WO2021155765A1 - 物理上行控制信道传输方法、装置、设备及介质 - Google Patents

物理上行控制信道传输方法、装置、设备及介质 Download PDF

Info

Publication number
WO2021155765A1
WO2021155765A1 PCT/CN2021/074382 CN2021074382W WO2021155765A1 WO 2021155765 A1 WO2021155765 A1 WO 2021155765A1 CN 2021074382 W CN2021074382 W CN 2021074382W WO 2021155765 A1 WO2021155765 A1 WO 2021155765A1
Authority
WO
WIPO (PCT)
Prior art keywords
pucch
repeated
transmission
resource location
spatial relationship
Prior art date
Application number
PCT/CN2021/074382
Other languages
English (en)
French (fr)
Inventor
李娜
潘学明
孙鹏
Original Assignee
维沃移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 维沃移动通信有限公司 filed Critical 维沃移动通信有限公司
Priority to EP21750958.7A priority Critical patent/EP4093121A4/en
Priority to KR1020227029149A priority patent/KR20220131384A/ko
Publication of WO2021155765A1 publication Critical patent/WO2021155765A1/zh
Priority to US17/880,565 priority patent/US20220376830A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/53Allocation or scheduling criteria for wireless resources based on regulatory allocation policies
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/08Arrangements for detecting or preventing errors in the information received by repeating transmission, e.g. Verdan system
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/1607Details of the supervisory signal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1829Arrangements specially adapted for the receiver end
    • H04L1/1864ARQ related signaling
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1867Arrangements specially adapted for the transmitter end
    • H04L1/189Transmission or retransmission of more than one copy of a message
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • H04L5/0007Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0014Three-dimensional division
    • H04L5/0023Time-frequency-space
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0078Timing of allocation
    • H04L5/0082Timing of allocation at predetermined intervals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W16/00Network planning, e.g. coverage or traffic planning tools; Network deployment, e.g. resource partitioning or cells structures
    • H04W16/24Cell structures
    • H04W16/28Cell structures using beam steering
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0446Resources in time domain, e.g. slots or frames
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/21Control channels or signalling for resource management in the uplink direction of a wireless link, i.e. towards the network
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0091Signaling for the administration of the divided path

