WO2021115361A1 - 发送方法、接收方法、网络设备及终端 - Google Patents

发送方法、接收方法、网络设备及终端 Download PDF

Info

Publication number
WO2021115361A1
WO2021115361A1 PCT/CN2020/135128 CN2020135128W WO2021115361A1 WO 2021115361 A1 WO2021115361 A1 WO 2021115361A1 CN 2020135128 W CN2020135128 W CN 2020135128W WO 2021115361 A1 WO2021115361 A1 WO 2021115361A1
Authority
WO
WIPO (PCT)
Prior art keywords
pbch
ssb
type0
repeatedly transmitted
search space
Prior art date
Application number
PCT/CN2020/135128
Other languages
English (en)
French (fr)
Inventor
胡丽洁
杨拓
王飞
夏亮
张轶
王启星
Original Assignee
中国移动通信有限公司研究院
中国移动通信集团有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国移动通信有限公司研究院, 中国移动通信集团有限公司 filed Critical 中国移动通信有限公司研究院
Publication of WO2021115361A1 publication Critical patent/WO2021115361A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0446Resources in time domain, e.g. slots or frames

Definitions

  • the present disclosure relates to the field of communication technology, and in particular to a sending method, a receiving method, network equipment, and a terminal.
  • the transmission time interval of PBCH repeated transmission can be reduced, for example, the default retransmission time interval of 20ms in the related technology is reduced to a period of 10ms.
  • PBCH transmission can be doubled, and 3dB coverage enhancement can be achieved through combination.
  • the transmission of the type 0 physical downlink control channel (Physical Downlink Control Channel, PDCCH) (hereinafter referred to as type0-PDCCH) should also increase the coverage accordingly.
  • PDCCH Physical Downlink Control Channel
  • the repeated transmission determines the location of the detection.
  • the detection start time slot of the type0-PDCCH determined by these repeated transmissions of PBCH is the same, so that the user Equipment (User Equipment, UE) cannot detect repeatedly transmitted PBCH or synchronization signal (Synchronization Signal and PBCH block, SSB).
  • UE User Equipment
  • the embodiments of the present disclosure provide a sending method, a receiving method, a network device, and a terminal to solve the problem that after the number of repeated PBCH transmissions is increased, the detection start time slot of the type0-PDCCH determined by the repeated transmission of the PBCH is the same, which causes the UE to be unable to repeat the transmission.
  • the transmitted PBCH or SSB is detected by the problem.
  • the embodiments of the present disclosure provide a sending method for a network device, and the sending method includes:
  • the PDCCH is transmitted in the type 0 physical downlink control channel type0-PDCCH common search space corresponding to the retransmitted physical broadcast channel PBCH or the retransmitted synchronization signal SSB;
  • the detection start slot of the type0-PDCCH common search space is related to the information carried in the master information block MIB in the PBCH and a predefined time parameter, or the detection start slot of the type0-PDCCH common search space is related to the PBCH
  • the information carried in the MIB is related to the transmission information of the repeatedly transmitted PBCH or SSB.
  • the embodiments of the present disclosure provide a receiving method for a terminal, and the receiving method includes:
  • the detection start slot of the type0-PDCCH common search space is related to the information carried in the master information block MIB in the PBCH and a predefined time parameter, or the detection start slot of the type0-PDCCH common search space is related to the PBCH
  • the information carried in the MIB is related to the transmission information of the repeatedly transmitted PBCH or SSB;
  • the physical downlink control channel PDCCH is detected in the type0-PDCCH common search space corresponding to the repeatedly transmitted PBCH or the repeatedly transmitted SSB.
  • the embodiments of the present disclosure provide a network device, including a processor and a transceiver:
  • the transceiver is configured to transmit the PDCCH in the type 0 physical downlink control channel type0-PDCCH common search space corresponding to the retransmitted physical broadcast channel PBCH or the retransmitted synchronization signal SSB;
  • the detection start slot of the type0-PDCCH common search space is related to the information carried in the master information block MIB in the PBCH and a predefined time parameter, or the detection start slot of the type0-PDCCH common search space is related to the PBCH
  • the information carried in the MIB is related to the transmission information of the repeatedly transmitted PBCH or SSB.
  • an embodiment of the present disclosure provides a terminal, including a processor and a transceiver;
  • the processor is configured to determine the type 0 physical downlink control channel type 0 corresponding to the retransmitted physical broadcast channel PBCH or the retransmitted synchronization signal SSB corresponding to the detection start time slot of the PDCCH common search space;
  • the detection start slot of the type0-PDCCH common search space is related to the information carried in the master information block MIB in the PBCH and a predefined time parameter, or the detection start slot of the type0-PDCCH common search space is related to the PBCH
  • the information carried in the MIB is related to the transmission information of the repeatedly transmitted PBCH or SSB;
  • the transceiver is configured to detect the physical downlink control channel PDCCH in the type0-PDCCH common search space corresponding to the repeatedly transmitted PBCH or the repeatedly transmitted SSB.
  • embodiments of the present disclosure provide a network device, including:
  • the sending module is used to transmit the PDCCH in the type 0 physical downlink control channel type0-PDCCH common search space corresponding to the retransmitted physical broadcast channel PBCH or the retransmitted synchronization signal SSB;
  • the detection start slot of the type0-PDCCH common search space is related to the information carried in the master information block MIB in the PBCH and a predefined time parameter, or the detection start slot of the type0-PDCCH common search space is related to the PBCH
  • the information carried in the MIB is related to the transmission information of the repeatedly transmitted PBCH or SSB.
  • a terminal including:
  • the determining module is used to determine the type 0 physical downlink control channel type 0 corresponding to the repeated transmission physical broadcast channel PBCH or the repeated transmission synchronization signal SSB between the detection start time slot of the PDCCH common search space;
  • the detection start slot of the type0-PDCCH common search space is related to the information carried in the master information block MIB in the PBCH and a predefined time parameter, or the detection start slot of the type0-PDCCH common search space is related to the PBCH
  • the information carried in the MIB is related to the transmission information of the repeatedly transmitted PBCH or SSB;
  • the receiving module is configured to detect the physical downlink control channel PDCCH in the type0-PDCCH common search space corresponding to the repeatedly transmitted PBCH or the repeatedly transmitted SSB.
  • embodiments of the present disclosure provide a network device, including a processor, a memory, and a computer program stored on the memory and capable of running on the processor.
  • the computer program is executed by the processor, The steps in the sending method as described in the first aspect are implemented.
  • embodiments of the present disclosure provide a terminal, including a processor, a memory, and a computer program stored on the memory and capable of running on the processor, and the computer program is implemented when the processor is executed Steps in the receiving method as described in the second aspect.
  • embodiments of the present disclosure provide a computer-readable storage medium having a computer program stored on the computer-readable storage medium, and when the computer program is executed by a processor, the sending method as described in the first aspect is implemented Or, when the computer program is executed by a processor, the steps in the receiving method as described in the second aspect are implemented.
  • the PDCCH is transmitted in the type0-PDCCH common search space corresponding to the retransmitted PBCH or the retransmitted SSB; because the detection start slot of the type0-PDCCH common search space is the same as the primary in the PBCH
  • the information carried in the information block MIB is related to a predefined time parameter, or the type0-PDCCH common search space detection start slot is related to the information carried in the MIB in the PBCH and the transmission information of the repeatedly transmitted PBCH or SSB , So that in the time domain, the detection start slot of the type0-PDCCH common search space corresponding to the repeatedly transmitted PBCH or the repeatedly transmitted SSB has a time offset.
  • the type0-PDCCH common search space corresponding to the retransmitted PBCH or the retransmitted SSB can be made The detection start timeslots are different, so that the UE can schedule broadcast information based on the PDCCH in the search space with a certain offset in the time domain.
  • FIG. 1 is a flowchart of a sending method provided by an embodiment of the present disclosure
  • FIGS. 2 and 3 are schematic diagrams of PBCH transmission provided by embodiments of the present disclosure.
  • Fig. 4 and Fig. 5 are schematic diagrams of the position of the detection start time slot for repeated transmission of Type0-PDCCH according to an embodiment of the present disclosure
  • FIG. 6 is a flowchart of a receiving method provided by an embodiment of the present disclosure.
  • FIG. 7 is a structural diagram of a network device provided by an embodiment of the present disclosure.
  • FIG. 8 is a structural diagram of another network device provided by an embodiment of the present disclosure.
  • FIG. 9 is a structural diagram of a terminal provided by an embodiment of the present disclosure.
  • FIG. 10 is a diagram of another terminal structure provided by an embodiment of the present disclosure.
  • FIG. 1 is a flowchart of a sending method provided by an embodiment of the present disclosure, which is applied to a network device. As shown in FIG. 1, the sending method includes the following steps:
  • Step 101 Transmit the PDCCH in the type0-PDCCH common search space corresponding to the repeatedly transmitted PBCH or the repeatedly transmitted SSB; the detection start slot of the type0-PDCCH common search space is carried by the MIB of the main information block in the PBCH The information is related to a predefined time parameter, or the type0-PDCCH common search space detection start slot is related to the information carried in the MIB in the PBCH and the transmission information of the repeatedly transmitted PBCH or SSB.
  • the predefined time parameter is a time value in a unit of a time slot or an absolute duration, that is, the predefined time parameter is a value in a unit of a time slot or an absolute duration (for example, 5 ms).
  • the method of the specific embodiment of the present disclosure can be used in the scenario of repeated transmission of the PBCH in the SSB, and can also be used in the scenario of the repeated transmission of the PBCH in the SSB, that is, only the repeated transmission of the PBCH and the primary synchronization signal (Primary Synchronization Signal, PSS) There is no repeated transmission of the secondary synchronization signal (Secondary Synchronization Signal, SSS).
  • PSS Primary Synchronization Signal
  • SSS Secondary Synchronization Signal
  • SSS secondary Synchronization Signal
  • the PBCH of the SSB and the repeated PBCH bear the same content, for example, it can be used for traditional NR terminal access SSB. Therefore, a common search space corresponding to type0-PDCCH exists for this type of transmission with only PBCH repetition.
  • each PBCH corresponds to a complete SSB.
  • repeated transmission of SSB in the specific embodiment of the present disclosure refers to multiple transmissions of SSBs with the same SSB index.
  • Repeated transmission of PBCH refers to the multiple transmissions of PBCHs in SSBs with the same SSB index. Repeat transmission times.
  • the terminal will detect the PDCCH in the type0-PDCCH search space in two consecutive time slots with the starting time slot n 0.
  • this search space is called Type0-PDCCH common search space corresponding to SSB i.
  • the PDCCH is transmitted in the type0-PDCCH common search space corresponding to the retransmitted PBCH or the retransmitted SSB; because the detection start slot of the type0-PDCCH common search space and the master information in the PBCH
  • the information carried in the block MIB is related to a predefined time parameter, or the type0-PDCCH common search space detection start time slot is related to the information carried in the MIB in the PBCH and the transmission information of the repeatedly transmitted PBCH or SSB, Therefore, in the time domain, the detection start slot of the type0-PDCCH common search space corresponding to the repeatedly transmitted PBCH or the repeatedly transmitted SSB has a time offset.
  • the type0-PDCCH common search space corresponding to the retransmitted PBCH or the retransmitted SSB can be made The detection start timeslots are different, so that the UE can schedule broadcast information based on the PDCCH in the search space with a certain offset in the time domain.
  • the repeatedly transmitted PBCH or the repeatedly transmitted SSB are all located in an even-numbered wireless frame or both are located in an odd-numbered wireless frame, and the number of transmissions in the same wireless frame is greater than one.
  • the repeated transmission of the PBCH or SSB is located in the same radio frame, and will not be dispersed into two radio frames of 20 ms. In this way, only half-frame indicator bits in the PBCH will change, and the last bit of the wireless frame number will not change, which can reduce the complexity of PBCH detection as much as possible.
  • PBCH transmission uses double-layer scrambling.
  • the unchanging content of the repeated transmission is scrambled, including the high-level 24 bits, the bottom 1 and the bottom 4 bits of the lowest 4 bits of the SFN.
  • the repeated transmission of PBCH or SSB is located in the same radio frame, for example, in an even-numbered radio frame or in an odd-numbered radio frame at the same time, the last bit of the lowest 4 bits of the SFN of the PBCH is the same .
  • the NR process in the related technology can be used for scrambling without increasing the complexity.
  • Fig. 2 is a schematic diagram of a 10ms period
  • Fig. 3 is a schematic diagram of using two half-frames of the same radio frame to achieve 2 repeated transmissions of PBCH every 20ms.
  • A represents SSB0
  • B represents SSB1
  • C represents SSB2
  • D represents SSB3.
  • the UE adopts a blind detection hypothesis similar to the second and third bits of the SFN for blind detection.
  • the PBCH can be merged.
  • the repetition of the PBCH is realized by the repetition of the SSB.
  • Another implementation is that the PSS and SSS in the SSB do not increase the repetition, and are still only transmitted once within 20 ms, and the repeated transmission at an interval of 5 ms only transmits the PBCH part.
  • the SSB corresponding to the repeatedly transmitted PBCH or the repeatedly transmitted SSB has the same SSB index.
  • repeated transmission of the SSB in the specific embodiment of the present disclosure refers to multiple transmissions of the SSB with the same SSB index.
  • repeated transmission of PBCH refers to multiple transmissions of PBCH corresponding to the same SSB index.
  • the time offset also means that for the same SSB index i, the detection start slot of the type0-PDCCH common search space corresponding to the repeated transmission of SSBi or the repeated transmission PBCH corresponding to SSB i has a time offset in the time domain. .
  • the transmission information includes at least one of the following information:
  • the index of the transmission times of the repeated transmission of the PBCH or SSB is the index of the transmission times of the repeated transmission of the PBCH or SSB.
  • the detection start time slot n 0 of the type0-PDCCH common search space corresponding to the retransmitted PBCH or retransmitted SSB has an offset
  • the detection start time slot is at least one of the following Function of parameters:
  • the radio frame number where the repeatedly transmitted PBCH or SSB is located
  • the index of the transmission times of the repeated transmission of the PBCH or SSB is the index of the transmission times of the repeated transmission of the PBCH or SSB.
  • the detection start time slot n 0 of the type0-PDCCH common search space corresponding to the repeatedly transmitted PBCH or the repeatedly transmitted SSB is:
  • n 0 is the detection start slot number of the SSBi corresponding to the repeatedly transmitted PBCH or the type0-PDCCH common search space corresponding to the repeatedly transmitted SSBi
  • the i is the SSB index
  • the 0 is the corresponding SSBi
  • the type0-PDCCH search space detects the subframe interval between the start time slot and the start position of the even-numbered frame.
  • the A is the value of the lowest bit of the SFN
  • the B is the value of the half-frame indicator bit
  • the S I s the granularity of the time
  • the ⁇ is the subcarrier interval of CORESET#0
  • the M is the number of equivalent time slots occupied by the search space of type0-PDCCH corresponding to SSBi, It is the number of time slots in a system frame based on the subcarrier spacing of the control resource set carrying the type0-PDCCH
  • the j is the transmission number of the repeatedly transmitted PBCH or the repeatedly transmitted SSB.
  • the offset value related to the half-frame indicator value (which can be understood as the value of the half-frame indicator bit) and/or the wireless frame number is introduced into the determination function for detecting the initial time slot.
  • A can also be a value modulo 2 of the SFN frame number where the PBCH is repeatedly transmitted, which is equivalent to the value of the lowest bit of the SFN.
  • the value of the lowest bit of the SNF here refers to the value of the binary bit.
  • the detection start time slot n 0 of the type0-PDCCH corresponding to the retransmitted PBCH or the retransmitted SSB is determined in the following manner:
  • the offset value of the type0-PDCCH corresponding to the repeated transmission of the PBCH is in S milliseconds (ie ms) or S time slots, that is, the offset is performed with S as the granularity, and the adjacent offset is S milliseconds or S time.
  • Slot A represents the value of the least significant bits of the system frame number (1 st least significant bits of the system frame number), B represents the value of the half frame index, usually the value is 0 or 1, where S( The unit is ms)
  • S The unit is ms
  • the (2A+B)S can be understood as a predefined time parameter.
  • the value of (2A+B)S can be predetermined, and the (2A+B)S in the above formula is replaced with the predetermined Time value.
  • the detection start time slot of the type0-PDCCH corresponding to the repeatedly transmitted PBCH or the repeatedly transmitted SSB can be determined in the following manner:
  • the offset value can only be related to the radio frame number or half-frame indication.
  • the PBCH has an interval of 10ms between two repeated transmissions within 20ms. Only the last bit of the radio frame number has changed in the two PBCH transmissions. Then, the detection start slot of the type0-PDCCH can be determined in the following manner.
  • n 0 is related to the value of the half-frame indicator bit corresponding to the repeated transmission of the PBCH or SSB.
  • the AS can be understood as a predefined time parameter.
  • the value of the AS can be predetermined, and the AS in the above formula is replaced with the predetermined time value.
  • the offset value is only related to the half frame indication.
  • the BS can be understood as a predefined time parameter.
  • the value of the BS can be predetermined, and the BS in the above formula is replaced with the predetermined time value.
  • FIG. 4 is a schematic diagram of the detection start time slot when the subcarrier interval is 30KHz, SSB is transmitted in the third half frame every 20ms, and the detection start time slot of type0-PDCCH corresponds to index0 in Table 13-11 of 38.213, where a Represents repeated type0-PDCCH and SIB1 transmission, and b represents repeated PBCH transmission.
  • the detection start time slot n 0 may also be a function of the index of the transmission times of the repeated transmission of the PBCH or SSB.
  • PBCH or SSB
  • HRF is a half frame indication, which indicates whether the half frame in which the PBCH is transmitted is the first half frame or the second half frame of the wireless frame.
  • the jS can be understood as a predefined time parameter.
  • the value of jS can be predetermined, and jS in the above formula can be replaced with the predetermined time value.
  • the repeated transmission of the PBCH may only transmit the PBCH without transmitting the PSS or SSS, or it may be the repeated transmission of the entire SSB.
  • the formula for determining the detection start time slot of the type0-PDCCH is similar.
  • the repeated SSB is not a complete SSB, there is still a corresponding relationship between the repeated PBCH and the index SSB i of the complete SSB.
  • FIG. 5 is a schematic diagram of the detection start time slot when the subcarrier interval is 30KHz, SSB is transmitted in the third half frame every 20ms, and the detection start time slot of type0-PDCCH corresponds to index0 in Table 13-11 of 38.213, where c Represents the detection position corresponding to the first transmission, d represents the detection position corresponding to the second transmission, e represents the detection position corresponding to the third transmission, f represents the detection position corresponding to the fourth transmission, and the positions identified by c and e are : PBCH indicates the position of detecting type0-PDCCH, the first symbol index is 0, the positions identified by d and f are: additional detecting position of type0-PDCCH, the starting symbol index is 0.
  • the original type0-PDCCH detection position indicated by the PBCH is still valid.
  • the traditional UE can also obtain the corresponding type0-PDCCH detection start slot through the PBCH and perform PDCCH detection.
  • DCI downlink control information
  • the code rate of the type0-PDCCH at 8CCE is slightly larger than that of the PBCH, and the PBCH can further have 4 combining gains within 80ms, while the type0-PDCCH standard does not support combining.
  • the transmission DCI content it is possible to set the transmission DCI content to be exactly the same, or part of the transmission to be the same. For example, it can be agreed that the DCI content is exactly the same for 8 transmissions of 160ms, or the part of the transmission is the same, for example, the previous The same 4 times, the last 4 times the same.
  • the type0-PDCCH combination can be realized, and its transmission reliability can be enhanced.
  • frequency hopping is introduced between 8 transmissions: a predefined frequency hopping interval N is used as the interval between two consecutive transmissions of the RB at the start position of the frequency domain; N may be related to the number of repeated transmissions.
  • the target PDSCH scheduled by the DCI with the same content is configured to have an offset in the frequency domain or the time domain.
  • the above-mentioned frequency hopping method is not backward compatible for terminals that support certain protocols. Therefore, if backward compatibility is required, the implementation method is to introduce only the type0-PDCCH scheduled PDSCH transmission corresponding to the PBCH that is repeatedly transmitted within 20ms. Frequency hopping between.
  • the PDSCH scheduled by Type0-PDCCH is generally used to carry SIB1 transmission or remaining minimum system information (RMSI).
  • PDSCH When traditional UE accesses, only one type0-PDCCH and corresponding PDSCH can be identified for the PBCH in every 20ms. Taking this PDSCH as a reference, other PDSCHs scheduled by type0-PDCCH are offset in the time and frequency domain based on this reference. The offset in the frequency domain is also the offset in frequency hopping. The offset in the time domain ensures that the PDSCH is in the Staggered in time domain.
