WO2020216293A1 - 信道监听方法、终端及网络设备 - Google Patents

信道监听方法、终端及网络设备 Download PDF

Info

Publication number
WO2020216293A1
WO2020216293A1 PCT/CN2020/086410 CN2020086410W WO2020216293A1 WO 2020216293 A1 WO2020216293 A1 WO 2020216293A1 CN 2020086410 W CN2020086410 W CN 2020086410W WO 2020216293 A1 WO2020216293 A1 WO 2020216293A1
Authority
WO
WIPO (PCT)
Prior art keywords
monitoring
pdcch
terminal
channel
search space
Prior art date
Application number
PCT/CN2020/086410
Other languages
English (en)
French (fr)
Inventor
吴凯
潘学明
Original Assignee
维沃移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 维沃移动通信有限公司 filed Critical 维沃移动通信有限公司
Priority to EP20795146.8A priority Critical patent/EP3962178A4/en
Priority to KR1020217038178A priority patent/KR20220002439A/ko
Priority to SG11202111883TA priority patent/SG11202111883TA/en
Priority to JP2021563327A priority patent/JP7285959B2/ja
Publication of WO2020216293A1 publication Critical patent/WO2020216293A1/zh
Priority to US17/510,796 priority patent/US20220046541A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0091Signaling for the administration of the divided path
    • H04L5/0094Indication of how sub-channels of the path are allocated
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/02Power saving arrangements
    • H04W52/0209Power saving arrangements in terminal devices
    • H04W52/0225Power saving arrangements in terminal devices using monitoring of external events, e.g. the presence of a signal
    • H04W52/0229Power saving arrangements in terminal devices using monitoring of external events, e.g. the presence of a signal where the received signal is a wanted signal
    • H04W52/0232Power saving arrangements in terminal devices using monitoring of external events, e.g. the presence of a signal where the received signal is a wanted signal according to average transmission signal activity
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/02Power saving arrangements
    • H04W52/0209Power saving arrangements in terminal devices
    • H04W52/0212Power saving arrangements in terminal devices managed by the network, e.g. network or access point is master and terminal is slave
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0446Resources in time domain, e.g. slots or frames
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/54Allocation or scheduling criteria for wireless resources based on quality criteria
    • H04W72/542Allocation or scheduling criteria for wireless resources based on quality criteria using measured or perceived quality
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/0006Assessment of spectral gaps suitable for allocating digitally modulated signals, e.g. for carrier allocation in cognitive radio
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • H04L5/0007Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT
    • H04L5/001Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT the frequencies being arranged in component carriers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • H04L5/0051Allocation of pilot signals, i.e. of signals known to the receiver of dedicated pilots, i.e. pilots destined for a single user or terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • H04L5/0057Physical resource allocation for CQI
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W48/00Access restriction; Network selection; Access point selection
    • H04W48/08Access restriction or access information delivery, e.g. discovery data delivery
    • H04W48/12Access restriction or access information delivery, e.g. discovery data delivery using downlink control channel
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/20Manipulation of established connections
    • H04W76/28Discontinuous transmission [DTX]; Discontinuous reception [DRX]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Definitions