Definitions

  • the present invention relates to the field of mobile communication technology, in particular to a physical uplink control channel transmission method, device, equipment and medium.
  • NR new radio
  • eMBB enhanced mobile broadband
  • URLLC ultra-high reliable ultra-low delay communication
  • eMBB large-scale Internet of Things
  • mMTC massive Machine Type of Communication
  • PUCCH physical uplink control channels
  • short PUCCH format 1-2 Orthogonal Frequency Division Multiplexing (Orthogonal Frequency Division Multiplexing)
  • OFDM Division Multiplexing
  • the long PUCCH in NR supports repeated transmission of PUCCH, but the existing PUCCH repeated transmission is not flexible enough, resulting in limited PUCCH performance.
  • the embodiment of the present invention provides a physical uplink control channel transmission method, device, device and medium, which can determine the resource location of each PUCCH repeated transmission, and transmit PUCCH based on the determined resource location, which can improve the flexibility of PUCCH repeated transmission sex.
  • an embodiment of the present invention provides a physical uplink control channel transmission method, including:
  • PUCCH is transmitted.
  • an embodiment of the present invention provides a physical uplink control channel transmission device, including:
  • the obtaining module is used to obtain PUCCH repeated transmission information
  • the determining module is used to determine the resource location of each PUCCH repeated transmission
  • the transmission module is used to transmit PUCCH based on repeated transmission of information and resource location.
  • an embodiment of the present invention provides a terminal device, including: a memory, a processor, and a computer program stored on the memory and running on the processor;
  • the physical uplink control channel transmission method provided by the embodiment of the present invention is implemented.
  • an embodiment of the present invention provides a computer-readable storage medium on which a computer program is stored.
  • the computer program is executed by a processor, the physical uplink control channel transmission method provided by the embodiment of the present invention is implemented.
  • the physical uplink control channel transmission method of the embodiment of the present invention transmits the PUCCH based on the repeated transmission information and the determined resource location, which improves the flexibility of the repeated transmission of the PUCCH.
  • FIG. 1 is a schematic flowchart of a PUCCH transmission method provided by an embodiment of the present invention
  • FIG. 2 is a first schematic diagram of resource locations for PUCCH repeated transmission provided by an embodiment of the present invention
  • Fig. 3 is a second schematic diagram of resource locations for PUCCH repeated transmission provided by an embodiment of the present invention.
  • FIG. 4 is a third schematic diagram of resource locations for PUCCH repeated transmission provided by an embodiment of the present invention.
  • FIG. 5 is a fourth schematic diagram of resource locations for PUCCH repeated transmission provided by an embodiment of the present invention.
  • FIG. 6 is a fifth schematic diagram of resource locations for PUCCH repeated transmission provided by an embodiment of the present invention.
  • FIG. 7 is a sixth schematic diagram of resource locations for PUCCH repeated transmission provided by an embodiment of the present invention.
  • FIG. 8 is a seventh schematic diagram of resource locations for PUCCH repeated transmission provided by an embodiment of the present invention.
  • FIG. 9 is an eighth schematic diagram of resource locations for PUCCH repeated transmission provided by an embodiment of the present invention.
  • FIG. 10 is a schematic diagram of spatial relationship information used for PUCCH repeated transmission according to an embodiment of the present invention.
  • FIG. 11 is another schematic diagram of spatial relationship information used for PUCCH repeated transmission according to an embodiment of the present invention.
  • FIG. 12 is a schematic structural diagram of a physical uplink control channel transmission apparatus provided by an embodiment of the present invention.
  • FIG. 13 is a schematic diagram of the hardware structure of a terminal device according to an embodiment of the present invention.
  • embodiments of the present invention provide a PUCCH transmission method, device, device, and medium. The following first describes in detail the PUCCH transmission method provided by the embodiment of the present invention.
  • FIG. 1 is a schematic flowchart of a PUCCH transmission method provided by an embodiment of the present invention.
  • the PUCCH transmission method may include:
  • S103 Transmit PUCCH based on repeated transmission information and resource location
  • the PUCCH may be a long PUCCH or a short PUCCH.
  • the physical uplink control channel transmission method of the embodiment of the present invention can determine the resource position of each PUCCH repeated transmission, and based on the determined resource position, transmit the PUCCH, which improves the flexibility of PUCCH repeated transmission.
  • repeated transmission information may be indicated by radio resource control (Radio Resource Control, RRC) configuration or downlink control information (Downlink Control Information, DCI).
  • RRC Radio Resource Control
  • DCI Downlink Control Information
  • the repeated transmission information may include: the total number of repeated transmissions.
  • the resource location for PUCCH transmission for the first time can be determined according to the PUCCH starting symbol and the number of symbols; the resource location for PUCCH transmission for other times can be determined according to the first preset resource location determination rule .
  • the first preset resource location determination rule may include: the number of repeated transmissions of PUCCH in a time unit is the total number of repeated transmissions, and multiple repeated transmissions of PUCCH are mapped to consecutive OFDM Symbol.
  • the time unit can be a time slot or a sub-slot.
  • a sub-slot includes one or more OFDM symbols, for example, it may include 1 to 13 OFDM symbols, for example, a sub-slot may be configured by a higher layer to include 2 or 7 OFDM symbols.
  • each PUCCH repeated transmission can only be in different time slots, and the transmission delay is relatively large.
  • the limitation that PUCCH repeated transmission can only be in different time slots is overcome, and the determined PUCCH repeats
  • the resource positions of the transmission can be in the same time unit, that is, the determined resource positions of the PUCCH repeated transmission can be in the same time slot, which can reduce the time delay.
  • FIG. 2 is a first schematic diagram of resource locations for PUCCH repeated transmission provided by an embodiment of the present invention.
  • the first preset resource location determination rule may further include: the number of repeated transmissions of PUCCH in a time unit is the total number of repeated transmissions, and the interval between two adjacent PUCCH transmissions Is the first preset interval.
  • the first preset interval may be configured by a higher layer (such as an RRC configuration) or indicated by a DCI or determined according to an implicit rule or predefined by a protocol.
  • the first preset interval needs to satisfy the time for beam switching.
  • the first preset interval is related to terminal capabilities or subcarrier intervals.
  • the time unit can be a time slot or a sub-slot.
  • determining the first preset interval according to the implicit rule includes, but is not limited to: determining the first preset interval according to the device capability of the terminal device, determining the first preset interval according to the time when the terminal device switches the spatial relationship information, and so on.
  • FIG. 3 is a second schematic diagram of resource locations for PUCCH repeated transmission provided by an embodiment of the present invention.
  • the interval between two adjacent PUCCH transmissions is the first preset interval.
  • the first preset resource location determination rule may further include: the number of repeated transmissions of PUCCH in a time unit is the total number of repeated transmissions, and the multiple repeated transmissions of PUCCH are mapped in consecutive Available uplink OFDM symbols.
  • the time unit can be a time slot or a sub-slot.
  • the available uplink OFDM symbols refer to at least one of semi-statically configured uplink symbols and flexible symbols; in another embodiment, the available uplink OFDM symbols refer to dynamically configured uplink symbols and flexible symbols. At least one of; in another embodiment, the available uplink OFDM symbol refers to the uplink symbol that can be used to transmit PUCCH, for example, it is determined according to a semi-static or dynamic slot format configuration and/or other configuration.
  • FIG. 4 is a third schematic diagram of resource locations for PUCCH repeated transmission provided by an embodiment of the present invention.
  • D corresponds to a semi-statically configured downlink symbol
  • F corresponds to a semi-statically configured flexible symbol
  • U corresponds to a semi-statically configured uplink symbol.
  • the repeated transmission information may include: the total number of repeated transmissions and the number of repeated transmissions of PUCCH in a sub-slot only once, and the resource location and the first transmission of PUCCH for other times.
  • the resource location of the PUCCH is the same in the sub-slot.
  • each PUCCH repeated transmission can only be in different time slots, and the transmission delay is relatively large.
  • the limitation that PUCCH repeated transmission can only be in different time slots is overcome, and the determined PUCCH repeats
  • the transmission resource location can be in multiple sub-slots, and multiple sub-slots can be located in the same time slot, that is, the determined resource location for PUCCH repeated transmission can be in the same time slot, which can reduce the time delay.
  • FIG. 5 is a fourth schematic diagram of resource locations for PUCCH repeated transmission provided by an embodiment of the present invention.
  • multiple sub-slots used for repeated PUCCH transmission are continuous or discontinuous in the time domain.
  • the multiple sub-slots of PUCCH transmission may be consecutive multiple sub-slots of the sub-slot starting from the indicated start sub-slot;
  • the multiple sub-slots transmitted by PUCCH can be continuous or discontinuous multiple sub-slots of the sub-slot starting from the indicated start sub-slot, and each sub-slot meets the following conditions: PUCCH
  • the OFDM symbol corresponding to the start symbol is the number of available uplink symbols, such as uplink symbols or flexible symbols and the synchronization signal block is not configured on the flexible symbol; the number of continuous available uplink symbols starting from the start symbol is not less than the number of PUCCH symbols.
  • the repeated transmission information may include: the number of time units for repeated transmission of the PUCCH and the number of repeated transmissions of the PUCCH for each time unit.
  • the resource location of the PUCCH transmitted for the first time in any one of the multiple time units can be determined according to the starting symbol and the number of symbols of the PUCCH; it is determined according to the second preset resource location
  • the rule is to determine the resource location of PUCCH transmission for other times in the time unit; determine that the resource location of PUCCH transmission in other time unit is the same as the resource location of PUCCH transmission in the time slot or sub-slot.
  • the time unit can be a time slot or a sub-slot.
  • each PUCCH repeated transmission can only be in different time slots, and the transmission delay is relatively large.
  • the limitation that PUCCH repeated transmission can only be in different time slots is overcome, and the determined PUCCH repeats
  • the resource positions of the transmission can be in the same time unit, that is, the determined resource positions of the PUCCH repeated transmission can be in the same time slot, which can reduce the time delay.
  • the second preset resource location determination rule may be that multiple repeated transmissions of the PUCCH are mapped on consecutive OFDM symbols.
  • FIG. 6 is a fifth schematic diagram of resource locations for PUCCH repeated transmission provided by an embodiment of the present invention.
  • the second preset resource location determination rule may be that the interval between two adjacent PUCCH transmissions is the second preset interval.
  • the second preset interval may be configured by a higher layer or indicated by a DCI or determined according to an implicit rule or predefined by a protocol.
  • FIG. 7 is a sixth schematic diagram of resource locations for PUCCH repeated transmission provided by an embodiment of the present invention.
  • the second preset resource location determination rule may be that multiple repeated transmissions of the PUCCH are mapped on consecutive available uplink OFDM symbols.
  • FIG. 8 is a seventh schematic diagram of resource locations for PUCCH repeated transmission provided by an embodiment of the present invention.
  • the PUCCH when the PUCCH is mapped on a continuous OFDM symbol or a continuous available uplink OFDM symbol, or there is an interval between two adjacent PUCCH transmissions, the PUCCH may be in different time units.
  • FIG. 9 is an eighth schematic diagram of resource locations for PUCCH repeated transmission provided by an embodiment of the present invention.
