority of the uplink transmission in the case of an uplink transmission conflict.
  • this embodiment is an implementation manner of a network side device corresponding to the foregoing terminal-side method embodiment. Therefore, reference may be made to the relevant description in the foregoing method embodiment, and the same beneficial effects can be achieved. In order to avoid repeating the description, it will not be repeated here.
  • FIG. 8 is one of the structural diagrams of the terminal provided by the embodiment of the present invention. As shown in FIG. 8, the terminal 800 includes:
  • the discarding module 801 is configured to discard the first uplink transmission or the second uplink transmission according to a first rule in the case of a transmission conflict between the first uplink transmission and the second uplink transmission.
  • the discarding module 801 is specifically configured to discard the first uplink transmission or the second uplink transmission according to the target priority of the first uplink transmission and the second uplink transmission, the The target priority is the distinguishable priority of the physical layer.
  • the target priority of the uplink transmission is related to the service corresponding to the uplink transmission.
  • the first uplink transmission is a sounding reference signal SRS, and the target priority of the SRS is configured through a radio resource control RRC message.
  • the discarding module 801 is specifically used for at least one of the following:
  • the target priority of the first uplink transmission is different from the target priority of the second uplink transmission, discard the uplink with the lower target priority in the first uplink transmission and the second uplink transmission transmission;
  • the target priority of the first uplink transmission is the same as the target priority of the second uplink transmission, discard the transmission channel with the lower priority in the first uplink transmission and the second uplink transmission Uplink transmission.
  • the discarding module 801 is specifically configured to discard the first uplink transmission or the second uplink transmission according to the transmission functions of the first uplink transmission and the second uplink transmission.
  • the transmission conflict between the first uplink transmission and the second uplink transmission includes any one of the following:
  • the first uplink transmission and the second uplink transmission are configured to be transmitted on the same sub-slot of the target time slot, and the transmission resource of the first uplink transmission and the transmission resource of the second uplink transmission are separated
  • the number of symbols is less than N, and N is a positive integer
  • the first uplink transmission and the second uplink transmission are configured to be transmitted in a target time slot, and the transmission resources of the first uplink transmission and the transmission resources of the second uplink transmission partially or completely overlap in symbols;
  • the target time slot includes P sub-time slots, and P is a positive integer.
  • the terminal 800 further includes:
  • a transmission module configured to transmit the first uplink transmission and the second uplink transmission on the target time slot when there is no transmission conflict between the first uplink transmission and the second uplink transmission;
  • That no transmission conflict occurs between the first uplink transmission and the second uplink transmission includes at least one of the following:
  • the first uplink transmission and the second uplink transmission are configured to be transmitted in different sub-slots of the target time slot;
  • the first uplink transmission and the second uplink transmission are configured to be transmitted on the same sub-slot of the target time slot, and the transmission resource of the first uplink transmission and the transmission resource of the second uplink transmission are separated
  • the number of symbols is greater than or equal to N, where N is a positive integer.
  • the value of N is determined based on the subcarrier spacing SCS of the BWP of the active bandwidth part of the terminal.
  • the first uplink transmission is physical random access channel PRACH transmission;
  • the discarding module 801 is specifically used for at least one of the following:
  • the PRACH transmission is a PRACH transmission used for uplink synchronization, discarding the second uplink transmission;
  • the PRACH transmission is a PRACH transmission used for scheduling a request SR
  • the second uplink transmission is a target uplink transmission
  • the PRACH transmission is a PRACH transmission used for scheduling request SR
  • the second uplink transmission is not a target uplink transmission, discarding the second uplink transmission
  • the target uplink transmission includes the physical uplink control channel PUCCH transmission carrying the HARQ-ACK of the hybrid automatic repeat request response.
  • the terminal 800 can implement various processes that can be implemented by the terminal in the method embodiment of the present invention and achieve the same beneficial effects. To avoid repetition, details are not described herein again.
  • the network side device 900 includes:
  • the sending module 901 is configured to send an RRC message, where the RRC message is used to configure a target priority of the SRS, and the target priority is a priority that can be distinguished by the physical layer.
  • the network side device 900 can implement the various processes that can be implemented by the network side device in the method embodiment of the present invention and achieve the same beneficial effects. To avoid repetition, details are not described herein again.
  • FIG. 10 is a second structural diagram of a terminal provided by an embodiment of the present invention.
  • the terminal may be a schematic diagram of a hardware structure of a terminal that implements various embodiments of the present invention.
  • the terminal 1000 includes but is not limited to: a radio frequency unit 1001, a network module 1002, an audio output unit 1003, an input unit 1004, a sensor 1005, a display unit 1006, a UE input unit 1007, an interface unit 1008, a memory 1009, and processing The device 1010, and the power supply 1011 and other components.
  • the terminal 10 does not constitute a limitation on the terminal, and the terminal may include more or less components than shown in the figure, or combine some components, or arrange different components.
  • the terminal includes, but is not limited to, a mobile phone, a tablet computer, a notebook computer, a palmtop computer, a vehicle-mounted terminal, a wearable device, a pedometer, and the like.
  • the processor 1010 is used for:
  • processor 1010 is also used for:
  • the first uplink transmission or the second uplink transmission is discarded according to the target priority of the first uplink transmission and the second uplink transmission, and the target priority is a priority that can be distinguished by a physical layer.
  • the target priority of the uplink transmission is related to the service corresponding to the uplink transmission.
  • the first uplink transmission is a sounding reference signal SRS, and the target priority of the SRS is configured through a radio resource control RRC message.
  • processor 1010 is further used for at least one of the following:
  • the target priority of the first uplink transmission is different from the target priority of the second uplink transmission, discard the uplink with the lower target priority in the first uplink transmission and the second uplink transmission transmission;
  • the target priority of the first uplink transmission is the same as the target priority of the second uplink transmission, discard the transmission channel with the lower priority in the first uplink transmission and the second uplink transmission Uplink transmission.
  • processor 1010 is also used for:
  • the transmission functions of the first uplink transmission and the second uplink transmission discard the first uplink transmission or the second uplink transmission.
  • the first uplink transmission and the second uplink transmission are configured to be transmitted in a target time slot, the target time slot includes P sub-time slots, and P is a positive integer.
  • the occurrence of a transmission conflict between the first uplink transmission and the second uplink transmission includes any one of the following:
  • the first uplink transmission and the second uplink transmission are configured to be transmitted on the same sub-slot of the target time slot, and the transmission resource of the first uplink transmission and the transmission resource of the second uplink transmission are separated
  • the number of symbols is less than N, and N is a positive integer
  • the first uplink transmission and the second uplink transmission are configured to be transmitted in a target time slot, and the transmission resources of the first uplink transmission and the transmission resources of the second uplink transmission partially or completely overlap in symbols;
  • the target time slot includes P sub-time slots, and P is a positive integer.
  • processor 1010 is also used for:
  • That no transmission conflict occurs between the first uplink transmission and the second uplink transmission includes at least one of the following:
  • the first uplink transmission and the second uplink transmission are configured to be transmitted in different sub-slots of the target time slot;
  • the first uplink transmission and the second uplink transmission are configured to be transmitted on the same sub-slot of the target time slot, and the transmission resource of the first uplink transmission and the transmission resource of the second uplink transmission are separated
  • the number of symbols is greater than or equal to N, where N is a positive integer.
  • the value of N is determined based on the subcarrier spacing SCS of the BWP of the active bandwidth part of the terminal.
  • the first uplink transmission is physical random access channel PRACH transmission; the processor 1010 is further configured to at least one of the following:
  • the PRACH transmission is a PRACH transmission used for uplink synchronization, discarding the second uplink transmission;
  • the PRACH transmission is a PRACH transmission used for scheduling a request SR
  • the second uplink transmission is a target uplink transmission
  • the PRACH transmission is a PRACH transmission used for scheduling request SR
  • the second uplink transmission is not a target uplink transmission, discarding the second uplink transmission
  • the target uplink transmission includes the physical uplink control channel PUCCH transmission carrying the HARQ-ACK of the hybrid automatic repeat request response.
  • the radio frequency unit 1001 can be used to receive and send signals during information transmission or communication. Specifically, the downlink data from the base station is received and sent to the processor 1010 for processing; in addition, Uplink data is sent to the base station.
  • the radio frequency unit 1001 includes, but is not limited to, an antenna, at least one amplifier, a transceiver, a coupler, a low noise amplifier, a duplexer, and the like.
  • the radio frequency unit 1001 can also communicate with the network and other devices through a wireless communication system.
  • the terminal provides wireless broadband Internet access for the UE through the network module 1002, such as helping the UE to send and receive emails, browse web pages, and access streaming media.
  • the audio output unit 1003 can convert the audio data received by the radio frequency unit 1001 or the network module 1002 or stored in the memory 1009 into audio signals and output them as sounds. Moreover, the audio output unit 1003 may also provide audio output related to a specific function performed by the terminal 1000 (for example, call signal reception sound, message reception sound, etc.).