  • the above-mentioned frequency hopping interval may be predefined or indicated by the PBCH.
  • the offset of the target PDSCH in the frequency domain is predefined by the protocol
  • the offset of the target PDSCH in the frequency domain is related to the control channel resource set where the common search space of the type0-PDCCH for transmitting the DCI is located;
  • the offset of the target PDSCH in the frequency domain is related to the index of the number of times of transmission of the repeatedly transmitted PBCH or SSB.
  • FIG. 6 is a flowchart of a receiving method provided by an embodiment of the present disclosure, which is applied to a terminal. As shown in FIG. 6, the receiving method includes the following steps:
  • Step 201 Determine the detection start time slot of the type0-PDCCH common search space corresponding to the repeatedly transmitted PBCH or the repeatedly transmitted SSB.
  • the detection start slot of the type0-PDCCH common search space is related to the information carried in the master information block MIB in the PBCH and a predefined time parameter, or the detection start slot of the type0-PDCCH common search space is related to the PBCH
  • the information carried in the MIB is related to the transmission information of the repeatedly transmitted PBCH or SSB.
  • the predefined time parameter is a time value in units of time slots or absolute duration, that is, the predefined time parameter is a value in units of time slots or absolute duration (for example, 5 ms).
  • Step 202 Detect the PDCCH in the type0-PDCCH common search space corresponding to the repeatedly transmitted PBCH or the repeatedly transmitted SSB.
  • the method of the specific embodiment of the present disclosure can be used in the scenario of repeated transmission of the PBCH in the SSB, and can also be used in the scenario of the repeated transmission of the PBCH in the SSB, that is, only the repeated transmission of the PBCH and the primary synchronization signal (Primary Synchronization Signal, PSS) There is no repeated transmission of the secondary synchronization signal (Secondary Synchronization Signal, SSS).
  • PSS Primary Synchronization Signal
  • SSS Secondary Synchronization Signal
  • SSS secondary Synchronization Signal
  • the PBCH of the SSB and the repeated PBCH bear the same content, for example, it can be used for traditional NR terminal access SSB. Therefore, a common search space corresponding to type0-PDCCH exists for this type of transmission with only PBCH repetition.
  • each PBCH corresponds to a complete SSB.
  • repeated transmission of the SSB in the specific embodiment of the present disclosure refers to multiple transmissions of the SSB with the same SSB index.
  • repeated transmission of PBCH refers to multiple repeated transmissions of PBCH in SSBs with the same SSB index.
  • the terminal will detect the PDCCH in the type0-PDCCH search space in two consecutive time slots with the starting time slot n 0.
  • this search space is called Type0-PDCCH common search space corresponding to SSB i.
  • the detection start slot of the type0-PDCCH common search space corresponding to the repeatedly transmitted PBCH or the repeatedly transmitted SSB is determined; in the type0-PDCCH corresponding to the repeatedly transmitted PBCH or the repeatedly transmitted SSB
  • the public search space detects the PDCCH. Since the detection start slot of the type0-PDCCH common search space is related to the information carried in the master information block MIB in the PBCH and the predefined time parameter, or the detection start slot of the type0-PDCCH common search space is related to The information carried by the MIB in the PBCH is related to the transmission information of the repeatedly transmitted PBCH or SSB.
  • the detection of the type0-PDCCH common search space corresponding to the repeatedly transmitted PBCH or the repeatedly transmitted SSB is started There is a time offset in the time slot. Since the detection start time slot of the type0-PDCCH common search space corresponding to the retransmitted PBCH or the retransmitted SSB has a time offset, the type0-PDCCH common search space corresponding to the retransmitted PBCH or the retransmitted SSB can be made The detection start timeslots are different, so that the terminal can schedule broadcast information based on the PDCCH in the search space with a certain offset in the time domain.
  • the repeatedly transmitted PBCH or the repeatedly transmitted SSB are all located in an even-numbered wireless frame or both are located in an odd-numbered wireless frame, and the number of transmissions in the same wireless frame is greater than one.
  • the repeated transmission of the PBCH or SSB is located in the same radio frame, and will not be dispersed into two radio frames of 20 ms. In this way, only half-frame indicator bits in the PBCH will change, and the last bit of the wireless frame number will not change, which can reduce the complexity of PBCH detection as much as possible.
  • PBCH transmission uses double-layer scrambling.
  • the unchanging content of the repeated transmission is scrambled, including the high-level 24 bits, the bottom 1 and the bottom 4 bits of the lowest 4 bits of the SFN.
  • the repeated transmission of PBCH or SSB is located in the same radio frame, for example, in an even-numbered radio frame or in an odd-numbered radio frame at the same time, the last bit of the lowest 4 bits of the SFN of the PBCH is the same .
  • the NR process in the related technology can be used for scrambling without increasing the complexity.
  • Fig. 2 is a schematic diagram of a 10ms period
  • Fig. 3 is a schematic diagram of using two half-frames of the same radio frame to achieve 2 repeated transmissions of PBCH every 20ms.
  • the UE adopts a blind detection hypothesis similar to the second and third digits of the SFN to perform blind detection to perform PBCH merging.
  • the repetition of the PBCH is realized by the repetition of the SSB.
  • Another implementation is that the PSS and SSS in the SSB do not increase the repetition, and are still only transmitted once within 20 ms, and the repeated transmission at an interval of 5 ms only transmits the PBCH part.
  • the SSB corresponding to the repeatedly transmitted PBCH or the repeatedly transmitted SSB has the same SSB index.
  • repeated transmission of the SSB in the specific embodiment of the present disclosure refers to multiple transmissions of the SSB with the same SSB index.
  • repeated transmission of PBCH refers to multiple transmissions of PBCH corresponding to the same SSB index.
  • the time offset also means that for the same SSB index i, the detection start slot of the type0-PDCCH common search space corresponding to the retransmitted SSB i or the retransmitted PBCH corresponding to the SSB i has a time offset in the time domain. shift.
  • the transmission information includes at least one of the following information:
  • the index of the transmission times of the repeated transmission of the PBCH or SSB is the index of the transmission times of the repeated transmission of the PBCH or SSB.
  • the detection start slot n 0 of the type0-PDCCH common search space corresponding to the repeatedly transmitted PBCH or the repeatedly transmitted SSB is a function of at least one of the following parameters:
  • the radio frame number where the repeatedly transmitted PBCH or SSB is located
  • the index of the transmission times of the repeated transmission of the PBCH or SSB is the index of the transmission times of the repeated transmission of the PBCH or SSB.
  • the detection start time slot n 0 can be specifically determined by the following expression:
  • N 0 is the duplicate of the corresponding PBCH transmissions repeat transmission of SSB or SSB i i corresponding to the start slot number detecting type0-PDCCH common search space, the index i is SSB, the SSB is O i
  • the corresponding type0-PDCCH search space detects the subframe interval between the start slot and the start position of the even-numbered frame, where A is the value of the lowest bit of the SFN, and the B is the value of the half-frame indicator bit,
  • the S is the granularity of the time
  • the ⁇ is the subcarrier interval of CORESET#0
  • the M is the number of equivalent time slots occupied by the search space of type0-PDCCH corresponding to SSB i, Is the number of time slots in a system frame in the unit of the subcarrier interval of SIB1
  • the j is the transmission number of the repeatedly transmitted PBCH or the repeatedly transmitted SSB.
  • the offset value related to the half-frame indicator value (which can be understood as the value of the half-frame indicator bit) and/or the wireless frame number is introduced into the determination function for detecting the initial time slot.
  • A can also be a value modulo 2 of the SFN frame number where the PBCH is repeatedly transmitted, which is equivalent to the value of the lowest bit of the SFN.
  • the value of the lowest bit of the SNF here refers to the value of the binary bit.
  • the detection start time slot n 0 of the type0-PDCCH corresponding to the retransmitted PBCH or the retransmitted SSB is determined in the following manner:
  • the offset value of the type0-PDCCH corresponding to the repeated transmission of the PBCH is in S milliseconds (ie ms) or S time slots, that is, the offset is performed with S as the granularity, and the adjacent offset is S milliseconds or S time.
  • Slot A represents the value of the least significant bits of the system frame number (1 st least significant bits of the system frame number), B represents the value of the half frame index, usually the value is 0 or 1, where S( The unit is ms)
  • S The unit is ms
  • the (2A+B)S can be understood as a predefined time parameter.
  • the value of (2A+B)S can be predetermined, and the (2A+B)S in the above formula is replaced with the predetermined Time value.
  • the detection start time slot of the type0-PDCCH corresponding to the repeatedly transmitted PBCH or the repeatedly transmitted SSB can be determined in the following manner:
  • the offset value can only be related to the radio frame number or half-frame indication.
  • the PBCH has an interval of 10ms between two repeated transmissions within 20ms. Only the last bit of the radio frame number has changed in the two PBCH transmissions. Then, the detection start slot of the type0-PDCCH can be determined in the following manner.
  • n 0 is related to the value of the half-frame indicator bit corresponding to the repeated transmission of the PBCH or SSB.
  • the AS can be understood as a predefined time parameter.
  • the value of the AS can be predetermined, and the AS in the above formula is replaced with the predetermined time value.
  • the offset value is only related to the half frame indication.
  • the BS can be understood as a predefined time parameter.
  • the value of the BS can be predetermined, and the BS in the above formula is replaced with the predetermined time value.
  • Two PBCH repetitions are located in odd-numbered frames, but are located in different half-frames, the type0-PDCCH detection start time slot corresponding to the two PBCHs is offset by 5ms.
  • the detection start time slot n 0 may also be a function of the index of the transmission times of the repeated transmission of the PBCH or SSB.
  • PBCH or SSB
  • HRF is a half frame indication, which indicates whether the half frame in which the PBCH is transmitted is the first half frame or the second half frame of the wireless frame.
  • the jS can be understood as a predefined time parameter.
  • the value of jS can be predetermined, and jS in the above formula can be replaced with the predetermined time value.
  • the repeated transmission of the PBCH may only transmit the PBCH without transmitting the PSS or SSS, or it may be the repeated transmission of the entire SSB.
  • the formula for determining the detection start time slot of the type0-PDCCH is similar.
  • the repeated SSB is not a complete SSB, there is still a corresponding relationship between the repeated PBCH and the index SSB i of the complete SSB.
  • detection positions of type0-PDCCH corresponding to some of the repeated PBCHs are those positions that are not indicated by PBCH, such as Shown in Figure 5.
  • the original type0-PDCCH detection position indicated by the PBCH is still valid.
  • the traditional UE can also obtain the corresponding type0-PDCCH detection start slot through the PBCH and perform PDCCH detection.
  • all the PDCCHs or part of the PDCCHs carried in the common search space of the type0-PDCCH corresponding to the repeatedly transmitted PBCH or the repeatedly transmitted SSB have the same DCI content.
  • the code rate of the type0-PDCCH at 8CCE is slightly larger than that of the PBCH, and the PBCH can further have 4 combining gains within 80ms, while the type0-PDCCH standard does not support combining.
  • the transmission DCI content it is possible to set the transmission DCI content to be exactly the same, or part of the transmission to be the same. For example, it can be agreed that the DCI content is exactly the same for 8 transmissions of 160ms, or the part of the transmission is the same, for example, the previous The same 4 times, the last 4 times the same.
  • the type0-PDCCH combination can be realized, and its transmission reliability can be enhanced.
  • frequency hopping is introduced between 8 transmissions: a predefined frequency hopping interval N is used as the interval between two consecutive transmissions of the RB at the start position of the frequency domain; N may be related to the number of repeated transmissions.
  • the target PDSCH scheduled by the DCI with the same content is configured to have an offset in the frequency domain or the time domain.
  • the above-mentioned frequency hopping method is not backward compatible for terminals that support certain protocols. Therefore, if backward compatibility is required, the implementation method is to introduce only the type0-PDCCH scheduled PDSCH transmission corresponding to the PBCH that is repeatedly transmitted within 20ms. Frequency hopping between.
  • the PDSCH scheduled by Type0-PDCCH is generally used to carry SIB1 transmission or remaining minimum system information (RMSI).
  • PDSCH When traditional UE accesses, only one type0-PDCCH and corresponding PDSCH can be identified for the PBCH in every 20ms. Taking this PDSCH as a reference, other PDSCHs scheduled by type0-PDCCH are offset in the time and frequency domain based on this reference. The offset in the frequency domain is also the offset in frequency hopping. The offset in the time domain ensures that the PDSCH is in the Staggered in time domain.
  • the above-mentioned frequency hopping interval may be predefined or indicated by the PBCH.
  • the offset of the target PDSCH in the frequency domain is predefined by the protocol
  • the offset of the target PDSCH in the frequency domain is related to the control channel resource set where the common search space of the type0-PDCCH for transmitting the DCI is located;
  • the offset of the target PDSCH in the frequency domain is related to the index of the number of times of transmission of the repeatedly transmitted PBCH or SSB.
  • FIG. 7 is a schematic structural diagram of a network device provided by an embodiment of the present disclosure. As shown in FIG. 7, the network device 300 includes:
  • the sending module 301 is used to transmit the PDCCH in the type0-PDCCH common search space corresponding to the retransmitted PBCH or the retransmitted SSB; the detection start time slot of the type0-PDCCH common search space and the master information in the PBCH
  • the information carried in the block MIB is related to a predefined time parameter, or the type0-PDCCH common search space detection start slot is related to the information carried in the MIB in the PBCH and the transmission information of the repeatedly transmitted PBCH or SSB.
  • the predefined time parameter is a time value in units of time slots or absolute duration.
  • the repeatedly transmitted PBCH or the repeatedly transmitted SSB are all located in an even-numbered wireless frame or both are located in an odd-numbered wireless frame, and the number of transmissions in the same wireless frame is greater than one.
  • the SSB corresponding to the repeatedly transmitted PBCH or the repeatedly transmitted SSB has the same SSB index.
  • the transmission information includes at least one of the following information:
  • the index of the transmission times of the repeated transmission of the PBCH or SSB is the index of the transmission times of the repeated transmission of the PBCH or SSB.
  • the detection start slot n 0 of the type0-PDCCH common search space corresponding to the repeatedly transmitted PBCH or the repeatedly transmitted SSB is a function of at least one of the following parameters:
  • the radio frame number where the repeatedly transmitted PBCH or SSB is located
  • the index of the transmission times of the repeated transmission of the PBCH or SSB is the index of the transmission times of the repeated transmission of the PBCH or SSB.
  • the detection start time slot n 0 of the type0-PDCCH common search space corresponding to the repeatedly transmitted PBCH or the repeatedly transmitted SSB is:
  • n 0 is the detection start slot number of the SSBi corresponding to the repeatedly transmitted PBCH or the type0-PDCCH common search space corresponding to the repeatedly transmitted SSBi
  • the i is the SSB index
  • the 0 is the corresponding SSBi
  • the type0-PDCCH search space detects the subframe interval between the start time slot and the start position of the even-numbered frame.
  • the A is the value of the lowest bit of the SFN
  • the B is the value of the half-frame indicator bit
  • the S Is the granularity of the time
  • the ⁇ is the subcarrier interval of CORESET#0
  • the M is the number of equivalent time slots occupied by the search space of type0-PDCCH corresponding to SSBi, Is the number of time slots in a system frame based on the subcarrier spacing of the control resource set carrying the type0-PDCCH
  • the j is the transmission number of the repeatedly transmitted PBCH or the repeatedly transmitted SSB.
  • all the PDCCHs or part of the PDCCHs carried in the common search space of the type0-PDCCH corresponding to the repeatedly transmitted PBCH or the repeatedly transmitted SSB have the same DCI content.
  • the target PDSCH scheduled by the DCI with the same content is configured to have an offset in the frequency domain or the time domain.
  • the offset of the target PDSCH in the frequency domain is predefined by the protocol
  • the offset of the target PDSCH in the frequency domain is related to the control channel resource set where the common search space of the type0-PDCCH for transmitting the DCI is located;
  • the offset of the target PDSCH in the frequency domain is related to the index of the number of times of transmission of the repeatedly transmitted PBCH or SSB.
  • the network device 300 can implement the various processes implemented by the network device in the method embodiment shown in FIG. 1. To avoid repetition, details are not described herein again.
  • the network device 300 of the embodiment of the present disclosure transmits the PDCCH in the type0-PDCCH common search space corresponding to the repeatedly transmitted PBCH or the repeatedly transmitted SSB; because the detection start time slot of the type0-PDCCH common search space and the PBCH
  • the information carried in the MIB of the master information block is related to a predefined time parameter, or the type0-PDCCH common search space detection start time slot and the information carried in the MIB in the PBCH and the information carried in the repeatedly transmitted PBCH or SSB
  • the transmission information is related, so that in the time domain, the detection start slot of the type0-PDCCH common search space corresponding to the repeatedly transmitted PBCH or the repeatedly transmitted SSB has a time offset.
  • the type0-PDCCH common search space corresponding to the retransmitted PBCH or the retransmitted SSB can be made The detection start timeslots are different, so that the UE can schedule broadcast information based on the PDCCH in the search space with a certain offset in the time domain.
  • an embodiment of the present disclosure also provides a network device, including a bus 1001, a transceiver 1002, an antenna 1003, a bus interface 1004, a processor 1005, and a memory 1006.
  • the transceiver 1002 is configured to transmit the PDCCH in the type0-PDCCH common search space corresponding to the retransmitted PBCH or the retransmitted SSB; the detection start time slot of the type0-PDCCH common search space and the PBCH
  • the information carried in the main information block MIB is related to a predefined time parameter, or the type0-PDCCH common search space detection start time slot and the information carried in the MIB in the PBCH and the transmission information of the repeatedly transmitted PBCH or SSB Related.
  • the predefined time parameter is a time value in units of time slots or absolute duration.
  • the repeatedly transmitted PBCH or the repeatedly transmitted SSB are all located in an even-numbered wireless frame or both are located in an odd-numbered wireless frame, and the number of transmissions in the same wireless frame is greater than one.
  • the SSB corresponding to the repeatedly transmitted PBCH or the repeatedly transmitted SSB has the same SSB index.
  • the transmission information includes at least one of the following information:
  • the index of the transmission times of the repeated transmission of the PBCH or SSB is the index of the transmission times of the repeated transmission of the PBCH or SSB.
  • time offset in the detection start time slot of the type0-PDCCH common search space corresponding to the repeatedly transmitted PBCH or the repeatedly transmitted SSB including:
  • the detection start slot n 0 of the type0-PDCCH common search space corresponding to the repeatedly transmitted PBCH or the repeatedly transmitted SSB is a function of at least one of the following parameters:
  • the radio frame number where the repeatedly transmitted PBCH or SSB is located
  • the index of the transmission times of the repeated transmission of the PBCH or SSB is the index of the transmission times of the repeated transmission of the PBCH or SSB.
  • the detection start time slot n 0 of the type0-PDCCH common search space corresponding to the repeatedly transmitted PBCH or the repeatedly transmitted SSB is:
  • n 0 is the detection start slot number of the SSBi corresponding to the repeatedly transmitted PBCH or the type0-PDCCH common search space corresponding to the repeatedly transmitted SSBi
  • the i is the SSB index
  • the 0 is the corresponding SSBi
  • the type0-PDCCH search space detects the subframe interval between the start time slot and the start position of the even-numbered frame.
  • the A is the value of the lowest bit of the SFN
  • the B is the value of the half-frame indicator bit
  • the S Is the granularity of the time
  • the ⁇ is the subcarrier interval of CORESET#0
  • the M is the number of equivalent time slots occupied by the search space of type0-PDCCH corresponding to SSBi, Is the number of time slots in a system frame based on the subcarrier spacing of the control resource set carrying the type0-PDCCH
  • the j is the transmission number of the repeatedly transmitted PBCH or the repeatedly transmitted SSB.
  • all the PDCCHs or part of the PDCCHs carried in the common search space of the type0-PDCCH corresponding to the repeatedly transmitted PBCH or the repeatedly transmitted SSB have the same DCI content.
  • the target PDSCH scheduled by the DCI with the same content is configured to have an offset in the frequency domain or the time domain.
  • the offset of the target PDSCH in the frequency domain is predefined by the protocol
  • the offset of the target PDSCH in the frequency domain is related to the control channel resource set where the common search space of the type0-PDCCH for transmitting the DCI is located;
  • the offset of the target PDSCH in the frequency domain is related to the index of the number of times of transmission of the repeatedly transmitted PBCH or SSB.
  • the network device can implement each process implemented by the network device in the method embodiment shown in FIG. 1. To avoid repetition, details are not described herein again.