  • D corresponds to a semi-statically configured downlink symbol
  • F corresponds to a semi-statically configured flexible symbol
  • each PUCCH repeated transmission can only be in different time slots, and the transmission delay is relatively large.
  • the limitation that PUCCH repeated transmission can only be in different time slots is overcome, and the determined PUCCH repeats
  • the transmission resource location can be in the same time slot, which can reduce the time delay.
  • different spatial relationship information may be used when PUCCH is repeatedly transmitted.
  • the PUCCH is repeatedly transmitted using the same spatial relationship, and the reliability of PUCCH transmission is poor.
  • the embodiment of the present invention uses different spatial relationship information to repeatedly transmit the PUCCH, which overcomes the limitation of using the same spatial relationship information during repeated PUCCH transmission in the prior art, and improves the reliability of PUCCH transmission.
  • the different spatial relationship information may be: multiple spatial relationship information configured and activated for PUCCH repeated transmission, or: one or more spatial relationships configured and activated for PUCCH repeated transmission
  • the information list includes multiple spatial relationship information included in one spatial relationship information list of one or more spatial relationship information lists configured and activated.
  • the spatial relationship associated with PUCCH transmission is related to its corresponding downlink transmission, for example, according to the control resource set (CORESET) or CORESET pool index (pool index) where the DCI corresponding to the PUCCH is located.
  • CORESET control resource set
  • CORESET pool index pool index
  • the spatial relationship used for any two repeated PUCCH transmissions is different.
  • the spatial relationship used by the two repeated transmissions is different.
  • the spatial relationship information used for each PUCCH repeated transmission may be determined for each PUCCH repeated transmission; the determined spatial relationship information is used to transmit the PUCCH.
  • the spatial relationship information used for each PUCCH repeated transmission may be determined according to the spatial relationship information circulation mode.
  • the Media Access Control (MAC) control element (CE) activates 5 pieces of spatial relationship information.
  • the five activated spatial relationship information are: spatial relationship information 1, spatial relationship information 2, spatial relationship information 3, spatial relationship information 4, and spatial relationship information 5.
  • the spatial relationship information used for each transmission may be different.
  • the terminal device starts with spatial relationship information 1 in the activated spatial relationship information, then spatial relationship information 2, ..., until spatial relationship information 5. If the number of activated spatial relationship information is less than the number of repeated transmissions of PUCCH, the loop continues from spatial relationship information 1.
  • each spatial relationship information list contains one or more spatial relationship information. If RRC only configures one spatial relationship information list, the spatial relationship information in the spatial relationship information list is used when PUCCH is repeatedly transmitted. If RRC configures multiple spatial relationship information lists, one spatial relationship information list is activated for PUCCH through MAC CE, and the spatial relationship information in the activated spatial relationship information list is used when PUCCH is repeatedly transmitted.
  • the spatial relationship information used for each transmission may be different.
  • the terminal device starts with the first spatial relationship information in the list in the order of the spatial relationship information in the list, then the second spatial relationship information in the list, ..., until the last spatial relationship information in the list. If the number of spatial relationship information in the list is less than the number of repeated transmissions of the PUCCH, the loop continues from the first spatial relationship information in the list.
  • FIG. 10 is a schematic diagram of spatial relationship information used for repeated PUCCH transmission according to an embodiment of the present invention.
  • PUCCH uses spatial relationship information 1 for the first repeated transmission
  • PUCCH uses spatial relationship information 2 for the second repeated transmission
  • PUCCH uses spatial relationship information 3 for the third repeated transmission
  • PUCCH uses spatial relationship information 1 for the fourth repeated transmission.
  • the terminal device when the terminal device is not configured with PUCCH spatial relationship information, in some cases (for example, the terminal device reports that there is no uplink beam scanning, and no path loss reference is configured in the PUCCH power control Signal, when PUCCH spatial relationship information is not configured and the PUCCH default beam is enabled), the PUCCH spatial relationship information and the primary serving cell (Primary cell, PCell) are activated in the downlink (Downlink, DL) bandwidth part (Bandwidth Part, BWP)
  • the spatial relationship information received by the PDCCH sent in the minimum CORESET of the identification (ID) is the same.
  • the spatial relationship information of the PUCCH is the same as the spatial setting of the PDCCH received by the CORESET sent by the CORESET with the smallest ID among the CORESET corresponding to the same CORESET pool index of the PUCCH in the activated DL BWP on the PCell.
  • PDCCH reception is associated with M (M>1) spatial relationship information
  • PUCCH transmission is associated with M spatial settings corresponding to the PDCCH.
  • the CORESET associated with PUCCH is determined by high-level configuration or protocol regulations (for example, at least one CORESET associated with each CORESET pool index is the spatial setting of the PDCCH reception in the CORESET with the smallest ID), and the PDCCH reception in each CORESET is associated with one or Multiple space settings.
  • the space setting of the PUCCH is related to the space setting associated with a plurality of CORESETs, and thus the PUCCH is associated with a plurality of spatial relationship information.
  • the space setting of the PUCCH is related to the space setting (QCL type D or TCI state) of (Physical downlink shared channel, PDSCH).
  • MAC CE activates multiple (maximum eight, TCI) TCI states for PDSCH reception, and each activated code point corresponds to one or two TCI states.
  • TCI time interval between the PDSCH and its scheduled PDCCH is less than a certain threshold
  • the terminal device will assume that the PDSCH demodulation reference signal (Demodulation Reference Signal, DMRS) (PDSCH and PDSCH DMRS are QCL) TCI status (PDSCH default TCI status) is
  • DMRS Demodulation Reference Signal
  • TCI status PDSCH default TCI status
  • the TCI code points activated by the MAC CE include the TCI state corresponding to the smallest code point of the two different TCI states.
  • the space setting of the PUCCH may be the same as the default space setting of the PDSCH, so that the PUCCH is associated with multiple spatial relationship information.
  • RRC configures the number of repeated transmissions.
  • the number of timeslots for PUCCH transmission is configured through the RRC parameter nrofSlots, which means the total number of repeated transmissions of PUCCH N.
  • the terminal device When N>1, the terminal device repeatedly transmits the PUCCH and the uplink control information (UCI) carried by it in N time slots; the PUCCH transmission in each of the N time slots has the same Number of symbols; PUCCH transmissions in each of the N time slots have the same starting symbol; PUCCH transmissions in each of the N time slots can have different spatial relationship information, that is, use different Spatial relationship information.
  • the PUCCH transmission in each of the N time slots has the same Number of symbols; PUCCH transmissions in each of the N time slots have the same starting symbol; PUCCH transmissions in each of the N time slots can have different spatial relationship information, that is, use different Spatial relationship information.
  • UCI uplink control information
  • FIG. 11 is another schematic diagram of spatial relationship information used for PUCCH repeated transmission according to an embodiment of the present invention.
  • PUCCH transmissions in each of the two time slots have the same number of symbols; PUCCH transmissions in each of the two time slots have the same starting symbol; first The PUCCH transmission in two time slots uses spatial relationship information 1, and the PUCCH transmission in the second time slot uses spatial relationship information 2, that is, PUCCH transmission uses different spatial relationship information in each of the two time slots.
  • RRC or DCI indicates the number of repeated PUCCH transmissions N, and RRC is configured with sub-slots.
  • the terminal device When N>1, the terminal device repeatedly transmits the PUCCH and the UCI carried by it in N sub-slots.
  • the PUCCH transmission in each sub-slot of the N sub-slots has the same number of symbols, and in the N sub-slots
  • the PUCCH transmission in each sub-slot has the same start symbol.
  • the PUCCH transmission in each sub-slot of the N sub-slots may have different spatial relationship information, that is, different spatial relationship information may be used.
  • each PUCCH repeated transmission is only in one time slot or sub-slot (that is, one time slot or sub-slot). PUCCH transmission cannot cross slot or sub-slot boundaries).
  • FIG. 12 is a schematic structural diagram of a physical uplink control channel transmission apparatus according to an embodiment of the present invention.
  • the apparatus 900 for transmitting a physical uplink control channel may include:
  • the obtaining module 901 is used to obtain PUCCH repeated transmission information
  • the determining module 902 is used to determine the resource location of each PUCCH repeated transmission
  • the transmission module 903 is configured to transmit PUCCH based on repeated transmission information and resource location.
  • the repeated transmission information may include the total number of repeated transmissions; the determining module 902 may be specifically used to:
  • the start symbol and the number of symbols of the PUCCH determine the resource location for the first PUCCH transmission
  • the resource location for transmitting the PUCCH for other times is determined.
  • the first preset resource location determination rule includes that the number of repeated PUCCH transmissions within a time unit is the total number of repeated transmissions; the first preset resource location determination rule also includes the following items Any of:
  • the interval between two adjacent PUCCH transmissions is the first preset interval
  • the first preset interval is configured by a higher layer or indicated by a DCI or determined according to an implicit rule or predefined by a protocol.
  • the first preset resource location determination rule includes: the PUCCH is repeatedly transmitted only once in a sub-slot, and the resource location of the PUCCH is transmitted for other times and the first transmission.
  • the resource location of the PUCCH is the same within the time unit.
  • multiple sub-slots used for repeated PUCCH transmission are continuous or discontinuous in the time domain.
  • the repeated transmission information includes the number of time units for repeated PUCCH transmission and the number of times for each time unit to repeatedly transmit PUCCH; the determining module 902 may be specifically used for:
  • the start symbol and the number of symbols of the PUCCH determine the resource location for the first PUCCH transmission in any time unit among the multiple time units;
  • the second preset resource location determination rule determine the resource location of the PUCCH transmission for other times within the time unit
  • the resource position for transmitting the PUCCH in other time units is the same as the resource position for transmitting the PUCCH in the time unit.
  • the second preset resource location determination rule includes any one of the following items:
  • the interval between two adjacent PUCCH transmissions is the second preset interval
  • the second preset interval is configured by a higher layer or indicated by a DCI or determined according to an implicit rule or predefined by a protocol.
  • the time unit includes a time slot or a sub-slot.
  • the transmission module 903 may be specifically used to:
  • different spatial relationship information is used to transmit PUCCH.
  • the different spatial relationship information includes:
  • Multiple spatial relationship information configured and activated for PUCCH repeated transmission; or,
  • One or more spatial relationship information lists are configured and activated for PUCCH repeated transmission, and multiple spatial relationship information included in one spatial relationship information list of the configured and activated one or more spatial relationship information lists.
  • the transmission module 903 may be specifically used to:
  • For each PUCCH repeated transmission determine the spatial relationship information used for each PUCCH repeated transmission
  • PUCCH is transmitted.
  • the spatial relationship information used for any two repeated PUCCH transmissions is different; or, in multiple PUCCH repeated transmissions, the spatial relationship information used for two PUCCH repeated transmissions is different.