  • the audio output unit 1003 includes a speaker, a buzzer, a receiver, and the like.
  • the input unit 1004 is used to receive audio or video signals.
  • the input unit 1004 may include a graphics processing unit (GPU) 10041 and a microphone 10042, and the graphics processor 10041 is configured to respond to still pictures or video images obtained by an image capture device (such as a camera) in a video capture mode or an image capture mode.
  • the data is processed.
  • the processed image frame can be displayed on the display unit 1006.
  • the image frame processed by the graphics processor 10041 may be stored in the memory 1009 (or other storage medium) or sent via the radio frequency unit 1001 or the network module 1002.
  • the microphone 10042 can receive sound, and can process such sound into audio data.
  • the processed audio data can be converted into a format that can be sent to a mobile communication base station via the radio frequency unit 1001 in the case of a telephone call mode for output.
  • the terminal 1000 further includes at least one sensor 1005, such as a light sensor, a motion sensor, and other sensors.
  • the light sensor includes an ambient light sensor and a proximity sensor.
  • the ambient light sensor can adjust the brightness of the display panel 10061 according to the brightness of the ambient light.
  • the proximity sensor can close the display panel 10061 and/or when the terminal 1000 is moved to the ear. Or backlight.
  • the accelerometer sensor can detect the magnitude of acceleration in various directions (usually three-axis), and can detect the magnitude and direction of gravity when stationary, and can be used to identify terminal gestures (such as horizontal and vertical screen switching, related games, Magnetometer posture calibration), vibration recognition related functions (such as pedometer, percussion), etc.; sensor 1005 can also include fingerprint sensors, pressure sensors, iris sensors, molecular sensors, gyroscopes, barometers, hygrometers, thermometers, infrared Sensors, etc., will not be repeated here.
  • the display unit 1006 is used to display information input by the UE or information provided to the UE.
  • the display unit 1006 may include a display panel 10061, and the display panel 10061 may be configured in the form of a liquid crystal display (LCD), an organic light-emitting diode (OLED), etc.
  • LCD liquid crystal display
  • OLED organic light-emitting diode
  • the UE input unit 1007 can be used to receive input numeric or character information, and generate key signal input related to UE settings and function control of the terminal.
  • the UE input unit 1007 includes a touch panel 10071 and other input devices 10072.
  • the touch panel 10071 also known as a touch screen, can collect the touch operations of the UE on or near it (for example, the UE uses any suitable objects or accessories such as fingers, stylus, etc.) on the touch panel 10071 or near the touch panel 10071. operating).
  • the touch panel 10071 may include two parts: a touch detection device and a touch controller.
  • the touch detection device detects the touch position of the UE, detects the signal brought by the touch operation, and transmits the signal to the touch controller; the touch controller receives the touch information from the touch detection device, converts it into contact coordinates, and then sends it
  • the processor 1010 receives and executes the command sent by the processor 1010.
  • the touch panel 10071 can be implemented in multiple types such as resistive, capacitive, infrared, and surface acoustic wave.
  • the UE input unit 1007 may also include other input devices 10072.
  • other input devices 10072 may include, but are not limited to, a physical keyboard, function keys (such as volume control buttons, switch buttons, etc.), trackball, mouse, and joystick, which will not be repeated here.
  • the touch panel 10071 can cover the display panel 10061.
  • the touch panel 10071 detects a touch operation on or near it, it transmits it to the processor 1010 to determine the type of the touch event, and then the processor 1010 determines the type of the touch event according to the touch.
  • the type of event provides corresponding visual output on the display panel 10061.
  • the touch panel 10071 and the display panel 10061 are used as two independent components to implement the input and output functions of the terminal, in some embodiments, the touch panel 10071 and the display panel 10061 may be integrated. Realize the input and output functions of the terminal, the specifics are not limited here.
  • the interface unit 1008 is an interface for connecting an external device with the terminal 1000.
  • the external device may include a wired or wireless headset port, an external power source (or battery charger) port, a wired or wireless data port, a memory card port, a port for connecting a device with an identification module, audio input/output (I/O) port, video I/O port, headphone port, etc.
  • the interface unit 1008 may be used to receive input (for example, data information, power, etc.) from an external device and transmit the received input to one or more elements in the terminal 1000 or may be used to communicate between the terminal 1000 and the external device. Transfer data between.
  • the memory 1009 can be used to store software programs and various data.
  • the memory 1009 may mainly include a program storage area and a data storage area.
  • the program storage area may store an operating system, an application program required by at least one function (such as a sound playback function, an image playback function, etc.), etc.; Data created by the use of mobile phones (such as audio data, phone book, etc.), etc.
  • the memory 1009 may include a high-speed random access memory, and may also include a non-volatile memory, such as at least one magnetic disk storage device, a flash memory device, or other volatile solid-state storage devices.
  • the processor 1010 is the control center of the terminal. It uses various interfaces and lines to connect various parts of the entire terminal, and executes by running or executing software programs and/or modules stored in the memory 1009, and calling data stored in the memory 1009. Various functions of the terminal and processing data, so as to monitor the terminal as a whole.
  • the processor 1010 may include one or more processing units; preferably, the processor 1010 may integrate an application processor and a modem processor, where the application processor mainly processes the operating system, the UE interface, and application programs, etc., the modem The processor mainly deals with wireless communication. It can be understood that the foregoing modem processor may not be integrated into the processor 1010.
  • the terminal 1000 may also include a power source 1011 (such as a battery) for supplying power to various components.
  • a power source 1011 such as a battery
  • the power source 1011 may be logically connected to the processor 1010 through a power management system, so as to manage charging, discharging, and power consumption management through the power management system.
  • the terminal 1000 includes some functional modules not shown, which will not be repeated here.
  • the embodiment of the present invention also provides a terminal, including a processor 1010, a memory 1009, a computer program stored in the memory 1009 and capable of running on the processor 1010, and the computer program is implemented when the processor 1010 is executed.
  • a terminal including a processor 1010, a memory 1009, a computer program stored in the memory 1009 and capable of running on the processor 1010, and the computer program is implemented when the processor 1010 is executed.
  • FIG. 11 is the second structural diagram of the network side device provided by the embodiment of the present invention.
  • the network side device 1100 includes: a processor 1101, a memory 1102, a UE interface 1103, a transceiver 1104, and a bus interface.
  • the network side device 1100 further includes: a computer program that is stored in the memory 1102 and can run on the processor 1101. When the computer program is executed by the processor 1101, the following steps are implemented:
  • An RRC message is sent through the transceiver 1104, and the RRC message is used to configure a target priority of the SRS, and the target priority is a priority that can be distinguished by the physical layer.
  • the bus architecture may include any number of interconnected buses and bridges. Specifically, one or more processors represented by the processor 1101 and various circuits of the memory represented by the memory 1102 are linked together.
  • the bus architecture can also link various other circuits such as peripheral devices, voltage regulators, power management circuits, etc., which are all known in the art, and therefore, will not be further described herein.
  • the bus interface provides the interface.
  • the transceiver 1104 may be a plurality of elements, that is, including a transmitter and a receiver, and provide a unit for communicating with various other devices on the transmission medium.
  • the UE interface 1103 may also be an interface capable of connecting externally and internally with the required equipment.
  • the connected equipment includes but not limited to a keypad, a display, a speaker, a microphone, a joystick, and so on.
  • the processor 1101 is responsible for managing the bus architecture and general processing, and the memory 1102 can store data used by the processor 2601 when performing operations.
  • the network-side device 1100 can implement each process implemented by the network-side device in the foregoing method embodiment, and to avoid repetition, details are not described herein again.
  • the embodiment of the present invention also provides a computer-readable storage medium, and a computer program is stored on the computer-readable storage medium.
  • a computer program is stored on the computer-readable storage medium.
  • the computer program is executed by a processor, each process of the above-mentioned uplink transmission method embodiment is realized, and the same technology can be achieved. The effect, in order to avoid repetition, will not be repeated here.
  • the computer-readable storage medium such as read-only memory (Read-Only Memory, ROM), random access memory (Random Access Memory, RAM), magnetic disk, or optical disk, etc.
  • the technical solution of the present invention essentially or the part that contributes to the existing technology can be embodied in the form of a software product, and the computer software product is stored in a storage medium (such as ROM/RAM, magnetic disk, The optical disc) includes a number of instructions to enable a terminal (which may be a mobile phone, a computer, a server, an air conditioner, or a network device, etc.) to execute the method described in each embodiment of the present invention.
  • a terminal which may be a mobile phone, a computer, a server, an air conditioner, or a network device, etc.
  • modules, units, sub-modules, sub-units, etc. can be implemented in one or more application specific integrated circuits (ASICs), digital signal processors (Digital Signal Processing, DSP), digital signal processing equipment ( DSP Device, DSPD), Programmable Logic Device (PLD), Field-Programmable Gate Array (Field-Programmable Gate Array, FPGA), general-purpose processors, controllers, microcontrollers, microprocessors, Other electronic units or combinations thereof that perform the functions described in this application.
  • ASICs application specific integrated circuits
  • DSP Digital Signal Processing
  • DSP Device digital signal processing equipment
  • PLD Programmable Logic Device
  • Field-Programmable Gate Array Field-Programmable Gate Array
  • FPGA Field-Programmable Gate Array