  • the present disclosure relates to the technical field of communication applications, and in particular to a channel monitoring method, terminal and network equipment.
  • the base station For each (Discontinuous Reception, DRX) cycle in the idle state or Radio Resource Control (RRC) connection state, before the DRX cycle, the base station first transmits a wake-up signal to the user equipment (User Equipment, UE), and the UE is in Wake up at the corresponding time to detect the wake-up signal. If the UE detects the wake-up signal, the UE will monitor the Physical Downlink Control Channel (PDCCH) during the active period of DRX; otherwise, the UE will not monitor the PDCCH during the active period of DRX, that is, skip the DRX , Continue to sleep.
  • PDCCH Physical Downlink Control Channel
  • the network side can explicitly notify the UE to wake up and receive in DRX, or skip the DRX, that is, regardless of whether the UE needs to wake up, the network side always needs to send the PDCCH for corresponding instructions, which means larger system overhead.
  • the network will send the PDCCH of the wake-up signal. If the UE does not need to monitor in the next DRX cycle, the network may not send any PDCCH, thereby reducing network overhead. In this case, if the UE does not successfully receive the wake-up signal, the UE will miss the subsequent DRX monitoring, which will cause a larger data transmission delay. Then you need to consider enhancing the PDCCH transmission and UE monitoring to ensure wake-up Signal transmission performance.
  • the purpose of the present disclosure is to provide a channel monitoring method, terminal, and network equipment to solve the problem that the PDCCH transmission method in the related art is difficult to guarantee the receiving performance of the terminal.
  • embodiments of the present disclosure provide a channel monitoring method applied to a terminal, including:
  • PDCCH monitoring is performed in the monitoring opportunity.
  • the embodiments of the present disclosure also provide a channel monitoring method, which is applied to a network device, and includes:
  • PDCCH search space indicates at least one monitoring opportunity for monitoring the PDCCH.
  • embodiments of the present disclosure also provide a terminal, including: a memory, a processor, and a computer program stored on the memory and capable of running on the processor.
  • a terminal including: a memory, a processor, and a computer program stored on the memory and capable of running on the processor.
  • the embodiments of the present disclosure also provide a network device, including:
  • the configuration module is used to configure a physical downlink control channel PDCCH search space, where the PDCCH search space indicates at least one monitoring opportunity for monitoring the PDCCH.
  • the embodiments of the present disclosure also provide a network device, including: a memory, a processor, and a computer program stored in the memory and running on the processor, and the computer program is executed when the processor is executed The steps of the channel monitoring method applied to the network device side as described above.
  • the embodiments of the present disclosure also provide a computer-readable storage medium having a computer program stored on the computer-readable storage medium, and when the computer program is executed by a processor, it is applied to a terminal or network as described above. Steps of the channel monitoring method on the device side.
  • the above technical solutions of the embodiments of the present disclosure obtain the physical downlink control channel PDCCH search space configured by the network device, and the PDCCH search space indicates at least one monitoring opportunity for monitoring the PDCCH; PDCCH monitoring is performed in the monitoring opportunity.
  • the embodiments of the present disclosure can ensure the flexibility of PDCCH transmission by the network device, and on the other hand, enable the terminal to monitor at least once in the PDCCH search space, thereby effectively ensuring the receiving performance of the terminal to receive the PDCCH.
  • FIG. 1 is a structural diagram of a network system applicable to the embodiments of the disclosure
  • FIG. 3 is a schematic diagram of a monitoring opportunity in an embodiment of the disclosure.
  • FIG. 4 is one of the schematic diagrams of monitoring opportunities and corresponding TCI states in an embodiment of the disclosure
  • FIG. 5 is the second schematic diagram of the monitoring opportunity and the corresponding TCI state in the embodiment of the disclosure.
  • FIG. 6 is the third schematic diagram of the monitoring opportunity and the corresponding TCI state in the embodiment of the disclosure.
  • FIG. 7 is a second schematic flowchart of a channel monitoring method according to an embodiment of the disclosure.
  • FIG. 8 is a schematic diagram of modules of a terminal according to an embodiment of the disclosure.
  • FIG. 9 is one of the structural block diagrams of a terminal according to an embodiment of the disclosure.
  • FIG. 10 is the second structural block diagram of a terminal according to an embodiment of the disclosure.
  • FIG. 11 is a schematic diagram of modules of a network device according to an embodiment of the disclosure.
  • Fig. 12 is a structural block diagram of a network device according to an embodiment of the disclosure.
  • the wireless communication system includes a terminal 11 and a network device 12.
  • the terminal 11 may also be referred to as a terminal device or a user terminal (User Equipment, UE), and the terminal 11 may be a mobile phone, a tablet (Personal Computer), a laptop (Laptop Computer), or a personal digital assistant (Personal Digital Assistant).
  • PDA mobile Internet device
  • MID mobile Internet Device
  • Wearable Device wearable device
  • vehicle-mounted equipment it should be noted that the specific type of terminal 11 is not limited in the embodiments of the present disclosure .
  • the network device 12 may be a base station or a core network, where the above-mentioned base station may be a base station of 5G and later versions (for example: gNB, 5G NR NB, etc.), or a base station in other communication systems (for example: eNB, WLAN access point, Or other access points, etc.), where the base station can be called Node B, Evolved Node B, Access Point, Base Transceiver Station (BTS), Radio Base Station, Radio Transceiver, Basic Service Set (Basic Service Set) Service Set (BSS), Extended Service Set (ESS), Node B, Evolved Node B (eNB), Home Node B, Home Evolved Node B, WLAN Access Point, WiFi Node or in the field
  • B Basic Service Set
  • BSS Basic Service Set
  • ESS Extended Service Set
  • Node B Evolved Node B
  • eNB Home Node B, Home Evolved Node B, WLAN Access Point, WiFi Node or in the field
  • an embodiment of the present disclosure provides a channel monitoring method applied to a terminal, including:
  • Step 201 Obtain a physical downlink control channel PDCCH search space configured by a network device, where the PDCCH search space indicates at least one monitoring opportunity for monitoring the PDCCH.
  • the above-mentioned PDCCH search space can be obtained through radio resource control RRC signaling.
  • the PDCCH search space can be specifically used to indicate the period of monitoring opportunities, the monitoring duration in each period, and the monitoring in each period. At least one of the starting time and the starting OFDM symbol monitored in a predetermined time period (such as a slot).
  • Step 202 Perform PDCCH monitoring in the monitoring opportunity.
  • the information transmitted by the PDCCH is used to indicate at least one of the following:
  • the duration of the target DRX is the duration of the current DRX, or the duration of Q DRX after the current moment, and Q is a positive integer;
  • the terminal performs BWP switching of the bandwidth part
  • the terminal activates or deactivates an object, and the object is at least one of a cell, a cell group, a carrier, and a carrier group;
  • the terminal stops PDCCH monitoring within a preset time period
  • the terminal triggers channel state information CSI reporting
  • the terminal triggers sounding reference signal SRS transmission
  • the terminal receives the tracking reference signal TRS;
  • the terminal receives CSI-RS
  • the configuration of the terminal physical downlink shared channel PDSCH time domain resource allocation for example, whether to perform scheduling in a cross-slot scheduling (cross-slot scheduling) manner;
  • the terminal performs at least one of beam management BM measurement, radio link monitoring RLM measurement, and radio resource management RRM measurement;
  • the power control parameter for uplink physical channel transmission and/or the power control parameter for uplink physical signal transmission by the terminal are configured to control the power control parameter for uplink physical channel transmission and/or the power control parameter for uplink physical signal transmission by the terminal;
  • the terminal activates different DRX configurations or downlink control channel search space configurations
  • the maximum number of layers for the terminal to receive PDSCH is the maximum number of layers for the terminal to receive PDSCH.
  • the channel monitoring method of the embodiment of the present disclosure obtains the physical downlink control channel PDCCH search space configured by the network device, and the PDCCH search space indicates at least one monitoring opportunity for monitoring the PDCCH; PDCCH monitoring is performed in the monitoring opportunity.
  • the embodiments of the present disclosure can ensure the flexibility of PDCCH transmission by the network device, and on the other hand, can enable the terminal to monitor at least once in the PDCCH search space, thereby effectively ensuring the receiving performance of the terminal to receive the PDCCH.
  • monitoring the PDCCH in the monitoring opportunity includes:
  • the Orthogonal Frequency Division Multiplexing OFDM symbol where the effective monitoring opportunity is located is a symbol other than the uplink symbol and/or the flexible symbol indicated by the higher layer signaling;
  • the OFDM symbol where the effective monitoring opportunity is located is a symbol other than the uplink symbol and/or the flexible symbol indicated by the downlink control information DCI;
  • the OFDM symbol where the effective monitoring opportunity is located is a symbol other than the synchronization signal block SSB measurement or the channel state information reference information CSI-RS measurement;
  • the OFDM symbol where the effective monitoring opportunity is located is adjacent to the symbol for performing SSB measurement or the symbol for performing CSI-RS measurement.
  • the at least two effective monitoring opportunities are consecutive monitoring opportunities in the PDCCH search space;
  • the effective monitoring opportunity is one or consecutive multiple monitoring opportunities starting from the monitoring start moment.
  • the monitoring start time may be indicated by the network.
  • the network indicates the time offset of the monitoring start time relative to the start time slot of the activation duration DRX Onduration of discontinuous reception.
  • the PDCCH search space configured by the network device includes 6 monitoring occasions.
  • the terminal can monitor on the 4 monitoring opportunities in the PDCCH search space.
  • the 4 monitoring opportunities can be from monitoring occasions.
  • the 4 monitoring opportunities from the start time or the 4 monitoring opportunities indicated by the network device for example, the terminal can monitor the first 4 monitoring opportunities from the monitoring start time, and abandon the monitoring of the remaining 2 monitoring opportunities.
  • the monitoring of the PDCCH in the monitoring opportunity includes:
  • PDCCH monitoring is performed on the first M PDCCH candidates corresponding to the aggregation level of the monitoring opportunity, and M is a positive integer.
  • the PDCCH candidate may include 1, 2, 4, 8 or 16 control channel particle CCEs, and the M values corresponding to different aggregation levels may be different.
  • the terminal needs to monitor PDCCHs of aggregation levels 4 and 8.
  • PDCCHs of aggregation levels 4 and 8 For the PDCCH of aggregation level 4, it may only monitor the first 4 PDCCH candidates, and for the PDCCH of aggregation level 8 it may only monitor the first 2 PDCCH candidates.
  • monitoring the PDCCH in the monitoring opportunity includes:
  • the search space configured by the network has 8 time positions for monitoring the PDCCH during a period of time in each cycle, and the network may further indicate that it can monitor only 6 time positions among these 8 time positions.
  • the time position of the monitored PDCCH candidate can be directly indicated by the network device, so that the terminal can monitor.
  • monitoring the PDCCH in the monitoring opportunity includes:
  • the PDCCH includes a PDCCH demodulation reference signal.
  • the QCL assumption used on the at least one listening opportunity is determined by at least one of the following methods:
  • the CORESET configured on the activated BWP refers to the CORESET other than the CORESET where the PDCCH is transmitted.
  • the CORESET configured on the activated BWP can be on the same BWP as the CORESET where the PDCCH is transmitted, or on a different BWP.
  • high-level signaling can configure 4 BWPs for each UE, and a maximum of 3 CORESETs can be configured on each BWP.
  • Each CORESET can configure one or more TCI states through RRC. If configured If multiple TCI states are established, then the network activates one TCI state through the media access control control unit (MAC-CE) control unit.
  • MAC-CE media access control control unit
  • the UE assumes that the demodulation reference signal DMRS received by the PDCCH in CORESET is quasi co-located (QCL):
  • One or more downlink reference signals indicated by the TCI state, where the TCI state of the CORESET is indicated by a MAC-CE activation command.
  • the UE does not receive the TCI state MAC-CE command to activate CORESET0, it will be quasi co-located with the SSB identified by the UE during the recent random access process.
  • This random access process is not a non-contention random access process triggered by a PDCCH order.
  • the UE assumes that the CORESET
  • the demodulation reference signal (Demodulation Reference Signal, DMRS) received by the PDCCH and one or more downlink RSs indicated by the TCI state are quasi co-located.
  • DMRS Demodulation Reference Signal
  • the UE assumes that the MAC-CE activation command indicates that the RS is a CSI-RS, and the CSI-RS and SSB are quasi co-location of type D.
  • the UE If the UE receives a MAC-CE activation command instructing to activate one of the multiple TCI states, the UE feeds back the MAC-CE transmission physical downlink shared channel (Physical Downlink Shared Channel, PDSCH) corresponding to the hybrid automatic repeat request confirmation (HARQ-ACK) 3ms later, use this activated TCI state to receive.
  • PDSCH Physical Downlink Shared Channel
  • HARQ-ACK hybrid automatic repeat request confirmation
  • the network may configure a BWP with a narrower bandwidth and configure a CORESET on the BWP to receive the PDCCH, or the network may directly configure a narrower bandwidth BWP CORESET, the PDCCH is received at the CORESET.
  • the same TCI state is used for the PDCCH, including the following receiving methods:
  • the UE If in addition to monitoring the CORESET of the PDCCH, the UE only needs to monitor CORESET0, then use the activated TCI-state of CORESET0 to receive; and/or use the associated SSB or CSI-RS selected in the latest random access RACH process to receive ;
  • monitoring the PDCCH in the monitoring opportunity includes:
  • the PDCCH includes a PDCCH demodulation reference signal.
  • the QCL hypothesis is determined by at least one of the following methods:
  • the network may configure a BWP with a narrower bandwidth and configure a CORESET on the BWP to receive the PDCCH, or the network may directly configure a narrower bandwidth BWP CORESET, the PDCCH is received at the CORESET.
  • the CORESET network may not be configured with a TCI state.
  • different TCI states are used for the PDCCH, including at least one of the following receiving methods:
  • the network indicates multiple TCI states corresponding to the CORESET where these WUS PDCCHs are located. For example, the network indicates that X different TCI states are used to receive the PDCCH. As shown in Figure 4, indicating that the first listening opportunity corresponds to TCI state 1, the second listening opportunity corresponds to TCI state 2, the third listening opportunity corresponds to TCI state 3, and the fourth listening opportunity corresponds to TCI state 4.
  • the UE uses the TCI states of all other activated CORESETs on the CORESET where WUS is located for monitoring. For example, in addition to the CORESET of WUS, there are 3 activated CORESETs. Then the UE uses the different TCI states of the 3 activated CORESETs for this PDCCH reception. These 3 CORESETs can be in the same or different BWP as the CORESET monitoring WUS PDCCH. As shown in Figure 5, the first monitoring opportunity corresponds to the TCI state of CORESET#1, and the second monitoring opportunity corresponds to the TCI state of CORESET#2. , The third monitoring opportunity corresponds to the TCI state of CORESET#3.
  • the monitoring opportunities shown in FIG. 5 are located in the same search space.
  • the monitoring opportunities in the embodiments of the present disclosure can also be located in different search spaces.
  • the first monitoring opportunity is the one in search space 1.
  • Monitor opportunity, the second monitor opportunity is the monitor opportunity in search space 2
  • the third monitor opportunity is the monitor opportunity in search space 3.
  • the first monitor opportunity corresponds to the TCI state of CORESET#1
  • the second monitor opportunity corresponds to The TCI state of CORESET#2
  • the third monitoring opportunity corresponds to the TCI state of CORESET#3.
  • the UE can use different TCI states for monitoring on multiple different monitoring opportunities, such as the time sequence of monitoring occurrence and the order of CORESET ID or TCI state ID (or according to the number of CSI-RS/SSB resources).
  • TCI states for monitoring on multiple different monitoring opportunities, such as the time sequence of monitoring occurrence and the order of CORESET ID or TCI state ID (or according to the number of CSI-RS/SSB resources).
  • the UE needs to monitor on 3 monitoring occasions, and CORESET#1, #2, and #3 are currently activated CORESETs. Then use CORESET#1, #2 on these 3 monitoring occasions, respectively. #3 corresponds to the TCI state to monitor.
  • the higher the frequency, the shorter the wavelength, and the narrower beam can be formed by the antenna arrays with a closer distance.
  • the network transmits beamforming to form a narrower beam for transmission, and the UE can pass The receiving antenna array performs receiving beamforming to improve transmission performance.
  • the UE can be configured to monitor up to 3 CORESETs on the activated BWP, and the TCI state of each CORESET can be different, that is, each CORESET can use different receiving beams for reception.
  • the terminal is configured to monitor multiple monitoring opportunities.
  • the network enables the network to obtain the flexibility of transmitting control channels, and on the other hand, it can realize multiple monitoring of the same or different beams of the UE at multiple monitoring opportunities, so as to obtain better receiving performance, and the embodiments of the present disclosure It can ensure that the terminal completes the monitoring of the PDCCH in a relatively short time, which is beneficial to reduce the power consumption of the terminal.
  • the embodiment of the present disclosure also provides a channel monitoring method, which is applied to a network device, and the method includes:
  • Step 701 Configure a physical downlink control channel PDCCH search space, where the PDCCH search space indicates at least one monitoring opportunity for monitoring the PDCCH.
  • the configured PDCCH search space is indicated to the terminal through RRC signaling.
  • the PDCCH search space can be specifically used to indicate the period of monitoring opportunities, the duration of monitoring in each period, the start time of monitoring in each period, and the start of monitoring in a predetermined time period (such as a time slot). At least one of the initial OFDM symbols.
  • the physical downlink control channel PDCCH search space is configured, and the PDCCH search space indicates at least one monitoring opportunity for monitoring the PDCCH, so that the terminal monitors at least once in the PDCCH search space, thereby effectively ensuring The terminal receives the PDCCH receiving performance, and can ensure the flexibility of the network device to transmit the PDCCH.
  • the method further includes:
  • the effective monitoring opportunity is a monitoring opportunity for the terminal to perform PDCCH monitoring.
  • the valid monitoring opportunity meets at least one of the following conditions:
  • the Orthogonal Frequency Division Multiplexing OFDM symbol where the effective monitoring opportunity is located is a symbol other than the uplink symbol and/or the flexible symbol indicated by the higher layer signaling;
  • the OFDM symbol where the effective monitoring opportunity is located is a symbol other than the uplink symbol and/or the flexible symbol indicated by the downlink control information DCI;
  • the OFDM symbol where the effective monitoring opportunity is located is a symbol other than the synchronization signal block SSB measurement or the channel state information reference information CSI-RS measurement;
  • the OFDM symbol where the effective monitoring opportunity is located is adjacent to the symbol for performing SSB measurement or the symbol for performing CSI-RS measurement.
  • the at least two effective listening opportunities are consecutive listening opportunities in the PDCCH search space;
  • the effective monitoring opportunity is one or consecutive multiple monitoring opportunities starting from the monitoring start moment.
  • the method further includes:
  • the PDCCH candidate may include 1, 2, 4, 8 or 16 control channel particle CCEs, and the M values corresponding to different aggregation levels may be different.
  • the terminal needs to monitor PDCCHs of aggregation levels 4 and 8.
  • PDCCHs of aggregation levels 4 and 8 For the PDCCH of aggregation level 4, it may only monitor the first 4 PDCCH candidates, and for the PDCCH of aggregation level 8 it may only monitor the first 2 PDCCH candidates.
  • the method further includes:
  • N is a positive integer.
  • the time position of the monitored PDCCH candidate can be directly indicated by the network device, so that the terminal can monitor.
  • the physical downlink control channel PDCCH search space is configured, and the PDCCH search space indicates at least one monitoring opportunity for monitoring the PDCCH, so that the terminal monitors at least once in the PDCCH search space, thereby effectively ensuring The terminal receives the PDCCH receiving performance, and can ensure the flexibility of the network device to transmit the PDCCH.
  • FIG. 8 is a schematic diagram of modules of a terminal according to an embodiment of the present disclosure. As shown in FIG. 8, an embodiment of the present disclosure also provides a terminal 800, including:
  • the obtaining module 801 is configured to obtain a physical downlink control channel PDCCH search space configured by a network device, where the PDCCH search space indicates at least one monitoring opportunity for monitoring the PDCCH;
  • the monitoring module 802 is used for monitoring the PDCCH in the monitoring opportunity.
  • the monitoring module 802 is configured to perform PDCCH monitoring in the effective monitoring opportunity of the monitoring opportunity;
  • the Orthogonal Frequency Division Multiplexing OFDM symbol where the effective monitoring opportunity is located is a symbol other than the uplink symbol and/or flexible symbol indicated by the higher layer signaling;
  • the OFDM symbol where the effective monitoring opportunity is located is a symbol other than the uplink symbol and/or the flexible symbol indicated by the downlink control information DCI;
  • the OFDM symbol where the effective monitoring opportunity is located is a symbol other than the synchronization signal block SSB measurement or the channel state information reference information CSI-RS measurement;
  • the OFDM symbol where the effective monitoring opportunity is located is adjacent to the symbol for performing SSB measurement or the symbol for performing CSI-RS measurement.
  • the effective monitoring opportunity is indicated by a network device
  • the at least two effective monitoring opportunities are consecutive monitoring opportunities in the PDCCH search space;
  • the effective monitoring opportunity is one or consecutive multiple monitoring opportunities starting from the monitoring start moment.
  • the monitoring module 802 is configured to perform PDCCH monitoring on the first M PDCCH candidates corresponding to the aggregation level of the monitoring opportunity, and M is a positive integer.
  • the monitoring module 802 is configured to monitor the PDCCH according to the time positions of the N PDCCH candidates of the monitoring opportunity indicated by the network device, and N is a positive integer.