  • FIG. 13 is a schematic diagram of the hardware structure of a terminal device according to an embodiment of the present invention.
  • the terminal device 100 includes, but is not limited to: a radio frequency unit 101, a network module 102, an audio output unit 103, an input unit 104, a sensor 105, a display unit 106, a user input unit 107, an interface unit 108, a memory 109, a processor 110, and Power supply 111 and other components.
  • Those skilled in the art can understand that the structure of the terminal device shown in FIG. 13 does not constitute a limitation on the terminal device, and the terminal device may include more or fewer components than shown in the figure, or a combination of certain components, or different components Layout.
  • terminal devices include, but are not limited to, mobile phones, tablet computers, notebook computers, palmtop computers, vehicle-mounted terminals, wearable devices, and pedometers.
  • the processor 110 is configured to obtain PUCCH repeated transmission information; and determine the resource location for each PUCCH repeated transmission.
  • the radio frequency unit 101 is used to transmit PUCCH based on repeated transmission information and resource location.
  • the resource position of each PUCCH repeated transmission can be determined, and the PUCCH can be transmitted based on the determined resource position, which can improve the flexibility of PUCCH repeated transmission.
  • the repeated transmission information may include the total number of repeated transmissions; the processor 110 may be specifically configured to:
  • the start symbol and the number of symbols of the PUCCH determine the resource location for the first PUCCH transmission
  • the resource location for transmitting the PUCCH for other times is determined.
  • the repeated transmission information includes the number of time units for repeated PUCCH transmission and the number of times for each time unit to repeatedly transmit PUCCH; the processor 110 may be specifically configured to:
  • the start symbol and the number of symbols of the PUCCH determine the resource location for the first PUCCH transmission in any time unit among the multiple time units;
  • the second preset resource location determination rule determine the resource location of the PUCCH transmission for other times within the time unit
  • the resource position for transmitting the PUCCH in other time units is the same as the resource position for transmitting the PUCCH in the time unit.
  • the radio frequency unit 101 may be specifically used for:
  • different spatial relationship information is used to transmit PUCCH.
  • the processor 110 may be specifically configured to:
  • For each PUCCH repeated transmission determine the spatial relationship information used for each PUCCH repeated transmission
  • the radio frequency unit 101 can be specifically used for:
  • PUCCH is transmitted.
  • the radio frequency unit 101 can be used for receiving and sending signals in the process of sending and receiving information or talking. Specifically, the downlink data from the base station is received and processed by the processor 110; in addition, Uplink data is sent to the base station.
  • the radio frequency unit 101 includes, but is not limited to, an antenna, at least one amplifier, a transceiver, a coupler, a low noise amplifier, a duplexer, and the like.
  • the radio frequency unit 101 can also communicate with the network and other devices through a wireless communication system.
  • the terminal device provides users with wireless broadband Internet access through the network module 102, such as helping users to send and receive emails, browse web pages, and access streaming media.
  • the audio output unit 103 can convert the audio data received by the radio frequency unit 101 or the network module 102 or stored in the memory 109 into an audio signal and output it as sound. Moreover, the audio output unit 103 may also provide audio output related to a specific function performed by the terminal device 100 (for example, call signal reception sound, message reception sound, etc.).
  • the audio output unit 103 includes a speaker, a buzzer, a receiver, and the like.
  • the input unit 104 is used to receive audio or video signals.
  • the input unit 104 may include a graphics processing unit (GPU) 1041 and a microphone 1042, and the graphics processor 1041 is configured to monitor images of still pictures or videos obtained by an image capture device (such as a camera) in a video capture mode or an image capture mode. Data is processed.
  • the processed image frame can be displayed on the display unit 106.
  • the image frame processed by the graphics processor 1041 may be stored in the memory 109 (or other storage medium) or sent via the radio frequency unit 101 or the network module 102.
  • the microphone 1042 can receive sound, and can process such sound into audio data.
  • the processed audio data can be converted into a format that can be sent to a mobile communication base station via the radio frequency unit 101 for output in the case of a telephone call mode.
  • the terminal device 100 further includes at least one sensor 105, such as a light sensor, a motion sensor, and other sensors.
  • the light sensor includes an ambient light sensor and a proximity sensor.
  • the ambient light sensor can adjust the brightness of the display panel 1061 according to the brightness of the ambient light.
  • the proximity sensor can close the display panel 1061 and the display panel 1061 when the terminal device 100 is moved to the ear. / Or backlight.
  • the accelerometer sensor can detect the magnitude of acceleration in various directions (usually three-axis), and can detect the magnitude and direction of gravity when stationary, and can be used to identify the posture of the terminal device (such as horizontal and vertical screen switching, related games) , Magnetometer attitude calibration), vibration recognition related functions (such as pedometer, percussion), etc.; sensor 105 can also include fingerprint sensors, pressure sensors, iris sensors, molecular sensors, gyroscopes, barometers, hygrometers, thermometers, Infrared sensors, etc., will not be repeated here.
  • the display unit 106 is used to display information input by the user or information provided to the user.
  • the display unit 106 may include a display panel 1061, and the display panel 1061 may be configured in the form of a liquid crystal display (LCD), an organic light-emitting diode (OLED), etc.
  • LCD liquid crystal display
  • OLED organic light-emitting diode
  • the user input unit 107 may be used to receive inputted numeric or character information, and generate key signal input related to user settings and function control of the terminal device.
  • the user input unit 107 includes a touch panel 1071 and other input devices 1072.
  • the touch panel 1071 also called a touch screen, can collect the user's touch operations on or near it (for example, the user uses any suitable objects or accessories such as fingers, stylus, etc.) on the touch panel 1071 or near the touch panel 1071. operate).
  • the touch panel 1071 may include two parts: a touch detection device and a touch controller.
  • the touch detection device detects the user's touch position, detects the signal brought by the touch operation, and transmits the signal to the touch controller; the touch controller receives the touch information from the touch detection device, converts it into contact coordinates, and then sends it To the processor 110, the command sent by the processor 110 is received and executed.
  • the touch panel 1071 can be implemented in multiple types such as resistive, capacitive, infrared, and surface acoustic wave.
  • the user input unit 107 may also include other input devices 1072.
  • other input devices 1072 may include, but are not limited to, a physical keyboard, function keys (such as volume control buttons, switch buttons, etc.), trackball, mouse, and joystick, which will not be repeated here.
  • the touch panel 1071 can be overlaid on the display panel 1061.
  • the touch panel 1071 detects a touch operation on or near it, it transmits it to the processor 110 to determine the type of the touch event, and then the processor 110 determines the type of touch event according to the touch.
  • the type of event provides corresponding visual output on the display panel 1061.
  • the touch panel 1071 and the display panel 1061 are used as two independent components to realize the input and output functions of the terminal device, but in some embodiments, the touch panel 1071 and the display panel 1061 can be integrated
  • the implementation of the input and output functions of the terminal device is not specifically limited here.
  • the interface unit 108 is an interface for connecting an external device with the terminal device 100.
  • the external device may include a wired or wireless headset port, an external power source (or battery charger) port, a wired or wireless data port, a memory card port, a port for connecting a device with an identification module, audio input/output (I/O) port, video I/O port, headphone port, etc.
  • the interface unit 108 can be used to receive input from an external device (for example, data information, power, etc.) and transmit the received input to one or more elements in the terminal device 100 or can be used to connect to the terminal device 100 and external devices. Transfer data between devices.
  • the memory 109 can be used to store software programs and various data.
  • the memory 109 may mainly include a program storage area and a data storage area.
  • the program storage area may store an operating system, an application program required by at least one function (such as a sound playback function, an image playback function, etc.), etc.; Data created by the use of mobile phones (such as audio data, phone book, etc.), etc.
  • the memory 109 may include a high-speed random access memory, and may also include a non-volatile memory, such as at least one magnetic disk storage device, a flash memory device, or other volatile solid-state storage devices.
  • the processor 110 is the control center of the terminal device. It uses various interfaces and lines to connect the various parts of the entire terminal device, runs or executes software programs and/or modules stored in the memory 109, and calls data stored in the memory 109. , Perform various functions of the terminal equipment and process data, so as to monitor the terminal equipment as a whole.
  • the processor 110 may include one or more processing units; preferably, the processor 110 may integrate an application processor and a modem processor, where the application processor mainly processes the operating system, user interface, application programs, etc., and the modem The processor mainly deals with wireless communication. It can be understood that the foregoing modem processor may not be integrated into the processor 110.
  • the terminal device 100 may also include a power source 111 (such as a battery) for supplying power to various components.
  • a power source 111 such as a battery
  • the power source 111 may be logically connected to the processor 110 through a power management system, so as to manage charging, discharging, and power consumption management through the power management system. And other functions.
  • the terminal device 100 includes some functional modules not shown, which will not be repeated here.
  • the embodiment of the present invention also provides a terminal device, including a processor 110, a memory 109, a computer program stored in the memory 109 and capable of running on the processor 110, and the computer program is executed by the processor 110 to realize the foregoing
  • a terminal device including a processor 110, a memory 109, a computer program stored in the memory 109 and capable of running on the processor 110, and the computer program is executed by the processor 110 to realize the foregoing
  • the embodiment of the present invention also provides a computer-readable storage medium on which computer program instructions are stored; when the computer program instructions are executed by a processor, the physical uplink control channel transmission method provided by the embodiments of the present invention is implemented
  • the computer-readable storage medium include non-transitory computer-readable storage media, such as read-only memory (Read-Only Memory, ROM), random access memory (Random Access Memory, RAM), magnetic disks, or CD etc.
  • Such a processor can be, but is not limited to, a general-purpose processor, a dedicated processor, a special application processor, or a field programmable logic circuit. It can also be understood that each block in the block diagram and/or flowchart and the combination of the blocks in the block diagram and/or flowchart can also be implemented by dedicated hardware that performs specified functions or actions, or can be implemented by dedicated hardware and A combination of computer instructions.
  • the technical solution of the present invention essentially or the part that contributes to the existing technology can be embodied in the form of a software product, and the computer software product is stored in a storage medium (such as ROM/RAM, magnetic disk, The optical disc) includes several instructions to make a terminal (which can be a mobile phone, a computer, a server, an air conditioner, or a network device, etc.) execute the method described in each embodiment of the present invention.
  • a terminal which can be a mobile phone, a computer, a server, an air conditioner, or a network device, etc.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Radar Systems Or Details Thereof (AREA)
  • Train Traffic Observation, Control, And Security (AREA)
  • Vehicle Body Suspensions (AREA)