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本发明提供一种上行传输方法、配置方法、终端及网络侧设备。其中,上行传输方法包括:在第一上行传输和第二上行传输发生传输冲突的情况下,根据第一规则丢弃所述第一上行传输或所述第二上行传输。本发明可以解决上行传输冲突的问题,提高业务性能的可靠性。

Description

上行传输方法、配置方法、终端及网络侧设备
相关申请的交叉引用
本申请主张在2019年11月19日在中国提交的中国专利申请号No.201911137481.X的优先权,其全部内容通过引用包含于此。
技术领域
本发明实施例涉及通信技术领域,尤其涉及一种上行传输方法、配置方法、终端及网络侧设备。
背景技术
与以往的移动通信系统相比,第五代(5 th-Generation,5G)移动通信系统需要适应更加多样化的场景和业务需求。5G的主要场景包括增强移动宽带(Enhance Mobile Broadband,eMBB),超可靠和低时延通信(Ultra-Reliable and Low Latency Communications,URLLC),大规模机器类通信(massive Machine Type of Communication,mMTC),这些场景对系统提出了高可靠,低时延,大带宽,广覆盖等要求。为了提高提高无线频谱的利用效率,同时满足不同业务的不同需求,需要在同一频谱资源上同时支持URLLC业务和eMBB业务。为不同的业务配置的上行传输或为同一种业务配置的不同的上行传输可能在时、频域资源上产生冲突,从而将影响业务性能。因此,在上行传输冲突的情况下,如何解决上行传输冲突,是目前亟待解决的问题。
发明内容
本发明实施例提供一种上行传输方法、配置方法、终端及网络侧设备,以解决上行传输冲突的问题。
为解决上述问题,本发明是这样实现的:
第一方面,本发明实施例提供了一种上行传输方法,所述方法包括:
在第一上行传输和第二上行传输发生传输冲突的情况下,根据第一规则丢弃所述第一上行传输或所述第二上行传输。
第二方面,本发明实施例提供了一种配置方法,所述方法包括:
发送RRC消息,所述RRC消息用于配置SRS的目标优先级,所述目标优先级为物理层可区分的优先级。
第三方面,本发明实施例还提供一种终端,所述终端包括:
丢弃模块,用于在第一上行传输和第二上行传输发生传输冲突的情况下,根据第一规则丢弃所述第一上行传输或所述第二上行传输。
第四方面,本发明实施例还提供一种网络侧设备,所述网络侧设备包括:
发送模块,用于发送RRC消息,所述RRC消息用于配置SRS的目标优先级,所述目标优先级为物理层可区分的优先级。
第五方面,本发明实施例还提供一种终端,该终端包括处理器、存储器及存储在所述存储器上并可在所述处理器上运行的计算机程序,所述计算机程序被所述处理器执行时实现如上所述的上行传输方法的步骤。
第六方面,本发明实施例还提供一种网络侧设备,该网络侧设备包括处理器、存储器及存储在所述存储器上并可在所述处理器上运行的计算机程序,所述计算机程序被所述处理器执行时实现如上所述的配置方法的步骤。
第七方面,本发明实施例还提供一种计算机可读存储介质,该计算机可读存储介质上存储有计算机程序,所述计算机程序被处理器执行时实现如上所述的应用于终端的上行传输方法的步骤,或应用于网络侧设备的配置方法的步骤。
在本发明实施例中,终端在第一上行传输和第二上行传输发生传输冲突的情况下,根据第一规则丢弃所述第一上行传输或所述第二上行传输。从而可以解决上行传输冲突的问题,提高业务性能的可靠性。
附图说明
为了更清楚地说明本发明实施例的技术方案,下面将对本发明实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。
图1是本发明实施例可应用的一种网络系统的结构图;
图2是本发明实施例提供的上行传输方法的流程图;
图3是本发明实施例的上行传输示意图之一;
图4是本发明实施例的上行传输示意图之二;
图5是本发明实施例的上行传输示意图之三;
图6a是本发明实施例的上行传输示意图之四;
图6b是本发明实施例的上行传输示意图之五;
图7是本发明实施例提供的配置方法的流程图;
图8是本发明实施例提供的终端的结构图之一;
图9是本发明实施例提供的网络侧设备的结构图之一;
图10是本发明实施例提供的终端的结构图之二;
图11是本发明实施例提供的网络侧设备的结构图之二。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
本发明中的术语“第一”、“第二”等是用于区别类似的对象,而不必用于描述特定的顺序或先后次序。此外,术语“包括”和“具有”以及他们的任何变形,意图在于覆盖不排他的包含,例如,包含了一系列步骤或单元的过程、方法、系统、产品或设备不必限于清楚地列出的那些步骤或单元,而是可包括没有清楚地列出的或对于这些过程、方法、产品或设备固有的其它步骤或单元。此外,本发明中使用“和/或”表示所连接对象的至少其中之一,例如A和/或B和/或C,表示包含单独A,单独B,单独C,以及A和B都存在,B和C都存在,A和C都存在,以及A、B和C都存在的7种情况。
请参见图1,图1是本发明实施例可应用的一种网络系统的结构图,如图1所示,包括终端11和网络侧设备12,其中,终端11和网络侧设备12之间可以进行通信。
在本发明实施例中,终端11也可以称作UE设备(User Equipment,UE)。在实际应用中,终端11可以是手机、平板电脑(Tablet Personal Computer)、 膝上型电脑(Laptop Computer)、个人数字助理(Personal Digital Assistant,PDA)、移动上网装置(Mobile Internet Device,MID)、可穿戴式设备(Wearable Device)或车载设备等。网络侧设备12可以是基站、中继或接入点等。
为了方便理解,以下对本发明实施例涉及的一些内容进行说明:
一、第五代(5 th-Generation,5G)移动通信系统。
与以往的移动通信系统相比,第五代(5 th-Generation,5G)移动通信系统需要适应更加多样化的场景和业务需求。5G的主要场景包括增强移动宽带(Enhance Mobile Broadband,eMBB),超可靠和低时延通信(Ultra-Reliable and Low Latency Communications,URLLC),大规模机器类通信(massive Machine Type of Communication,mMTC),这些场景对系统提出了高可靠,低时延,大带宽,广覆盖等要求。
对于eMBB业务,由于其的数据量比较大,传输速率比较高,因此通常采用较长的时域调度单元进行数据传输以提高传输效率。而对于URLLC业务,通常采用较短的时域调度单元,以满足超短时延的要求。为了提高提高无线频谱的利用效率,同时满足不同业务的不同需求,需要在同一频谱资源上同时支持URLLC业务和eMBB业务。由于URLLC的低时延与高可靠性的要求,URLLC数据通常具有更高的传输优先级。
二、探测参考信号(Sounding Reference Signal,SRS)。
SRS用于上行信道信息获取、满足信道互异性时的下行信道信息获取以及上行波束管理。新空口(New Radio,NR)系统支持周期的SRS(P-SRS)、半持续SRS的(SP-SRS)和非周期的SRS(A-SRS)。具体地,P-SRS可以由无线资源控制(Radio Resource Control,RRC)配置并周期性发送;SP-SRS可以由RRC配置,媒体接入控制(Medium Access Control,MAC)层激活信令激活,激活后周期发送;A-SRS可以由下行控制信息(Downlink Control Information,DCI)信令激活。
对于同一载波上,物理上行共享信道(Physical Uplink Control Channel,PUCCH)和SRS的资源配置在时域上重叠,将会导致冲突,需要相应的冲突解决方案。可以通过定义SRS和不同的信道冲突时的处理优先级,当SRS与PUCCH产生冲突时,根据相应的规则选择对应的上行传输,丢弃掉另外的上 行传输。规则可以包括以下至少一项:
规则1:P-SRS/SP-SRS<PUCCH with CSI<A-SRS;
规则2:A-SRS/SP-SRS/P-SRS<PUCCH with HARQ-ACK/SR。
其中,“A<B”表示:A与B冲突时,B的处理优先级高于A的处理优先级,传输B,丢弃A。
可见,在规则1中,A-SRS的处理优先级高于承载信道状态信息(Channel State Information,CSI)的PUCCH(PUCCH with CSI)的处理优先级;PUCCH with CSI的处理优先级高于P-SRS和SP-SRS的处理优先级。
在规则2中,承载混合自动重传请求应答(Hybrid Automatic Repeat reQuest Acknowledgement,HARQ-ACK)(PUCCH with HARQ-ACK)和调度请求(Scheduling Request,SR)的处理优先级高于A-SRS、SP-SRS和P-SRS的处理优先级。
三、物理随机接入信道(Physical Random Access Channel,PRACH)。
PRACH主要用于初始接入时建立无线连接、上行同步、SR等功能。
UE不能在同一个时隙(Slot)上传输PRACH和物理上行共享信道(Physical Uplink Shared Channel)PUSCH/PUCCH/SRS;或,前一个Slot上的PUSCH/PUCCH/SRS的结束符号和当前Slot上PRACH的开始符号间隔少于N个符号时,UE需要丢弃PUSCH/PUCCH/SRS和PRACH中的一个传输;或,当前Slot的PRACH的结束符号与下一个Slot的PUSCH/PUCCH/SRS开始符号的间隔少于N个符号时,UE需要丢弃PUSCH/PUCCH/SRS和PRACH中的一个传输。
N的值可以与UE激活的上行带宽部分(Bandwidth Part,BWP)的子载波间隔(SubCarrier Space,SCS)相关。具体地,μ=0或1时,N可以取值为2;μ=2或3时,N可以取值为4,其中,SCS=(μ+1)×15,单位为15千赫兹(KHz)。因此,μ=0或1时,即SCS为15KHz或30KHz,以此类推。
以下对本发明实施例的上行传输方法进行说明。
参见图2,图2是本发明实施例提供的上行传输方法的流程图。本发明实施例的上行传输方法应用于终端。
如图2所示,上行传输方法可以包括以下步骤:
步骤201、在第一上行传输和第二上行传输发生传输冲突的情况下,根据第一规则丢弃所述第一上行传输或所述第二上行传输。
具体实现时,在第一上行传输和第二上行传输发生传输冲突的情况下,终端可以根据第一规则丢弃所述第一上行传输和所述第二上行传输中的一个上行传输,传输所述第一上行传输和所述第二上行传输中的另一个上行传输。
本实施例的上行传输方法,终端在第一上行传输和第二上行传输发生传输冲突的情况下,根据第一规则丢弃所述第一上行传输或所述第二上行传输。从而可以解决上行传输冲突的问题,提高业务性能的可靠性。
在本实施例中,所述根据第一规则丢弃所述第一上行传输或所述第二上行传输,可以包括两种实施方式:
实施方式一、根据所述第一上行传输和所述第二上行传输的目标优先级,丢弃所述第一上行传输或所述第二上行传输,所述目标优先级为物理层可区分的优先级。
实施方式二、根据所述第一上行传输和所述第二上行传输的传输功能,丢弃所述第一上行传输或所述第二上行传输。
为方便理解,对上述两种实施方式分别进行说明。
对于实施方式一
可选的,所述根据所述第一上行传输和所述第二上行传输的目标优先级,丢弃所述第一上行传输或所述第二上行传输,包括以下至少一项:
在所述第一上行传输的目标优先级与所述第二上行传输的目标优先级不相同的情况下,丢弃所述第一上行传输和所述第二上行传输中目标优先级较低的上行传输;
在所述第一上行传输的目标优先级与所述第二上行传输的目标优先级相同的情况下,丢弃所述第一上行传输和所述第二上行传输中传输信道的优先级较低的上行传输。
可见,在实施方式一中,在所述第一上行传输的目标优先级与所述第二上行传输的目标优先级不相同的情况下,终端可以丢弃所述第一上行传输和所述第二上行传输中目标优先级较低的上行传输,传输所述第一上行传输和所述第 二上行传输中目标优先级较高的上行传输,从而可以保证目标优先级较高的上行传输的传输可靠性。
在所述第一上行传输的目标优先级与所述第二上行传输的目标优先级相同的情况下,终端还可以进一步结合所述第一上行传输和所述第二上行传输中传输信道的优先级,丢弃所述第一上行传输和所述第二上行传输中传输信道的优先级较低的上行传输,传输所述第一上行传输和所述第二上行传输中传输信道的优先级较高的上行传输,从而可以保证传输信道的优先级较高的上行传输的传输可靠性。
在本实施例中,目标优先级可以由物理层区分,因此,目标优先级也可以称为物理层区分优先级。需要说明的是,目标优先级还可以被称为其他命名,本发明不受命名的影响。
可选的,上行传输的目标优先级与上行传输对应的业务相关。
在实际应用中,上行传输对应的业务可以理解为:上行传输服务的业务。示例性的,若上行传输1用于业务1,则可以将业务1视为上行传输1对应的业务。
具体实现时,上行传输的目标优先级可以与上行传输对应的业务的时延要求相关。
可选的,上行传输对应的业务的时延要求越高(低时延),上行传输的目标优先级可以越高;上行传输对应的业务的时延要求要求越低,上行传输的目标优先级可以越低。示例性的,用于URLLC业务的上行传输的目标优先级可以高于用于eMBB业务的上行传输的目标优先级,从而可以保证时延要求高的业务的上行传输的传输可靠性。
可选的,所述第一上行传输可以为探测参考信号SRS,所述SRS的目标优先级可以通过无线资源控制RRC消息配置。
在实际应用中,所述第一上行传输具体可以为P-SRS或SP-SRS。对于A-SRS,其目标优先级可通过其他方式确定,如通过DCI配置,但不仅限于此。
具体实现时,网络侧设备可以通过RRC消息配置所述SRS的目标优先级,从而可以提高所述RSR的优先级确定的灵活度。
具体地,RRC消息配置的所述SRS的目标优先级可以为高优先级或低优先级,具体可根据实际情况确定,本发明对此不作限定。
可选的,网络侧设备可以根据所述SRS对应的业务配置所述SRS的目标优先级。进一步地,考虑到URLLC业务的低时延要求,所述SRS用于超可靠和低时延通信URLLC业务时的目标优先级可以高于所述SRS用于增强移动宽带eMBB业务时的目标优先级,从而可以降低URLLC业务的传输时延。
应理解的是,在其他实施方式中,所述SRS的目标优先级也可以由协议约定。这样,相比于通过RRC消息配置,可以降低信令开销。
对于实施方式二
可选的,所述第一上行传输为物理随机接入信道PRACH传输;所述根据所述第一上行传输和所述第二上行传输的传输功能,丢弃所述第一上行传输或所述第二上行传输,包括以下至少一项:
在所述PRACH传输为用于上行同步的PRACH传输的情况下,丢弃所述第二上行传输;
在所述PRACH传输为用于调度请求SR的PRACH传输,且所述第二上行传输为目标上行传输的情况下,丢弃所述PRACH传输;
在所述PRACH传输为用于调度请求SR的PRACH传输,且所述第二上行传输不为目标上行传输的情况下,丢弃所述第二上行传输;
其中,所述目标上行传输包括承载混合自动重传请求应答HARQ-ACK的物理上行控制信道PUCCH传输。
可见,在实施方式二中,在所述PRACH传输为用于上行同步的PRACH传输的情况下,终端可以不关注所述第二上行传输,始终丢弃所述第二上行传输,传输所述PRACH传输,保证PRACH传输的可靠性。
在所述PRACH传输为用于调度请求SR的PRACH传输的情况下,终端还需要进一步关注所述第二上行传输,判断所述第二上行传输是否为目标上行传输。
具体地,在所述第二上行传输为目标上行传输的情况下,终端可以丢弃所述PRACH传输,传输所述目标上行传输;在所述第二上行传输不为目标上行传输的情况下,终端可以丢弃所述第二上行传输,传输所述PRACH传输。
其中,所述目标上行传输可以但不仅限于包括承载HARQ-ACK的PUCCH传输,即PUCCH with HARQ-ACK。
可选的,所述第一上行传输和所述第二上行传输配置在目标时隙传输,所述目标时隙包括P个子时隙,P为正整数。
目标时隙为配置有子时隙(sub-Slot)的时隙。具体地,目标时隙可以包括P个子时隙,P为正整数。在实际应用中,每个子时隙占用的符号数可以由网络侧设备配置,但不仅限于此。
需要说明的是,在实施方式二应用于所述第一上行传输和所述第二上行传输配置在目标时隙传输的场景中,所述第一上行传输和所述第二上行传输可能发生传输冲突,也可能不发生传输冲突。
以下对所述第一上行传输和所述第二上行传输配置在目标时隙传输的场景中,所述第一上行传输和所述第二上行传输发生传输冲突、未发生传输冲突的情况进行具体说明。
可选的,所述第一上行传输和所述第二上行传输发生传输冲突包括以下任意一项:
所述第一上行传输和所述第二上行传输配置在所述目标时隙的同一子时隙上传输,且所述第一上行传输的传输资源和所述第二上行传输的传输资源间隔的符号数小于N,N为正整数;
所述第一上行传输和所述第二上行传输配置在目标时隙传输,且所述第一上行传输的传输资源和所述第二上行传输的传输资源在符号上部分或全部重叠;
其中,所述目标时隙包括P个子时隙,P为正整数。
具体实现时,在所述第一上行传输为PRACH传输的情况下,在所述第一上行传输和所述第二上行传输配置在所述目标时隙的同一子时隙上传输,且所述第一上行传输的传输资源和所述第二上行传输的传输资源间隔的符号数小于N的情况下,可以视所述第一上行传输和所述第二上行传输发生传输冲突。
在所述第一上行传输和所述第二上行传输发生传输冲突的情况下,终端可以根据所述第一上行传输和所述第二上行传输的传输功能,丢弃所述第一上行传输和所述第二上行传输中的一个,传输另一个。
可选的,所述方法还包括:
在所述第一上行传输和所述第二上行传输未发生传输冲突的情况下,在所述目标时隙上传输所述第一上行传输和所述第二上行传输;
其中,所述第一上行传输和所述第二上行传输未发生传输冲突包括以下至少一项:
所述第一上行传输和所述第二上行传输配置在所述目标时隙的不同子时隙传输;
所述第一上行传输和所述第二上行传输配置在所述目标时隙的同一子时隙上传输,且所述第一上行传输的传输资源和所述第二上行传输的传输资源间隔的符号数大于或等于N,N为正整数。
可见,在所述第一上行传输和所述第二上行传输配置在目标时隙传输的情况下,若第一上行传输和第二上行传输未发生传输冲突,终端可以在所述目标时隙中完成所述第一上行传输和所述第二上行传输的传输,从而可以提高上行传输的可靠性。
值得指出的是,上述发生传输冲突、未发生传输冲突的实施例不仅适用于实施方式二,还可适用于实施方式一,本发明实施例仅以适用于实施方式二作为示例性说明,并非作为对其具体适用场景的限定。
在本实施例中,N为正整数,具体可根据实际需求确定,本发明实施例对此不作限定。可选的,N的取值基于所述终端的激活带宽部分BWP的子载波间隔SCS确定,在该情况下,N的取值的确定具体可参考前述描述,此处不再赘述。
需要说明的是,本发明实施例中介绍的多种可选的实施方式,彼此可以相互结合实现,也可以单独实现,对此本发明实施例不作限定。
为方便理解,说明如下:
由于URLLC场景低时延、高可靠性要求,URLLC业务一般具有较高的传输优先级。当终端支持不同类型的业务模型,可以定义物理层区分优先级,保证URLLC业务的性能要求。在URLLC引入sub-Slot配置的情况下,同一个Slot内存在多个PUCCH,Slot内的一个PRACH可能和sub-Slot上的一个或多个PUCCH冲突,可以通过定义sub-Slot内的PRACH和PUCCH冲突解 决办法改善PRACH对PUCCH传输的影响。
本发明给出了一种上行传输冲突处理办法,具体包括:
SRS与PUCCH冲突:
定义了P/SP-SRS的物理层区分的优先级,RRC配置P/SP-SRS时根据不同业务确定优先级。
相同的载波情况下,当PUCCH和SRS在相同的符号上配置传输时,PUCCH与SRS冲突,当SRS为P-SRS或SP-SRS时:
判断两种上行信道的物理层区分的优先级;
当两种上行信道具有不同的物理层区分优先级,丢弃物理层区分优先级低的信道;
当两种上行信道具有相同的物理层区分的优先级,比较信道优先级,丢弃信道优先级低的信道。
其中,信道优先级可以为:
i.P/SP-SRS<PUCCH with CSI<A-SRS;
ii.A/SP/P-SRS<PUCCH with HARQ-ACK/SR。
PRACH与PUCCH冲突:
当PRACH与PUCCH不在同一个sub-Slot内,UE可以传输PUCCH和PRACH。
当PRACH与PUCCH在同一个sub-Slot内,PRACH与PUCCH在符号上不重叠,并且满足间隔N个符号的要求,UE可以传输PUCCH和PRACH。
当PRACH与PUCCH在同一个sub-Slot内,并且PRACH和PUCCH在符号上部分重叠、全部重叠或间隔的符号数少于N,UE只传输PUSCH和PRACH中的一个。
a)如果PRACH用于上行同步,UE丢弃PUCCH;
b)如果PRACH用于SR,根据PUCCH承载的UCI判断,优先传输PUCCH。如PUCCH包含HARQ-ACK。
实施方式一
当P/SP-SRS用于URLLC业务,RRC配置P/SP-SRS的物理层区分的优先级为高,RRC配置某一个SR的物理层区分的优先级为低。当该S/SP-SRS 与该SR在时域上冲突时,优先传输S/SP-SRS。
实施方式二
当P/SP-SRS用于URLLC业务,RRC配置P/SP-SRS的物理层区分的优先级为高,RRC配置某一个SR的物理层区分的优先级也为高,即P/SP-SRS的物理层区分的优先级与SR的物理层区分的优先级相等。SR的优先级高于S/SP-SRS的信道优先级,当该S/SP-SRS与该SR在时域上冲突时,优先传输SR。
实施方式三
当一个Slot配置为多个sub-Slot,基站配置PRACH占用Slot的部分符号,部分sub-Slot上没有符号被PRACH占用,该sub-Slot上的PUCCH与PRACH都可以传输。
如图3所示,一个sub-Slot配置2个符号,PRACH传输和PUCCH传输配置在不同的sub-Slot上传输,因此,可以在该目标时隙上完成PRACH传输和PUCCH传输。
实施方式四
