WO2020001380A1 - 定位参考信号传输方法、终端及网络设备 - Google Patents

定位参考信号传输方法、终端及网络设备 Download PDF

Info

Publication number
WO2020001380A1
WO2020001380A1 PCT/CN2019/092276 CN2019092276W WO2020001380A1 WO 2020001380 A1 WO2020001380 A1 WO 2020001380A1 CN 2019092276 W CN2019092276 W CN 2019092276W WO 2020001380 A1 WO2020001380 A1 WO 2020001380A1
Authority
WO
WIPO (PCT)
Prior art keywords
bandwidth
prs
positioning
reference signal
transmission bandwidth
Prior art date
Application number
PCT/CN2019/092276
Other languages
English (en)
French (fr)
Inventor
司晔
孙鹏
Original Assignee
维沃移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 维沃移动通信有限公司 filed Critical 维沃移动通信有限公司
Publication of WO2020001380A1 publication Critical patent/WO2020001380A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/02Services making use of location information
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W64/00Locating users or terminals or network equipment for network management purposes, e.g. mobility management

Definitions

  • the present disclosure relates to the field of communication technologies, and in particular, to a positioning reference signal transmission method, a terminal, and a network device.
  • a cell supports a maximum system bandwidth of up to 400 MHz to support greater system and user throughput.
  • the NR system introduces dynamic and flexible bandwidth allocation, dividing the system bandwidth into multiple bandwidth parts (BWP) to support narrow-band terminals or energy-saving mode terminals.
  • BWP bandwidth parts
  • the NR system also supports different BWP configurations with different parameter settings (Numerology). If the terminal cannot support the Numerology of the cell, the network device can avoid configuring the corresponding frequency band to the terminal when configuring the BWP for the terminal.
  • the network device can configure the terminal's available BWP set for each cell through radio resource control (RRC) signaling, and then dynamically switch the BWP that needs to be started through level one (L1) signaling.
  • RRC radio resource control
  • L1 level one
  • PRS Positioning Reference Signal
  • the terminal cannot determine which BWP to measure. If the PRS is measured on the wrong BWP, the positioning of the terminal may be inaccurate and affect the information transmission performance.
  • the embodiments of the present disclosure provide a positioning reference signal transmission method, a terminal, and a network device to solve the problem of inaccurate positioning reference signal measurement and affecting information transmission performance.
  • an embodiment of the present disclosure provides a positioning reference signal transmission method, which is applied to a terminal and includes:
  • the target transmission bandwidth is associated with at least one of an activated bandwidth part BWP, a cell transmission bandwidth, and a positioning performance indicator;
  • the PRS is received over at least a portion of the target transmission bandwidth.
  • an embodiment of the present disclosure further provides a terminal, including:
  • An acquisition module for acquiring a target transmission bandwidth of the positioning reference signal PRS; wherein the target transmission bandwidth is associated with at least one of an activated bandwidth part BWP, a cell transmission bandwidth, and a positioning performance indicator;
  • the receiving module is configured to receive a PRS on at least a part of a target transmission bandwidth.
  • an embodiment of the present disclosure provides a terminal.
  • the terminal includes a processor, a memory, and a computer program stored on the memory and running on the processor.
  • the computer program is executed by the processor, the positioning reference signal transmission method is implemented. A step of.
  • an embodiment of the present disclosure provides a positioning reference signal transmission method, which is applied to a network device and includes:
  • an embodiment of the present disclosure provides a network device, including:
  • a configuration module configured to configure a target transmission bandwidth of a positioning reference signal PRS according to at least one of an activated bandwidth part BWP, a cell transmission bandwidth, and a positioning performance indicator;
  • a sending module is configured to send a PRS over a target transmission bandwidth.
  • an embodiment of the present disclosure further provides a network device.
  • the network device includes a processor, a memory, and a computer program stored on the memory and running on the processor.
  • the processor executes the computer program, the positioning reference signal is implemented. Steps of the transfer method.
  • an embodiment of the present disclosure provides a computer-readable storage medium.
  • the computer-readable storage medium stores a computer program, and when the computer program is executed by a processor, implements the steps of the positioning reference signal transmission method on the terminal side described above, or , To implement the steps of the positioning reference signal transmission method on the network device side as described above.
  • the embodiments of the present disclosure can accurately measure the PRS by using the above scheme, so as to accurately estimate the location of the terminal and improve the information transmission performance.
  • FIG. 1 shows a block diagram of a mobile communication system applicable to embodiments of the present disclosure
  • FIG. 2 is a schematic flowchart of a positioning reference signal transmission method for a terminal according to an embodiment of the present disclosure
  • FIG. 3 is a schematic diagram illustrating a positioning principle of an OTDOA method according to an embodiment of the present disclosure
  • FIG. 4 is a schematic flowchart of an OTDOA positioning method according to an embodiment of the present disclosure
  • FIG. 5 is a schematic structural diagram of a module of a terminal according to an embodiment of the present disclosure.
  • FIG. 6 is a block diagram of a terminal according to an embodiment of the present disclosure.
  • FIG. 7 is a schematic flowchart of a positioning reference signal transmission method for a network device according to an embodiment of the present disclosure
  • FIG. 8 is a schematic structural diagram of a module of a network device according to an embodiment of the present disclosure.
  • FIG. 9 shows a block diagram of a network device according to an embodiment of the present disclosure.
  • LTE Long Time Evolution
  • LTE-A LTE-Advanced
  • CDMA Code Division Multiple Access
  • TDMA Time Division Multiple Access
  • FDMA Frequency Division Multiple Access
  • OFDMA Orthogonal Frequency Division Multiple Access
  • SC-FDMA Single Carrier Frequency Single-carrier
  • system and “network” are often used interchangeably.
  • FIG. 1 is a block diagram of a wireless communication system applicable to an embodiment of the present disclosure.
  • the wireless communication system includes a terminal 11 and a network device 12.
  • the terminal 11 may also be called a terminal device or a user terminal (User), and the terminal 11 may be a mobile phone, a tablet computer (laptop computer), a laptop computer (laptop computer), or a personal digital assistant (Personal Digital Assistant).
  • PDA mobile Internet device
  • MID mobile Internet Device
  • Wearable device Wearable Device
  • terminal equipment such as vehicle-mounted equipment
  • the network device 12 may be a base station or a core network, where the above base stations may be 5G and later versions of base stations (for example, gNB, 5G, NR, NB, etc.), or base stations in other communication systems (for example, eNB, WLAN access point, Or other access points, etc.), or a location server (Evolved, Serving, Mobile, Location, E-SMLC) in LTE, or a 5G location server (Location Management Function, LMF).
  • 5G and later versions of base stations for example, gNB, 5G, NR, NB, etc.
  • base stations in other communication systems for example, eNB, WLAN access point, Or other access points, etc.
  • a location server Evolved, Serving, Mobile, Location, E-SMLC
  • LMF Location Management Function
  • the base station can be referred to as Node B, Evolved Node B, Access Point, Base Transceiver Station (BTS), Radio Base Station, Radio Transceiver, Basic Service Set (BSS), Extended Service Set (Extended Service Set, ESS), Node B, Evolution Node B (eNB), Home Node B, Home Evolution Node B, WLAN access point, WiFi node, or some other suitable term in the field, as long as To achieve the same technical effect, the base station is not limited to a specific technical vocabulary.
  • the communication link in the wireless communication system may include an uplink for carrying uplink (Uplink, UL) transmission (for example, from the terminal 11 to the network device 12), or a bearer for downlink (Downlink, DL) Downlink for transmission (for example, from network device 12 to terminal 11).
  • UL transmissions may also be referred to as reverse link transmissions, and DL transmissions may also be referred to as forward link transmissions.
  • Downlink transmission can be performed using licensed or unlicensed frequency bands or both.
  • uplink transmissions can be performed using licensed or unlicensed frequency bands or both.
  • the positioning reference signal transmission method in the embodiment of the present disclosure only uses the NR system as an exemplary description, and other systems may also be applicable.
  • An embodiment of the present disclosure provides a method for transmitting a positioning reference signal, which is applied to a terminal. As shown in FIG. 2, the method includes the following steps:
  • Step 21 Obtain a target transmission bandwidth of the positioning reference signal PRS.
  • the target transmission bandwidth is associated with at least one of an activated bandwidth part BWP, a cell transmission bandwidth, and a positioning performance indicator.
  • the network device configures the target transmission bandwidth for the PRS according to at least one of the activated BWP bandwidth, the cell transmission bandwidth, and the positioning performance index.
  • the positioning performance index may include, but is not limited to, a positioning accuracy index and a positioning delay index.
  • the network device configures an available BWP set for the terminal through high-level signaling, and the terminal works in one of the activated BWPs in the BWP set.
  • the parameter set Numerology under the same BWP is the same. Numerology includes a set of parameters such as the subcarrier interval and the cyclic prefix type.
  • the PRS can also be called a PRS resource, or a PRS resource set, or a PRS resource pool.
  • Step 22 Receive the PRS on at least a portion of the target transmission bandwidth.
  • the terminal receives the PRS on the target transmission bandwidth that has received the PRS, and on a portion of the target transmission bandwidth.
  • at least part of the transmission bandwidth may be the entire target transmission bandwidth, or may be part of the target transmission bandwidth.
  • the terminal may determine at least a part of the transmission bandwidth on the target transmission bandwidth according to the activation of BWP or other factors to receive the PRS, thereby improving the PRS reception Accuracy to improve the accuracy of terminal location estimation.
  • the PRS is used to observe the time of arrival (Observed Time Difference of Arrival, OTDOA) method.
  • the terminal does not obtain the accurate time of arrival (Time of Arrival, TOA).
  • the estimated position is determined by The arrival time difference (Time Difference of Arrival, TDOA) of the PRS sent by at least three network devices (network device 1, network device 2, and network device 3) is determined, that is, determined by relative time instead of absolute time.
  • the network device 1 is a base station of a serving cell to which the terminal belongs
  • the network device 2 and the network device 3 are base stations of a neighboring cell of the terminal.
  • the OTDOA positioning method includes the following steps:
  • Step 41 The network device generates a PRS and transmits it through the target channel.
  • Step 42 The terminal receives the corresponding PRS on the target transmission channel.
  • Step 43 Correlate the received PRS with the local signal in the time domain to obtain the delay power spectrum.
  • the local signal here is generated by the positioning assistance data obtained by the terminal, and can be regarded as the original (without channel) positioning reference signal time domain signal.
  • the terminal interacts with the serving cell base station of the location server E-SMLC through the LPPa protocol to obtain positioning assistance data or positioning measurements.
  • auxiliary data includes, but is not limited to, information about the serving cell (such as physical cell identification, positioning reference signal configuration, and cell frequency), and neighboring cell information (such as physical cell identification, positioning reference signal configuration, and cell frequency). Etc.).
  • the neighboring cell mentioned here is a cell that is favorable for measurement and obtained after roughly determining the geographic location of the terminal in advance.
  • Step 44 Find the first reach according to the delay power spectrum, and determine the TOA of each network device to the terminal.
  • Step 45 Calculate the reference signal time difference (RSTD) between the serving cell and other neighboring cells to the terminal, where the RSTD value of the terminal is the TOA difference.
  • RSTD reference signal time difference
  • Step 46 According to the RSTD, a preset positioning algorithm is used to estimate the position coordinates of the terminal.
  • the terminal's reception accuracy rate for PRS can be improved to improve the accuracy of the terminal position estimation.
  • the target transmission bandwidth may be associated with an activated BWP.
  • the target transmission bandwidth is the smaller of the activated BWP bandwidth and the preset bandwidth.
  • the bandwidth for activating BWP is N physical resource blocks (PRBs)
  • the target transmission bandwidth configured by the network device for the PRS is B PRBs
  • the preset bandwidth is X PRBs.
  • the target transmission bandwidth is the bandwidth in which the BWP is activated.
  • the bandwidth for activating BWP is N PRBs
  • the target transmission bandwidth configured by the network device for PRS is B PRBs.
  • the above-mentioned activated BWP bandwidth should be greater than or equal to a preset bandwidth threshold, and the preset bandwidth threshold is predefined, determined by the network device configuration, or the terminal. That is, when PRS is configured for positioning, the bandwidth configured by the network device for activating the BWP has a minimum value, and the positioning cannot be performed or the positioning accuracy cannot be guaranteed because the activated BWP is too small.
  • the preset bandwidth is predefined or the preset bandwidth is configured for the network device.
  • the preset bandwidth is configured by the network device through at least one of the following methods: radio resource control signaling configuration, media access control MAC layer signaling configuration, and downlink control information DCI information.
  • the instruction indicates that the positioning protocol LPP signaling instruction between the terminal and the location server. That is to say, the network device can indicate separately by any of the above methods, or can jointly indicate by at least two of the above methods.
  • the network device configures a candidate including multiple preset bandwidths through RRC signaling.
  • the bandwidth set is then selected as a preset bandwidth X from a candidate bandwidth set through MAC layer signaling or DCI indication. It is worth pointing out that the above-mentioned joint indication method is only an exemplary description, and the joint indication method of other combination methods may also be applicable in this embodiment.
  • the target transmission bandwidth is associated with the activated BWP bandwidth has been described above.
  • the example in which the target transmission bandwidth is associated with the positioning performance index will be further introduced. That is, the target transmission bandwidth can be associated with the positioning performance index configured on the network device side, and the positioning performance index can include a positioning accuracy index, a positioning delay index, and the like.
  • the target transmission bandwidth is positively related to the positioning accuracy index.
  • the positive correlation refers to: when the required positioning accuracy index is high, configure a relatively large target transmission bandwidth for the PRS; when the required positioning accuracy is not high, configure a relatively small target transmission bandwidth for the PRS To save overhead.
  • the target transmission bandwidth is negatively related to the positioning delay index.
  • the negative correlation refers to: when the required positioning delay is small, configure a relatively small target transmission bandwidth for the PRS; when the required positioning delay can be larger, configure a relatively large target for the PRS Transmission bandwidth to improve positioning accuracy.
  • the embodiment of the present disclosure will further explain how to receive PRS on at least part of the transmission bandwidth of the target transmission bandwidth in combination with the following scenarios, that is, how to determine at least part of the target transmission bandwidth.
  • Scenario 1 In the case where the PRS is based on the cell configuration, the PRS is received on the overlapping part of the target transmission bandwidth with the activated BWP.
  • the network device configures an available BWP set for the terminal through high-level signaling.
  • the terminal works in an activated BWP, and the activated BWP width is N PRBs.
  • the network device configures the target transmission bandwidth for the PRS according to the transmission bandwidth of the cell, that is, the network device configures the PRS based on the cell and configures the PRS to cover the entire carrier bandwidth.