  • the monitoring module 802 is configured to use the same quasi co-located QCL hypothesis to receive the PDCCH on at least one of the monitoring opportunities.
  • the first determining module is configured to determine the QCL hypothesis by using at least one of the following methods:
  • the CORESET configured on the activated BWP refers to the CORESET other than the CORESET where the PDCCH is transmitted.
  • the monitoring module 802 is configured to use different QCL hypotheses to receive the PDCCH in different monitoring opportunities.
  • the second determining module is configured to determine the QCL hypothesis in at least one of the following ways:
  • the information transmitted by the PDCCH is used to indicate at least one of the following:
  • the duration of the target DRX is the duration of the current DRX, or the duration of Q DRX after the current moment, and Q is a positive integer;
  • the terminal performs BWP switching of the bandwidth part
  • the terminal activates or deactivates an object, and the object is at least one of a cell, a cell group, a carrier, and a carrier group;
  • the terminal stops PDCCH monitoring within a preset time period
  • the terminal triggers channel state information CSI reporting
  • the terminal triggers sounding reference signal SRS transmission
  • the terminal receives the tracking reference signal TRS;
  • the terminal receives CSI-RS
  • the terminal performs at least one of beam management BM measurement, radio link monitoring RLM measurement, and radio resource management RRM measurement;
  • the power control parameter for uplink physical channel transmission and/or the power control parameter for uplink physical signal transmission by the terminal are configured to control the power control parameter for uplink physical channel transmission and/or the power control parameter for uplink physical signal transmission by the terminal;
  • the terminal activates different DRX configurations or downlink control channel search space configurations
  • the maximum number of layers for the terminal to receive PDSCH is the maximum number of layers for the terminal to receive PDSCH.
  • the terminal of the embodiment of the present disclosure obtains the physical downlink control channel PDCCH search space configured by the network device, and the PDCCH search space indicates at least one monitoring opportunity for monitoring the PDCCH; and the PDCCH monitoring is performed in the monitoring opportunity.
  • the embodiments of the present disclosure can ensure the flexibility of PDCCH transmission by the network device, and on the other hand, can enable the terminal to monitor at least once in the PDCCH search space, thereby effectively ensuring the receiving performance of the terminal to receive the PDCCH.
  • the embodiment of the present disclosure also provides a terminal, including: a memory, a processor, and a computer program stored in the memory and capable of running on the processor.
  • a terminal including: a memory, a processor, and a computer program stored in the memory and capable of running on the processor.
  • the computer program is executed by the processor, the above application to the terminal is realized.
  • the various processes in the embodiment of the channel monitoring method can achieve the same technical effect. In order to avoid repetition, the details are not repeated here.
  • the embodiments of the present disclosure also provide a computer-readable storage medium having a computer program stored on the computer-readable storage medium, and when the computer program is executed by a processor, the above-mentioned channel monitoring method applied to a terminal is implemented Each process can achieve the same technical effect. To avoid repetition, I won’t repeat them here.
  • the computer-readable storage medium such as read-only memory (Read-Only Memory, ROM), random access memory (Random Access Memory, RAM), magnetic disk or optical disk, etc.
  • an embodiment of the present disclosure also provides a terminal, including a memory 920, a processor 900, a transceiver 910, a user interface 930, a bus interface, and storage on the memory 920
  • a terminal including a memory 920, a processor 900, a transceiver 910, a user interface 930, a bus interface, and storage on the memory 920
  • a computer program that can run on the processor 900, where the processor 900 is used to read the program in the memory 920 and execute the following process:
  • PDCCH monitoring is performed in the monitoring opportunity.
  • the bus architecture may include any number of interconnected buses and bridges. Specifically, one or more processors represented by the processor 900 and various circuits of the memory represented by the memory 920 are linked together.
  • the bus architecture can also link various other circuits such as peripherals, voltage regulators, power management circuits, etc., which are all known in the art, and therefore, no further descriptions are provided herein.
  • the bus interface provides the interface.
  • the transceiver 910 may be a plurality of elements, including a transmitter and a transceiver, and provide a unit for communicating with various other devices on a transmission medium.
  • the user interface 930 may also be an interface capable of connecting externally and internally with required equipment.
  • the connected equipment includes but not limited to a keypad, a display, a speaker, a microphone, a joystick, and the like.
  • the processor 900 is responsible for managing the bus architecture and general processing, and the memory 920 can store data used by the processor 900 when performing operations.
  • the processor 900 reads the program in the memory 920, and is further configured to execute:
  • the Orthogonal Frequency Division Multiplexing OFDM symbol where the effective monitoring opportunity is located is a symbol other than the uplink symbol and/or flexible symbol indicated by the higher layer signaling;
  • the OFDM symbol where the effective monitoring opportunity is located is a symbol other than the uplink symbol and/or the flexible symbol indicated by the downlink control information DCI;
  • the OFDM symbol where the effective monitoring opportunity is located is a symbol other than the synchronization signal block SSB measurement or the channel state information reference information CSI-RS measurement;
  • the OFDM symbol where the effective monitoring opportunity is located is adjacent to the symbol for performing SSB measurement or the symbol for performing CSI-RS measurement.
  • the effective monitoring opportunity is indicated by a network device
  • the at least two effective monitoring opportunities are consecutive monitoring opportunities in the PDCCH search space;
  • the effective monitoring opportunity is one or consecutive multiple monitoring opportunities starting from the monitoring start moment.
  • the processor 900 reads the program in the memory 920, and is further configured to execute:
  • PDCCH monitoring is performed on the first M PDCCH candidates corresponding to the aggregation level of the monitoring opportunity, and M is a positive integer.
  • the processor 900 reads the program in the memory 920, and is further configured to execute:
  • the processor 900 reads the program in the memory 920, and is further configured to execute:
  • the QCL assumption is determined by at least one of the following methods:
  • the CORESET configured on the activated BWP refers to the CORESET other than the CORESET where the PDCCH is transmitted.
  • the processor 900 reads the program in the memory 920, and is further configured to execute:
  • the QCL assumption is determined by at least one of the following methods:
  • the information transmitted by the PDCCH is used to indicate at least one of the following:
  • the duration of the target DRX is the duration of the current DRX, or the duration of Q DRX after the current moment, and Q is a positive integer;
  • the terminal performs BWP switching of the bandwidth part
  • the terminal activates or deactivates an object, and the object is at least one of a cell, a cell group, a carrier, and a carrier group;
  • the terminal stops PDCCH monitoring within a preset time period
  • the terminal triggers channel state information CSI reporting
  • the terminal triggers sounding reference signal SRS transmission
  • the terminal receives the tracking reference signal TRS;
  • the terminal receives CSI-RS
  • the terminal performs at least one of beam management BM measurement, radio link monitoring RLM measurement, and radio resource management RRM measurement;
  • the power control parameter for uplink physical channel transmission and/or the power control parameter for uplink physical signal transmission by the terminal are configured to control the power control parameter for uplink physical channel transmission and/or the power control parameter for uplink physical signal transmission by the terminal;
  • the terminal activates different DRX configurations or downlink control channel search space configurations
  • the maximum number of layers for the terminal to receive PDSCH is the maximum number of layers for the terminal to receive PDSCH.
  • the terminal of the embodiment of the present disclosure obtains the physical downlink control channel PDCCH search space configured by the network device, and the PDCCH search space indicates at least one monitoring opportunity for monitoring the PDCCH; and the PDCCH monitoring is performed in the monitoring opportunity.
  • the embodiments of the present disclosure can ensure the flexibility of PDCCH transmission by the network device, and on the other hand, can enable the terminal to monitor at least once in the PDCCH search space, thereby effectively ensuring the receiving performance of the terminal to receive the PDCCH.
  • the terminal 1000 includes but is not limited to: a radio frequency unit 1001, a network module 1002, an audio output unit 1003, an input unit 1004, a sensor 1005, a display unit 1006, User input unit 1007, interface unit 1008, memory 1009, processor 1010, power supply 1011 and other components.
  • a radio frequency unit 1001 includes but is not limited to: a radio frequency unit 1001, a network module 1002, an audio output unit 1003, an input unit 1004, a sensor 1005, a display unit 1006, User input unit 1007, interface unit 1008, memory 1009, processor 1010, power supply 1011 and other components.
  • terminal structure shown in FIG. 10 does not constitute a limitation on the terminal, and the terminal may include more or fewer components than shown in the figure, or combine certain components, or arrange different components.
  • terminals include, but are not limited to, mobile phones, tablet computers, notebook computers, palmtop computers, vehicle-mounted terminals, wearable devices, and pedometers.
  • the processor 1010 is configured to obtain a physical downlink control channel PDCCH search space configured by a network device, where the PDCCH search space indicates at least one monitoring opportunity for monitoring the PDCCH; and performing PDCCH monitoring in the monitoring opportunity.
  • the above technical solutions of the embodiments of the present disclosure obtain the physical downlink control channel PDCCH search space configured by the network device, and the PDCCH search space indicates at least one monitoring opportunity for monitoring the PDCCH; PDCCH monitoring is performed in the monitoring opportunity.
  • the embodiments of the present disclosure can ensure the flexibility of PDCCH transmission by the network device, and on the other hand, can enable the terminal to monitor at least once in the PDCCH search space, thereby effectively ensuring the receiving performance of the terminal to receive the PDCCH.
  • the radio frequency unit 1001 can be used for receiving and sending signals in the process of sending and receiving information or talking. Specifically, after receiving downlink data from network equipment, it is processed by the processor 1010; in addition, Send the upstream data to the network device.
  • the radio frequency unit 1001 includes, but is not limited to, an antenna, at least one amplifier, a transceiver, a coupler, a low noise amplifier, a duplexer, and the like.
  • the radio frequency unit 1001 can also communicate with the network and other devices through a wireless communication system.
  • the terminal provides users with wireless broadband Internet access through the network module 1002, such as helping users to send and receive emails, browse web pages, and access streaming media.
  • the audio output unit 1003 can convert the audio data received by the radio frequency unit 1001 or the network module 1002 or stored in the memory 1009 into audio signals and output them as sounds. Moreover, the audio output unit 1003 may also provide audio output related to a specific function performed by the terminal 1000 (for example, call signal reception sound, message reception sound, etc.).
  • the audio output unit 1003 includes a speaker, a buzzer, a receiver, and the like.
  • the input unit 1004 is used to receive audio or video signals.
  • the input unit 1004 may include a graphics processing unit (GPU) 10041 and a microphone 10042, and the graphics processor 10041 is configured to monitor images of still pictures or videos obtained by an image capture device (such as a camera) in a video capture mode or an image capture mode. Data is processed.
  • the processed image frame can be displayed on the display unit 1006.
  • the image frame processed by the graphics processor 10041 may be stored in the memory 1009 (or other storage medium) or sent via the radio frequency unit 1001 or the network module 1002.
  • the microphone 10042 can receive sound and can process such sound into audio data.
  • the processed audio data can be converted into a format that can be sent to the mobile communication network device via the radio frequency unit 1001 for output in the case of a telephone call mode.
  • the terminal 1000 further includes at least one sensor 1005, such as a light sensor, a motion sensor, and other sensors.
  • the light sensor includes an ambient light sensor and a proximity sensor.
  • the ambient light sensor can adjust the brightness of the display panel 10061 according to the brightness of the ambient light.
  • the proximity sensor can close the display panel 10061 and/or when the terminal 1000 is moved to the ear. Or backlight.
  • the accelerometer sensor can detect the magnitude of acceleration in various directions (usually three-axis), and can detect the magnitude and direction of gravity when stationary, and can be used to identify terminal posture (such as horizontal and vertical screen switching, related games, Magnetometer attitude calibration), vibration recognition related functions (such as pedometer, percussion), etc.; sensor 1005 can also include fingerprint sensors, pressure sensors, iris sensors, molecular sensors, gyroscopes, barometers, hygrometers, thermometers, infrared Sensors, etc., will not be repeated here.
  • the display unit 1006 is used to display information input by the user or information provided to the user.
  • the display unit 1006 may include a display panel 10061, and the display panel 10061 may be configured in the form of a liquid crystal display (LCD), an organic light-emitting diode (OLED), etc.
  • LCD liquid crystal display
  • OLED organic light-emitting diode
  • the user input unit 1007 can be used to receive inputted numeric or character information and generate key signal inputs related to user settings and function control of the terminal.
  • the user input unit 1007 includes a touch panel 10071 and other input devices 10072.
  • the touch panel 10071 also known as a touch screen, can collect user touch operations on or near it (for example, the user uses any suitable objects or accessories such as fingers, stylus, etc.) on the touch panel 10071 or near the touch panel 10071. operating).
  • the touch panel 10071 may include two parts, a touch detection device and a touch controller.
  • the touch detection device detects the user's touch position, detects the signal brought by the touch operation, and transmits the signal to the touch controller; the touch controller receives the touch information from the touch detection device, converts it into contact coordinates, and then sends it
  • the processor 1010 receives and executes the command sent by the processor 1010.
  • the touch panel 10071 can be implemented in multiple types such as resistive, capacitive, infrared, and surface acoustic wave.
  • the user input unit 1007 may also include other input devices 10072.
  • other input devices 10072 may include, but are not limited to, a physical keyboard, function keys (such as volume control buttons, switch buttons, etc.), trackball, mouse, and joystick, which will not be repeated here.
  • the touch panel 10071 can be overlaid on the display panel 10061.
  • the touch panel 10071 detects a touch operation on or near it, it transmits it to the processor 1010 to determine the type of the touch event, and then the processor 1010 determines the type of touch event according to the touch.
  • the type of event provides corresponding visual output on the display panel 10061.
  • the touch panel 10071 and the display panel 10061 are used as two independent components to realize the input and output functions of the terminal, in some embodiments, the touch panel 10071 and the display panel 10061 may be integrated Realize the input and output functions of the terminal, which are not limited here.
  • the interface unit 1008 is an interface for connecting an external device with the terminal 1000.
  • the external device may include a wired or wireless headset port, an external power source (or battery charger) port, a wired or wireless data port, a memory card port, a port for connecting a device with an identification module, audio input/output (I/O) port, video I/O port, headphone port, etc.
  • the interface unit 1008 can be used to receive input (for example, data information, power, etc.) from an external device and transmit the received input to one or more elements in the terminal 1000 or can be used to communicate between the terminal 1000 and the external device. Transfer data between.
  • the memory 1009 can be used to store software programs and various data.
  • the memory 1009 may mainly include a program storage area and a data storage area.
  • the program storage area may store an operating system, an application program required by at least one function (such as a sound playback function, an image playback function, etc.), etc.; Data (such as audio data, phone book, etc.) created by the use of mobile phones.
  • the memory 1009 may include a high-speed random access memory, and may also include a non-volatile memory, such as at least one magnetic disk storage device, a flash memory device, or other volatile solid-state storage devices.
  • the processor 1010 is the control center of the terminal. It uses various interfaces and lines to connect various parts of the entire terminal. It executes by running or executing software programs and/or modules stored in the memory 1009, and calling data stored in the memory 1009. Various functions of the terminal and processing data, so as to monitor the terminal as a whole.
  • the processor 1010 may include one or more processing units; optionally, the processor 1010 may integrate an application processor and a modem processor, where the application processor mainly processes the operating system, user interface and application programs, etc.
  • the adjustment processor mainly deals with wireless communication. It can be understood that the foregoing modem processor may not be integrated into the processor 1010.
  • the terminal 1000 may also include a power supply 1011 (such as a battery) for supplying power to various components.
  • a power supply 1011 (such as a battery) for supplying power to various components.
  • the power supply 1011 may be logically connected to the processor 1010 through a power management system, so as to manage charging, discharging, and power consumption management through the power management system. And other functions.
  • the terminal 1000 includes some functional modules not shown, which will not be repeated here.
  • an embodiment of the present disclosure also provides a network device 1100, including:
  • the configuration module 1101 is configured to configure a physical downlink control channel PDCCH search space, where the PDCCH search space indicates at least one monitoring opportunity for monitoring the PDCCH.
  • the first indication module is used for the configuration module, after configuring the physical downlink control channel PDCCH search space, to indicate to the terminal a valid monitoring opportunity, where the valid monitoring opportunity is a monitoring opportunity for the terminal to perform PDCCH monitoring.
  • the second indication module is used for the configuration module, after configuring the physical downlink control channel PDCCH search space, to indicate to the terminal the number of monitored PDCCH candidates corresponding to each aggregation level.
  • the third indication module is used for the configuration module to indicate to the terminal the time positions of the N PDCCH candidates for PDCCH monitoring in the monitoring opportunity after configuring the physical downlink control channel PDCCH search space, where N is a positive integer.
  • the network device of the embodiment of the present disclosure is configured with a physical downlink control channel PDCCH search space, where the PDCCH search space indicates at least one monitoring opportunity for monitoring the PDCCH, so that the terminal performs monitoring at least once in the PDCCH search space, thereby effectively ensuring that the terminal
  • the receiving performance of receiving the PDCCH can ensure the flexibility of the network equipment to transmit the PDCCH.
  • the embodiments of the present disclosure also provide a network device, including: a memory, a processor, and a computer program stored in the memory and capable of running on the processor, and when the computer program is executed by the processor, the application to the network is realized.
  • a network device including: a memory, a processor, and a computer program stored in the memory and capable of running on the processor, and when the computer program is executed by the processor, the application to the network is realized.
  • the embodiments of the present disclosure also provide a computer-readable storage medium having a computer program stored on the computer-readable storage medium, and when the computer program is executed by a processor, the above-mentioned channel monitoring method applied to a network device is implemented Each process can achieve the same technical effect. To avoid repetition, I won’t repeat them here.
  • the computer-readable storage medium such as read-only memory (Read-Only Memory, ROM), random access memory (Random Access Memory, RAM), magnetic disk or optical disk, etc.
  • the embodiment of the present disclosure also provides a network device 1200, including a processor 1201, a transceiver 1202, a memory 1203, and a bus interface.
  • the processor 1201 is configured to read programs in the memory 1203. , Perform the following process:
  • PDCCH search space indicates at least one monitoring opportunity for monitoring the PDCCH.
  • the bus architecture may include any number of interconnected buses and bridges. Specifically, one or more processors represented by the processor 1201 and various circuits of the memory represented by the memory 1203 are linked together.
  • the bus architecture can also link various other circuits such as peripherals, voltage regulators, power management circuits, etc., which are all known in the art, and therefore, no further descriptions are provided herein.
  • the bus interface provides the interface.
  • the transceiver 1202 may be a plurality of elements, that is, including a transmitter and a receiver, and provide a unit for communicating with various other devices on a transmission medium.
  • the processor 1201 reads the program in the memory 1203, and is further configured to execute:
  • the effective monitoring opportunity is a monitoring opportunity for the terminal to perform PDCCH monitoring.
  • the processor 1201 reads the program in the memory 1203, and is further configured to execute:
  • the processor 1201 reads the program in the memory 1203, and is further configured to execute:
  • N is a positive integer.
  • the network device of the embodiment of the present disclosure is configured with a physical downlink control channel PDCCH search space, and the PDCCH search space indicates at least one monitoring opportunity for monitoring the PDCCH, so that the terminal performs monitoring at least once in the PDCCH search space, thereby effectively ensuring that the terminal
  • the receiving performance of receiving the PDCCH can ensure the flexibility of the network equipment to transmit the PDCCH.
  • the method of the above embodiments can be implemented by means of software plus the necessary general hardware platform. Of course, it can also be implemented by hardware, but in many cases the former is better. ⁇
  • the technical solution of the present disclosure essentially or the part that contributes to the related technology can be embodied in the form of a software product, and the computer software product is stored in a storage medium (such as ROM/RAM, magnetic disk, optical disk). ) Includes several instructions to make a terminal (which can be a mobile phone, a computer, a server, an air conditioner, or a network device, etc.) execute the method described in each embodiment of the present disclosure.