假设SCS为15KHz,当一个Slot配置为多个sub-Slot,基站配置PRACH占用Slot的部分符号,sub-Slot上存在符号被PRACH占用,如果sub-Slot上的PUCCH占用的符号与PRACH的间隔大于或等于2符号,终端可以同时传输PUCCH和PRACH。
如图4所示,一个sub-Slot配置7个符号,PRACH传输和第一个PUCCH传输(从左至右)配置在第一个sub-Slot传输,但PRACH传输的结束符号与第一个PUCCH传输的开始符号的间隔为2个符号,因此,可以在第一个sub-Slot上完成PRACH传输和第一个PUCCH传输。另外,第二个PUCCH传输配置在第二个sub-Slot传输,从而终端可以在目标时隙完成PRACH传输、第一个PUCCH传输和第二个PUCCH传输。
实施方式五
当一个Slot配置为多个sub-Slot,基站配置PRACH用于上行同步,占用Slot的部分符号,若PUCCH与PRACH部分或全部重叠,终端优先传输PRACH。
如图5所示,一个sub-Slot配置7个符号,用于上行同步的PRACH传输 和第一个PUCCH传输(从左至右)配置在第一个sub-Slot传输,且PRACH传输的结束符号与第一个PUCCH传输的开始符号重叠,因此,终端可以丢弃第一个PUCCH传输,传输用于上行同步的PRACH传输。另外,第二个PUCCH传输配置在第二个sub-Slot传输,从而终端可以在目标时隙完成PRACH传输和第二个PUCCH传输。
实施方式六
当一个Slot配置为多个sub-Slot,基站配置PRACH用于SR,占用Slot的部分符号,在sub-Slot上配置PUCCH包含HARQ-ACK反馈,若PUCCH与PRACH部分或全部重叠,优先传输PUCCH。
如图6a所示,一个sub-Slot配置7个符号,用于SR的PRACH传输和第一个PUCCH传输(从左至右)配置在第一个sub-Slot传输,且PRACH传输的结束符号与第一个PUCCH传输的开始符号重叠,第一个PUCCH承载HARQ-ACK。因此,终端可以丢弃PRACH传输,传输第一个PUCCH传输。另外,第二个PUCCH传输配置在第二个sub-Slot传输,从而终端可以在目标时隙完成第一个PUCCH传输和第二个PUCCH传输。
实施方式七
假设SCS为15KHz,当一个Slot配置为多个sub-Slot,基站配置PRACH占用Slot的部分符号,sub-Slot上存在符号被PRACH占用,如果该sub-Slot上的PUCCH占用的符号与PRACH的间隔小于2符号,终端只传输PUCCH和PRACH中的一个。
如图6b所示,一个sub-Slot配置7个符号,PRACH传输和第一个PUCCH传输(从左至右)配置在第一个sub-Slot传输,且PRACH传输的结束符号与第一个PUCCH传输的开始符号的间隔为1个符号,少于2个符号。因此,终端需要丢弃PRACH传输,在第一个sub-Slot上完成第一个PUCCH传输。另外,第二个PUCCH传输配置在第二个sub-Slot传输,从而终端可以在目标时隙完成第一个PUCCH传输和第二个PUCCH传输。
在本发明实施例中,当有两种不同优先级的业务传输时,通过定义P/SP-SRS的物理层区分优先级,并结合信道优先级给出上行信道冲突情况下的冲突处理办法。具体地,可以通过RRC配置P/SP-SRS的优先级;可以保 证业务优先级高的上行传输,丢弃业务优先级低的上行传输;相同业务优先级情况,保证信道优先级高的上行传输,丢弃信道优先级低的上行传输。
在本发明实施例中,定义了在配置了sub-Slot的情况下,PRACH与PUCCH在sub-Slot内冲突的处理行为,具体为:
PUCCH与PRACH处于不同sub-Slot,UE可以传输PUCCH和PRACH;
PUCCH与PRACH的间隔满足PRACH的保护间隔时,UE可以传输PUCCH和PRACH;
PUCCH与PRACH重叠、全部重叠或间隔的符号数少于N,UE只传输PUCCH和PRACH中的一个,根据PUCCH的优先级判断优先发送的上行传输。
本发明实施例解决了P/SP-SRS在不同业务下不同优先级的配置问题,解决了sub-Slot配置下,PRACH对一个或多个PUCCH传输的限制,保证URLLC业务的性能要求。
参见图7,图7是本发明实施例提供的配置方法的流程图。本发明实施例的配置方法应用于网络侧设备。
如图7所示,配置方法可以包括以下步骤:
步骤701、发送RRC消息,所述RRC消息用于配置SRS的目标优先级,所述目标优先级为物理层可区分的优先级。
本实施例的配置方法,可以通过RRC消息配置SRS的目标优先级,从而可以使得终端在上行传输冲突的情况下,根据上行传输的目标优先级,解决上行冲突。
需要说明的是,本实施例作为与上述终端侧方法实施例对应的网络侧设备的实施方式,因此,可以参见上述方法实施例中的相关说明,且可以达到相同的有益效果。为了避免重复说明,在此不再赘述。
参见图8,图8是本发明实施例提供的终端的结构图之一。如图8所示,终端800包括:
丢弃模块801,用于在第一上行传输和第二上行传输发生传输冲突的情况下,根据第一规则丢弃所述第一上行传输或所述第二上行传输。
可选的,所述丢弃模块801,具体用于:根据所述第一上行传输和所述第 二上行传输的目标优先级,丢弃所述第一上行传输或所述第二上行传输,所述目标优先级为物理层可区分的优先级。
可选的,上行传输的目标优先级与上行传输对应的业务相关。
可选的,所述第一上行传输为探测参考信号SRS,所述SRS的目标优先级通过无线资源控制RRC消息配置。
可选的,所述丢弃模块801,具体用于以下至少一项:
在所述第一上行传输的目标优先级与所述第二上行传输的目标优先级不相同的情况下,丢弃所述第一上行传输和所述第二上行传输中目标优先级较低的上行传输;
在所述第一上行传输的目标优先级与所述第二上行传输的目标优先级相同的情况下,丢弃所述第一上行传输和所述第二上行传输中传输信道的优先级较低的上行传输。
可选的,所述丢弃模块801,具体用于:根据所述第一上行传输和所述第二上行传输的传输功能,丢弃所述第一上行传输或所述第二上行传输。
可选的,所述第一上行传输和第二上行传输发生传输冲突包括以下任意一项:
所述第一上行传输和所述第二上行传输配置在所述目标时隙的同一子时隙上传输,且所述第一上行传输的传输资源和所述第二上行传输的传输资源间隔的符号数小于N,N为正整数;
所述第一上行传输和所述第二上行传输配置在目标时隙传输,且所述第一上行传输的传输资源和所述第二上行传输的传输资源在符号上部分或全部重叠;
其中,所述目标时隙包括P个子时隙,P为正整数。
可选的,所述终端800还包括:
传输模块,用于在所述第一上行传输和所述第二上行传输未发生传输冲突的情况下在所述目标时隙上传输所述第一上行传输和所述第二上行传输;
其中,所述第一上行传输和所述第二上行传输未发生传输冲突包括以下至少一项:
所述第一上行传输和所述第二上行传输配置在所述目标时隙的不同子时 隙传输;
所述第一上行传输和所述第二上行传输配置在所述目标时隙的同一子时隙上传输,且所述第一上行传输的传输资源和所述第二上行传输的传输资源间隔的符号数大于或等于N,N为正整数。
可选的,N的取值基于所述终端的激活带宽部分BWP的子载波间隔SCS确定。
可选的,所述第一上行传输为物理随机接入信道PRACH传输;所述丢弃模块801,具体用于以下至少一项:
在所述PRACH传输为用于上行同步的PRACH传输的情况下,丢弃所述第二上行传输;
在所述PRACH传输为用于调度请求SR的PRACH传输,且所述第二上行传输为目标上行传输的情况下,丢弃所述PRACH传输;
在所述PRACH传输为用于调度请求SR的PRACH传输,且所述第二上行传输不为目标上行传输的情况下,丢弃所述第二上行传输;
其中,所述目标上行传输包括承载混合自动重传请求应答HARQ-ACK的物理上行控制信道PUCCH传输。
终端800能够实现本发明方法实施例中终端能够实现的各个过程,以及达到相同的有益效果,为避免重复,这里不再赘述。
参见图9,图9是本发明实施例提供的网络侧设备的结构图之一。如图9所示,网络侧设备900包括:
发送模块901,用于发送RRC消息,所述RRC消息用于配置SRS的目标优先级,所述目标优先级为物理层可区分的优先级。
网络侧设备900能够实现本发明方法实施例中网络侧设备能够实现的各个过程,以及达到相同的有益效果,为避免重复,这里不再赘述。
请参考图10,图10是本发明实施例提供的终端的结构图之二,该终端可以为实现本发明各个实施例的一种终端的硬件结构示意图。如图10所示,终端1000包括但不限于:射频单元1001、网络模块1002、音频输出单元1003、输入单元1004、传感器1005、显示单元1006、UE输入单元1007、接口单元1008、存储器1009、处理器1010、以及电源1011等部件。本领域技术人员可 以理解,图10中示出的终端结构并不构成对终端的限定,终端可以包括比图示更多或更少的部件,或者组合某些部件,或者不同的部件布置。在本发明实施例中,终端包括但不限于手机、平板电脑、笔记本电脑、掌上电脑、车载终端、可穿戴设备、以及计步器等。
其中,处理器1010,用于:
在第一上行传输和第二上行传输发生传输冲突的情况下,根据第一规则丢弃所述第一上行传输或所述第二上行传输。
可选的,处理器1010,还用于:
根据所述第一上行传输和所述第二上行传输的目标优先级,丢弃所述第一上行传输或所述第二上行传输,所述目标优先级为物理层可区分的优先级。
可选的,上行传输的目标优先级与上行传输对应的业务相关。
可选的,所述第一上行传输为探测参考信号SRS,所述SRS的目标优先级通过无线资源控制RRC消息配置。
可选的,处理器1010,还用于以下至少一项:
在所述第一上行传输的目标优先级与所述第二上行传输的目标优先级不相同的情况下,丢弃所述第一上行传输和所述第二上行传输中目标优先级较低的上行传输;
在所述第一上行传输的目标优先级与所述第二上行传输的目标优先级相同的情况下,丢弃所述第一上行传输和所述第二上行传输中传输信道的优先级较低的上行传输。
可选的,处理器1010,还用于:
根据所述第一上行传输和所述第二上行传输的传输功能,丢弃所述第一上行传输或所述第二上行传输。
可选的,所述第一上行传输和所述第二上行传输配置在目标时隙传输,所述目标时隙包括P个子时隙,P为正整数。
可选的,所述第一上行传输和所述第二上行传输发生传输冲突包括以下任意一项:
所述第一上行传输和所述第二上行传输配置在所述目标时隙的同一子时隙上传输,且所述第一上行传输的传输资源和所述第二上行传输的传输资源间 隔的符号数小于N,N为正整数;
所述第一上行传输和所述第二上行传输配置在目标时隙传输,且所述第一上行传输的传输资源和所述第二上行传输的传输资源在符号上部分或全部重叠;
其中,所述目标时隙包括P个子时隙,P为正整数。
可选的,处理器1010,还用于:
在所述第一上行传输和所述第二上行传输未发生传输冲突的情况下,通过射频单元1001在所述目标时隙上传输所述第一上行传输和所述第二上行传输;
其中,所述第一上行传输和所述第二上行传输未发生传输冲突包括以下至少一项:
所述第一上行传输和所述第二上行传输配置在所述目标时隙的不同子时隙传输;
所述第一上行传输和所述第二上行传输配置在所述目标时隙的同一子时隙上传输,且所述第一上行传输的传输资源和所述第二上行传输的传输资源间隔的符号数大于或等于N,N为正整数。