  • the terminal measures the PRS, it measures only the PRS in the activated BWP.
  • Scenario 2 When the PRS is configured based on BWP, the PRS is received on the target transmission bandwidth corresponding to the activated BWP.
  • the network device configures an available BWP set for the terminal through high-level signaling.
  • the terminal works in an activated BWP, and the activated BWP width is N PRBs.
  • the network device configures a target transmission bandwidth for the PRS according to the bandwidth of the activated BWP, that is, the network device configures PRS under the activated BWP, and the terminal can measure the PRS in the activated BWP.
  • the terminal when a BWP handover occurs, that is, the terminal activates a new BWP and deactivates the current BWP, and the network device configures the PRS under the newly activated BWP.
  • the terminal may calculate the TOA of the PRS before and after the BWP handover, and then average them.
  • the network device is configured with a PRS with Numerology u, and (k, l) is used to represent the time-frequency position of the resource element (Resource Element, RE) occupied by the PRS, where l is the OFDM symbol in the slot.
  • Sequence number, k represents the frequency domain position when Numerology is u.
  • the terminal only needs to measure the PRS in the activated BWP.
  • the terminal When the terminal is to perform BWP handover, if the Numerology of the newly activated BWP is the same as the previous activated BWP, the subcarrier interval, OFDM symbol width, and the number of slots in one radio frame after the handover are unchanged. On a certain OFDM symbol, the PRS sequence can still be extended to the PRS sequence that was generated before the BWP handover, and the part of the sequence occupied by the new activated BWP can be directly used when mapping.
  • the network equipment needs to regenerate a new PRS.
  • the terminal reports the calculated arrival time TOA to the network side, and the network device calculates the difference RSTD of the TOA of multiple cells, and obtains the position coordinates of the terminal through a preset positioning algorithm.
  • Scenario 3 The PRS is received on the overlapping part of the target transmission bandwidth and the measurement interval GAP.
  • the measurement of the PRS by the terminal may not be limited to the activation of the BWP.
  • the network device can configure the measurement interval GAP for the terminal to receive the PRS.
  • the terminal is allowed to receive the PRS on the overlapping part of the measured GAP and the target transmission bandwidth.
  • measuring the bandwidth of the GAP includes: at least part of the bandwidth of the activated BWP and / or at least part of the bandwidth of the inactive BWP.
  • the bandwidth for measuring GAP can be greater than the bandwidth for activating BWP.
  • the terminal behavior in scenario 3 can be determined by a protocol, an instruction from a network device, or selected by the terminal.
  • the PRS is received on the overlapping part of the target transmission bandwidth and the inactive BWP.
  • the measurement of the PRS by the terminal may not be limited to the activation of the BWP.
  • the terminal is allowed to receive PRS on the overlapping portion of the target transmission bandwidth and the inactive BWP.
  • the behavior of the terminal may be agreed by a protocol or instructed by a network device.
  • the terminal obtains a target transmission bandwidth associated with at least one of an activated bandwidth part BWP, a cell transmission bandwidth, and a positioning performance indicator, and detects a PRS in at least a part of the target transmission bandwidth. , Can accurately measure PRS to accurately estimate the location of the terminal and improve information transmission performance.
  • the terminal 500 can achieve the target transmission bandwidth of the positioning reference signal PRS in the foregoing embodiment.
  • the target transmission bandwidth and the activated bandwidth part of BWP, cell transmission bandwidth, and positioning performance indicators At least one association; receiving the details of the PRS method on at least part of the transmission bandwidth of the target transmission bandwidth and achieving the same effect, the terminal 500 specifically includes the following functional modules:
  • the obtaining module 510 is configured to obtain a target transmission bandwidth of a positioning reference signal PRS; wherein the target transmission bandwidth is associated with at least one of an activated bandwidth part BWP, a cell transmission bandwidth, and a positioning performance indicator;
  • the receiving module 520 is configured to receive a PRS on at least a part of a target transmission bandwidth.
  • the target transmission bandwidth is:
  • the preset bandwidth is predefined or the preset bandwidth is configured by a network device.
  • the preset bandwidth is configured by the network device in at least one of the following ways:
  • the positioning protocol LPP signaling indication between the terminal and the location server is the positioning protocol LPP signaling indication between the terminal and the location server.
  • the bandwidth for activating the BWP is greater than or equal to a preset bandwidth threshold, and the preset bandwidth threshold is predefined, determined by a network device configuration, or a terminal.
  • the positioning performance index includes a positioning accuracy index
  • the target transmission bandwidth is positively related to the positioning accuracy index
  • the positioning performance index includes a positioning delay index, and the target transmission bandwidth is negatively correlated with the positioning delay index.
  • the receiving module 520 includes one of the following:
  • a first receiving submodule configured to receive a PRS on an overlapping part of a target transmission bandwidth and an activated BWP in a case where the PRS is based on a cell configuration
  • a second receiving submodule configured to receive the PRS on a target transmission bandwidth corresponding to the activated BWP when the PRS is based on the BWP configuration
  • a third receiving submodule configured to receive a PRS on an overlapping part of a target transmission bandwidth and a measurement interval GAP;
  • a fourth receiving submodule is configured to receive a PRS on an overlapping part of a target transmission bandwidth and an inactive BWP.
  • measuring the bandwidth of the GAP includes: at least part of the bandwidth of the activated BWP and / or at least part of the bandwidth of the inactive BWP.
  • the terminal in the embodiment of the present disclosure obtains the target transmission bandwidth associated with at least one of the activated bandwidth part BWP, the cell transmission bandwidth, and the positioning performance index, and detects the PRS in at least a part of the target transmission bandwidth, and may Accurately measure PRS to accurately estimate the location of the terminal and improve information transmission performance.
  • FIG. 6 is a schematic diagram of a hardware structure of a terminal for implementing the embodiments of the present disclosure.
  • the terminal 60 includes, but is not limited to, a radio frequency unit 61, a network module 62, an audio output unit 63, The input unit 64, the sensor 65, the display unit 66, the user input unit 67, the interface unit 68, the memory 69, the processor 610, and the power source 611 and other components.
  • the terminal structure shown in FIG. 6 does not constitute a limitation on the terminal, and the terminal may include more or fewer components than shown in the figure, or some components may be combined, or different components may be arranged.
  • the terminal includes, but is not limited to, a mobile phone, a tablet computer, a notebook computer, a palmtop computer, a car terminal, a wearable device, a pedometer, and the like.
  • the radio frequency unit 61 is used for
  • the terminal in the embodiment of the present disclosure acquires a target transmission bandwidth associated with at least one of an activated bandwidth part BWP, a cell transmission bandwidth, and a positioning performance indicator, and detects the PRS in at least a part of the target transmission bandwidth, and can accurately measure the PRS to accurately Estimate the location of the terminal to improve information transmission performance.
  • the radio frequency unit 61 may be used to receive and send signals during the transmission and reception of information or during a call. Specifically, the downlink data from the base station is received and processed by the processor 610; The uplink data is sent to the base station.
  • the radio frequency unit 61 includes, but is not limited to, an antenna, at least one amplifier, a transceiver, a coupler, a low noise amplifier, a duplexer, and the like.
  • the radio frequency unit 61 can also communicate with a network and other devices through a wireless communication system.
  • the terminal provides users with wireless broadband Internet access through the network module 62, such as helping users to send and receive email, browse web pages, and access streaming media.
  • the audio output unit 63 may convert audio data received by the radio frequency unit 61 or the network module 62 or stored in the memory 69 into audio signals and output them as sound. Moreover, the audio output unit 63 may also provide audio output (for example, call signal reception sound, message reception sound, etc.) related to a specific function performed by the terminal 60.
  • the audio output unit 63 includes a speaker, a buzzer, a receiver, and the like.
  • the input unit 64 is used to receive audio or video signals.
  • the input unit 64 may include a graphics processing unit (Graphics Processing Unit, GPU) 641 and a microphone 642.
  • the graphics processor 641 pairs images of still pictures or videos obtained by an image capture device (such as a camera) in a video capture mode or an image capture mode. Data is processed.
  • the processed image frames may be displayed on the display unit 66.
  • the image frames processed by the graphics processor 641 may be stored in the memory 69 (or other storage medium) or transmitted via the radio frequency unit 61 or the network module 62.
  • the microphone 642 can receive sound, and can process such sound into audio data.
  • the processed audio data can be converted into a format that can be transmitted to a mobile communication base station via the radio frequency unit 61 in the case of a telephone call mode and output.
  • the terminal 60 further includes at least one sensor 65, such as a light sensor, a motion sensor, and other sensors.
  • the light sensor includes an ambient light sensor and a proximity sensor, wherein the ambient light sensor can adjust the brightness of the display panel 661 according to the brightness of the ambient light, and the proximity sensor can close the display panel 661 and / Or backlight.
  • the accelerometer sensor can detect the magnitude of acceleration in various directions (usually three axes), and can detect the magnitude and direction of gravity when it is stationary, and can be used to identify the attitude of the terminal (such as horizontal and vertical screen switching, related games, Magnetometer attitude calibration), vibration recognition related functions (such as pedometer, tap), etc .; sensor 65 can also include fingerprint sensor, pressure sensor, iris sensor, molecular sensor, gyroscope, barometer, hygrometer, thermometer, infrared The sensors and the like are not repeated here.
  • the display unit 66 is used to display information input by the user or information provided to the user.
  • the display unit 66 may include a display panel 661.
  • the display panel 661 may be configured in the form of a liquid crystal display (LCD), an organic light-emitting diode (OLED), or the like.
  • the user input unit 67 may be used to receive inputted numeric or character information, and generate key signal inputs related to user settings and function control of the terminal.
  • the user input unit 67 includes a touch panel 671 and other input devices 672.
  • the touch panel 671 also known as a touch screen, can collect user's touch operations on or near it (for example, the user uses a finger, a stylus or any suitable object or accessory on the touch panel 671 or near the touch panel 671 operating).
  • the touch panel 671 may include two parts, a touch detection device and a touch controller.
  • the touch detection device detects the user's touch position, and detects the signal brought by the touch operation, and transmits the signal to the touch controller; the touch controller receives touch information from the touch detection device, converts it into contact coordinates, and sends it To the processor 610, receive the command sent by the processor 610 and execute it.
  • the touch panel 671 may be implemented in various types such as a resistive type, a capacitive type, an infrared type, and a surface acoustic wave.
  • the user input unit 67 may further include other input devices 672.
  • other input devices 672 may include, but are not limited to, a physical keyboard, function keys (such as volume control keys, switch keys, etc.), a trackball, a mouse, and a joystick, and details are not described herein again.
  • the touch panel 671 may be overlaid on the display panel 661.
  • the touch panel 671 detects a touch operation on or near the touch panel 671, the touch panel 671 transmits the touch operation to the processor 610 to determine the type of the touch event.
  • the type of event provides corresponding visual output on the display panel 661.
  • the touch panel 671 and the display panel 661 are implemented as two independent components to implement the input and output functions of the terminal, in some embodiments, the touch panel 671 and the display panel 661 can be integrated and Implement the input and output functions of the terminal, which are not limited here.
  • the interface unit 68 is an interface through which an external device is connected to the terminal 60.
  • the external device may include a wired or wireless headset port, an external power (or battery charger) port, a wired or wireless data port, a memory card port, a port for connecting a device with an identification module, audio input / output (I / O) port, video I / O port, headphone port, and more.
  • the interface unit 68 may be used to receive input (e.g., data information, power, etc.) from an external device and transmit the received input to one or more elements in the terminal 60 or may be used to connect the terminal 60 and the external device. Transfer data.
  • the memory 69 can be used to store software programs and various data.
  • the memory 69 may mainly include a storage program area and a storage data area, wherein the storage program area may store an operating system, at least one application required by a function (such as a sound playback function, an image playback function, etc.), etc .; the storage data area may store data according to Data (such as audio data, phone book, etc.) created by the use of mobile phones.
  • the memory 69 may include a high-speed random access memory, and may further include a non-volatile memory, such as at least one magnetic disk storage device, a flash memory device, or other volatile solid-state storage device.
  • the processor 610 is a control center of the terminal, and uses various interfaces and lines to connect various parts of the entire terminal. By running or executing software programs and / or modules stored in the memory 69, and calling data stored in the memory 69, execution is performed. Various functions and processing data of the terminal, so as to monitor the terminal as a whole.
  • the processor 610 may include one or more processing units; optionally, the processor 610 may integrate an application processor and a modem processor, wherein the application processor mainly processes an operating system, a user interface, and an application program, etc.
  • the tuning processor mainly handles wireless communication. It can be understood that the foregoing modem processor may not be integrated into the processor 610.
  • the terminal 60 may further include a power source 611 (such as a battery) for supplying power to various components.
  • a power source 611 such as a battery
  • the power source 611 may be logically connected to the processor 610 through a power management system, so as to manage charging, discharging, and power consumption management through the power management system. And other functions.
  • the terminal 60 includes some functional modules that are not shown, and details are not described herein again.
  • an embodiment of the present disclosure further provides a terminal, including a processor 610, a memory 69, and a computer program stored on the memory 69 and executable on the processor 610.
  • the terminal may be a wireless terminal or a wired terminal.
  • the wireless terminal may be a device that provides voice and / or other business data connectivity to the user, a handheld device with a wireless connection function, or other processing equipment connected to a wireless modem. .
  • a wireless terminal can communicate with one or more core networks via a Radio Access Network (RAN).
  • RAN Radio Access Network
  • the wireless terminal can be a mobile terminal, such as a mobile phone (or a "cellular" phone) and a computer with a mobile terminal
  • a mobile terminal such as a mobile phone (or a "cellular" phone) and a computer with a mobile terminal
  • it can be a portable, pocket, handheld, computer-built or vehicle-mounted mobile device that exchanges language and / or data with a wireless access network.
  • PCS Personal Communication Service
  • SIP Session Initiation Protocol
  • WLL Wireless Local Loop
  • PDA Personal Digital Assistant
  • a wireless terminal can also be called a system, a subscriber unit, a subscriber station, a mobile station, a mobile station, a mobile station, a remote station, a remote terminal,
  • the access terminal Access terminal
  • user terminal User terminal
  • user agent User agent
  • user equipment User Equipment
  • An embodiment of the present disclosure also provides a computer-readable storage medium.
  • a computer program is stored on the computer-readable storage medium.