Abstract

本公开提供了一种信道监听方法、终端及网络设备,本公开的信道监听方法包括:获得网络设备配置的物理下行控制信道PDCCH搜索空间,PDCCH搜索空间指示用于监听PDCCH的至少一个监听机会;在监听机会中进行PDCCH的监听。

Description

信道监听方法、终端及网络设备
相关申请的交叉引用
本申请主张在2019年4月26日在中国提交的中国专利申请号No.201910346461.7的优先权,其全部内容通过引用包含于此。
技术领域
本公开涉及通信应用的技术领域,尤其涉及一种信道监听方法、终端及网络设备。
背景技术
对于空闲状态或者无线资源控制(Radio Resource Control,RRC)连接状态的每一个(Discontinuous Reception,DRX)周期,在DRX周期之前,基站首先传输一个唤醒信号给用户设备(User Equipment,UE),UE在相应时刻醒过来检测该唤醒信号。若UE检测到该唤醒信号,则UE在DRX的激活期进行物理下行控制信道(Physical Downlink Control Channel,PDCCH)的监听;否则,该UE不在DRX的激活期进行PDCCH的监听,即跳过该DRX,继续休眠。
网络侧可以显式的通知UE醒来在DRX中进行接收,或者跳过该DRX,即无论UE是否需要唤醒,网络侧始终需要发送该PDCCH进行相应的指示,这样意味着较大的系统开销。
或者,只有在UE需要被唤醒时,网络才会进行唤醒信号的PDCCH的发送,如果UE在下一个DRX周期中不需要进行监听,网络可以不发送任何的PDCCH,从而降低网络的开销。这种情况下,如果UE没有成功接收唤醒信号,UE会错过后续的DRX的监听,将会导致较大的数据传输时延,那么需要考虑对PDCCH的传输和UE的监听进行增强,以保障唤醒信号的传输性能。
由上述描述可知,在配置了DRX和唤醒信号的情况下,如果UE接收传输唤醒信号的PDCCH不成功,那么会给业务传输带来较大的影响,因此,需要对PDCCH的传输进行增强,以保证终端接收PDCCH的唤醒信号的接收 性能。
发明内容
本公开的目的在于提供一种信道监听方法、终端及网络设备,以解决相关技术中的PDCCH传输方法难以保证终端的接收性能的问题。
第一方面,本公开实施例提供了一种信道监听方法,应用于终端,包括:
获得网络设备配置的物理下行控制信道PDCCH搜索空间,所述PDCCH搜索空间指示用于监听PDCCH的至少一个监听机会;
在所述监听机会中进行PDCCH的监听。
第二方面,本公开实施例还提供了一种信道监听方法,应用于网络设备,包括:
配置物理下行控制信道PDCCH搜索空间,所述PDCCH搜索空间指示用于监听PDCCH的至少一个监听机会。
第三方面,本公开实施例还提供了一种终端,包括:存储器、处理器及存储在存储器上并可在处理器上运行的计算机程序,所述计算机程序被所述处理器执行时实现如上所述应用于终端侧的信道监听方法的步骤。
第四方面,本公开实施例还提供了一种网络设备,包括:
配置模块,用于配置物理下行控制信道PDCCH搜索空间,所述PDCCH搜索空间指示用于监听PDCCH的至少一个监听机会。
第五方面,本公开实施例还提供了一种网络设备,包括:存储器、处理器及存储在存储器上并可在处理器上运行的计算机程序,所述计算机程序被所述处理器执行时实现如上所述应用于网络设备侧的信道监听方法的步骤。
第六方面,本公开实施例还提供了一种计算机可读存储介质,所述计算机可读存储介质上存储有计算机程序,所述计算机程序被处理器执行时实现如上所述应用于终端或者网络设备侧的所述信道监听方法的步骤。
本公开实施例具有以下有益效果:
本公开实施例的上述技术方案,获得网络设备配置的物理下行控制信道PDCCH搜索空间,所述PDCCH搜索空间指示用于监听PDCCH的至少一个监听机会;在所述监听机会中进行PDCCH的监听。本公开实施例一方面能 够保证网络设备传输PDCCH的灵活性,另一方面可以使得终端在PDCCH搜索空间中进行至少一次的监听,进而有效保证终端接收PDCCH的接收性能。
附图说明
为了更清楚地说明本公开实施例的技术方案,下面将对本公开实施例的描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本公开的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。
图1为本公开实施例可应用的一种网络系统的结构图;
图2为本公开实施例的信道监听方法的流程示意图之一;
图3为本公开实施例中监听机会的示意图;
图4为本公开实施例中监听机会及对应TCI状态的示意图之一;
图5为本公开实施例中监听机会及对应TCI状态的示意图之二;
图6为本公开实施例中监听机会及对应TCI状态的示意图之三;
图7为本公开实施例的信道监听方法的流程示意图之二;
图8为本公开实施例的终端的模块示意图;
图9为本公开实施例的终端的结构框图之一;
图10为本公开实施例的终端的结构框图之二;
图11为本公开实施例的网络设备的模块示意图;
图12为本公开实施例的网络设备的结构框图。
具体实施方式
下面将参照附图更详细地描述本公开的示例性实施例。虽然附图中显示了本公开的示例性实施例,然而应当理解,可以以各种形式实现本公开而不应被这里阐述的实施例所限制。相反,提供这些实施例是为了能够更透彻地理解本公开,并且能够将本公开的范围完整的传达给本领域的技术人员。
本申请的说明书和权利要求书中的术语“第一”、“第二”等是用于区别类似的对象,而不必用于描述特定的顺序或先后次序。应该理解这样使用的数据在适当情况下可以互换,以便这里描述的本申请的实施例能够以除了在 这里图示或描述的那些以外的顺序实施。此外,术语“包括”和“具有”以及他们的任何变形,意图在于覆盖不排他的包含,例如,包含了一系列步骤或单元的过程、方法、系统、产品或设备不必限于清楚地列出的那些步骤或单元,而是可包括没有清楚地列出的或对于这些过程、方法、产品或设备固有的其它步骤或单元。说明书以及权利要求中“和/或”表示所连接对象的至少其中之一。
以下描述提供示例而并非限定权利要求中阐述的范围、适用性或者配置。可以对所讨论的要素的功能和布置作出改变而不会脱离本公开的精神和范围。各种示例可恰适地省略、替代、或添加各种规程或组件。例如,可以按不同于所描述的次序来执行所描述的方法,并且可以添加、省去、或组合各种步骤。另外,参照某些示例所描述的特征可在其他示例中被组合。
请参见图1,图1示出本公开实施例可应用的一种无线通信系统的框图。无线通信系统包括终端11和网络设备12。其中,终端11也可以称作终端设备或者用户终端(User Equipment,UE),终端11可以是手机、平板电脑(Tablet Personal Computer)、膝上型电脑(Laptop Computer)、个人数字助理(Personal Digital Assistant,PDA)、移动上网装置(Mobile Internet Device,MID)、可穿戴式设备(Wearable Device)或车载设备等终端侧设备,需要说明的是,在本公开实施例中并不限定终端11的具体类型。网络设备12可以是基站或核心网,其中,上述基站可以是5G及以后版本的基站(例如:gNB、5G NR NB等),或者其他通信系统中的基站(例如:eNB、WLAN接入点、或其他接入点等),其中,基站可被称为节点B、演进节点B、接入点、基收发机站(Base Transceiver Station,BTS)、无线电基站、无线电收发机、基本服务集(Basic Service Set,BSS)、扩展服务集(Extended Service Set,ESS)、B节点、演进型B节点(eNB)、家用B节点、家用演进型B节点、WLAN接入点、WiFi节点或所述领域中其他某个合适的术语,只要达到相同的技术效果,所述基站不限于特定技术词汇,需要说明的是,在本公开实施例中仅以NR系统中的基站为例,但是并不限定基站的具体类型。
如图2所示,本公开实施例提供了一种信道监听方法,应用于终端,包括:
步骤201:获得网络设备配置的物理下行控制信道PDCCH搜索空间,所述PDCCH搜索空间指示用于监听PDCCH的至少一个监听机会。
本公开实施例中,可通过无线资源控制RRC信令获取上述PDCCH搜索空间,该PDCCH搜索空间具体可用于指示监听机会的周期,在每个周期内的监听持续时间、在每个周期内的监听起始时刻和在预定时间段(如一个时隙slot)内的监听的起始OFDM符号中的至少一项。
步骤202:在所述监听机会中进行PDCCH的监听。
其中,所述PDCCH传输的信息用于指示以下至少一项:
所述终端在目标非连续接收DRX的持续时间内是否需要进行PDCCH的监听,目标DRX的持续时间为当前DRX的持续时间,或者当前时刻之后的Q个DRX的持续时间期间,Q为正整数;
所述终端进行带宽部分BWP切换;
所述终端进行对象的激活或去激活,所述对象为小区、小区群组、载波和载波群组中的至少一项;
所述终端在预设时间段内停止PDCCH监听;
所述终端进行接收天线的切换;
所述终端时隙的结构;
所述终端触发信道状态信息CSI上报;
所述终端触发探测参考信号SRS发送;
所述终端进行跟踪参考信号TRS的接收;
所述终端进行CSI-RS的接收;
所述终端物理下行共享信道PDSCH时域资源分配的配置,例如是否以跨时隙调度(cross slot scheduling)的方式进行调度;
所述终端进行波束管理BM的测量、无线链路监测RLM的测量和无线资源管理RRM测量中的至少一项;
所述终端在新空口非授权频段NR-U中信道占用时间COT的总时间长度、剩余时间长度和信道接入优先级中的至少一项;
所述终端进行上行的物理信道发送的功率控制参数和/或进行上行的物理信号发送的功率控制参数;
所述终端激活不同的DRX配置或下行控制信道搜索空间配置;
所述终端进行PDSCH接收的最大层数。
本公开实施例的信道监听方法,获得网络设备配置的物理下行控制信道PDCCH搜索空间,所述PDCCH搜索空间指示用于监听PDCCH的至少一个监听机会;在所述监听机会中进行PDCCH的监听。本公开实施例一方面能够保证网络设备传输PDCCH的灵活性,另一方面可以使得终端在PDCCH搜索空间中进行至少一次的监听,进而有效保证终端接收PDCCH的接收性能。
进一步地,在所述监听机会中进行PDCCH的监听,包括:
在所述监听机会的有效监听机会中进行PDCCH的监听;
所述有效监听机会满足以下至少一项条件:
有效监听机会所在的正交频分复用OFDM符号为除高层信令指示的上行符号和/或灵活flexible符号之外的符号;
有效监听机会所在的OFDM符号为除下行控制信息DCI指示的上行符号和/或灵活符号之外的符号;
有效监听机会所在的OFDM符号为除进行同步信号块SSB测量或信道状态信息参考信息CSI-RS测量之外的符号;
有效监听机会所在的OFDM符号与进行SSB测量的符号或进行CSI-RS测量的符号相邻。
进一步地,上述有效监听机会为网络设备指示的;
或者,在所述有效监听机会包括至少两个的情况下,所述至少两个有效监听机会为所述PDCCH搜索空间中连续的监听机会;
或者,所述有效监听机会为从监听起始时刻开始的一个或者连续多个监听机会。监听起始时刻可以由网络指示,例如,网络指示监听起始时刻相对于非连续接收的激活持续时间DRX Onduration的起始时隙的时间偏移。
如图3所示,假定网络设备配置的PDCCH搜索空间包括6个监听机会(monitoring occasion),终端可以在该PDCCH搜索空间内的4个监听机会上进行监听,该4个监听机会可以是从监听起始时刻开始的4个监听机会或者网络设备指示的4个监听机会,例如,终端可以监听从监听起始时刻开始的前4个监听机会,放弃剩余的2个监听机会的监听。
进一步地,所述在所述监听机会中进行PDCCH的监听,包括:
在所述监听机会的聚合等级对应的前M个PDCCH候选,进行PDCCH的监听,M为正整数。
本公开实施例中,PDCCH候选(PDCCH candidate)可以包括1、2、4、8或16个控制信道粒子CCE,且不同的聚合等级对应的M值可以不同。
例如,终端需要监听聚合等级4和8的PDCCH,对于聚合等级4的PDCCH,可以只监听前4个PDCCH候选,对于聚合等级8的PDCCH可以只监听前2个PDCCH候选。
进一步地,在所述监听机会中进行PDCCH的监听,包括:
根据网络设备指示的所述监听机会的N个PDCCH候选的时间位置,进行PDCCH的监听,N为正整数。例如,网络配置的搜索空间在每个周期的一段持续时间内监听PDCCH的时间位置为8个,网络可以进一步指示可以在这8个时间位置中,只在其中的6个时间位置进行监听。本公开实施例中,可以直接由网络设备指示监听的PDCCH候选的时间位置,以便于终端进行监听。
进一步地,在所述监听机会中进行PDCCH的监听,包括:
在至少一个所述监听机会上使用相同的准共址QCL假设接收PDCCH。
这里,PDCCH包含PDCCH解调参考信号。
在所述至少一个监听机会上使用的QCL假设通过以下至少一种方式确定:
根据控制资源集合CORESET#0的QCL假设确定;
根据与CORESET0的激活传输配置指示TCI状态相同的QCL假设确定;
根据最近的随机接入过程中选取的SSB或者CSI-RS确定;
根据激活的带宽部分BWP上配置的CORESET中编号最低或最高的CORESET对应的激活TCI状态确定;
根据激活的BWP上配置的CORESET中网络指示的CORESET对应的激活TCI状态确定;
根据当前监听的搜索空间中目标搜索空间对应的CORESET对应的激活TCI状态确定,所述目标搜索空间为当前监听的所有搜索空间中监听周期最 低或者最高的搜索空间;
其中,激活的所述BWP上配置的CORESET是指除传输所述PDCCH所在的CORESET之外的CORESET。激活的所述BWP上配置的CORESET可以和传输所述PDCCH所在的CORESET在相同的BWP上,也可以在不同的BWP上。在本公开的具体实施例中,高层信令可以给每个UE配置4个BWP,在每个BWP上最多可以配置3个CORESET,每个CORESET可以通过RRC配置一个或者多个TCI state,如果配置了多个TCI state,那么网络通过媒体接入控制控制单元(MAC-CE)控制单元进行激活一个TCI state。
对于CORESET0,UE假设CORESET中的PDCCH接收的解调参考信号DMRS和如下信号准共址(quasi co-located,QCL):
TCI state指示的一个或者多个下行参考信号(Reference Signal,RS),其中,CORESET的TCI state是通过MAC-CE激活命令进行指示。
如果在最近发生的随机接入过程之后,UE没有收到激活CORESET0的TCI state MAC-CE命令,那么和最近发生的随机接入过程中UE识别的SSB准共址。该随机接入过程不是PDCCH命令触发的非竞争随机接入过程。
对于编号不为0的CORESET,如果只由高层信令配置了一个CORESET,或者UE收到MAC CE激活命令指示高层信令配置的该CORESET中的多个TCI state中的一个,UE假设CORESET中的PDCCH接收的解调参考信号(Demodulation Reference Signal,DMRS)和TCI state指示的一个或者多个下行RS准共址。
对于编号为0的CORESET,UE假设MAC-CE激活命令指示RS为CSI-RS,且该CSI-RS和SSB是typeD的准共址。
如果UE收到了MAC-CE激活命令指示激活多个TCI states中的一个,UE在反馈该MAC-CE的传输的物理下行共享信道(Physical Downlink Shared Channel,PDSCH)对应的混合自动重传请求确认(HARQ-ACK)3ms之后使用这个激活的TCI state进行接收。
