WO2019154066A1 - 下行信道的接收方法、发送方法、终端和基站 - Google Patents

下行信道的接收方法、发送方法、终端和基站 Download PDF

Info

Publication number
WO2019154066A1
WO2019154066A1 PCT/CN2019/072651 CN2019072651W WO2019154066A1 WO 2019154066 A1 WO2019154066 A1 WO 2019154066A1 CN 2019072651 W CN2019072651 W CN 2019072651W WO 2019154066 A1 WO2019154066 A1 WO 2019154066A1
Authority
WO
WIPO (PCT)
Prior art keywords
tci state
coreset
downlink
data channel
downlink data
Prior art date
Application number
PCT/CN2019/072651
Other languages
English (en)
French (fr)
Inventor
杨宇
孙鹏
Original Assignee
维沃移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN201810169276.0A external-priority patent/CN110167091B/zh
Application filed by 维沃移动通信有限公司 filed Critical 维沃移动通信有限公司
Priority to EP19750589.4A priority Critical patent/EP3742806B1/en
Priority to JP2020543104A priority patent/JP7038219B2/ja
Priority to US16/968,917 priority patent/US11576183B2/en
Priority to ES19750589T priority patent/ES2965864T3/es
Priority to KR1020207024388A priority patent/KR102495173B1/ko
Publication of WO2019154066A1 publication Critical patent/WO2019154066A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/08Reselecting an access point