可选的,N的取值基于所述终端的激活带宽部分BWP的子载波间隔SCS确定。
可选的,所述第一上行传输为物理随机接入信道PRACH传输;处理器1010,还用于以下至少一项:
在所述PRACH传输为用于上行同步的PRACH传输的情况下,丢弃所述第二上行传输;
在所述PRACH传输为用于调度请求SR的PRACH传输,且所述第二上行传输为目标上行传输的情况下,丢弃所述PRACH传输;
在所述PRACH传输为用于调度请求SR的PRACH传输,且所述第二上行传输不为目标上行传输的情况下,丢弃所述第二上行传输;
其中,所述目标上行传输包括承载混合自动重传请求应答HARQ-ACK的物理上行控制信道PUCCH传输。
需要说明的是,本实施例中上述终端1000可以实现本发明实施例中方法实施例中的各个过程,以及达到相同的有益效果,为避免重复,此处不再赘述。
应理解的是,本发明实施例中,射频单元1001可用于收发信息或通话过程中,信号的接收和发送,具体的,将来自基站的下行数据接收后,给处理器1010处理;另外,将上行的数据发送给基站。通常,射频单元1001包括但不限于天线、至少一个放大器、收发信机、耦合器、低噪声放大器、双工器等。此外,射频单元1001还可以通过无线通信系统与网络和其他设备通信。
终端通过网络模块1002为UE提供了无线的宽带互联网访问,如帮助UE收发电子邮件、浏览网页和访问流式媒体等。
音频输出单元1003可以将射频单元1001或网络模块1002接收的或者在存储器1009中存储的音频数据转换成音频信号并且输出为声音。而且,音频输出单元1003还可以提供与终端1000执行的特定功能相关的音频输出(例如,呼叫信号接收声音、消息接收声音等等)。音频输出单元1003包括扬声器、蜂鸣器以及受话器等。
输入单元1004用于接收音频或视频信号。输入单元1004可以包括图形处理器(Graphics Processing Unit,GPU)10041和麦克风10042,图形处理器10041对在视频捕获模式或图像捕获模式中由图像捕获装置(如摄像头)获得的静态图片或视频的图像数据进行处理。处理后的图像帧可以显示在显示单元1006上。经图形处理器10041处理后的图像帧可以存储在存储器1009(或其它存储介质)中或者经由射频单元1001或网络模块1002进行发送。麦克风10042可以接收声音,并且能够将这样的声音处理为音频数据。处理后的音频数据可以在电话通话模式的情况下转换为可经由射频单元1001发送到移动通信基站的格式输出。
终端1000还包括至少一种传感器1005,比如光传感器、运动传感器以及其他传感器。具体地,光传感器包括环境光传感器及接近传感器,其中,环境光传感器可根据环境光线的明暗来调节显示面板10061的亮度,接近传感器可在终端1000移动到耳边时,关闭显示面板10061和/或背光。作为运动传感器的一种,加速计传感器可检测各个方向上(一般为三轴)加速度的大小,静止时可检测出重力的大小及方向,可用于识别终端姿态(比如横竖屏切换、相关游戏、磁力计姿态校准)、振动识别相关功能(比如计步器、敲击)等;传感器1005还可以包括指纹传感器、压力传感器、虹膜传感器、分子传感器、陀 螺仪、气压计、湿度计、温度计、红外线传感器等,在此不再赘述。
显示单元1006用于显示由UE输入的信息或提供给UE的信息。显示单元1006可包括显示面板10061,可以采用液晶显示器(Liquid Crystal Display,LCD)、有机发光二极管(Organic Light-Emitting Diode,OLED)等形式来配置显示面板10061。
UE输入单元1007可用于接收输入的数字或字符信息,以及产生与终端的UE设置以及功能控制有关的键信号输入。具体地,UE输入单元1007包括触控面板10071以及其他输入设备10072。触控面板10071,也称为触摸屏,可收集UE在其上或附近的触摸操作(比如UE使用手指、触笔等任何适合的物体或附件在触控面板10071上或在触控面板10071附近的操作)。触控面板10071可包括触摸检测装置和触摸控制器两个部分。其中,触摸检测装置检测UE的触摸方位,并检测触摸操作带来的信号,将信号传送给触摸控制器;触摸控制器从触摸检测装置上接收触摸信息,并将它转换成触点坐标,再送给处理器1010,接收处理器1010发来的命令并加以执行。此外,可以采用电阻式、电容式、红外线以及表面声波等多种类型实现触控面板10071。除了触控面板10071,UE输入单元1007还可以包括其他输入设备10072。具体地,其他输入设备10072可以包括但不限于物理键盘、功能键(比如音量控制按键、开关按键等)、轨迹球、鼠标、操作杆,在此不再赘述。
进一步的,触控面板10071可覆盖在显示面板10061上,当触控面板10071检测到在其上或附近的触摸操作后,传送给处理器1010以确定触摸事件的类型,随后处理器1010根据触摸事件的类型在显示面板10061上提供相应的视觉输出。虽然在图10中,触控面板10071与显示面板10061是作为两个独立的部件来实现终端的输入和输出功能,但是在某些实施例中,可以将触控面板10071与显示面板10061集成而实现终端的输入和输出功能,具体此处不做限定。
接口单元1008为外部装置与终端1000连接的接口。例如,外部装置可以包括有线或无线头戴式耳机端口、外部电源(或电池充电器)端口、有线或无线数据端口、存储卡端口、用于连接具有识别模块的装置的端口、音频输入/输出(I/O)端口、视频I/O端口、耳机端口等等。接口单元1008可以用于接收来 自外部装置的输入(例如,数据信息、电力等等)并且将接收到的输入传输到终端1000内的一个或多个元件或者可以用于在终端1000和外部装置之间传输数据。
存储器1009可用于存储软件程序以及各种数据。存储器1009可主要包括存储程序区和存储数据区,其中,存储程序区可存储操作系统、至少一个功能所需的应用程序(比如声音播放功能、图像播放功能等)等;存储数据区可存储根据手机的使用所创建的数据(比如音频数据、电话本等)等。此外,存储器1009可以包括高速随机存取存储器,还可以包括非易失性存储器,例如至少一个磁盘存储器件、闪存器件、或其他易失性固态存储器件。
处理器1010是终端的控制中心,利用各种接口和线路连接整个终端的各个部分,通过运行或执行存储在存储器1009内的软件程序和/或模块,以及调用存储在存储器1009内的数据,执行终端的各种功能和处理数据,从而对终端进行整体监控。处理器1010可包括一个或多个处理单元;优选的,处理器1010可集成应用处理器和调制解调处理器,其中,应用处理器主要处理操作系统、UE界面和应用程序等,调制解调处理器主要处理无线通信。可以理解的是,上述调制解调处理器也可以不集成到处理器1010中。
终端1000还可以包括给各个部件供电的电源1011(比如电池),优选的,电源1011可以通过电源管理系统与处理器1010逻辑相连,从而通过电源管理系统实现管理充电、放电、以及功耗管理等功能。
另外,终端1000包括一些未示出的功能模块,在此不再赘述。
优选的,本发明实施例还提供一种终端,包括处理器1010,存储器1009,存储在存储器1009上并可在所述处理器1010上运行的计算机程序,该计算机程序被处理器1010执行时实现上述上行传输方法实施例的各个过程,且能达到相同的技术效果,为避免重复,这里不再赘述。
参见图11,图11是本发明实施例提供的网络侧设备的结构图之二,如图11所示,网络侧设备1100包括:处理器1101、存储器1102、UE接口1103、收发机1104和总线接口。
其中,在本发明实施例中,网络侧设备1100还包括:存储在存储器1102上并可在处理器1101上运行的计算机程序,计算机程序被处理器1101执行时 实现如下步骤:
通过收发机1104发送RRC消息,所述RRC消息用于配置SRS的目标优先级,所述目标优先级为物理层可区分的优先级。
在图11中,总线架构可以包括任意数量的互联的总线和桥,具体由处理器1101代表的一个或多个处理器和存储器1102代表的存储器的各种电路链接在一起。总线架构还可以将诸如外围设备、稳压器和功率管理电路等之类的各种其他电路链接在一起,这些都是本领域所公知的,因此,本文不再对其进行进一步描述。总线接口提供接口。收发机1104可以是多个元件,即包括发送机和接收机,提供用于在传输介质上与各种其他装置通信的单元。针对不同的UE设备,UE接口1103还可以是能够外接内接需要设备的接口,连接的设备包括但不限于小键盘、显示器、扬声器、麦克风、操纵杆等。
处理器1101负责管理总线架构和通常的处理,存储器1102可以存储处理器2601在执行操作时所使用的数据。
可选的,计算机程序被处理器1101执行时还可实现如下步骤:
网络侧设备1100能够实现上述方法实施例中网络侧设备实现的各个过程,为避免重复,这里不再赘述。
本发明实施例还提供一种计算机可读存储介质,计算机可读存储介质上存储有计算机程序,该计算机程序被处理器执行时实现上述上行传输方法实施例的各个过程,且能达到相同的技术效果,为避免重复,这里不再赘述。其中,所述的计算机可读存储介质,如只读存储器(Read-Only Memory,ROM)、随机存取存储器(Random Access Memory,RAM)、磁碟或者光盘等。
需要说明的是,在本文中,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者装置不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者装置所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括该要素的过程、方法、物品或者装置中还存在另外的相同要素。
通过以上的实施方式的描述,本领域的技术人员可以清楚地了解到上述实施例方法可借助软件加必需的通用硬件平台的方式来实现,当然也可以通过硬 件,但很多情况下前者是更佳的实施方式。基于这样的理解,本发明的技术方案本质上或者说对现有技术做出贡献的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质(如ROM/RAM、磁碟、光盘)中,包括若干指令用以使得一台终端(可以是手机,计算机,服务器,空调器,或者网络设备等)执行本发明各个实施例所述的方法。
可以理解的是,本公开的一些实施例描述的这些实施例可以用硬件、软件、固件、中间件、微码或其组合来实现。对于硬件实现,模块、单元、子模块、子单元等可以实现在一个或多个专用集成电路(Application Specific Integrated Circuits,ASIC)、数字信号处理器(Digital Signal Processing,DSP)、数字信号处理设备(DSP Device,DSPD)、可编程逻辑设备(Programmable Logic Device,PLD)、现场可编程门阵列(Field-Programmable Gate Array,FPGA)、通用处理器、控制器、微控制器、微处理器、用于执行本申请所述功能的其它电子单元或其组合中。
上面结合附图对本发明的实施例进行了描述,但是本发明并不局限于上述的具体实施方式,上述的具体实施方式仅仅是示意性的,而不是限制性的,本领域的普通技术人员在本发明的启示下,在不脱离本发明宗旨和权利要求所保护的范围情况下,还可做出很多形式,均属于本发明的保护之内。