  • the network device of the embodiment of the present disclosure transmits the PDCCH in the type0-PDCCH common search space corresponding to the repeatedly transmitted PBCH or the repeatedly transmitted SSB; because the detection start time slot of the type0-PDCCH common search space is in the PBCH
  • the information carried in the MIB of the master information block is related to a predefined time parameter, or the type0-PDCCH common search space detection start time slot and the information carried in the MIB in the PBCH and the transmission of the repeated transmission of the PBCH or SSB
  • the information is related, so that in the time domain, the detection start slot of the type0-PDCCH common search space corresponding to the repeatedly transmitted PBCH or the repeatedly transmitted SSB has a time offset.
  • the type0-PDCCH common search space corresponding to the retransmitted PBCH or the retransmitted SSB can be made The detection start timeslots are different, so that the UE can schedule broadcast information based on the PDCCH in the search space with a certain offset in the time domain.
  • bus architecture (represented by bus 1001), bus 1001 can include any number of interconnected buses and bridges, bus 1001 will include one or more processors represented by processor 1005 and memory represented by memory 1006 The various circuits are linked together.
  • the bus 1001 can also link various other circuits such as peripheral devices, voltage regulators, power management circuits, etc., which are all known in the art, and therefore, no further description will be given herein.
  • the bus interface 1004 provides an interface between the bus 1001 and the transceiver 1002.
  • the transceiver 1002 may be one element or multiple elements, such as multiple receivers and transmitters, and provide a unit for communicating with various other devices on a transmission medium.
  • the data processed by the processor 1005 is transmitted on the wireless medium through the antenna 1003, and further, the antenna 1003 also receives the data and transmits the data to the processor 1005.
  • the processor 1005 is responsible for managing the bus 1001 and general processing, and can also provide various functions, including timing, peripheral interfaces, voltage regulation, power management, and other control functions.
  • the memory 1006 may be used to store data used by the processor 1005 when performing operations.
  • the processor 1005 may be a CPU, ASIC, FPGA or CPLD.
  • the embodiment of the present disclosure also provides a network device, including a processor 1005, a memory 1006, and a computer program stored on the memory 1006 and capable of running on the processor 1005.
  • a network device including a processor 1005, a memory 1006, and a computer program stored on the memory 1006 and capable of running on the processor 1005.
  • the computer program is executed by the processor 1005.
  • Each process of the sending method embodiment shown in FIG. 1 is implemented, and the same technical effect can be achieved. In order to avoid repetition, details are not repeated here.
  • FIG. 9 is a schematic structural diagram of a terminal provided by an embodiment of the present disclosure.
  • the terminal 400 includes a processing module 401 and a receiving module 402;
  • the processing module 401 is configured to determine the detection start time slot of the type0-PDCCH common search space corresponding to the repeatedly transmitted PBCH or the repeatedly transmitted SSB;
  • the detection start slot of the type0-PDCCH common search space is related to the information carried in the master information block MIB in the PBCH and a predefined time parameter, or the detection start slot of the type0-PDCCH common search space is related to the PBCH
  • the information carried in the MIB is related to the transmission information of the repeatedly transmitted PBCH or SSB.
  • the receiving module 402 is configured to detect the PDCCH in the type0-PDCCH common search space corresponding to the repeatedly transmitted PBCH or the repeatedly transmitted SSB.
  • the predefined time parameter is a time value in units of time slots or absolute duration.
  • the repeatedly transmitted PBCH or the repeatedly transmitted SSB are all located in an even-numbered wireless frame or both are located in an odd-numbered wireless frame, and the number of transmissions in the same wireless frame is greater than one.
  • the SSB corresponding to the repeatedly transmitted PBCH or the repeatedly transmitted SSB has the same SSB index.
  • the transmission information includes at least one of the following information:
  • the index of the transmission times of the repeated transmission of the PBCH or SSB is the index of the transmission times of the repeated transmission of the PBCH or SSB.
  • the detection start slot n 0 of the type0-PDCCH common search space corresponding to the repeatedly transmitted PBCH or the repeatedly transmitted SSB is a function of at least one of the following parameters:
  • the radio frame number where the repeatedly transmitted PBCH or SSB is located
  • the index of the transmission times of the repeated transmission of the PBCH or SSB is the index of the transmission times of the repeated transmission of the PBCH or SSB.
  • N 0 is the duplicate of the corresponding PBCH transmissions repeat transmission of SSB or SSB i i corresponding to the start slot number detecting type0-PDCCH common search space, the index i is SSB, the SSB is O i
  • the corresponding type0-PDCCH search space detects the subframe interval between the start slot and the start position of the even-numbered frame, where A is the value of the lowest bit of the SFN, and the B is the value of the half-frame indicator bit,
  • the S is the granularity of the time
  • the ⁇ is the subcarrier interval of CORESET#0
  • the M is the number of equivalent time slots occupied by the search space of type0-PDCCH corresponding to SSB i, Is the number of time slots in a system frame in the unit of the subcarrier interval of SIB1
  • the j is the transmission number of the repeatedly transmitted PBCH or the repeatedly transmitted SSB.
  • all the PDCCHs or some of the PDCCHs carried in the common search space of the type0-PDCCH corresponding to the repeatedly transmitted PBCH or the repeatedly transmitted SSB have the same DCI content.
  • the target PDSCH scheduled by the DCI with the same content is configured to have an offset in the frequency domain or the time domain.
  • the offset of the target PDSCH in the frequency domain is predefined by the protocol
  • the offset of the target PDSCH in the frequency domain is related to the control channel resource set where the common search space of the type0-PDCCH for transmitting the DCI is located;
  • the offset of the target PDSCH in the frequency domain is related to the transmission index of the repeatedly transmitted PBCH or SSB
  • the terminal 400 can implement each process implemented by the terminal in the method embodiment shown in FIG. 6, and in order to avoid repetition, details are not described herein again.
  • the terminal 400 of the embodiment of the present disclosure determines the detection start slot of the type0-PDCCH common search space corresponding to the repeatedly transmitted PBCH or the repeatedly transmitted SSB;
  • the type0-PDCCH common search space detects PDCCH. Since the detection start slot of the type0-PDCCH common search space is related to the information carried in the master information block MIB in the PBCH and the predefined time parameter, or the detection start slot of the type0-PDCCH common search space is related to The information carried by the MIB in the PBCH is related to the transmission information of the repeatedly transmitted PBCH or SSB, so that in the time domain, the type0-PDCCH common search space corresponding to the repeatedly transmitted PBCH or the repeatedly transmitted SSB can be detected.
  • the detection start time slot of the type0-PDCCH common search space corresponding to the retransmitted PBCH or the retransmitted SSB has a time offset, the type0-PDCCH common search space corresponding to the retransmitted PBCH or the retransmitted SSB can be made The detection start timeslots are different, so that the terminal can schedule broadcast information based on the PDCCH in the search space with a certain offset in the time domain.
  • the terminal 10 is a schematic structural diagram of another terminal that implements various embodiments of the present disclosure.
  • the terminal 1100 includes but is not limited to: a transceiver unit 1101, a network module 1102, an audio output unit 1103, an input unit 1104, a sensor 1105, a display unit 1106, User input unit 1107, interface unit 1108, memory 1109, processor 1110, power supply 1111 and other components.
  • the terminal structure shown in FIG. 6 does not constitute a limitation on the terminal, and the terminal may include more or fewer components than shown in the figure, or combine some components, or arrange different components.
  • the terminal includes, but is not limited to, a mobile phone, a tablet computer, a notebook computer, a palmtop computer, a vehicle-mounted terminal, a wearable device, a pedometer, and the like.
  • the processor 1110 is configured to determine the detection start time slot of the type0-PDCCH common search space corresponding to the retransmitted PBCH or the retransmitted SSB; the detection start time slot of the type0-PDCCH common search space It is related to the information carried in the master information block MIB in the PBCH and predefined time parameters, or the type0-PDCCH common search space detection start time slot and the information carried in the MIB in the PBCH and the repeated transmission of the PBCH or SSB's transmission information is related.
  • the transceiver unit 1101 is configured to detect the PDCCH in the type0-PDCCH common search space corresponding to the repeatedly transmitted PBCH or the repeatedly transmitted SSB.
  • the predefined time parameter is a time value in units of time slots or absolute duration.
  • the repeatedly transmitted PBCH or the repeatedly transmitted SSB are all located in an even-numbered wireless frame or both are located in an odd-numbered wireless frame, and the number of transmissions in the same wireless frame is greater than one.
  • the SSB corresponding to the repeatedly transmitted PBCH or the repeatedly transmitted SSB has the same SSB index.
  • the transmission information includes at least one of the following information:
  • the index of the transmission times of the repeated transmission of the PBCH or SSB is the index of the transmission times of the repeated transmission of the PBCH or SSB.
  • the detection start slot n 0 of the type0-PDCCH common search space corresponding to the repeatedly transmitted PBCH or the repeatedly transmitted SSB is a function of at least one of the following parameters:
  • the radio frame number where the repeatedly transmitted PBCH or SSB is located
  • the index of the transmission times of the repeated transmission of the PBCH or SSB is the index of the transmission times of the repeated transmission of the PBCH or SSB.
  • N 0 is the duplicate of the corresponding PBCH transmissions repeat transmission of SSB or SSB i i corresponding to the start slot number detecting type0-PDCCH common search space, the index i is SSB, the SSB is O i
  • the corresponding type0-PDCCH search space detects the subframe interval between the start slot and the start position of the even-numbered frame, where A is the value of the lowest bit of the SFN, and the B is the value of the half-frame indicator bit,
  • the S is the granularity of the time
  • the ⁇ is the subcarrier interval of CORESET#0
  • the M is the number of equivalent time slots occupied by the search space of type0-PDCCH corresponding to SSB i, Is the number of time slots in a system frame in the unit of the subcarrier interval of SIB1
  • the j is the transmission number of the repeatedly transmitted PBCH or the repeatedly transmitted SSB.
  • all the PDCCHs or part of the PDCCHs carried in the common search space of the type0-PDCCH corresponding to the retransmitted PBCH or the retransmitted SSB have the same DCI content.
  • the target PDSCH scheduled by the DCI with the same content is configured to have an offset in the frequency domain or the time domain.
  • the offset of the target PDSCH in the frequency domain is predefined by the protocol
  • the offset of the target PDSCH in the frequency domain is related to the control channel resource set where the common search space of the type0-PDCCH for transmitting the DCI is located;
  • the offset of the target PDSCH in the frequency domain is related to the index of the number of times of transmission of the repeatedly transmitted PBCH or SSB.
  • the terminal 1100 can implement each process implemented by the terminal in the method embodiment shown in FIG. 6, and in order to avoid repetition, details are not described herein again.
  • the terminal 1100 in the embodiment of the present disclosure determines the detection start slot of the type0-PDCCH common search space corresponding to the repeatedly transmitted PBCH or the repeatedly transmitted SSB;
  • the type0-PDCCH common search space detects PDCCH. Since the detection start slot of the type0-PDCCH common search space is related to the information carried in the master information block MIB in the PBCH and the predefined time parameter, or the detection start slot of the type0-PDCCH common search space is related to The information carried by the MIB in the PBCH is related to the transmission information of the repeatedly transmitted PBCH or SSB, so that in the time domain, the type0-PDCCH common search space corresponding to the repeatedly transmitted PBCH or the repeatedly transmitted SSB can be detected.
  • the detection start time slot of the type0-PDCCH common search space corresponding to the retransmitted PBCH or the retransmitted SSB has a time offset, the type0-PDCCH common search space corresponding to the retransmitted PBCH or the retransmitted SSB can be made The detection start timeslots are different, so that the terminal can schedule broadcast information based on the PDCCH in the search space with a certain offset in the time domain.
  • the transceiver unit 1101 can be used to receive and send signals during the process of sending and receiving information or during a call. Specifically, after receiving downlink data from the base station, it is processed by the processor 1110; Uplink data is sent to the base station.
  • the transceiver unit 1101 includes, but is not limited to, an antenna, at least one amplifier, a transceiver, a coupler, a low noise amplifier, a duplexer, and the like.
  • the transceiver unit 1101 can also communicate with the network and other devices through a wireless communication system.
  • the terminal provides users with wireless broadband Internet access through the network module 1102, such as helping users to send and receive emails, browse web pages, and access streaming media.
  • the audio output unit 1103 may convert the audio data received by the transceiving unit 1101 or the network module 1102 or stored in the memory 1109 into audio signals and output them as sounds. Moreover, the audio output unit 1103 may also provide audio output related to a specific function performed by the terminal 1100 (for example, call signal reception sound, message reception sound, etc.).
  • the audio output unit 1103 includes a speaker, a buzzer, a receiver, and the like.
  • the input unit 1104 is used to receive audio or video signals.
  • the input unit 1104 may include a graphics processing unit (GPU) 11041 and a microphone 11042, and the graphics processor 11041 is configured to respond to images of still pictures or videos obtained by an image capture device (such as a camera) in a video capture mode or an image capture mode. Data is processed.
  • the processed image frame can be displayed on the display unit 1106.
  • the image frame processed by the graphics processor 11041 may be stored in the memory 1109 (or other storage medium) or sent via the transceiver unit 1101 or the network module 1102.
  • the microphone 11042 can receive sound, and can process such sound into audio data.
  • the processed audio data can be converted into a format that can be sent to a mobile communication base station via the transceiver unit 1101 for output in the case of a telephone call mode.
  • the terminal 1100 further includes at least one sensor 1105, such as a light sensor, a motion sensor, and other sensors.
  • the light sensor includes an ambient light sensor and a proximity sensor.
  • the ambient light sensor can adjust the brightness of the display panel 11061 according to the brightness of the ambient light.
  • the proximity sensor can close the display panel 11061 and/or when the terminal 1100 is moved to the ear. Or backlight.
  • the accelerometer sensor can detect the magnitude of acceleration in various directions (usually three-axis), and can detect the magnitude and direction of gravity when stationary, and can be used to identify terminal gestures (such as horizontal and vertical screen switching, related games, Magnetometer attitude calibration), vibration recognition related functions (such as pedometer, tap), etc.; sensor 1105 can also include fingerprint sensor, pressure sensor, iris sensor, molecular sensor, gyroscope, barometer, hygrometer, thermometer, infrared Sensors, etc., will not be repeated here.
  • the display unit 1106 is used to display information input by the user or information provided to the user.
  • the display unit 1106 may include a display panel 11061, and the display panel 11061 may be configured in the form of a liquid crystal display (LCD), an organic light-emitting diode (OLED), etc.
  • LCD liquid crystal display
  • OLED organic light-emitting diode
  • the user input unit 1107 can be used to receive inputted numeric or character information, and generate key signal input related to user settings and function control of the terminal.
  • the user input unit 1107 includes a touch panel 11071 and other input devices 11072.
  • the touch panel 11071 also called a touch screen, can collect user touch operations on or near it (for example, the user uses any suitable objects or accessories such as fingers, stylus, etc.) on the touch panel 11071 or near the touch panel 11071. operating).
  • the touch panel 11071 may include two parts, a touch detection device and a touch controller.
  • the touch detection device detects the user's touch position, detects the signal brought by the touch operation, and transmits the signal to the touch controller; the touch controller receives the touch information from the touch detection device, converts it into contact coordinates, and then sends it To the processor 1110, the command sent by the processor 1110 is received and executed.
  • the touch panel 11071 can be implemented in multiple types such as resistive, capacitive, infrared, and surface acoustic wave.
  • the user input unit 1107 may also include other input devices 11072.
  • other input devices 11072 may include, but are not limited to, a physical keyboard, function keys (such as volume control buttons, switch buttons, etc.), trackball, mouse, and joystick, which will not be repeated here.
  • the touch panel 11071 can be overlaid on the display panel 11061.
  • the touch panel 11071 detects a touch operation on or near it, it transmits it to the processor 1110 to determine the type of the touch event, and then the processor 1110 determines the type of the touch event according to the touch.
  • the type of event provides corresponding visual output on the display panel 11061.
  • the touch panel 11071 and the display panel 11061 are used as two independent components to implement the input and output functions of the terminal, in some embodiments, the touch panel 11071 and the display panel 11061 may be integrated Realize the input and output functions of the terminal, the specifics are not limited here.
  • the interface unit 1108 is an interface for connecting an external device and the terminal 1100.
  • the external device may include a wired or wireless headset port, an external power source (or battery charger) port, a wired or wireless data port, a memory card port, a port for connecting a device with an identification module, audio input/output (I/O) port, video I/O port, headphone port, etc.
  • the interface unit 1108 may be used to receive input (for example, data information, power, etc.) from an external device and transmit the received input to one or more elements in the terminal 1100 or may be used to communicate between the terminal 1100 and the external device. Transfer data between.
  • the memory 1109 can be used to store software programs and various data.
  • the memory 1109 may mainly include a storage program area and a storage data area.
  • the storage program area may store an operating system, an application program required by at least one function (such as a sound playback function, an image playback function, etc.), etc.; Data created by the use of mobile phones (such as audio data, phone book, etc.), etc.
  • the memory 1109 may include a high-speed random access memory, and may also include a non-volatile memory, such as at least one magnetic disk storage device, a flash memory device, or other volatile solid-state storage devices.
  • the processor 1110 is the control center of the terminal. It uses various interfaces and lines to connect various parts of the entire terminal. It executes by running or executing software programs and/or modules stored in the memory 1109, and calling data stored in the memory 1109. Various functions of the terminal and processing data, so as to monitor the terminal as a whole.
  • the processor 1110 may include one or more processing units; preferably, the processor 1110 may integrate an application processor and a modem processor, where the application processor mainly processes the operating system, user interface, application programs, etc., and the modem The processor mainly deals with wireless communication. It can be understood that the foregoing modem processor may not be integrated into the processor 1110.
  • the terminal 1100 may also include a power source 1111 (such as a battery) for supplying power to various components.
  • a power source 1111 such as a battery
  • the power source 1111 may be logically connected to the processor 1110 through a power management system, so as to manage charging, discharging, and power consumption management through the power management system.
  • the terminal 1100 includes some functional modules not shown, which will not be repeated here.
  • the embodiment of the present disclosure also provides a terminal, including a processor 1110, a memory 1109, a computer program stored on the memory 1109 and capable of running on the processor 1110, and the computer program is implemented when the processor 1110 is executed.
  • a terminal including a processor 1110, a memory 1109, a computer program stored on the memory 1109 and capable of running on the processor 1110, and the computer program is implemented when the processor 1110 is executed.
  • the embodiment of the present disclosure also provides a computer-readable storage medium, and a computer program is stored on the computer-readable storage medium.
  • a computer program is stored on the computer-readable storage medium.
  • the embodiment of the present disclosure also provides a computer-readable storage medium, and a computer program is stored on the computer-readable storage medium.
  • a computer program is stored on the computer-readable storage medium.
  • the computer-readable storage medium such as ROM, RAM, magnetic disk or optical disk, etc.
  • the technical solution of the present disclosure essentially or the part that contributes to the related technology can be embodied in the form of a software product, and the computer software product is stored in a storage medium (such as ROM/RAM, magnetic disk, optical disk). ) Includes several instructions to make a terminal (which can be a mobile phone, a computer, a server, an air conditioner, or a network device, etc.) execute the methods described in the various embodiments of the present disclosure.
  • a terminal which can be a mobile phone, a computer, a server, an air conditioner, or a network device, etc.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本公开提供一种发送方法、接收方法、网络设备及终端,该传输方法包括:在与重复传输的PBCH或重复传输的SSB相对应的type0-PDCCH公共搜索空间中传输PDCCH;type0-PDCCH公共搜索空间的检测起始时隙与PBCH中的主信息块MIB携带的信息和预定义的时间参数相关,或者,type0-PDCCH公共搜索空间检测起始时隙与PBCH中的MIB携带的信息和重复传输的PBCH或SSB的传输信息相关。