Definitions

  • the present disclosure relates to the field of communications technologies, and in particular, to a downlink channel receiving method, a transmitting method, a terminal, and a base station.
  • the system supports up to operating frequency bands above 6GHz, up to approximately 100GHz, such multi-beam transmission in a communication system 5G.
  • the 5G communication system may indicate the beam information to the terminal by transmitting a Transmission Configuration Indication (TCI) state.
  • TCI Transmission Configuration Indication
  • the maximum channel bandwidth of each carrier is 400 MHz, and the maximum bandwidth supported by the terminal can be less than 400 MHz, thereby newly introducing a bandwidth part (BWP) in the 5G communication system.
  • BWP bandwidth part
  • the UE can work on multiple BWPs. In this way, in practical applications, the terminal may generate BWP switching or moving, etc.
  • the embodiments of the present disclosure provide a receiving method, a sending method, a terminal, and a base station of a downlink channel, so as to solve the problem that the reliability and accuracy of data transmission are relatively low.
  • an embodiment of the present disclosure further provides a method for receiving a downlink channel, which is applied to a terminal, and includes:
  • the TCI state is a control resource set used by the terminal on the original BWP most recently when the terminal switches back to the original BWP (control resource set) , the COCI) TCI state, the downlink control channel is sent on the CORESET of the original BWP;
  • an embodiment of the present disclosure further provides a method for receiving a downlink channel, which is applied to a terminal, and includes:
  • TCI state is: a TCI state of the CORESET or a newly determined TCI state, where the CORESET is the smallest of the time domain resources in which the Downlink Control Information (DCI) is located.
  • DCI Downlink Control Information
  • an embodiment of the present disclosure provides a method for transmitting a downlink channel, which is applied to a base station, and includes:
  • TCI state is a TCI state of a CORESET used by the base station on the original BWP, and the downlink control channel is sent on a CORESET of the original BWP;
  • an embodiment of the present disclosure provides a method for transmitting a downlink channel, which is applied to a base station, and includes:
  • TCI state is: a TCI state of the CORESET or a newly determined TCI state, where the CORESET is a CORESET that identifies the smallest time domain resource in which the DCI is located, and the DCI is used in the scheduling office. Describe the downlink data channel;
  • an embodiment of the present disclosure provides a terminal, including:
  • a control channel determining module configured to determine a TCI state of the downlink control channel, where the TCI state is a TCI of the CORESET used by the terminal on the original BWP in the case that the terminal switches back to the original BWP. a state, the downlink control channel is sent on a CORESET of the original BWP;
  • a control channel receiving module configured to receive the downlink control channel according to the TCI state.
  • an embodiment of the present disclosure provides a terminal, including:
  • a data channel determining module configured to determine a TCI state of the downlink data channel, where the TCI state is: a TCI state of the CORESET or a newly determined TCI state, where the CORESET is the smallest CORESET in the time domain resource where the DCI is located, The DCI is used to schedule the downlink data channel;
  • a data channel receiving module configured to receive the downlink data channel according to the TCI state.
  • an embodiment of the present disclosure provides a base station, including:
  • a control channel determining module configured to determine a TCI state of the downlink control channel, where the TCI state is a TCI state of a CORESET used by the base station on the original BWP last time, and the downlink control channel is on a CORESET of the original BWP send;
  • a control channel sending module configured to send the downlink control channel according to the TCI state.
  • an embodiment of the present disclosure provides a base station, including:
  • a data channel determining module configured to determine a TCI state of the downlink data channel, where the TCI state is: a TCI state of the CORESET or a newly determined TCI state, where the CORESET is the smallest CORESET in the time domain resource where the DCI is located, The DCI is used to schedule the downlink data channel;
  • a data channel sending module configured to send the downlink data channel according to the TCI state.
  • an embodiment of the present disclosure provides a terminal, including: a memory, a processor, and a computer program stored on the memory and executable on the processor, where the computer program is executed by the processor.
  • an embodiment of the present disclosure provides a base station, including: a memory, a processor, and a computer program stored on the memory and executable on the processor, where the computer program is executed by the processor.
  • an embodiment of the present disclosure provides a computer readable storage medium, where the computer readable storage medium stores a computer program, and when the computer program is executed by the processor, the downlink channel provided by the embodiment of the present disclosure is implemented.
  • the embodiments of the present disclosure can improve the reliability and accuracy of data transmission.
  • FIG. 1 is a structural diagram of a network system to which an embodiment of the present disclosure is applicable;
  • FIG. 2 is a flowchart of a method for receiving a downlink channel according to an embodiment of the present disclosure
  • FIG. 3 is a flowchart of another method for receiving a downlink channel according to an embodiment of the present disclosure
  • FIG. 4 is a flowchart of a method for transmitting a downlink channel according to an embodiment of the present disclosure
  • FIG. 5 is a flowchart of another method for transmitting a downlink channel according to an embodiment of the present disclosure
  • FIG. 6 is a structural diagram of a terminal according to an embodiment of the present disclosure.
  • FIG. 7 is a structural diagram of another terminal according to an embodiment of the present disclosure.
  • FIG. 8 is a structural diagram of another terminal according to an embodiment of the present disclosure.
  • FIG. 9 is a structural diagram of another terminal according to an embodiment of the present disclosure.
  • FIG. 10 is a structural diagram of a base station according to an embodiment of the present disclosure.
  • FIG. 11 is a structural diagram of another base station according to an embodiment of the present disclosure.
  • FIG. 12 is a structural diagram of another base station according to an embodiment of the present disclosure.
  • FIG. 13 is a structural diagram of another terminal according to an embodiment of the present disclosure.
  • FIG. 14 is a structural diagram of another terminal according to an embodiment of the present disclosure.
  • FIG. 15 is a structural diagram of another base station according to an embodiment of the present disclosure.
  • FIG. 16 is a structural diagram of another base station according to an embodiment of the present disclosure.
  • FIG. 1 is a structural diagram of a network system applicable to an embodiment of the present disclosure.
  • the terminal 11 and the base station 12 are included.
  • the terminal 11 may also be referred to as a terminal device or a user equipment (User Equipment, UE).
  • the terminal 11 may be a mobile phone, a tablet personal computer, a laptop computer, or a personal digital assistant (Personal Digital Assistant).
  • Terminal-side device such as a PDA), a mobile Internet device (MID), a wearable device, or an in-vehicle device. It should be noted that the specific type of the terminal 11 is not limited in the embodiment of the present disclosure. .
  • the foregoing base station 12 may be a base station of 5G and later versions (eg, gNB, 5G NR NB), or a base station in other communication systems, or a Node B, an evolved Node B, or other words in the field, as long as The same technical effect, the base station is not limited to a specific technical vocabulary. It should be noted that in the embodiment of the present disclosure, only the 5G base station is taken as an example, but the specific type of the base station 12 is not limited.
  • FIG. 2 is a flowchart of a method for receiving a downlink channel according to an embodiment of the present disclosure. The method is applied to a terminal. As shown in FIG. 2, the method includes the following steps:
  • Step 201 Determine a TCI state of the transmission configuration indication of the downlink control channel, where the TCI state is that the terminal is last on the original BWP in the case that the terminal switches back to the original bandwidth part BWP.
  • the TCI state of the control resource set CORESET used, the downlink control channel is transmitted on the CORESET of the original BWP.
  • the TCI state of the downlink control channel may be a TCI state for receiving the downlink control channel, where the TCI state may refer to transmission configuration information of the downlink control channel, for example, a quasi-colocation indicating a downlink control channel (Quasi-colocation, QCL) or other configuration information.
  • TCI state may refer to transmission configuration information of the downlink control channel, for example, a quasi-colocation indicating a downlink control channel (Quasi-colocation, QCL) or other configuration information.
  • QCL quasi-colocation indicating a downlink control channel
  • the switching back to the original BWP may mean that the terminal works on the original BWP before switching back to the original BWP, and the terminal switches to another BWP, and then switches back to the original BWP.
  • the terminal works on BWP1
  • the terminal generates a BWP switch to switch to BWP2 for work.
  • the terminal switches back to BWP1 again.
  • the TCI state of the CORESET used last time on the original BWP may be the TCI state of the CORESET used by the terminal on the original BWP after switching back to the original BWP.
  • the terminal receives the first TCI state on the BWP1, and the terminal generates a BWP switch to switch to the BWP2 to work. After the terminal switches back to the BWP1 again, the terminal switches back to the BWP1 and continues to use the first TCI state.
  • Receiving, that is, the first TCI state is the last used TCI state.
  • the last time mentioned above may also be referred to as the last time, or the TCI state of the CORESET used by the terminal on the original BWP before the terminal switches back to the original BWP.
  • the original BWP is the active BWP of the terminal.
  • the downlink control channel can be received by using the TCI state of the CORESET used last time on the original BWP, so that the terminal can prevent the terminal from determining the used CORESET when switching back to the original BWP.
  • the TCI state because after the terminal switches back to the original BWP, the base station may not re-configure the TCI state of the original BWP CORESET for the terminal, thereby improving the reliability and accuracy of data transmission.
  • the process of TCI state configuration can be saved to save transmission overhead and power consumption overhead of the terminal and the base station.
  • the downlink control channel includes, but is not limited to, a Physical Downlink Control Channel (PDCCH), a Physical Broadcast Channel (PBCH), and the like.
  • PDCH Physical Downlink Control Channel
  • PBCH Physical Broadcast Channel
  • the receiving beam may be determined according to the TCI state, so that the downlink control channel is received by using the receiving beam.
  • the RS resource in the Reference Signal Set (RS set) corresponding to the TCI state and the Demodulation Reference Signal (DMRS) port of the downlink control channel of the terminal are The QCL, so that the terminal can determine the receiving beam of the downlink control channel according to the TCI state, for example, the receiving beam of the RS resource corresponding to the TCI state is used as the receiving beam of the receiving downlink control channel.
  • RS set Reference Signal Set
  • DMRS Demodulation Reference Signal
  • the above steps can prevent the terminal from determining the TCI status of the downlink control channel in scenarios such as switching BWP, thereby improving the reliability and accuracy of data transmission.
  • the base station (or the network side) and the terminal determine the TCI state in the same manner, that is, the base station and the terminal accurately and consistently understand the TCI states of the downlink control channel and the downlink data channel.
  • the method before the determining a TCI state of the downlink control channel, the method further includes:
  • the first TCI state may be one TCI state configured by the base station by using Radio Resource Control (RRC) signaling, or may be that the base station configures multiple TCI states by using RRC signaling, and accesses through the medium.
  • RRC Radio Resource Control
  • a Control Access (MAC) Control Element (CE) indicates one of the TCI states.
  • the base station and the terminal communicate on the original BWP, and the BWP is an active BWP.
  • the base station can transmit the PDCCH through the TCI state of the CORESET on the BWP, and the terminal receives the PDCCH by using the first TCI state.
  • the above switching to other BWP may be that the terminal switches from the original BWP to another BWP, or the terminal may switch from the original BWP to another BWP, and then switch from the BWP to another BWP. That is to say, the other BWP may be a BWP, or may be multiple BWPs in which the terminal has multiple BWP handovers. For example, when the DCI received on the PDCCH on the original BWP carries the BWP handover command, the terminal switches to another BWP according to the command, and the other BWP becomes the active BWP.
  • the terminal may learn the TCI status of the CORESET on the BWP according to the RRC configuration of the base station, and may be used to receive the PDCCH, or the terminal may learn the TCI status of the CORESET on the BWP according to the RRC configuration and the MAC CE indication. Used to receive the PDCCH.
  • the terminal uses the TCI state of the last CORESET used on the BWP on the new active BWP, ie using the first TCI state described above. For example, when the terminal switches back to the original BWP according to the BWP switching command of the DCI notification on the activated BWP (which may be another BWP that the terminal switches from the original BWP), the original BWP becomes the new active BWP. And the TCI state of the CORESET on the BWP is still valid, and the terminal receives the PDCCH according to these still valid TCI states.
  • the terminal uses the TCI state of the CORESET on the BWP on the newly activated active BWP to avoid the situation that the terminal cannot determine the TCI state on the switching BWP, so as to improve data transmission. Reliability and accuracy, as well as savings in transmission overhead, as well as power consumption of terminals and base stations.
  • the terminal uses the first TCI on the original BWP. status.
  • the terminal receives the downlink control channel by using the foregoing first TCI state on the original BWP until the base station reconfigures, reactivates, or re-instructs the new TCI state, thereby reducing the complexity of receiving the downlink channel by the terminal.
  • the reliability and accuracy of data transmission can be improved by the above steps.
  • FIG. 3 is a flowchart of another method for receiving a downlink channel according to an embodiment of the present disclosure. The method is applied to a terminal. As shown in FIG. 3, the method includes the following steps:
  • Step 301 Determine a TCI state of the downlink data channel, where the TCI state is: a TCI state of the CORESET or a newly determined TCI state, where the CORESET is the CORESET with the smallest identifier in the time domain resource where the downlink control information DCI is located.
  • the DCI is used to schedule the downlink data channel;
  • the TCI state of the downlink data channel can be directly determined to be the TCI state of the CORESET or the newly determined TCI state, so as to prevent the terminal from moving or switching to the beam of the new Synchronization Signal Block (SSB).
  • the terminal determines the state of the TCI state, thereby improving the reliability and accuracy of data transmission.
  • CORESET0 CORESET identified as 0
  • CORESET1 The smallest CORESET other than CORESET0 on the BWP where the current terminal is located, for example: CORESET1.
  • the newly determined TCI state may be a newly determined TCI state when the terminal determines the TCI state of the downlink data channel.
  • the base station configures, activates, or indicates a TCI state for the terminal.
  • the newly determined TCI state described above may also be referred to as a reconfiguration, reactivation, or re-indicated TCI state.
  • the foregoing time domain resource may be a time domain resource such as a slot or a subframe.
  • the downlink control channel includes, but is not limited to, a Physical Downlink Control Channel (PDCCH), a Physical Broadcast Channel (PBCH), and the like.
  • the downlink data channel may be a Physical Downlink Shared Channel (PDSCH).
  • the step may be: determining a receive beam according to the TCI state, so that the downlink data channel is received by using the receive beam.
  • the RS resource in the RS set corresponding to the TCI state and the DMRS port of the downlink data channel to be scheduled are QCL, so that the terminal can determine the receiving beam of the downlink data channel according to the TCI state, for example:
  • the receiving beam of the RS resource corresponding to the TCI state serves as a receiving beam for receiving the downlink data channel.
  • the terminal can be prevented from determining the TCI state of the downlink data channel in the scenario of moving or switching the SSB, thereby improving the reliability and accuracy of data transmission.
  • the base station (or the network side device) and the terminal determine the TCI state in the same manner, that is, the base station and the terminal accurately and consistently understand the TCI states of the downlink control channel and the downlink data channel. It is to be understood by those skilled in the art that the base station is only an example, and the transmitting and receiving node TRP or other unit that can implement the same function may also be included in the range of the base station, and the embodiment of the present disclosure is not limited thereto.
  • the receiving the downlink data channel according to the TCI state includes:
  • the TCI state may be implemented to at least indicate a spatial QCL parameter, so that the terminal uses the spatial QCL parameter to receive the downlink data channel.
  • the base station may also use the spatial parameter to perform downlink data channel transmission.
  • the TCI state is not limited to indicating only the spatial QCL parameter, and may also indicate other parameters related to the transmission configuration, and further, the downlink data channel may be received by using the parameters.
  • the TCI state is a TCI state of the CORESET, and the CORESET A minimum CORESET is identified on the activated BWP for the time domain resource.
  • the foregoing scheduling offset may be a time interval from the receipt of the DCI to the DCI, and the preset threshold (which may be represented by k) may be a protocol predefined threshold, or a pre-configured threshold of the base station.
  • the value, or the threshold value pre-negotiated by the terminal and the base station, is not limited thereto.
  • the TCI of the downlink data channel is a default TCI state.
  • the default TCI state is the CORESET with the smallest identifier on the activated BWP in the above time domain resource.
  • the TCI state of the downlink data channel is the TCI state of the CORESET that is the smallest identified on the activated BWP in the time domain resource, that is, the TCI state is the TCI state of the CORESET that identifies the smallest BWP on the BWP, instead of The TCI status of the smallest CORESET is identified in all CORESETs of multiple or all BWPs. This prevents the network from configuring CORESET for each BWP. The terminal will not know which BWP is the smallest CORESET in this case, resulting in the terminal. The problem of the TCI state of the downlink data channel cannot be determined, thereby improving the reliability and accuracy of data transmission.
  • the CORESET with the smallest identifier on the activated BWP may be the CORESET with the smallest identifier among all the CORESETs in the active BWP, that is, when the CORESET with the smallest identifier is selected, the identifier is considered to be 0. CORESET. For example, if the active BWP includes a CORESET with a value of 0, then the CORESET with the ID 0 is selected.
  • the TCI state is a TCI state of the CORESET.
  • the CORESET here is the CORESET with the smallest identifier on the activated BWP in the foregoing time domain resource.
  • the base station and the terminal communicate on a certain BWP
  • the BWP is an activated BWP
  • the terminal receives the PDCCH through the TCI state of the CORESET on the BWP.
  • the TCI state is the TCI state of the CORESET, so that the complexity of the terminal can be reduced.
  • the focus is on how to determine the TCI state of the downlink data channel.
  • the terminal needs to receive the downlink control channel in addition to receiving the downlink data channel.
  • the TCI state of the downlink control channel can be referred to the terminal handover in the embodiment shown in FIG. 2 .
  • the TCI state of the downlink control channel determined by the original BWP is not described here, and the same beneficial effects can be achieved.
  • the active BWP in this embodiment may be the original BWP that the terminal switches back, because after the terminal switches back to the original BWP, the original BWP is the active BWP.
  • the downlink control channel in this embodiment may also be a TCI state of the CORESET configured by the base station through RRC signaling, or a TCI state of the CORESET indicated by the base station through the RRC signaling and the MAC CE.
  • the TCI state is a TCI state of the CORESET, and a TCI state of the CORESET is used.
  • the QCL indication of the control channel on the CORESET, and the CORESET is the smallest CORESET other than the CORESET identified as 0 in the time domain resource.
  • the TCI state of the downlink data channel may be a default TCI state, the default TCI state is used for the QCL indication of the control channel on the CORESET, and the default TCI state is The COID in the time domain resource where the DCI is located except the CORESET identified as 0 is the smallest CORESET, that is, the minimum identifier of the CORESET here is the exclusion of the identifier 0, that is, the CORESET whose identifier is greater than 0.
  • the terminal initiates access by using a physical random access channel (PRACH) resource associated with the SSB according to the measurement and selecting the optimal SSB.
  • PRACH physical random access channel
  • the CORESET identified as 0 may be configured on a Physical Broadcast Channel (PBCH), and the CORESET of other IDs may be configured by the base station through higher layer signaling.
  • PBCH Physical Broadcast Channel
  • the terminal After the terminal completes the random access, the terminal measures the SSB sent by the network when it moves, and can switch to the current optimal SSB according to the measurement result.
  • the PBCH In this SSB, the PBCH is also configured with the CORESET with the identifier 0. In this way, the terminal will receive the PDSCH using the TCI state of the CORESET whose ID is 0 in the PSBCH configuration in the current SSB.
  • the base station does not know that the CORESET with the flag 0 changes due to the terminal movement, and the base station still uses the TCI state of the CORESET previously identified as 0 to transmit the PDSCH to the terminal, thereby causing a problem that data transmission cannot be performed correctly.
  • the TCI state of the downlink data channel is the TCI state of the CORESET
  • the CORESET is the CORESET of the time domain resource other than the CORESET identified as 0
  • the above problem can be avoided.
  • the CORESET other than the CORESET identified as 0 is not configured through the SSB, such as through high-level signaling configuration, so that even if the terminal switches the SSB, the terminal and the base station use the same CORESET TCI for data transmission, thereby ensuring data transmission. Reliability and accuracy.
  • the terminal may initiate an access by using the PRACH resource associated with the SSB according to the measurement and selecting the optimal SSB.
  • the CORESET identified as 0 is configured on the PBCH, and the CORESET of the other ID is configured by the base station through higher layer signaling.
  • the SSB sent by the base station may be measured, and the current optimal SSB is switched according to the measurement result, and the PBCH in the SSB is also configured with the CORESET identified as 0.
  • the PDCCH is transmitted on the CORESET that activates the BWP (which may also be referred to as the current BWP), and the terminal receives the PDSCH according to the signaling on the PDCCH.
  • the terminal receives the PDSCH according to a default TCI state, where the default TCI state is a control channel QCL indication (QCL). Indication), and the control channel QCL indication is determined by the TCI state of the CORESET with the smallest identity identified as 0 in the time slot in which the DCI is located.
  • the TCI state is a TCI state of the CORESET.
  • the CORESET here is the CORESET with the smallest identifier on the activated BWP in the foregoing time domain resource.
  • the TCI state is the TCI state of the CORESET, so that the complexity of the terminal can be reduced.
  • the focus is on how to determine the TCI state of the downlink data channel.
  • the terminal needs to receive the downlink control channel in addition to receiving the downlink data channel.
  • the TCI state of the downlink control channel can be referred to the terminal handover in the embodiment shown in FIG. 2 .
  • the TCI state of the downlink control channel determined by the original BWP is not described here, and the same beneficial effects can be achieved.
  • the active BWP in this embodiment may be the original BWP that the terminal switches back, because after the terminal switches back to the original BWP, the original BWP is the active BWP.
  • the downlink control channel in this embodiment may also be a TCI state of the CORESET configured by the base station through RRC signaling, or a TCI state of the CORESET indicated by the base station through the RRC signaling and the MAC CE.
  • the TCI state is a TCI state of the CORESET, and a TCI state of the CORESET is used.
  • the QCL indication of the control channel on the CORESET, and the CORESET is a CORESET that is unicast and unicast in the time domain resource.
  • the TCI state of the downlink data channel may be a default TCI state, the default TCI state is used for the QCL indication of the control channel on the CORESET, and the default TCI state is The COID in the time domain resource where the DCI is located is unicast and has the smallest CORESET. That is to say, the CORESET here is the CORESET with the smallest identifier in the CORESET of the unicast unicast.
  • the TCI state is a TCI state of the CORESET.
  • the CORESET here is the CORESET with the smallest identifier on the activated BWP in the foregoing time domain resource.
  • the TCI state is the TCI state of the CORESET, so that the complexity of the terminal can be reduced.
  • the focus is on how to determine the TCI state of the downlink data channel.
  • the terminal needs to receive the downlink control channel in addition to receiving the downlink data channel.
  • the TCI state of the downlink control channel can be referred to the terminal handover in the embodiment shown in FIG. 2 .
  • the TCI state of the downlink control channel determined by the original BWP is not described here, and the same beneficial effects can be achieved.
  • the active BWP in this embodiment may be the original BWP that the terminal switches back, because after the terminal switches back to the original BWP, the original BWP is the active BWP.
  • the downlink control channel in this embodiment may also be a TCI state of the CORESET configured by the base station through RRC signaling, or a TCI state of the CORESET indicated by the base station through the RRC signaling and the MAC CE.
  • the high priority TCI state is used to receive the downlink control channel or the downlink data channel according to a preset or base station configured priority rule during the conflict time;
  • the conflict time includes: an overlap time between a use time of the TCI state of the downlink data channel and a use time of a TCI state of the current downlink control channel, or a use time of the TCI state of the downlink data channel.
  • the overlap time between the usage times of the TCI states of the current downlink data channel, the TCI state of the current receiving downlink control channel is a TCI state configured by the base station for receiving the downlink control channel, and the TCI of the current downlink data channel
  • the state is the TCI state of the downlink data channel indicated by the base station and already in effect.
  • the TCI state of the downlink data channel is the TCI state determined in step 301.
  • the usage time of each of the TCI states may be a time required for each TCI state.
  • the usage time of the TCI state of the downlink data channel includes time slot 4 and time slot 5.
  • the current use time of the TCI state of the downlink control channel is the first two symbols of the time slot 4, and the collision time includes the time slot 4 The first two symbols, if the time of use of the TCI state of the current downlink data channel includes time slot 5, the collision time further includes time slot 5.
  • the TCI state of the downlink data channel that has been in effect may be a TCI state in which the time offset is greater than a preset threshold in the time of another DCI scheduled data channel.
  • the priority of the TCI state of the current downlink control channel is higher than the TCI state of the downlink data channel
  • the priority of the TCI state of the current downlink control channel is lower than the TCI state of the downlink data channel
  • the TCI state of the current downlink data channel has a higher priority than the TCI state of the downlink data channel;
  • the priority of the TCI state of the current downlink data channel is lower than the TCI state of the downlink data channel.
  • the conflict problem can be avoided to further improve the reliability and accuracy of data transmission.
  • At least one of a downlink data channel and a downlink reference signal is received according to a preset or a configured by a base station in a collision time;