  • the processes of the positioning reference signal transmission method embodiments described above are implemented, and the same can be achieved.
  • Technical effects, in order to avoid repetition, will not repeat them here.
  • the computer-readable storage medium is, for example, a read-only memory (ROM), a random access memory (RAM), a magnetic disk or an optical disk.
  • the positioning reference signal transmission method is applied to a network device side and includes the following steps:
  • Step 71 Configure the target transmission bandwidth of the positioning reference signal PRS according to at least one of the activated bandwidth part BWP, the cell transmission bandwidth, and the positioning performance index.
  • the target transmission bandwidth is associated with at least one of the activated bandwidth part BWP, the cell transmission bandwidth, and the positioning performance index.
  • the positioning performance index may include, but is not limited to, a positioning accuracy index and a positioning delay index.
  • Step 72 Send PRS on the target transmission bandwidth.
  • the network device After the network device has configured the target transmission bandwidth for the PRS, it sends the corresponding PRS to the terminal through the target transmission bandwidth.
  • the target transmission bandwidth may be associated with activating a BWP.
  • the step of configuring the target transmission bandwidth of the positioning reference signal PRS according to the activated bandwidth part BWP in step 71 includes:
  • the bandwidth for activating the BWP is greater than or equal to a preset bandwidth threshold, and the preset bandwidth threshold is predetermined, determined by a network device configuration, or a terminal.
  • the bandwidth configured by the network device for activating the BWP has a minimum value, and the positioning cannot be performed or the positioning accuracy cannot be guaranteed because the bandwidth of the activated BWP is too small.
  • the preset bandwidth is predefined or the preset bandwidth is configured for the network device.
  • the preset bandwidth is configured by the network device through at least one of the following methods: radio resource control signaling configuration, media access control MAC layer signaling configuration, and downlink control information DCI information.
  • Order instructions That is to say, the network device may perform an independent instruction through any one of the above methods, or may perform a combined instruction through at least two of the above methods.
  • the target transmission bandwidth may be associated with the positioning performance index.
  • the step of configuring the target transmission bandwidth of the positioning reference signal PRS according to the positioning performance index in step 71 includes: selecting one of at least two candidate transmission bandwidths according to the positioning performance index. Configured as the target transmission bandwidth of the PRS.
  • a network device may configure multiple PRS candidate transmission bandwidths to form a candidate transmission bandwidth set, and select one of the PRS target transmission bandwidths from this set according to the configuration positioning performance index. For example, different candidate transmission bandwidths in the candidate transmission bandwidth set are arranged from small to large or from large to small, that is, the target transmission bandwidth B ⁇ ⁇ a, b, c, d, e, ... ⁇ . The network device selects a bandwidth from these values as the value of B according to the required positioning performance index.
  • the target transmission bandwidth is positively related to the positioning accuracy index.
  • the positive correlation here refers to: when the required positioning accuracy index is high, configure a relatively large target transmission bandwidth for the PRS; when the required positioning accuracy is not high, configure a relatively small target transmission bandwidth for the PRS To save overhead.
  • the target transmission bandwidth is negatively related to the positioning delay index.
  • the negative correlation refers to: when the required positioning delay is small, configure a relatively small target transmission bandwidth for the PRS; when the required positioning delay can be larger, configure a relatively large target for the PRS Transmission bandwidth to improve positioning accuracy.
  • the network device configures a target transmission bandwidth for the PRS according to at least one of the activated bandwidth part BWP, the cell transmission bandwidth, and the positioning performance index, which can ensure that the terminal accurately measures the PRS to accurately estimate The location of the terminal improves information transmission performance.
  • the network device 800 of the embodiment of the present disclosure can implement the configuration of the target transmission bandwidth of the positioning reference signal PRS according to at least one of the activated bandwidth part BWP, the cell transmission bandwidth, and the positioning performance index; Details of the PRS transmission method on the target transmission bandwidth and achieve the same effect.
  • the network device 800 specifically includes the following functional modules:
  • a configuration module 810 configured to configure a target transmission bandwidth of a positioning reference signal PRS according to at least one of an activated bandwidth part BWP, a cell transmission bandwidth, and a positioning performance indicator;
  • the sending module 820 is configured to send a PRS on a target transmission bandwidth.
  • the configuration module 810 includes:
  • a first configuration submodule configured to configure a smaller one of the bandwidth of the activated BWP and the preset bandwidth as a target transmission bandwidth of the PRS;
  • a second configuration sub-module configured to configure a bandwidth of the activated BWP as a target transmission bandwidth of the PRS
  • the third configuration submodule is configured to configure a preset bandwidth as a target transmission bandwidth of the PRS.
  • the preset bandwidth is predefined or the preset bandwidth is configured by a network device.
  • the preset bandwidth is configured by the network device in at least one of the following ways:
  • the positioning protocol LPP signaling indication between the terminal and the location server is the positioning protocol LPP signaling indication between the terminal and the location server.
  • the configuration module 810 further includes:
  • a fourth configuration sub-module is configured to select one of the at least two candidate transmission bandwidths as a target transmission bandwidth configured as a PRS according to the positioning performance indicator.
  • the positioning performance index includes a positioning accuracy index
  • the target transmission bandwidth is positively related to the positioning accuracy index
  • the positioning performance index includes a positioning delay index, and the target transmission bandwidth is negatively correlated with the positioning delay index.
  • each module of the above network equipment and terminal is only a division of logical functions. In actual implementation, it may be fully or partially integrated into a physical entity, or it may be physically separated. And these modules can all be implemented in the form of software through processing element calls; they can also be implemented in hardware; all modules can be implemented in the form of software called by processing elements, and some modules can be implemented in hardware.
  • the determination module may be a separately established processing element, or may be integrated and implemented in a chip of the above-mentioned device. In addition, it may also be stored in the memory of the above-mentioned device in the form of a program code, and may be processed by a certain processing element of the above-mentioned device.
  • each step of the above method or each of the above modules may be completed by an integrated logic circuit of hardware in a processor element or an instruction in the form of software.
  • the above modules may be one or more integrated circuits configured to implement the above methods, for example: one or more specific integrated circuits (ASIC), or one or more microprocessors (digital signal processor (DSP), or one or more Field Programmable Gate Array (FPGA).
  • ASIC application specific integrated circuit
  • DSP digital signal processor
  • FPGA Field Programmable Gate Array
  • the processing element may be a general-purpose processor, such as a central processing unit (Central Processing Unit) or other processor that can call program code.
  • these modules can be integrated together and implemented in the form of a system-on-a-chip (SOC).
  • SOC system-on-a-chip
  • the network device in the embodiment of the present disclosure configures the target transmission bandwidth for the PRS according to at least one of the activated bandwidth part BWP, the cell transmission bandwidth, and the positioning performance index, which can ensure that the terminal accurately measures the PRS to accurately estimate the terminal location Location to improve information transmission performance.
  • an embodiment of the present disclosure further provides a network device.
  • the network device includes a processor, a memory, and a computer program stored on the memory and executable on the processor.
  • the processor executes the computer program.
  • the steps in the positioning reference signal transmission method as described above are implemented.
  • An embodiment of the invention also provides a computer-readable storage medium.
  • the computer-readable storage medium stores a computer program, and when the computer program is executed by a processor, implements the steps of the positioning reference signal transmission method described above.
  • the network device 900 includes: an antenna 91, a radio frequency device 92, and a baseband device 93.
  • the antenna 91 is connected to a radio frequency device 92.
  • the radio frequency device 92 receives information through the antenna 91 and sends the received information to the baseband device 93 for processing.
  • the baseband device 93 processes the information to be sent and sends it to the radio frequency device 92.
  • the radio frequency device 92 processes the received information and sends it out via the antenna 91.
  • the above-mentioned frequency band processing device may be located in a baseband device 93.
  • the method performed by the network device in the foregoing embodiment may be implemented in the baseband device 93.
  • the baseband device 93 includes a processor 94 and a memory 95.
  • the baseband device 93 may include, for example, at least one baseband board, and a plurality of chips are provided on the baseband board, as shown in FIG. 9.
  • One of the chips is, for example, a processor 94 connected to the memory 95 to call a program in the memory 95 and execute The network device operations shown in the above method embodiments are operated.
  • the baseband device 93 may further include a network interface 96 for exchanging information with the radio frequency device 92.
  • the interface is, for example, a common public radio interface (CPRI).
  • the processor here may be a processor or a collective name for multiple processing elements.
  • the processor may be a CPU, an ASIC, or one or more configured to implement the methods performed by the above network devices.
  • Integrated circuits such as: one or more microprocessor DSPs, or one or more field programmable gate array FPGAs.
  • a storage element may be a single memory or a collective term for multiple storage elements.
  • the memory 95 may be a volatile memory or a non-volatile memory, or may include both volatile and non-volatile memory.
  • the non-volatile memory may be a read-only memory (ROM), a programmable read-only memory (PROM), an erasable programmable read-only memory (EPROM), and an electronic memory. Erase programmable read-only memory (EPROM, EEPROM) or flash memory.
  • the volatile memory may be Random Access Memory (RAM), which is used as an external cache.
  • RAM Static Random Access Memory
  • DRAM Dynamic Random Access Memory
  • Synchronous Dynamic Random Access Memory Synchronous Dynamic Random Access Memory
  • SDRAM double data rate synchronous dynamic random access memory
  • Double Data Rate SDRAM, DDRSDRAM enhanced synchronous dynamic random access memory
  • Enhanced SDRAM, ESDRAM synchronous connection dynamic random access memory
  • Synchlink DRAM SLDRAM
  • Direct RAMbus RAM Direct RAMbus RAM
  • the network device further includes: a computer program stored in the memory 95 and executable on the processor 94, and the processor 99 calls the computer program in the memory 95 to execute the method executed by each module shown in FIG. 8 .
  • the computer program when called by the processor 94, it can be used to execute: configure the target transmission bandwidth of the positioning reference signal PRS according to at least one of the activated bandwidth part BWP, the cell transmission bandwidth, and the positioning performance index; send on the target transmission bandwidth PRS.
  • the computer program when called by the processor 94, it can be used to execute: configure the smaller one of the activated BWP bandwidth and the preset bandwidth as the target transmission bandwidth of the PRS;
  • the preset bandwidth is configured as a target transmission bandwidth of the PRS.
  • the preset bandwidth is predefined or the preset bandwidth is configured by a network device.
  • the preset bandwidth is configured by the network device in at least one of the following ways:
  • the positioning protocol LPP signaling indication between the terminal and the location server is the positioning protocol LPP signaling indication between the terminal and the location server.
  • the computer program when the computer program is called by the processor 94, the computer program may be used for execution: selecting a target transmission bandwidth configured as a PRS among at least two candidate transmission bandwidths according to the positioning performance index.
  • the positioning performance index includes a positioning accuracy index
  • the target transmission bandwidth is positively related to the positioning accuracy index
  • the positioning performance index includes a positioning delay index, and the target transmission bandwidth is negatively correlated with the positioning delay index.
  • the network device in the embodiment of the present disclosure configures the target transmission bandwidth for the PRS according to at least one of the activated bandwidth part BWP, the cell transmission bandwidth, and the positioning performance index, which can ensure that the terminal accurately measures the PRS to accurately estimate the terminal location and improve Information transmission performance.
  • the disclosed apparatus and method may be implemented in other ways.
  • the device embodiments described above are only schematic.
  • the division of the unit is only a logical function division.
  • multiple units or components may be combined or Can be integrated into another system, or some features can be ignored or not implemented.
  • the displayed or discussed mutual coupling or direct coupling or communication connection may be indirect coupling or communication connection through some interfaces, devices or units, which may be electrical, mechanical or other forms.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, may be located in one place, or may be distributed on multiple network units. Some or all of the units may be selected according to actual needs to achieve the objective of the solution of this embodiment.
  • each functional unit in each embodiment of the present disclosure may be integrated into one processing unit, or each unit may exist separately physically, or two or more units may be integrated into one unit.
  • the functions are implemented in the form of software functional units and sold or used as independent products, they can be stored in a computer-readable storage medium.
  • the technical solution of the present disclosure is essentially a part that contributes to related technologies or a part of the technical solution can be embodied in the form of a software product.
  • the computer software product is stored in a storage medium, including several
  • the instructions are used to cause a computer device (which may be a personal computer, a server, or a network device, etc.) to perform all or part of the steps of the method described in various embodiments of the present disclosure.
  • the foregoing storage medium includes various media that can store program codes, such as a U disk, a mobile hard disk, a ROM, a RAM, a magnetic disk, or an optical disk.
  • each component or each step can be disassembled and / or recombined.
  • These decompositions and / or recombinations should be considered as equivalent solutions of the present disclosure.
  • the steps for performing the above-mentioned series of processes can be naturally performed in chronological order according to the order of description, but need not necessarily be performed in chronological order, and certain steps may be performed in parallel or independently of each other.
  • Software, or a combination thereof which can be achieved by a person of ordinary skill in the art using their basic programming skills after reading the description of the present disclosure.
  • the purpose of the present disclosure can also be achieved by running a program or a group of programs on any computing device.
  • the computing device may be a well-known general-purpose device. Therefore, the object of the present disclosure can also be achieved only by providing a program product including a program code that implements the method or device. That is, such a program product also constitutes the present disclosure, and a storage medium storing such a program product also constitutes the present disclosure.
  • the storage medium may be any known storage medium or any storage medium developed in the future. It should also be noted that, in the apparatus and method of the present disclosure, it is obvious that each component or each step can be disassembled and / or recombined.