在本公开的具体实施例中,对于进行唤醒信号传输的PDCCH,网络可能配置一个带宽较窄的BWP,并在该BWP上配置一个CORESET进行该PDCCH的接收,或者网络直接配置一个带宽较窄的CORESET,在该 CORESET进行该PDCCH的接收。
当UE在该CORESET进行该PDCCH接收时,对PDCCH采用相同的TCI state,包括如下接收方式:
如果除了监听所述PDCCH的CORESET,UE只需要监听CORESET0,那么使用CORESET0的激活TCI-state进行接收;和/或,使用和最近的随机接入RACH过程中选取的关联SSB或者CSI-RS进行接收;
如果除了监听所述PDCCH的CORESET和CORESET0,还需要监听其他CORESET,则使用其它激活的CORESET中编号最低、最高或网络指示的CORESET对应的激活TCI state进行接收,和/或,使用当前监听的搜索空间中的监听周期最低或者最高的搜索空间对应的CORESET的激活TCI state进行接收。
进一步地,在所述监听机会中进行PDCCH的监听,包括:
在不同的监听机会中使用不同的QCL假设接收PDCCH。
这里,PDCCH包含PDCCH解调参考信号。
其中,所述QCL假设通过以下至少一种方式确定:
根据网络设备指示的PDCCH所在CORESET对应的至少一个TCI状态确定;
根据除PDCCH所在CORESET之外的CORESET对应的TCI状态确定;
根据监听机会和TCI状态标识ID的对应关系确定;
根据监听机会和CORESET ID的对应关系确定;
根据监听机会和CSI-RS资源编号的对应关系确定;
根据监听机会和SSB资源编号的对应关系确定。
在本公开的具体实施例中,对于进行唤醒信号传输的PDCCH,网络可能配置一个带宽较窄的BWP,并在该BWP上配置一个CORESET进行该PDCCH的接收,或者网络直接配置一个带宽较窄的CORESET,在该CORESET进行该PDCCH的接收。
该CORESET网络可以不配置TCI state,当UE在该CORESET进行该PDCCH接收时,对PDCCH采用不同的TCI state,包括如下至少一种接收方式:
网络指示这些WUS PDCCH所在CORESET对应的多个TCI state,例如,网络指示使用X个不同的TCI state进行该PDCCH的接收。如图4所示,指示第一个监听机会对应TCI状态1,第二个监听机会对应TCI状态2,第三个监听机会对应TCI状态3,第四个监听机会对应TCI状态4。
UE使用除WUS所在CORESET上的其它所有激活的CORESET的TCI state进行监听,例如,除了WUS的CORESET,还有3个激活的CORESET,那么UE使用这3个激活的CORESET的不同的TCI state进行该PDCCH的接收。这3个CORESET可以和监听WUS PDCCH的CORESET在相同的或者不同的BWP,如图5所示,第一个监听机会对应CORESET#1的TCI状态,第二个监听机会对应CORESET#2的TCI状态,第三个监听机会对应CORESET#3的TCI状态。
另外,图5所示的监听机会位于同一个搜索空间,当然,本公开实施例中的监听机会也可位于不同的搜索空间,如图6所示,第一个监听机会为搜索空间1中的监听机会,第二个监听机会为搜索空间2中的监听机会,第三个监听机会为搜索空间3中的监听机会,第一个监听机会对应CORESET#1的TCI状态,第二个监听机会对应CORESET#2的TCI状态,第三个监听机会对应CORESET#3的TCI状态。
具体监听时,UE可以在多个不同的监听机会上使用不同的TCI state进行监听,例如Monitoring occasion的时间顺序和CORESET ID或TCI state ID(或者根据CSI-RS/SSB资源的编号)的排序一一对应。例如UE需要在3个监听机会(monitoring occasion)上进行监听,同时CORESET#1,#2,#3是当前的激活的CORESET,那么在这3个monitoring occasion上分别使用CORESET#1,#2,#3对应的TCI state进行监听。
在频率范围2(Frequency range 2,FR2),频率较高波长较短,通过间距较近的天线阵可以形成较窄的波束,网络通过发送波束赋形形成较窄的波束进行传输,UE可以通过收天线阵进行接收波束赋形,来提升传输性能。在激活的BWP上可以配置UE监听最多3个CORESET,每个CORESET的TCI state可以不同,即每个CORESET可以使用不同的收波束进行接收。在网络配置的DRX的情况下,由于UE在DRX的非激活期不进行波束跟踪和调整, 导致网络配置和激活的CORESET对应的TCI state对应的接收波束不一定能达到的很好的性能,如果只监听其中的一个CORESET,即只使用其中的一个收波束进行接收,在信道环境变换的情况下不一定能保证接收性能,而本公开实施例的信道监听方法,通过配置终端在多个监听机会上进行监听,一方面使得网络获得了传输控制信道的灵活性,另外一方面可以实现UE在多个监听机会的相同或者不同波束的多次监听,获得较好的接收性能,且本公开实施例能够保证终端在较短的时间内完成PDCCH的监听,有利于降低终端的功耗。
如图7所示,本公开的实施例还提供了一种信道监听方法,应用于网络设备,该方法包括:
步骤701:配置物理下行控制信道PDCCH搜索空间,所述PDCCH搜索空间指示用于监听PDCCH的至少一个监听机会。
本公开实施例中,网络设备配置PDCCH搜索空间后,通过RRC信令将配置的PDCCH搜索空间指示给终端。
该PDCCH搜索空间具体可用于指示监听机会的周期,在每个周期内的监听持续时间、在每个周期内的监听起始时刻和在预定时间段(如一个时隙slot)内的监听的起始OFDM符号中的至少一项。
本公开实施例的信道监听方法,配置物理下行控制信道PDCCH搜索空间,所述PDCCH搜索空间指示用于监听PDCCH的至少一个监听机会,使得终端在PDCCH搜索空间中进行至少一次的监听,进而有效保证终端接收PDCCH的接收性能,且能够保证网络设备传输PDCCH的灵活性。
进一步地,所述配置物理下行控制信道PDCCH搜索空间之后,还包括:
向终端指示有效监听机会,所述有效监听机会为终端进行PDCCH监听的监听机会。
或者,如果网络没有指示有效的监听机会,所述有效监听机会满足以下至少一项条件:
有效监听机会所在的正交频分复用OFDM符号为除高层信令指示的上行符号和/或灵活flexible符号之外的符号;
有效监听机会所在的OFDM符号为除下行控制信息DCI指示的上行符号 和/或灵活符号之外的符号;
有效监听机会所在的OFDM符号为除进行同步信号块SSB测量或信道状态信息参考信息CSI-RS测量之外的符号;
有效监听机会所在的OFDM符号与进行SSB测量的符号或进行CSI-RS测量的符号相邻。
在本公开的具体实施例中,在所述有效监听机会包括至少两个的情况下,所述至少两个有效监听机会为所述PDCCH搜索空间中连续的监听机会;
或者,所述有效监听机会为从监听起始时刻开始的一个或者连续多个监听机会。
进一步地,所述配置物理下行控制信道PDCCH搜索空间之后,还包括:
向终端指示监听的每个聚合等级对应的PDCCH候选的数目。
本公开实施例中,PDCCH候选(PDCCH candidate)可以包括1、2、4、8或16个控制信道粒子CCE,且不同的聚合等级对应的M值可以不同。
例如,终端需要监听聚合等级4和8的PDCCH,对于聚合等级4的PDCCH,可以只监听前4个PDCCH候选,对于聚合等级8的PDCCH可以只监听前2个PDCCH候选。
进一步地,所述配置物理下行控制信道PDCCH搜索空间之后,还包括:
向终端指示所述监听机会中用于PDCCH监听的N个PDCCH候选的时间位置,N为正整数。
本公开实施例中,可以直接由网络设备指示监听的PDCCH候选的时间位置,以便于终端进行监听。
本公开实施例的信道监听方法,配置物理下行控制信道PDCCH搜索空间,所述PDCCH搜索空间指示用于监听PDCCH的至少一个监听机会,使得终端在PDCCH搜索空间中进行至少一次的监听,进而有效保证终端接收PDCCH的接收性能,且能够保证网络设备传输PDCCH的灵活性。
图8为本公开实施例的终端的模块示意图,如图8所示,本公开的实施例还提供了一种终端800,包括:
获取模块801,用于获得网络设备配置的物理下行控制信道PDCCH搜索空间,所述PDCCH搜索空间指示用于监听PDCCH的至少一个监听机会;
监听模块802,用于在所述监听机会中进行PDCCH的监听。
本公开实施例的终端,所述监听模块802用于在所述监听机会的有效监听机会中进行PDCCH的监听;
所述有效监听机会满足以下至少一项条件:
有效监听机会所在的正交频分复用OFDM符号为除高层信令指示的上行符号和/或灵活符号之外的符号;
有效监听机会所在的OFDM符号为除下行控制信息DCI指示的上行符号和/或灵活符号之外的符号;
有效监听机会所在的OFDM符号为除进行同步信号块SSB测量或信道状态信息参考信息CSI-RS测量之外的符号;
有效监听机会所在的OFDM符号与进行SSB测量的符号或进行CSI-RS测量的符号相邻。
本公开实施例的终端,所述有效监听机会为网络设备指示的;
或者,在所述有效监听机会包括至少两个的情况下,所述至少两个有效监听机会为所述PDCCH搜索空间中连续的监听机会;
或者,所述有效监听机会为从监听起始时刻开始的一个或者连续多个监听机会。
本公开实施例的终端,所述监听模块802用于在所述监听机会的聚合等级对应的前M个PDCCH候选,进行PDCCH的监听,M为正整数。
本公开实施例的终端,所述监听模块802用于根据网络设备指示的所述监听机会的N个PDCCH候选的时间位置,进行PDCCH的监听,N为正整数。
本公开实施例的终端,所述监听模块802用于在至少一个所述监听机会上使用相同的准共址QCL假设接收PDCCH。
本公开实施例的终端,还包括:
第一确定模块,用于通过以下至少一种方式确定所述QCL假设:
根据控制资源集合CORESET0的QCL假设确定;
根据与CORESET0的激活传输配置指示TCI状态相同的QCL假设确定;
根据最近的随机接入过程中选取的SSB或者CSI-RS确定;
根据激活的带宽部分BWP上配置的CORESET中编号最低或最高的CORESET对应的激活TCI状态确定;
根据激活的BWP上配置的CORESET中网络指示的CORESET对应的激活TCI状态确定;
根据当前监听的搜索空间中目标搜索空间对应的CORESET对应的激活TCI状态确定,所述目标搜索空间为当前监听的所有搜索空间中监听周期最低或者最高的搜索空间;
其中,激活的所述BWP上配置的CORESET是指除传输所述PDCCH所在的CORESET之外的CORESET。
本公开实施例的终端,所述监听模块802用于在不同的监听机会中使用不同的QCL假设接收PDCCH。
本公开实施例的终端,还包括:
第二确定模块,用于通过以下至少一种方式确定所述QCL假设:
根据网络设备指示的PDCCH所在CORESET对应的至少一个TCI状态确定;
根据除PDCCH所在CORESET之外的CORESET对应的TCI状态确定;
根据监听机会和TCI状态标识ID的对应关系确定;
根据监听机会和CORESET ID的对应关系确定;
根据监听机会和CSI-RS资源编号的对应关系确定;
根据监听机会和SSB资源编号的对应关系确定。
本公开实施例的终端,所述PDCCH传输的信息用于指示以下至少一项:
所述终端在目标非连续接收DRX的持续时间内是否需要进行PDCCH的监听,目标DRX的持续时间为当前DRX的持续时间,或者当前时刻之后的Q个DRX的持续时间期间,Q为正整数;
所述终端进行带宽部分BWP切换;
所述终端进行对象的激活或去激活,所述对象为小区、小区群组、载波和载波群组中的至少一项;
所述终端在预设时间段内停止PDCCH监听;
所述终端进行接收天线的切换;
所述终端时隙的结构;
所述终端触发信道状态信息CSI上报;
所述终端触发探测参考信号SRS发送;
所述终端进行跟踪参考信号TRS的接收;
所述终端进行CSI-RS的接收;
所述终端物理下行共享信道PDSCH时域资源分配的配置;
所述终端进行波束管理BM的测量、无线链路监测RLM的测量和无线资源管理RRM测量中的至少一项;
所述终端在新空口非授权频段NR-U中信道占用时间COT的总时间长度、剩余时间长度和信道接入优先级中的至少一项;
所述终端进行上行的物理信道发送的功率控制参数和/或进行上行的物理信号发送的功率控制参数;
所述终端激活不同的DRX配置或下行控制信道搜索空间配置;
所述终端进行PDSCH接收的最大层数。
本公开实施例的终端,获得网络设备配置的物理下行控制信道PDCCH搜索空间,所述PDCCH搜索空间指示用于监听PDCCH的至少一个监听机会;在所述监听机会中进行PDCCH的监听。本公开实施例一方面能够保证网络设备传输PDCCH的灵活性,另一方面可以使得终端在PDCCH搜索空间中进行至少一次的监听,进而有效保证终端接收PDCCH的接收性能。
本公开的实施例还提供了一种终端,包括:存储器、处理器及存储在存储器上并可在处理器上运行的计算机程序,所述计算机程序被所述处理器执行时实现上述应用于终端的信道监听方法实施例中的各个过程,且能达到相同的技术效果,为避免重复,这里不再赘述。
本公开的实施例还提供了一种计算机可读存储介质,所述计算机可读存储介质上存储有计算机程序,所述计算机程序被处理器执行时实现上述应用于终端的信道监听方法实施例中的各个过程,且能达到相同的技术效果,为避免重复,这里不再赘述。其中,所述的计算机可读存储介质,如只读存储器(Read-Only Memory,ROM)、随机存取存储器(Random Access Memory,RAM)、磁碟或者光盘等。
为了更好的实现上述目的,如图9所示,本公开的实施例还提供了一种终端,包括存储器920、处理器900、收发机910、用户接口930、总线接口及存储在存储器920上并可在处理器900上运行的计算机程序,所述处理器900用于读取存储器920中的程序,执行下列过程:
获得网络设备配置的物理下行控制信道PDCCH搜索空间,所述PDCCH搜索空间指示用于监听PDCCH的至少一个监听机会;
在所述监听机会中进行PDCCH的监听。
其中,在图9中,总线架构可以包括任意数量的互联的总线和桥,具体由处理器900代表的一个或多个处理器和存储器920代表的存储器的各种电路链接在一起。总线架构还可以将诸如外围设备、稳压器和功率管理电路等之类的各种其他电路链接在一起,这些都是本领域所公知的,因此,本文不再对其进行进一步描述。总线接口提供接口。收发机910可以是多个元件,即包括发送机和收发机,提供用于在传输介质上与各种其他装置通信的单元。针对不同的用户设备,用户接口930还可以是能够外接内接需要设备的接口,连接的设备包括但不限于小键盘、显示器、扬声器、麦克风、操纵杆等。
处理器900负责管理总线架构和通常的处理,存储器920可以存储处理器900在执行操作时所使用的数据。
可选的,所述处理器900读取存储器920中的程序,还用于执行:
在所述监听机会的有效监听机会中进行PDCCH的监听;
所述有效监听机会满足以下至少一项条件:
有效监听机会所在的正交频分复用OFDM符号为除高层信令指示的上行符号和/或灵活符号之外的符号;
有效监听机会所在的OFDM符号为除下行控制信息DCI指示的上行符号和/或灵活符号之外的符号;
有效监听机会所在的OFDM符号为除进行同步信号块SSB测量或信道状态信息参考信息CSI-RS测量之外的符号;
有效监听机会所在的OFDM符号与进行SSB测量的符号或进行CSI-RS测量的符号相邻。
可选的,所述有效监听机会为网络设备指示的;
或者,在所述有效监听机会包括至少两个的情况下,所述至少两个有效监听机会为所述PDCCH搜索空间中连续的监听机会;
或者,所述有效监听机会为从监听起始时刻开始的一个或者连续多个监听机会。