  • the collision time includes: an overlap time between a usage time of a TCI state of the downlink data channel and a usage time of a TCI state of the downlink reference signal, where a TCI state of the downlink reference signal is the base station configuration Or the indicated TCI state for receiving the downlink reference signal.
  • the flexibility of data transmission can be improved, and the conflict problem can be solved, thereby improving the data.
  • the performance of the transmission since at least one of the downlink data channel and the downlink reference signal can be received according to a preset or base station configured rule during the conflict time, the flexibility of data transmission can be improved, and the conflict problem can be solved, thereby improving the data.
  • the performance of the transmission since at least one of the downlink data channel and the downlink reference signal can be received according to a preset or base station configured rule during the conflict time, the flexibility of data transmission can be improved, and the conflict problem can be solved, thereby improving the data. The performance of the transmission.
  • the downlink reference signal may include at least one of a Channel State Information Reference Signal (CSI-RS) and an SSB.
  • CSI-RS Channel State Information Reference Signal
  • SSB SSB
  • the TCI state of the downlink data channel may indicate a spatial QCL parameter of the downlink data channel
  • the TCI state of the downlink reference signal may indicate a spatial QCL parameter of the downlink reference signal
  • At least one of the downlink data channel and the downlink reference signal can be received using the spatial QCL parameters described above.
  • the preset or base station configured rules include:
  • the base station configures or indicates that the TCI state for receiving the downlink reference signal is the same as the TCI state of the downlink data channel;
  • receiving the downlink data channel by using a TCI state configured or indicated by the base station for receiving a downlink reference signal.
  • the downlink data channel is received by using a TCI state configured or indicated by the base station for receiving the downlink reference signal, This avoids conflicts.
  • the high-priority TCI state is used to receive the downlink data channel, the downlink control channel, and the downlink reference signal according to a preset or base station configured priority rule during the collision time;
  • the collision time includes: an overlap time between a use time of a TCI state of a PDSCH/DMRS configured or indicated by a base station and a use time of a TCI state of a CSI-RS, or a TCI state of multiple CORESETs configured at a base station The overlap time between the use times.
  • the TCI status of the PDSCH/DMRS indicates receiving spatial QCL parameters of the PDSCH/DMRS.
  • the TCI status of the CSI-RS indicates receiving spatial QCL parameters of the CSI-RS.
  • the TCI status of the CORESET indicates receiving a spatial QCL parameter of the PDCCH on the CORESET.
  • the priority of the TCI state of the PDSCH/DMRS is higher than the TCI state of the CSI-RS;
  • the priority of the TCI state of the PDSCH/DMRS is lower than the TCI state of the CSI-RS;
  • the highest priority of the TCI state of the CORESET is the TCI state that identifies the smallest CORESET, or the TCI state that identifies the largest CORESET.
  • the TCI state of the PDSCH/DMRS may be a DCI state in which the DCI is scheduled and has taken effect.
  • the highest priority of the TCI state of the CORESET may also be a preset or other priority rule configured by the base station, such as identifying the TCI state of the CORESET having certain characteristics with the highest priority.
  • the method before the determining a TCI state of the downlink data channel, the method further includes:
  • the newly determined TCI state is the at least one determined TCI state.
  • the terminal may determine using the base station.
  • the TCI state of the CORESET identified as 0, i.e., the downlink data channel is received on the beam of the SSB index having the QCL relationship with the CORESET identified as 0. Since the TCI state is determined by the base station, both the base station and the terminal use the TCI state for data transmission, thereby ensuring data transmission reliability and accuracy.
  • the acquisition timing of the TCI state of the CORESET for obtaining the identifier 0 is not limited.
  • the base station may be determined by the terminal after reporting the beam report, or the base station may receive the uplink reference signal according to the uplink reference signal.
  • the measurement determines or the like, optionally, the TCI state of the CORESET of the above identifier 0 is obtained when the terminal is in the connected state.
  • the method before acquiring the TCI status determined by the base station to determine at least one of a CORESET configuration, an activation, and an indication of 0, the method further includes:
  • the beam report includes index and quality information of the N reference signals, wherein the N reference signals are ranked in the signal quality of the reference signal configured by the network a reference signal of the first N bits, the N being an integer greater than 0;
  • the beam report is reported to the base station.
  • the base station can determine the TCI state of the CORESET of the identifier 0 according to the beam report described above.
  • the reference signal may be a reference signal such as an SSB or a Channel State Information-Reference Signaling (CSI-RS).
  • CSI-RS Channel State Information-Reference Signaling
  • the foregoing N may be determined by the terminal, or pre-configured by the base station, or predefined in the protocol, etc., and the reference signal whose signal quality is ranked in the first N bits may be ranked in the highest order of the signal quality.
  • the N-bit reference signal that is, the N quality reference signals.
  • the signal quality may be Reference Signal Receiving Power (RSRP) or Reference Signal Received Quality (RSRQ).
  • the base station may determine, according to the beam report, a TCI state of the CORESET with the identifier 0, which may be determined by at least one of configuration, activation, and indication. For example, the base station may select one or more reference signals among the N reference signals, and determine the index of the SSB for the terminal to learn the TCI state of the CORESET identified as 0.
  • the terminal when the terminal is initially accessed, the terminal initiates access by using the PRACH resource associated with the SSB according to the measurement and selecting the optimal SSB. After the random access is completed, the CORESET identified as 0 is configured on the PBCH, and the other identified CORESET is configured by the base station through higher layer signaling.
  • the base station schedules the terminal, the PDCCH is transmitted on the CORESET of the current BWP, and the terminal receives the PDSCH according to the signaling on the PDCCH.
  • the terminal when the terminal moves, the terminal performs beam measurement on the SSB configured by the base station, that is, measures the quality of the beam where the SSB is located, such as RSRP, and reports the beam report to the base station, where the report includes the optimal one or more SSBs. Index and its corresponding quality.
  • the base station indicates, according to the beam report, the beam used by the terminal to receive the downlink data channel, and the base station sends a reconfiguration, reactivation or re-instruction command, the function of the command includes configuring a TCI state of the CORESET identified as 0 (eg, a QCL indication),
  • the TCI status is indicated by an SSB index determined by the base station to have a QCL relationship with the CORESET identified as 0.
  • the terminal determines the TCI state of the CORESET identified as 0 by taking the base station reconfiguration/reactivation/re-instruction command as the standard.
  • the TCI state of the downlink data channel is the newly determined TCI state.
  • the DCI is a DCI for scheduling the downlink data channel, so that the newly determined TCI state can be directly used when the scheduling offset is less than or equal to a preset threshold.
  • the configuration refers to using RRC signaling configuration
  • the activating refers to activating one of the TCI states from a plurality of TCI states configured by the RRC signaling using the MAC CE;
  • the indication refers to using MAC CE or physical layer control signaling indication.
  • the TCI state of the CORESET identified as 0 can be determined by at least one of RRC signaling and MAC CE, RRC signaling, MAC CE, and physical layer control signaling, so that the base station and the terminal can be avoided when the terminal switches the SSB.
  • the terminal needs to receive the downlink control channel in addition to receiving the downlink data channel.
  • the TCI state of the downlink control channel can be referred to the terminal handover in the embodiment shown in FIG. 2 .
  • the TCI state of the downlink control channel determined by the original BWP is not described here, and the same beneficial effects can be achieved.
  • the active BWP in this embodiment may be the original BWP that the terminal switches back, because after the terminal switches back to the original BWP, the original BWP is the active BWP.
  • the downlink control channel in this embodiment may also be a TCI state of the CORESET configured by the base station through RRC signaling, or a TCI state of the CORESET indicated by the base station through the RRC signaling and the MAC CE.
  • the reliability and accuracy of data transmission can be improved by the above steps.
  • FIG. 4 is a flowchart of a method for transmitting a downlink channel according to an embodiment of the present disclosure. The method is applied to a base station. As shown in FIG. 4, the method includes the following steps:
  • Step 401 Determine a TCI state of a downlink control channel, where the TCI state is a TCI state of a CORESET used by the base station on the original BWP, and the downlink control channel is sent on a CORESET of the original BWP.
  • Step 402 Send the downlink control channel according to the TCI state.
  • the base station uses the first TCI state on the original BWP.
  • the embodiment is the implementation manner of the base station corresponding to the embodiment shown in FIG. 2, and the specific implementation manners can refer to the related description of the embodiment shown in FIG. 2, and achieve the same beneficial effects, in order to avoid repetition. Description, no more details here.
  • FIG. 5 is a flowchart of another method for transmitting a downlink channel according to an embodiment of the present disclosure.
  • the method is applied to a base station. As shown in FIG. 5, the method includes the following steps:
  • Step 501 Determine a TCI state of the downlink data channel, where the TCI state is: a TCI state of the CORESET or a newly determined TCI state, where the CORESET is the CORESET with the smallest identifier in the time domain resource where the DCI is located, where the DCI is used. Scheduling the downlink data channel;
  • Step 502 Send the downlink data channel according to the TCI state.
  • the sending the downlink data channel according to the TCI state includes:
  • the TCI state is a TCI state of the CORESET
  • the CORESET is an activated BWP in the time domain resource. Identify the smallest CORESET.
  • the TCI state is a TCI state of the CORESET, and a TCI state of the CORESET is used for the control channel on the CORESET
  • the QCL indication, and the CORESET is the smallest CORESET in the time domain resource except the CORESET identified as 0.
  • the TCI state is a TCI state of the CORESET, and a TCI state of the CORESET is used for the control channel on the CORESET
  • the QCL indication, and the CORESET is a CORESET that is unicast and unicast in the time domain resource.
  • the TCI state is a TCI state of the CORESET.
  • the high priority TCI state is used to send the downlink control channel or the downlink data channel according to a preset or base station configured priority rule during the conflict time;
  • the conflict time includes: an overlap time between a usage time of the TCI state of the downlink data channel and a usage time of a TCI state of the current downlink control channel, or a usage time and current time of the TCI state of the downlink data channel.
  • the overlap time between the use times of the TCI states of the downlink data channel, the TCI state of the current downlink control channel is a TCI state configured by the base station for transmitting a downlink control channel
  • the TCI state of the current downlink data channel is The TCI state of the downlink data channel indicated by the base station and already in effect.
  • the preset or the base station configured priority rule includes at least one of the following:
  • the priority of the TCI state of the current downlink control channel is higher than the TCI state of the downlink data channel
  • the priority of the TCI state of the current downlink control channel is lower than the TCI state of the downlink data channel
  • the TCI state of the current downlink data channel has a higher priority than the TCI state of the downlink data channel;
  • the priority of the TCI state of the current downlink data channel is lower than the TCI state of the downlink data channel.
  • At least one of a downlink data channel and a downlink reference signal is sent according to a preset or a rule configured by the base station during a collision time;
  • the collision time includes: an overlap time between a usage time of a TCI state of the downlink data channel and a usage time of a TCI state of the downlink reference signal, where a TCI state of the downlink reference signal is the base station configuration Or the indicated TCI status for transmitting the downlink reference signal.
  • the downlink reference signal includes: at least one of a CSI-RS and an SSB;
  • the TCI status of the downlink data channel indicates a spatial QCL parameter for transmitting the downlink data channel; and the TCI status of the downlink reference signal indicates a spatial QCL parameter for transmitting the downlink reference signal.
  • the preset or base station configured rules include:
  • the base station configures or indicates that a TCI state for transmitting a downlink reference signal is the same as a TCI state of the downlink data channel;
  • the method before the determining a TCI state of the downlink data channel, the method further includes:
  • TCI state of the CORESET identified as 0 the TCI state being at least used to indicate an index of the synchronization signal block SSB having a QCI relationship with the CORESET identified as 0
  • the newly determined TCI state is the at least one determined TCI state.
  • a TCI state of the downlink data channel is the newly determined TCI state.
  • the configuring refers to controlling the RRC signaling configuration by using a radio resource
  • the activating means that one of the TCI states is activated from a plurality of TCI states configured by RRC signaling using a control unit MAC CE of the medium access control;
  • the indication refers to using MAC CE or physical layer control signaling indication.
  • the embodiment is used as an implementation manner of the base station corresponding to the embodiment shown in FIG. 3.
  • the embodiment shown in FIG. 3 For a specific implementation manner, refer to the related description of the embodiment shown in FIG. 3, and achieve the same beneficial effects, in order to avoid repetition. Description, no more details here.
  • FIG. 6 is a structural diagram of a terminal according to an embodiment of the present disclosure. As shown in FIG. 6, the terminal 600 includes:
  • the control channel determining module 601 is configured to determine a TCI state of the downlink control channel, where the TCI state is a CORESET used by the terminal on the original BWP in the case that the terminal switches back to the original BWP. In the TCI state, the downlink control channel is sent on the CORESET of the original BWP;
  • the control channel receiving module 602 is configured to receive the downlink control channel according to the TCI state.
  • the terminal 600 further includes:
  • the original receiving module 603 is configured to perform receiving on the original BWP according to a first TCI state configured by the base station for the CORESET of the original BWP.
  • a first switching module 604 configured to switch to another BWP, and perform receiving on the other BWP according to a TCI state configured by the base station for a CORESET of the other BWP;
  • the second switching module 605 is configured to switch back from the other BWP to the original BWP, where the TCI state of the CORESET used on the original BWP is the first TCI state.
  • the terminal uses the first TCI state on the original BWP.
  • the terminal provided by the embodiment of the present disclosure can implement various processes implemented by the terminal in the method embodiment of FIG. 2, and to avoid repetition, details are not described herein, and the reliability and accuracy of data transmission can be improved.
  • FIG. 8 is a structural diagram of another terminal according to an embodiment of the present disclosure. As shown in FIG. 8, the terminal 800 includes:
  • the data channel determining module 801 is configured to determine a module, configured to determine a TCI state of the downlink data channel, where the TCI state is: a TCI state of the CORESET or a newly determined TCI state, where the CORESET is a time domain resource where the DCI is located Identifying a minimum CORESET, the DCI being used to schedule the downlink data channel;
  • the data channel receiving module 802 is configured to receive the downlink data channel according to the TCI state.
  • the data channel receiving module 802 is configured to receive the downlink data channel according to the spatial QCL parameter indicated by the TCI state.
  • the TCI state is a TCI state of the CORESET
  • the CORESET is an activated BWP in the time domain resource. Identify the smallest CORESET.
  • the TCI state is a TCI state of the CORESET, and a TCI state of the CORESET is used for the control channel on the CORESET
  • the quasi-co-location QCL indication, and the CORESET is the smallest CORESET in the time domain resource except the CORESET identified as 0.
  • the TCI state is a TCI state of the CORESET, and a TCI state of the CORESET is used for the control channel on the CORESET
  • the QCL indication, and the CORESET is a CORESET that is unicast and unicast in the time domain resource.
  • the TCI state is a TCI state of the CORESET.
  • the high priority TCI state is used to receive the downlink control channel or the downlink data channel according to a preset or base station configured priority rule during the conflict time;
  • the conflict time includes: an overlap time between a use time of the TCI state of the downlink data channel and a use time of a TCI state of the current downlink control channel, or a use time of the TCI state of the downlink data channel.
  • the overlap time between the usage times of the TCI states of the current downlink data channel, the TCI state of the current receiving downlink control channel is a TCI state configured by the base station for receiving the downlink control channel, and the TCI of the current downlink data channel
  • the state is the TCI state of the downlink data channel indicated by the base station and already in effect.
  • the preset or the base station configured priority rule includes at least one of the following:
  • the priority of the TCI state of the current downlink control channel is higher than the TCI state of the downlink data channel
  • the priority of the TCI state of the current downlink control channel is lower than the TCI state of the downlink data channel
  • the TCI state of the current downlink data channel has a higher priority than the TCI state of the downlink data channel;
  • the priority of the TCI state of the current downlink data channel is lower than the TCI state of the downlink data channel.
  • the collision time includes: an overlap time between a usage time of a TCI state of the downlink data channel and a usage time of a TCI state of the downlink reference signal, where a TCI state of the downlink reference signal is the base station configuration Or the indicated TCI state for receiving the downlink reference signal.
  • the downlink reference signal includes: at least one of a channel state information reference signal CSI-RS and a synchronization signal block SSB;
  • the TCI status of the downlink data channel indicates receiving a spatial QCL parameter of the downlink data channel; and the TCI status of the downlink reference signal indicates receiving a spatial QCL parameter of the downlink reference signal.
  • the preset or base station configured rules include:
  • the base station configures or indicates that a TCI state for receiving a downlink reference signal is the same as a TCI state of the downlink data channel;
  • receiving the downlink data channel by using a TCI state configured or indicated by the base station for receiving a downlink reference signal.
  • the terminal 800 further includes:
  • the obtaining module 803 is configured to acquire, by the base station, a TCI state determined by using at least one of a CORESET configuration, an activation, and an indication that is identified as 0, where the TCI state is at least used to indicate that a QCI relationship exists with the CORESET of the identifier 0.
  • An index of the synchronization signal block SSB, and the newly determined TCI state is the at least one determined TCI state.
  • a TCI state of the downlink data channel is the newly determined TCI state.
  • the configuring refers to controlling the RRC signaling configuration by using a radio resource
  • the activating means that one of the TCI states is activated from a plurality of TCI states configured by RRC signaling using a control unit MAC CE of the medium access control;
  • the indication refers to using MAC CE or physical layer control signaling indication.
  • the terminal provided by the embodiment of the present disclosure can implement various processes implemented by the terminal in the method embodiment of FIG. 3. To avoid repetition, details are not described herein, and the reliability and accuracy of data transmission can be improved.
  • FIG. 10 is a structural diagram of a base station according to an embodiment of the present disclosure. As shown in FIG. 10, the base station 1000 includes:
  • the control channel determining module 1001 is configured to determine a TCI state of the downlink control channel, where the TCI state is a TCI state of a CORESET used by the base station on the original BWP, and the downlink control channel is in the CORST of the original BWP. Send on
  • the control channel sending module 1002 is configured to send the downlink control channel according to the TCI state.
  • the base station uses the first TCI state on the original BWP.
  • the base station provided by the embodiment of the present disclosure can implement various processes implemented by the base station in the method embodiment of FIG. 4, and to avoid repetition, details are not described herein, and reliability and accuracy of data transmission can be improved.
  • FIG. 11 is a structural diagram of a base station according to an embodiment of the present disclosure. As shown in FIG. 11, the base station 1100 includes:
  • the data channel determining module 1101 is configured to determine a TCI state of the downlink data channel, where the TCI state is: a TCI state of the CORESET or a newly determined TCI state, where the CORESET is the CORESET with the smallest identifier in the time domain resource where the DCI is located.
  • the DCI is used to schedule the downlink data channel;
  • the data channel sending module 1102 is configured to send the downlink data channel according to the TCI state.
  • the data channel sending module 1102 is configured to send the downlink data channel according to the spatial QCL parameter indicated by the TCI status.
  • the TCI state is a TCI state of the CORESET
  • the CORESET is an activated BWP in the time domain resource. Identify the smallest CORESET.
  • the TCI state is a TCI state of the CORESET, and a TCI state of the CORESET is used for the control channel on the CORESET
  • the QCL indication, and the CORESET is the smallest CORESET in the time domain resource except the CORESET identified as 0.
  • the TCI state is a TCI state of the CORESET, and a TCI state of the CORESET is used for the control channel on the CORESET
  • the QCL indication, and the CORESET is a CORESET that is unicast and unicast in the time domain resource.
  • the TCI state is a TCI state of the CORESET.
  • the high priority TCI state is used to send the downlink control channel or the downlink data channel according to a preset or base station configured priority rule during the conflict time;
  • the conflict time includes: an overlap time between a usage time of the TCI state of the downlink data channel and a usage time of a TCI state of the current downlink control channel, or a usage time and current time of the TCI state of the downlink data channel.
  • the overlap time between the use times of the TCI states of the downlink data channel, the TCI state of the current downlink control channel is a TCI state configured by the base station for transmitting a downlink control channel
  • the TCI state of the current downlink data channel is The TCI state of the downlink data channel indicated by the base station and already in effect.
  • the preset or the base station configured priority rule includes at least one of the following:
  • the priority of the TCI state of the current downlink control channel is higher than the TCI state of the downlink data channel
  • the priority of the TCI state of the current downlink control channel is lower than the TCI state of the downlink data channel
  • the TCI state of the current downlink data channel has a higher priority than the TCI state of the downlink data channel;
  • the TCI state of the current downlink data channel has a lower priority than the TCI state of the downlink data channel.
  • At least one of a downlink data channel and a downlink reference signal is sent according to a preset or a rule configured by the base station during a collision time;
  • the collision time includes: an overlap time between a usage time of a TCI state of the downlink data channel and a usage time of a TCI state of the downlink reference signal, where a TCI state of the downlink reference signal is the base station configuration Or the indicated TCI status for transmitting the downlink reference signal.
  • the downlink reference signal includes: at least one of a CSI-RS and an SSB;
  • the TCI status of the downlink data channel indicates a spatial QCL parameter for transmitting the downlink data channel; and the TCI status of the downlink reference signal indicates a spatial QCL parameter for transmitting the downlink reference signal.
  • the preset or base station configured rules include:
  • the base station configures or indicates that a TCI state for transmitting a downlink reference signal is the same as a TCI state of the downlink data channel;
  • the base station 1100 further includes:
  • the state determining module 1103 is configured to determine, by the at least one of the configuration, the activation, and the indication, a TCI state of the CORESET with the identifier 0, the TCI state is used to indicate at least a QCI relationship with the CORESET with the identifier 0 An index of the synchronization signal block SSB, and the newly determined TCI state is the at least one determined TCI state.
  • a TCI state of the downlink data channel is the newly determined TCI state.
  • the configuring refers to controlling the RRC signaling configuration by using a radio resource
  • the activating means that one of the TCI states is activated from a plurality of TCI states configured by RRC signaling using a control unit MAC CE of the medium access control;
  • the indication refers to using MAC CE or physical layer control signaling indication.
  • the base station provided by the embodiment of the present disclosure can implement various processes implemented by the terminal in the method embodiment of FIG. 3. To avoid repetition, details are not described herein, and the reliability and accuracy of data transmission can be improved.
  • FIG. 13 is a schematic structural diagram of hardware of a terminal that implements various embodiments of the present disclosure.
  • the terminal 1300 includes, but is not limited to, a radio frequency unit 1301, a network module 1302, an audio output unit 1303, an input unit 1304, a sensor 1305, a display unit 1306, a user input unit 1307, an interface unit 1308, a memory 1309, a processor 1310, and a power supply. 1311 and other components.
  • the terminal structure shown in FIG. 13 does not constitute a limitation to the terminal, and the terminal may include more or less components than those illustrated, or some components may be combined, or different component arrangements.
  • the terminal includes, but is not limited to, a mobile phone, a tablet computer, a notebook computer, a palmtop computer, an in-vehicle terminal, a wearable device, and a pedometer.
  • the processor 1310 is configured to determine a TCI state of the downlink control channel, where the TCI state is a TCI state of the CORESET used by the terminal on the original BWP in the case that the terminal switches back to the original BWP.
  • the downlink control channel is sent on the CORESET of the original BWP;
  • the radio frequency unit 1301 is configured to receive the downlink control channel according to the TCI state.
  • the radio unit 1301 is further configured to:
  • the terminal uses the first TCI state on the original BWP.
  • the above terminal can improve the reliability and accuracy of data transmission.
  • the radio frequency unit 1301 can be used for receiving and transmitting signals during the transmission and reception of information or during a call, and specifically, after receiving downlink data from the base station, processing the processor 1310; The uplink data is sent to the base station.
  • radio frequency unit 1301 includes, but is not limited to, an antenna, at least one amplifier, a transceiver, a coupler, a low noise amplifier, a duplexer, and the like.
  • the radio unit 1301 can also communicate with the network and other devices through a wireless communication system.
  • the terminal provides wireless broadband Internet access to the user through the network module 1302, such as helping the user to send and receive emails, browse web pages, and access streaming media.
  • the audio output unit 1303 may convert the audio data received by the radio frequency unit 1301 or the network module 1302 or stored in the memory 1309 into an audio signal and output as a sound. Moreover, the audio output unit 1303 can also provide audio output (eg, call signal reception sound, message reception sound, etc.) related to a specific function performed by the terminal 1300.
  • the audio output unit 1303 includes a speaker, a buzzer, a receiver, and the like.
  • the input unit 1304 is for receiving an audio or video signal.