Description

发送方法、接收方法、网络设备及终端
相关申请的交叉引用
本申请主张在2019年12月11日在中国提交的中国专利申请号No.201911264812.6的优先权,其全部内容通过引用包含于此。
技术领域
本公开涉及通信技术领域,尤其涉及一种发送方法、接收方法、网络设备及终端。
背景技术
随着终端覆盖能力的收缩,比如采用较少的天线数接收,导致接收性能变差,从而导致覆盖范围缩小。为了保证这类业务的覆盖,需要进行覆盖增强的设计。
为了补偿UE能力降低带来的物理广播信道(Physical Broadcast Channel,PBCH)覆盖收缩,可通过降低PBCH重复传输的传输时间间隔,比如由相关技术中的默认20ms的重复传输时间间隔降为10ms的周期,理论上可增加一倍的PBCH传输,通过合并可以实现3dB的覆盖增强。
当PBCH增加了更多次的重复传输的情况下,类型为0的物理下行控制信道(Physical Downlink Control Channel,PDCCH)(后续称之为type0-PDCCH)的传输也要相应的增加覆盖,为增加的重复传输确定检测的位置。
然而根据相关技术中的type0-PDCCH的检测起始时隙确定公式,当增加了PBCH重复传输次数之后,这些重复传输的PBCH所确定的type0-PDCCH的检测起始时隙是相同的,使得用户设备(User Equipment,UE)无法对重复传输的PBCH或者同步信号(Synchronization Signal and PBCH block,SSB)进行检测。
发明内容
本公开实施例提供一种发送方法、接收方法、网络设备及终端,以解决 增加PBCH重复传输次数后,重复传输的PBCH所确定的type0-PDCCH的检测起始时隙相同,导致UE不能对重复传输的PBCH或者SSB进行检测的问题。
为解决上述技术问题,本公开是这样实现的:
第一方面,本公开实施例提供了一种发送方法,用于网络设备,所述发送方法包括:
在与重复传输的物理广播信道PBCH或重复传输的同步信号SSB相对应的类型0物理下行控制信道type0-PDCCH公共搜索空间中传输PDCCH;
所述type0-PDCCH公共搜索空间的检测起始时隙与PBCH中的主信息块MIB携带的信息和预定义的时间参数相关,或者,所述type0-PDCCH公共搜索空间检测起始时隙与PBCH中的MIB携带的信息和所述重复传输的PBCH或SSB的传输信息相关。
第二方面,本公开实施例提供一种接收方法,用于终端,所述接收方法包括:
确定重复传输的物理广播信道PBCH或重复传输的同步信号SSB相对应的类型0物理下行控制信道type0-PDCCH公共搜索空间的检测起始时隙;
所述type0-PDCCH公共搜索空间的检测起始时隙与PBCH中的主信息块MIB携带的信息和预定义的时间参数相关,或者,所述type0-PDCCH公共搜索空间检测起始时隙与PBCH中的MIB携带的信息和所述重复传输的PBCH或SSB的传输信息相关;
在与所述重复传输的PBCH或重复传输的SSB相对应的type0-PDCCH公共搜索空间检测物理下行控制信道PDCCH。
第三方面,本公开实施例提供一种网络设备,包括处理器和收发机:
所述收发机,用于在与重复传输的物理广播信道PBCH或重复传输的同步信号SSB相对应的类型0物理下行控制信道type0-PDCCH公共搜索空间中传输PDCCH;
所述type0-PDCCH公共搜索空间的检测起始时隙与PBCH中的主信息块MIB携带的信息和预定义的时间参数相关,或者,所述type0-PDCCH公共搜索空间检测起始时隙与PBCH中的MIB携带的信息和所述重复传输的PBCH或SSB的传输信息相关。
第四方面,本公开实施例提供一种终端,包括处理器和收发机;
所述处理器,用于确定重复传输的物理广播信道PBCH或重复传输的同步信号SSB相对应的类型0物理下行控制信道type0-PDCCH公共搜索空间的检测起始时隙;
所述type0-PDCCH公共搜索空间的检测起始时隙与PBCH中的主信息块MIB携带的信息和预定义的时间参数相关,或者,所述type0-PDCCH公共搜索空间检测起始时隙与PBCH中的MIB携带的信息和所述重复传输的PBCH或SSB的传输信息相关;
所述收发机,用于在与所述重复传输的PBCH或重复传输的SSB相对应的type0-PDCCH公共搜索空间检测物理下行控制信道PDCCH。
第五方面,本公开实施例提供一种网络设备,包括:
发送模块,用于在与重复传输的物理广播信道PBCH或重复传输的同步信号SSB相对应的类型0物理下行控制信道type0-PDCCH公共搜索空间中传输PDCCH;
所述type0-PDCCH公共搜索空间的检测起始时隙与PBCH中的主信息块MIB携带的信息和预定义的时间参数相关,或者,所述type0-PDCCH公共搜索空间检测起始时隙与PBCH中的MIB携带的信息和所述重复传输的PBCH或SSB的传输信息相关。
第六方面,本公开实施例提供一种终端,包括:
确定模块,用于确定重复传输的物理广播信道PBCH或重复传输的同步信号SSB相对应的类型0物理下行控制信道type0-PDCCH公共搜索空间的检测起始时隙之间;
所述type0-PDCCH公共搜索空间的检测起始时隙与PBCH中的主信息块MIB携带的信息和预定义的时间参数相关,或者,所述type0-PDCCH公共搜索空间检测起始时隙与PBCH中的MIB携带的信息和所述重复传输的PBCH或SSB的传输信息相关;
接收模块,用于在与所述重复传输的PBCH或重复传输的SSB相对应的type0-PDCCH公共搜索空间检测物理下行控制信道PDCCH。
第七方面,本公开实施例提供一种网络设备,包括处理器、存储器及存 储在所述存储器上并可在所述处理器上运行的计算机程序,所述计算机程序被所述处理器执行时实现如第一方面所述的发送方法中的步骤。
第八方面,本公开实施例提供一种终端,包括处理器、存储器及存储在所述存储器上并可在所述处理器上运行的计算机程序,所述计算机程序被所述处理器执行时实现如第二方面所述的接收方法中的步骤。
第九方面,本公开实施例提供一种计算机可读存储介质,所述计算机可读存储介质上存储有计算机程序,所述计算机程序被处理器执行时实现如第一方面所述的发送方法中的步骤,或者,所述计算机程序被处理器执行时实现如第二方面所述的接收方法中的步骤。
本公开实施例中,在与重复传输的PBCH或重复传输的SSB相对应的type0-PDCCH公共搜索空间中传输PDCCH;由于所述type0-PDCCH公共搜索空间的检测起始时隙与PBCH中的主信息块MIB携带的信息和预定义的时间参数相关,或者,所述type0-PDCCH公共搜索空间检测起始时隙与PBCH中的MIB携带的信息和所述重复传输的PBCH或SSB的传输信息相关,使得在时域上,所述重复传输的PBCH或重复传输的SSB相对应的type0-PDCCH公共搜索空间的检测起始时隙存在时间偏移。由于重复传输的PBCH或重复传输的SSB相对应的type0-PDCCH公共搜索空间的检测起始时隙存在时间偏移,可使得重复传输的PBCH或重复传输的SSB相对应的type0-PDCCH公共搜索空间的检测起始时隙各不相同,使得UE可基于这些时域上具有一定偏移的搜索空间中的PDCCH进行广播信息的调度。
附图说明
为了更清楚地说明本公开实施例的技术方案,下面将对本公开实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本公开的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。
图1是本公开实施例提供的一种发送方法的流程图;
图2、图3是本公开实施例提供的PBCH传输示意图;
图4、图5是本公开实施例提供的重复传输的Type0-PDCCH检测起始时 隙位置示意图;
图6是本公开实施例提供的一种接收方法的流程图;
图7是本公开实施例提供的一种网络设备结构图;
图8是本公开实施例提供的另一种网络设备结构图;
图9是本公开实施例提供的一种终端结构图;
图10是本公开实施例提供的另一种终端结构图。
具体实施方式
下面将结合本公开实施例中的附图,对本公开实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本公开一部分实施例,而不是全部的实施例。基于本公开中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本公开保护的范围。
参见图1,图1是本公开实施例提供的一种发送方法的流程图,应用于网络设备,如图1所示,所述发送方法包括以下步骤:
步骤101、在与重复传输的PBCH或重复传输的SSB相对应的type0-PDCCH公共搜索空间中传输PDCCH;所述type0-PDCCH公共搜索空间的检测起始时隙与PBCH中的主信息块MIB携带的信息和预定义的时间参数相关,或者,所述type0-PDCCH公共搜索空间检测起始时隙与PBCH中的MIB携带的信息和所述重复传输的PBCH或SSB的传输信息相关。
其中,所述预定义的时间参数为以时隙或者绝对时长为单位的时间值,即预定义的时间参数,为一个以时隙或者绝对时长(如5ms)为单位的数值。
本公开具体实施例的方法可以用于SSB中PBCH的重复传输的场景,也可以用于SSB中的PBCH的重复传输场景,即只有PBCH的重复传输,而主同步信号(Primary Synchronization Signal,PSS)和辅同步信号(Secondary Synchronization Signal,SSS)没有重复传输。当只有PBCH部分进行了重复传输时(PSS和SSS没有重传),存在一个与其对应的完整的SSB传输,该SSB的PBCH与重复的PBCH承载的内容完全相同,例如可用于传统NR终端接入的SSB。因此对于这种只有PBCH重复的传输也相应的存在与其对应的type0-PDCCH公共搜索空间。在SSB中的PBCH的重复传输场景中,每一个PBCH 都对应于一个完整的SSB。
应当理解的是,本公开具体实施例中的SSB的重复传输指的是具有相同SSB索引的SSB的多次传输同样的,PBCH的重复传输指的是具有相同SSB索引的SSB中的PBCH的多次重复传输。
具体的,对于SSB index i(即SSB的索引i)而言,终端会在起始时隙为n 0的连续两个时隙中的type0-PDCCH搜索空间中检测PDCCH,这里称这个搜索空间为与SSB i对应的type0-PDCCH公共搜索空间。
本实施例中,在与重复传输的PBCH或重复传输的SSB相对应的type0-PDCCH公共搜索空间中传输PDCCH;由于所述type0-PDCCH公共搜索空间的检测起始时隙与PBCH中的主信息块MIB携带的信息和预定义的时间参数相关,或者,所述type0-PDCCH公共搜索空间检测起始时隙与PBCH中的MIB携带的信息和所述重复传输的PBCH或SSB的传输信息相关,使得在时域上,所述重复传输的PBCH或重复传输的SSB相对应的type0-PDCCH公共搜索空间的检测起始时隙存在时间偏移。由于重复传输的PBCH或重复传输的SSB相对应的type0-PDCCH公共搜索空间的检测起始时隙存在时间偏移,可使得重复传输的PBCH或重复传输的SSB相对应的type0-PDCCH公共搜索空间的检测起始时隙各不相同,使得UE可基于这些时域上具有一定偏移的搜索空间中的PDCCH进行广播信息的调度。
在本申请一个实施例中,所述重复传输的PBCH或重复传输的SSB均位于偶数无线帧或者均位于奇数无线帧中,且在同一个无线帧中传输次数大于1。
具体的,当PBCH或SSB重复传输时,重复传输的PBCH或SSB传输位于同一个无线帧内,而不会分散到20ms的两个无线帧。这样PBCH中只会有半帧指示比特会发生变化,而无线帧号的最后一位不会发生变化,可尽可能降低PBCH检测的复杂度。
对此进一步详细说明如下。
根据NR的PBCH的处理流程,PBCH的传输使用了双层加扰。第一层加扰过程中,对重复传输的不变的内容进行了加扰,包括高层的24比特,SFN的最低4位中的倒数第1位和倒数第4位。
如果重复传输的PBCH或SSB不是位于同一个无线帧,则不同的PBCH的 SFN的最低4位中的最后一位会发生变化,无法参与第一层加扰,这将加大PBCH检测的复杂度。
而本公开具体实施例中,重复传输的PBCH或SSB位于同一无线帧,例如同时位于偶数无线帧或者同时位于奇数无线帧中,则PBCH的SFN的最低4位中的最后一位都是相同的,可以利用相关技术中的NR流程进行加扰,不会提高复杂度。
下面结合附图进一步说明如下。例如,为了增强PBCH的覆盖,使用同一个无线帧的两个半帧实现每20ms内的2次PBCH的重复传输。与10ms传输周期的不同在于,10ms周期的传输每20ms内的两次重复传输间隔10ms,而使用同一个无线帧的两个半帧实现的每20ms内的2次PBCH传输间隔5ms。如图2所示为10ms周期的示意图,如图3所示为使用同一个无线帧的两个半帧实现每20ms内的2次PBCH的重复传输的示意图。图2、图3中,A表示SSB0,B表示SSB1,C表示SSB2,D表示SSB3。
图3所示的传输方式中,由于重复传输的PBCH只会出现在奇数无线帧或者偶数无线帧,系统帧号(System frame number,SFN)的最低位是保持不变的。尽管半无线帧(Half-Radio Frame,HRF)指示比特会发生变化,但由于HRF不会经过第一层加扰,UE采用与SFN的倒数第2,3位类似的盲检假设方式进行盲检即可进行PBCH的合并。
图3所示的传输方式中,PBCH的重复通过SSB的重复来实现。另一种实现方式是SSB中的PSS和SSS并不增加重复,仍然只是20ms内传输一次,而间隔5ms的重复传输只传输PBCH的部分。
在本申请一个实施例中,所述重复传输的PBCH对应的SSB或重复传输的SSB具有相同的SSB索引。
也就是说,本公开具体实施例中的SSB的重复传输指的是具有相同SSB索引的SSB的多次传输。同样的,PBCH的重复传输指的是对应于相同SSB索引的PBCH的多次传输。
而时间偏移,也是指,对于同一SSB索引i,重复传输的SSBi或者与SSB i对应的重复传输的PBCH对应的type0-PDCCH公共搜索空间的检测起始时隙在时域上存在时间偏移。
在本申请一个实施例中,所述传输信息包括如下信息中的至少一项:
所述重复传输的PBCH或SSB所处的半帧,或者PBCH携带的半帧指示比特;
所述重复传输的PBCH或SSB所处的无线帧,或者PBCH携带的无线帧号;
所述重复传输的PBCH或SSB的传输次数索引。
在本申请一个实施例中,所述重复传输的PBCH或重复传输的SSB相对应的type0-PDCCH公共搜索空间的检测起始时隙n 0存在偏移,该检测起始时隙为至少一个如下参数的函数:
所述重复传输的PBCH或SSB所处的无线帧号;
所述重复传输的PBCH或SSB所对应半帧指示比特取值;
所述重复传输的PBCH或SSB的传输次数索引。
在本申请一个实施例中,所述重复传输的PBCH或重复传输的SSB相对应的type0-PDCCH公共搜索空间的检测起始时隙n 0为:
Figure PCTCN2020135128-appb-000001
或者
Figure PCTCN2020135128-appb-000002
或者
Figure PCTCN2020135128-appb-000003
或者
Figure PCTCN2020135128-appb-000004
或者
Figure PCTCN2020135128-appb-000005
或者
Figure PCTCN2020135128-appb-000006
或者
Figure PCTCN2020135128-appb-000007
或者
Figure PCTCN2020135128-appb-000008
所述n 0为所述重复传输的PBCH对应的SSBi或重复传输的SSBi对应的 type0-PDCCH公共搜索空间的检测起始时隙序号,所述i为SSB索引,所述O为SSBi所对应的type0-PDCCH搜索空间检测起始时隙与偶数帧的起始位置之间的子帧间隔,所述A为SFN的最低位的取值,所述B为半帧指示比特取值,所述S为所述时间的颗粒度,所述μ为CORESET#0的子载波间隔;所述M为SSBi对应的type0-PDCCH搜索空间占用的等效时隙数,
Figure PCTCN2020135128-appb-000009
为基于承载type0-PDCCH的控制资源集合的子载波间隔的一个系统帧中的时隙个数;所述j为所述重复传输的PBCH或重复传输的SSB的传输编号。
具体的,在检测起始时隙的确定函数中引入与半帧指示值(可理解为半帧指示比特取值)和/或无线帧号相关的偏移值。
其中,O和M的含义与相关技术中3GPP协议计算n0时所约定的含义相同。A也可以是重复传输的PBCH所在的SFN帧号对2取模的值,与SFN的最低位的取值是等效的。这里SNF的最低位的取值指的是2进制的比特的取值。
以下分别说明如下。
情况一、n 0与重复传输的PBCH或SSB所处的无线帧号相关。
重复传输的PBCH或重复传输的SSB相对应的type0-PDCCH的检测起始时隙n 0通过如下方式确定:
对于SSB索引i,假定对应的检测起始时隙序号位于无线帧SFN C内,如果SFN Cmod2=0,则type0-PDCCH的公共搜索空间位于偶数无线帧内,如果SFN Cmod2=1,则type0-PDCCH的公共搜索空间位于奇数无线帧内。
假设重复传输的PBCH所对应的type0-PDCCH的偏移值以S毫秒(即ms)或S时隙为单位,即以S为颗粒度进行偏移,相邻的偏移为S毫秒或S时隙,A表示SFN的最低位(1 st least significant bits of the system frame number)的取值,B表示半帧索引(half frame index)的取值,通常取值为0或1,这里以S(单位为ms)为例说明如下。
对于SSB索引i,
Figure PCTCN2020135128-appb-000010
假定位于无线帧SFN C内,如果
Figure PCTCN2020135128-appb-000011
即SFN Cmod2=0,则认为type0-PDCCH的公共搜索空间位于偶数无线帧内,如果
Figure PCTCN2020135128-appb-000012
即SFN Cmod2=1,即type0-PDCCH的公共搜索空间位于奇数无线帧内。
上述的实施例中,该(2A+B)S即可理解为预定义的时间参数。换句话说,在某些固定的场景中,如进行一次重复传输,该(2A+B)S的值可以预先确定,并将上述公式中的(2A+B)S替换为该可预先确定的时间值。
当S对应的是时隙时,可以用如下方式确定重复传输的PBCH或重复传输的SSB相对应的type0-PDCCH的检测起始时隙:
对于SSB索引i,
Figure PCTCN2020135128-appb-000013
假定位于无线帧SFN C内,如果
Figure PCTCN2020135128-appb-000014