可选的,所述处理器900读取存储器920中的程序,还用于执行:
在所述监听机会的聚合等级对应的前M个PDCCH候选,进行PDCCH的监听,M为正整数。
可选的,所述处理器900读取存储器920中的程序,还用于执行:
根据网络设备指示的所述监听机会的N个PDCCH候选的时间位置,进行PDCCH的监听,N为正整数。
可选的,所述处理器900读取存储器920中的程序,还用于执行:
在至少一个所述监听机会上使用相同的准共址QCL假设接收PDCCH。
可选的,所述QCL假设通过以下至少一种方式确定:
根据控制资源集合CORESET0的QCL假设确定;
根据与CORESET0的激活传输配置指示TCI状态相同的QCL假设确定;
根据最近的随机接入过程中选取的SSB或者CSI-RS确定;
根据激活的带宽部分BWP上配置的CORESET中编号最低或最高的CORESET对应的激活TCI状态确定;
根据激活的BWP上配置的CORESET中网络指示的CORESET对应的激活TCI状态确定;
根据当前监听的搜索空间中目标搜索空间对应的CORESET对应的激活TCI状态确定,所述目标搜索空间为当前监听的所有搜索空间中监听周期最低或者最高的搜索空间;
其中,激活的所述BWP上配置的CORESET是指除传输所述PDCCH所在的CORESET之外的CORESET。
可选的,所述处理器900读取存储器920中的程序,还用于执行:
在不同的监听机会中使用不同的QCL假设接收PDCCH。
可选的,所述QCL假设通过以下至少一种方式确定:
根据网络设备指示的PDCCH所在CORESET对应的至少一个TCI状态 确定;
根据除PDCCH所在CORESET之外的CORESET对应的TCI状态确定;
根据监听机会和TCI状态标识ID的对应关系确定;
根据监听机会和CORESET ID的对应关系确定;
根据监听机会和CSI-RS资源编号的对应关系确定;
根据监听机会和SSB资源编号的对应关系确定。
可选的,所述PDCCH传输的信息用于指示以下至少一项:
所述终端在目标非连续接收DRX的持续时间内是否需要进行PDCCH的监听,目标DRX的持续时间为当前DRX的持续时间,或者当前时刻之后的Q个DRX的持续时间期间,Q为正整数;
所述终端进行带宽部分BWP切换;
所述终端进行对象的激活或去激活,所述对象为小区、小区群组、载波和载波群组中的至少一项;
所述终端在预设时间段内停止PDCCH监听;
所述终端进行接收天线的切换;
所述终端时隙的结构;
所述终端触发信道状态信息CSI上报;
所述终端触发探测参考信号SRS发送;
所述终端进行跟踪参考信号TRS的接收;
所述终端进行CSI-RS的接收;
所述终端物理下行共享信道PDSCH时域资源分配的配置;
所述终端进行波束管理BM的测量、无线链路监测RLM的测量和无线资源管理RRM测量中的至少一项;
所述终端在新空口非授权频段NR-U中信道占用时间COT的总时间长度、剩余时间长度和信道接入优先级中的至少一项;
所述终端进行上行的物理信道发送的功率控制参数和/或进行上行的物理信号发送的功率控制参数;
所述终端激活不同的DRX配置或下行控制信道搜索空间配置;
所述终端进行PDSCH接收的最大层数。
本公开实施例的终端,获得网络设备配置的物理下行控制信道PDCCH搜索空间,所述PDCCH搜索空间指示用于监听PDCCH的至少一个监听机会;在所述监听机会中进行PDCCH的监听。本公开实施例一方面能够保证网络设备传输PDCCH的灵活性,另一方面可以使得终端在PDCCH搜索空间中进行至少一次的监听,进而有效保证终端接收PDCCH的接收性能。
图10为实现本公开各个实施例的一种终端的硬件结构示意图,该终端1000包括但不限于:射频单元1001、网络模块1002、音频输出单元1003、输入单元1004、传感器1005、显示单元1006、用户输入单元1007、接口单元1008、存储器1009、处理器1010、以及电源1011等部件。本领域技术人员可以理解,图10中示出的终端结构并不构成对终端的限定,终端可以包括比图示更多或更少的部件,或者组合某些部件,或者不同的部件布置。在本公开实施例中,终端包括但不限于手机、平板电脑、笔记本电脑、掌上电脑、车载终端、可穿戴设备、以及计步器等。
其中,处理器1010,用于获得网络设备配置的物理下行控制信道PDCCH搜索空间,所述PDCCH搜索空间指示用于监听PDCCH的至少一个监听机会;在所述监听机会中进行PDCCH的监听。
本公开实施例的上述技术方案,获得网络设备配置的物理下行控制信道PDCCH搜索空间,所述PDCCH搜索空间指示用于监听PDCCH的至少一个监听机会;在所述监听机会中进行PDCCH的监听。本公开实施例一方面能够保证网络设备传输PDCCH的灵活性,另一方面可以使得终端在PDCCH搜索空间中进行至少一次的监听,进而有效保证终端接收PDCCH的接收性能。
应理解的是,本公开实施例中,射频单元1001可用于收发信息或通话过程中,信号的接收和发送,具体的,将来自网络设备的下行数据接收后,给处理器1010处理;另外,将上行的数据发送给网络设备。通常,射频单元1001包括但不限于天线、至少一个放大器、收发信机、耦合器、低噪声放大器、双工器等。此外,射频单元1001还可以通过无线通信系统与网络和其他设备通信。
终端通过网络模块1002为用户提供了无线的宽带互联网访问,如帮助用户收发电子邮件、浏览网页和访问流式媒体等。
音频输出单元1003可以将射频单元1001或网络模块1002接收的或者在存储器1009中存储的音频数据转换成音频信号并且输出为声音。而且,音频输出单元1003还可以提供与终端1000执行的特定功能相关的音频输出(例如,呼叫信号接收声音、消息接收声音等等)。音频输出单元1003包括扬声器、蜂鸣器以及受话器等。
输入单元1004用于接收音频或视频信号。输入单元1004可以包括图形处理器(Graphics Processing Unit,GPU)10041和麦克风10042,图形处理器10041对在视频捕获模式或图像捕获模式中由图像捕获装置(如摄像头)获得的静态图片或视频的图像数据进行处理。处理后的图像帧可以显示在显示单元1006上。经图形处理器10041处理后的图像帧可以存储在存储器1009(或其它存储介质)中或者经由射频单元1001或网络模块1002进行发送。麦克风10042可以接收声音,并且能够将这样的声音处理为音频数据。处理后的音频数据可以在电话通话模式的情况下转换为可经由射频单元1001发送到移动通信网络设备的格式输出。
终端1000还包括至少一种传感器1005,比如光传感器、运动传感器以及其他传感器。具体地,光传感器包括环境光传感器及接近传感器,其中,环境光传感器可根据环境光线的明暗来调节显示面板10061的亮度,接近传感器可在终端1000移动到耳边时,关闭显示面板10061和/或背光。作为运动传感器的一种,加速计传感器可检测各个方向上(一般为三轴)加速度的大小,静止时可检测出重力的大小及方向,可用于识别终端姿态(比如横竖屏切换、相关游戏、磁力计姿态校准)、振动识别相关功能(比如计步器、敲击)等;传感器1005还可以包括指纹传感器、压力传感器、虹膜传感器、分子传感器、陀螺仪、气压计、湿度计、温度计、红外线传感器等,在此不再赘述。
显示单元1006用于显示由用户输入的信息或提供给用户的信息。显示单元1006可包括显示面板10061,可以采用液晶显示器(Liquid Crystal Display,LCD)、有机发光二极管(Organic Light-Emitting Diode,OLED)等形式来配置显示面板10061。
用户输入单元1007可用于接收输入的数字或字符信息,以及产生与终端 的用户设置以及功能控制有关的键信号输入。具体地,用户输入单元1007包括触控面板10071以及其他输入设备10072。触控面板10071,也称为触摸屏,可收集用户在其上或附近的触摸操作(比如用户使用手指、触笔等任何适合的物体或附件在触控面板10071上或在触控面板10071附近的操作)。触控面板10071可包括触摸检测装置和触摸控制器两个部分。其中,触摸检测装置检测用户的触摸方位,并检测触摸操作带来的信号,将信号传送给触摸控制器;触摸控制器从触摸检测装置上接收触摸信息,并将它转换成触点坐标,再送给处理器1010,接收处理器1010发来的命令并加以执行。此外,可以采用电阻式、电容式、红外线以及表面声波等多种类型实现触控面板10071。除了触控面板10071,用户输入单元1007还可以包括其他输入设备10072。具体地,其他输入设备10072可以包括但不限于物理键盘、功能键(比如音量控制按键、开关按键等)、轨迹球、鼠标、操作杆,在此不再赘述。
进一步的,触控面板10071可覆盖在显示面板10061上,当触控面板10071检测到在其上或附近的触摸操作后,传送给处理器1010以确定触摸事件的类型,随后处理器1010根据触摸事件的类型在显示面板10061上提供相应的视觉输出。虽然在图10中,触控面板10071与显示面板10061是作为两个独立的部件来实现终端的输入和输出功能,但是在某些实施例中,可以将触控面板10071与显示面板10061集成而实现终端的输入和输出功能,具体此处不做限定。
接口单元1008为外部装置与终端1000连接的接口。例如,外部装置可以包括有线或无线头戴式耳机端口、外部电源(或电池充电器)端口、有线或无线数据端口、存储卡端口、用于连接具有识别模块的装置的端口、音频输入/输出(I/O)端口、视频I/O端口、耳机端口等等。接口单元1008可以用于接收来自外部装置的输入(例如,数据信息、电力等等)并且将接收到的输入传输到终端1000内的一个或多个元件或者可以用于在终端1000和外部装置之间传输数据。
存储器1009可用于存储软件程序以及各种数据。存储器1009可主要包括存储程序区和存储数据区,其中,存储程序区可存储操作系统、至少一个功能所需的应用程序(比如声音播放功能、图像播放功能等)等;存储数据 区可存储根据手机的使用所创建的数据(比如音频数据、电话本等)等。此外,存储器1009可以包括高速随机存取存储器,还可以包括非易失性存储器,例如至少一个磁盘存储器件、闪存器件、或其他易失性固态存储器件。
处理器1010是终端的控制中心,利用各种接口和线路连接整个终端的各个部分,通过运行或执行存储在存储器1009内的软件程序和/或模块,以及调用存储在存储器1009内的数据,执行终端的各种功能和处理数据,从而对终端进行整体监控。处理器1010可包括一个或多个处理单元;可选的,处理器1010可集成应用处理器和调制解调处理器,其中,应用处理器主要处理操作系统、用户界面和应用程序等,调制解调处理器主要处理无线通信。可以理解的是,上述调制解调处理器也可以不集成到处理器1010中。
终端1000还可以包括给各个部件供电的电源1011(比如电池),可选的,电源1011可以通过电源管理系统与处理器1010逻辑相连,从而通过电源管理系统实现管理充电、放电、以及功耗管理等功能。
另外,终端1000包括一些未示出的功能模块,在此不再赘述。
如图11所示,本公开实施例还提供了一种网络设备1100,包括:
配置模块1101,用于配置物理下行控制信道PDCCH搜索空间,所述PDCCH搜索空间指示用于监听PDCCH的至少一个监听机会。
本公开实施例的网络设备,还包括:
第一指示模块,用于配置模块配置物理下行控制信道PDCCH搜索空间之后,向终端指示有效监听机会,所述有效监听机会为终端进行PDCCH监听的监听机会。
本公开实施例的网络设备,还包括:
第二指示模块,用于配置模块配置物理下行控制信道PDCCH搜索空间之后,向终端指示监听的每个聚合等级对应的PDCCH候选的数目。
本公开实施例的网络设备,还包括:
第三指示模块,用于配置模块配置物理下行控制信道PDCCH搜索空间之后,向终端指示所述监听机会中用于PDCCH监听的N个PDCCH候选的时间位置,N为正整数。
本公开实施例的网络设备,配置物理下行控制信道PDCCH搜索空间, 所述PDCCH搜索空间指示用于监听PDCCH的至少一个监听机会,使得终端在PDCCH搜索空间中进行至少一次的监听,进而有效保证终端接收PDCCH的接收性能,且能够保证网络设备传输PDCCH的灵活性。
本公开实施例还提供了一种网络设备,包括:存储器、处理器及存储在存储器上并可在处理器上运行的计算机程序,所述计算机程序被所述处理器执行时实现上述应用于网络设备的信道监听方法的方法实施例中的各个过程,且能达到相同的技术效果,为避免重复,这里不再赘述。
本公开实施例还提供了一种计算机可读存储介质,所述计算机可读存储介质上存储有计算机程序,所述计算机程序被处理器执行时实现上述应用于网络设备的信道监听方法实施例中的各个过程,且能达到相同的技术效果,为避免重复,这里不再赘述。其中,所述的计算机可读存储介质,如只读存储器(Read-Only Memory,ROM)、随机存取存储器(Random Access Memory,RAM)、磁碟或者光盘等。
如图12所示,本公开的实施例还提供了一种网络设备1200,包括处理器1201、收发机1202、存储器1203和总线接口,其中:处理器1201,用于读取存储器1203中的程序,执行下列过程:
配置物理下行控制信道PDCCH搜索空间,所述PDCCH搜索空间指示用于监听PDCCH的至少一个监听机会。
在图12中,总线架构可以包括任意数量的互联的总线和桥,具体由处理器1201代表的一个或多个处理器和存储器1203代表的存储器的各种电路链接在一起。总线架构还可以将诸如外围设备、稳压器和功率管理电路等之类的各种其他电路链接在一起,这些都是本领域所公知的,因此,本文不再对其进行进一步描述。总线接口提供接口。收发机1202可以是多个元件,即包括发送机和接收机,提供用于在传输介质上与各种其他装置通信的单元。
可选的,所述处理器1201读取存储器1203中的程序,还用于执行:
向终端指示有效监听机会,所述有效监听机会为终端进行PDCCH监听的监听机会。
可选的,所述处理器1201读取存储器1203中的程序,还用于执行:
向终端指示监听的每个聚合等级对应的PDCCH候选的数目。
可选的,所述处理器1201读取存储器1203中的程序,还用于执行:
向终端指示所述监听机会中用于PDCCH监听的N个PDCCH候选的时间位置,N为正整数。
本公开实施例的网络设备,配置物理下行控制信道PDCCH搜索空间,所述PDCCH搜索空间指示用于监听PDCCH的至少一个监听机会,使得终端在PDCCH搜索空间中进行至少一次的监听,进而有效保证终端接收PDCCH的接收性能,且能够保证网络设备传输PDCCH的灵活性。
需要说明的是,在本文中,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者装置不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者装置所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括该要素的过程、方法、物品或者装置中还存在另外的相同要素。
通过以上的实施方式的描述,本领域的技术人员可以清楚地了解到上述实施例方法可借助软件加必需的通用硬件平台的方式来实现,当然也可以通过硬件,但很多情况下前者是更佳的实施方式。基于这样的理解,本公开的技术方案本质上或者说对相关技术做出贡献的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质(如ROM/RAM、磁碟、光盘)中,包括若干指令用以使得一台终端(可以是手机,计算机,服务器,空调器,或者网络设备等)执行本公开各个实施例所述的方法。
上面结合附图对本公开的实施例进行了描述,但是本公开并不局限于上述的具体实施方式,上述的具体实施方式仅仅是示意性的,而不是限制性的,本领域的普通技术人员在本公开的启示下,在不脱离本公开宗旨和权利要求所保护的范围情况下,还可做出很多形式,均属于本公开的保护之内。