  • the input unit 1304 may include a graphics processing unit (GPU) 13041 and a microphone 13042, and the graphics processor 13041 images an still picture or video obtained by an image capturing device (such as a camera) in a video capturing mode or an image capturing mode.
  • the data is processed.
  • the processed image frame can be displayed on display unit 1306.
  • the image frames processed by the graphics processor 13041 may be stored in the memory 1309 (or other storage medium) or transmitted via the radio unit 1301 or the network module 1302.
  • the microphone 13042 can receive sound and can process such sound as audio data.
  • the processed audio data can be converted to a format output that can be transmitted to the mobile communication base station via the radio unit 1301 in the case of a telephone call mode.
  • Terminal 1300 also includes at least one type of sensor 1305, such as a light sensor, motion sensor, and other sensors.
  • the light sensor includes an ambient light sensor and a proximity sensor, wherein the ambient light sensor can adjust the brightness of the display panel 13061 according to the brightness of the ambient light, and the proximity sensor can close the display panel 13061 and/or when the terminal 1300 moves to the ear. Or backlight.
  • the accelerometer sensor can detect the magnitude of acceleration in all directions (usually three axes). When it is stationary, it can detect the magnitude and direction of gravity.
  • sensor 1305 can also include fingerprint sensor, pressure sensor, iris sensor, molecular sensor, gyroscope, barometer, hygrometer, thermometer, infrared Sensors, etc., will not be described here.
  • the display unit 1306 is for displaying information input by the user or information provided to the user.
  • the display unit 1306 can include a display panel 13061.
  • the display panel 13061 can be configured in the form of a liquid crystal display (LCD), an organic light-emitting diode (OLED), or the like.
  • the user input unit 1307 can be configured to receive input numeric or character information and to generate key signal inputs related to user settings and function control of the terminal.
  • the user input unit 1307 includes a touch panel 13071 and other input devices 13072.
  • the touch panel 13071 also referred to as a touch screen, can collect touch operations on or near the user (such as the user using a finger, a stylus, or the like on the touch panel 13071 or near the touch panel 13071. operating).
  • the touch panel 13071 may include two parts of a touch detection device and a touch controller.
  • the touch detection device detects the touch orientation of the user, and detects a signal brought by the touch operation, and transmits the signal to the touch controller; the touch controller receives the touch information from the touch detection device, converts the touch information into contact coordinates, and sends the touch information.
  • the processor 1310 receives the commands from the processor 1310 and executes them.
  • the touch panel 13071 can be implemented in various types such as resistive, capacitive, infrared, and surface acoustic waves.
  • the user input unit 1307 can also include other input devices 13072.
  • other input devices 13072 may include, but are not limited to, a physical keyboard, function keys (such as a volume control button, a switch button, etc.), a trackball, a mouse, and a joystick, which are not described herein again.
  • the touch panel 13071 can be overlaid on the display panel 13061. After the touch panel 13071 detects a touch operation thereon or nearby, the touch panel 13071 transmits to the processor 1310 to determine the type of the touch event, and then the processor 1310 according to the touch. The type of event provides a corresponding visual output on display panel 13061.
  • the touch panel 13071 and the display panel 13061 are used as two independent components to implement the input and output functions of the terminal, in some embodiments, the touch panel 13071 and the display panel 13061 may be integrated. The input and output functions of the terminal are implemented, and are not limited herein.
  • the interface unit 1308 is an interface in which an external device is connected to the terminal 1300.
  • the external device may include a wired or wireless headset port, an external power (or battery charger) port, a wired or wireless data port, a memory card port, a port for connecting a device having an identification module, and an audio input/output. (I/O) port, video I/O port, headphone port, and more.
  • the interface unit 1308 can be configured to receive input from an external device (eg, data information, power, etc.) and transmit the received input to one or more components within the terminal 1300 or can be used at the terminal 1300 and external devices Transfer data between.
  • an external device eg, data information, power, etc.
  • Memory 1309 can be used to store software programs as well as various data.
  • the memory 1309 may mainly include a storage program area and a storage data area, wherein the storage program area may store an operating system, an application required for at least one function (such as a sound playing function, an image playing function, etc.), and the like; the storage data area may be stored according to Data created by the use of the mobile phone (such as audio data, phone book, etc.).
  • memory 1309 can include high speed random access memory, and can also include non-volatile memory, such as at least one magnetic disk storage device, flash memory device, or other volatile solid state storage device.
  • the processor 1310 is a control center of the terminal, which connects various parts of the entire terminal using various interfaces and lines, and executes by executing or executing software programs and/or modules stored in the memory 1309, and calling data stored in the memory 1309.
  • the processor 1310 may include one or more processing units; optionally, the processor 1310 may integrate an application processor and a modem processor, wherein the application processor mainly processes an operating system, a user interface, an application, etc., and a modulation solution
  • the processor mainly handles wireless communication. It can be understood that the above modem processor may not be integrated into the processor 1310.
  • the terminal 1300 may further include a power supply 1311 (such as a battery) for supplying power to various components.
  • a power supply 1311 such as a battery
  • the power supply 1311 may be logically connected to the processor 1310 through a power management system to manage charging, discharging, and power management through the power management system. And other functions.
  • terminal 1300 includes some functional modules not shown, and details are not described herein again.
  • an embodiment of the present disclosure further provides a terminal, including a processor 1310, a memory 1309, a computer program stored on the memory 1309 and executable on the processor 1310, when the computer program is executed by the processor 1310.
  • a terminal including a processor 1310, a memory 1309, a computer program stored on the memory 1309 and executable on the processor 1310, when the computer program is executed by the processor 1310.
  • FIG. 14 is a schematic structural diagram of hardware of a terminal that implements various embodiments of the present disclosure.
  • the terminal 1400 includes but is not limited to: a radio frequency unit 1401, a network module 1402, an audio output unit 1403, an input unit 1404, a sensor 1405, a display unit 1406, a user input unit 1407, an interface unit 1408, a memory 1409, a processor 1410, and a power supply. 1411 and other components.
  • the terminal structure shown in FIG. 14 does not constitute a limitation of the terminal, and the terminal may include more or less components than those illustrated, or some components may be combined, or different component arrangements.
  • the terminal includes, but is not limited to, a mobile phone, a tablet computer, a notebook computer, a palmtop computer, an in-vehicle terminal, a wearable device, and a pedometer.
  • the processor 1410 is configured to determine a TCI state of the downlink data channel, where the TCI state is: a TCI state of the CORESET or a newly determined TCI state, where the CORESET is the smallest identifier in the time domain resource where the downlink control information DCI is located. CORESET, the DCI is used to schedule the downlink data channel;
  • the radio unit 1401 is configured to receive the downlink data channel according to the TCI state.
  • the receiving by the radio unit 1401, the receiving the downlink data channel according to the TCI state, includes:
  • the TCI state is a TCI state of the CORESET
  • the CORESET is an activated BWP in the time domain resource. Identify the smallest CORESET.
  • the TCI state is a TCI state of the CORESET, and a TCI state of the CORESET is used for the control channel on the CORESET
  • the quasi-co-location QCL indication, and the CORESET is the smallest CORESET in the time domain resource except the CORESET identified as 0.
  • the TCI state is a TCI state of the CORESET, and a TCI state of the CORESET is used for the control channel on the CORESET
  • the QCL indication, and the CORESET is a CORESET that is unicast and unicast in the time domain resource.
  • the TCI state is a TCI state of the CORESET.
  • the high priority TCI state is used to receive the downlink control channel or the downlink data channel according to a preset or base station configured priority rule during the conflict time;
  • the conflict time includes: an overlap time between a use time of the TCI state of the downlink data channel and a use time of a TCI state of the current downlink control channel, or a use time of the TCI state of the downlink data channel.
  • the overlap time between the usage times of the TCI states of the current downlink data channel, the TCI state of the current receiving downlink control channel is a TCI state configured by the base station for receiving the downlink control channel, and the TCI of the current downlink data channel
  • the state is the TCI state of the downlink data channel indicated by the base station and already in effect.
  • the preset or the base station configured priority rule includes at least one of the following:
  • the priority of the TCI state of the current downlink control channel is higher than the TCI state of the downlink data channel
  • the priority of the TCI state of the current downlink control channel is lower than the TCI state of the downlink data channel
  • the TCI state of the current downlink data channel has a higher priority than the TCI state of the downlink data channel;
  • the priority of the TCI state of the current downlink data channel is lower than the TCI state of the downlink data channel.
  • the collision time includes: an overlap time between a usage time of a TCI state of the downlink data channel and a usage time of a TCI state of the downlink reference signal, where a TCI state of the downlink reference signal is the base station configuration Or the indicated TCI state for receiving the downlink reference signal.
  • the downlink reference signal includes: at least one of a channel state information reference signal CSI-RS and a synchronization signal block SSB;
  • the TCI status of the downlink data channel indicates receiving a spatial QCL parameter of the downlink data channel; and the TCI status of the downlink reference signal indicates receiving a spatial QCL parameter of the downlink reference signal.
  • the preset or base station configured rules include:
  • the base station configures or indicates that a TCI state for receiving a downlink reference signal is the same as a TCI state of the downlink data channel;
  • receiving the downlink data channel by using a TCI state configured or indicated by the base station for receiving a downlink reference signal.
  • the radio unit 1401 is further configured to:
  • a TCI state of the downlink data channel is the newly determined TCI state.
  • the configuring refers to controlling the RRC signaling configuration by using a radio resource
  • the activating means that one of the TCI states is activated from a plurality of TCI states configured by RRC signaling using a control unit MAC CE of the medium access control;
  • the indication refers to using MAC CE or physical layer control signaling indication.
  • the above terminal can improve the reliability and accuracy of data transmission.
  • the radio frequency unit 1401 may be used for receiving and transmitting signals during and after receiving or transmitting information or a call, and specifically, after receiving downlink data from the base station, processing the processor 1410; The uplink data is sent to the base station.
  • radio frequency unit 1401 includes, but is not limited to, an antenna, at least one amplifier, a transceiver, a coupler, a low noise amplifier, a duplexer, and the like.
  • the radio unit 1401 can also communicate with the network and other devices through a wireless communication system.
  • the terminal provides wireless broadband Internet access to the user through the network module 1402, such as helping the user to send and receive emails, browse web pages, and access streaming media.
  • the audio output unit 1403 may convert the audio data received by the radio frequency unit 1401 or the network module 1402 or stored in the memory 1409 into an audio signal and output as a sound. Moreover, the audio output unit 1403 can also provide audio output (eg, call signal reception sound, message reception sound, etc.) related to a particular function performed by the terminal 1400.
  • the audio output unit 1403 includes a speaker, a buzzer, a receiver, and the like.
  • the input unit 1404 is for receiving an audio or video signal.
  • the input unit 1404 may include a graphics processing unit (GPU) 14041 and a microphone 14042, and the graphics processor 14041 images an still picture or video obtained by an image capturing device (such as a camera) in a video capturing mode or an image capturing mode.
  • the data is processed.
  • the processed image frame can be displayed on display unit 1406.
  • the image frames processed by the graphics processor 14041 may be stored in the memory 1409 (or other storage medium) or transmitted via the radio unit 1401 or the network module 1402.
  • the microphone 14042 can receive sound and can process such sound as audio data.
  • the processed audio data can be converted to a format output that can be transmitted to the mobile communication base station via the radio unit 1401 in the case of a telephone call mode.
  • Terminal 1400 also includes at least one type of sensor 1405, such as a light sensor, motion sensor, and other sensors.
  • the light sensor includes an ambient light sensor and a proximity sensor, wherein the ambient light sensor can adjust the brightness of the display panel 14061 according to the brightness of the ambient light, and the proximity sensor can close the display panel 14061 and/or when the terminal 1400 moves to the ear. Or backlight.
  • the accelerometer sensor can detect the magnitude of acceleration in all directions (usually three axes). When it is stationary, it can detect the magnitude and direction of gravity.
  • sensor 1405 may also include fingerprint sensor, pressure sensor, iris sensor, molecular sensor, gyroscope, barometer, hygrometer, thermometer, infrared Sensors, etc., will not be described here.
  • the display unit 1406 is for displaying information input by the user or information provided to the user.
  • the display unit 1406 can include a display panel 14061.
  • the display panel 14061 can be configured in the form of a liquid crystal display (LCD), an organic light-emitting diode (OLED), or the like.
  • the user input unit 1407 can be configured to receive input numeric or character information and to generate key signal inputs related to user settings and function control of the terminal.
  • the user input unit 1407 includes a touch panel 14071 and other input devices 14072.
  • the touch panel 14071 also referred to as a touch screen, can collect touch operations on or near the user (such as the user using a finger, a stylus, or the like on the touch panel 1471 or near the touch panel 14071. operating).
  • the touch panel 14071 may include two parts of a touch detection device and a touch controller.
  • the touch detection device detects the touch orientation of the user, and detects a signal brought by the touch operation, and transmits the signal to the touch controller; the touch controller receives the touch information from the touch detection device, converts the touch information into contact coordinates, and sends the touch information.
  • the processor 1410 receives the commands from the processor 1410 and executes them.
  • the touch panel 14071 can be implemented in various types such as resistive, capacitive, infrared, and surface acoustic waves.
  • the user input unit 1407 may also include other input devices 14072.
  • the other input devices 14072 may include, but are not limited to, a physical keyboard, function keys (such as a volume control button, a switch button, etc.), a trackball, a mouse, and a joystick, which are not described herein.
  • the touch panel 14071 can be overlaid on the display panel 14061.
  • the touch panel 14071 detects a touch operation thereon or nearby, the touch panel 14071 transmits to the processor 1410 to determine the type of the touch event, and then the processor 1410 according to the touch.
  • the type of event provides a corresponding visual output on display panel 14061.
  • the touch panel 14071 and the display panel 14061 are used as two independent components to implement the input and output functions of the terminal in FIG. 14 , in some embodiments, the touch panel 14071 and the display panel 14061 may be integrated.
  • the input and output functions of the terminal are implemented, and are not limited herein.
  • the interface unit 1408 is an interface in which an external device is connected to the terminal 1400.
  • the external device may include a wired or wireless headset port, an external power (or battery charger) port, a wired or wireless data port, a memory card port, a port for connecting a device having an identification module, and an audio input/output. (I/O) port, video I/O port, headphone port, and more.
  • the interface unit 1408 can be configured to receive input from an external device (eg, data information, power, etc.) and transmit the received input to one or more components within the terminal 1400 or can be used at the terminal 1400 and external devices Transfer data between.
  • an external device eg, data information, power, etc.
  • Memory 1409 can be used to store software programs as well as various data.
  • the memory 1409 may mainly include a storage program area and a storage data area, wherein the storage program area may store an operating system, an application required for at least one function (such as a sound playing function, an image playing function, etc.), and the like; the storage data area may be stored according to Data created by the use of the mobile phone (such as audio data, phone book, etc.).
  • memory 1409 can include high speed random access memory, and can also include non-volatile memory, such as at least one magnetic disk storage device, flash memory device, or other volatile solid state storage device.
  • the processor 1410 is a control center of the terminal, which connects various parts of the entire terminal using various interfaces and lines, and executes by executing or executing software programs and/or modules stored in the memory 1409, and calling data stored in the memory 1409.
  • the processor 1410 can include one or more processing units; optionally, the processor 1410 can integrate an application processor and a modem processor, wherein the application processor mainly processes an operating system, a user interface, an application, etc., and a modulation solution
  • the processor mainly handles wireless communication. It will be appreciated that the above described modem processor may also not be integrated into the processor 1410.
  • the terminal 1400 can also include a power source 1411 (such as a battery) for powering various components.
  • a power source 1411 such as a battery
  • the power source 1411 can be logically coupled to the processor 1410 through a power management system to manage charging, discharging, and power management through the power management system. And other functions.
  • terminal 1400 includes some functional modules not shown, and details are not described herein again.
  • an embodiment of the present disclosure further provides a terminal, including a processor 1410, a memory 1409, a computer program stored on the memory 1409 and executable on the processor 1410, when the computer program is executed by the processor 1410.
  • a terminal including a processor 1410, a memory 1409, a computer program stored on the memory 1409 and executable on the processor 1410, when the computer program is executed by the processor 1410.
  • FIG. 15 is a structural diagram of another base station according to an embodiment of the present disclosure.
  • the base station 1500 includes: a processor 1501, a transceiver 1502, a memory 1503, and a bus interface, where:
  • the processor 1501 is configured to determine a TCI state of the downlink control channel, where the TCI state is a TCI state of a CORESET used by the base station on the original BWP, and the downlink control channel is sent on the CORESET of the original BWP. ;
  • the transceiver 1502 is configured to send the downlink control channel according to the TCI state.
  • the base station uses the first TCI state on the original BWP.
  • the above base station can improve the reliability and accuracy of data transmission.
  • the transceiver 1502 is configured to receive and transmit data under the control of the processor 1501, and the transceiver 1502 includes at least two antenna ports.
  • the bus architecture may include any number of interconnected buses and bridges, specifically linked by one or more processors represented by processor 1501 and various circuits of memory represented by memory 1503.
  • the bus architecture can also link various other circuits such as peripherals, voltage regulators, and power management circuits, which are well known in the art and, therefore, will not be further described herein.
  • the bus interface provides an interface.
  • Transceiver 1502 can be a plurality of components, including a transmitter and a receiver, providing means for communicating with various other devices on a transmission medium.
  • the user interface may also be an interface capable of externally connecting the required devices, including but not limited to a keypad, a display, a speaker, a microphone, a joystick, and the like.
  • the processor 1501 is responsible for managing the bus architecture and general processing, and the memory 1503 can store data used by the processor 1501 when performing operations.
  • the embodiment of the present disclosure further provides a base station, including a processor 1501, a memory 1503, a computer program stored on the memory 1503 and executable on the processor 1501, when the computer program is executed by the processor 1501.
  • a base station including a processor 1501, a memory 1503, a computer program stored on the memory 1503 and executable on the processor 1501, when the computer program is executed by the processor 1501.
  • FIG. 16 is a structural diagram of another base station according to an embodiment of the present disclosure.
  • the base station 1600 includes: a processor 1601, a transceiver 1602, a memory 1603, and a bus interface, where:
  • the processor 1601 is configured to determine a TCI state of the downlink data channel, where the TCI state is: a TCI state of the CORESET or a newly determined TCI state, where the CORESET is the smallest CORESET in the time domain resource where the DCI is located.
  • the DCI is used to schedule the downlink data channel;
  • the transceiver 1602 is configured to send the downlink data channel according to the TCI state.
  • the transmitting by the transceiver 1602, the sending the downlink data channel according to the TCI status, includes:
  • the TCI state is a TCI state of the CORESET
  • the CORESET is an activated BWP in the time domain resource. Identify the smallest CORESET.
  • the TCI state is a TCI state of the CORESET, and a TCI state of the CORESET is used for the control channel on the CORESET
  • the QCL indication, and the CORESET is the smallest CORESET in the time domain resource except the CORESET identified as 0.
  • the TCI state is a TCI state of the CORESET, and a TCI state of the CORESET is used for the control channel on the CORESET
  • the QCL indication, and the CORESET is a CORESET that is unicast and unicast in the time domain resource.
  • the TCI state is a TCI state of the CORESET.
  • the high priority TCI state is used to send the downlink control channel or the downlink data channel according to a preset or base station configured priority rule during the conflict time;
  • the conflict time includes: an overlap time between a usage time of the TCI state of the downlink data channel and a usage time of a TCI state of the current downlink control channel, or a usage time and current time of the TCI state of the downlink data channel.
  • the overlap time between the use times of the TCI states of the downlink data channel, the TCI state of the current downlink control channel is a TCI state configured by the base station for transmitting a downlink control channel
  • the TCI state of the current downlink data channel is The TCI state of the downlink data channel indicated by the base station and already in effect.
  • the preset or the base station configured priority rule includes at least one of the following:
  • the priority of the TCI state of the current downlink control channel is higher than the TCI state of the downlink data channel
  • the priority of the TCI state of the current downlink control channel is lower than the TCI state of the downlink data channel
  • the TCI state of the current downlink data channel has a higher priority than the TCI state of the downlink data channel;
  • the priority of the TCI state of the current downlink data channel is lower than the TCI state of the downlink data channel.
  • At least one of a downlink data channel and a downlink reference signal is sent according to a preset or a rule configured by the base station during a collision time;
  • the collision time includes: an overlap time between a usage time of a TCI state of the downlink data channel and a usage time of a TCI state of the downlink reference signal, where a TCI state of the downlink reference signal is the base station configuration Or the indicated TCI status for transmitting the downlink reference signal.
  • the downlink reference signal includes: at least one of a CSI-RS and an SSB;
  • the TCI status of the downlink data channel indicates a spatial QCL parameter for transmitting the downlink data channel; and the TCI status of the downlink reference signal indicates a spatial QCL parameter for transmitting the downlink reference signal.
  • the preset or base station configured rules include:
  • the base station configures or indicates that a TCI state for transmitting a downlink reference signal is the same as a TCI state of the downlink data channel;
  • the transceiver 1602 is further configured to:
  • TCI state of the CORESET identified as 0 the TCI state being at least used to indicate an index of the synchronization signal block SSB having a QCI relationship with the CORESET identified as 0
  • the newly determined TCI state is the at least one determined TCI state.
  • a TCI state of the downlink data channel is the newly determined TCI state.
  • the configuration refers to using RRC signaling configuration
  • the activating means that one of the TCI states is activated from a plurality of TCI states configured by RRC signaling using a control unit MAC CE of the medium access control;
  • the indication refers to using MAC CE or physical layer control signaling indication.
  • the above base station can improve the reliability and accuracy of data transmission.
  • the transceiver 1602 is configured to receive and transmit data under the control of the processor 1601, and the transceiver 1602 includes at least two antenna ports.
  • the bus architecture may include any number of interconnected buses and bridges, specifically linked by one or more processors represented by processor 1601 and various circuits of memory represented by memory 1603.
  • the bus architecture can also link various other circuits such as peripherals, voltage regulators, and power management circuits, which are well known in the art and, therefore, will not be further described herein.
  • the bus interface provides an interface.
  • Transceiver 1602 can be a plurality of components, including a transmitter and a receiver, providing means for communicating with various other devices on a transmission medium.
  • the user interface may also be an interface capable of externally connecting the required devices, including but not limited to a keypad, a display, a speaker, a microphone, a joystick, and the like.
  • the processor 1601 is responsible for managing the bus architecture and general processing, and the memory 1603 can store data used by the processor 1601 in performing operations.
  • an embodiment of the present disclosure further provides a base station, including a processor 1601, a memory 1603, a computer program stored on the memory 1603 and executable on the processor 1601, when the computer program is executed by the processor 1601.
  • a base station including a processor 1601, a memory 1603, a computer program stored on the memory 1603 and executable on the processor 1601, when the computer program is executed by the processor 1601.
  • the embodiment of the present disclosure further provides a computer readable storage medium, where the computer readable storage medium stores a computer program, and when the computer program is executed by the processor, implements various embodiments of the receiving method of the downlink channel provided by the embodiments of the present disclosure.
  • Each process, or the computer program is executed by the processor implements various processes of the embodiments of the method for transmitting the downlink channels provided by the embodiments of the present disclosure, and can achieve the same technical effect. To avoid repetition, details are not described herein again.
  • the computer readable storage medium such as a read-only memory (ROM), a random access memory (RAM), a magnetic disk, or an optical disk.
  • the foregoing embodiment method can be implemented by means of software plus a necessary general hardware platform, and of course, can also be through hardware, but in many cases, the former is better.
  • Implementation Based on such understanding, the technical solution of the present disclosure, which is essential or contributes to the related art, may be embodied in the form of a software product stored in a storage medium (such as ROM/RAM, disk, CD-ROM).
  • the instructions include a number of instructions for causing a terminal (which may be a cell phone, computer, server, air conditioner, or network device, etc.) to perform the methods described in various embodiments of the present disclosure.