即SFN Cmod2=0,则认为type0-PDCCH的公共搜索空间位于偶数无线帧内,如果
Figure PCTCN2020135128-appb-000015
即SFN Cmod2=1,即type0-PDCCH的公共搜索空间位于奇数无线帧内。
例如,如果PBCH位于奇数无线帧的后半帧,则对应的A为1,B为1,则偏移值为(2·A+B)·S=3S,如果PBCH位于偶数无线帧的前半帧,则A为0,B为0,不存在偏移值。
如果PBCH(或者SSB)在20ms内只重复传了1次,则该偏移值可以只与无线帧号或者半帧指示相关,例如PBCH在20ms内的两次重复传输之间间隔10ms,此时两次PBCH传输只有无线帧号的最后一位发生了变化。则可以通过如下方式确定type0-PDCCH的检测起始时隙。
情况二、n 0与重复传输的PBCH或SSB所对应半帧指示比特取值相关。
对于SSB索引i,
Figure PCTCN2020135128-appb-000016
假定对应的检测起始时隙序号位于无线帧SFN C内,如果
Figure PCTCN2020135128-appb-000017
即SFN Cmod2=0,则type0-PDCCH的公共搜索空间位于偶数无线帧内,如果
Figure PCTCN2020135128-appb-000018
即SFN Cmod2=1,则type0-PDCCH的公共搜索空间位于奇数无线帧内。或者
Figure PCTCN2020135128-appb-000019
上述判断无线帧SFN C是奇数帧或偶数帧的函数中,相应的用
Figure PCTCN2020135128-appb-000020
替换
Figure PCTCN2020135128-appb-000021
上述的实施例中,该AS即可理解为预定义的时间参数。换句话说,在某些固定的场景中,如进行一次重复传输,该AS的值可以预先确定,并将上述公式中的AS替换为该可预先确定的时间值。
如果PBCH在20ms内只重复传输了1次,两次传输位于同一个无线帧的 两个半帧中,则该偏移值只与半帧指示相关,
对于SSB索引i,
Figure PCTCN2020135128-appb-000022
假定对应的检测起始时隙序号位于无线帧SFN C内,如果
Figure PCTCN2020135128-appb-000023
即SFN Cmod2=0,则type0-PDCCH的公共搜索空间位于偶数无线帧内,如果
Figure PCTCN2020135128-appb-000024
即SFN Cmod2=1,则type0-PDCCH的公共搜索空间位于奇数无线帧内。或者
Figure PCTCN2020135128-appb-000025
上述判断无线帧SFN C是奇数帧或偶数帧的公式中,相应的用
Figure PCTCN2020135128-appb-000026
替换
Figure PCTCN2020135128-appb-000027
上述的实施例中,该BS即可理解为预定义的时间参数。换句话说,在某些固定的场景中,如进行一次重复传输,该BS的值可以预先确定,并将上述公式中的BS替换为该可预先确定的时间值。
如图4所示是一种实现效果图,两次PBCH重复都位于奇数帧中,只是位于不同的半帧,则两次PBCH对应的type0-PDCCH检测起始时隙偏移5ms。图4为子载波间隔为30KHz,SSB在每20ms的第3个半帧传输,type0-PDCCH的检测起始时隙对应38.213表13-11的index0时的检测起始时隙示意图,其中,a表示重复的type0-PDCCH和SIB1传输,b表示重复的PBCH传输。
检测起始时隙n 0也可以为重复传输的PBCH或SSB的传输次数索引的函数。PBCH(或者SSB)在每20ms内传输N次,可以基于这些PBCH的位置为每次传输编号j,其中j=0,1,…,N-1,重复传输的type0-PDCCH对应的时隙位置与PBCH重复传输的编号相关。
例如:对于SSB索引i,
Figure PCTCN2020135128-appb-000028
位于无线帧SFN C内,如果
Figure PCTCN2020135128-appb-000029
则SFN Cmod2=0,即位于偶数无线帧内,如果
Figure PCTCN2020135128-appb-000030
则SFN Cmod2=1,即位于奇数无线帧内。其中HRF为半帧指示,表示PBCH传输所在的半帧是无线帧的前半帧还是后半帧。或者
Figure PCTCN2020135128-appb-000031
上述判断无线帧SFN C是奇数帧或偶数帧的公式中,相应的用
Figure PCTCN2020135128-appb-000032
替换
Figure PCTCN2020135128-appb-000033
上述的实施例中,该jS即可理解为预定义的时间参数。换句话说,在某些固定的场景中,如进行一次重复传输,该jS的值可以预先确定,并将上述公式中的jS替换为该可预先确定的时间值。
需要说明的是本申请中,PBCH的重复传输可以只传输PBCH不传输PSS或SSS,也可以是整个SSB的重复传输。确定type0-PDCCH的检测起始时隙的公式确定方式类似,当重复的不是完整的SSB时,重复的PBCH与完整的SSB的索引SSB i仍存在对应关系。
除了PBCH指示的type0-PDCCH的检测位置,还引入了一些同时隙或者其他时隙的不同符号的检测位置,部分重复发送的PBCH对应的type0-PDCCH的检测位置为这些非PBCH指示的位置,如图5为子载波间隔为30KHz,SSB在每20ms的第3个半帧传输,type0-PDCCH的检测起始时隙对应38.213表13-11的index0时的检测起始时隙示意图,其中,c表示第一次传输对应的检测位置,d表示第二次传输对应的检测位置,e表示第三次传输对应的检测位置,f表示第四次传输对应的检测位置,c和e标识的位置为:PBCH指示的检测type0-PDCCH的位置,第一个符号索引为0,d和f标识的位置为:额外的检测type0-PDCCH的位置,起始符号索引为0。
通过这样的设计,可以实现前向兼容,PBCH指示的原始的type0-PDCCH的检测位置依然有效,传统的UE也能通过PBCH获得对应的type0-PDCCH的检测起始时隙,并进行PDCCH的检测;可以通过配置S=5ms这样的间隔,适配半静态帧结构。
在本申请一个实施例中,所述与重复传输的PBCH或重复传输的SSB相对应的type0-PDCCH公共搜索空间中传输的所有PDCCH或者部分PDCCH承载的下行控制信息(Downlink Control Information,DCI)内容相同。
具体的,type0-PDCCH在8CCE时的码率比PBCH稍大,PBCH还可以进一步有80ms内的4次合并增益,而type0-PDCCH标准未支持合并。考虑到其传输可靠性,本公开具体实施例中,可以设置传输DCI内容完全相同,或者部分传输相同,例如可以通过标准约定在160ms的8次传输DCI内容完全相同,或者部分传输相同,例如前4次相同,后4次相同。通过这种约束,能够实现type0-PDCCH的合并,增强其传输可靠性。
当要求160ms内的全部8次或者部分type0-PDCCH传输的DCI相同时,如果其资源分配域完全相同,将导致被调度的物理下行共享信道(Physical Downlink Shared Channel,PDSCH)的频域资源在8次传输时完全相同,无法 获得频率分集增益。因此,本公开具体实施例中,在8次传输之间引入跳频:预定义跳频间隔N,作为连续两次传输频域起始位置的RB的间隔;N可以是与重复传输次数相关的参数,例如,B为传输type0的initial BWP的带宽,令N=B/L,L为重复次数。
也就是说,本申请一个实施例中,所述具有相同内容的DCI所调度的目标PDSCH被配置为在频域或时域上存在偏移。
上述这种跳频的方式对于支持某些协议的终端是无法后向兼容的,因此如果要后向兼容,实现方式是只引入20ms内重复传输的PBCH所对应的type0-PDCCH调度的PDSCH传输之间的跳频。Type0-PDCCH调度的PDSCH一般用于承载SIB1的传输或者说是剩余最小系统信息(Remaining minimum system information,RMSI)。
由于传统UE接入时,对于每20ms内的PBCH只能识别出一个type0-PDCCH及相应的PDSCH。将这个PDSCH作为基准,其他的type0-PDCCH调度的PDSCH在这个基准的基础上进行时频域的偏移,频域的偏移也即跳频的偏移,时域的偏移确保了PDSCH在时域上的相互错开。
上述的跳频间隔可以是预定义的或者通过PBCH指示的。
进一步的,所述目标PDSCH在频域上的偏移由协议预定义;
所述目标PDSCH在频域上的偏移与传输所述DCI的type0-PDCCH的公共搜索空间所在的控制信道资源集合相关;
所述目标PDSCH在频域上的偏移与所述重复传输的PBCH或SSB的传输次数索引相关。
参见图6,图6是本公开实施例提供的一种接收方法的一流程图,应用于终端,如图6所示,所述接收方法包括以下步骤:
步骤201、确定重复传输的PBCH或重复传输的SSB相对应的type0-PDCCH公共搜索空间的检测起始时隙。所述type0-PDCCH公共搜索空间的检测起始时隙与PBCH中的主信息块MIB携带的信息和预定义的时间参数相关,或者,所述type0-PDCCH公共搜索空间检测起始时隙与PBCH中的MIB携带的信息和 所述重复传输的PBCH或SSB的传输信息相关。
所述预定义的时间参数为以时隙或者绝对时长为单位的时间值,即预定义的时间参数,为一个以时隙或者绝对时长(如5ms)为单位的数值。
步骤202、在与所述重复传输的PBCH或重复传输的SSB相对应的type0-PDCCH公共搜索空间检测PDCCH。
本公开具体实施例的方法可以用于SSB中PBCH的重复传输的场景,也可以用于SSB中的PBCH的重复传输场景,即只有PBCH的重复传输,而主同步信号(Primary Synchronization Signal,PSS)和辅同步信号(Secondary Synchronization Signal,SSS)没有重复传输。当只有PBCH部分进行了重复传输时(PSS和SSS没有重传),存在一个与其对应的完整的SSB传输,该SSB的PBCH与重复的PBCH承载的内容完全相同,例如可用于传统NR终端接入的SSB。因此对于这种只有PBCH重复的传输也相应的存在与其对应的type0-PDCCH公共搜索空间。在SSB中的PBCH的重复传输场景中,每一个PBCH都对应于一个完整的SSB。
应当理解的是,本公开具体实施例中的SSB的重复传输指的是具有相同SSB索引的SSB的多次传输。同样的,PBCH的重复传输指的是具有相同SSB索引的SSB中的PBCH的多次重复传输。
具体的,对于SSB index i(即SSB的索引i)而言,终端会在起始时隙为n 0的连续两个时隙中的type0-PDCCH搜索空间中检测PDCCH,这里称这个搜索空间为与SSB i对应的type0-PDCCH公共搜索空间。
本实施例中,确定重复传输的PBCH或重复传输的SSB相对应的type0-PDCCH公共搜索空间的检测起始时隙;在与所述重复传输的PBCH或重复传输的SSB相对应的type0-PDCCH公共搜索空间检测PDCCH。由于所述type0-PDCCH公共搜索空间的检测起始时隙与PBCH中的主信息块MIB携带的信息和预定义的时间参数相关,或者,所述type0-PDCCH公共搜索空间检测起始时隙与PBCH中的MIB携带的信息和所述重复传输的PBCH或SSB的传输信息相关,在时域上,所述重复传输的PBCH或重复传输的SSB相对应的type0-PDCCH公共搜索空间的检测起始时隙存在时间偏移。由于重复传输的PBCH或重复传输的SSB相对应的type0-PDCCH公共搜索空间的检测起始时隙 存在时间偏移,可使得重复传输的PBCH或重复传输的SSB相对应的type0-PDCCH公共搜索空间的检测起始时隙各不相同,这样,终端可基于这些时域上具有一定偏移的搜索空间中的PDCCH进行广播信息的调度。
在本申请一个实施例中,所述重复传输的PBCH或重复传输的SSB均位于偶数无线帧或者均位于奇数无线帧中,且在同一个无线帧中传输次数大于1。
具体的,当PBCH或SSB重复传输时,重复传输的PBCH或SSB传输位于同一个无线帧内,而不会分散到20ms的两个无线帧。这样PBCH中只会有半帧指示比特会发生变化,而无线帧号的最后一位不会发生变化,可尽可能降低PBCH检测的复杂度。
对此进一步详细说明如下。
根据NR的PBCH的处理流程,PBCH的传输使用了双层加扰。第一层加扰过程中,对重复传输的不变的内容进行了加扰,包括高层的24比特,SFN的最低4位中的倒数第1位和倒数第4位。
如果重复传输的PBCH或SSB不是位于同一个无线帧,则不同的PBCH的SFN的最低4位中的最后一位会发生变化,无法参与第一层加扰,这将加大PBCH检测的复杂度。
而本公开具体实施例中,重复传输的PBCH或SSB位于同一无线帧,例如同时位于偶数无线帧或者同时位于奇数无线帧中,则PBCH的SFN的最低4位中的最后一位都是相同的,可以利用相关技术中的NR流程进行加扰,不会提高复杂度。
下面结合附图进一步说明如下。例如,为了增强PBCH的覆盖,使用同一个无线帧的两个半帧实现每20ms内的2次PBCH的重复传输。与10ms传输周期的不同在于,10ms周期的传输每20ms内的两次重复传输间隔10ms,而使用同一个无线帧的两个半帧实现的每20ms内的2次PBCH传输间隔5ms。如图2所示为10ms周期的示意图,如图3所示为使用同一个无线帧的两个半帧实现每20ms内的2次PBCH的重复传输的示意图。
图3所示的传输方式中,由于重复传输的PBCH传输只会出现在奇数无线帧或者偶数无线帧,SFN的最低位是保持不变的,尽管HRF指示比特会发生变化,但由于HRF不会经过第一层加扰,UE采用与SFN的倒数第2,3位类 似的盲检假设方式进行盲检即可进行PBCH的合并。
图3所示的传输方式中,PBCH的重复通过SSB的重复来实现。另一种实现方式是SSB中的PSS和SSS并不增加重复,仍然只是20ms内传输一次,而间隔5ms的重复传输只传输PBCH的部分。
在本申请一个实施例中,所述重复传输的PBCH对应的SSB或重复传输的SSB具有相同的SSB索引。
也就是说,本公开具体实施例中的SSB的重复传输指的是具有相同SSB索引的SSB的多次传输。同样的,PBCH的重复传输指的是对应于相同SSB索引的PBCH的多次传输。
而时间偏移,也是指,对于同一SSB索引i,重复传输的SSB i或者与SSB i对应的重复传输的PBCH对应的type0-PDCCH公共搜索空间的检测起始时隙在时域上存在时间偏移。
在本申请一个实施例中,所述传输信息包括如下信息中的至少一项:
所述重复传输的PBCH或SSB所处的半帧,或者PBCH携带的半帧指示比特;
所述重复传输的PBCH或SSB所处的无线帧,或者PBCH携带的无线帧号;
所述重复传输的PBCH或SSB的传输次数索引。
在本申请一个实施例中,所述重复传输的PBCH或重复传输的SSB相对应的type0-PDCCH公共搜索空间的检测起始时隙n 0为至少一个如下参数的函数:
所述重复传输的PBCH或SSB所处的无线帧号;
所述重复传输的PBCH或SSB所对应半帧指示比特取值;
所述重复传输的PBCH或SSB的传输次数索引。
具体的,检测起始时隙n 0具体可通过如下表达式确定:
Figure PCTCN2020135128-appb-000034
或者
Figure PCTCN2020135128-appb-000035
或者
Figure PCTCN2020135128-appb-000036
或者
Figure PCTCN2020135128-appb-000037
或者
Figure PCTCN2020135128-appb-000038
或者
Figure PCTCN2020135128-appb-000039
或者
Figure PCTCN2020135128-appb-000040
或者
Figure PCTCN2020135128-appb-000041
所述n 0为所述重复传输的PBCH对应的SSB i或重复传输的SSB i对应的type0-PDCCH公共搜索空间的检测起始时隙序号,所述i为SSB索引,所述O为SSB i所对应的type0-PDCCH搜索空间检测起始时隙与偶数帧的起始位置之间的子帧间隔,所述A为SFN的最低位的取值,所述B为半帧指示比特取值,所述S为所述时间的颗粒度,所述μ为CORESET#0的子载波间隔;所述M为SSB i对应的type0-PDCCH搜索空间占用的等效时隙数,
Figure PCTCN2020135128-appb-000042
为以SIB1的子载波间隔单位的一个系统帧中的时隙个数;所述j为所述重复传输的PBCH或重复传输的SSB的传输编号。
具体的,在检测起始时隙的确定函数中引入与半帧指示值(可理解为半帧指示比特取值)和/或无线帧号相关的偏移值。
其中,O和M的含义与相关技术中3GPP协议计算n0时所约定的含义相同。A也可以是重复传输的PBCH所在的SFN帧号对2取模的值,与SFN的最低位的取值是等效的。这里SNF的最低位的取值指的是2进制的比特的取值。
以下分别说明如下。
情况一、n 0与重复传输的PBCH或SSB所处的无线帧号相关。
重复传输的PBCH或重复传输的SSB相对应的type0-PDCCH的检测起始时隙n 0通过如下方式确定:
对于SSB索引i,假定对应的检测起始时隙序号位于无线帧SFN C内,如果SFN Cmod2=0,则type0-PDCCH的公共搜索空间位于偶数无线帧内,如果SFN Cmod2=1,则type0-PDCCH的公共搜索空间位于奇数无线帧内。
假设重复传输的PBCH所对应的type0-PDCCH的偏移值以S毫秒(即ms)或S时隙为单位,即以S为颗粒度进行偏移,相邻的偏移为S毫秒或S时隙,A表示SFN的最低位(1 stleast significant bits of the system frame number)的取值,B表示半帧索引(half frame index)的取值,通常取值为0或1,这里以S(单位为ms)为例说明如下:
对于SSB索引i,
Figure PCTCN2020135128-appb-000043
假定位于无线帧SFN C内,如果
Figure PCTCN2020135128-appb-000044
即SFN Cmod2=0,则认为type0-PDCCH的公共搜索空间位于偶数无线帧内,如果
Figure PCTCN2020135128-appb-000045
即SFN Cmod2=1,即type0-PDCCH的公共搜索空间位于奇数无线帧内。
上述的实施例中,该(2A+B)S即可理解为预定义的时间参数。换句话说,在某些固定的场景中,如进行一次重复传输,该(2A+B)S的值可以预先确定,并将上述公式中的(2A+B)S替换为该可预先确定的时间值。