Abstract

本公开公开了一种定位参考信号传输方法、终端及网络设备,所述方法包括:获取定位参考信号PRS的目标传输带宽;其中,目标传输带宽与激活带宽部分BWP、小区传输带宽和定位性能指标中的至少一项关联;在目标传输带宽的至少部分传输带宽上接收PRS。

Description

定位参考信号传输方法、终端及网络设备
相关申请的交叉引用
本申请主张在2018年6月29日在中国提交的中国专利申请No.201810699858.X的优先权,其全部内容通过引用包含于此。
技术领域
本公开涉及通信技术领域,尤其涉及一种定位参考信号传输方法、终端及网络设备。
背景技术
在第五代(5th Generation,5G)移动通信系统,或称为新空口(New Radio,NR)系统中,一个小区最大支持高达400MHz系统带宽,以支持更大的系统与用户吞吐量。为了利于低成本的终端实现,NR系统引入了动态灵活的带宽分配,将系统带宽划分为多个带宽部分(Bandwidth Part,BWP),以支持窄带终端或节能模式终端的接入。
其中,NR系统还支持不同BWP配置不同的参数设置(Numerology),如果终端不能支持小区的Numerology,网络设备可以在为终端配置BWP时避免将对应的频带配置给终端。网络设备可以通过无线资源控制(Radio Resource Control,RRC)信令为终端配置每个小区可用的BWP集合,再通过层一(Level 1,L1)信令动态切换需要启动的BWP。为估计终端的位置,引入了定位参考信号(Positioning Reference Signal,PRS)。由于终端支持多个可用的BWP,终端无法确定测量哪个BWP上的PRS,若在错误的BWP上测量PRS可能会导致终端定位不准确,影响信息传输性能。
发明内容
本公开实施例提供了一种定位参考信号传输方法、终端及网络设备,以解决定位参考信号测量不准确,影响信息传输性能的问题。
第一方面,本公开实施例提供了一种定位参考信号传输方法,应用于终 端,包括:
获取定位参考信号PRS的目标传输带宽;其中,目标传输带宽与激活带宽部分BWP、小区传输带宽和定位性能指标中的至少一项关联;
在目标传输带宽的至少部分传输带宽上接收PRS。
第二方面,本公开实施例还提供了一种终端,包括:
获取模块,用于获取定位参考信号PRS的目标传输带宽;其中,目标传输带宽与激活带宽部分BWP、小区传输带宽和定位性能指标中的至少一项关联;
接收模块,用于在目标传输带宽的至少部分传输带宽上接收PRS。
第三方面,本公开实施例提供了一种终端,终端包括处理器、存储器以及存储于存储器上并在处理器上运行的计算机程序,计算机程序被处理器执行时实现上述的定位参考信号传输方法的步骤。
第四方面,本公开实施例提供了一种定位参考信号传输方法,应用于网络设备,包括:
根据激活带宽部分BWP、小区传输带宽和定位性能指标中的至少一项,配置定位参考信号PRS的目标传输带宽;
在目标传输带宽上发送PRS。
第五方面,本公开实施例提供了一种网络设备,包括:
配置模块,用于根据激活带宽部分BWP、小区传输带宽和定位性能指标中的至少一项,配置定位参考信号PRS的目标传输带宽;
发送模块,用于在目标传输带宽上发送PRS。
第六方面,本公开实施例还提供了一种网络设备,网络设备包括处理器、存储器以及存储于存储器上并在处理器上运行的计算机程序,处理器执行计算机程序时实现上述的定位参考信号传输方法的步骤。
第七方面,本公开实施例提供了一种计算机可读存储介质,计算机可读存储介质上存储有计算机程序,计算机程序被处理器执行时实现上述终端侧的定位参考信号传输方法的步骤,或者,实现如上述网络设备侧的定位参考信号传输方法的步骤。
这样,本公开实施例通过采用以上方案,可以准确测量PRS,以准确估 计出终端所在位置,提高信息传输性能。
附图说明
为了更清楚地说明本公开实施例的技术方案,下面将对本公开实施例的描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本公开的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1表示本公开实施例可应用的一种移动通信系统框图;
图2表示本公开实施例终端的定位参考信号传输方法的流程示意图;
图3表示本公开实施例OTDOA方法的定位原理示意图;
图4表示本公开实施例OTDOA定位方法的流程示意图;
图5表示本公开实施例终端的模块结构示意图;
图6表示本公开实施例的终端框图;
图7表示本公开实施例网络设备的定位参考信号传输方法的流程示意图;
图8表示本公开实施例网络设备的模块结构示意图;
图9表示本公开实施例的网络设备框图。
具体实施方式
下面将参照附图更详细地描述本公开的示例性实施例。虽然附图中显示了本公开的示例性实施例,然而应当理解,可以以各种形式实现本公开而不应被这里阐述的实施例所限制。相反,提供这些实施例是为了能够更透彻地理解本公开,并且能够将本公开的范围完整的传达给本领域的技术人员。
本申请的说明书和权利要求书中的术语“第一”、“第二”等是用于区别类似的对象,而不必用于描述特定的顺序或先后次序。应该理解这样使用的数据在适当情况下可以互换,以便这里描述的本申请的实施例例如能够以除了在这里图示或描述的那些以外的顺序实施。此外,术语“包括”和“具有”以及他们的任何变形,意图在于覆盖不排他的包含,例如,包含了一系列步骤或单元的过程、方法、系统、产品或设备不必限于清楚地列出的那些步骤或单元,而是可包括没有清楚地列出的或对于这些过程、方法、产品或设备 固有的其它步骤或单元。说明书以及权利要求中“和/或”表示所连接对象的至少其中之一。
本文所描述的技术不限于长期演进型(Long Time Evolution,LTE)/LTE的演进(LTE-Advanced,LTE-A)系统,并且也可用于各种无线通信系统,诸如码分多址(Code Division Multiple Access,CDMA)、时分多址(Time Division Multiple Access,TDMA)、频分多址(Frequency Division Multiple Access,FDMA)、正交频分多址(Orthogonal Frequency Division Multiple Access,OFDMA)、单载波频分多址(Single-carrier Frequency-Division Multiple Access,SC-FDMA)和其他系统。术语“系统”和“网络”常被可互换地使用。
以下描述提供示例而并非限定权利要求中阐述的范围、适用性或者配置。可以对所讨论的要素的功能和布置作出改变而不会脱离本公开的精神和范围。各种示例可恰适地省略、替代、或添加各种规程或组件。例如,可以按不同于所描述的次序来执行所描述的方法,并且可以添加、省去、或组合各种步骤。另外,参照某些示例所描述的特征可在其他示例中被组合。
请参见图1,图1示出本公开实施例可应用的一种无线通信系统的框图。无线通信系统包括终端11和网络设备12。其中,终端11也可以称作终端设备或者用户终端(User Equipment,UE),终端11可以是手机、平板电脑(Tablet Personal Computer)、膝上型电脑(Laptop Computer)、个人数字助理(Personal Digital Assistant,PDA)、移动上网装置(Mobile Internet Device,MID)、可穿戴式设备(Wearable Device)或车载设备等终端侧设备,需要说明的是,在本公开实施例中并不限定终端11的具体类型。网络设备12可以是基站或核心网,其中,上述基站可以是5G及以后版本的基站(例如:gNB、5G NR NB等),或者其他通信系统中的基站(例如:eNB、WLAN接入点、或其他接入点等),或LTE中的位置服务器(Evolved Serving Mobile Location Center,E-SMLC),或5G的位置服务器(Location Management Function,LMF)。其中,基站可被称为节点B、演进节点B、接入点、基收发机站(Base Transceiver Station,BTS)、无线电基站、无线电收发机、基本服务集(Basic Service Set,BSS)、扩展服务集(Extended Service Set,ESS)、B节点、演进型B节点(eNB)、家用B节点、家用演进型B节点、WLAN接入点、WiFi节点或所述领域中 其他某个合适的术语,只要达到相同的技术效果,所述基站不限于特定技术词汇。
无线通信系统中的通信链路可包括用于承载上行链路(Uplink,UL)传输(例如,从终端11到网络设备12)的上行链路,或用于承载下行链路(Downlink,DL)传输(例如,从网络设备12到终端11)的下行链路。UL传输还可被称为反向链路传输,而DL传输还可被称为前向链路传输。下行链路传输可以使用授权频段或非授权频段或这两者来进行。类似地,上行链路传输可以使用有授权频段或非授权频段或这两者来进行。
需要说明的是,在本公开实施例的定位参考信号传输方法仅以NR系统作为示例性说明,其他系统亦可适用。
本公开实施例提供了一种定位参考信号的传输方法,应用于终端,如图2所示,该方法包括以下步骤:
步骤21:获取定位参考信号PRS的目标传输带宽。
其中,目标传输带宽与激活带宽部分BWP、小区传输带宽和定位性能指标中的至少一项关联。网络设备根据激活BWP的带宽、小区传输带宽和定位性能指标中的至少一项为PRS配置目标传输带宽,其中,定位性能指标可以包括但不限于定位精度指标和定位时延指标等。
其中,在某个小区内,网络设备通过高层信令为终端配置可用的BWP集合,终端工作在该BWP集合中的一个激活BWP中。其中,同一个BWP下的参数集Numerology相同,Numerology包括子载波间隔以及循环前缀类型等参数的集合。其中,PRS还可以被称为PRS资源,或者被称为PRS资源集,或者被称为PRS资源池。
步骤22:在目标传输带宽的至少部分传输带宽上接收PRS。
终端在接收到PRS的目标传输带宽上,在目标传输带宽的部分传输带宽上接收PRS。其中,至少部分传输带宽可以是目标传输带宽的全部,也可以是目标传输带宽的部分,终端可以根据激活BWP或其他因素在目标传输带宽上确定至少部分传输带宽进行PRS的接收,提高PRS的接收准确率,以提高终端位置估计的准确率。
在一些实施例中,PRS被用于观测到达时间差(Observed Time Difference  of Arrival,OTDOA)方法中,终端并不获取精确的到达时间(Time of Arrival,TOA),如图3所示,估计位置由至少三个网络设备(网络设备1、网络设备2和网络设备3)发送的PRS的到达时间差(Time Difference of Arrival,TDOA)来确定,即由相对时间而不是绝对时间确定。其中,网络设备1为终端所属服务小区的基站,网络设备2和网络设备3为终端邻小区的基站。从OTDOA的原理来看,三个参与定位的网络设备就能把终端限定在极小部分区域内(如图3中的阴影部分),继续增加一个网络设备可以把终端限定在另一块区域内,取重合部分即可缩小终端位置的范围。因此,参与定位的网络设备数增加会使定位精度更准确。
进一步地,如图4所示,OTDOA定位方法包括以下步骤:
步骤41:网络设备生成PRS,并通过目标信道传输。
步骤42:终端在目标传输信道接收相应的PRS。
步骤43:将接收到的PRS与本地信号做时域相关,得到时延功率谱。其中,这里的本地信号由终端获得的定位辅助数据生成的,可看作原始的(未经过信道的)定位参考信号时域信号。在LTE中,终端与位置服务器E-SMLC的服务小区基站通过LPPa协议交互,获得定位辅助数据或定位测量量。这种辅助数据包括但不限于:服务小区的信息(如物理小区标识、定位参考信号配置、小区频率等信息)、和邻小区信息(如邻小区的物理小区标识、定位参考信号配置、小区频率等信息)。其中,这里所说的邻小区是事先对终端地理位置粗略判别后获取的利于测量的小区。
步骤44:根据时延功率谱寻找首达径,确定每个网络设备到终端的TOA。
步骤45:计算服务小区与其他邻小区到终端的参考信号时间差(Reference Signal Time Difference,RSTD),其中,终端的RSTD的值即为TOA的差。
步骤46:根据RSTD,采用预设定位算法估计终端的位置坐标。
这样,通过获取与激活带宽部分BWP、小区传输带宽和定位性能指标中的至少一项相关联的目标传输带宽,可以提高终端对于PRS的接收准确率,以提高终端位置估计的准确率。
在一些实施例中,目标传输带宽可以与激活BWP关联。例如:目标传输带宽为激活BWP的带宽与预设带宽中较小的一个。假设激活BWP的带宽为 N个物理资源块(Physical Resource Block,PRB),网络设备为PRS配置的目标传输带宽为B个PRB,预设带宽为X个PRB。那么B的取值可以为N与某个数值X中的较小值。即B=min{N,X}。
或者,目标传输带宽为激活BWP的带宽。假设激活BWP的带宽为N个PRB,网络设备为PRS配置的目标传输带宽为B个PRB,B的取值与激活BWP的带宽N相同,即B=N。
其中,值得指出的是,上述激活BWP的带宽应大于或等于预设带宽门限,预设带宽门限为预定义、网络设备配置或终端确定的。也就是说,当配置PRS用于定位时,网络设备为激活BWP配置的带宽有个最小值,不会由于激活的BWP太小而无法进行定位或无法保证定位精度。或者,目标传输带宽为预设带宽。假设网络设备为PRS配置的目标传输带宽为B个PRB,预设带宽为X个PRB。那么B的取值可以为预设带宽X,即B=X。
其中,值得指出的是,上述预设带宽为预定义的,或预设带宽为网络设备配置的。
当预设带宽为网络设备配置的时,预设带宽为网络设备通过以下方式中的至少一项配置的:无线资源控制信令配置、媒体接入控制MAC层信令配置和下行控制信息DCI信令指示,终端与位置服务器之间的定位协议LPP信令指示。也就是说,网络设备可以通过以上方式中的任一种进行单独指示,亦可以通过以上方式中的至少两种进行联合指示,例如网络设备通过RRC信令配置一个包含多个预设带宽的候选带宽集合,再通过MAC层信令或DCI指示从候选带宽集合中选择一个作为预设带宽X。值得指出的是,上述联合指示方式仅为示例性说明,其他组合方式的联合指示方式亦可适用于本实施例中。
以上介绍了目标传输带宽与激活BWP带宽关联的实施例,下面本实施例将进一步介绍目标传输带宽与定位性能指标相关联的示例。即目标传输带宽可与网络设备侧配置的定位性能指标相关联,定位性能指标可以包括定位精度指标、定位时延指标等。
当定位性能指标包括定位精度指标时,由于PRS带宽越大,所使用的伪随机序列长度越长,自相关性能越好,定位精度越高。因此目标传输带宽与 定位精度指标正相关。这里所说的正相关指的是:当要求的定位精度指标较高时,为PRS配置相对较大的目标传输带宽;当要求的定位精度不高时,为PRS配置相对不大的目标传输带宽,以节约开销。
当定位性能指标包括定位时延指标是,由于PRS带宽越小,所使用的伪随机序列长度越短,在做相关计算时计算速度越快。因此目标传输带宽与定位时延指标负相关。这里所说的负相关指的是:当要求的定位时延较小时,为PRS配置相对较小的目标传输带宽;当要求的定位时延可大一些时,可为PRS配置相对较大的目标传输带宽,以提高定位精度。
另一方面,本公开实施例将结合以下场景对如何在目标传输带宽的至少部分传输带宽上接收PRS做进一步说明,即如何确定目标传输带宽中的至少部分。
场景一、在PRS基于小区配置的情况下,在目标输带宽中与激活BWP的重叠部分上接收PRS。
在该场景下,在某个小区,网络设备通过高层信令为终端配置了可用的BWP集合,在某个时刻终端工作在某个激活BWP中,该激活BWP宽度为N个PRB。在该小区内,网络设备根据小区的传输带宽为PRS配置了目标传输带宽,即网络设备基于小区配置了PRS,并配置PRS覆盖整个载波带宽。终端在测量PRS时,仅测量该激活BWP内的PRS。
场景二、在PRS基于BWP配置的情况下,在激活BWP对应的目标传输带宽上接收PRS。
在该场景下,在某个小区,网络设备通过高层信令为终端配置了可用的BWP集合,在某个时刻终端工作在某个激活BWP中,该激活BWP宽度为N个PRB。在该小区内,网络设备根据该激活BWP的带宽为PRS配置目标传输带宽,即网络设备在该激活BWP下配置PRS,终端可在该激活BWP内测量PRS。
进一步地,当发生BWP切换时,即终端激活一个新的BWP并去激活当前BWP,网络设备在新的激活BWP下配置PRS。在定位计算时,终端可对BWP切换前后PRS分别计算TOA再进行平均。
例如:在小区A内网络设备配置Numerology为u的PRS,使用(k,l) 表示PRS占用的资源单元(Resource Element,RE)的时频位置,其中l表示时隙(slot)内的OFDM符号序号,k表示Numerology为u时的频域位置。该PRS的频域位置的起始点为小区A公共资源块0的子载波0,即该小区A的point A,对应的,k=0。这时终端仅需测量在激活BWP内的PRS即可。
当终端要进行BWP切换时,若新的激活BWP的Numerology与之前的激活BWP相同,那么切换后子载波间隔、OFDM符号宽度以及1个无线帧内的slot数量不变。在某个OFDM符号上,PRS序列仍可延用BWP切换前已经生成好的PRS序列,映射时直接使用新的激活BWP占用的那部分序列即可。
若新的激活BWP的Numerology与之前的激活BWP不同,那么子载波间隔改变、OFDM符号长度改变以及1个无线帧的slot数量改变。在某个OFDM符号上,网络设备要重新生成新的PRS。
考虑到终端在BWP切换前后位置几乎不发生变化,因此可对BWP切换前后获得的到达时间信息进行平均。假设BWP切换前的获得的到达时间信息为TOA1,BWP切换后获得的到达时间为TOA2,平均后TOA=(TOA1+TOA2)/2。终端将计算得到的到达时间TOA上报给网络侧,网络设备计算多个小区的TOA的差值RSTD,并通过预设定位算法计算得到终端的位置坐标。
场景三、在目标传输带宽与测量间隔GAP的重叠部分上接收PRS。
在该场景下,终端对PRS的测量可以不局限于激活BWP内。网络设备可以为终端配置测量间隔GAP用于接收PRS。当测量GAP的至少部分未位于激活BWP的带宽内时,例如测量GAP的带宽大于激活BWP的带宽时,允许终端在测量GAP与目标传输带宽的重叠部分上接收PRS。
其中,测量GAP的带宽包括:激活BWP的至少部分带宽和/或非激活BWP的至少部分带宽。另外,测量GAP的带宽还可以大于激活BWP的带宽。
场景三中的终端行为可以由协议约定、网络设备指示或终端选择。
场景四、在目标传输带宽与非激活BWP的重叠部分上接收PRS。
在该场景下,终端对PRS的测量可以不局限于激活BWP内。当目标传输带宽的至少部分未位于激活BWP的带宽内时,例如目标传输带宽大于激活 BWP的带宽时,允许终端在目标传输带宽与非激活BWP的重叠部分上接收PRS。所述终端的行为,可以由协议约定或者网络设备指示。
本公开实施例的定位参考信号传输方法中,终端获取与激活带宽部分BWP、小区传输带宽和定位性能指标中的至少一项相关联的目标传输带宽,在该目标传输带宽的至少部分中检测PRS,可以准确测量PRS,以准确估计出终端所在位置,提高信息传输性能。
以上实施例介绍了不同场景下的定位参考信号传输方法,下面将结合附图对与其对应的终端做进一步介绍。
如图5所示,本公开实施例的终端500,能实现上述实施例中获取定位参考信号PRS的目标传输带宽;其中,目标传输带宽与激活带宽部分BWP、小区传输带宽和定位性能指标中的至少一项关联;在目标传输带宽的至少部分传输带宽上接收PRS方法的细节,并达到相同的效果,该终端500具体包括以下功能模块:
获取模块510,用于获取定位参考信号PRS的目标传输带宽;其中,目标传输带宽与激活带宽部分BWP、小区传输带宽和定位性能指标中的至少一项关联;
接收模块520,用于在目标传输带宽的至少部分传输带宽上接收PRS。
其中,目标传输带宽为:
激活BWP的带宽与预设带宽中较小的一个;
或者,激活BWP的带宽;
或者,预设带宽。
其中,预设带宽为预定义的,或预设带宽为网络设备配置的。
其中,预设带宽为网络设备通过以下方式中的至少一项配置的:
无线资源控制RRC信令配置;
媒体接入控制MAC层信令配置;
下行控制信息DCI信令指示;
终端与位置服务器之间的定位协议LPP信令指示。
其中,激活BWP的带宽大于或等于预设带宽门限,预设带宽门限为预定义、网络设备配置或终端确定的。
其中,定位性能指标包括定位精度指标,目标传输带宽与定位精度指标正相关。
其中,定位性能指标包括定位时延指标,目标传输带宽与定位时延指标负相关。
其中,接收模块520包括以下中的一项:
第一接收子模块,用于在PRS基于小区配置的情况下,在目标输带宽中与激活BWP的重叠部分上接收PRS;
第二接收子模块,用于在PRS基于BWP配置的情况下,在激活BWP对应的目标传输带宽上接收PRS;
第三接收子模块,用于在目标传输带宽与测量间隔GAP的重叠部分上接收PRS;
第四接收子模块,用于在目标传输带宽与非激活BWP的重叠部分上接收PRS。
其中,测量GAP的带宽包括:激活BWP的至少部分带宽和/或非激活BWP的至少部分带宽。
值得指出的是,本公开实施例的终端获取与激活带宽部分BWP、小区传输带宽和定位性能指标中的至少一项相关联的目标传输带宽,在该目标传输带宽的至少部分中检测PRS,可以准确测量PRS,以准确估计出终端所在位置,提高信息传输性能。
为了更好的实现上述目的,进一步地,图6为实现本公开各个实施例的一种终端的硬件结构示意图,该终端60包括但不限于:射频单元61、网络模块62、音频输出单元63、输入单元64、传感器65、显示单元66、用户输入单元67、接口单元68、存储器69、处理器610、以及电源611等部件。本领域技术人员可以理解,图6中示出的终端结构并不构成对终端的限定,终端可以包括比图示更多或更少的部件,或者组合某些部件,或者不同的部件布置。在本公开实施例中,终端包括但不限于手机、平板电脑、笔记本电脑、掌上电脑、车载终端、可穿戴设备、以及计步器等。
其中,射频单元61,用于在
处理器610的控制下收发数据,具体用于获取定位参考信号PRS的目标 传输带宽;其中,目标传输带宽与激活带宽部分BWP、小区传输带宽和定位性能指标中的至少一项相关联;在目标传输带宽的至少部分传输带宽上接收PRS;
本公开实施例的终端获取与激活带宽部分BWP、小区传输带宽和定位性能指标中的至少一项关联的目标传输带宽,在该目标传输带宽的至少部分中检测PRS,可以准确测量PRS,以准确估计出终端所在位置,提高信息传输性能。