Claims (31)

  1. 一种信道监听方法,应用于终端,包括:
    获得网络设备配置的物理下行控制信道PDCCH搜索空间,所述PDCCH搜索空间指示用于监听PDCCH的至少一个监听机会;
    在所述监听机会中进行PDCCH的监听。
  2. 根据权利要求1所述的信道监听方法,其中,所述在所述监听机会中进行PDCCH的监听,包括:
    在所述监听机会的有效监听机会中进行PDCCH的监听;
    所述有效监听机会满足以下至少一项条件:
    有效监听机会所在的正交频分复用OFDM符号为除高层信令指示的上行符号和/或灵活符号之外的符号;
    有效监听机会所在的OFDM符号为除下行控制信息DCI指示的上行符号和/或灵活符号之外的符号;
    有效监听机会所在的OFDM符号为除进行同步信号块SSB测量或信道状态信息参考信息CSI-RS测量之外的符号;
    有效监听机会所在的OFDM符号与进行SSB测量的符号或进行CSI-RS测量的符号相邻。
  3. 根据权利要求2所述的信道监听方法,其中,所述有效监听机会为网络设备指示的;
    或者,在所述有效监听机会包括至少两个的情况下,所述至少两个有效监听机会为所述PDCCH搜索空间中连续的监听机会;
    或者,所述有效监听机会为从监听起始时刻开始的一个或者连续多个监听机会。
  4. 根据权利要求1所述的信道监听方法,其中,所述在所述监听机会中进行PDCCH的监听,包括:
    在所述监听机会的聚合等级对应的前M个PDCCH候选,进行PDCCH的监听,M为正整数。
  5. 根据权利要求1所述的信道监听方法,其中,所述在所述监听机会中 进行PDCCH的监听,包括:
    根据网络设备指示的所述监听机会的N个PDCCH候选的时间位置,进行PDCCH的监听,N为正整数。
  6. 根据权利要求1所述的信道监听方法,其中,在所述监听机会中进行PDCCH的监听,包括:
    在至少一个所述监听机会上使用相同的准共址QCL假设接收PDCCH。
  7. 根据权利要求6所述的信道监听方法,其中,所述QCL假设通过以下至少一种方式确定:
    根据控制资源集合CORESET0的QCL假设确定;
    根据与CORESET0的激活传输配置指示TCI状态相同的QCL假设确定;
    根据最近的随机接入过程中选取的SSB或者CSI-RS确定;
    根据激活的带宽部分BWP上配置的CORESET中编号最低或最高的CORESET对应的激活TCI状态确定;
    根据激活的BWP上配置的CORESET中网络指示的CORESET对应的激活TCI状态确定;
    根据当前监听的搜索空间中目标搜索空间对应的CORESET对应的激活TCI状态确定,所述目标搜索空间为当前监听的所有搜索空间中监听周期最低或者最高的搜索空间;
    其中,激活的所述BWP上配置的CORESET是指除传输所述PDCCH所在的CORESET之外的CORESET。
  8. 根据权利要求1所述的信道监听方法,其中,在所述监听机会中进行PDCCH的监听,包括:
    在不同的监听机会中使用不同的QCL假设接收PDCCH。
  9. 根据权利要求8所述的信道监听方法,其中,所述QCL假设通过以下至少一种方式确定:
    根据网络设备指示的PDCCH所在CORESET对应的至少一个TCI状态确定;
    根据除PDCCH所在CORESET之外的CORESET对应的TCI状态确定;
    根据监听机会和TCI状态标识ID的对应关系确定;
    根据监听机会和CORESET ID的对应关系确定;
    根据监听机会和CSI-RS资源编号的对应关系确定;
    根据监听机会和SSB资源编号的对应关系确定。
  10. 根据权利要求1所述的信道监听方法,其中,所述PDCCH传输的信息用于指示以下至少一项:
    所述终端在目标非连续接收DRX的持续时间内是否需要进行PDCCH的监听,目标DRX的持续时间为当前DRX的持续时间,或者当前时刻之后的Q个DRX的持续时间期间,Q为正整数;
    所述终端进行带宽部分BWP切换;
    所述终端进行对象的激活或去激活,所述对象为小区、小区群组、载波和载波群组中的至少一项;
    所述终端在预设时间段内停止PDCCH监听;
    所述终端进行接收天线的切换;
    所述终端时隙的结构;
    所述终端触发信道状态信息CSI上报;
    所述终端触发探测参考信号SRS发送;
    所述终端进行跟踪参考信号TRS的接收;
    所述终端进行CSI-RS的接收;
    所述终端物理下行共享信道PDSCH时域资源分配的配置;
    所述终端进行波束管理BM的测量、无线链路监测RLM的测量和无线资源管理RRM测量中的至少一项;
    所述终端在新空口非授权频段NR-U中信道占用时间COT的总时间长度、剩余时间长度和信道接入优先级中的至少一项;
    所述终端进行上行的物理信道发送的功率控制参数和/或进行上行的物理信号发送的功率控制参数;
    所述终端激活不同的DRX配置或下行控制信道搜索空间配置;
    所述终端进行PDSCH接收的最大层数。
  11. 一种信道监听方法,应用于网络设备,包括:
    配置物理下行控制信道PDCCH搜索空间,所述PDCCH搜索空间指示用 于监听PDCCH的至少一个监听机会。
  12. 根据权利要求11所述的信道监听方法,其中,所述配置物理下行控制信道PDCCH搜索空间之后,还包括:
    向终端指示有效监听机会,所述有效监听机会为终端进行PDCCH监听的监听机会。
  13. 根据权利要求11所述的信道监听方法,其中,所述配置物理下行控制信道PDCCH搜索空间之后,还包括:
    向终端指示监听的每个聚合等级对应的PDCCH候选的数目。
  14. 根据权利要求11所述的信道监听方法,其中,所述配置物理下行控制信道PDCCH搜索空间之后,还包括:
    向终端指示所述监听机会中用于PDCCH监听的N个PDCCH候选的时间位置,N为正整数。
  15. 一种终端,包括:
    获取模块,用于获得网络设备配置的物理下行控制信道PDCCH搜索空间,所述PDCCH搜索空间指示用于监听PDCCH的至少一个监听机会;
    监听模块,用于在所述监听机会中进行PDCCH的监听。
  16. 根据权利要求15所述的终端,其中,所述监听模块用于在所述监听机会的有效监听机会中进行PDCCH的监听;
    所述有效监听机会满足以下至少一项条件:
    有效监听机会所在的正交频分复用OFDM符号为除高层信令指示的上行符号和/或灵活符号之外的符号;
    有效监听机会所在的OFDM符号为除下行控制信息DCI指示的上行符号和/或灵活符号之外的符号;
    有效监听机会所在的OFDM符号为除进行同步信号块SSB测量或信道状态信息参考信息CSI-RS测量之外的符号;
    有效监听机会所在的OFDM符号与进行SSB测量的符号或进行CSI-RS测量的符号相邻。
  17. 根据权利要求16所述的终端,其中,所述有效监听机会为网络设备指示的;
    或者,在所述有效监听机会包括至少两个的情况下,所述至少两个有效监听机会为所述PDCCH搜索空间中连续的监听机会;
    或者,所述有效监听机会为从监听起始时刻开始的一个或者连续多个监听机会。
  18. 根据权利要求15所述的终端,其中,所述监听模块用于在所述监听机会的聚合等级对应的前M个PDCCH候选,进行PDCCH的监听,M为正整数。
  19. 根据权利要求15所述的终端,其中,所述监听模块用于根据网络设备指示的所述监听机会的N个PDCCH候选的时间位置,进行PDCCH的监听,N为正整数。
  20. 根据权利要求15所述的终端,其中,所述监听模块用于在至少一个所述监听机会上使用相同的准共址QCL假设接收PDCCH。
  21. 根据权利要求20所述的终端,还包括:
    第一确定模块,用于通过以下至少一种方式确定所述QCL假设:
    根据控制资源集合CORESET0的QCL假设确定;
    根据与CORESET0的激活传输配置指示TCI状态相同的QCL假设确定;
    根据最近的随机接入过程中选取的SSB或者CSI-RS确定;
    根据激活的带宽部分BWP上配置的CORESET中编号最低或最高的CORESET对应的激活TCI状态确定;
    根据激活的BWP上配置的CORESET中网络指示的CORESET对应的激活TCI状态确定;
    根据当前监听的搜索空间中目标搜索空间对应的CORESET对应的激活TCI状态确定,所述目标搜索空间为当前监听的所有搜索空间中监听周期最低或者最高的搜索空间;
    其中,激活的所述BWP上配置的CORESET是指除传输所述PDCCH所在的CORESET之外的CORESET。
  22. 根据权利要求15所述的终端,其中,所述监听模块用于在不同的监听机会中使用不同的QCL假设接收PDCCH。
  23. 根据权利要求22所述的终端,还包括:
    第二确定模块,用于通过以下至少一种方式确定所述QCL假设:
    根据网络设备指示的PDCCH所在CORESET对应的至少一个TCI状态确定;
    根据除PDCCH所在CORESET之外的CORESET对应的TCI状态确定;
    根据监听机会和TCI状态标识ID的对应关系确定;
    根据监听机会和CORESET ID的对应关系确定;
    根据监听机会和CSI-RS资源编号的对应关系确定;
    根据监听机会和SSB资源编号的对应关系确定。
  24. 根据权利要求15所述的终端,其中,所述PDCCH传输的信息用于指示以下至少一项:
    所述终端在目标非连续接收DRX的持续时间内是否需要进行PDCCH的监听,目标DRX的持续时间为当前DRX的持续时间,或者当前时刻之后的Q个DRX的持续时间期间,Q为正整数;
    所述终端进行带宽部分BWP切换;
    所述终端进行对象的激活或去激活,所述对象为小区、小区群组、载波和载波群组中的至少一项;
    所述终端在预设时间段内停止PDCCH监听;
    所述终端进行接收天线的切换;
    所述终端时隙的结构;
    所述终端触发信道状态信息CSI上报;
    所述终端触发探测参考信号SRS发送;
    所述终端进行跟踪参考信号TRS的接收;
    所述终端进行CSI-RS的接收;
    所述终端物理下行共享信道PDSCH时域资源分配的配置;
    所述终端进行波束管理BM的测量、无线链路监测RLM的测量和无线资源管理RRM测量中的至少一项;
    所述终端在新空口非授权频段NR-U中信道占用时间COT的总时间长度、剩余时间长度和信道接入优先级中的至少一项;
    所述终端进行上行的物理信道发送的功率控制参数和/或进行上行的物 理信号发送的功率控制参数;
    所述终端激活不同的DRX配置或下行控制信道搜索空间配置;
    所述终端进行PDSCH接收的最大层数。
  25. 一种终端,包括:存储器、处理器及存储在存储器上并可在处理器上运行的计算机程序,所述计算机程序被所述处理器执行时实现如权利要求1至10中任一项所述信道监听方法的步骤。
  26. 一种网络设备,包括:
    配置模块,用于配置物理下行控制信道PDCCH搜索空间,所述PDCCH搜索空间指示用于监听PDCCH的至少一个监听机会。
  27. 根据权利要求26所述的网络设备,还包括:
    第一指示模块,用于配置模块配置物理下行控制信道PDCCH搜索空间之后,向终端指示有效监听机会,所述有效监听机会为终端进行PDCCH监听的监听机会。
  28. 根据权利要求26所述的网络设备,还包括:
    第二指示模块,用于配置模块配置物理下行控制信道PDCCH搜索空间之后,向终端指示监听的每个聚合等级对应的PDCCH候选的数目。
  29. 根据权利要求26所述的网络设备,还包括:
    第三指示模块,用于配置模块配置物理下行控制信道PDCCH搜索空间之后,向终端指示所述监听机会中用于PDCCH监听的N个PDCCH候选的时间位置,N为正整数。
  30. 一种网络设备,包括:存储器、处理器及存储在存储器上并可在处理器上运行的计算机程序,所述计算机程序被所述处理器执行时实现如权利要求11至14中任一项所述信道监听方法的步骤。
  31. 一种计算机可读存储介质,所述计算机可读存储介质上存储有计算机程序,所述计算机程序被处理器执行时实现如权利要求1至10中任一项或者实现11至14中任一项所述信道监听方法的步骤。
PCT/CN2020/086410 2019-04-26 2020-04-23 信道监听方法、终端及网络设备 WO2020216293A1 (zh)