Abstract

本公开实施例提供一种下行信道的接收方法、发送方法、终端和基站,该方法包括:确定下行控制信道的TCI状态,其中,在终端切换回原带宽部分BWP的情况下,所述TCI状态为所述终端最近一次在所述原BWP上使用的控制资源集CORESET的TCI状态,所述下行控制信道在所述原BWP的CORESET上发送;根据所述TCI状态接收所述下行控制信道。

Description

下行信道的接收方法、发送方法、终端和基站
相关申请的交叉引用
本申请主张在2018年2月11日在中国提交的中国专利申请号No.201810142918.8的优先权、在2018年2月14日在中国提交的中国专利申请号No.201810151459.X的优先权以及在2018年2月28日在中国提交的中国专利申请号No.201810169276.0的优先权,其全部内容通过引用包含于此。
技术领域
本公开涉及通信技术领域,尤其涉及一种下行信道的接收方法、发送方法、终端和基站。
背景技术
第五代(5 th generation,5G)通信系统中,将系统支持的工作频段提升至6GHz以上,最高约达100GHz,从而在5G通信系统中采用多波束传输。针对多个波束传输,5G通信系统中可以通过传输配置指示(Transmission Configuration Indication,TCI)状态来向终端指示波束信息。另外,在5G通信系统中每个载波最大的信道带宽(channel bandwidth)是400MHz,而终端支持的最大带宽可以小于400MHz,从而在5G通信系统中新引入了带宽部分(bandwidth part,BWP)这一概念,UE可以工作在多个BWP上。这样,在实际应用中,终端会发生BWP切换或者移动等,然而,相关技术中的5G通信系统中,针对这些情况还未明确如何配置TCI状态,从而导致数据传输的可靠性和准确性比较低。
发明内容
本公开实施例提供一种下行信道的接收方法、发送方法、终端和基站,以解决数据传输的可靠性和准确性比较低的问题。
第一方面,本公开实施例还提供了一种下行信道的接收方法,应用于终端,包括:
确定下行控制信道的传输配置指示TCI状态,其中,在所述终端切换回原BWP的情况下,所述TCI状态为所述终端最近一次在所述原BWP上使用的控制资源集(control resource set,CORESET)的TCI状态,所述下行控制信道在所述原BWP的CORESET上发送;
根据所述TCI状态接收所述下行控制信道。
第二方面,本公开实施例还提供了一种下行信道的接收方法,应用于终端,包括:
确定下行数据信道的TCI状态,其中,所述TCI状态为:CORESET的TCI状态或者新确定的TCI状态,所述CORESET为下行控制信息(Downlink Control Information,DCI)所在的时域资源中标识最小的CORESET,所述DCI用于调度所述下行数据信道;
根据所述TCI状态接收所述下行数据信道。
第三方面,本公开实施例提供了一种下行信道的发送方法,应用于基站,包括:
确定下行控制信道的TCI状态,其中,所述TCI状态为所述基站最近一次在原BWP上使用的CORESET的TCI状态,所述下行控制信道在所述原BWP的CORESET上发送;
根据所述TCI状态发送所述下行控制信道。
第四方面,本公开实施例提供了一种下行信道的发送方法,应用于基站,包括:
确定下行数据信道的TCI状态,其中,所述TCI状态为:CORESET的TCI状态或者新确定的TCI状态,所述CORESET为DCI所在的时域资源中标识最小的CORESET,所述DCI用于调度所述下行数据信道;
根据所述TCI状态发送所述下行数据信道。
第五方面,本公开实施例提供了一种终端,包括:
控制信道确定模块,用于确定下行控制信道的TCI状态,其中,在所述终端切换回原BWP的情况下,所述TCI状态为所述终端最近一次在所述原BWP上使用的CORESET的TCI状态,所述下行控制信道在所述原BWP的CORESET上发送;
控制信道接收模块,用于根据所述TCI状态接收所述下行控制信道。
第六方面,本公开实施例提供了一种终端,包括:
数据信道确定模块,用于确定下行数据信道的TCI状态,其中,所述TCI状态为:CORESET的TCI状态或者新确定的TCI状态,所述CORESET为DCI所在的时域资源中标识最小的CORESET,所述DCI用于调度所述下行数据信道;
数据信道接收模块,用于根据所述TCI状态接收所述下行数据信道。
第七方面,本公开实施例提供了一种基站,包括:
控制信道确定模块,用于确定下行控制信道的TCI状态,其中,所述TCI状态为所述基站最近一次在原BWP上使用的CORESET的TCI状态,所述下行控制信道在所述原BWP的CORESET上发送;
控制信道发送模块,用于根据所述TCI状态发送所述下行控制信道。
第八方面,本公开实施例提供了一种基站,包括:
数据信道确定模块,用于确定下行数据信道的TCI状态,其中,所述TCI状态为:CORESET的TCI状态或者新确定的TCI状态,所述CORESET为DCI所在的时域资源中标识最小的CORESET,所述DCI用于调度所述下行数据信道;
数据信道发送模块,用于根据所述TCI状态发送所述下行数据信道。
第九方面,本公开实施例提供了一种终端,包括:存储器、处理器及存储在所述存储器上并可在所述处理器上运行的计算机程序,所述计算机程序被所述处理器执行时实现上述第一方面提供的下行信道的接收方法中的步骤,或者,所述计算机程序被所述处理器执行时实现上述第二方面提供的下行信道的接收方法中的步骤。
第十方面,本公开实施例提供了一种基站,包括:存储器、处理器及存储在所述存储器上并可在所述处理器上运行的计算机程序,所述计算机程序被所述处理器执行时实现上述第三方面提供的下行信道的发送方法中的步骤,或者,所述计算机程序被所述处理器执行时实现上述第四方面提供的下行信道的发送方法中的步骤。
第十一方面,本公开实施例提供了一种计算机可读存储介质,所述计算 机可读存储介质上存储有计算机程序,所述计算机程序被处理器执行时实现本公开实施例提供的下行信道的接收方法的步骤,或者,所述计算机程序被处理器执行时实现本公开实施例提供的下行信道的发送方法的步骤。
本公开实施例,可以提高数据传输的可靠性和准确性。
附图说明
图1是本公开实施例可应用的一种网络系统的结构图;
图2是本公开实施例提供的一种下行信道的接收方法的流程图;
图3是本公开实施例提供的另一种下行信道的接收方法的流程图;
图4是本公开实施例提供的一种下行信道的发送方法的流程图;
图5是本公开实施例提供的另一种下行信道的发送方法的流程图;
图6是本公开实施例提供的一种终端的结构图;
图7是本公开实施例提供的另一种终端的结构图;
图8是本公开实施例提供的另一种终端的结构图;
图9是本公开实施例提供的另一种终端的结构图;
图10是本公开实施例提供的一种基站的结构图;
图11是本公开实施例提供的另一种基站的结构图;
图12是本公开实施例提供的另一种基站的结构图;
图13是本公开实施例提供的另一种终端的结构图;
图14是本公开实施例提供的另一种终端的结构图;
图15是本公开实施例提供的另一种基站的结构图;
图16是本公开实施例提供的另一种基站的结构图。
具体实施方式
下面将结合本公开实施例中的附图,对本公开实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本公开一部分实施例,而不是全部的实施例。基于本公开中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本公开保护的范围。说明书以及权利要求中“和/或”表示所连接对象的至少其中之一。
请参见图1,图1是本公开实施例可应用的一种网络系统的结构图,如图1所示,包括终端11和基站12。其中,终端11也可以称作终端设备或者用户终端(User Equipment,UE),终端11可以是手机、平板电脑(Tablet Personal Computer)、膝上型电脑(Laptop Computer)、个人数字助理(Personal Digital Assistant,PDA)、移动上网装置(Mobile Internet Device,MID)、可穿戴式设备(Wearable Device)或车载设备等终端侧设备,需要说明的是,在本公开实施例中并不限定终端11的具体类型。上述基站12可以是5G及以后版本的基站(例如:gNB、5G NR NB),或者其他通信系统中的基站,或者称之为节点B,演进节点B,或者所述领域中其他词汇,只要达到相同的技术效果,所述基站不限于特定技术词汇,需要说明的是,在本公开实施例中仅以5G基站为例,但是并不限定基站12的具体类型。
需要说明的是,本公开实施例中的终端11和基站12的具体功能将通过以下多个实施例进行具体描述。
请参见图2,图2是本公开实施例提供的一种下行信道的接收方法的流程图,该方法应用于终端,如图2所示,包括以下步骤:
步骤201、确定下行控制信道的传输配置指示TCI状态(TCI state),其中,在所述终端切换回原带宽部分BWP的情况下,所述TCI状态为所述终端最近一次在所述原BWP上使用的控制资源集CORESET的TCI状态,所述下行控制信道在所述原BWP的CORESET上发送。
上述下行控制信道的TCI状态可以是,用于接收上述下行控制信道的TCI状态,该TCI状态可以指上述下行控制信道的传输配置信息,例如:指示下行控制信道的准共址(Quasi-colocation,QCL)或者其他配置信息。
上述步骤中,上述切换回原BWP可以是指,终端在切换回原BWP之前,终端在该原BWP上工作过,终端切换至其他BWP,之后,再次切换回该原BWP。例如:终端在BWP1上工作,终端发生BWP切换,以切换至BWP2上进行工作,之后,终端再次切换回BWP1。
而上述最近一次在原BWP上使用的CORESET的TCI状态可以是,终端在切换回原BWP后,最近一次在该原BWP上使用的CORESET的TCI状态。例如:终端在BWP1上使用第一TCI状态进行接收,终端发生BWP切 换,以切换至BWP2上进行工作,之后,终端再次切换回BWP1,那么,终端在切换回BWP1,继续使用第一TCI状态进行接收,即上述第一TCI状态为上述最近一次使用的TCI状态。当然,上述最近一次也可以称作上一次,或者称作终端在切换回原BWP之前,终端在该原BWP上使用的CORESET的TCI状态。需要说明的是,终端当前所在的BWP为激活BWP,上述终端切换回原BWP,则该原BWP是终端的激活BWP。
该步骤中,由于终端在切换回原BWP上,可以使用最近一次在该原BWP上使用的CORESET的TCI状态接收下行控制信道,从而可以避免终端在切换回原BWP时,终端无法确定使用的CORESET的TCI状态,因为,终端切换回原BWP后,基站可能不会为该终端重新配置(re-configure)该原BWP的CORESET的TCI状态,进而可以提高数据传输的可靠性和准确性。另外,由于直接使用最近一次在该原BWP上使用的CORESET的TCI状态,从而可以节约TCI状态配置的过程,以节约传输开销,以及终端和基站的功耗开销。
而上述下行控制信道包括但不限于:物理下行控制信道(Physical Downlink Control Channel,PDCCH)、物理广播信道(Physical Broadcast Channel,PBCH)等。
202、根据所述TCI状态接收所述下行控制信道。
该步骤可以是,根据上述TCI状态确定接收波束,从而使用该接收波束接收到上述下行控制信道。例如:对于下行控制信道,TCI状态对应的参考信号集(Reference Signal set,RS set)中的RS资源(RS resource)与终端的下行控制信道的解调参考信号(Demodulation Reference Signal,DMRS)端口是QCL的,从而终端可以根据该TCI状态确定接收下行控制信道的接收波束,例如:将该TCI状态对应的RS资源的接收波束作为接收下行控制信道的接收波束。
通过上述步骤可以避免终端在切换BWP等场景下,无法确定下行控制信道的TCI状态的情况,进而提高数据传输的可靠性和准确性。另外,基站(或者称作网络侧)与终端均通过相同的方式确定TCI状态,即基站和终端准确一致地理解下行控制信道和下行数据信道的TCI状态。
需要说明的是,本公开实施例中提供的上述方法可以应用于5G系统,但对此不作限定,只要能够实现基本相同的功能,适用于其他通信系统,例如:可以应用6G系统或者其他应用TCI状态的通信系统等等。
作为一种可选的实施方式,所述确定下行控制信道的TCI状态之前,所述方法还包括:
根据基站为所述原BWP的CORESET配置的第一TCI状态,在所述原BWP上进行接收;
切换到其他BWP,以及根据所述基站为所述其他BWP的CORESET配置的TCI状态,在所述其他BWP上进行接收;
从所述其他BWP切换回所述原BWP,其中,所述最近一次在所述原BWP上使用的CORESET的TCI状态为所述第一TCI状态。
其中,上述第一TCI状态可以是,基站通过无线资源控制(Radio Resource Control,RRC)信令配置的1个TCI状态,或可以是基站通过RRC信令配置多个TCI状态,以及通过媒体接入控制(Media Access Control,MAC)控制单元(Control Element,CE)指示其中的1个TCI状态。例如:基站与终端在上述原BWP上通信,该BWP为激活BWP(active BWP),基站可以通过该BWP上的CORESET的TCI状态发送PDCCH,而终端通过上述第一TCI状态接收该PDCCH。
而上述切换至其他BWP可以是,终端从上述原BWP切换至另一个BWP,或者可以是,终端从上述原BWP上切换至另一个BWP,之后,又从该BWP切换至其他BWP。也就是说,上述其他BWP可以是一个BWP,也可以是终端发生多次BWP切换的多个BWP。例如:当在上述原BWP接收到PDCCH上的DCI携带BWP切换命令时,终端根据该命令切换到另一个BWP,此时该另一个BWP成为激活BWP。在该新的激活BWP上,终端可以根据基站的RRC配置获知该BWP上CORESET的TCI状态,用于接收PDCCH,或者终端可以根据RRC配置和MAC CE指示,来获知该BWP上CORESET的TCI状态,用于接收PDCCH。
之后,终端切换回原BWP后,也就是,原BWP成为新的激活BWP。终端在该新的激活BWP上使用上一次在该BWP上使用的CORESET的TCI 状态,即使用上述第一TCI状态。例如:当终端根据激活BWP(该激活BWP可以是终端从上述原BWP切换到的另一个BWP)上的DCI通知的BWP切换命令,终端再次切换回原BWP时,则原BWP成为新的激活BWP,且该BWP上的CORESET的TCI状态仍然有效,终端根据这些仍有效的TCI状态接收PDCCH。
该实施方式中,可以实现终端在切换BWP时,在新激活的激活BWP上沿用上一次该BWP上CORESET的TCI状态,以避免终端在切换BWP上无法确定TCI状态的情况,以提高数据传输的可靠性和准确性,以及还可以节约传输开销,以及终端和基站的功耗开销。
可选的,该实施方式中,在所述基站为所述原BWP的CORESET重配置、重激活或者重指示第二TCI状态之前,所述终端在所述原BWP上均使用所述第一TCI状态。
这样可以实现,终端在上述原BWP上均使用上述第一TCI状态接收下行控制信道,直到基站重配置、重激活或者重指示新的TCI状态,从而降低终端接收下行信道的复杂度。
本实施例中,通过上述步骤可以提高数据传输的可靠性和准确性。
请参见图3,图3是本公开实施例提供的另一种下行信道的接收方法的流程图,该方法应用于终端,如图3所示,包括以下步骤:
步骤301、确定下行数据信道的TCI状态,其中,所述TCI状态为:CORESET的TCI状态或者新确定的TCI状态,所述CORESET为下行控制信息DCI所在的时域资源中标识最小的CORESET,所述DCI用于调度所述下行数据信道;
该步骤中,可以直接确定下行数据信道的TCI状态为上述CORESET的TCI状态或者新确定的TCI状态,这样可以避免终端在发生移动或者切换到新的同步信号块(Synchronization Signal block,SSB)所在波束时,终端确定TCI状态的情况,从而提高数据传输的可靠性和准确性。
需要说明的是,上述DCI所在的时域资源中标识最小的CORESET存在两种情况,一种是,所有CORESET中标识最小的CORESET,例如:CORESET0(标识为0的CORESET),另一种是,当前终端所在BWP上除 CORESET0之外的标识最小的CORESET,例如:CORESET1。
而上述新确定的TCI状态可以是终端在确定上述下行数据信道的TCI状态时,新确定的TCI状态。例如:基站为终端配置、激活或者指示的TCI状态。当然,在一些实施方式中,上述新确定的TCI状态也可以称作重配置、重激活或者重指示的TCI状态。
另外,上述时域资源可以是时隙(slot)或者子帧等时域资源。而上述下行控制信道包括但不限于:物理下行控制信道(Physical Downlink Control Channel,PDCCH)、物理广播信道(Physical Broadcast Channel,PBCH)等。上述下行数据信道可以是物理下行共享信道(Physical Downlink Shared Channel,PDSCH)。
302、根据所述TCI状态接收所述下行数据信道。
该步骤可以是,根据上述TCI状态确定接收波束,从而使用该接收波束接收到上述下行数据信道。例如:对于下行数据信道,TCI状态对应的RS set中的RS资源与要调度的下行数据信道的DMRS端口是QCL的,从而终端可以根据该TCI状态确定接收下行数据信道的接收波束,例如:该TCI状态对应的RS资源的接收波束作为接收下行数据信道的接收波束。
通过上述步骤可以避免终端在移动或者切换SSB等场景下,无法确定下行数据信道的TCI状态的情况,进而提高数据传输的可靠性和准确性。另外,基站(或者称作网络侧设备)与终端均通过相同的方式确定TCI状态,即基站和终端准确一致地理解下行控制信道和下行数据信道的TCI状态。所属领域技术人员可以理解,所述基站仅为示例说明,可以实现相同功能的发送接收节点TRP或者其他单元,也可以包含在所述基站范围内,本公开实施例不以此为限制。
需要说明的是,本公开实施例中提供的上述方法可以应用于5G系统,但对此不作限定,只要能够实现基本相同的功能,适用于其他通信系统,例如:可以应用以后演进系统或者其他应用TCI状态的通信系统等等。
作为一种可选的实施方式,所述根据所述TCI状态接收所述下行数据信道,包括:
根据所述TCI状态指示的空间QCL参数接收所述下行数据信道。
该实施方式中,可以实现上述TCI状态至少用于指示空间QCL参数,从而终端使用该空间QCL参数接收所述下行数据信道,当然,基站也可以使用该空间参数进行下行数据信道的发送。
需要说明的是,本实施例中,上述TCI状态并不限定只指示空间QCL参数,还可以指示其他与传输配置相关的参数,进而可以使用这些参数接收下行数据信道。
作为另一种可选的实施方式,在所述DCI的调度偏移(scheduling offset)小于或者等于预设门限值的情况下,所述TCI状态为所述CORESET的TCI状态,以及所述CORESET为所述时域资源中激活BWP上标识最小的CORESET。
其中,上述调度偏移可以是指从接收DCI到该DCI生效的时间间隔,而上述预设门限值(可以用k表示)可以是协议预定义的门限值,或者基站预先配置的门限值,或者终端与基站预先协商的门限值等,对此不作限定。
另外,该实施方式中,上述DCI的调度偏移小于或者等于预设门限值(例如:scheduling offset is<=k)的情况下,下行数据信道的TCI为默认TCI状态(default TCI state),该默认TCI状态为上述时域资源中激活BWP上标识最小的CORESET。
该实施方式中,由于下行数据信道的TCI状态为上述时域资源中激活BWP上标识最小的CORESET的TCI状态,也就是说,该TCI状态为一个BWP上标识最小的CORESET的TCI状态,而不是多个或所有BWP的全部CORESET中标识最小的CORESET的TCI状态,这样可以避免网络为每个BWP都配置CORESET时,终端会不清楚在这个情况下标识最小的CORESET在哪个BWP上,以导致终端无法确定下行数据信道的TCI状态的问题,进而提高数据传输的可靠性和准确性。
需要说明的是,该实施方式中,激活BWP上标识最小的CORESET可以是,该激活BWP内所有CORESET中标识最小的CORESET,即就是说,在选择标识最小的CORESET时,会考虑标识为0的CORESET。例如:如果该激活BWP内包括标识为0的CORESET,则选择标识为0的CORESET。
可选的,该实施方式中,在所述DCI存在或者不存在TCI域(TCI field) 的情况下,所述TCI状态均为所述CORESET的TCI状态。
其中,这里的所述CORESET为上述时域资源中激活BWP上标识最小的CORESET。
例如:基站与终端在某个BWP上通信,该BWP为激活BWP,终端通过该BWP上的CORESET的TCI状态接收PDCCH。另外,基站通过高层信令配置在PDCCH的DCI上存在或者不存在TCI域,无论是否存在TCI域,当PDCCH调度PDSCH的DCI的调度偏移小于或者等于预设门限值(例如:scheduling offset is<=k)时,终端根据默认TCI状态来接收PDSCH,该默认TCI状态是该DCI所在时隙中该激活BWP上具有最小标识的CORESET的TCI状态来确定。
该实施方式中,由于DCI存在或者不存在TCI域(TCI field)的情况下,所述TCI状态均为所述CORESET的TCI状态,从而可以降低终端的复杂度。
需要说明的是,该实施方式中,重点是如何确定下行数据信道的TCI状态。但在实际数据传输过程中,除了接收到下行数据信道之外,终端还需要接收下行控制信道,那么,该实施方式中,下行控制信道的TCI状态可以参见图2所示的实施例中终端切换回原BWP确定的下行控制信道的TCI状态,此处不作赘述,以及可以达到相同的有益效果。另外,在终端切换回上述原BWP的情况下,该实施方式中的激活BWP可以是终端切换回的原BWP,因为,终端切换回原BWP后,该原BWP则为激活BWP。
当然,该实施方式中的下行控制信道也可以是基站通过RRC信令配置的CORESET的TCI状态,或者基站通过RRC信令和MAC CE指示的CORESET的TCI状态。
作为另一种可选的实施方式,在所述DCI的调度偏移小于或者等于预设门限值的情况下,所述TCI状态为所述CORESET的TCI状态,所述CORESET的TCI状态用于所述CORESET上控制信道的QCL指示,以及所述CORESET为所述时域资源中除标识为0的CORESET之外的标识最小的CORESET。
其中,上述调度偏移和预设门限值可以参见上面一实施方式的相应说明,此处不作赘述。
该DCI的调度偏移小于或者等于预设门限值的情况下,下行数据信道的 TCI状态可以为默认TCI状态,该默认TCI状态用于CORESET上控制信道的QCL指示,以及该默认TCI状态为DCI所在时域资源中除标识为0的CORESET之外的标识最小的CORESET,也就是说,这里的CORESET的最小标识是排除标识0的,即标识大于0的CORESET。
在实际应用中,在初始接入,终端根据测量并选取最优的SSB,使用与该SSB相关联的物理随机接入信道(Physical Random Access Channel,PRACH)资源发起接入。在随机接入完成后,标识为0的CORESET可以是在物理广播信道(Physical Broadcast Channel,PBCH)上配置的,而其他ID的CORESET可以是基站通过高层信令配置的。
终端在完成随机接入后,终端在移动时,会测量网络发送的SSB,并根据测量结果可以切换至当前最优SSB,而在此SSB中PBCH也会配置有标识为0的CORESET。这样终端会使用当前SSB中PBCH配置的标识为0的CORESET的TCI状态来接收PDSCH。但是基站并不知道由于终端移动而导致标识为0的CORESET发生了变化,基站仍然使用之前标识为0的CORESET的TCI状态来发送PDSCH给终端,从而导致出现了无法正确进行数据传输的问题。
而本实施方式中,由于下行数据信道的TCI状态是CORESET的TCI状态,且该CORESET为所述时域资源中除标识为0的CORESET之外的标识最小的CORESET,从而可以避免上述问题。因为,除标识为0的CORESET之外的CORESET不是通过SSB配置,如通过高层信令配置,这样即便终端切换了SSB,终端和基站也是使用相同的CORESET的TCI进行数据传输,进而保证数据传输的可靠性和准确性。
例如:终端在初始接入,终端可以根据测量并选取最优的SSB,使用与该SSB相关联的PRACH资源发起接入。在随机接入完成后,标识为0的CORESET是在PBCH上配置的,而其他ID的CORESET是基站通过高层信令配置的。当终端移动时,可以测量基站发送的SSB,并根据测量结果切换至当前最优SSB,该SSB中PBCH也配置有标识为0的CORESET。当基站调度终端时,在激活BWP(也可以称作当前BWP)的CORESET上发送PDCCH,终端根据PDCCH上的信令来接收PDSCH。具体可以是,当DCI 的调度偏移小于或者等于预设门限值(例如:scheduling offset is<=k)时,终端根据默认TCI状态来接收PDSCH,该默认TCI状态是控制信道QCL指示(QCL indication),且该控制信道QCL指示是由该DCI所在时隙中除了标识为0的具有最小标识的CORESET的TCI状态来确定。
可选的,该实施方式中,在所述DCI存在或者不存在TCI域(TCI field)的情况下,所述TCI状态均为所述CORESET的TCI状态。
其中,这里的所述CORESET为上述时域资源中激活BWP上标识最小的CORESET。
以及在DCI存在或者不存在TCI域(TCI field)的情况下,所述TCI状态均为所述CORESET的TCI状态,从而可以降低终端的复杂度。
需要说明的是,该实施方式中,重点是如何确定下行数据信道的TCI状态。但在实际数据传输过程中,除了接收到下行数据信道之外,终端还需要接收下行控制信道,那么,该实施方式中,下行控制信道的TCI状态可以参见图2所示的实施例中终端切换回原BWP确定的下行控制信道的TCI状态,此处不作赘述,以及可以达到相同的有益效果。另外,在终端切换回上述原BWP的情况下,该实施方式中的激活BWP可以是终端切换回的原BWP,因为,终端切换回原BWP后,该原BWP则为激活BWP。
当然,该实施方式中的下行控制信道也可以是基站通过RRC信令配置的CORESET的TCI状态,或者基站通过RRC信令和MAC CE指示的CORESET的TCI状态。
作为另一种可选的实施方式,在所述DCI的调度偏移小于或者等于预设门限值的情况下,所述TCI状态为所述CORESET的TCI状态,所述CORESET的TCI状态用于所述CORESET上控制信道的QCL指示,以及所述CORESET为所述时域资源中做单播unicast的且标识最小的CORESET。
其中,上述调度偏移和预设门限值可以参见上面一实施方式的相应说明,此处不作赘述。
该DCI的调度偏移小于或者等于预设门限值的情况下,下行数据信道的TCI状态可以为默认TCI状态,该默认TCI状态用于CORESET上控制信道的QCL指示,以及该默认TCI状态为DCI所在时域资源中做单播unicast的 且标识最小的CORESET,也就是说,这里的CORESET是做单播unicast的CORESET中具有最小标识的CORESET。
可选的,该实施方式中,在所述DCI存在或者不存在TCI域(TCI field)的情况下,所述TCI状态均为所述CORESET的TCI状态。
其中,这里的所述CORESET为上述时域资源中激活BWP上标识最小的CORESET。