应理解的是,本公开实施例中,射频单元61可用于收发信息或通话过程中,信号的接收和发送,具体地,将来自基站的下行数据接收后,给处理器610处理;另外,将上行的数据发送给基站。通常,射频单元61包括但不限于天线、至少一个放大器、收发信机、耦合器、低噪声放大器、双工器等。此外,射频单元61还可以通过无线通信系统与网络和其他设备通信。
终端通过网络模块62为用户提供了无线的宽带互联网访问,如帮助用户收发电子邮件、浏览网页和访问流式媒体等。
音频输出单元63可以将射频单元61或网络模块62接收的或者在存储器69中存储的音频数据转换成音频信号并且输出为声音。而且,音频输出单元63还可以提供与终端60执行的特定功能相关的音频输出(例如,呼叫信号接收声音、消息接收声音等等)。音频输出单元63包括扬声器、蜂鸣器以及受话器等。
输入单元64用于接收音频或视频信号。输入单元64可以包括图形处理器(Graphics Processing Unit,GPU)641和麦克风642,图形处理器641对在视频捕获模式或图像捕获模式中由图像捕获装置(如摄像头)获得的静态图片或视频的图像数据进行处理。处理后的图像帧可以显示在显示单元66上。经图形处理器641处理后的图像帧可以存储在存储器69(或其它存储介质)中或者经由射频单元61或网络模块62进行发送。麦克风642可以接收声音,并且能够将这样的声音处理为音频数据。处理后的音频数据可以在电话通话模式的情况下转换为可经由射频单元61发送到移动通信基站的格式输出。
终端60还包括至少一种传感器65,比如光传感器、运动传感器以及其他传感器。具体地,光传感器包括环境光传感器及接近传感器,其中,环境 光传感器可根据环境光线的明暗来调节显示面板661的亮度,接近传感器可在终端60移动到耳边时,关闭显示面板661和/或背光。作为运动传感器的一种,加速计传感器可检测各个方向上(一般为三轴)加速度的大小,静止时可检测出重力的大小及方向,可用于识别终端姿态(比如横竖屏切换、相关游戏、磁力计姿态校准)、振动识别相关功能(比如计步器、敲击)等;传感器65还可以包括指纹传感器、压力传感器、虹膜传感器、分子传感器、陀螺仪、气压计、湿度计、温度计、红外线传感器等,在此不再赘述。
显示单元66用于显示由用户输入的信息或提供给用户的信息。显示单元66可包括显示面板661,可以采用液晶显示器(Liquid Crystal Display,LCD)、有机发光二极管(Organic Light-Emitting Diode,OLED)等形式来配置显示面板661。
用户输入单元67可用于接收输入的数字或字符信息,以及产生与终端的用户设置以及功能控制有关的键信号输入。具体地,用户输入单元67包括触控面板671以及其他输入设备672。触控面板671,也称为触摸屏,可收集用户在其上或附近的触摸操作(比如用户使用手指、触笔等任何适合的物体或附件在触控面板671上或在触控面板671附近的操作)。触控面板671可包括触摸检测装置和触摸控制器两个部分。其中,触摸检测装置检测用户的触摸方位,并检测触摸操作带来的信号,将信号传送给触摸控制器;触摸控制器从触摸检测装置上接收触摸信息,并将它转换成触点坐标,再送给处理器610,接收处理器610发来的命令并加以执行。此外,可以采用电阻式、电容式、红外线以及表面声波等多种类型实现触控面板671。除了触控面板671,用户输入单元67还可以包括其他输入设备672。具体地,其他输入设备672可以包括但不限于物理键盘、功能键(比如音量控制按键、开关按键等)、轨迹球、鼠标、操作杆,在此不再赘述。
进一步地,触控面板671可覆盖在显示面板661上,当触控面板671检测到在其上或附近的触摸操作后,传送给处理器610以确定触摸事件的类型,随后处理器610根据触摸事件的类型在显示面板661上提供相应的视觉输出。虽然在图6中,触控面板671与显示面板661是作为两个独立的部件来实现终端的输入和输出功能,但是在某些实施例中,可以将触控面板671与显示 面板661集成而实现终端的输入和输出功能,具体此处不做限定。
接口单元68为外部装置与终端60连接的接口。例如,外部装置可以包括有线或无线头戴式耳机端口、外部电源(或电池充电器)端口、有线或无线数据端口、存储卡端口、用于连接具有识别模块的装置的端口、音频输入/输出(I/O)端口、视频I/O端口、耳机端口等等。接口单元68可以用于接收来自外部装置的输入(例如,数据信息、电力等等)并且将接收到的输入传输到终端60内的一个或多个元件或者可以用于在终端60和外部装置之间传输数据。
存储器69可用于存储软件程序以及各种数据。存储器69可主要包括存储程序区和存储数据区,其中,存储程序区可存储操作系统、至少一个功能所需的应用程序(比如声音播放功能、图像播放功能等)等;存储数据区可存储根据手机的使用所创建的数据(比如音频数据、电话本等)等。此外,存储器69可以包括高速随机存取存储器,还可以包括非易失性存储器,例如至少一个磁盘存储器件、闪存器件、或其他易失性固态存储器件。
处理器610是终端的控制中心,利用各种接口和线路连接整个终端的各个部分,通过运行或执行存储在存储器69内的软件程序和/或模块,以及调用存储在存储器69内的数据,执行终端的各种功能和处理数据,从而对终端进行整体监控。处理器610可包括一个或多个处理单元;可选地,处理器610可集成应用处理器和调制解调处理器,其中,应用处理器主要处理操作系统、用户界面和应用程序等,调制解调处理器主要处理无线通信。可以理解的是,上述调制解调处理器也可以不集成到处理器610中。
终端60还可以包括给各个部件供电的电源611(比如电池),可选地,电源611可以通过电源管理系统与处理器610逻辑相连,从而通过电源管理系统实现管理充电、放电、以及功耗管理等功能。
另外,终端60包括一些未示出的功能模块,在此不再赘述。
可选地,本公开实施例还提供一种终端,包括处理器610,存储器69,存储在存储器69上并可在所述处理器610上运行的计算机程序,该计算机程序被处理器610执行时实现上述定位参考信号传输方法实施例的各个过程,且能达到相同的技术效果,为避免重复,这里不再赘述。其中,终端可以是 无线终端也可以是有线终端,无线终端可以是指向用户提供语音和/或其他业务数据连通性的设备,具有无线连接功能的手持式设备、或连接到无线调制解调器的其他处理设备。无线终端可以经无线接入网(Radio Access Network,RAN)与一个或多个核心网进行通信,无线终端可以是移动终端,如移动电话(或称为“蜂窝”电话)和具有移动终端的计算机,例如,可以是便携式、袖珍式、手持式、计算机内置的或者车载的移动装置,它们与无线接入网交换语言和/或数据。例如,个人通信业务(Personal Communication Service,PCS)电话、无绳电话、会话发起协议(Session Initiation Protocol,SIP)话机、无线本地环路(Wireless Local Loop,WLL)站、个人数字助理(Personal Digital Assistant,PDA)等设备。无线终端也可以称为系统、订户单元(Subscriber Unit)、订户站(Subscriber Station),移动站(Mobile Station)、移动台(Mobile)、远程站(Remote Station)、远程终端(Remote Terminal)、接入终端(Access Terminal)、用户终端(User Terminal)、用户代理(User Agent)、用户设备(User Device or User Equipment),在此不作限定。
本公开实施例还提供一种计算机可读存储介质,计算机可读存储介质上存储有计算机程序,该计算机程序被处理器执行时实现上述定位参考信号传输方法实施例的各个过程,且能达到相同的技术效果,为避免重复,这里不再赘述。其中,所述的计算机可读存储介质,如只读存储器(Read-Only Memory,ROM)、随机存取存储器(Random Access Memory,RAM)、磁碟或者光盘等。
以上实施例从终端侧介绍了本公开的定位参考信号传输方法,下面本实施例将结合附图对网络设备侧的定位参考信号传输方法做进一步介绍。
如图7所示,本公开实施例的定位参考信号传输方法,应用于网络设备侧,包括以下步骤:
步骤71:根据激活带宽部分BWP、小区传输带宽和定位性能指标中的至少一项,配置定位参考信号PRS的目标传输带宽。
也就是说,目标传输带宽与激活带宽部分BWP、小区传输带宽和定位性能指标中的至少一项关联。其中,定位性能指标可以包括但不限于定位精度指标和定位时延指标等。
步骤72:在目标传输带宽上发送PRS。
网络设备在为PRS配置好目标传输带宽后,通过该目标传输带宽向终端发送相应的PRS。
在一些实施例中,目标传输带宽可以与激活BWP相关联。其中,步骤71中根据激活带宽部分BWP,配置定位参考信号PRS的目标传输带宽的步骤,包括:
将激活BWP的带宽与预设带宽中较小的一个,配置为PRS的目标传输带宽;假设激活BWP的带宽为N个PRB,网络设备为PRS配置的目标传输带宽为B个PRB,预设带宽为X个PRB。那么B的取值可以为N与某个数值X中的较小值。即B=min{N,X}。
或者,将激活BWP的带宽配置为PRS的目标传输带宽;假设激活BWP的带宽为N个PRB,网络设备为PRS配置的目标传输带宽为B个PRB,B的取值与激活BWP的带宽N相同,即B=N。
其中,值得指出的是,上述激活BWP的带宽大于或等于预设带宽门限,预设带宽门限为预定义、网络设备配置或终端确定的。也就是说,当网络设备配置PRS用于定位时,网络设备为激活BWP配置的带宽有个最小值,不会由于激活BWP的带宽太小而无法进行定位或无法保证定位精度。
或者,将预设带宽配置为PRS的目标传输带宽;假设网络设备为PRS配置的目标传输带宽为B个PRB,预设带宽为X个PRB。那么B的取值可以为预设带宽X,即B=X。
其中,值得指出的是,上述预设带宽为预定义的,或预设带宽为网络设备配置的。当预设带宽为网络设备配置的时,预设带宽为网络设备通过以下方式中的至少一项配置的:无线资源控制信令配置、媒体接入控制MAC层信令配置和下行控制信息DCI信令指示。也就是说,网络设备可以通过以上方式中的任一种进行单独指示,亦可以通过以上方式中的至少两种进行联合指示。
其中,目标传输带宽可以与定位性能指标相关联,步骤71中根据定位性能指标,配置定位参考信号PRS的目标传输带宽的步骤,包括:根据定位性能指标,在至少两个候选传输带宽中选择一个配置为PRS的目标传输带宽。
例如,网络设备可配置多个PRS候选传输带宽,形成一个候选传输带宽 集合,并根据配置定位性能指标从这个集合中选择一个作为PRS的目标传输带宽。例如候选传输带宽集合中不同候选传输带宽按照由小到大或由大到小排列,即目标传输带宽B∈{a,b,c,d,e,…}。网络设备根据要求的定位性能指标,从这些值中选择一个带宽作为B的值。
其中,当定位性能指标包括定位精度指标时,目标传输带宽与定位精度指标正相关。这里所说的正相关指的是:当要求的定位精度指标较高时,为PRS配置相对较大的目标传输带宽;当要求的定位精度不高时,为PRS配置相对不大的目标传输带宽,以节约开销。