Priority Applications (5)

Application Number Priority Date Filing Date Title
EP20795146.8A EP3962178A4 (en) 2019-04-26 2020-04-23 CHANNEL, TERMINAL, AND NETWORK DEVICE MONITORING METHOD
KR1020217038178A KR20220002439A (ko) 2019-04-26 2020-04-23 채널 모니터링 방법, 단말 및 네트워크 장치
SG11202111883TA SG11202111883TA (en) 2019-04-26 2020-04-23 Channel monitoring method, terminal, and network device
JP2021563327A JP7285959B2 (ja) 2019-04-26 2020-04-23 チャネルモニタリング方法、端末及びネットワーク機器
US17/510,796 US20220046541A1 (en) 2019-04-26 2021-10-26 Channel monitoring method, terminal, and network device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910346461.7A CN111278092B (zh) 2019-04-26 2019-04-26 一种信道监听方法、终端及网络设备
CN201910346461.7 2019-04-26

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/510,796 Continuation US20220046541A1 (en) 2019-04-26 2021-10-26 Channel monitoring method, terminal, and network device

Publications (1)

Publication Number Publication Date
WO2020216293A1 true WO2020216293A1 (zh) 2020-10-29

Family

ID=71003113

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/086410 WO2020216293A1 (zh) 2019-04-26 2020-04-23 信道监听方法、终端及网络设备

Country Status (7)

Country Link
US (1) US20220046541A1 (zh)
EP (1) EP3962178A4 (zh)
JP (1) JP7285959B2 (zh)
KR (1) KR20220002439A (zh)
CN (2) CN111278092B (zh)
SG (1) SG11202111883TA (zh)
WO (1) WO2020216293A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023134333A1 (zh) * 2022-01-14 2023-07-20 华为技术有限公司 通信方法及装置

Families Citing this family (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110351850B (zh) * 2018-04-04 2022-07-05 维沃移动通信有限公司 信道传输方法、终端及网络设备
US11617096B2 (en) * 2019-06-21 2023-03-28 Qualcomm Incorporated Power saving for downlink control channel monitoring in unlicensed bands
CN111344993B (zh) * 2019-06-26 2022-06-03 北京小米移动软件有限公司 监听方法、指示下发方法及装置、通信设备及存储
CN113939036A (zh) * 2020-06-29 2022-01-14 维沃移动通信有限公司 信道监听、传输方法、终端及网络侧设备
CN113890699A (zh) * 2020-07-03 2022-01-04 维沃移动通信有限公司 Pdcch监听方法、发送方法及相关设备
CN113905440A (zh) * 2020-07-06 2022-01-07 维沃移动通信有限公司 信道监听、传输方法、装置、终端及网络侧设备
CN114007265A (zh) * 2020-07-28 2022-02-01 华为技术有限公司 一种通信方法及装置
CN116671048A (zh) * 2020-08-26 2023-08-29 欧芬诺有限责任公司 控制信道重复中的默认规则
US11930532B2 (en) * 2020-10-16 2024-03-12 Samsung Electronics Co., Ltd Beam management and beam failure recovery in new radio-unlicensed at 60 Gigahertz
CN114390545A (zh) * 2020-10-16 2022-04-22 展讯通信(上海)有限公司 数据传输处理方法及相关装置
CN114449544A (zh) * 2020-10-30 2022-05-06 维沃移动通信有限公司 信道监听方法、装置及终端
CN114501489A (zh) * 2020-11-12 2022-05-13 维沃移动通信有限公司 节能指示方法、装置、设备及可读存储介质
CN115380573A (zh) * 2021-03-18 2022-11-22 北京小米移动软件有限公司 Ue省电处理方法、装置、通信设备及存储介质
CN115190594A (zh) * 2021-04-01 2022-10-14 北京紫光展锐通信技术有限公司 监听方法与装置、终端和网络设备
CN115915356A (zh) * 2021-09-30 2023-04-04 华为技术有限公司 信息传输方法及装置
WO2023050355A1 (zh) * 2021-09-30 2023-04-06 Oppo广东移动通信有限公司 无线通信的方法、终端设备和网络设备
WO2023097443A1 (zh) * 2021-11-30 2023-06-08 Oppo广东移动通信有限公司 控制信道的监听方法、装置、设备及存储介质
CN116455514A (zh) * 2022-01-10 2023-07-18 大唐移动通信设备有限公司 Pdcch检测方法、装置、终端及存储介质
WO2023133868A1 (zh) * 2022-01-16 2023-07-20 Oppo广东移动通信有限公司 控制信道的监听方法、发送方法、装置、设备及介质
WO2023210985A1 (ko) * 2022-04-28 2023-11-02 엘지전자 주식회사 무선 통신 시스템에서 사이드링크 송수신 방법 및 장치
WO2024035052A1 (ko) * 2022-08-11 2024-02-15 엘지전자 주식회사 무선 통신을 위한 신호 송수신 방법 및 이를 위한 장치
WO2024040542A1 (zh) * 2022-08-25 2024-02-29 北京小米移动软件有限公司 下行控制信息的监听方法、装置、设备、存储介质及芯片
CN117715228A (zh) * 2022-09-05 2024-03-15 维沃移动通信有限公司 准共址参数的确定方法、装置及终端

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101965037A (zh) * 2009-07-22 2011-02-02 大唐移动通信设备有限公司 一种非连续接收处理方法及设备
US20150201456A1 (en) * 2012-08-27 2015-07-16 Lg Electronics Inc. Method and apparatus for configuring a discontinuous reception (drx) operation in a wireless communication system
EP3079421A1 (en) * 2015-04-10 2016-10-12 Alcatel Lucent The method for scheduling a service, a node, a user equipment device and a computer program product
CN108024340A (zh) * 2016-11-03 2018-05-11 华为技术有限公司 控制信息的检测方法与发送方法及设备
CN109391971A (zh) * 2017-08-11 2019-02-26 维沃移动通信有限公司 一种pdcch的搜索空间的配置、监听方法及设备
CN109429258A (zh) * 2017-07-17 2019-03-05 中国移动通信有限公司研究院 一种信道监听的指示方法、监听方法、终端及网络侧设备
CN109842937A (zh) * 2017-09-20 2019-06-04 维沃移动通信有限公司 信息传输方法、网络设备、终端及计算机可读存储介质
CN109963326A (zh) * 2017-12-25 2019-07-02 维沃移动通信有限公司 控制信道监听方法、监听指示方法、终端及网络设备
CN110876179A (zh) * 2018-08-31 2020-03-10 华为技术有限公司 一种监测方法及设备

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101929307B1 (ko) * 2011-04-11 2018-12-17 삼성전자 주식회사 Csg 셀에서 단말이 셀 재선택 우선 순위를 효율적으로 제어하는 방법 및 장치
EP3300442B1 (en) * 2015-05-22 2020-01-29 Sharp Kabushiki Kaisha Communication between terminal device and base station device for periodic channel status information (csi) reporting for a secondary cell
US11129152B2 (en) * 2016-02-04 2021-09-21 Lg Electronics Inc. Method and user equipment for receiving dowlink control information, and method and base station for transmitting dowlink control information
BR112019019947A2 (pt) 2017-03-24 2020-04-28 Huawei Tech Co Ltd método de transmissão de informação de indicação, dispositivo de rede, dispositivo terminal e meio de armazenamento legível por computador
KR102573235B1 (ko) * 2017-08-11 2023-09-01 한국전자통신연구원 하향링크 제어 채널의 송수신 방법 및 이를 이용하는 장치
EP3451553B1 (en) * 2017-09-05 2021-03-03 Apple Inc. Mechanisms for monitoring physical downlink control channel with common search space and user equipment-specific search space in a beamformed system
CN109495924B (zh) * 2017-09-11 2023-06-02 维沃移动通信有限公司 一种测量、测量配置方法、终端及基站
US10784943B2 (en) * 2017-10-23 2020-09-22 Apple, Inc. Beam failure recovery operation
EP3777000A2 (en) * 2018-04-06 2021-02-17 Lenovo (Singapore) Pte. Ltd. Configuring for bandwidth parts
US11177909B2 (en) * 2018-05-04 2021-11-16 Qualcomm Incorporated Methods and apparatus related to ACK/NACK feedback with multi-TRP transmissions
WO2020032868A1 (en) * 2018-08-09 2020-02-13 Telefonaktiebolaget Lm Ericsson (Publ) Using dual-slot pdcch monitoring pattern for paging occasion coinciding with synchronization signal burst set
WO2020037319A1 (en) * 2018-08-17 2020-02-20 Idac Holdings, Inc. Power saving signals in wireless communication
SG11202101657SA (en) * 2018-08-21 2021-03-30 Idac Holdings Inc Methods and apparatus for wireless transmit/receive unit (wtru) power control
WO2020064512A1 (en) * 2018-09-27 2020-04-02 Telefonaktiebolaget Lm Ericsson (Publ) Robustness for control channel
US11877242B2 (en) * 2018-10-17 2024-01-16 Beijing Xiaomi Mobile Software Co., Ltd. Bandwidth part switching method and apparatus
EP3909301A1 (en) * 2019-01-10 2021-11-17 Telefonaktiebolaget Lm Ericsson (Publ) Wake-up signal (wus) controlled actions
US11317411B2 (en) * 2019-02-15 2022-04-26 Lenovo (Singapore) Pte. Ltd. Method and apparatus for decoding a PDSCH using pre-emption
EP3934355A4 (en) * 2019-03-29 2022-04-13 LG Electronics Inc. METHOD OF MONITORING A PHYSICAL DOWNLINK CONTROL CHANNEL AND DEVICE THEREOF
EP4351234A2 (en) * 2019-04-02 2024-04-10 Telefonaktiebolaget LM Ericsson (publ) Methods for physical downlink control channel (pdcch) based wake up signal (wus) configuration
US11632196B2 (en) * 2019-07-18 2023-04-18 Samsung Electronics Co., Ltd System and method for providing dynamic hybrid automatic repeat request (HARQ) codebook with multiple valid unicast downlink control information (DCI) per monitoring occasion index per serving cell

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101965037A (zh) * 2009-07-22 2011-02-02 大唐移动通信设备有限公司 一种非连续接收处理方法及设备
US20150201456A1 (en) * 2012-08-27 2015-07-16 Lg Electronics Inc. Method and apparatus for configuring a discontinuous reception (drx) operation in a wireless communication system
EP3079421A1 (en) * 2015-04-10 2016-10-12 Alcatel Lucent The method for scheduling a service, a node, a user equipment device and a computer program product
CN108024340A (zh) * 2016-11-03 2018-05-11 华为技术有限公司 控制信息的检测方法与发送方法及设备
CN109429258A (zh) * 2017-07-17 2019-03-05 中国移动通信有限公司研究院 一种信道监听的指示方法、监听方法、终端及网络侧设备
CN109391971A (zh) * 2017-08-11 2019-02-26 维沃移动通信有限公司 一种pdcch的搜索空间的配置、监听方法及设备
CN109842937A (zh) * 2017-09-20 2019-06-04 维沃移动通信有限公司 信息传输方法、网络设备、终端及计算机可读存储介质
CN109963326A (zh) * 2017-12-25 2019-07-02 维沃移动通信有限公司 控制信道监听方法、监听指示方法、终端及网络设备
CN110876179A (zh) * 2018-08-31 2020-03-10 华为技术有限公司 一种监测方法及设备

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023134333A1 (zh) * 2022-01-14 2023-07-20 华为技术有限公司 通信方法及装置

Also Published As

Publication number Publication date
KR20220002439A (ko) 2022-01-06
EP3962178A4 (en) 2022-06-22
CN113365358B (zh) 2023-09-05
CN113365358A (zh) 2021-09-07
JP2022530124A (ja) 2022-06-27
US20220046541A1 (en) 2022-02-10
SG11202111883TA (en) 2021-11-29
JP7285959B2 (ja) 2023-06-02
CN111278092A (zh) 2020-06-12
CN111278092B (zh) 2021-06-08
EP3962178A1 (en) 2022-03-02

Similar Documents

Publication Publication Date Title
WO2020216293A1 (zh) 信道监听方法、终端及网络设备
US11576183B2 (en) Method of receiving downlink channel, method of sending downlink channel, terminal and base station
US11582791B2 (en) PUCCH collision processing method and terminal
CN110730504B (zh) 一种寻呼指示方法、装置及系统
CN110475364B (zh) 一种非周期跟踪参考信号的接收方法及终端
CN112533232B (zh) 一种节能信号监听时刻的确定方法、配置方法及相关设备
WO2020253612A1 (zh) Pdcch监听方法和终端
WO2019091266A1 (zh) 载波配置方法、用户终端和网络侧设备
CN111600692B (zh) 一种信道监听方法、信息传输方法、终端及网络设备
WO2020192547A1 (zh) 信息传输、接收方法、终端及网络侧设备
WO2020192674A1 (zh) 搜索空间的配置方法及装置、通信设备
WO2021155786A1 (zh) Qcl的确定方法、终端及网络侧设备
WO2021155787A1 (zh) Bwp切换方法、终端和网络侧设备
WO2021057896A1 (zh) 上行传输方法及终端
WO2020221235A1 (zh) 下行控制信息的接收方法、发送方法、终端和网络侧设备
WO2019154066A1 (zh) 下行信道的接收方法、发送方法、终端和基站
WO2021197191A1 (zh) 冲突资源确定方法和终端
WO2021204152A1 (zh) 资源确定方法及终端
WO2021155765A1 (zh) 物理上行控制信道传输方法、装置、设备及介质
CN112543082B (zh) 监听方法、发送方法、终端及网络侧设备
CN113543215B (zh) 一种冲突资源判断方法、终端和网络设备
WO2020169003A1 (zh) 控制信号的发送方法及传输节点
WO2021208953A1 (zh) 冲突资源判断方法、终端和网络设备
WO2021098628A1 (zh) 上行传输方法、配置方法、终端及网络侧设备
WO2020228614A1 (zh) 检测位置的确定方法、配置方法、终端及网络侧设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20795146

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021563327

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112021021368

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 20217038178

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2020795146

Country of ref document: EP

Effective date: 20211126

ENP Entry into the national phase

Ref document number: 112021021368

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20211025