当S对应的是时隙时,可以用如下方式确定重复传输的PBCH或重复传输的SSB相对应的type0-PDCCH的检测起始时隙:
对于SSB索引i,
Figure PCTCN2020135128-appb-000046
假定位于无线帧SFN C内,如果
Figure PCTCN2020135128-appb-000047
即SFN Cmod2=0,则认为type0-PDCCH的公共搜索空间位于偶数无线帧内,如果
Figure PCTCN2020135128-appb-000048
即SFN Cmod2=1,即type0-PDCCH的公共搜索空间位于奇数无线帧内。
例如,如果PBCH位于奇数无线帧的后半帧,则对应的A为1,B为1,则偏移值为(2·A+B)·S=3S,如果PBCH位于偶数无线帧的前半帧,则A为0,B为0,不存在偏移值。
如果PBCH(或者SSB)在20ms内只重复传了1次,则该偏移值可以只与无线帧号或者半帧指示相关,例如PBCH在20ms内的两次重复传输之间间隔10ms,此时两次PBCH传输只有无线帧号的最后一位发生了变化。则可以通过如下方式确定type0-PDCCH的检测起始时隙。
情况二、n 0与重复传输的PBCH或SSB所对应半帧指示比特取值相关。
对于SSB索引i,
Figure PCTCN2020135128-appb-000049
假定对应的检测起始时 隙序号位于无线帧SFN C内,如果
Figure PCTCN2020135128-appb-000050
即SFN Cmod2=0,则type0-PDCCH的公共搜索空间位于偶数无线帧内,如果
Figure PCTCN2020135128-appb-000051
即SFN Cmod2=1,则type0-PDCCH的公共搜索空间位于奇数无线帧内。或者
Figure PCTCN2020135128-appb-000052
上述判断无线帧SFN C是奇数帧或偶数帧的函数中,相应的用
Figure PCTCN2020135128-appb-000053
替换
Figure PCTCN2020135128-appb-000054
上述的实施例中,该AS即可理解为预定义的时间参数。换句话说,在某些固定的场景中,如进行一次重复传输,该AS的值可以预先确定,并将上述公式中的AS替换为该可预先确定的时间值。
如果PBCH在20ms内只重复传输了1次,两次传输位于同一个无线帧的两个半帧中,则该偏移值只与半帧指示相关。
对于SSB索引i,
Figure PCTCN2020135128-appb-000055
假定对应的检测起始时隙序号位于无线帧SFN C内,如果
Figure PCTCN2020135128-appb-000056
即SFN Cmod2=0,则type0-PDCCH的公共搜索空间位于偶数无线帧内,如果
Figure PCTCN2020135128-appb-000057
即SFN Cmod2=1,则type0-PDCCH的公共搜索空间位于奇数无线帧内。或者
Figure PCTCN2020135128-appb-000058
上述判断无线帧SFN C是奇数帧或偶数帧的公式中,相应的用
Figure PCTCN2020135128-appb-000059
替换
Figure PCTCN2020135128-appb-000060
上述的实施例中,该BS即可理解为预定义的时间参数。换句话说,在某些固定的场景中,如进行一次重复传输,该BS的值可以预先确定,并将上述公式中的BS替换为该可预先确定的时间值。
如图4所示是一种实现效果图,两次PBCH重复都位于奇数帧中,只是位于不同的半帧,则两次PBCH对应的type0-PDCCH检测起始时隙偏移5ms。
检测起始时隙n 0也可以为重复传输的PBCH或SSB的传输次数索引的函数。PBCH(或者SSB)在每20ms内传输N次,可以基于这些PBCH的位置为每次传输编号j,其中j=0,1,…,N-1,重复传输的type0-PDCCH对应的时隙位置与PBCH重复传输的编号相关。
例如:对于SSB索引i,
Figure PCTCN2020135128-appb-000061
位于无线帧SFN C内,如果
Figure PCTCN2020135128-appb-000062
则SFN Cmod2=0,即位于偶数无线帧内, 如果
Figure PCTCN2020135128-appb-000063
则SFN Cmod2=1,即位于奇数无线帧内。其中HRF为半帧指示,表示PBCH传输所在的半帧是无线帧的前半帧还是后半帧。或者
Figure PCTCN2020135128-appb-000064
上述判断无线帧SFN C是奇数帧或偶数帧的公式中,相应的用
Figure PCTCN2020135128-appb-000065
替换
Figure PCTCN2020135128-appb-000066
上述的实施例中,该jS即可理解为预定义的时间参数。换句话说,在某些固定的场景中,如进行一次重复传输,该jS的值可以预先确定,并将上述公式中的jS替换为该可预先确定的时间值。
需要说明的是本申请中,PBCH的重复传输可以只传输PBCH不传输PSS或SSS,也可以是整个SSB的重复传输。确定type0-PDCCH的检测起始时隙的公式确定方式类似,当重复的不是完整的SSB时,重复的PBCH与完整的SSB的索引SSB i仍存在对应关系。
除了PBCH指示的type0-PDCCH的检测位置,还引入了一些同时隙或者其他时隙的不同符号的检测位置,部分重复发送的PBCH对应的type0-PDCCH的检测位置为这些非PBCH指示的位置,如图5所示。
通过这样的设计,可以实现前向兼容,PBCH指示的原始的type0-PDCCH的检测位置依然有效,传统的UE也能通过PBCH获得对应的type0-PDCCH的检测起始时隙,并进行PDCCH的检测;可以通过配置S=5ms这样的间隔,适配半静态帧结构。
在本申请一个实施例中,所述与重复传输的PBCH或重复传输的SSB相对应的type0-PDCCH公共搜索空间中传输的所有PDCCH或者部分PDCCH承载的DCI内容相同。
具体的,type0-PDCCH在8CCE时的码率比PBCH稍大,PBCH还可以进一步有80ms内的4次合并增益,而type0-PDCCH标准未支持合并。考虑到其传输可靠性,本公开具体实施例中,可以设置传输DCI内容完全相同,或者部分传输相同,例如可以通过标准约定在160ms的8次传输DCI内容完全相同,或者部分传输相同,例如前4次相同,后4次相同。通过这种约束,能够实现type0-PDCCH的合并,增强其传输可靠性。
当要求160ms内的全部8次或者部分type0-PDCCH传输的DCI相同时,如果资源分配域完全相同,将导致被调度的PDSCH的频域资源在8次传输时 完全相同,无法获得频率分集增益。因此,本公开具体实施例中,在8次传输之间引入跳频:预定义跳频间隔N,作为连续两次传输频域起始位置的RB的间隔;N可以是与重复传输次数相关的参数,例如,B为传输type0的initial BWP的带宽,令N=B/L,L为重复次数。
也就是说,在本申请一个实施例中,所述具有相同内容的DCI所调度的目标PDSCH被配置为在频域或时域上存在偏移。
上述这种跳频的方式对于支持某些协议的终端是无法后向兼容的,因此如果要后向兼容,实现方式是只引入20ms内重复传输的PBCH所对应的type0-PDCCH调度的PDSCH传输之间的跳频。Type0-PDCCH调度的PDSCH一般用于承载SIB1的传输或者说是剩余最小系统信息(Remaining minimum system information,RMSI)。
由于传统UE接入时,对于每20ms内的PBCH只能识别出一个type0-PDCCH及相应的PDSCH。将这个PDSCH作为基准,其他的type0-PDCCH调度的PDSCH在这个基准的基础上进行时频域的偏移,频域的偏移也即跳频的偏移,时域的偏移确保了PDSCH在时域上的相互错开。
上述的跳频间隔可以是预定义的或者通过PBCH指示的。
在本申请一个实施例中,所述目标PDSCH在频域上的偏移由协议预定义;
所述目标PDSCH在频域上的偏移与传输所述DCI的type0-PDCCH的公共搜索空间所在的控制信道资源集合相关;
所述目标PDSCH在频域上的偏移与所述重复传输的PBCH或SSB的传输次数索引相关。
参见图7,图7是本公开实施例提供的一种网络设备的结构示意图,如图7所示,网络设备300包括:
发送模块301,用于在与重复传输的PBCH或重复传输的SSB相对应的type0-PDCCH公共搜索空间中传输PDCCH;所述type0-PDCCH公共搜索空间的检测起始时隙与PBCH中的主信息块MIB携带的信息和预定义的时间参数相关,或者,所述type0-PDCCH公共搜索空间检测起始时隙与PBCH中的MIB携带的 信息和所述重复传输的PBCH或SSB的传输信息相关。
进一步的,所述预定义的时间参数为以时隙或者绝对时长为单位的时间值。
进一步的,所述重复传输的PBCH或重复传输的SSB均位于偶数无线帧或者均位于奇数无线帧中,且在同一个无线帧中传输次数大于1。
进一步的,所述重复传输的PBCH对应的SSB或重复传输的SSB具有相同的SSB索引。
进一步的,所述传输信息包括如下信息中的至少一项:
所述重复传输的PBCH或SSB所处的半帧,或者PBCH携带的半帧指示比特;
所述重复传输的PBCH或SSB所处的无线帧,或者PBCH携带的无线帧号;
所述重复传输的PBCH或SSB的传输次数索引。
进一步的,所述重复传输的PBCH或重复传输的SSB相对应的type0-PDCCH公共搜索空间的检测起始时隙n 0为至少一个如下参数的函数:
所述重复传输的PBCH或SSB所处的无线帧号;
所述重复传输的PBCH或SSB所对应半帧指示比特取值;
所述重复传输的PBCH或SSB的传输次数索引。
进一步的,所述重复传输的PBCH或重复传输的SSB相对应的type0-PDCCH公共搜索空间的检测起始时隙n 0为:
Figure PCTCN2020135128-appb-000067
或者
Figure PCTCN2020135128-appb-000068
或者
Figure PCTCN2020135128-appb-000069
或者
Figure PCTCN2020135128-appb-000070
或者
Figure PCTCN2020135128-appb-000071
或者
Figure PCTCN2020135128-appb-000072
或者
Figure PCTCN2020135128-appb-000073
或者
Figure PCTCN2020135128-appb-000074
所述n 0为所述重复传输的PBCH对应的SSBi或重复传输的SSBi对应的type0-PDCCH公共搜索空间的检测起始时隙序号,所述i为SSB索引,所述O为SSBi所对应的type0-PDCCH搜索空间检测起始时隙与偶数帧的起始位置之间的子帧间隔,所述A为SFN的最低位的取值,所述B为半帧指示比特取值,所述S为所述时间的颗粒度,所述μ为CORESET#0的子载波间隔;所述M为SSBi对应的type0-PDCCH搜索空间占用的等效时隙数,
Figure PCTCN2020135128-appb-000075
为基于承载type0-PDCCH的控制资源集合的子载波间隔的一个系统帧中的时隙个数;所述j为所述重复传输的PBCH或重复传输的SSB的传输编号。
进一步的,所述与重复传输的PBCH或重复传输的SSB相对应的type0-PDCCH公共搜索空间中传输的所有PDCCH或者部分PDCCH承载的DCI内容相同。
进一步的,所述具有相同内容的DCI所调度的目标PDSCH被配置为在频域或时域上存在偏移。
进一步的,所述目标PDSCH在频域上的偏移由协议预定义;
所述目标PDSCH在频域上的偏移与传输所述DCI的type0-PDCCH的公共搜索空间所在的控制信道资源集合相关;
所述目标PDSCH在频域上的偏移与所述重复传输的PBCH或SSB的传输次数索引相关。
网络设备300能够实现图1所示的方法实施例中网络设备实现的各个过程,为避免重复,这里不再赘述。
本公开实施例的网络设备300,在与重复传输的PBCH或重复传输的SSB相对应的type0-PDCCH公共搜索空间中传输PDCCH;由于所述type0-PDCCH 公共搜索空间的检测起始时隙与PBCH中的主信息块MIB携带的信息和预定义的时间参数相关,或者,所述type0-PDCCH公共搜索空间检测起始时隙与PBCH中的MIB携带的信息和所述重复传输的PBCH或SSB的传输信息相关,使得在时域上,所述重复传输的PBCH或重复传输的SSB相对应的type0-PDCCH公共搜索空间的检测起始时隙存在时间偏移。由于重复传输的PBCH或重复传输的SSB相对应的type0-PDCCH公共搜索空间的检测起始时隙存在时间偏移,可使得重复传输的PBCH或重复传输的SSB相对应的type0-PDCCH公共搜索空间的检测起始时隙各不相同,使得UE可基于这些时域上具有一定偏移的搜索空间中的PDCCH进行广播信息的调度。
参见图8,本公开实施例还提供了一种网络设备,包括总线1001、收发机1002、天线1003、总线接口1004、处理器1005和存储器1006。
所述收发机1002,用于在与重复传输的PBCH或重复传输的SSB相对应的type0-PDCCH公共搜索空间中传输PDCCH;所述type0-PDCCH公共搜索空间的检测起始时隙与PBCH中的主信息块MIB携带的信息和预定义的时间参数相关,或者,所述type0-PDCCH公共搜索空间检测起始时隙与PBCH中的MIB携带的信息和所述重复传输的PBCH或SSB的传输信息相关。
进一步的,所述预定义的时间参数为以时隙或者绝对时长为单位的时间值。
进一步的,所述重复传输的PBCH或重复传输的SSB均位于偶数无线帧或者均位于奇数无线帧中,且在同一个无线帧中传输次数大于1。
进一步的,所述重复传输的PBCH对应的SSB或重复传输的SSB具有相同的SSB索引。
进一步的,所述传输信息包括如下信息中的至少一项:
所述重复传输的PBCH或SSB所处的半帧,或者PBCH携带的半帧指示比特;
所述重复传输的PBCH或SSB所处的无线帧,或者PBCH携带的无线帧号;
所述重复传输的PBCH或SSB的传输次数索引。
进一步的,所述重复传输的PBCH或重复传输的SSB相对应的type0-PDCCH公共搜索空间的检测起始时隙存在时间偏移,包括,
所述重复传输的PBCH或重复传输的SSB相对应的type0-PDCCH公共搜索空间的检测起始时隙n 0为至少一个如下参数的函数:
所述重复传输的PBCH或SSB所处的无线帧号;
所述重复传输的PBCH或SSB所对应半帧指示比特取值;
所述重复传输的PBCH或SSB的传输次数索引。
进一步的,所述重复传输的PBCH或重复传输的SSB相对应的type0-PDCCH公共搜索空间的检测起始时隙n 0为:
Figure PCTCN2020135128-appb-000076
或者
Figure PCTCN2020135128-appb-000077
或者
Figure PCTCN2020135128-appb-000078
或者
Figure PCTCN2020135128-appb-000079
或者
Figure PCTCN2020135128-appb-000080
或者
Figure PCTCN2020135128-appb-000081
或者
Figure PCTCN2020135128-appb-000082
或者
Figure PCTCN2020135128-appb-000083
所述n 0为所述重复传输的PBCH对应的SSBi或重复传输的SSBi对应的type0-PDCCH公共搜索空间的检测起始时隙序号,所述i为SSB索引,所述O为SSBi所对应的type0-PDCCH搜索空间检测起始时隙与偶数帧的起始位置之间的子帧间隔,所述A为SFN的最低位的取值,所述B为半帧指示比特取值,所述S为所述时间的颗粒度,所述μ为CORESET#0的子载波间隔;所述M为SSBi对应的type0-PDCCH搜索空间占用的等效时隙数,
Figure PCTCN2020135128-appb-000084
为基于承载type0-PDCCH的控制资源集合的子载波间隔的一个系统帧中的时隙个数;所 述j为所述重复传输的PBCH或重复传输的SSB的传输编号。
进一步的,所述与重复传输的PBCH或重复传输的SSB相对应的type0-PDCCH公共搜索空间中传输的所有PDCCH或者部分PDCCH承载的DCI内容相同。
进一步的,所述具有相同内容的DCI所调度的目标PDSCH被配置为在频域或时域上存在偏移。
进一步的,所述目标PDSCH在频域上的偏移由协议预定义;
所述目标PDSCH在频域上的偏移与传输所述DCI的type0-PDCCH的公共搜索空间所在的控制信道资源集合相关;
所述目标PDSCH在频域上的偏移与所述重复传输的PBCH或SSB的传输次数索引相关。
网络设备能够实现图1所示的方法实施例中网络设备实现的各个过程,为避免重复,这里不再赘述。
本公开实施例的网络设备,在与重复传输的PBCH或重复传输的SSB相对应的type0-PDCCH公共搜索空间中传输PDCCH;由于所述type0-PDCCH公共搜索空间的检测起始时隙与PBCH中的主信息块MIB携带的信息和预定义的时间参数相关,或者,所述type0-PDCCH公共搜索空间检测起始时隙与PBCH中的MIB携带的信息和所述重复传输的PBCH或SSB的传输信息相关,使得在时域上,所述重复传输的PBCH或重复传输的SSB相对应的type0-PDCCH公共搜索空间的检测起始时隙存在时间偏移。由于重复传输的PBCH或重复传输的SSB相对应的type0-PDCCH公共搜索空间的检测起始时隙存在时间偏移,可使得重复传输的PBCH或重复传输的SSB相对应的type0-PDCCH公共搜索空间的检测起始时隙各不相同,使得UE可基于这些时域上具有一定偏移的搜索空间中的PDCCH进行广播信息的调度。
在图8中,总线架构(用总线1001来代表),总线1001可以包括任意数量的互联的总线和桥,总线1001将包括由处理器1005代表的一个或多个处理器和存储器1006代表的存储器的各种电路链接在一起。总线1001还可以 将诸如外围设备、稳压器和功率管理电路等之类的各种其他电路链接在一起,这些都是本领域所公知的,因此,本文不再对其进行进一步描述。总线接口1004在总线1001和收发机1002之间提供接口。收发机1002可以是一个元件,也可以是多个元件,比如多个接收器和发送器,提供用于在传输介质上与各种其他装置通信的单元。经处理器1005处理的数据通过天线1003在无线介质上进行传输,进一步,天线1003还接收数据并将数据传送给处理器1005。
处理器1005负责管理总线1001和通常的处理,还可以提供各种功能,包括定时,外围接口,电压调节、电源管理以及其他控制功能。而存储器1006可以被用于存储处理器1005在执行操作时所使用的数据。