其中,当定位性能指标包括定位时延指标时,目标传输带宽与定位时延指标负相关。这里所说的负相关指的是:当要求的定位时延较小时,为PRS配置相对较小的目标传输带宽;当要求的定位时延可大一些时,可为PRS配置相对较大的目标传输带宽,以提高定位精度。
本公开实施例的定位参考信号传输方法中,网络设备根据激活带宽部分BWP、小区传输带宽和定位性能指标中的至少一项为PRS配置目标传输带宽,可以保证终端准确测量PRS,以准确估计出终端所在位置,提高信息传输性能。
以上实施例分别详细介绍了不同场景下的定位参考信号传输方法,下面本实施例将结合附图对其对应的网络设备做进一步介绍。
如图8所示,本公开实施例的网络设备800,能实现实施例中根据激活带宽部分BWP、小区传输带宽和定位性能指标中的至少一项,配置定位参考信号PRS的目标传输带宽;在目标传输带宽上发送PRS方法的细节,并达到相同的效果,该网络设备800具体包括以下功能模块:
配置模块810,用于根据激活带宽部分BWP、小区传输带宽和定位性能指标中的至少一项,配置定位参考信号PRS的目标传输带宽;
发送模块820,用于在目标传输带宽上发送PRS。
其中,配置模块810包括:
第一配置子模块,用于将激活BWP的带宽与预设带宽中较小的一个,配置为PRS的目标传输带宽;
或者,
第二配置子模块,用于将激活BWP的带宽配置为PRS的目标传输带宽;
或者,
第三配置子模块,用于将预设带宽配置为PRS的目标传输带宽。
其中,预设带宽为预定义的,或预设带宽为网络设备配置的。
其中,预设带宽为网络设备通过以下方式中的至少一项配置的:
无线资源控制RRC信令配置;
媒体接入控制MAC层信令配置;
下行控制信息DCI信令指示;
终端与位置服务器之间的定位协议LPP信令指示。
其中,配置模块810还包括:
第四配置子模块,用于根据定位性能指标,在至少两个候选传输带宽中选择一个配置为PRS的目标传输带宽。
其中,定位性能指标包括定位精度指标,目标传输带宽与定位精度指标正相关。
其中,定位性能指标包括定位时延指标,目标传输带宽与定位时延指标负相关。
需要说明的是,应理解以上网络设备和终端的各个模块的划分仅仅是一种逻辑功能的划分,实际实现时可以全部或部分集成到一个物理实体上,也可以物理上分开。且这些模块可以全部以软件通过处理元件调用的形式实现;也可以全部以硬件的形式实现;还可以部分模块通过处理元件调用软件的形式实现,部分模块通过硬件的形式实现。例如,确定模块可以为单独设立的处理元件,也可以集成在上述装置的某一个芯片中实现,此外,也可以以程序代码的形式存储于上述装置的存储器中,由上述装置的某一个处理元件调用并执行以上确定模块的功能。其它模块的实现与之类似。此外这些模块全部或部分可以集成在一起,也可以独立实现。这里所述的处理元件可以是一种集成电路,具有信号的处理能力。在实现过程中,上述方法的各步骤或以上各个模块可以通过处理器元件中的硬件的集成逻辑电路或者软件形式的指令完成。
例如,以上这些模块可以是被配置成实施以上方法的一个或多个集成电 路,例如:一个或多个特定集成电路(Application Specific Integrated Circuit,ASIC),或,一个或多个微处理器(digital signal processor,DSP),或,一个或者多个现场可编程门阵列(Field Programmable Gate Array,FPGA)等。再如,当以上某个模块通过处理元件调度程序代码的形式实现时,该处理元件可以是通用处理器,例如中央处理器(Central Processing Unit,CPU)或其它可以调用程序代码的处理器。再如,这些模块可以集成在一起,以片上系统(system-on-a-chip,SOC)的形式实现。
值得指出的是,本公开实施例的网络设备根据激活带宽部分BWP、小区传输带宽和定位性能指标中的至少一项为PRS配置目标传输带宽,可以保证终端准确测量PRS,以准确估计出终端所在位置,提高信息传输性能。
为了更好的实现上述目的,本公开的实施例还提供了一种网络设备,该网络设备包括处理器、存储器以及存储于存储器上并可在处理器上运行的计算机程序,处理器执行计算机程序时实现如上所述的定位参考信号传输方法中的步骤。发明实施例还提供了一种计算机可读存储介质,该计算机可读存储介质上存储有计算机程序,计算机程序被处理器执行时实现如上所述的定位参考信号传输方法的步骤。
具体地,本公开的实施例还提供了一种网络设备。如图9所示,该网络设备900包括:天线91、射频装置92、基带装置93。天线91与射频装置92连接。在上行方向上,射频装置92通过天线91接收信息,将接收的信息发送给基带装置93进行处理。在下行方向上,基带装置93对要发送的信息进行处理,并发送给射频装置92,射频装置92对收到的信息进行处理后经过天线91发送出去。
上述频带处理装置可以位于基带装置93中,以上实施例中网络设备执行的方法可以在基带装置93中实现,该基带装置93包括处理器94和存储器95。
基带装置93例如可以包括至少一个基带板,该基带板上设置有多个芯片,如图9所示,其中一个芯片例如为处理器94,与存储器95连接,以调用存储器95中的程序,执行以上方法实施例中所示的网络设备操作。
该基带装置93还可以包括网络接口96,用于与射频装置92交互信息, 该接口例如为通用公共无线接口(common public radio interface,CPRI)。
这里的处理器可以是一个处理器,也可以是多个处理元件的统称,例如,该处理器可以是CPU,也可以是ASIC,或者是被配置成实施以上网络设备所执行方法的一个或多个集成电路,例如:一个或多个微处理器DSP,或,一个或者多个现场可编程门阵列FPGA等。存储元件可以是一个存储器,也可以是多个存储元件的统称。
存储器95可以是易失性存储器或非易失性存储器,或可包括易失性和非易失性存储器两者。其中,非易失性存储器可以是只读存储器(Read-Only Memory,ROM)、可编程只读存储器(Programmable ROM,PROM)、可擦除可编程只读存储器(Erasable PROM,EPROM)、电可擦除可编程只读存储器(Electrically EPROM,EEPROM)或闪存。易失性存储器可以是随机存取存储器(Random Access Memory,RAM),其用作外部高速缓存。通过示例性但不是限制性说明,许多形式的RAM可用,例如静态随机存取存储器(Static RAM,SRAM)、动态随机存取存储器(Dynamic RAM,DRAM)、同步动态随机存取存储器(Synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(Double Data Rate SDRAM,DDRSDRAM)、增强型同步动态随机存取存储器(Enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(Synchlink DRAM,SLDRAM)和直接内存总线随机存取存储器(Direct Rambus RAM,DRRAM)。本申请描述的存储器95旨在包括但不限于这些和任意其它适合类型的存储器。
具体地,本公开实施例的网络设备还包括:存储在存储器95上并可在处理器94上运行的计算机程序,处理器99调用存储器95中的计算机程序执行图8所示各模块执行的方法。
具体地,计算机程序被处理器94调用时可用于执行:根据激活带宽部分BWP、小区传输带宽和定位性能指标中的至少一项,配置定位参考信号PRS的目标传输带宽;在目标传输带宽上发送PRS。
具体地,计算机程序被处理器94调用时可用于执行:将激活BWP的带宽与预设带宽中较小的一个,配置为PRS的目标传输带宽;
或者,将激活BWP的带宽配置为PRS的目标传输带宽;
或者,将预设带宽配置为PRS的目标传输带宽。
其中,预设带宽为预定义的,或预设带宽为网络设备配置的。
其中,预设带宽为网络设备通过以下方式中的至少一项配置的:
无线资源控制RRC信令配置;
媒体接入控制MAC层信令配置;
下行控制信息DCI信令指示;
终端与位置服务器之间的定位协议LPP信令指示。
具体地,计算机程序被处理器94调用时可用于执行:根据定位性能指标,在至少两个候选传输带宽中选择一个配置为PRS的目标传输带宽。
其中,定位性能指标包括定位精度指标,目标传输带宽与定位精度指标正相关。
其中,定位性能指标包括定位时延指标,目标传输带宽与定位时延指标负相关。
本公开实施例中的网络设备,根据激活带宽部分BWP、小区传输带宽和定位性能指标中的至少一项为PRS配置目标传输带宽,可以保证终端准确测量PRS,以准确估计出终端所在位置,提高信息传输性能。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本公开的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的实施例中,应该理解到,所揭露的装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直 接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本公开各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
所述功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本公开的技术方案本质上或者说对相关技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本公开各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、ROM、RAM、磁碟或者光盘等各种可以存储程序代码的介质。
此外,需要指出的是,在本公开的装置和方法中,显然,各部件或各步骤是可以分解和/或重新组合的。这些分解和/或重新组合应视为本公开的等效方案。并且,执行上述系列处理的步骤可以自然地按照说明的顺序按时间顺序执行,但是并不需要一定按照时间顺序执行,某些步骤可以并行或彼此独立地执行。对本领域的普通技术人员而言,能够理解本公开的方法和装置的全部或者任何步骤或者部件,可以在任何计算装置(包括处理器、存储介质等)或者计算装置的网络中,以硬件、固件、软件或者它们的组合加以实现,这是本领域普通技术人员在阅读了本公开的说明的情况下运用他们的基本编程技能就能实现的。
因此,本公开的目的还可以通过在任何计算装置上运行一个程序或者一组程序来实现。所述计算装置可以是公知的通用装置。因此,本公开的目的也可以仅仅通过提供包含实现所述方法或者装置的程序代码的程序产品来 实现。也就是说,这样的程序产品也构成本公开,并且存储有这样的程序产品的存储介质也构成本公开。显然,所述存储介质可以是任何公知的存储介质或者将来所开发出来的任何存储介质。还需要指出的是,在本公开的装置和方法中,显然,各部件或各步骤是可以分解和/或重新组合的。这些分解和/或重新组合应视为本公开的等效方案。并且,执行上述系列处理的步骤可以自然地按照说明的顺序按时间顺序执行,但是并不需要一定按照时间顺序执行。某些步骤可以并行或彼此独立地执行。
以上所述的是本公开的可选的实施方式,应当指出对于本技术领域的普通人员来说,在不脱离本公开所述的原理前提下还可以作出若干改进和润饰,这些改进和润饰也在本公开的保护范围内。