以及在DCI存在或者不存在TCI域(TCI field)的情况下,所述TCI状态均为所述CORESET的TCI状态,从而可以降低终端的复杂度。
需要说明的是,该实施方式中,重点是如何确定下行数据信道的TCI状态。但在实际数据传输过程中,除了接收到下行数据信道之外,终端还需要接收下行控制信道,那么,该实施方式中,下行控制信道的TCI状态可以参见图2所示的实施例中终端切换回原BWP确定的下行控制信道的TCI状态,此处不作赘述,以及可以达到相同的有益效果。另外,在终端切换回上述原BWP的情况下,该实施方式中的激活BWP可以是终端切换回的原BWP,因为,终端切换回原BWP后,该原BWP则为激活BWP。
当然,该实施方式中的下行控制信道也可以是基站通过RRC信令配置的CORESET的TCI状态,或者基站通过RRC信令和MAC CE指示的CORESET的TCI状态。
作为另一种可选的实施方式,在冲突时间内根据预设的或基站配置的优先级规则,使用高优先级的TCI状态来接收下行控制信道或下行数据信道;
其中,所述冲突时间包括:所述下行数据信道的TCI状态的使用时间与当前接收下行控制信道的TCI状态的使用时间之间的重叠时间,或者所述下行数据信道的TCI状态的使用时间与当前下行数据信道的TCI状态的使用时间之间的重叠时间,所述当前接收下行控制信道的TCI状态是所述基站配置的用于接收下行控制信道的TCI状态,所述当前下行数据信道的TCI状态是所述基站指示并且已经生效的下行数据信道的TCI状态。
其中,所述下行数据信道的TCI状态为步骤301中确定的TCI状态,另外,上述每个TCI状态的使用时间可以是,每个TCI状态需要使用的时间。例如:上述下行数据信道的TCI状态的使用时间包括时隙4和时隙5,当前 接收下行控制信道的TCI状态的使用时间为时隙4的前2个符号,则上述冲突时间包括时隙4的前两个符号,如果当前下行数据信道的TCI状态的使用时间包括时隙5,则上述冲突时间还包括时隙5。
需要说明的是,上述已经生效的下行数据信道的TCI状态可以是,在另一个DCI调度的数据信道的时间内调度偏移大于预设阈值的时间的TCI状态。
其中,所述预设的或所述基站配置的优先级规则可以包括如下至少一项:
所述当前接收下行控制信道的TCI状态的优先级高于所述下行数据信道的TCI状态;
所述当前接收下行控制信道的TCI状态的优先级低于所述下行数据信道的TCI状态;
所述当前下行数据信道的TCI状态的优先级高于所述下行数据信道的TCI状态;
所述当前下行数据信道的TCI状态的优先级低于所述下行数据信道的TCI状态。
该实施方式中,可以避免冲突问题,以进一步提高数据传输的可靠性和准确性。
作为另一种可选的实施方式,在冲突时间内根据预设的或基站配置的规则接收下行数据信道和下行参考信号中的至少一项;
其中,所述冲突时间包括:所述下行数据信道的TCI状态的使用时间与所述下行参考信号的TCI状态的使用时间之间的重叠时间,所述下行参考信号的TCI状态是所述基站配置或指示的用于接收下行参考信号的TCI状态。
该实施方式中,由于在冲突时间可以根据预设的或基站配置的规则接收下行数据信道和下行参考信号中的至少一项,从而可以提高数据传输的灵活性,以及解决冲突问题,进而提高数据传输的性能。
其中,上述下行参考信号可以包括:信道状态信息参考信号(Channel State Information Reference Signal,CSI-RS)和SSB中的至少一项。当然,也可以是其他参考信号,对此不作限定。
另外,上述下行数据信道的TCI状态可以指示接收所述下行数据信道的空间QCL参数;所述下行参考信号的TCI状态可以指示接收所述下行参考信 号的空间QCL参数。
这样,可以使用上述空间QCL参数接收下行数据信道和下行参考信号中的至少一项。
可选的,所述预设的或基站配置的规则包括:
在冲所述突时间内,所述基站配置或指示用于接收下行参考信号的TCI状态与所述下行数据信道的TCI状态相同;
或者,在所述冲突时间内,使用所述基站配置或指示的用于接收下行参考信号的TCI状态接收所述下行数据信道。
该实施方式中,由于用于接收下行参考信号的TCI状态与所述下行数据信道的TCI状态相同,使用所述基站配置或指示的用于接收下行参考信号的TCI状态接收所述下行数据信道,从而可以避免冲突问题。
作为另一种可选的实施方式,在冲突时间内根据预设的或基站配置的优先级规则,使用高优先级的TCI状态来接收下行数据信道、下行控制信道和下行参考信号;
其中,所述冲突时间包括:在基站配置或指示的PDSCH/DMRS的TCI状态的使用时间与CSI-RS的TCI状态的使用时间之间的重叠时间,或者在基站配置的多个CORESET的TCI状态的使用时间之间的重叠时间。
所述PDSCH/DMRS的TCI状态指示接收所述PDSCH/DMRS的空间QCL参数。所述CSI-RS的TCI状态指示接收所述CSI-RS的空间QCL参数。所述CORESET的TCI状态指示接收所述CORESET上PDCCH的空间QCL参数。
所述预设的或所述基站配置的优先级规则包括如下至少一项:
所述PDSCH/DMRS的TCI状态的优先级高于所述CSI-RS的TCI状态;
所述PDSCH/DMRS的TCI状态的优先级低于所述CSI-RS的TCI状态;
所述CORESET的TCI状态的最高优先级为标识最小的CORESET的TCI状态,或者为标识最大的CORESET的TCI状态。
所述PDSCH/DMRS的TCI状态,可以是DCI调度并且已生效的TCI状态。
所述CORESET的TCI状态的最高优先级,还可以是预设的或基站配置 的其它优先级规则,如标识具备某些特征的CORESET的TCI状态具有最高优先级。
作为另一种可选的实施方式,所述确定下行数据信道的TCI状态之前,所述方法还包括:
获取所述基站为标识为0的CORESET配置、激活和指示中的至少一项确定的TCI状态,该TCI状态至少用于指示与所述标识为0的CORESET存在QCI关系的SSB的索引,以及所述新确定的TCI状态为所述至少一项确定的TCI状态。
该实施方式中,由于获取基站确定标识为0的CORESET的TCI状态,以及TCI状态至少用于指示与所述标识为0的CORESET存在QCL关系的SSB的索引,那么,终端就可以使用基站确定的标识为0的CORESET的TCI状态,即在与所述标识为0的CORESET存在QCL关系的SSB索引的波束上接收下行数据信道。由于该TCI状态是基站确定的,那么,基站和终端均使用该TCI状态进行数据传输,从而保证了数据传输可靠性和准确性。
其中,对获取上述标识0的CORESET的TCI状态的获取时机不作限定,例如:基站可以是在终端上报波束报告后为上述终端确定的,或者也可以是基站接收上行参考信号,根据对上行参考信号的测量确定的等等,可选的,可以是在终端处于连接态的情况下获取上述标识0的CORESET的TCI状态。
例如:在获取所述基站为标识为0的CORESET配置、激活和指示中的至少一项确定的TCI状态之前,所述方法还包括:
对网络配置的参考信号进行波束测量,得到波束报告,所述波束报告包括N个参考信号的索引和质量信息,其中,所述N个参考信号为所述网络配置的参考信号中信号质量排在前N位的参考信号,所述N为大于0的整数;
向基站上报所述波束报告。
从而基站可以根据上述波束报告确定标识0的CORESET的TCI状态。
其中,上述参考信号可以是SSB或者信道状态信息参考信号(Channel State Information-Reference Signaling,CSI-RS)等参考信号。上述N可以是终端确定的,或者基站预先配置的,或者协议中预先定义的等,上述信号质量排在前N位的参考信号可以是,按照信号质量从高至低的排序顺序中排在 前N位的参考信号,也就是,质量最好的N个参考信号。上述信号质量可以是参考信号接收功率(Reference Signal Receiving Power,RSRP)或者参考信号接收质量(Reference Signal Received Quality,RSRQ)等。
另外,基站接收到上述波束报告后,可以根据该波束报告为终端确定标识为0的CORESET的TCI状态,具体可以通过配置、激活和指示中的至少一项进行确定。例如:基站可以是在N个参考信号中,选择一个或者多个参考信号,并确定为SSB的索引,用于终端获知标识为0的CORESET的TCI状态。
例如:终端在初始接入时,终端根据测量并选取最优的SSB,使用与该SSB相关联的PRACH资源发起接入。在随机接入完成后,标识为0的CORESET是在PBCH上配置的,而其他标识的CORESET是基站通过高层信令配置的。当基站调度终端时,在当前BWP的CORESET上发送PDCCH,终端根据PDCCH上的信令来接收PDSCH。具体可以是,当终端移动时,终端对基站配置的SSB进行波束测量,即测量SSB所在波束的质量(如RSRP),并通过波束报告上报给基站,报告中包括最优的一个或多个SSB索引(index)及其对应的质量。基站根据波束报告,指示终端接收下行数据信道所用的波束,并且,基站发送重配置、重激活或者重指示命令,该命令的功能包括配置标识为0的CORESET的TCI状态(例如:QCL指示),所述TCI状态由基站确定的与所述标识为0的CORESET存在QCL关系的SSB索引来指示。此时,终端以基站重配置/重激活/重指示命令为准,来确定标识为0的CORESET的TCI状态。在基站调度终端时,当DCI的调度偏移小于或者等于预设门限值(例如:scheduling offset is<=k)时,基站根据默认TCI状态来接收PDSCH,该默认TCI状态即为基站重配置、重激活或重指示的标识为0的CORESET的TCI状态。
可选的,该实施方式中,在所述DCI的调度偏移小于或者等于预设门限值的情况下,所述下行数据信道的TCI状态为所述新确定的TCI状态。
其中,上述DCI为调度上述下行数据信道的DCI,这样可以在实现在调度偏移小于或者等于预设门限值的情况下,直接使用上述新确定的TCI状态。
可选的,该实施方式中,所述配置是指使用RRC信令配置;
所述激活是指使用MAC CE从RRC信令配置的多个TCI状态中激活其中一个TCI状态;
所述指示是指使用MAC CE或物理层控制信令指示。
这样可以实现标识为0的CORESET的TCI状态通过RRC信令和MAC CE、RRC信令、MAC CE和物理层控制信令中的至少一项确定,从而可以避免终端在切换SSB时,基站和终端使用不同的标识为0的CORESET的TCI状态,导致的数据传输错误,进而提高数据传输的可靠性和准确性。
需要说明的是,该实施方式中,重点介绍如何确定下行数据信道的TCI状态。但在实际数据传输过程中,除了接收到下行数据信道之外,终端还需要接收下行控制信道,那么,该实施方式中,下行控制信道的TCI状态可以参见图2所示的实施例中终端切换回原BWP确定的下行控制信道的TCI状态,此处不作赘述,以及可以达到相同的有益效果。另外,在终端切换回上述原BWP的情况下,该实施方式中的激活BWP可以是终端切换回的原BWP,因为,终端切换回原BWP后,该原BWP则为激活BWP。
当然,该实施方式中的下行控制信道也可以是基站通过RRC信令配置的CORESET的TCI状态,或者基站通过RRC信令和MAC CE指示的CORESET的TCI状态。
本实施例中,通过上述步骤可以提高数据传输的可靠性和准确性。
请参见图4,图4是本公开实施例提供的一种下行信道的发送方法的流程图,该方法应用于基站,如图4所示,包括以下步骤:
步骤401、确定下行控制信道的TCI状态,其中,所述TCI状态为所述基站最近一次在原BWP上使用的CORESET的TCI状态,所述下行控制信道在所述原BWP的CORESET上发送;
步骤402、根据所述TCI状态发送所述下行控制信道。
可选的,在所述基站为所述原BWP的CORESET重配置、重激活或者重指示第二TCI状态之前,所述基站在所述原BWP上均使用所述第一TCI状态。
需要说明的是,本实施例作为图2所示的实施例对应的基站的实施方式,其具体的实施方式可以参见图2所示的实施例相关说明,以及达到相同的有 益效果,为了避免重复说明,此处不再赘述。
请参见图5,图5是本公开实施例提供的另一种下行信道的发送方法的流程图,该方法应用于基站,如图5所示,包括以下步骤:
步骤501、确定下行数据信道的TCI状态,其中,所述TCI状态为:CORESET的TCI状态或者新确定的TCI状态,所述CORESET为DCI所在的时域资源中标识最小的CORESET,所述DCI用于调度所述下行数据信道;
步骤502、根据所述TCI状态发送所述下行数据信道。
可选的,所述根据所述TCI状态发送所述下行数据信道,包括:
根据所述TCI状态指示的空间QCL参数发送所述下行数据信道。
可选的,在所述DCI的调度偏移小于或者等于预设门限值的情况下,所述TCI状态为所述CORESET的TCI状态,以及所述CORESET为所述时域资源中激活BWP上标识最小的CORESET。
可选的,在所述DCI的调度偏移小于或者等于预设门限值的情况下,所述TCI状态为所述CORESET的TCI状态,所述CORESET的TCI状态用于所述CORESET上控制信道的QCL指示,以及所述CORESET为所述时域资源中除标识为0的CORESET之外的标识最小的CORESET。
可选的,在所述DCI的调度偏移小于或者等于预设门限值的情况下,所述TCI状态为所述CORESET的TCI状态,所述CORESET的TCI状态用于所述CORESET上控制信道的QCL指示,以及所述CORESET为所述时域资源中做单播unicast的且标识最小的CORESET。
可选的,在所述DCI存在或者不存在TCI域的情况下,所述TCI状态均为所述CORESET的TCI状态。
可选的,在冲突时间内根据预设的或基站配置的优先级规则,使用高优先级的TCI状态来发送下行控制信道或下行数据信道;
其中,所述冲突时间包括:所述下行数据信道的TCI状态的使用时间与当前下行控制信道的TCI状态的使用时间之间的重叠时间,或者所述下行数据信道的TCI状态的使用时间与当前下行数据信道的TCI状态的使用时间之间的重叠时间,所述当前下行控制信道的TCI状态是所述基站配置的用于发送下行控制信道的TCI状态,所述当前下行数据信道的TCI状态是所述基站 指示并且已经生效的下行数据信道的TCI状态。
可选的,所述预设的或所述基站配置的优先级规则包括如下至少一项:
所述当前下行控制信道的TCI状态的优先级高于所述下行数据信道的TCI状态;
所述当前下行控制信道的TCI状态的优先级低于所述下行数据信道的TCI状态;
所述当前下行数据信道的TCI状态的优先级高于所述下行数据信道的TCI状态;
所述当前下行数据信道的TCI状态的优先级低于所述下行数据信道的TCI状态。
可选的,在冲突时间内根据预设的或所述基站配置的规则发送下行数据信道和下行参考信号中的至少一项;
其中,所述冲突时间包括:所述下行数据信道的TCI状态的使用时间与所述下行参考信号的TCI状态的使用时间之间的重叠时间,所述下行参考信号的TCI状态是所述基站配置或指示的用于发送下行参考信号的TCI状态。
可选的,所述下行参考信号包括:CSI-RS和SSB中的至少一项;
所述下行数据信道的TCI状态指示发送所述下行数据信道的空间QCL参数;所述下行参考信号的TCI状态指示发送所述下行参考信号的空间QCL参数。
可选的,所述预设的或基站配置的规则包括:
在所述冲突时间内,所述基站配置或指示用于发送下行参考信号的TCI状态与所述下行数据信道的TCI状态相同;
或者,在所述冲突时间内,使用所述基站配置或指示的用于发送下行参考信号的TCI状态发送所述下行数据信道。
可选的,所述确定下行数据信道的TCI状态之前,所述方法还包括:
通过配置、激活和指示中的至少一项为所述终端确定标识为0的CORESET的TCI状态,该TCI状态至少用于指示与所述标识为0的CORESET存在QCI关系的同步信号块SSB的索引,以及所述新确定的TCI状态为所述至少一项确定的TCI状态。
可选的,在所述DCI的调度偏移小于或者等于预设门限值的情况下,所述下行数据信道的TCI状态为所述新确定的TCI状态。
可选的,所述配置是指使用无线资源控制RRC信令配置;
所述激活是指使用媒体接入控制的控制单元MAC CE从RRC信令配置的多个TCI状态中激活其中一个TCI状态;
所述指示是指使用MAC CE或物理层控制信令指示。
需要说明的是,本实施例作为图3所示的实施例对应的基站的实施方式,其具体的实施方式可以参见图3所示的实施例相关说明,以及达到相同的有益效果,为了避免重复说明,此处不再赘述。
请参见图6,图6是本公开实施例提供的一种终端的结构图,如图6所示,终端600包括:
控制信道确定模块601,用于确定下行控制信道的TCI状态,其中,在所述终端切换回原BWP的情况下,所述TCI状态为所述终端最近一次在所述原BWP上使用的CORESET的TCI状态,所述下行控制信道在所述原BWP的CORESET上发送;
控制信道接收模块602,用于根据所述TCI状态接收所述下行控制信道。
可选的,如图7所示,所述终端600还包括:
原接收模块603,用于根据基站为所述原BWP的CORESET配置的第一TCI状态,在所述原BWP上进行接收;
第一切换模块604,用于切换到其他BWP,以及根据所述基站为所述其他BWP的CORESET配置的TCI状态,在所述其他BWP上进行接收;
第二切换模块605,用于从所述其他BWP切换回所述原BWP,其中,所述最近一次在所述原BWP上使用的CORESET的TCI状态为所述第一TCI状态。
可选的,在所述基站为所述原BWP的CORESET重配置、重激活或者重指示第二TCI状态之前,所述终端在所述原BWP上均使用所述第一TCI状态。
本公开实施例提供的终端能够实现图2的方法实施例中终端实现的各个过程,为避免重复,这里不再赘述,可以提高数据传输的可靠性和准确性。
请参见图8,图8是本公开实施例提供的另一种终端的结构图,如图8所示,终端800包括:
数据信道确定模块801,用于确定模块,用于确定下行数据信道的TCI状态,其中,所述TCI状态为:CORESET的TCI状态或者新确定的TCI状态,所述CORESET为DCI所在的时域资源中标识最小的CORESET,所述DCI用于调度所述下行数据信道;
数据信道接收模块802,用于根据所述TCI状态接收所述下行数据信道。
可选的,数据信道接收模块802用于根据所述TCI状态指示的空间QCL参数接收所述下行数据信道。
可选的,在所述DCI的调度偏移小于或者等于预设门限值的情况下,所述TCI状态为所述CORESET的TCI状态,以及所述CORESET为所述时域资源中激活BWP上标识最小的CORESET。
可选的,在所述DCI的调度偏移小于或者等于预设门限值的情况下,所述TCI状态为所述CORESET的TCI状态,所述CORESET的TCI状态用于所述CORESET上控制信道的准共址QCL指示,以及所述CORESET为所述时域资源中除标识为0的CORESET之外的标识最小的CORESET。
可选的,在所述DCI的调度偏移小于或者等于预设门限值的情况下,所述TCI状态为所述CORESET的TCI状态,所述CORESET的TCI状态用于所述CORESET上控制信道的QCL指示,以及所述CORESET为所述时域资源中做单播unicast的且标识最小的CORESET。
可选的,在所述DCI存在或者不存在TCI域的情况下,所述TCI状态均为所述CORESET的TCI状态。
可选的,在冲突时间内根据预设的或基站配置的优先级规则,使用高优先级的TCI状态来接收下行控制信道或下行数据信道;
其中,所述冲突时间包括:所述下行数据信道的TCI状态的使用时间与当前接收下行控制信道的TCI状态的使用时间之间的重叠时间,或者所述下行数据信道的TCI状态的使用时间与当前下行数据信道的TCI状态的使用时间之间的重叠时间,所述当前接收下行控制信道的TCI状态是所述基站配置的用于接收下行控制信道的TCI状态,所述当前下行数据信道的TCI状态是 所述基站指示并且已经生效的下行数据信道的TCI状态。
可选的,所述预设的或所述基站配置的优先级规则包括如下至少一项:
所述当前接收下行控制信道的TCI状态的优先级高于所述下行数据信道的TCI状态;
所述当前接收下行控制信道的TCI状态的优先级低于所述下行数据信道的TCI状态;
所述当前下行数据信道的TCI状态的优先级高于所述下行数据信道的TCI状态;
所述当前下行数据信道的TCI状态的优先级低于所述下行数据信道的TCI状态。
可选的,在冲突时间内根据预设的或基站配置的规则接收下行数据信道和下行参考信号中的至少一项;
其中,所述冲突时间包括:所述下行数据信道的TCI状态的使用时间与所述下行参考信号的TCI状态的使用时间之间的重叠时间,所述下行参考信号的TCI状态是所述基站配置或指示的用于接收下行参考信号的TCI状态。
可选的,所述下行参考信号包括:信道状态信息参考信号CSI-RS和同步信号块SSB中的至少一项;
所述下行数据信道的TCI状态指示接收所述下行数据信道的空间QCL参数;所述下行参考信号的TCI状态指示接收所述下行参考信号的空间QCL参数。
可选的,所述预设的或基站配置的规则包括:
在所述冲突时间内,所述基站配置或指示用于接收下行参考信号的TCI状态与所述下行数据信道的TCI状态相同;
或者,在所述冲突时间内,使用所述基站配置或指示的用于接收下行参考信号的TCI状态接收所述下行数据信道。
可选的,如图9所示,所述终端800还包括:
获取模块803,用于获取所述基站为标识为0的CORESET配置、激活和指示中的至少一项确定的TCI状态,该TCI状态至少用于指示与所述标识为0的CORESET存在QCI关系的同步信号块SSB的索引,以及所述新确定的 TCI状态为所述至少一项确定的TCI状态。
可选的,在所述DCI的调度偏移小于或者等于预设门限值的情况下,所述下行数据信道的TCI状态为所述新确定的TCI状态。
可选的,所述配置是指使用无线资源控制RRC信令配置;
所述激活是指使用媒体接入控制的控制单元MAC CE从RRC信令配置的多个TCI状态中激活其中一个TCI状态;
所述指示是指使用MAC CE或物理层控制信令指示。
本公开实施例提供的终端能够实现图3的方法实施例中终端实现的各个过程,为避免重复,这里不再赘述,可以提高数据传输的可靠性和准确性。
请参见图10,图10是本公开实施例提供的一种基站的结构图,如图10所示,基站1000,包括:
控制信道确定模块1001,用于确定下行控制信道的TCI状态,其中,所述TCI状态为所述基站最近一次在原BWP上使用的CORESET的TCI状态,所述下行控制信道在所述原BWP的CORESET上发送;
控制信道发送模块1002,用于根据所述TCI状态发送所述下行控制信道。
可选的,在所述基站为所述原BWP的CORESET重配置、重激活或者重指示第二TCI状态之前,所述基站在所述原BWP上均使用所述第一TCI状态。
本公开实施例提供的基站能够实现图4的方法实施例中基站实现的各个过程,为避免重复,这里不再赘述,可以提高数据传输的可靠性和准确性。
请参见图11,图11是本公开实施例提供的一种基站的结构图,如图11所示,基站1100,包括:
数据信道确定模块1101,用于确定下行数据信道的TCI状态,其中,所述TCI状态为:CORESET的TCI状态或者新确定的TCI状态,所述CORESET为DCI所在的时域资源中标识最小的CORESET,所述DCI用于调度所述下行数据信道;
数据信道发送模块1102,用于根据所述TCI状态发送所述下行数据信道。
可选的,数据信道发送模块1102用于根据所述TCI状态指示的空间QCL参数发送所述下行数据信道。
可选的,在所述DCI的调度偏移小于或者等于预设门限值的情况下,所述TCI状态为所述CORESET的TCI状态,以及所述CORESET为所述时域资源中激活BWP上标识最小的CORESET。
可选的,在所述DCI的调度偏移小于或者等于预设门限值的情况下,所述TCI状态为所述CORESET的TCI状态,所述CORESET的TCI状态用于所述CORESET上控制信道的QCL指示,以及所述CORESET为所述时域资源中除标识为0的CORESET之外的标识最小的CORESET。
可选的,在所述DCI的调度偏移小于或者等于预设门限值的情况下,所述TCI状态为所述CORESET的TCI状态,所述CORESET的TCI状态用于所述CORESET上控制信道的QCL指示,以及所述CORESET为所述时域资源中做单播unicast的且标识最小的CORESET。
可选的,在所述DCI存在或者不存在TCI域的情况下,所述TCI状态均为所述CORESET的TCI状态。
可选的,在冲突时间内根据预设的或基站配置的优先级规则,使用高优先级的TCI状态来发送下行控制信道或下行数据信道;
其中,所述冲突时间包括:所述下行数据信道的TCI状态的使用时间与当前下行控制信道的TCI状态的使用时间之间的重叠时间,或者所述下行数据信道的TCI状态的使用时间与当前下行数据信道的TCI状态的使用时间之间的重叠时间,所述当前下行控制信道的TCI状态是所述基站配置的用于发送下行控制信道的TCI状态,所述当前下行数据信道的TCI状态是所述基站指示并且已经生效的下行数据信道的TCI状态。
可选的,所述预设的或所述基站配置的优先级规则包括如下至少一项:
所述当前下行控制信道的TCI状态的优先级高于所述下行数据信道的TCI状态;
所述当前下行控制信道的TCI状态的优先级低于所述下行数据信道的TCI状态;
所述当前下行数据信道的TCI状态的优先级高于所述下行数据信道的TCI状态;
所述当前下行数据信道的TCI状态的优先级低于所述下行数据信道的 TCI状态。
可选的,在冲突时间内根据预设的或所述基站配置的规则发送下行数据信道和下行参考信号中的至少一项;
其中,所述冲突时间包括:所述下行数据信道的TCI状态的使用时间与所述下行参考信号的TCI状态的使用时间之间的重叠时间,所述下行参考信号的TCI状态是所述基站配置或指示的用于发送下行参考信号的TCI状态。
可选的,所述下行参考信号包括:CSI-RS和SSB中的至少一项;
所述下行数据信道的TCI状态指示发送所述下行数据信道的空间QCL参数;所述下行参考信号的TCI状态指示发送所述下行参考信号的空间QCL参数。
可选的,所述预设的或基站配置的规则包括:
在所述冲突时间内,所述基站配置或指示用于发送下行参考信号的TCI状态与所述下行数据信道的TCI状态相同;
或者,在所述冲突时间内,使用所述基站配置或指示的用于发送下行参考信号的TCI状态发送所述下行数据信道。
可选的,如图12所示,所述基站1100还包括:
状态确定模块1103,用于通过配置、激活和指示中的至少一项为所述终端确定标识为0的CORESET的TCI状态,该TCI状态至少用于指示与所述标识为0的CORESET存在QCI关系的同步信号块SSB的索引,以及所述新确定的TCI状态为所述至少一项确定的TCI状态。
可选的,在所述DCI的调度偏移小于或者等于预设门限值的情况下,所述下行数据信道的TCI状态为所述新确定的TCI状态。
可选的,所述配置是指使用无线资源控制RRC信令配置;
所述激活是指使用媒体接入控制的控制单元MAC CE从RRC信令配置的多个TCI状态中激活其中一个TCI状态;
所述指示是指使用MAC CE或物理层控制信令指示。
本公开实施例提供的基站能够实现图3的方法实施例中终端实现的各个过程,为避免重复,这里不再赘述,可以提高数据传输的可靠性和准确性。
图13为实现本公开各个实施例的一种终端的硬件结构示意图,
该终端1300包括但不限于:射频单元1301、网络模块1302、音频输出单元1303、输入单元1304、传感器1305、显示单元1306、用户输入单元1307、接口单元1308、存储器1309、处理器1310、以及电源1311等部件。本领域技术人员可以理解,图13中示出的终端结构并不构成对终端的限定,终端可以包括比图示更多或更少的部件,或者组合某些部件,或者不同的部件布置。在本公开实施例中,终端包括但不限于手机、平板电脑、笔记本电脑、掌上电脑、车载终端、可穿戴设备、以及计步器等。
处理器1310,用于确定下行控制信道的TCI状态,其中,在所述终端切换回原BWP的情况下,所述TCI状态为所述终端最近一次在所述原BWP上使用的CORESET的TCI状态,所述下行控制信道在所述原BWP的CORESET上发送;