Claims (25)

  1. 一种上行传输方法,应用于终端,所述方法包括:
    在第一上行传输和第二上行传输发生传输冲突的情况下,根据第一规则丢弃所述第一上行传输或所述第二上行传输。
  2. 根据权利要求1所述的方法,其中,所述根据第一规则丢弃所述第一上行传输或所述第二上行传输,包括:
    根据所述第一上行传输和所述第二上行传输的目标优先级,丢弃所述第一上行传输或所述第二上行传输,所述目标优先级为物理层可区分的优先级。
  3. 根据权利要求2所述的方法,其中,目标优先级与上行传输对应的业务相关。
  4. 根据权利要求2所述的方法,其中,所述第一上行传输为探测参考信号SRS,所述SRS的目标优先级通过无线资源控制RRC消息配置。
  5. 根据权利要求2至4中任一项所述的方法,其中,所述根据所述第一上行传输和所述第二上行传输的目标优先级,丢弃所述第一上行传输或所述第二上行传输,包括以下至少一项:
    在所述第一上行传输的目标优先级与所述第二上行传输的目标优先级不相同的情况下,丢弃所述第一上行传输和所述第二上行传输中目标优先级较低的上行传输;
    在所述第一上行传输的目标优先级与所述第二上行传输的目标优先级相同的情况下,丢弃所述第一上行传输和所述第二上行传输中传输信道的优先级较低的上行传输。
  6. 根据权利要求1所述的方法,其中,所述根据第一规则丢弃所述第一上行传输或所述第二上行传输,包括:
    根据所述第一上行传输和所述第二上行传输的传输功能,丢弃所述第一上行传输或所述第二上行传输。
  7. 根据权利要求6所述的方法,其中,所述第一上行传输和第二上行传输发生传输冲突包括以下任意一项:
    所述第一上行传输和所述第二上行传输配置在目标时隙的同一子时隙上 传输,且所述第一上行传输的传输资源和所述第二上行传输的传输资源间隔的符号数小于N,N为正整数;
    所述第一上行传输和所述第二上行传输配置在目标时隙传输,且所述第一上行传输的传输资源和所述第二上行传输的传输资源在符号上部分或全部重叠;
    其中,所述目标时隙包括P个子时隙,P为正整数。
  8. 根据权利要求7所述的方法,其中,所述方法还包括:
    在所述第一上行传输和所述第二上行传输未发生传输冲突的情况下,在所述目标时隙上传输所述第一上行传输和所述第二上行传输;
    其中,所述第一上行传输和所述第二上行传输未发生传输冲突包括以下至少一项:
    所述第一上行传输和所述第二上行传输配置在所述目标时隙的不同子时隙传输;
    所述第一上行传输和所述第二上行传输配置在所述目标时隙的同一子时隙上传输,且所述第一上行传输的传输资源和所述第二上行传输的传输资源间隔的符号数大于或等于N,N为正整数。
  9. 根据权利要求7或8所述的方法,其中,N的取值基于所述终端的激活带宽部分BWP的子载波间隔SCS确定。
  10. 根据权利要求6所述的方法,其中,所述第一上行传输为物理随机接入信道PRACH传输;所述根据所述第一上行传输和所述第二上行传输的传输功能,丢弃所述第一上行传输或所述第二上行传输,包括以下至少一项:
    在所述PRACH传输为用于上行同步的PRACH传输的情况下,丢弃所述第二上行传输;
    在所述PRACH传输为用于调度请求SR的PRACH传输,且所述第二上行传输为目标上行传输的情况下,丢弃所述PRACH传输;
    在所述PRACH传输为用于调度请求SR的PRACH传输,且所述第二上行传输不为目标上行传输的情况下,丢弃所述第二上行传输;
    其中,所述目标上行传输包括承载混合自动重传请求应答HARQ-ACK的物理上行控制信道PUCCH传输。
  11. 一种配置方法,应用于网络侧设备,所述方法包括:
    发送RRC消息,所述RRC消息用于配置SRS的目标优先级,所述目标优先级为物理层可区分的优先级。
  12. 一种终端,所述终端包括:
    丢弃模块,用于在第一上行传输和第二上行传输发生传输冲突的情况下,根据第一规则丢弃所述第一上行传输或所述第二上行传输。
  13. 根据权利要求12所述的终端,其中,所述丢弃模块,具体用于:根据所述第一上行传输和所述第二上行传输的目标优先级,丢弃所述第一上行传输或所述第二上行传输,所述目标优先级为物理层可区分的优先级。
  14. 根据权利要求13所述的终端,其中,上行传输的目标优先级与上行传输对应的业务相关。
  15. 根据权利要求13所述的终端,其中于,所述第一上行传输为探测参考信号SRS,所述SRS的目标优先级通过无线资源控制RRC消息配置。
  16. 根据权利要求13至15中任一项所述的终端,其中,所述丢弃模块,具体用于以下至少一项:
    在所述第一上行传输的目标优先级与所述第二上行传输的目标优先级不相同的情况下,丢弃所述第一上行传输和所述第二上行传输中目标优先级较低的上行传输;
    在所述第一上行传输的目标优先级与所述第二上行传输的目标优先级相同的情况下,丢弃所述第一上行传输和所述第二上行传输中传输信道的优先级较低的上行传输。
  17. 根据权利要求12所述的终端,其中,所述丢弃模块,具体用于:根据所述第一上行传输和所述第二上行传输的传输功能,丢弃所述第一上行传输或所述第二上行传输。
  18. 根据权利要求17所述的终端,其中,所述第一上行传输和第二上行传输发生传输冲突包括以下任意一项:
    所述第一上行传输和所述第二上行传输配置在目标时隙的同一子时隙上传输,且所述第一上行传输的传输资源和所述第二上行传输的传输资源间隔的符号数小于N,N为正整数;
    所述第一上行传输和所述第二上行传输配置在目标时隙传输,且所述第一上行传输的传输资源和所述第二上行传输的传输资源在符号上部分或全部重叠;
    其中,所述目标时隙包括P个子时隙,P为正整数。
  19. 根据权利要求18所述的终端,其中,所述终端还包括:
    传输模块,用于在所述第一上行传输和所述第二上行传输未发生传输冲突的情况下,在所述目标时隙上传输所述第一上行传输和所述第二上行传输;
    其中,所述第一上行传输和所述第二上行传输未发生传输冲突满足包括以下至少一项:
    所述第一上行传输和所述第二上行传输配置在所述目标时隙的不同子时隙传输;
    所述第一上行传输和所述第二上行传输配置在所述目标时隙的同一子时隙上传输,且所述第一上行传输的传输资源和所述第二上行传输的传输资源间隔的符号数大于或等于N,N为正整数。
  20. 根据权利要求18或19所述的终端,其中,N的取值基于所述终端的激活带宽部分BWP的子载波间隔SCS确定。
  21. 根据权利要求17所述的终端,其中,所述第一上行传输为物理随机接入信道PRACH传输;所述丢弃模块,具体用于以下至少一项:
    在所述PRACH传输为用于上行同步的PRACH传输的情况下,丢弃所述第二上行传输;
    在所述PRACH传输为用于调度请求SR的PRACH传输,且所述第二上行传输为目标上行传输的情况下,丢弃所述PRACH传输;
    在所述PRACH传输为用于调度请求SR的PRACH传输,且所述第二上行传输不为目标上行传输的情况下,丢弃所述第二上行传输;
    其中,所述目标上行传输包括承载混合自动重传请求应答HARQ-ACK的物理上行控制信道PUCCH传输。
  22. 一种网络侧设备,所述网络侧设备包括:
    发送模块,用于发送RRC消息,所述RRC消息用于配置SRS的目标优先级,所述目标优先级为物理层可区分的优先级。
  23. 一种终端,包括处理器、存储器及存储在所述存储器上并可在所述处理器上运行的计算机程序,所述计算机程序被所述处理器执行时实现如权利要求1至10中任一项所述的上行传输方法的步骤。
  24. 一种网络侧设备,包括处理器、存储器及存储在所述存储器上并可在所述处理器上运行的计算机程序,所述计算机程序被所述处理器执行时实现如权利要求11所述的配置方法的步骤。
  25. 一种计算机可读存储介质,所述计算机可读存储介质上存储有计算机程序,所述计算机程序被处理器执行时实现如权利要求1至10中任一项所述的上行传输方法的步骤,或,如权利要求11所述的配置方法的步骤。
PCT/CN2020/128939 2019-11-19 2020-11-16 上行传输方法、配置方法、终端及网络侧设备 WO2021098628A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201911137481.XA CN112911639B (zh) 2019-11-19 2019-11-19 上行传输方法、配置方法、终端及网络侧设备
CN201911137481.X 2019-11-19