Abstract

提供了一种物理上行控制信道传输方法、装置、设备及介质。方法包括:获取物理上行控制信道PUCCH重复传输信息(S101);确定每次PUCCH重复传输的资源位置(S102);基于重复传输信息和资源位置,传输PUCCH(S103)。

Description

物理上行控制信道传输方法、装置、设备及介质
相关申请的交叉引用
本申请主张在2020年02月05日在中国提交的中国专利申请号202010081044.7的优先权,其全部内容通过引用包含于此。
技术领域
本发明涉及移动通信技术领域,尤其涉及一种物理上行控制信道传输方法、装置、设备及介质。
背景技术
与以往的移动通信系统相比,未来移动通信系统需要适应更加多样化的场景和业务需求。新空口(new radio,NR)的主要场景包括增强移动宽带(Enhanced Mobile Broadband,eMBB)、超高可靠超低时延通信(Ultra-high reliable ultra-low delay communication,URLLC)、大规模物联网(massive Machine Type of Communication,mMTC),这些场景对系统提出了高可靠,低时延,大宽带,广覆盖等要求。为了满足不同需求的业务和不同的应用场景,NR引入了不同长度的物理上行控制信道(Physical Uplink Control Channel,PUCCH):短PUCCH格式(1-2个正交频分多路复用(Orthogonal Frequency Division Multiplexing,OFDM)符号的PUCCH)和长PUCCH格式(4-14个OFDM符号的PUCCH)。
为了增加覆盖,NR中的长PUCCH支持PUCCH的重复传输,但是现有PUCCH重复传输灵活性不足,导致PUCCH性能受限。
发明内容
本发明实施例提供一种物理上行控制信道传输方法、装置、设备及介质,能够确定出每次PUCCH重复传输的资源位置,并基于所确定出的资 源位置,传输PUCCH,能够提升PUCCH重复传输灵活性。
一方面,本发明实施例提供了一种物理上行控制信道传输方法,包括:
获取PUCCH重复传输信息;
确定每次PUCCH重复传输的资源位置;
基于重复传输信息和资源位置,传输PUCCH。
另一方面,本发明实施例提供了一种物理上行控制信道传输装置,包括:
获取模块,用于获取PUCCH重复传输信息;
确定模块,用于确定每次PUCCH重复传输的资源位置;
传输模块,用于基于重复传输信息和资源位置,传输PUCCH。
再一方面,本发明实施例提供了一种终端设备,包括:存储器、处理器及存储在存储器上并可在处理器上运行的计算机程序;
处理器执行计算机程序时实现本发明实施例提供的物理上行控制信道传输方法。
再一方面,本发明实施例提供了一种计算机可读存储介质,计算机可读存储介质上存储有计算机程序,计算机程序被处理器执行时实现本发明实施例提供的物理上行控制信道传输方法。
本发明实施例的物理上行控制信道传输方法,基于重复传输信息和确定的资源位置传输PUCCH,提升了PUCCH重复传输的灵活性。
附图说明
为了更清楚地说明本发明实施例的技术方案,下面将对本发明实施例中所需要使用的附图作简单地介绍,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为本发明实施例提供的一种PUCCH传输方法的流程示意图;
图2为本发明实施例提供的PUCCH重复传输的资源位置的第一种示意图;
图3为本发明实施例提供的PUCCH重复传输的资源位置的第二种示 意图;
图4为本发明实施例提供的PUCCH重复传输的资源位置的第三种示意图;
图5为本发明实施例提供的PUCCH重复传输的资源位置的第四种示意图;
图6为本发明实施例提供的PUCCH重复传输的资源位置的第五种示意图;
图7为本发明实施例提供的PUCCH重复传输的资源位置的第六种示意图;
图8为本发明实施例提供的PUCCH重复传输的资源位置的第七种示意图;
图9为本发明实施例提供的PUCCH重复传输的资源位置的第八种示意图;
图10为本发明实施例提供的PUCCH重复传输使用的空间关系信息的一种示意图;
图11为本发明实施例提供的PUCCH重复传输使用的空间关系信息的另一种示意图;
图12为本发明实施例提供的一种物理上行控制信道传输装置的结构示意图;
图13为本发明实施例提供的一种终端设备的硬件结构示意图。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
为了解决现有技术问题,本发明实施例提供了一种PUCCH传输方法、装置、设备及介质。下面首先对本发明实施例提供的PUCCH传输方法进 行详细说明。
图1为本发明实施例提供的一种PUCCH传输方法的流程示意图。PUCCH传输方法可以包括:
S101:获取PUCCH重复传输信息;
S102:确定每次PUCCH重复传输的资源位置;
S103:基于重复传输信息和资源位置,传输PUCCH;
在本发明实施例的一些可能实现中,PUCCH可以为长PUCCH,也可以为短PUCCH。
本发明实施例的物理上行控制信道传输方法,能够确定出每次PUCCH重复传输的资源位置,并基于所确定出的资源位置,传输PUCCH,提升了PUCCH重复传输的灵活性。
在本发明实施例的一些可能实现中,重复传输信息可以由无线资源控制(Radio Resource Control,RRC)配置或下行控制信息(Downlink Control Information,DCI)指示。
在本发明实施例的一些可能实现中,重复传输信息可以包括:重复传输总次数。
在本发明实施例的一些可能实现中,可以根据PUCCH的起始符号和符号数,确定第一次传输PUCCH的资源位置;根据第一预设资源位置确定规则,确定其他次数传输PUCCH的资源位置。
在本发明实施例的一些可能实现中,第一预设资源位置确定规则可以包括:一个时间单元内重复传输PUCCH的次数为重复传输总次数,以及为PUCCH的多次重复传输映射在连续的OFDM符号上。
其中,时间单元可以为时隙或子时隙。
其中,一个子时隙包括一个或多个OFDM符号数,例如可以包括1至13个OFDM符号,例如可以通过高层配置一个子时隙包括2或7个OFDM符号。
相比于现有技术中每次PUCCH重复传输只能在不同时隙,传输时延较大,通过本发明实施例,克服了PUCCH重复传输只能在不同时隙的局限,确定出的PUCCH重复传输的资源位置可以在同一时间单元中,即确 定出的PUCCH重复传输的资源位置可以在同一时隙内,能够降低时延。
以时隙为例,假设重复传输总次数为两次。每次PUCCH重复传输的资源位置如图2所示。图2为本发明实施例提供的PUCCH重复传输的资源位置的第一种示意图。
由图2可知,PUCCH的多次重复传输映射在连续的OFDM符号上。
在本发明实施例的一些可能实现中,第一预设资源位置确定规则还可以包括:一个时间单元内重复传输PUCCH的次数为重复传输总次数,以及为相邻两次的PUCCH传输之间间隔为第一预设间隔。在本发明实施例的一些可能实现中,第一预设间隔可以由高层配置(如RRC配置)或由DCI指示或根据隐式规则确定或者协议预定义。
在本发明实施例的一些可能实现中,第一预设间隔需要满足波束切换的时间。
在本发明实施例的一些可能实现中,第一预设间隔与终端能力或子载波间隔有关。
其中,时间单元可以为时隙或子时隙。
其中,根据隐式规则确定第一预设间隔包括但不限于:根据终端设备的设备能力确定第一预设间隔,根据终端设备切换空间关系信息的时间确定第一预设间隔等。
以时隙为例,假设重复传输总次数为两次。每次PUCCH重复传输的资源位置如图3所示。图3为本发明实施例提供的PUCCH重复传输的资源位置的第二种示意图。
由图3可知,相邻两次的PUCCH传输之间间隔为第一预设间隔。
在本发明实施例的一些可能实现中,第一预设资源位置确定规则还可以包括:一个时间单元内重复传输PUCCH的次数为重复传输总次数,以及为PUCCH的多次重复传输映射在连续的可用上行OFDM符号上。
其中,时间单元可以为时隙或子时隙。
其中,在一种实施方式中可用上行OFDM符号即指半静态配置的上行符号和灵活符号中的至少一种;在另一种实施例中可用上行OFDM符号即指动态配置的上行符号和灵活符号中的至少一种;在另一种实施例中可用 上行OFDM符号即指可用于传输PUCCH的上行符号,例如根据半静态或动态时隙格式配置和/或其他配置确定。
以时隙为例,假设重复传输总次数为两次。假设PUCCH可以在半静态配置的上行或灵活符号上传输,即可用的上行OFDM符号为半静态配置的上行或灵活符号上,则PUCCH应映射在连续的非下行符号上。每次PUCCH重复传输的资源位置如图4所示。图4为本发明实施例提供的PUCCH重复传输的资源位置的第三种示意图。
图4中,D对应半静态配置的下行符号,F对应半静态配置的灵活符号,U对应半静态配置的上行符号。
由图4可知,PUCCH的多次重复传输映射在连续的可用上行OFDM符号上。
在本发明实施例的一些可能实现中,重复传输信息可以包括:重复传输总次数以及一个子时隙内重复传输PUCCH的次数仅为1次,以及其他次数传输PUCCH的资源位置与第一次传输PUCCH的资源位置在子时隙内相同。
相比于现有技术中每次PUCCH重复传输只能在不同时隙,传输时延较大,通过本发明实施例,克服了PUCCH重复传输只能在不同时隙的局限,确定出的PUCCH重复传输的资源位置可以在多个子时隙中,多个子时隙可以位于同一时隙中,即确定出的PUCCH重复传输的资源位置可以在同一时隙内,能够降低时延。
假设重复传输总次数为两次。每次PUCCH重复传输的资源位置如图5所示。图5为本发明实施例提供的PUCCH重复传输的资源位置的第四种示意图。
在本发明实施例的一些可能实现中,用于重复传输PUCCH的多个子时隙在时域上连续或不连续。
例如,对于成对频谱,PUCCH传输的多个子时隙可以为从指示的起始子时隙开始的子时隙的连续的多个子时隙;或
对于非成对频谱,PUCCH传输的多个子时隙可以为从指示的起始子时隙开始的子时隙的连续或不连续的多个子时隙,且每个子时隙满足如下 条件:PUCCH起始符号对应的OFDM符号为可用的上行符号数,如上行符号或灵活符号且同步信号块没有配置在该灵活符号上;从起始符号开始连续的可用的上行符号数不小于PUCCH的符号数。
在本发明实施例的一些可能实现中,重复传输信息可以包括:重复传输PUCCH的时间单元数以及每个时间单元重复传输PUCCH的次数。
在本发明实施例的一些可能实现中,可以根据PUCCH的起始符号和符号数,确定多个时间单元中任一时间单元内第一次传输PUCCH的资源位置;根据第二预设资源位置确定规则,确定时间单元内其他次数传输PUCCH的资源位置;确定其他时间单元内的传输PUCCH的资源位置与时隙或子时隙内传输PUCCH的资源位置相同。
其中,时间单元可以为时隙或子时隙。
相比于现有技术中每次PUCCH重复传输只能在不同时隙,传输时延较大,通过本发明实施例,克服了PUCCH重复传输只能在不同时隙的局限,确定出的PUCCH重复传输的资源位置可以在同一时间单元中,即确定出的PUCCH重复传输的资源位置可以在同一时隙内,能够降低时延。
在本发明实施例的一些可能实现中,第二预设资源位置确定规则可以为PUCCH的多次重复传输映射在连续的OFDM符号上。
以时隙为例,假设重复传输PUCCH的时隙数为2,每个时隙重复传输PUCCH的次数为2,则重复传输总次数为四次。每次PUCCH重复传输的资源位置如图6所示。图6为本发明实施例提供的PUCCH重复传输的资源位置的第五种示意图。
在本发明实施例的一些可能实现中,第二预设资源位置确定规则可以为相邻两次的PUCCH传输之间间隔为第二预设间隔。
在本发明实施例的一些可能实现中,第二预设间隔可以由高层配置或由DCI指示或根据隐式规则确定或协议预定义。
以时隙为例,假设重复传输PUCCH的时隙数为2,每个时隙重复传输PUCCH的次数为2,则重复传输总次数为四次。每次PUCCH重复传输的资源位置如图7所示。图7为本发明实施例提供的PUCCH重复传输的资源位置的第六种示意图。