射频单元1301,用于根据所述TCI状态接收所述下行控制信道。
可选的,所述确定下行信道的传输配置指示TCI状态之前,射频单元1301还用于:
根据基站为所述原BWP的CORESET配置的第一TCI状态,在所述原BWP上进行接收;
切换到其他BWP,以及根据所述基站为所述其他BWP的CORESET配置的TCI状态,在所述其他BWP上进行接收;
从所述其他BWP切换回所述原BWP,其中,所述最近一次在所述原BWP上使用的CORESET的TCI状态为所述第一TCI状态。
可选的,在所述基站为所述原BWP的CORESET重配置、重激活或者重指示第二TCI状态之前,所述终端在所述原BWP上均使用所述第一TCI状态。上述终端可以提高数据传输的可靠性和准确性。
应理解的是,本公开实施例中,射频单元1301可用于收发信息或通话过程中,信号的接收和发送,具体的,将来自基站的下行数据接收后,给处理器1310处理;另外,将上行的数据发送给基站。通常,射频单元1301包括但不限于天线、至少一个放大器、收发信机、耦合器、低噪声放大器、双工器等。此外,射频单元1301还可以通过无线通信系统与网络和其他设备通信。
终端通过网络模块1302为用户提供了无线的宽带互联网访问,如帮助用 户收发电子邮件、浏览网页和访问流式媒体等。
音频输出单元1303可以将射频单元1301或网络模块1302接收的或者在存储器1309中存储的音频数据转换成音频信号并且输出为声音。而且,音频输出单元1303还可以提供与终端1300执行的特定功能相关的音频输出(例如,呼叫信号接收声音、消息接收声音等等)。音频输出单元1303包括扬声器、蜂鸣器以及受话器等。
输入单元1304用于接收音频或视频信号。输入单元1304可以包括图形处理器(Graphics Processing Unit,GPU)13041和麦克风13042,图形处理器13041对在视频捕获模式或图像捕获模式中由图像捕获装置(如摄像头)获得的静态图片或视频的图像数据进行处理。处理后的图像帧可以显示在显示单元1306上。经图形处理器13041处理后的图像帧可以存储在存储器1309(或其它存储介质)中或者经由射频单元1301或网络模块1302进行发送。麦克风13042可以接收声音,并且能够将这样的声音处理为音频数据。处理后的音频数据可以在电话通话模式的情况下转换为可经由射频单元1301发送到移动通信基站的格式输出。
终端1300还包括至少一种传感器1305,比如光传感器、运动传感器以及其他传感器。具体地,光传感器包括环境光传感器及接近传感器,其中,环境光传感器可根据环境光线的明暗来调节显示面板13061的亮度,接近传感器可在终端1300移动到耳边时,关闭显示面板13061和/或背光。作为运动传感器的一种,加速计传感器可检测各个方向上(一般为三轴)加速度的大小,静止时可检测出重力的大小及方向,可用于识别终端姿态(比如横竖屏切换、相关游戏、磁力计姿态校准)、振动识别相关功能(比如计步器、敲击)等;传感器1305还可以包括指纹传感器、压力传感器、虹膜传感器、分子传感器、陀螺仪、气压计、湿度计、温度计、红外线传感器等,在此不再赘述。
显示单元1306用于显示由用户输入的信息或提供给用户的信息。显示单元1306可包括显示面板13061,可以采用液晶显示器(Liquid Crystal Display,LCD)、有机发光二极管(Organic Light-Emitting Diode,OLED)等形式来配置显示面板13061。
用户输入单元1307可用于接收输入的数字或字符信息,以及产生与终端的用户设置以及功能控制有关的键信号输入。具体地,用户输入单元1307包括触控面板13071以及其他输入设备13072。触控面板13071,也称为触摸屏,可收集用户在其上或附近的触摸操作(比如用户使用手指、触笔等任何适合的物体或附件在触控面板13071上或在触控面板13071附近的操作)。触控面板13071可包括触摸检测装置和触摸控制器两个部分。其中,触摸检测装置检测用户的触摸方位,并检测触摸操作带来的信号,将信号传送给触摸控制器;触摸控制器从触摸检测装置上接收触摸信息,并将它转换成触点坐标,再送给处理器1310,接收处理器1310发来的命令并加以执行。此外,可以采用电阻式、电容式、红外线以及表面声波等多种类型实现触控面板13071。除了触控面板13071,用户输入单元1307还可以包括其他输入设备13072。具体地,其他输入设备13072可以包括但不限于物理键盘、功能键(比如音量控制按键、开关按键等)、轨迹球、鼠标、操作杆,在此不再赘述。
进一步的,触控面板13071可覆盖在显示面板13061上,当触控面板13071检测到在其上或附近的触摸操作后,传送给处理器1310以确定触摸事件的类型,随后处理器1310根据触摸事件的类型在显示面板13061上提供相应的视觉输出。虽然在图13中,触控面板13071与显示面板13061是作为两个独立的部件来实现终端的输入和输出功能,但是在某些实施例中,可以将触控面板13071与显示面板13061集成而实现终端的输入和输出功能,具体此处不做限定。
接口单元1308为外部装置与终端1300连接的接口。例如,外部装置可以包括有线或无线头戴式耳机端口、外部电源(或电池充电器)端口、有线或无线数据端口、存储卡端口、用于连接具有识别模块的装置的端口、音频输入/输出(I/O)端口、视频I/O端口、耳机端口等等。接口单元1308可以用于接收来自外部装置的输入(例如,数据信息、电力等等)并且将接收到的输入传输到终端1300内的一个或多个元件或者可以用于在终端1300和外部装置之间传输数据。
存储器1309可用于存储软件程序以及各种数据。存储器1309可主要包括存储程序区和存储数据区,其中,存储程序区可存储操作系统、至少一个 功能所需的应用程序(比如声音播放功能、图像播放功能等)等;存储数据区可存储根据手机的使用所创建的数据(比如音频数据、电话本等)等。此外,存储器1309可以包括高速随机存取存储器,还可以包括非易失性存储器,例如至少一个磁盘存储器件、闪存器件、或其他易失性固态存储器件。
处理器1310是终端的控制中心,利用各种接口和线路连接整个终端的各个部分,通过运行或执行存储在存储器1309内的软件程序和/或模块,以及调用存储在存储器1309内的数据,执行终端的各种功能和处理数据,从而对终端进行整体监控。处理器1310可包括一个或多个处理单元;可选的,处理器1310可集成应用处理器和调制解调处理器,其中,应用处理器主要处理操作系统、用户界面和应用程序等,调制解调处理器主要处理无线通信。可以理解的是,上述调制解调处理器也可以不集成到处理器1310中。
终端1300还可以包括给各个部件供电的电源1311(比如电池),可选的,电源1311可以通过电源管理系统与处理器1310逻辑相连,从而通过电源管理系统实现管理充电、放电、以及功耗管理等功能。
另外,终端1300包括一些未示出的功能模块,在此不再赘述。
可选的,本公开实施例还提供一种终端,包括处理器1310,存储器1309,存储在存储器1309上并可在所述处理器1310上运行的计算机程序,该计算机程序被处理器1310执行时实现上述下行信道的接收方法实施例的各个过程,且能达到相同的技术效果,为避免重复,这里不再赘述。
图14为实现本公开各个实施例的一种终端的硬件结构示意图,
该终端1400包括但不限于:射频单元1401、网络模块1402、音频输出单元1403、输入单元1404、传感器1405、显示单元1406、用户输入单元1407、接口单元1408、存储器1409、处理器1410、以及电源1411等部件。本领域技术人员可以理解,图14中示出的终端结构并不构成对终端的限定,终端可以包括比图示更多或更少的部件,或者组合某些部件,或者不同的部件布置。在本公开实施例中,终端包括但不限于手机、平板电脑、笔记本电脑、掌上电脑、车载终端、可穿戴设备、以及计步器等。
处理器1410,用于确定下行数据信道的TCI状态,其中,所述TCI状态为:CORESET的TCI状态或者新确定的TCI状态,所述CORESET为下行 控制信息DCI所在的时域资源中标识最小的CORESET,所述DCI用于调度所述下行数据信道;
射频单元1401,用于根据所述TCI状态接收所述下行数据信道。
可选的,射频单元1401执行的所述根据所述TCI状态接收所述下行数据信道,包括:
根据所述TCI状态指示的空间准共址QCL参数接收所述下行数据信道。
可选的,在所述DCI的调度偏移小于或者等于预设门限值的情况下,所述TCI状态为所述CORESET的TCI状态,以及所述CORESET为所述时域资源中激活BWP上标识最小的CORESET。
可选的,在所述DCI的调度偏移小于或者等于预设门限值的情况下,所述TCI状态为所述CORESET的TCI状态,所述CORESET的TCI状态用于所述CORESET上控制信道的准共址QCL指示,以及所述CORESET为所述时域资源中除标识为0的CORESET之外的标识最小的CORESET。
可选的,在所述DCI的调度偏移小于或者等于预设门限值的情况下,所述TCI状态为所述CORESET的TCI状态,所述CORESET的TCI状态用于所述CORESET上控制信道的QCL指示,以及所述CORESET为所述时域资源中做单播unicast的且标识最小的CORESET。
可选的,在所述DCI存在或者不存在TCI域的情况下,所述TCI状态均为所述CORESET的TCI状态。
可选的,在冲突时间内根据预设的或基站配置的优先级规则,使用高优先级的TCI状态来接收下行控制信道或下行数据信道;
其中,所述冲突时间包括:所述下行数据信道的TCI状态的使用时间与当前接收下行控制信道的TCI状态的使用时间之间的重叠时间,或者所述下行数据信道的TCI状态的使用时间与当前下行数据信道的TCI状态的使用时间之间的重叠时间,所述当前接收下行控制信道的TCI状态是所述基站配置的用于接收下行控制信道的TCI状态,所述当前下行数据信道的TCI状态是所述基站指示并且已经生效的下行数据信道的TCI状态。
可选的,所述预设的或所述基站配置的优先级规则包括如下至少一项:
所述当前接收下行控制信道的TCI状态的优先级高于所述下行数据信道 的TCI状态;
所述当前接收下行控制信道的TCI状态的优先级低于所述下行数据信道的TCI状态;
所述当前下行数据信道的TCI状态的优先级高于所述下行数据信道的TCI状态;
所述当前下行数据信道的TCI状态的优先级低于所述下行数据信道的TCI状态。
可选的,在冲突时间内根据预设的或基站配置的规则接收下行数据信道和下行参考信号中的至少一项;
其中,所述冲突时间包括:所述下行数据信道的TCI状态的使用时间与所述下行参考信号的TCI状态的使用时间之间的重叠时间,所述下行参考信号的TCI状态是所述基站配置或指示的用于接收下行参考信号的TCI状态。
可选的,所述下行参考信号包括:信道状态信息参考信号CSI-RS和同步信号块SSB中的至少一项;
所述下行数据信道的TCI状态指示接收所述下行数据信道的空间QCL参数;所述下行参考信号的TCI状态指示接收所述下行参考信号的空间QCL参数。
可选的,所述预设的或基站配置的规则包括:
在所述冲突时间内,所述基站配置或指示用于接收下行参考信号的TCI状态与所述下行数据信道的TCI状态相同;
或者,在所述冲突时间内,使用所述基站配置或指示的用于接收下行参考信号的TCI状态接收所述下行数据信道。
可选的,所述确定下行信道的TCI状态之前,射频单元1401还用于:
获取所述基站为标识为0的CORESET配置、激活和指示中的至少一项确定的TCI状态,该TCI状态至少用于指示与所述标识为0的CORESET存在QCI关系的同步信号块SSB的索引,以及所述新确定的TCI状态为所述至少一项确定的TCI状态。
可选的,在所述DCI的调度偏移小于或者等于预设门限值的情况下,所述下行数据信道的TCI状态为所述新确定的TCI状态。
可选的,所述配置是指使用无线资源控制RRC信令配置;
所述激活是指使用媒体接入控制的控制单元MAC CE从RRC信令配置的多个TCI状态中激活其中一个TCI状态;
所述指示是指使用MAC CE或物理层控制信令指示。
上述终端可以提高数据传输的可靠性和准确性。
应理解的是,本公开实施例中,射频单元1401可用于收发信息或通话过程中,信号的接收和发送,具体的,将来自基站的下行数据接收后,给处理器1410处理;另外,将上行的数据发送给基站。通常,射频单元1401包括但不限于天线、至少一个放大器、收发信机、耦合器、低噪声放大器、双工器等。此外,射频单元1401还可以通过无线通信系统与网络和其他设备通信。
终端通过网络模块1402为用户提供了无线的宽带互联网访问,如帮助用户收发电子邮件、浏览网页和访问流式媒体等。
音频输出单元1403可以将射频单元1401或网络模块1402接收的或者在存储器1409中存储的音频数据转换成音频信号并且输出为声音。而且,音频输出单元1403还可以提供与终端1400执行的特定功能相关的音频输出(例如,呼叫信号接收声音、消息接收声音等等)。音频输出单元1403包括扬声器、蜂鸣器以及受话器等。
输入单元1404用于接收音频或视频信号。输入单元1404可以包括图形处理器(Graphics Processing Unit,GPU)14041和麦克风14042,图形处理器14041对在视频捕获模式或图像捕获模式中由图像捕获装置(如摄像头)获得的静态图片或视频的图像数据进行处理。处理后的图像帧可以显示在显示单元1406上。经图形处理器14041处理后的图像帧可以存储在存储器1409(或其它存储介质)中或者经由射频单元1401或网络模块1402进行发送。麦克风14042可以接收声音,并且能够将这样的声音处理为音频数据。处理后的音频数据可以在电话通话模式的情况下转换为可经由射频单元1401发送到移动通信基站的格式输出。
终端1400还包括至少一种传感器1405,比如光传感器、运动传感器以及其他传感器。具体地,光传感器包括环境光传感器及接近传感器,其中,环境光传感器可根据环境光线的明暗来调节显示面板14061的亮度,接近传 感器可在终端1400移动到耳边时,关闭显示面板14061和/或背光。作为运动传感器的一种,加速计传感器可检测各个方向上(一般为三轴)加速度的大小,静止时可检测出重力的大小及方向,可用于识别终端姿态(比如横竖屏切换、相关游戏、磁力计姿态校准)、振动识别相关功能(比如计步器、敲击)等;传感器1405还可以包括指纹传感器、压力传感器、虹膜传感器、分子传感器、陀螺仪、气压计、湿度计、温度计、红外线传感器等,在此不再赘述。
显示单元1406用于显示由用户输入的信息或提供给用户的信息。显示单元1406可包括显示面板14061,可以采用液晶显示器(Liquid Crystal Display,LCD)、有机发光二极管(Organic Light-Emitting Diode,OLED)等形式来配置显示面板14061。
用户输入单元1407可用于接收输入的数字或字符信息,以及产生与终端的用户设置以及功能控制有关的键信号输入。具体地,用户输入单元1407包括触控面板14071以及其他输入设备14072。触控面板14071,也称为触摸屏,可收集用户在其上或附近的触摸操作(比如用户使用手指、触笔等任何适合的物体或附件在触控面板14071上或在触控面板14071附近的操作)。触控面板14071可包括触摸检测装置和触摸控制器两个部分。其中,触摸检测装置检测用户的触摸方位,并检测触摸操作带来的信号,将信号传送给触摸控制器;触摸控制器从触摸检测装置上接收触摸信息,并将它转换成触点坐标,再送给处理器1410,接收处理器1410发来的命令并加以执行。此外,可以采用电阻式、电容式、红外线以及表面声波等多种类型实现触控面板14071。除了触控面板14071,用户输入单元1407还可以包括其他输入设备14072。具体地,其他输入设备14072可以包括但不限于物理键盘、功能键(比如音量控制按键、开关按键等)、轨迹球、鼠标、操作杆,在此不再赘述。
进一步的,触控面板14071可覆盖在显示面板14061上,当触控面板14071检测到在其上或附近的触摸操作后,传送给处理器1410以确定触摸事件的类型,随后处理器1410根据触摸事件的类型在显示面板14061上提供相应的视觉输出。虽然在图14中,触控面板14071与显示面板14061是作为两个独立的部件来实现终端的输入和输出功能,但是在某些实施例中,可以将触控面 板14071与显示面板14061集成而实现终端的输入和输出功能,具体此处不做限定。
接口单元1408为外部装置与终端1400连接的接口。例如,外部装置可以包括有线或无线头戴式耳机端口、外部电源(或电池充电器)端口、有线或无线数据端口、存储卡端口、用于连接具有识别模块的装置的端口、音频输入/输出(I/O)端口、视频I/O端口、耳机端口等等。接口单元1408可以用于接收来自外部装置的输入(例如,数据信息、电力等等)并且将接收到的输入传输到终端1400内的一个或多个元件或者可以用于在终端1400和外部装置之间传输数据。
存储器1409可用于存储软件程序以及各种数据。存储器1409可主要包括存储程序区和存储数据区,其中,存储程序区可存储操作系统、至少一个功能所需的应用程序(比如声音播放功能、图像播放功能等)等;存储数据区可存储根据手机的使用所创建的数据(比如音频数据、电话本等)等。此外,存储器1409可以包括高速随机存取存储器,还可以包括非易失性存储器,例如至少一个磁盘存储器件、闪存器件、或其他易失性固态存储器件。
处理器1410是终端的控制中心,利用各种接口和线路连接整个终端的各个部分,通过运行或执行存储在存储器1409内的软件程序和/或模块,以及调用存储在存储器1409内的数据,执行终端的各种功能和处理数据,从而对终端进行整体监控。处理器1410可包括一个或多个处理单元;可选的,处理器1410可集成应用处理器和调制解调处理器,其中,应用处理器主要处理操作系统、用户界面和应用程序等,调制解调处理器主要处理无线通信。可以理解的是,上述调制解调处理器也可以不集成到处理器1410中。
终端1400还可以包括给各个部件供电的电源1411(比如电池),可选的,电源1411可以通过电源管理系统与处理器1410逻辑相连,从而通过电源管理系统实现管理充电、放电、以及功耗管理等功能。
另外,终端1400包括一些未示出的功能模块,在此不再赘述。
可选的,本公开实施例还提供一种终端,包括处理器1410,存储器1409,存储在存储器1409上并可在所述处理器1410上运行的计算机程序,该计算机程序被处理器1410执行时实现上述下行信道的接收方法实施例的各个过 程,且能达到相同的技术效果,为避免重复,这里不再赘述。
参见图15,图15是本公开实施例提供的另一种基站的结构图,如图15所示,该基站1500包括:处理器1501、收发机1502、存储器1503和总线接口,其中:
处理器1501,用于确定下行控制信道的TCI状态,其中,所述TCI状态为所述基站最近一次在原BWP上使用的CORESET的TCI状态,所述下行控制信道在所述原BWP的CORESET上发送;
收发机1502,用于根据所述TCI状态发送所述下行控制信道。
可选的,在所述基站为所述原BWP的CORESET重配置、重激活或者重指示第二TCI状态之前,所述基站在所述原BWP上均使用所述第一TCI状态。
上述基站可以提高数据传输的可靠性和准确性。
其中,收发机1502,用于在处理器1501的控制下接收和发送数据,所述收发机1502包括至少两个天线端口。
在图15中,总线架构可以包括任意数量的互联的总线和桥,具体由处理器1501代表的一个或多个处理器和存储器1503代表的存储器的各种电路链接在一起。总线架构还可以将诸如外围设备、稳压器和功率管理电路等之类的各种其他电路链接在一起,这些都是本领域所公知的,因此,本文不再对其进行进一步描述。总线接口提供接口。收发机1502可以是多个元件,即包括发送机和接收机,提供用于在传输介质上与各种其他装置通信的单元。针对不同的用户设备,用户接口还可以是能够外接内接需要设备的接口,连接的设备包括但不限于小键盘、显示器、扬声器、麦克风、操纵杆等。
处理器1501负责管理总线架构和通常的处理,存储器1503可以存储处理器1501在执行操作时所使用的数据。
可选的,本公开实施例还提供一种基站,包括处理器1501,存储器1503,存储在存储器1503上并可在所述处理器1501上运行的计算机程序,该计算机程序被处理器1501执行时实现上述下行信道的发送方法实施例的各个过程,且能达到相同的技术效果,为避免重复,这里不再赘述。
参见图16,图16是本公开实施例提供的另一种基站的结构图,如图16 所示,该基站1600包括:处理器1601、收发机1602、存储器1603和总线接口,其中:
处理器1601,用于确定下行数据信道的TCI状态,其中,所述TCI状态为:CORESET的TCI状态或者新确定的TCI状态,所述CORESET为DCI所在的时域资源中标识最小的CORESET,所述DCI用于调度所述下行数据信道;
收发机1602,用于根据所述TCI状态发送所述下行数据信道。
可选的,收发机1602执行的所述根据所述TCI状态发送所述下行数据信道,包括:
根据所述TCI状态指示的空间QCL参数发送所述下行数据信道。
可选的,在所述DCI的调度偏移小于或者等于预设门限值的情况下,所述TCI状态为所述CORESET的TCI状态,以及所述CORESET为所述时域资源中激活BWP上标识最小的CORESET。
可选的,在所述DCI的调度偏移小于或者等于预设门限值的情况下,所述TCI状态为所述CORESET的TCI状态,所述CORESET的TCI状态用于所述CORESET上控制信道的QCL指示,以及所述CORESET为所述时域资源中除标识为0的CORESET之外的标识最小的CORESET。
可选的,在所述DCI的调度偏移小于或者等于预设门限值的情况下,所述TCI状态为所述CORESET的TCI状态,所述CORESET的TCI状态用于所述CORESET上控制信道的QCL指示,以及所述CORESET为所述时域资源中做单播unicast的且标识最小的CORESET。
可选的,在所述DCI存在或者不存在TCI域的情况下,所述TCI状态均为所述CORESET的TCI状态。
可选的,在冲突时间内根据预设的或基站配置的优先级规则,使用高优先级的TCI状态来发送下行控制信道或下行数据信道;
其中,所述冲突时间包括:所述下行数据信道的TCI状态的使用时间与当前下行控制信道的TCI状态的使用时间之间的重叠时间,或者所述下行数据信道的TCI状态的使用时间与当前下行数据信道的TCI状态的使用时间之间的重叠时间,所述当前下行控制信道的TCI状态是所述基站配置的用于发 送下行控制信道的TCI状态,所述当前下行数据信道的TCI状态是所述基站指示并且已经生效的下行数据信道的TCI状态。
可选的,所述预设的或所述基站配置的优先级规则包括如下至少一项:
所述当前下行控制信道的TCI状态的优先级高于所述下行数据信道的TCI状态;
所述当前下行控制信道的TCI状态的优先级低于所述下行数据信道的TCI状态;
所述当前下行数据信道的TCI状态的优先级高于所述下行数据信道的TCI状态;
所述当前下行数据信道的TCI状态的优先级低于所述下行数据信道的TCI状态。
可选的,在冲突时间内根据预设的或所述基站配置的规则发送下行数据信道和下行参考信号中的至少一项;
其中,所述冲突时间包括:所述下行数据信道的TCI状态的使用时间与所述下行参考信号的TCI状态的使用时间之间的重叠时间,所述下行参考信号的TCI状态是所述基站配置或指示的用于发送下行参考信号的TCI状态。
可选的,所述下行参考信号包括:CSI-RS和SSB中的至少一项;
所述下行数据信道的TCI状态指示发送所述下行数据信道的空间QCL参数;所述下行参考信号的TCI状态指示发送所述下行参考信号的空间QCL参数。
可选的,所述预设的或基站配置的规则包括:
在所述冲突时间内,所述基站配置或指示用于发送下行参考信号的TCI状态与所述下行数据信道的TCI状态相同;
或者,在所述冲突时间内,使用所述基站配置或指示的用于发送下行参考信号的TCI状态发送所述下行数据信道。
可选的,所述确定下行数据信道的TCI状态之前,收发机1602还用于:
通过配置、激活和指示中的至少一项为所述终端确定标识为0的CORESET的TCI状态,该TCI状态至少用于指示与所述标识为0的CORESET存在QCI关系的同步信号块SSB的索引,以及所述新确定的TCI状态为所述 至少一项确定的TCI状态。
可选的,在所述DCI的调度偏移小于或者等于预设门限值的情况下,所述下行数据信道的TCI状态为所述新确定的TCI状态。
可选的,所述配置是指使用RRC信令配置;
所述激活是指使用媒体接入控制的控制单元MAC CE从RRC信令配置的多个TCI状态中激活其中一个TCI状态;
所述指示是指使用MAC CE或物理层控制信令指示。
上述基站可以提高数据传输的可靠性和准确性。
其中,收发机1602,用于在处理器1601的控制下接收和发送数据,所述收发机1602包括至少两个天线端口。
在图16中,总线架构可以包括任意数量的互联的总线和桥,具体由处理器1601代表的一个或多个处理器和存储器1603代表的存储器的各种电路链接在一起。总线架构还可以将诸如外围设备、稳压器和功率管理电路等之类的各种其他电路链接在一起,这些都是本领域所公知的,因此,本文不再对其进行进一步描述。总线接口提供接口。收发机1602可以是多个元件,即包括发送机和接收机,提供用于在传输介质上与各种其他装置通信的单元。针对不同的用户设备,用户接口还可以是能够外接内接需要设备的接口,连接的设备包括但不限于小键盘、显示器、扬声器、麦克风、操纵杆等。
处理器1601负责管理总线架构和通常的处理,存储器1603可以存储处理器1601在执行操作时所使用的数据。
可选的,本公开实施例还提供一种基站,包括处理器1601,存储器1603,存储在存储器1603上并可在所述处理器1601上运行的计算机程序,该计算机程序被处理器1601执行时实现上述下行信道的发送方法实施例的各个过程,且能达到相同的技术效果,为避免重复,这里不再赘述。
本公开实施例还提供一种计算机可读存储介质,计算机可读存储介质上存储有计算机程序,该计算机程序被处理器执行时实现本公开实施例提供的各种下行信道的接收方法实施例的各个过程,或者该计算机程序被处理器执行时实现本公开实施例提供的各种下行信道的发送方法实施例的各个过程,且能达到相同的技术效果,为避免重复,这里不再赘述。其中,所述的计算 机可读存储介质,如只读存储器(Read-Only Memory,ROM)、随机存取存储器(Random Access Memory,RAM)、磁碟或者光盘等。
需要说明的是,在本文中,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者装置不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者装置所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括该要素的过程、方法、物品或者装置中还存在另外的相同要素。
通过以上的实施方式的描述,本领域的技术人员可以清楚地了解到上述实施例方法可借助软件加必需的通用硬件平台的方式来实现,当然也可以通过硬件,但很多情况下前者是更佳的实施方式。基于这样的理解,本公开的技术方案本质上或者说对相关技术做出贡献的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质(如ROM/RAM、磁碟、光盘)中,包括若干指令用以使得一台终端(可以是手机,计算机,服务器,空调器,或者网络设备等)执行本公开各个实施例所述的方法。
上面结合附图对本公开的实施例进行了描述,但是本公开并不局限于上述的具体实施方式,上述的具体实施方式仅仅是示意性的,而不是限制性的,本领域的普通技术人员在本公开的启示下,在不脱离本公开宗旨和权利要求所保护的范围情况下,还可做出很多形式,均属于本公开的保护之内。