可选的,处理器1005可以是CPU、ASIC、FPGA或CPLD。
优选的,本公开实施例还提供一种网络设备,包括处理器1005,存储器1006,存储在存储器1006上并可在所述处理器1005上运行的计算机程序,该计算机程序被处理器1005执行时实现上述图1所示发送方法实施例的各个过程,且能达到相同的技术效果,为避免重复,这里不再赘述。
参见图9,图9是本公开实施例提供的一种终端的结构示意图,如图9所示,终端400包括处理模块401和接收模块402;
其中,所述处理模块401,用于确定重复传输的PBCH或重复传输的SSB相对应的type0-PDCCH公共搜索空间的检测起始时隙;
所述type0-PDCCH公共搜索空间的检测起始时隙与PBCH中的主信息块MIB携带的信息和预定义的时间参数相关,或者,所述type0-PDCCH公共搜索空间检测起始时隙与PBCH中的MIB携带的信息和所述重复传输的PBCH或SSB的传输信息相关。
所述接收模块402,用于在与所述重复传输的PBCH或重复传输的SSB相对应的type0-PDCCH公共搜索空间检测PDCCH。
进一步的,所述预定义的时间参数为以时隙或者绝对时长为单位的时间值。
进一步的,所述重复传输的PBCH或重复传输的SSB均位于偶数无线帧或者均位于奇数无线帧中,且在同一个无线帧中传输次数大于1。
进一步的,所述重复传输的PBCH对应的SSB或重复传输的SSB具有相同的SSB索引。
进一步的,所述传输信息包括如下信息中的至少一项:
所述重复传输的PBCH或SSB所处的半帧,或者PBCH携带的半帧指示比特;
所述重复传输的PBCH或SSB所处的无线帧,或者PBCH携带的无线帧号;
所述重复传输的PBCH或SSB的传输次数索引。
进一步的,所述重复传输的PBCH或重复传输的SSB相对应的type0-PDCCH公共搜索空间的检测起始时隙n 0为至少一个如下参数的函数:
所述重复传输的PBCH或SSB所处的无线帧号;
所述重复传输的PBCH或SSB所对应半帧指示比特取值;
所述重复传输的PBCH或SSB的传输次数索引。
进一步的,
Figure PCTCN2020135128-appb-000085
或者
Figure PCTCN2020135128-appb-000086
或者
Figure PCTCN2020135128-appb-000087
或者
Figure PCTCN2020135128-appb-000088
或者
Figure PCTCN2020135128-appb-000089
或者
Figure PCTCN2020135128-appb-000090
或者
Figure PCTCN2020135128-appb-000091
或者
Figure PCTCN2020135128-appb-000092
所述n 0为所述重复传输的PBCH对应的SSB i或重复传输的SSB i对应的type0-PDCCH公共搜索空间的检测起始时隙序号,所述i为SSB索引,所述O 为SSB i所对应的type0-PDCCH搜索空间检测起始时隙与偶数帧的起始位置之间的子帧间隔,所述A为SFN的最低位的取值,所述B为半帧指示比特取值,所述S为所述时间的颗粒度,所述μ为CORESET#0的子载波间隔;所述M为SSB i对应的type0-PDCCH搜索空间占用的等效时隙数,
Figure PCTCN2020135128-appb-000093
为以SIB1的子载波间隔单位的一个系统帧中的时隙个数;所述j为所述重复传输的PBCH或重复传输的SSB的传输编号。
进一步的,所述与重复传输的PBCH或重复传输的SSB相对应的type0-PDCCH公共搜索空间中传输的所有PDCCH或者部分PDCCH承载的DCI内容相同。
进一步的,所述具有相同内容的DCI所调度的目标PDSCH被配置为在频域或时域上存在偏移。
进一步的,所述目标PDSCH在频域上的偏移由协议预定义;
所述目标PDSCH在频域上的偏移与传输所述DCI的type0-PDCCH的公共搜索空间所在的控制信道资源集合相关;
所述目标PDSCH在频域上的偏移与所述重复传输的PBCH或SSB的传输次数索引相关
终端400能够实现图6所示的方法实施例中终端实现的各个过程,为避免重复,这里不再赘述。
本公开实施例的终端400,确定重复传输的PBCH或重复传输的SSB相对应的type0-PDCCH公共搜索空间的检测起始时隙;在与所述重复传输的PBCH或重复传输的SSB相对应的type0-PDCCH公共搜索空间检测PDCCH。由于所述type0-PDCCH公共搜索空间的检测起始时隙与PBCH中的主信息块MIB携带的信息和预定义的时间参数相关,或者,所述type0-PDCCH公共搜索空间检测起始时隙与PBCH中的MIB携带的信息和所述重复传输的PBCH或SSB的传输信息相关,使得在时域上,所述重复传输的PBCH或重复传输的SSB相对应的type0-PDCCH公共搜索空间的检测起始时隙存在时间偏移。由于重复传输的PBCH或重复传输的SSB相对应的type0-PDCCH公共搜索空间的检测起始时 隙存在时间偏移,可使得重复传输的PBCH或重复传输的SSB相对应的type0-PDCCH公共搜索空间的检测起始时隙各不相同,这样,终端可基于这些时域上具有一定偏移的搜索空间中的PDCCH进行广播信息的调度。
图10为实现本公开各个实施例的另一种终端的结构示意图,该终端1100包括但不限于:收发单元1101、网络模块1102、音频输出单元1103、输入单元1104、传感器1105、显示单元1106、用户输入单元1107、接口单元1108、存储器1109、处理器1110、以及电源1111等部件。本领域技术人员可以理解,图6中示出的终端结构并不构成对终端的限定,终端可以包括比图示更多或更少的部件,或者组合某些部件,或者不同的部件布置。在本公开实施例中,终端包括但不限于手机、平板电脑、笔记本电脑、掌上电脑、车载终端、可穿戴设备、以及计步器等。
其中,所述处理器1110,用于确定重复传输的PBCH或重复传输的SSB相对应的type0-PDCCH公共搜索空间的检测起始时隙;所述type0-PDCCH公共搜索空间的检测起始时隙与PBCH中的主信息块MIB携带的信息和预定义的时间参数相关,或者,所述type0-PDCCH公共搜索空间检测起始时隙与PBCH中的MIB携带的信息和所述重复传输的PBCH或SSB的传输信息相关。
收发单元1101,用于在与所述重复传输的PBCH或重复传输的SSB相对应的type0-PDCCH公共搜索空间检测PDCCH。
进一步的,所述预定义的时间参数为以时隙或者绝对时长为单位的时间值。
进一步的,所述重复传输的PBCH或重复传输的SSB均位于偶数无线帧或者均位于奇数无线帧中,且在同一个无线帧中传输次数大于1。
进一步的,所述重复传输的PBCH对应的SSB或重复传输的SSB具有相同的SSB索引。
进一步的,所述传输信息包括如下信息中的至少一项:
所述重复传输的PBCH或SSB所处的半帧,或者PBCH携带的半帧指示比特;
所述重复传输的PBCH或SSB所处的无线帧,或者PBCH携带的无线帧号;
所述重复传输的PBCH或SSB的传输次数索引。
进一步的,所述重复传输的PBCH或重复传输的SSB相对应的type0-PDCCH公共搜索空间的检测起始时隙n 0为至少一个如下参数的函数:
所述重复传输的PBCH或SSB所处的无线帧号;
所述重复传输的PBCH或SSB所对应半帧指示比特取值;
所述重复传输的PBCH或SSB的传输次数索引。
进一步的,
Figure PCTCN2020135128-appb-000094
或者
Figure PCTCN2020135128-appb-000095
或者
Figure PCTCN2020135128-appb-000096
或者
Figure PCTCN2020135128-appb-000097
或者
Figure PCTCN2020135128-appb-000098
或者
Figure PCTCN2020135128-appb-000099
或者
Figure PCTCN2020135128-appb-000100
或者
Figure PCTCN2020135128-appb-000101
所述n 0为所述重复传输的PBCH对应的SSB i或重复传输的SSB i对应的type0-PDCCH公共搜索空间的检测起始时隙序号,所述i为SSB索引,所述O为SSB i所对应的type0-PDCCH搜索空间检测起始时隙与偶数帧的起始位置之间的子帧间隔,所述A为SFN的最低位的取值,所述B为半帧指示比特取值,所述S为所述时间的颗粒度,所述μ为CORESET#0的子载波间隔;所述M为SSB i对应的type0-PDCCH搜索空间占用的等效时隙数,
Figure PCTCN2020135128-appb-000102
为以SIB1的子载波间隔单位的一个系统帧中的时隙个数;所述j为所述重复传输的PBCH或重复传输的SSB的传输编号。
进一步的,所述与重复传输的PBCH或重复传输的SSB相对应的 type0-PDCCH公共搜索空间中传输的所有PDCCH或者部分PDCCH承载的DCI内容相同。
进一步的,所述具有相同内容的DCI所调度的目标PDSCH被配置为在频域或时域上存在偏移。
进一步的,所述目标PDSCH在频域上的偏移由协议预定义;
所述目标PDSCH在频域上的偏移与传输所述DCI的type0-PDCCH的公共搜索空间所在的控制信道资源集合相关;
所述目标PDSCH在频域上的偏移与所述重复传输的PBCH或SSB的传输次数索引相关。
终端1100能够实现图6所示的方法实施例中终端实现的各个过程,为避免重复,这里不再赘述。
本公开实施例的终端1100,确定重复传输的PBCH或重复传输的SSB相对应的type0-PDCCH公共搜索空间的检测起始时隙;在与所述重复传输的PBCH或重复传输的SSB相对应的type0-PDCCH公共搜索空间检测PDCCH。由于所述type0-PDCCH公共搜索空间的检测起始时隙与PBCH中的主信息块MIB携带的信息和预定义的时间参数相关,或者,所述type0-PDCCH公共搜索空间检测起始时隙与PBCH中的MIB携带的信息和所述重复传输的PBCH或SSB的传输信息相关,使得在时域上,所述重复传输的PBCH或重复传输的SSB相对应的type0-PDCCH公共搜索空间的检测起始时隙存在时间偏移。由于重复传输的PBCH或重复传输的SSB相对应的type0-PDCCH公共搜索空间的检测起始时隙存在时间偏移,可使得重复传输的PBCH或重复传输的SSB相对应的type0-PDCCH公共搜索空间的检测起始时隙各不相同,这样,终端可基于这些时域上具有一定偏移的搜索空间中的PDCCH进行广播信息的调度。
应理解的是,本公开实施例中,收发单元1101可用于收发信息或通话过程中,信号的接收和发送,具体的,将来自基站的下行数据接收后,给处理器1110处理;另外,将上行的数据发送给基站。通常,收发单元1101包括但不限于天线、至少一个放大器、收发信机、耦合器、低噪声放大器、双工 器等。此外,收发单元1101还可以通过无线通信系统与网络和其他设备通信。
终端通过网络模块1102为用户提供了无线的宽带互联网访问,如帮助用户收发电子邮件、浏览网页和访问流式媒体等。
音频输出单元1103可以将收发单元1101或网络模块1102接收的或者在存储器1109中存储的音频数据转换成音频信号并且输出为声音。而且,音频输出单元1103还可以提供与终端1100执行的特定功能相关的音频输出(例如,呼叫信号接收声音、消息接收声音等等)。音频输出单元1103包括扬声器、蜂鸣器以及受话器等。
输入单元1104用于接收音频或视频信号。输入单元1104可以包括图形处理器(Graphics Processing Unit,GPU)11041和麦克风11042,图形处理器11041对在视频捕获模式或图像捕获模式中由图像捕获装置(如摄像头)获得的静态图片或视频的图像数据进行处理。处理后的图像帧可以显示在显示单元1106上。经图形处理器11041处理后的图像帧可以存储在存储器1109(或其它存储介质)中或者经由收发单元1101或网络模块1102进行发送。麦克风11042可以接收声音,并且能够将这样的声音处理为音频数据。处理后的音频数据可以在电话通话模式的情况下转换为可经由收发单元1101发送到移动通信基站的格式输出。
终端1100还包括至少一种传感器1105,比如光传感器、运动传感器以及其他传感器。具体地,光传感器包括环境光传感器及接近传感器,其中,环境光传感器可根据环境光线的明暗来调节显示面板11061的亮度,接近传感器可在终端1100移动到耳边时,关闭显示面板11061和/或背光。作为运动传感器的一种,加速计传感器可检测各个方向上(一般为三轴)加速度的大小,静止时可检测出重力的大小及方向,可用于识别终端姿态(比如横竖屏切换、相关游戏、磁力计姿态校准)、振动识别相关功能(比如计步器、敲击)等;传感器1105还可以包括指纹传感器、压力传感器、虹膜传感器、分子传感器、陀螺仪、气压计、湿度计、温度计、红外线传感器等,在此不再赘述。
显示单元1106用于显示由用户输入的信息或提供给用户的信息。显示单元1106可包括显示面板11061,可以采用液晶显示器(Liquid Crystal  Display,LCD)、有机发光二极管(Organic Light-Emitting Diode,OLED)等形式来配置显示面板11061。
用户输入单元1107可用于接收输入的数字或字符信息,以及产生与终端的用户设置以及功能控制有关的键信号输入。具体地,用户输入单元1107包括触控面板11071以及其他输入设备11072。触控面板11071,也称为触摸屏,可收集用户在其上或附近的触摸操作(比如用户使用手指、触笔等任何适合的物体或附件在触控面板11071上或在触控面板11071附近的操作)。触控面板11071可包括触摸检测装置和触摸控制器两个部分。其中,触摸检测装置检测用户的触摸方位,并检测触摸操作带来的信号,将信号传送给触摸控制器;触摸控制器从触摸检测装置上接收触摸信息,并将它转换成触点坐标,再送给处理器1110,接收处理器1110发来的命令并加以执行。此外,可以采用电阻式、电容式、红外线以及表面声波等多种类型实现触控面板11071。除了触控面板11071,用户输入单元1107还可以包括其他输入设备11072。具体地,其他输入设备11072可以包括但不限于物理键盘、功能键(比如音量控制按键、开关按键等)、轨迹球、鼠标、操作杆,在此不再赘述。
进一步的,触控面板11071可覆盖在显示面板11061上,当触控面板11071检测到在其上或附近的触摸操作后,传送给处理器1110以确定触摸事件的类型,随后处理器1110根据触摸事件的类型在显示面板11061上提供相应的视觉输出。虽然在图6中,触控面板11071与显示面板11061是作为两个独立的部件来实现终端的输入和输出功能,但是在某些实施例中,可以将触控面板11071与显示面板11061集成而实现终端的输入和输出功能,具体此处不做限定。
接口单元1108为外部装置与终端1100连接的接口。例如,外部装置可以包括有线或无线头戴式耳机端口、外部电源(或电池充电器)端口、有线或无线数据端口、存储卡端口、用于连接具有识别模块的装置的端口、音频输入/输出(I/O)端口、视频I/O端口、耳机端口等等。接口单元1108可以用于接收来自外部装置的输入(例如,数据信息、电力等等)并且将接收到的输入传输到终端1100内的一个或多个元件或者可以用于在终端1100和外部装置之间传输数据。
存储器1109可用于存储软件程序以及各种数据。存储器1109可主要包括存储程序区和存储数据区,其中,存储程序区可存储操作系统、至少一个功能所需的应用程序(比如声音播放功能、图像播放功能等)等;存储数据区可存储根据手机的使用所创建的数据(比如音频数据、电话本等)等。此外,存储器1109可以包括高速随机存取存储器,还可以包括非易失性存储器,例如至少一个磁盘存储器件、闪存器件、或其他易失性固态存储器件。
处理器1110是终端的控制中心,利用各种接口和线路连接整个终端的各个部分,通过运行或执行存储在存储器1109内的软件程序和/或模块,以及调用存储在存储器1109内的数据,执行终端的各种功能和处理数据,从而对终端进行整体监控。处理器1110可包括一个或多个处理单元;优选的,处理器1110可集成应用处理器和调制解调处理器,其中,应用处理器主要处理操作系统、用户界面和应用程序等,调制解调处理器主要处理无线通信。可以理解的是,上述调制解调处理器也可以不集成到处理器1110中。
终端1100还可以包括给各个部件供电的电源1111(比如电池),优选的,电源1111可以通过电源管理系统与处理器1110逻辑相连,从而通过电源管理系统实现管理充电、放电、以及功耗管理等功能。
另外,终端1100包括一些未示出的功能模块,在此不再赘述。
优选的,本公开实施例还提供一种终端,包括处理器1110,存储器1109,存储在存储器1109上并可在所述处理器1110上运行的计算机程序,该计算机程序被处理器1110执行时实现上述图6所示接收方法实施例的各个过程,且能达到相同的技术效果,为避免重复,这里不再赘述。
本公开实施例还提供一种计算机可读存储介质,计算机可读存储介质上存储有计算机程序,该计算机程序被处理器执行时实现上述图1所示的发送方法实施例的各个过程,且能达到相同的技术效果,为避免重复,这里不再赘述。
本公开实施例还提供一种计算机可读存储介质,计算机可读存储介质上存储有计算机程序,该计算机程序被处理器执行时实现上述图6所示的接收方法实施例的各个过程,且能达到相同的技术效果,为避免重复,这里不再赘述。
其中,所述的计算机可读存储介质,如ROM、RAM、磁碟或者光盘等。
需要说明的是,在本文中,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者装置不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者装置所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括该要素的过程、方法、物品或者装置中还存在另外的相同要素。
通过以上的实施方式的描述,本领域的技术人员可以清楚地了解到上述实施例方法可借助软件加必需的通用硬件平台的方式来实现,当然也可以通过硬件,但很多情况下前者是更佳的实施方式。基于这样的理解,本公开的技术方案本质上或者说对相关技术做出贡献的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质(如ROM/RAM、磁碟、光盘)中,包括若干指令用以使得一台终端(可以是手机,计算机,服务器,空调器,或者网络设备等)执行本公开各个实施例所述的方法。
上面结合附图对本公开的实施例进行了描述,但是本公开并不局限于上述的具体实施方式,上述的具体实施方式仅仅是示意性的,而不是限制性的,本领域的普通技术人员在本公开的启示下,在不脱离本公开宗旨和权利要求所保护的范围情况下,还可做出很多形式,均属于本公开的保护之内。