Publications (1)

Publication Number Publication Date
WO2021098628A1 true WO2021098628A1 (zh) 2021-05-27

Family

ID=75981271

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/128939 WO2021098628A1 (zh) 2019-11-19 2020-11-16 上行传输方法、配置方法、终端及网络侧设备

Country Status (2)

Country Link
CN (1) CN112911639B (zh)
WO (1) WO2021098628A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120082157A1 (en) * 2010-10-02 2012-04-05 Sharp Laboratories Of America, Inc. Uplink control information multiplexing on the physical uplink control channel for lte-a
CN103181097A (zh) * 2010-09-29 2013-06-26 Lg电子株式会社 用于在支持多个天线的无线通信系统中的有效反馈的方法和设备
CN103428868A (zh) * 2012-05-15 2013-12-04 华为技术有限公司 上行发射方法和用户设备
CN105721128A (zh) * 2010-04-01 2016-06-29 无线未来科技公司 使用载波聚合的周期性信道状态信息信令
CN110299976A (zh) * 2018-03-21 2019-10-01 电信科学技术研究院有限公司 一种信息传输方法、接收方法、终端及网络设备

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11153127B2 (en) * 2017-11-24 2021-10-19 Lg Electronics Inc. Method for transmitting and receiving SRS and communication device therefor
CN110139383B (zh) * 2018-02-09 2021-02-19 维沃移动通信有限公司 数据传输方法和设备
CN110149705A (zh) * 2018-02-12 2019-08-20 维沃移动通信有限公司 上行传输方法和设备
WO2019192007A1 (en) * 2018-04-05 2019-10-10 Qualcomm Incorporated Collision handling for csi reporting on pusch
CN110474747B (zh) * 2018-05-11 2022-01-25 中兴通讯股份有限公司 一种信号传输方法和装置、及终端

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105721128A (zh) * 2010-04-01 2016-06-29 无线未来科技公司 使用载波聚合的周期性信道状态信息信令
CN103181097A (zh) * 2010-09-29 2013-06-26 Lg电子株式会社 用于在支持多个天线的无线通信系统中的有效反馈的方法和设备
US20120082157A1 (en) * 2010-10-02 2012-04-05 Sharp Laboratories Of America, Inc. Uplink control information multiplexing on the physical uplink control channel for lte-a
CN103428868A (zh) * 2012-05-15 2013-12-04 华为技术有限公司 上行发射方法和用户设备
CN110299976A (zh) * 2018-03-21 2019-10-01 电信科学技术研究院有限公司 一种信息传输方法、接收方法、终端及网络设备

Also Published As

Publication number Publication date
CN112911639B (zh) 2023-07-18
CN112911639A (zh) 2021-06-04

Similar Documents

Publication Publication Date Title
WO2020216293A1 (zh) 信道监听方法、终端及网络设备
US11582791B2 (en) PUCCH collision processing method and terminal
CN110324859B (zh) 副链路的传输资源选择方法、配置方法、终端和网络设备
CN110475364B (zh) 一种非周期跟踪参考信号的接收方法及终端
JP7317949B2 (ja) 伝送方法および関連装置
CN111447686B (zh) 一种harq-ack反馈方法、终端和网络设备
WO2020192547A1 (zh) 信息传输、接收方法、终端及网络侧设备
WO2021063281A1 (zh) 旁链路资源的确定方法及终端
WO2021031908A1 (zh) 传输方法、配置方法、终端及网络侧设备
WO2020216245A1 (zh) 上行传输方法、终端和网络侧设备
WO2021155786A1 (zh) Qcl的确定方法、终端及网络侧设备
WO2021068876A1 (zh) 信息传输、接收方法、终端及网络侧设备
WO2021018227A1 (zh) 上行控制信息的传输方法、终端设备及存储介质
WO2021027713A1 (zh) 上行传输方法、上行传输控制方法及相关设备
US20220217708A1 (en) Uplink transmission method and terminal
WO2020063240A1 (zh) 信道接入方法、配置方法、终端及网络侧设备
WO2021208879A1 (zh) 资源确定方法、指示方法及设备
WO2021147794A1 (zh) 频域资源处理方法、频域资源配置方法及相关设备
WO2021023259A1 (zh) 随机接入方法、配置方法、终端及网络侧设备
KR102591574B1 (ko) 하향 링크 제어 정보의 수신 방법, 전송 방법, 단말 및 네트워크측 장치
CN111132355B (zh) 半静态调度传输方法、终端和网络设备
WO2021204152A1 (zh) 资源确定方法及终端
WO2021155765A1 (zh) 物理上行控制信道传输方法、装置、设备及介质
WO2021197191A1 (zh) 冲突资源确定方法和终端
WO2021093767A1 (zh) 资源确定、资源配置方法、终端及网络设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20890193

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20890193

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 20/02/2023)

122 Ep: pct application non-entry in european phase

Ref document number: 20890193

Country of ref document: EP

Kind code of ref document: A1