Claims (40)

  1. 一种下行信道的接收方法,应用于终端,包括:
    确定下行控制信道的传输配置指示TCI状态,其中,在所述终端切换回原带宽部分BWP的情况下,所述TCI状态为所述终端最近一次在所述原BWP上使用的控制资源集CORESET的TCI状态,所述下行控制信道在所述原BWP的CORESET上发送;
    根据所述TCI状态接收所述下行控制信道。
  2. 如权利要求1所述的方法,所述确定下行控制信道的传输配置指示TCI状态之前,所述方法还包括:
    根据基站为所述原BWP的CORESET配置的第一TCI状态,在所述原BWP上进行接收;
    切换到其他BWP,以及根据所述基站为所述其他BWP的CORESET配置的TCI状态,在所述其他BWP上进行接收;
    从所述其他BWP切换回所述原BWP,其中,所述最近一次在所述原BWP上使用的CORESET的TCI状态为所述第一TCI状态。
  3. 如权利要求2所述的方法,其中,在所述基站为所述原BWP的CORESET重配置、重激活或者重指示第二TCI状态之前,所述终端在所述原BWP上均使用所述第一TCI状态。
  4. 一种下行信道的接收方法,应用于终端,包括:
    确定下行数据信道的TCI状态,其中,所述TCI状态为:CORESET的TCI状态或者新确定的TCI状态,所述CORESET为下行控制信息DCI所在的时域资源中标识最小的CORESET,所述DCI用于调度所述下行数据信道;
    根据所述TCI状态接收所述下行数据信道。
  5. 如权利要求4所述的方法,其中,所述根据所述TCI状态接收所述下行数据信道,包括:
    根据所述TCI状态指示的空间准共址QCL参数接收所述下行数据信道。
  6. 如权利要求4所述的方法,其中,在所述DCI的调度偏移小于或者等于预设门限值的情况下,所述TCI状态为所述CORESET的TCI状态,以及 所述CORESET为所述时域资源中激活BWP上标识最小的CORESET。
  7. 如权利要求4所述的方法,其中,在所述DCI的调度偏移小于或者等于预设门限值的情况下,所述TCI状态为所述CORESET的TCI状态,所述CORESET的TCI状态用于所述CORESET上控制信道的QCL指示,以及所述CORESET为所述时域资源中除标识为0的CORESET之外的标识最小的CORESET。
  8. 如权利要求4所述的方法,其中,在所述DCI的调度偏移小于或者等于预设门限值的情况下,所述TCI状态为所述CORESET的TCI状态,所述CORESET的TCI状态用于所述CORESET上控制信道的QCL指示,以及所述CORESET为所述时域资源中做单播unicast的且标识最小的CORESET。
  9. 如权利要求6或7或8所述的方法,其中,在所述DCI存在或者不存在TCI域的情况下,所述TCI状态均为所述CORESET的TCI状态。
  10. 如权利要求4所述的方法,其中,在冲突时间内根据预设的或基站配置的优先级规则,使用高优先级的TCI状态来接收下行控制信道或下行数据信道;
    其中,所述冲突时间包括:所述下行数据信道的TCI状态的使用时间与当前接收下行控制信道的TCI状态的使用时间之间的重叠时间,或者所述下行数据信道的TCI状态的使用时间与当前下行数据信道的TCI状态的使用时间之间的重叠时间,所述当前接收下行控制信道的TCI状态是所述基站配置的用于接收下行控制信道的TCI状态,所述当前下行数据信道的TCI状态是所述基站指示并且已经生效的下行数据信道的TCI状态。
  11. 如权利要求10所述的方法,其中,所述预设的或所述基站配置的优先级规则包括如下至少一项:
    所述当前接收下行控制信道的TCI状态的优先级高于所述下行数据信道的TCI状态;
    所述当前接收下行控制信道的TCI状态的优先级低于所述下行数据信道的TCI状态;
    所述当前下行数据信道的TCI状态的优先级高于所述下行数据信道的TCI状态;
    所述当前下行数据信道的TCI状态的优先级低于所述下行数据信道的TCI状态。
  12. 如权利要求4所述的方法,其中,在冲突时间内根据预设的或基站配置的规则接收下行数据信道和下行参考信号中的至少一项;
    其中,所述冲突时间包括:所述下行数据信道的TCI状态的使用时间与所述下行参考信号的TCI状态的使用时间之间的重叠时间,所述下行参考信号的TCI状态是所述基站配置或指示的用于接收下行参考信号的TCI状态。
  13. 如权利要求12所述的方法,其中,所述下行参考信号包括:信道状态信息参考信号CSI-RS和同步信号块SSB中的至少一项;
    所述下行数据信道的TCI状态指示接收所述下行数据信道的空间QCL参数;所述下行参考信号的TCI状态指示接收所述下行参考信号的空间QCL参数。
  14. 如权利要求12所述的方法,其中,所述预设的或基站配置的规则包括:
    在所述冲突时间内,所述基站配置或指示用于接收下行参考信号的TCI状态与所述下行数据信道的TCI状态相同;
    或者,在所述冲突时间内,使用所述基站配置或指示的用于接收下行参考信号的TCI状态接收所述下行数据信道。
  15. 如权利要求4所述的方法,所述确定下行数据信道的TCI状态之前,所述方法还包括:
    获取基站为标识为0的CORESET配置、激活和指示中的至少一项确定的TCI状态,该TCI状态至少用于指示与所述标识为0的CORESET存在QCI关系的SSB的索引,以及所述新确定的TCI状态为所述至少一项确定的TCI状态。
  16. 如权利要求15所述的方法,其中,在所述DCI的调度偏移小于或者等于预设门限值的情况下,所述下行数据信道的TCI状态为所述新确定的TCI状态。
  17. 如权利要求15所述的方法,其中,所述配置是指使用无线资源控制RRC信令配置;
    所述激活是指使用媒体接入控制的控制单元MAC CE从RRC信令配置的多个TCI状态中激活其中一个TCI状态;
    所述指示是指使用MAC CE或物理层控制信令指示。
  18. 一种下行信道的发送方法,应用于基站,包括:
    确定下行控制信道的TCI状态,其中,所述TCI状态为所述基站最近一次在原BWP上使用的CORESET的TCI状态,所述下行控制信道在所述原BWP的CORESET上发送;
    根据所述TCI状态发送所述下行控制信道。
  19. 如权利要求18所述的方法,其中,在所述基站为所述原BWP的CORESET重配置、重激活或者重指示第二TCI状态之前,所述基站在所述原BWP上均使用第一TCI状态。
  20. 一种下行信道的发送方法,应用于基站,包括:
    确定下行数据信道的TCI状态,其中,所述TCI状态为:CORESET的TCI状态或者新确定的TCI状态,所述CORESET为DCI所在的时域资源中标识最小的CORESET,所述DCI用于调度所述下行数据信道;
    根据所述TCI状态发送所述下行数据信道。
  21. 如权利要求20所述的方法,其中,所述根据所述TCI状态发送所述下行数据信道,包括:
    根据所述TCI状态指示的空间QCL参数发送所述下行数据信道。
  22. 如权利要求20所述的方法,其中,在所述DCI的调度偏移小于或者等于预设门限值的情况下,所述TCI状态为所述CORESET的TCI状态,以及所述CORESET为所述时域资源中激活BWP上标识最小的CORESET。
  23. 如权利要求20所述的方法,其中,在所述DCI的调度偏移小于或者等于预设门限值的情况下,所述TCI状态为所述CORESET的TCI状态,所述CORESET的TCI状态用于所述CORESET上控制信道的QCL指示,以及所述CORESET为所述时域资源中除标识为0的CORESET之外的标识最小的CORESET。
  24. 如权利要求20所述的方法,其中,在所述DCI的调度偏移小于或者等于预设门限值的情况下,所述TCI状态为所述CORESET的TCI状态,所 述CORESET的TCI状态用于所述CORESET上控制信道的QCL指示,以及所述CORESET为所述时域资源中做单播unicast的且标识最小的CORESET。
  25. 如权利要求22或23或24所述的方法,其中,在所述DCI存在或者不存在TCI域的情况下,所述TCI状态均为所述CORESET的TCI状态。
  26. 如权利要求20所述的方法,其中,在冲突时间内根据预设的或基站配置的优先级规则,使用高优先级的TCI状态来发送下行控制信道或下行数据信道;
    其中,所述冲突时间包括:所述下行数据信道的TCI状态的使用时间与当前下行控制信道的TCI状态的使用时间之间的重叠时间,或者所述下行数据信道的TCI状态的使用时间与当前下行数据信道的TCI状态的使用时间之间的重叠时间,所述当前下行控制信道的TCI状态是所述基站配置的用于发送下行控制信道的TCI状态,所述当前下行数据信道的TCI状态是所述基站指示并且已经生效的下行数据信道的TCI状态。
  27. 如权利要求26所述的方法,其中,所述预设的或所述基站配置的优先级规则包括如下至少一项:
    所述当前下行控制信道的TCI状态的优先级高于所述下行数据信道的TCI状态;
    所述当前下行控制信道的TCI状态的优先级低于所述下行数据信道的TCI状态;
    所述当前下行数据信道的TCI状态的优先级高于所述下行数据信道的TCI状态;
    所述当前下行数据信道的TCI状态的优先级低于所述下行数据信道的TCI状态。
  28. 如权利要求20所述的方法,其中,在冲突时间内根据预设的或所述基站配置的规则发送下行数据信道和下行参考信号中的至少一项;
    其中,所述冲突时间包括:所述下行数据信道的TCI状态的使用时间与所述下行参考信号的TCI状态的使用时间之间的重叠时间,所述下行参考信号的TCI状态是所述基站配置或指示的用于发送下行参考信号的TCI状态。
  29. 如权利要求28所述的方法,其中,所述下行参考信号包括:CSI-RS 和SSB中的至少一项;
    所述下行数据信道的TCI状态指示发送所述下行数据信道的空间QCL参数;所述下行参考信号的TCI状态指示发送所述下行参考信号的空间QCL参数。
  30. 如权利要求28所述的方法,其中,所述预设的或基站配置的规则包括:
    在所述冲突时间内,所述基站配置或指示用于发送下行参考信号的TCI状态与所述下行数据信道的TCI状态相同;
    或者,在所述冲突时间内,使用所述基站配置或指示的用于发送下行参考信号的TCI状态发送所述下行数据信道。
  31. 如权利要求20所述的方法,所述确定下行数据信道的TCI状态之前,所述方法还包括:
    通过配置、激活和指示中的至少一项为终端确定标识为0的CORESET的TCI状态,该TCI状态至少用于指示与所述标识为0的CORESET存在QCI关系的同步信号块SSB的索引,以及所述新确定的TCI状态为所述至少一项确定的TCI状态。
  32. 如权利要求31所述的方法,其中,在所述DCI的调度偏移小于或者等于预设门限值的情况下,所述下行数据信道的TCI状态为所述新确定的TCI状态。
  33. 如权利要求31所述的方法,其中,所述配置是指使用无线资源控制RRC信令配置;
    所述激活是指使用MAC CE从RRC信令配置的多个TCI状态中激活其中一个TCI状态;
    所述指示是指使用MAC CE或物理层控制信令指示。
  34. 一种终端,包括:
    控制信道确定模块,用于确定下行控制信道的TCI状态,其中,在所述终端切换回原BWP的情况下,所述TCI状态为所述终端最近一次在所述原BWP上使用的CORESET的TCI状态,所述下行控制信道在所述原BWP的CORESET上发送;
    控制信道接收模块,用于根据所述TCI状态接收所述下行控制信道。
  35. 一种终端,包括:
    数据信道确定模块,用于确定下行数据信道的TCI状态,其中,所述TCI状态为:CORESET的TCI状态或者新确定的TCI状态,所述CORESET为DCI所在的时域资源中标识最小的CORESET,所述DCI用于调度所述下行数据信道;
    数据信道接收模块,用于根据所述TCI状态接收所述下行数据信道。
  36. 一种基站,包括:
    控制信道确定模块,用于确定下行控制信道的TCI状态,其中,所述TCI状态为所述基站最近一次在原BWP上使用的CORESET的TCI状态,所述下行控制信道在所述原BWP的CORESET上发送;
    控制信道发送模块,用于根据所述TCI状态发送所述下行控制信道。
  37. 一种基站,包括:
    数据信道确定模块,用于确定下行数据信道的TCI状态,其中,所述TCI状态为:CORESET的TCI状态或者新确定的TCI状态,所述CORESET为DCI所在的时域资源中标识最小的CORESET,所述DCI用于调度所述下行数据信道;
    数据信道发送模块,用于根据所述TCI状态发送所述下行数据信道。
  38. 一种终端,包括:存储器、处理器及存储在所述存储器上并可在所述处理器上运行的计算机程序,所述计算机程序被所述处理器执行时实现如权利要求1至3中任一项所述的下行信道的接收方法中的步骤,或者,所述计算机程序被所述处理器执行时实现如权利要求4至17中任一项所述的下行信道的接收方法中的步骤。
  39. 一种基站,包括:存储器、处理器及存储在所述存储器上并可在所述处理器上运行的计算机程序,所述计算机程序被所述处理器执行时实现如权利要求18至19中任一项所述的下行信道的发送方法中的步骤,或者,所述计算机程序被所述处理器执行时实现如权利要求20至33中任一项所述的下行信道的发送方法中的步骤。
  40. 一种计算机可读存储介质,存储有计算机程序,所述计算机程序被 处理器执行时实现如权利要求1至3中任一项所述的下行信道的接收方法的步骤,或者,所述计算机程序被处理器执行时实现如权利要求4至17中任一项所述的下行信道的接收方法的步骤,或者,所述计算机程序被处理器执行时实现如权利要求18至19中任一项所述的下行信道的发送方法的步骤,或者,所述计算机程序被处理器执行时实现如权利要求20至33中任一项所述的下行信道的发送方法的步骤。
PCT/CN2019/072651 2018-02-11 2019-01-22 下行信道的接收方法、发送方法、终端和基站 WO2019154066A1 (zh)

Priority Applications (5)

Application Number Priority Date Filing Date Title
EP19750589.4A EP3742806B1 (en) 2018-02-11 2019-01-22 Downlink channel receiving method, downlink channel sending method, terminal and base station
JP2020543104A JP7038219B2 (ja) 2018-02-11 2019-01-22 下りチャネルの受信方法、送信方法、端末及び基地局
US16/968,917 US11576183B2 (en) 2018-02-11 2019-01-22 Method of receiving downlink channel, method of sending downlink channel, terminal and base station
ES19750589T ES2965864T3 (es) 2018-02-11 2019-01-22 Método de recepción de canal de enlace descendente, método de envío de canal de enlace descendente, terminal y estación base
KR1020207024388A KR102495173B1 (ko) 2018-02-11 2019-01-22 다운링크 채널의 수신 방법, 송신 방법, 단말 및 기지국

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
CN201810142918 2018-02-11
CN201810142918.8 2018-02-11
CN201810151459 2018-02-14
CN201810151459.X 2018-02-14
CN201810169276.0 2018-02-28
CN201810169276.0A CN110167091B (zh) 2018-02-11 2018-02-28 下行信道的接收方法、发送方法、终端和基站

Publications (1)

Publication Number Publication Date
WO2019154066A1 true WO2019154066A1 (zh) 2019-08-15

Family

ID=67549255

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/072651 WO2019154066A1 (zh) 2018-02-11 2019-01-22 下行信道的接收方法、发送方法、终端和基站

Country Status (1)

Country Link
WO (1) WO2019154066A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022015434A1 (en) * 2020-07-15 2022-01-20 Qualcomm Incorporated Facilitating communication based on frequency ranges
WO2022266992A1 (en) * 2021-06-25 2022-12-29 Qualcomm Incorporated Configuration of reference bwp/cc to common tci pool

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017023231A1 (en) * 2015-07-31 2017-02-09 Intel Corporation Receive beam indication for 5g systems

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017023231A1 (en) * 2015-07-31 2017-02-09 Intel Corporation Receive beam indication for 5g systems

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
"RACH procedure with BWP", 3GPP TSG RAN WG1 MEETING AH 1801 R1-1800647, 26 January 2018 (2018-01-26), XP051384407 *
HUAWEI: "On Bandwidth Adaptation", 3GPP TSG RAN WG1 NR AD-HOC MEETING R1-1711424, 30 June 2017 (2017-06-30), XP051300612 *
See also references of EP3742806A4 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022015434A1 (en) * 2020-07-15 2022-01-20 Qualcomm Incorporated Facilitating communication based on frequency ranges
WO2022266992A1 (en) * 2021-06-25 2022-12-29 Qualcomm Incorporated Configuration of reference bwp/cc to common tci pool

Similar Documents

Publication Publication Date Title
EP3742806B1 (en) Downlink channel receiving method, downlink channel sending method, terminal and base station
US20220046541A1 (en) Channel monitoring method, terminal, and network device
US20210028844A1 (en) Information reporting method, terminal and network device
CN110730504B (zh) 一种寻呼指示方法、装置及系统
CN110475364B (zh) 一种非周期跟踪参考信号的接收方法及终端
CN112533232B (zh) 一种节能信号监听时刻的确定方法、配置方法及相关设备
US20220377586A1 (en) Beam failure recovery method, terminal, and network device
WO2019214601A1 (zh) 处理csi处理单元、资源的方法、装置及系统
WO2019218996A1 (zh) 测量控制方法、终端和网络侧设备
EP4120720A1 (en) Signal transmission method, information indication method, and communication device
WO2020063240A1 (zh) 信道接入方法、配置方法、终端及网络侧设备
WO2021088874A1 (zh) 信息传输方法及设备
CN111600692A (zh) 一种信道监听方法、信息传输方法、终端及网络设备
WO2019154066A1 (zh) 下行信道的接收方法、发送方法、终端和基站
WO2021109954A1 (zh) 波束失败恢复方法、终端及网络侧设备
CN111836311B (zh) 能力协商方法、终端及网络设备
WO2020140689A1 (zh) 带宽部分切换方法及装置、通信设备
WO2019134660A1 (zh) 状态转换处理方法及相关设备
WO2021197318A1 (zh) 调度请求的配置方法、终端及网络设备
CN110324855B (zh) 一种测量上报方法、终端设备及网络设备
CN113473605A (zh) 一种冲突资源确定方法和终端
CN111436138A (zh) 信号传输方法、设备及系统
WO2021057703A1 (zh) 参考信号传输方法及设备
WO2021160027A1 (zh) 参考信号的确定方法和通信设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19750589

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020543104

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20207024388

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2019750589

Country of ref document: EP

Effective date: 20200817