在本发明实施例的一些可能实现中,第二预设资源位置确定规则可以为PUCCH的多次重复传输映射在连续的可用上行OFDM符号上。
以时隙为例,假设重复传输PUCCH的时隙数为2,每个时隙重复传输PUCCH的次数为2,则重复传输总次数为四次。每次PUCCH重复传输的资源位置如图8所示。图8为本发明实施例提供的PUCCH重复传输的资源位置的第七种示意图。
在本发明实施例的一些可能实现中,PUCCH映射在连续的OFDM符号或连续的可用上行OFDM符号上,或相邻两次的PUCCH传输之间存在间隔时,PUCCH可以在不同的时间单元内。
以时间单元为时隙为例,假设重复传输总次数为四次。每次PUCCH重复传输的资源位置如图9所示。图9为本发明实施例提供的PUCCH重复传输的资源位置的第八种示意图。
图9中,D对应半静态配置的下行符号,F对应半静态配置的灵活符号,U对应半静态配置的上行符号。假设PUCCH重复传输映射在连续的半静态配置的上行符号或灵活符号上,且下行符号后的X个灵活符号或上行符号不可以映射(图中假设X=1)。在一种实施方式中一次PUCCH重复传输不能跨时隙边界。
由图9可以看出,第一个时隙内PUCCH重复传输了三次,第二个时隙内PUCCH重复传输了一次。
相比于现有技术中每次PUCCH重复传输只能在不同时隙,传输时延较大,通过本发明实施例,克服了PUCCH重复传输只能在不同时隙的局限,确定出的PUCCH重复传输的资源位置可以在相同的时隙内,能够降低时延。
在本发明实施例的一些可能实现中,PUCCH重复传输时可以使用不同的空间关系信息。
相比于现有技术中,使用相同的空间关系重复传输PUCCH,PUCCH传输的可靠性较差。本发明实施例通过使用不同的空间关系信息重复传输PUCCH,克服了现有技术中PUCCH重复传输时使用相同的空间关系信息的局限,提高了PUCCH传输的可靠性。
在本发明实施例的一些可能实现中,不同的空间关系信息可以为:为PUCCH重复传输配置并激活的多个空间关系信息,还可以为:为PUCCH重复传输配置并激活一个或多个空间关系信息列表,配置并激活的一个或多个空间关系信息列表的一个空间关系信息列表中包括的多个空间关系信息。
在本发明实施例的一些可能实现中,PUCCH传输关联的空间关系与其对应的下行传输相关,例如根据PUCCH对应DCI所在的控制资源集(Control resource set,CORESET)或CORESET池索引(pool index)等确定PUCCH关联的空间关系信息或PUCCH与多个CORESET或CORESET pool index关联。
在本发明实施例的一些可能实现中,任意两次PUCCH重复传输使用的空间关系不同。
在本发明实施例的一些可能实现中,多次PUCCH重复传输中存在两次重复传输使用的空间关系不同。
在本发明实施例的一些可能实现中,可以针对每次PUCCH重复传输,确定每次PUCCH重复传输所使用的空间关系信息;使用所确定的空间关系信息,传输PUCCH。
在本发明实施例的一些可能实现中,可以根据空间关系信息循环模式确定每次PUCCH重复传输所使用的空间关系信息。
假设,RRC配置了10个空间关系信息,介质访问控制(Media access control,MAC)控制元素(Control element,CE)激活了5个空间关系信息。例如,激活的5个空间关系信息分别为:空间关系信息1、空间关系信息2、空间关系信息3、空间关系信息4和空间关系信息5。
PUCCH在重复传输时,每次传输所使用的空间关系信息可以不同。例如,终端设备按照激活的空间关系信息中从空间关系信息1开始,然后是空间关系信息2,……,直到空间关系信息5。如果激活的空间关系信息个数小于PUCCH的重复传输次数,则从空间关系信息1循环继续。
假设,RRC配置了一个或多个空间关系信息列表,每个空间关系信息列表中包含了一个或多个空间关系信息。如果RRC仅配置了一个空间关 系信息列表,则PUCCH重复传输时使用该空间关系信息列表中的空间关系信息。如果RRC配置了多个空间关系信息列表,则通过MAC CE为PUCCH激活一个空间关系信息列表,PUCCH重复传输时使用所激活的空间关系信息列表中的空间关系信息。
PUCCH在重复传输时,每次传输所使用的空间关系信息可以不同。例如,终端设备按照列表中的空间关系信息顺序从列表中的第一个空间关系信息开始,然后是列表中的第二个空间关系信息,……,直到列表中的最后一个空间关系信息。如果列表中的空间关系信息个数小于PUCCH的重复传输次数,则从列表中的第一个空间关系信息循环继续。
以重复传输PUCCH的时隙数为2,每个时隙重复传输PUCCH的次数为2,三个空间关系信息(空间关系信息1、空间关系信息2和空间关系信息3)为例。
PUCCH重复传输及每次所使用的空间关系信息如图10所示。图10为本发明实施例提供的PUCCH重复传输使用的空间关系信息的一种示意图。
其中,PUCCH第一次重复传输使用空间关系信息1,PUCCH第二次重复传输使用空间关系信息2,PUCCH第三次重复传输使用空间关系信息3,PUCCH第四次重复传输使用空间关系信息1。
在本发明实施例的一些可能实现中,当终端设备没有配置PUCCH空间关系信息时,在某些情况下(例如终端设备报告了没有上行波束(beam)扫描,PUCCH功率控制中没有配置路损参考信号,没有配置PUCCH空间关系信息,且使能PUCCH默认波束时),PUCCH的空间关系信息与主服务小区(Primary cell,PCell)上激活下行(Downlink,DL)带宽部分(Bandwidth Part,BWP)中标识(ID)最小CORESET中发送的PDCCH接收的空间关系信息一样。
可选的,PUCCH的空间关系信息与PCell上激活DL BWP中与PUCCH对应相同的CORESET pool index的CORESET中ID最小的CORESET发送的PDCCH接收的空间设置一样。其中,PDCCH接收关联了M(M>1)个空间关系信息,则PUCCH传输关联了PDCCH对应的M 个空间设置。
在本发明实施例的一些可能实现中,PUCCH的空间设置(或空间关系信息)与其关联的CORESET的空间设置(或准共址(Quasi co-location,QCL)类型(type)D或传输配置指示(Transmission Configuration Indicator,TCI)状态)相关。例如,高层配置或者协议规定等方式确定PUCCH关联的CORESET(例如每个CORESET pool index关联的至少一个CORESET中ID最小的CORESET中的PDCCH接收的空间设置),每个CORESET中的PDCCH接收关联一个或多个空间设置。PUCCH的空间设置与多个CORESET关联的空间设置相关,由此PUCCH关联多个空间关系信息。
在本发明实施例的一些可能实现中,PUCCH的空间设置与(物理下行共享信道,Physical downlink shared channel,PDSCH)的空间设置(QCL type D或TCI状态)相关。
例如,MAC CE为PDSCH接收激活多个(最多8个,TCI)TCI状态,且激活的每个码点(code point)对应一个或两个TCI状态。当PDSCH与其调度PDCCH之间的时间间隔小于一定阈值时,终端设备将假设PDSCH解调参考信号(Demodulation Reference Signal,DMRS)(PDSCH和PDSCH DMRS是QCL的)TCI状态(PDSCH的默认TCI状态)为MAC CE激活的TCI码点中包含两个不同TCI状态的最小的码点对应的TCI状态。
PUCCH的空间设置可以与PDSCH的默认空间设置相同,由此PUCCH关联多个空间关系信息。
对于PUCCH传输,RRC配置重复传输次数,例如通过RRC参数nrofSlots配置PUCCH传输的时隙数,即表示PUCCH重复传输总次数N。
当N>1时,终端设备在N个时隙内重复传输PUCCH及其承载的上行控制信息(Uplink Control Information,UCI);在N个时隙内的每个时隙内的PUCCH传输具有相同的符号数;在N个时隙内的每个时隙内PUCCH传输具有相同的起始符号;在N个时隙内的每个时隙内PUCCH传输可以具有不同的空间关系信息,即使用不同的空间关系信息。
以N为2为例,PUCCH重复传输使用的空间关系信息如图11所示。图11为本发明实施例提供的PUCCH重复传输使用的空间关系信息的另一种示意图。
由图11可以看出,两个时隙内的每个时隙内的PUCCH传输具有相同的符号数;在两个时隙内的每个时隙内PUCCH传输具有相同的起始符号;第一个时隙内的PUCCH传输使用空间关系信息1,第二个时隙内的PUCCH传输使用空间关系信息2,即在两个时隙内的每个时隙内PUCCH传输使用不同的空间关系信息。
对于PUCCH传输,RRC或DCI指示PUCCH重复传输次数N,且RRC配置了子时隙。
当N>1时,终端设备在N个子时隙内重复传输PUCCH及其承载的UCI,在N个子时隙内的每个子时隙内的PUCCH传输具有相同的符号数,在N个子时隙内的每个子时隙内PUCCH传输具有相同的起始符号。
在N个子时隙内的每个子时隙内PUCCH传输可以具有不同的空间关系信息,即使用不同的空间关系信息。
在本发明实施例的一些可能实现中,当多次PUCCH重复传输的资源位置分别位于不同的时隙或子时隙时,每一次PUCCH重复传输只在一个时隙或子时隙内(即一次PUCCH传输不能跨时隙或子时隙边界)。
与上述的方法实施例相对应,本发明实施例还提供一种物理上行控制信道传输装置。如图12所示,图12为本发明实施例提供的一种物理上行控制信道传输装置的结构示意图。物理上行控制信道传输装置900可以包括:
获取模块901,用于获取PUCCH重复传输信息;
确定模块902,用于确定每次PUCCH重复传输的资源位置;
传输模块903,用于基于重复传输信息和资源位置,传输PUCCH。
在本发明实施例的一些可能实现中,重复传输信息可以包括重复传输总次数;确定模块902具体可以用于:
根据PUCCH的起始符号和符号数,确定第一次传输PUCCH的资源位置;
根据第一预设资源位置确定规则,确定其他次数传输PUCCH的资源位置。
在本发明实施例的一些可能实现中,第一预设资源位置确定规则包括一个时间单元内重复传输PUCCH的次数为重复传输总次数;第一预设资源位置确定规则还包括以下所列项中的任意一种:
PUCCH的多次重复传输映射在连续的OFDM符号上;
相邻两次的PUCCH传输之间间隔为第一预设间隔;
PUCCH的多次重复传输映射在连续的可用上行OFDM符号上。
在本发明实施例的一些可能实现中,第一预设间隔由高层配置或由DCI指示或根据隐式规则确定或协议预定义。
在本发明实施例的一些可能实现中,第一预设资源位置确定规则包括包括:一个子时隙内重复传输PUCCH的次数仅为1次,以及其他次数传输PUCCH的资源位置与第一次传输PUCCH的资源位置在时间单元内相同。
在本发明实施例的一些可能实现中,用于重复传输PUCCH的多个子时隙在时域上连续或不连续。
在本发明实施例的一些可能实现中,重复传输信息包括重复传输PUCCH的时间单元数以及每个时间单元重复传输PUCCH的次数;确定模块902具体可以用于:
根据PUCCH的起始符号和符号数,确定多个时间单元中任一时间单元内第一次传输PUCCH的资源位置;
根据第二预设资源位置确定规则,确定时间单元内其他次数传输PUCCH的资源位置;
确定其他时间单元内的传输PUCCH的资源位置与时间单元内传输PUCCH的资源位置相同。
在本发明实施例的一些可能实现中,第二预设资源位置确定规则包括以下所列项中的任意一种:
PUCCH的多次重复传输映射在连续的OFDM符号上;
相邻两次的PUCCH传输之间间隔为第二预设间隔;
PUCCH的多次重复传输映射在连续的可用上行OFDM符号上。
在本发明实施例的一些可能实现中,第二预设间隔由高层配置或由DCI指示或根据隐式规则确定或协议预定义。
在本发明实施例的一些可能实现中,时间单元包括时隙或子时隙。