Claims (27)

  1. 一种发送方法,用于网络设备,包括:
    在与重复传输的物理广播信道PBCH或重复传输的同步信号SSB相对应的类型0物理下行控制信道type0-PDCCH公共搜索空间中传输PDCCH;
    所述type0-PDCCH公共搜索空间的检测起始时隙与PBCH中的主信息块MIB携带的信息和预定义的时间参数相关,或者,所述type0-PDCCH公共搜索空间检测起始时隙与PBCH中的MIB携带的信息和所述重复传输的PBCH或SSB的传输信息相关。
  2. 根据权利要求1所述的发送方法,其中,所述预定义的时间参数为以时隙或者绝对时长为单位的时间值。
  3. 根据权利要求1所述的发送方法,其中,
    所述重复传输的PBCH或重复传输的SSB均位于偶数无线帧或者均位于奇数无线帧中,且在同一个无线帧中传输次数大于1。
  4. 根据权利要求1所述的发送方法,其中,所述重复传输的PBCH对应的SSB或重复传输的SSB具有相同的SSB索引。
  5. 根据权利要求1所述的发送方法,其中,所述传输信息包括如下信息中的至少一项:
    所述重复传输的PBCH或SSB所处的半帧,或者PBCH携带的半帧指示比特;
    所述重复传输的PBCH或SSB所处的无线帧,或者PBCH携带的无线帧号;
    所述重复传输的PBCH或SSB的传输次数索引。
  6. 根据权利要求1-5中任一项所述的发送方法,其中,
    所述重复传输的PBCH或重复传输的SSB相对应的type0-PDCCH公共搜索空间的检测起始时隙n 0为至少一个如下参数的函数:
    所述重复传输的PBCH或SSB所处的无线帧号;
    所述重复传输的PBCH或SSB所对应半帧指示比特取值;
    所述重复传输的PBCH或SSB的传输次数索引。
  7. 根据权利要求1或2或3所述的发送方法,其中:
    所述重复传输的PBCH或重复传输的SSB相对应的type0-PDCCH公共搜索空间的检测起始时隙n 0为:
    Figure PCTCN2020135128-appb-100001
    或者
    Figure PCTCN2020135128-appb-100002
    或者
    Figure PCTCN2020135128-appb-100003
    或者
    Figure PCTCN2020135128-appb-100004
    或者
    Figure PCTCN2020135128-appb-100005
    或者
    Figure PCTCN2020135128-appb-100006
    或者
    Figure PCTCN2020135128-appb-100007
    或者
    Figure PCTCN2020135128-appb-100008
    所述n 0为所述重复传输的PBCH对应的SSBi或重复传输的SSBi对应的type0-PDCCH公共搜索空间的检测起始时隙序号,所述i为SSB索引,所述O为SSBi所对应的type0-PDCCH搜索空间检测起始时隙与偶数帧的起始位置之间的子帧间隔,A为系统帧号SFN的最低位的取值,所述B为半帧指示比特取值,所述S为所述时间的颗粒度,所述μ为CORESET#0的子载波间隔;所述M为SSBi对应的type0-PDCCH搜索空间占用的等效时隙数,
    Figure PCTCN2020135128-appb-100009
    为基于承载type0-PDCCH的控制资源集合的子载波间隔的一个系统帧中的时隙个数;j为所述重复传输的PBCH或重复传输的SSB的传输编号。
  8. 根据权利要求1所述的发送方法,其中,所述与重复传输的PBCH或重复传输的SSB相对应的type0-PDCCH公共搜索空间中传输的所有PDCCH或者部分PDCCH承载的下行控制信息DCI内容相同。
  9. 根据权利要求8所述的发送方法,其中,具有相同内容的DCI所调度 的目标物理下行共享信道PDSCH被配置为在频域或时域上存在偏移。
  10. 根据权利要求9所述的发送方法,其中:
    目标PDSCH在频域上的偏移由协议预定义;
    所述目标PDSCH在频域上的偏移与传输所述DCI的type0-PDCCH的公共搜索空间所在的控制信道资源集合相关;
    所述目标PDSCH在频域上的偏移与所述重复传输的PBCH或SSB的传输次数索引相关。
  11. 一种接收方法,用于终端,包括:
    确定重复传输的物理广播信道PBCH或重复传输的同步信号SSB相对应的类型0物理下行控制信道type0-PDCCH公共搜索空间的检测起始时隙;
    所述type0-PDCCH公共搜索空间的检测起始时隙与PBCH中的主信息块MIB携带的信息和预定义的时间参数相关,或者,所述type0-PDCCH公共搜索空间检测起始时隙与PBCH中的MIB携带的信息和所述重复传输的PBCH或SSB的传输信息相关;
    在与所述重复传输的PBCH或重复传输的SSB相对应的type0-PDCCH公共搜索空间检测物理下行控制信道PDCCH。
  12. 根据权利要求11所述的接收方法,其中,所述预定义的时间参数为以时隙或者绝对时长为单位的时间值。
  13. 根据权利要求11所述的接收方法,其中,
    所述重复传输的PBCH或重复传输的SSB均位于偶数无线帧或者均位于奇数无线帧中,且在同一个无线帧中传输次数大于1。
  14. 根据权利要求11所述的接收方法,其中,所述重复传输的PBCH对应的SSB或重复传输的SSB具有相同的SSB索引。
  15. 根据权利要求11所述的接收方法,其中,所述传输信息包括如下信息中的至少一项:
    所述重复传输的PBCH或SSB所处的半帧,或者PBCH携带的半帧指示比特;
    所述重复传输的PBCH或SSB所处的无线帧,或者PBCH携带的无线帧号;
    所述重复传输的PBCH或SSB的传输次数索引。
  16. 根据权利要求11-15中任一项所述的接收方法,其中,重复传输的PBCH或重复传输的SSB相对应的type0-PDCCH公共搜索空间的检测起始时隙n 0为至少一个如下参数的函数:
    所述重复传输的PBCH或SSB所处的无线帧号;
    所述重复传输的PBCH或SSB所对应半帧指示比特取值;
    所述重复传输的PBCH或SSB的传输次数索引。
  17. 根据权利要求11或12或13所述的接收方法,其中:重复传输的PBCH或重复传输的SSB相对应的type0-PDCCH公共搜索空间的检测起始时隙n 0为:
    Figure PCTCN2020135128-appb-100010
    或者
    Figure PCTCN2020135128-appb-100011
    或者
    Figure PCTCN2020135128-appb-100012
    或者
    Figure PCTCN2020135128-appb-100013
    或者
    Figure PCTCN2020135128-appb-100014
    或者
    Figure PCTCN2020135128-appb-100015
    或者
    Figure PCTCN2020135128-appb-100016
    或者
    Figure PCTCN2020135128-appb-100017
    所述n 0为所述重复传输的PBCH对应的SSB i或重复传输的SSB i对应的type0-PDCCH公共搜索空间的检测起始时隙序号,所述i为SSB索引,所述O为SSB i所对应的type0-PDCCH搜索空间检测起始时隙与偶数帧的起始位置之 间的子帧间隔,A为系统帧号SFN的最低位的取值,所述B为半帧指示比特取值,所述S为所述时间的颗粒度,所述μ为CORESET#0的子载波间隔;所述M为SSB i对应的type0-PDCCH搜索空间占用的等效时隙数,
    Figure PCTCN2020135128-appb-100018
    为以SIB1的子载波间隔单位的一个系统帧中的时隙个数;j为所述重复传输的PBCH或重复传输的SSB的传输编号。
  18. 根据权利要求11所述的接收方法,其中,所述与重复传输的PBCH或重复传输的SSB相对应的type0-PDCCH公共搜索空间中传输的所有PDCCH或者部分PDCCH承载的下行控制信息DCI内容相同。
  19. 根据权利要求18所述的接收方法,其中,具有相同内容的DCI所调度的目标物理下行共享信道PDSCH被配置为在频域或时域上存在偏移。
  20. 根据权利要求19所述的接收方法,其中:
    目标PDSCH在频域上的偏移由协议预定义;
    所述目标PDSCH在频域上的偏移与传输所述DCI的type0-PDCCH的公共搜索空间所在的控制信道资源集合相关;
    所述目标PDSCH在频域上的偏移与所述重复传输的PBCH或SSB的传输次数索引相关。
  21. 一种网络设备,包括处理器和收发机:
    所述收发机,用于在与重复传输的物理广播信道PBCH或重复传输的同步信号SSB相对应的类型0物理下行控制信道type0-PDCCH公共搜索空间中传输PDCCH;
    所述type0-PDCCH公共搜索空间的检测起始时隙与PBCH中的主信息块MIB携带的信息和预定义的时间参数相关,或者,所述type0-PDCCH公共搜索空间检测起始时隙与PBCH中的MIB携带的信息和所述重复传输的PBCH或SSB的传输信息相关。
  22. 一种终端,包括处理器和收发机;
    所述处理器,用于确定重复传输的物理广播信道PBCH或重复传输的同步信号SSB相对应的类型0物理下行控制信道type0-PDCCH公共搜索空间的检 测起始时隙;
    所述type0-PDCCH公共搜索空间的检测起始时隙与PBCH中的主信息块MIB携带的信息和预定义的时间参数相关,或者,所述type0-PDCCH公共搜索空间检测起始时隙与PBCH中的MIB携带的信息和所述重复传输的PBCH或SSB的传输信息相关;
    所述收发机,用于在与所述重复传输的PBCH或重复传输的SSB相对应的type0-PDCCH公共搜索空间检测物理下行控制信道PDCCH。
  23. 一种网络设备,包括:
    发送模块,用于在与重复传输的物理广播信道PBCH或重复传输的同步信号SSB相对应的类型0物理下行控制信道type0-PDCCH公共搜索空间中传输PDCCH;
    所述type0-PDCCH公共搜索空间的检测起始时隙与PBCH中的主信息块MIB携带的信息和预定义的时间参数相关,或者,所述type0-PDCCH公共搜索空间检测起始时隙与PBCH中的MIB携带的信息和所述重复传输的PBCH或SSB的传输信息相关。
  24. 一种终端,包括:
    确定模块,用于确定重复传输的物理广播信道PBCH或重复传输的同步信号SSB相对应的类型0物理下行控制信道type0-PDCCH公共搜索空间的检测起始时隙之间;
    所述type0-PDCCH公共搜索空间的检测起始时隙与PBCH中的主信息块MIB携带的信息和预定义的时间参数相关,或者,所述type0-PDCCH公共搜索空间检测起始时隙与PBCH中的MIB携带的信息和所述重复传输的PBCH或SSB的传输信息相关;
    接收模块,用于在与所述重复传输的PBCH或重复传输的SSB相对应的type0-PDCCH公共搜索空间检测物理下行控制信道PDCCH。
  25. 一种网络设备,包括处理器、存储器及存储在所述存储器上并可在所述处理器上运行的计算机程序,所述计算机程序被所述处理器执行时实现如权利要求1至10中任一项所述的发送方法中的步骤。
  26. 一种终端,包括处理器、存储器及存储在所述存储器上并可在所述 处理器上运行的计算机程序,所述计算机程序被所述处理器执行时实现如权利要求11至20中任一项所述的接收方法中的步骤。
  27. 一种计算机可读存储介质,其上存储有计算机程序,所述计算机程序被处理器执行时实现如权利要求1至10中任一项所述的发送方法中的步骤,或者,所述计算机程序被处理器执行时实现如权利要求11至20中任一项所述的发送方法中的步骤。
PCT/CN2020/135128 2019-12-11 2020-12-10 发送方法、接收方法、网络设备及终端 WO2021115361A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201911264812.6A CN112954796B (zh) 2019-12-11 2019-12-11 一种发送方法、接收方法、网络设备及终端
CN201911264812.6 2019-12-11

Publications (1)

Publication Number Publication Date
WO2021115361A1 true WO2021115361A1 (zh) 2021-06-17

Family

ID=76226226

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/135128 WO2021115361A1 (zh) 2019-12-11 2020-12-10 发送方法、接收方法、网络设备及终端

Country Status (2)

Country Link
CN (1) CN112954796B (zh)
WO (1) WO2021115361A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116193595B (zh) * 2021-09-28 2023-11-28 华为技术有限公司 一种信号的发送方法、接收方法及通信装置
WO2023092353A1 (zh) * 2021-11-24 2023-06-01 北京小米移动软件有限公司 确定时隙个数、位置、多时隙组时长的方法、装置及介质
CN117397337A (zh) * 2022-03-07 2024-01-12 中兴通讯股份有限公司 无线通信网络中的跨多个时域资源的传输

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20190095183A (ko) * 2019-07-25 2019-08-14 엘지전자 주식회사 Xr 디바이스 및 그 제어 방법
CN110383723A (zh) * 2017-08-11 2019-10-25 Lg电子株式会社 在无线通信系统中测量并报告信号的方法及其设备
CN110536420A (zh) * 2018-05-23 2019-12-03 中国移动通信有限公司研究院 配置物理下行控制信道时域检测位置的方法及设备

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104349458B (zh) * 2013-08-08 2019-05-17 中兴通讯股份有限公司 控制信道的传输方法、传输处理方法、通信节点及终端
WO2018225989A1 (ko) * 2017-06-04 2018-12-13 엘지전자 주식회사 무선 통신 시스템에서, 시스템 정보를 수신하는 방법 및 이를 위한 장치
US11259238B2 (en) * 2018-07-20 2022-02-22 Apple Inc. PBCH content for NR unlicensed
CN110505642B (zh) * 2019-08-16 2022-02-11 展讯通信(上海)有限公司 接入资源的确定方法及装置、存储介质、终端

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110383723A (zh) * 2017-08-11 2019-10-25 Lg电子株式会社 在无线通信系统中测量并报告信号的方法及其设备
CN110536420A (zh) * 2018-05-23 2019-12-03 中国移动通信有限公司研究院 配置物理下行控制信道时域检测位置的方法及设备
KR20190095183A (ko) * 2019-07-25 2019-08-14 엘지전자 주식회사 Xr 디바이스 및 그 제어 방법

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
LG ELECTRONICS: "Physical layer design of initial access signals and channels for NR-U", 3GPP TSG RAN WG1 #97 R1-1906672, 17 May 2019 (2019-05-17), XP051708708 *

Also Published As

Publication number Publication date
CN112954796A (zh) 2021-06-11
CN112954796B (zh) 2023-10-27

Similar Documents

Publication Publication Date Title
US11582791B2 (en) PUCCH collision processing method and terminal
WO2021115361A1 (zh) 发送方法、接收方法、网络设备及终端
US11546091B2 (en) Method for determining HARQ-ACK codebook and user equipment
WO2020200204A1 (zh) 信道资源确定方法、信道检测方法及终端
WO2021008430A1 (zh) 传输方法和通信设备
WO2020063241A1 (zh) 信息传输方法及终端
US11979893B2 (en) Resource configuration method, terminal, and network device
WO2021032001A1 (zh) 半持续调度物理下行共享信道的反馈方法及终端设备
AU2019316839A1 (en) Determination method, terminal and network device
WO2021155786A1 (zh) Qcl的确定方法、终端及网络侧设备
US11343815B2 (en) Method and device for detecting slot format indication, and method and device for configuring slot format indication
WO2021068876A1 (zh) 信息传输、接收方法、终端及网络侧设备
WO2020228537A1 (zh) 资源确定方法、资源指示方法、终端及网络侧设备
WO2020228529A1 (zh) 半静态调度配置的配置方法、设备及系统
WO2020147827A1 (zh) 随机接入传输方法及终端
WO2019214420A1 (zh) 业务调度方法、终端及网络设备
US11736327B2 (en) Uplink transmission method and terminal
WO2021018130A1 (zh) 物理上行链路控制信道传输方法、装置、设备及介质
WO2020063271A1 (zh) 接收方法、发送方法、终端及网络侧设备
CN111278115B (zh) 传输方法、配置方法及相关设备
WO2021155765A1 (zh) 物理上行控制信道传输方法、装置、设备及介质
WO2021147777A1 (zh) 一种通信处理方法及相关设备
WO2021147765A1 (zh) 旁链路参考信号处理方法及装置、通信设备
WO2020192631A1 (zh) 参考值的确定方法及终端
WO2019137423A1 (zh) 通信方法及相关设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20899606

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20899606

Country of ref document: EP

Kind code of ref document: A1