在本发明实施例的一些可能实现中,传输模块903具体可以用于:
基于重复传输信息和资源位置,使用不同的空间关系信息,传输PUCCH。
在本发明实施例的一些可能实现中,不同的空间关系信息包括:
为PUCCH重复传输配置并激活的多个空间关系信息;或,
为PUCCH重复传输配置并激活一个或多个空间关系信息列表,配置并激活的一个或多个空间关系信息列表的一个空间关系信息列表中包括的多个空间关系信息。
在本发明实施例的一些可能实现中,传输模块903具体可以用于:
针对每次PUCCH重复传输,确定每次PUCCH重复传输所使用的空间关系信息;
使用所确定的空间关系信息,传输PUCCH。
在本发明实施例的一些可能实现中,任意两次PUCCH重复传输使用的空间关系信息不同;或,多次PUCCH重复传输中存在两次PUCCH重复传输使用的空间关系信息不同。
图13为本发明实施例提供的一种终端设备的硬件结构示意图。该终端设备100包括但不限于:射频单元101、网络模块102、音频输出单元103、输入单元104、传感器105、显示单元106、用户输入单元107、接口单元108、存储器109、处理器110、以及电源111等部件。本领域技术人员可以理解,图13中示出的终端设备结构并不构成对终端设备的限定,终端设备可以包括比图示更多或更少的部件,或者组合某些部件,或者不同的部件布置。在本发明实施例中,终端设备包括但不限于手机、平板电脑、笔记本电脑、掌上电脑、车载终端、可穿戴设备、以及计步器等。
处理器110,用于获取PUCCH重复传输信息;确定每次PUCCH重复传输的资源位置。
射频单元101,用于基于重复传输信息和资源位置,传输PUCCH。
通过本发明实施例,能够确定出每次PUCCH重复传输的资源位置,并基于所确定出的资源位置,传输PUCCH,能够提升PUCCH重复传输灵活性。
在本发明实施例的一些可能实现中,重复传输信息可以包括重复传输总次数;处理器110具体可以用于:
根据PUCCH的起始符号和符号数,确定第一次传输PUCCH的资源位置;
根据第一预设资源位置确定规则,确定其他次数传输PUCCH的资源位置。
在本发明实施例的一些可能实现中,重复传输信息包括重复传输PUCCH的时间单元数以及每个时间单元重复传输PUCCH的次数;处理器110具体可以用于:
根据PUCCH的起始符号和符号数,确定多个时间单元中任一时间单元内第一次传输PUCCH的资源位置;
根据第二预设资源位置确定规则,确定时间单元内其他次数传输PUCCH的资源位置;
确定其他时间单元内的传输PUCCH的资源位置与时间单元内传输PUCCH的资源位置相同。
在本发明实施例的一些可能实现中,射频单元101具体可以用于:
基于重复传输信息和资源位置,使用不同的空间关系信息,传输PUCCH。
在本发明实施例的一些可能实现中,处理器110具体可以用于:
针对每次PUCCH重复传输,确定每次PUCCH重复传输所使用的空间关系信息;
相应地,射频单元101具体可以用于:
使用所确定的空间关系信息,传输PUCCH。
应理解的是,本发明实施例中,射频单元101可用于收发信息或通话过程中,信号的接收和发送,具体的,将来自基站的下行数据接收后,给 处理器110处理;另外,将上行的数据发送给基站。通常,射频单元101包括但不限于天线、至少一个放大器、收发信机、耦合器、低噪声放大器、双工器等。此外,射频单元101还可以通过无线通信系统与网络和其他设备通信。
终端设备通过网络模块102为用户提供了无线的宽带互联网访问,如帮助用户收发电子邮件、浏览网页和访问流式媒体等。
音频输出单元103可以将射频单元101或网络模块102接收的或者在存储器109中存储的音频数据转换成音频信号并且输出为声音。而且,音频输出单元103还可以提供与终端设备100执行的特定功能相关的音频输出(例如,呼叫信号接收声音、消息接收声音等等)。音频输出单元103包括扬声器、蜂鸣器以及受话器等。
输入单元104用于接收音频或视频信号。输入单元104可以包括图形处理器(Graphics Processing Unit,GPU)1041和麦克风1042,图形处理器1041对在视频捕获模式或图像捕获模式中由图像捕获装置(如摄像头)获得的静态图片或视频的图像数据进行处理。处理后的图像帧可以显示在显示单元106上。经图形处理器1041处理后的图像帧可以存储在存储器109(或其它存储介质)中或者经由射频单元101或网络模块102进行发送。麦克风1042可以接收声音,并且能够将这样的声音处理为音频数据。处理后的音频数据可以在电话通话模式的情况下转换为可经由射频单元101发送到移动通信基站的格式输出。
终端设备100还包括至少一种传感器105,比如光传感器、运动传感器以及其他传感器。具体地,光传感器包括环境光传感器及接近传感器,其中,环境光传感器可根据环境光线的明暗来调节显示面板1061的亮度,接近传感器可在终端设备100移动到耳边时,关闭显示面板1061和/或背光。作为运动传感器的一种,加速计传感器可检测各个方向上(一般为三轴)加速度的大小,静止时可检测出重力的大小及方向,可用于识别终端设备姿态(比如横竖屏切换、相关游戏、磁力计姿态校准)、振动识别相关功能(比如计步器、敲击)等;传感器105还可以包括指纹传感器、压力传感器、虹膜传感器、分子传感器、陀螺仪、气压计、湿度计、温度计、 红外线传感器等,在此不再赘述。
显示单元106用于显示由用户输入的信息或提供给用户的信息。显示单元106可包括显示面板1061,可以采用液晶显示器(Liquid Crystal Display,LCD)、有机发光二极管(Organic Light-Emitting Diode,OLED)等形式来配置显示面板1061。
用户输入单元107可用于接收输入的数字或字符信息,以及产生与终端设备的用户设置以及功能控制有关的键信号输入。具体地,用户输入单元107包括触控面板1071以及其他输入设备1072。触控面板1071,也称为触摸屏,可收集用户在其上或附近的触摸操作(比如用户使用手指、触笔等任何适合的物体或附件在触控面板1071上或在触控面板1071附近的操作)。触控面板1071可包括触摸检测装置和触摸控制器两个部分。其中,触摸检测装置检测用户的触摸方位,并检测触摸操作带来的信号,将信号传送给触摸控制器;触摸控制器从触摸检测装置上接收触摸信息,并将它转换成触点坐标,再送给处理器110,接收处理器110发来的命令并加以执行。此外,可以采用电阻式、电容式、红外线以及表面声波等多种类型实现触控面板1071。除了触控面板1071,用户输入单元107还可以包括其他输入设备1072。具体地,其他输入设备1072可以包括但不限于物理键盘、功能键(比如音量控制按键、开关按键等)、轨迹球、鼠标、操作杆,在此不再赘述。
进一步的,触控面板1071可覆盖在显示面板1061上,当触控面板1071检测到在其上或附近的触摸操作后,传送给处理器110以确定触摸事件的类型,随后处理器110根据触摸事件的类型在显示面板1061上提供相应的视觉输出。虽然在图13中,触控面板1071与显示面板1061是作为两个独立的部件来实现终端设备的输入和输出功能,但是在某些实施例中,可以将触控面板1071与显示面板1061集成而实现终端设备的输入和输出功能,具体此处不做限定。
接口单元108为外部装置与终端设备100连接的接口。例如,外部装置可以包括有线或无线头戴式耳机端口、外部电源(或电池充电器)端口、有线或无线数据端口、存储卡端口、用于连接具有识别模块的装置的端口、 音频输入/输出(I/O)端口、视频I/O端口、耳机端口等等。接口单元108可以用于接收来自外部装置的输入(例如,数据信息、电力等等)并且将接收到的输入传输到终端设备100内的一个或多个元件或者可以用于在终端设备100和外部装置之间传输数据。
存储器109可用于存储软件程序以及各种数据。存储器109可主要包括存储程序区和存储数据区,其中,存储程序区可存储操作系统、至少一个功能所需的应用程序(比如声音播放功能、图像播放功能等)等;存储数据区可存储根据手机的使用所创建的数据(比如音频数据、电话本等)等。此外,存储器109可以包括高速随机存取存储器,还可以包括非易失性存储器,例如至少一个磁盘存储器件、闪存器件、或其他易失性固态存储器件。
处理器110是终端设备的控制中心,利用各种接口和线路连接整个终端设备的各个部分,通过运行或执行存储在存储器109内的软件程序和/或模块,以及调用存储在存储器109内的数据,执行终端设备的各种功能和处理数据,从而对终端设备进行整体监控。处理器110可包括一个或多个处理单元;优选的,处理器110可集成应用处理器和调制解调处理器,其中,应用处理器主要处理操作系统、用户界面和应用程序等,调制解调处理器主要处理无线通信。可以理解的是,上述调制解调处理器也可以不集成到处理器110中。
终端设备100还可以包括给各个部件供电的电源111(比如电池),优选的,电源111可以通过电源管理系统与处理器110逻辑相连,从而通过电源管理系统实现管理充电、放电、以及功耗管理等功能。
另外,终端设备100包括一些未示出的功能模块,在此不再赘述。
优选的,本发明实施例还提供一种终端设备,包括处理器110,存储器109,存储在存储器109上并可在处理器110上运行的计算机程序,该计算机程序被处理器110执行时实现上述物理上行控制信道传输方法实施例的各个过程,且能达到相同的技术效果,为避免重复,这里不再赘述。
本发明实施例还提供一种计算机可读存储介质,该计算机可读存储介质上存储有计算机程序指令;该计算机程序指令被处理器执行时实现本发 明实施例提供的物理上行控制信道传输方法实施例的各个过程,且能达到相同的技术效果,为避免重复,这里不再赘述。其中,所述的计算机可读存储介质的示例包括非暂态计算机可读存储介质,如只读存储器(Read-Only Memory,ROM)、随机存取存储器(Random Access Memory,RAM)、磁碟或者光盘等。
上面参考根据本发明的实施例的方法、装置(系统)和计算机程序产品的流程图和/或框图描述了本发明的各方面。应当理解,流程图和/或框图中的每个方框以及流程图和/或框图中各方框的组合可以由计算机程序指令实现。这些计算机程序指令可被提供给通用计算机、专用计算机、或其它可编程数据处理装置的处理器,以产生一种机器,使得经由计算机或其它可编程数据处理装置的处理器执行的这些指令使能对流程图和/或框图的一个或多个方框中指定的功能/动作的实现。这种处理器可以是但不限于是通用处理器、专用处理器、特殊应用处理器或者现场可编程逻辑电路。还可理解,框图和/或流程图中的每个方框以及框图和/或流程图中的方框的组合,也可以由执行指定的功能或动作的专用硬件来实现,或可由专用硬件和计算机指令的组合来实现。
需要说明的是,在本文中,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者装置不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者装置所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括该要素的过程、方法、物品或者装置中还存在另外的相同要素。
通过以上的实施方式的描述,本领域的技术人员可以清楚地了解到上述实施例方法可借助软件加必需的通用硬件平台的方式来实现,当然也可以通过硬件,但很多情况下前者是更佳的实施方式。基于这样的理解,本发明的技术方案本质上或者说对现有技术做出贡献的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质(如ROM/RAM、磁碟、光盘)中,包括若干指令用以使得一台终端(可以是手机,计算机,服务器,空调器,或者网络设备等)执行本发明各个实施例所述的方法。
上面结合附图对本发明的实施例进行了描述,但是本发明并不局限于上述的具体实施方式,上述的具体实施方式仅仅是示意性的,而不是限制性的,本领域的普通技术人员在本发明的启示下,在不脱离本发明宗旨和权利要求所保护的范围情况下,还可做出很多形式,均属于本发明的保护之内。

Claims (23)

  1. 一种物理上行控制信道传输方法,包括:
    获取物理上行控制信道PUCCH重复传输信息;
    确定每次PUCCH重复传输的资源位置;
    基于所述重复传输信息和所述资源位置,传输PUCCH。
  2. 根据权利要求1所述的方法,其中,所述重复传输信息包括:重复传输总次数;
    所述确定每次PUCCH重复传输的资源位置,包括:
    根据PUCCH的起始符号和符号数,确定第一次传输PUCCH的资源位置;
    根据第一预设资源位置确定规则,确定其他次数传输PUCCH的资源位置。
  3. 根据权利要求2所述的方法,其中,所述第一预设资源位置确定规则包括一个时间单元内重复传输PUCCH的次数为所述重复传输总次数,所述第一预设资源位置确定规则还包括以下所列项中的任意一种:
    PUCCH的多次重复传输映射在连续的正交频分复用OFDM符号上;
    相邻两次的PUCCH传输之间间隔为第一预设间隔;
    PUCCH的多次重复传输映射在连续的可用上行OFDM符号上。
  4. 根据权利要求3所述的方法,其中,所述第一预设间隔由高层配置或由下行控制信息DCI指示或根据隐式规则确定或协议预定义。
  5. 根据权利要求2所述的方法,其中,所述第一预设资源位置确定规则包括:
    一个子时隙内重复传输PUCCH的次数仅为1次,以及其他次数传输PUCCH的资源位置与所述第一次传输PUCCH的资源位置在子时隙内相同。
  6. 根据权利要求5所述的方法,其中,用于重复传输PUCCH的多个子时隙在时域上连续或不连续。
  7. 根据权利要求1所述的方法,其中,所述重复传输信息包括:重复传输PUCCH的时间单元数以及每个时间单元重复传输PUCCH的次数;
    所述确定每次PUCCH重复传输的资源位置,包括:
    根据PUCCH的起始符号和符号数,确定多个时间单元中任一时间单元内第一次传输PUCCH的资源位置;
    根据第二预设资源位置确定规则,确定所述时间单元内其他次数传输PUCCH的资源位置;
    确定其他时间单元内的传输PUCCH的资源位置与所述时间单元内传输PUCCH的资源位置相同。
  8. 根据权利要求7所述的方法,其中,所述第二预设资源位置确定规则包括以下所列项中的任意一种:
    PUCCH的多次重复传输映射在连续的OFDM符号上;
    相邻两次的PUCCH传输之间间隔为第二预设间隔;
    PUCCH的多次重复传输映射在连续的可用上行OFDM符号上。
  9. 根据权利要求8所述的方法,其中,所述第二预设间隔由高层配置或由DCI指示或根据隐式规则确定或协议预定义。
  10. 根据权利要求3或7所述的方法,其中,所述时间单元包括:
    时隙或子时隙。
  11. 根据权利要求1所述的方法,其中,所述基于所述重复传输信息和所述资源位置,传输PUCCH,包括:
    基于所述重复传输信息和所述资源位置,使用不同的空间关系信息,传输PUCCH。
  12. 根据权利要求11所述的方法,其中,所述不同的空间关系信息包括:
    为所述PUCCH重复传输配置并激活的多个空间关系信息;或,
    为所述PUCCH重复传输配置并激活一个或多个空间关系信息列表,配置并激活的一个或多个空间关系信息列表的一个空间关系信息列表中包括的多个空间关系信息。
  13. 根据权利要求11所述的方法,其中,所述使用不同的空间关系信息,传输PUCCH,包括:
    针对每次PUCCH重复传输,确定每次PUCCH重复传输所使用的空间关系信息;
    使用所确定的空间关系信息,传输PUCCH。
  14. 根据权利要求11所述的方法,其中,任意两次PUCCH重复传输使用的空间关系信息不同;或,多次PUCCH重复传输中存在两次PUCCH重复传输使用的空间关系信息不同。
  15. 一种物理上行控制信道传输装置,包括:
    获取模块,用于获取PUCCH重复传输信息;
    确定模块,用于确定每次PUCCH重复传输的资源位置;
    传输模块,用于基于所述重复传输信息和所述资源位置,传输PUCCH。
  16. 根据权利要求15所述的装置,其中,所述重复传输信息包括重复传输总次数;
    所述确定模块具体用于:
    根据PUCCH的起始符号和符号数,确定第一次传输PUCCH的资源位置;
    根据第一预设资源位置确定规则,确定其他次数传输PUCCH的资源位置。
  17. 根据权利要求15所述的装置,其中,所述重复传输信息包括重复传输PUCCH的时间单元数以及每个时间单元重复传输PUCCH的次数;
    所述确定模块具体用于:
    根据PUCCH的起始符号和符号数,确定多个时间单元中任一时间单元内第一次传输PUCCH的资源位置;
    根据第二预设资源位置确定规则,确定所述时间单元内其他次数传输PUCCH的资源位置;
    确定其他时间单元内的传输PUCCH的资源位置与所述时间单元内传输PUCCH的资源位置相同。
  18. 根据权利要求15所述的装置,其中,所述传输模块具体用于:
    基于所述重复传输信息和所述资源位置,使用不同的空间关系信息,传输PUCCH。
  19. 根据权利要求18所述的装置,其中,所述传输模块具体用于:
    针对每次PUCCH重复传输,确定每次PUCCH重复传输所使用的空间关系信息;
    使用所确定的空间关系信息,传输PUCCH。
  20. 一种终端设备,包括:存储器、处理器及存储在所述存储器上并可在所述处理器上运行的计算机程序,
    所述处理器执行所述计算机程序时实现如权利要求1至14任一项所述的物理上行控制信道传输方法。
  21. 一种终端设备,被配置成用于执行如权利要求1至14任一项所述的物理上行控制信道传输方法。
  22. 一种计算机可读存储介质,所述计算机可读存储介质上存储有计算机程序,所述计算机程序被处理器执行时实现如权利要求1至14任一项所述的物理上行控制信道传输方法。
  23. 一种计算机程序产品,所述计算机程序产品可被处理器执行以实现如权利要求1至14中任一项所述的物理上行控制信道传输方法。
PCT/CN2021/074382 2020-02-05 2021-01-29 物理上行控制信道传输方法、装置、设备及介质 WO2021155765A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP21750958.7A EP4093121A4 (en) 2020-02-05 2021-01-29 Physical uplink control channel transmission method, apparatus, and device, and medium
KR1020227029149A KR20220131384A (ko) 2020-02-05 2021-01-29 물리적 상향링크 제어 채널 전송 방법, 장치, 장비 및 매체
US17/880,565 US20220376830A1 (en) 2020-02-05 2022-08-03 Physical uplink control channel transmission method and apparatus, device and medium

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010081044.7A CN113225816B (zh) 2020-02-05 2020-02-05 物理上行控制信道传输方法、装置、设备及介质
CN202010081044.7 2020-02-05

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/880,565 Continuation US20220376830A1 (en) 2020-02-05 2022-08-03 Physical uplink control channel transmission method and apparatus, device and medium

Publications (1)

Publication Number Publication Date
WO2021155765A1 true WO2021155765A1 (zh) 2021-08-12

Family

ID=77085488

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/074382 WO2021155765A1 (zh) 2020-02-05 2021-01-29 物理上行控制信道传输方法、装置、设备及介质

Country Status (5)

Country Link
US (1) US20220376830A1 (zh)
EP (1) EP4093121A4 (zh)
KR (1) KR20220131384A (zh)
CN (1) CN113225816B (zh)
WO (1) WO2021155765A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220322390A1 (en) * 2021-04-05 2022-10-06 Sharp Kabushiki Kaisha User equipments, base stations, and methods
WO2023206102A1 (zh) * 2022-04-26 2023-11-02 Oppo广东移动通信有限公司 传输方法、终端设备和网络设备

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170180098A1 (en) * 2014-03-07 2017-06-22 Lg Electronics Inc. Method and terminal for transmitting uplink control channel in wireless communication system
CN108632191A (zh) * 2017-03-24 2018-10-09 中兴通讯股份有限公司 物理上行控制信道配置方法、基站以及用户设备
WO2018203657A1 (ko) * 2017-05-04 2018-11-08 삼성전자 주식회사 무선 통신 시스템에서 상향 제어 채널 전송 방법 및 장치
CN109672511A (zh) * 2017-10-13 2019-04-23 维沃移动通信有限公司 发送pucch的方法和用户终端
US20190306922A1 (en) * 2018-06-18 2019-10-03 Gang Xiong Methods to multiplex control information in accordance with multi-slot transmissions in new radio (nr) systems
CN111417204A (zh) * 2019-01-07 2020-07-14 株式会社Kt 用于发射和接收上行链路控制信息的方法和装置

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8184579B2 (en) * 2008-02-15 2012-05-22 Texas Instruments Incorporated ACK/NAK repetition schemes in wireless networks
CN102438319B (zh) * 2012-01-13 2014-07-23 电信科学技术研究院 一种上行控制信道资源分配方法及其装置
US9667386B2 (en) * 2013-11-13 2017-05-30 Samsung Electronics Co., Ltd Transmission of control channel and data channels for coverage enhancements
WO2019160846A1 (en) * 2018-02-15 2019-08-22 Sharp Laboratories Of America, Inc. Pucch collision handling for multi-slot long pucch in 5g nr
EP3937563A4 (en) * 2019-04-23 2022-03-30 Guangdong Oppo Mobile Telecommunications Corp., Ltd. UPLINK CONTROL CHANNEL TRANSMISSION METHOD, USER EQUIPMENT AND NETWORK DEVICE
CN110611958A (zh) * 2019-08-16 2019-12-24 中兴通讯股份有限公司 传输资源配置方法、装置和计算机存储介质

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170180098A1 (en) * 2014-03-07 2017-06-22 Lg Electronics Inc. Method and terminal for transmitting uplink control channel in wireless communication system
CN108632191A (zh) * 2017-03-24 2018-10-09 中兴通讯股份有限公司 物理上行控制信道配置方法、基站以及用户设备
WO2018203657A1 (ko) * 2017-05-04 2018-11-08 삼성전자 주식회사 무선 통신 시스템에서 상향 제어 채널 전송 방법 및 장치
CN109672511A (zh) * 2017-10-13 2019-04-23 维沃移动通信有限公司 发送pucch的方法和用户终端
US20190306922A1 (en) * 2018-06-18 2019-10-03 Gang Xiong Methods to multiplex control information in accordance with multi-slot transmissions in new radio (nr) systems
CN111417204A (zh) * 2019-01-07 2020-07-14 株式会社Kt 用于发射和接收上行链路控制信息的方法和装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4093121A4 *

Also Published As

Publication number Publication date
EP4093121A1 (en) 2022-11-23
CN113225816A (zh) 2021-08-06
CN113225816B (zh) 2023-04-07
EP4093121A4 (en) 2023-06-28
KR20220131384A (ko) 2022-09-27
US20220376830A1 (en) 2022-11-24

Similar Documents

Publication Publication Date Title
WO2020216293A1 (zh) 信道监听方法、终端及网络设备
EP3751923B1 (en) Method for transmitting uci, and user terminal
US11582791B2 (en) PUCCH collision processing method and terminal
CN111130728B (zh) 一种传输方法、终端及网络侧设备
JP7259021B2 (ja) 情報伝送方法及び端末
WO2021008430A1 (zh) 传输方法和通信设备
CN110034862B (zh) 一种下行反馈方法、移动通信终端及网络侧设备
WO2021164705A1 (zh) Srs的传输方法、码本传输方法、装置、终端及介质
WO2020192547A1 (zh) 信息传输、接收方法、终端及网络侧设备
CN111278131B (zh) 一种调度方法、网络设备及终端
WO2021032001A1 (zh) 半持续调度物理下行共享信道的反馈方法及终端设备
WO2021155786A1 (zh) Qcl的确定方法、终端及网络侧设备
US20220376830A1 (en) Physical uplink control channel transmission method and apparatus, device and medium
WO2021115361A1 (zh) 发送方法、接收方法、网络设备及终端
WO2020228537A1 (zh) 资源确定方法、资源指示方法、终端及网络侧设备
WO2021147794A1 (zh) 频域资源处理方法、频域资源配置方法及相关设备
WO2021013006A1 (zh) 参数处理方法、设备及计算机可读存储介质
JP7332688B2 (ja) 受信方法、送信方法、端末及びネットワーク側機器
CN111836307B (zh) 映射类型的确定方法及终端
US20220360472A1 (en) Uplink transmission method and apparatus, device, and storage medium
US20220346073A1 (en) Pdcch configuration method and terminal
WO2021204152A1 (zh) 资源确定方法及终端
WO2021208953A1 (zh) 冲突资源判断方法、终端和网络设备
WO2021197191A1 (zh) 冲突资源确定方法和终端
WO2021147777A1 (zh) 一种通信处理方法及相关设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21750958

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20227029149

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2021750958

Country of ref document: EP

Effective date: 20220819

NENP Non-entry into the national phase

Ref country code: DE