Claims (22)

  1. 一种定位参考信号传输方法,应用于终端侧,包括:
    获取定位参考信号PRS的目标传输带宽;其中,所述目标传输带宽与激活带宽部分BWP、小区传输带宽和定位性能指标中的至少一项相关联;
    在所述目标传输带宽的至少部分传输带宽上接收所述PRS。
  2. 根据权利要求1所述的定位参考信号传输方法,其中,所述目标传输带宽为:
    所述激活BWP的带宽与预设带宽中较小的一个;或者,
    所述激活BWP的带宽;或者,
    所述预设带宽。
  3. 根据权利要求2所述的定位参考信号传输方法,其中,所述预设带宽为预定义的,或所述预设带宽为网络设备配置的。
  4. 根据权利要求3所述的定位参考信号传输方法,其中,所述预设带宽为网络设备通过以下方式中的至少一项配置的:
    无线资源控制RRC信令配置;
    媒体接入控制MAC层信令配置;
    下行控制信息DCI信令指示;
    终端与位置服务器之间的定位协议LPP信令指示。
  5. 根据权利要求1所述的定位参考信号传输方法,其中,所述激活BWP的带宽大于或等于预设带宽门限,所述预设带宽门限为预定义、网络设备配置或所述终端确定的。
  6. 根据权利要求1所述的定位参考信号传输方法,其中,所述定位性能指标包括定位精度指标,所述目标传输带宽与所述定位精度指标正相关。
  7. 根据权利要求1所述的定位参考信号传输方法,其中,所述定位性能指标包括定位时延指标,所述目标传输带宽与所述定位时延指标负相关。
  8. 根据权利要求1所述的定位参考信号传输方法,其中,在所述目标传输带宽的至少部分传输带宽上接收所述PRS的步骤包括以下中的一项:
    在所述PRS基于小区配置的情况下,在所述目标输带宽中与所述激活 BWP的重叠部分上接收所述PRS;
    在所述PRS基于BWP配置的情况下,在所述激活BWP对应的所述目标传输带宽上接收所述PRS;
    在所述目标传输带宽与测量间隔GAP的重叠部分上接收所述PRS;其中,终端对PRS的测量不局限于激活BWP内,网络设备为所述终端配置测量间隔GAP用于接收PRS,当测量GAP的至少部分未位于激活BWP的带宽内时,允许终端在测量GAP与目标传输带宽的重叠部分上接收PRS;其中,测量GAP的带宽包括:激活BWP的至少部分带宽和/或非激活BWP的至少部分带宽,终端行为由协议约定、网络设备指示或终端选择;
    在所述目标传输带宽与非激活BWP的重叠部分上接收所述PRS;其中,终端对PRS的测量不局限于激活BWP内;当目标传输带宽的至少部分未位于激活BWP的带宽内时,允许终端在目标传输带宽与非激活BWP的重叠部分上接收PRS;所述终端的行为由协议约定或者网络设备指示。
  9. 根据权利要求8所述的定位参考信号传输方法,其中,所述测量GAP的带宽包括:所述激活BWP的至少部分带宽和非激活BWP的至少部分带宽中的至少一项。
  10. 根据权利要求8所述的定位参考信号传输方法,其中,所述在所述目标传输带宽与非激活BWP的重叠部分上接收所述PRS,还包括:
    根据配置的测量间隔GAP,在激活的BWP外接收PRS;所述终端行为由协议约定或网络设备指示。
  11. 一种终端,包括:
    获取模块,用于获取定位参考信号PRS的目标传输带宽;其中,所述目标传输带宽与激活带宽部分BWP、小区传输带宽和定位性能指标中的至少一项关联;
    接收模块,用于在所述目标传输带宽的至少部分传输带宽上接收所述PRS。
  12. 一种终端,包括:处理器、存储器以及存储于所述存储器上并在所述处理器上运行的计算机程序,所述计算机程序被所述处理器执行时实现如权利要求1至10中任一项所述的定位参考信号传输方法的步骤。
  13. 一种定位参考信号传输方法,应用于网络设备侧,包括:
    根据激活带宽部分BWP、小区传输带宽和定位性能指标中的至少一项,配置定位参考信号PRS的目标传输带宽;
    在所述目标传输带宽上发送所述PRS。
  14. 根据权利要求13所述的定位参考信号传输方法,其中,根据激活带宽部分BWP,配置定位参考信号PRS的目标传输带宽的步骤,包括:
    将所述激活BWP的带宽与预设带宽中较小的一个,配置为所述PRS的目标传输带宽;或者,
    将所述激活BWP的带宽配置为所述PRS的目标传输带宽;或者,
    将所述预设带宽配置为所述PRS的目标传输带宽。
  15. 根据权利要求14所述的定位参考信号传输方法,其中,所述预设带宽为预定义的,或所述预设带宽为网络设备配置的。
  16. 根据权利要求15所述的定位参考信号传输方法,其中,所述预设带宽为网络设备通过以下方式中的至少一项配置的:
    无线资源控制RRC信令配置;
    媒体接入控制MAC层信令配置;
    下行控制信息DCI信令指示;
    终端与位置服务器之间的定位协议LPP信令指示。
  17. 根据权利要求13所述的定位参考信号传输方法,其中,根据定位性能指标,配置定位参考信号PRS的目标传输带宽的步骤,包括:
    根据定位性能指标,在至少两个候选传输带宽中选择一个配置为所述PRS的目标传输带宽。
  18. 根据权利要求13或17所述的定位参考信号传输方法,其中,所述定位性能指标包括定位精度指标,所述目标传输带宽与所述定位精度指标正相关。
  19. 根据权利要求13或17所述的定位参考信号传输方法,其中,所述定位性能指标包括定位时延指标,所述目标传输带宽与所述定位时延指标负相关。
  20. 一种网络设备,包括:
    配置模块,用于根据激活带宽部分BWP、小区传输带宽和定位性能指标中的至少一项,配置定位参考信号PRS的目标传输带宽;
    发送模块,用于在所述目标传输带宽上发送所述PRS。
  21. 一种网络设备,包括:处理器、存储器以及存储于所述存储器上并在所述处理器上运行的计算机程序,所述处理器执行所述计算机程序时实现如权利要求13至19任一项所述的定位参考信号传输方法的步骤。
  22. 一种计算机可读存储介质,其中,所述计算机可读存储介质上存储有计算机程序,所述计算机程序被处理器执行时实现如权利要求1至10中任一项所述的定位参考信号传输方法的步骤,或者,实现如权利要求13至19中任一项所述的定位参考信号传输方法的步骤。
PCT/CN2019/092276 2018-06-29 2019-06-21 定位参考信号传输方法、终端及网络设备 WO2020001380A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810699858.XA CN110730056B (zh) 2018-06-29 2018-06-29 定位参考信号传输方法、终端及网络设备
CN201810699858.X 2018-06-29

Publications (1)

Publication Number Publication Date
WO2020001380A1 true WO2020001380A1 (zh) 2020-01-02

Family

ID=68985934

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/092276 WO2020001380A1 (zh) 2018-06-29 2019-06-21 定位参考信号传输方法、终端及网络设备

Country Status (2)

Country Link
CN (1) CN110730056B (zh)
WO (1) WO2020001380A1 (zh)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20200235877A1 (en) * 2019-01-21 2020-07-23 Qualcomm Corporated Bandwidth part operation and downlink or uplink positioning reference signal scheme
GB2582893A (en) * 2019-02-15 2020-10-14 Samsung Electronics Co Ltd Positioning reference signal
US11082183B2 (en) 2019-09-16 2021-08-03 Qualcomm Incorporated Comb shift design
US11239967B2 (en) 2019-05-02 2022-02-01 Qualcomm Incorporated Patterns for reference signals used for positioning in a wireless communications system
US11496990B2 (en) 2017-07-31 2022-11-08 Qualcomm Incorporated Systems and methods to facilitate location determination by beamforming of a positioning reference signal
WO2023030379A1 (zh) * 2021-09-03 2023-03-09 中兴通讯股份有限公司 通信节点的定位参考信号传输方法、装置、节点和介质
US11777764B2 (en) 2019-03-28 2023-10-03 Qualcomm Incorporated Sounding reference signal waveform design for wireless communications

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113225169B (zh) * 2020-02-06 2023-06-09 维沃移动通信有限公司 Bwp切换方法、终端和网络侧设备
CN111955035B (zh) * 2020-06-05 2022-11-22 北京小米移动软件有限公司 定位参考信号的传输方法及装置、电子设备及存储介质
CN113922931B (zh) * 2020-07-09 2022-11-18 维沃移动通信有限公司 定位测量方法、装置及通信设备
US20230353308A1 (en) * 2020-08-28 2023-11-02 Qualcomm Incorporated Positioning reference signal bandwidth adaptation for user equipment power savings
WO2022077184A1 (zh) * 2020-10-12 2022-04-21 北京小米移动软件有限公司 请求prs配置的方法、装置、通信设备及存储介质
CN115706914A (zh) * 2021-08-04 2023-02-17 维沃移动通信有限公司 定位参考信号处理方法、终端及网络侧设备
WO2023070608A1 (zh) * 2021-10-29 2023-05-04 华为技术有限公司 一种信号处理方法、装置及系统

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120094691A1 (en) * 2009-06-22 2012-04-19 Huawei Technologies Co., Ltd. Method and Device for Transmitting Positioning Information
CN104106223A (zh) * 2012-02-11 2014-10-15 Lg电子株式会社 报告信道状态信息的方法、其支持方法及所述方法的设备
CN107046677A (zh) * 2010-12-14 2017-08-15 Lg 电子株式会社 用于测量ue的位置的技术
CN107750437A (zh) * 2015-04-10 2018-03-02 瑞典爱立信有限公司 用于定位的定位参考信号样式

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012177204A1 (en) * 2011-06-21 2012-12-27 Telefonaktiebolaget L M Ericsson (Publ) Method and apparatuses for accounting of cell change information
CN104540099A (zh) * 2014-12-31 2015-04-22 京信通信系统(中国)有限公司 一种终端定位方法及演进的服务移动位置中心
NZ736186A (en) * 2015-04-07 2019-06-28 Ericsson Telefon Ab L M Transmitting positioning reference signals
CN109792361B (zh) * 2016-09-30 2021-10-15 瑞典爱立信有限公司 窄带定位参考信号

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120094691A1 (en) * 2009-06-22 2012-04-19 Huawei Technologies Co., Ltd. Method and Device for Transmitting Positioning Information
CN107046677A (zh) * 2010-12-14 2017-08-15 Lg 电子株式会社 用于测量ue的位置的技术
CN104106223A (zh) * 2012-02-11 2014-10-15 Lg电子株式会社 报告信道状态信息的方法、其支持方法及所述方法的设备
CN107750437A (zh) * 2015-04-10 2018-03-02 瑞典爱立信有限公司 用于定位的定位参考信号样式

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
HUAWEI ET AL.: "OTDOA Measurement Gap Request", 3GPP TSG-RAN WG2 MEETING #102 R2-1808964, 25 May 2018 (2018-05-25), XP051520317 *

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11496990B2 (en) 2017-07-31 2022-11-08 Qualcomm Incorporated Systems and methods to facilitate location determination by beamforming of a positioning reference signal
US20200235877A1 (en) * 2019-01-21 2020-07-23 Qualcomm Corporated Bandwidth part operation and downlink or uplink positioning reference signal scheme
GB2582893A (en) * 2019-02-15 2020-10-14 Samsung Electronics Co Ltd Positioning reference signal
US11777764B2 (en) 2019-03-28 2023-10-03 Qualcomm Incorporated Sounding reference signal waveform design for wireless communications
US11239967B2 (en) 2019-05-02 2022-02-01 Qualcomm Incorporated Patterns for reference signals used for positioning in a wireless communications system
US11082183B2 (en) 2019-09-16 2021-08-03 Qualcomm Incorporated Comb shift design
US11496265B2 (en) 2019-09-16 2022-11-08 Qualcomm Incorporated Comb shift design
WO2023030379A1 (zh) * 2021-09-03 2023-03-09 中兴通讯股份有限公司 通信节点的定位参考信号传输方法、装置、节点和介质

Also Published As

Publication number Publication date
CN110730056B (zh) 2021-07-27
CN110730056A (zh) 2020-01-24

Similar Documents

Publication Publication Date Title
WO2020001380A1 (zh) 定位参考信号传输方法、终端及网络设备
WO2019141057A1 (zh) 上行功率控制参数配置方法、终端及网络设备
WO2020192573A1 (zh) 定位参考信号配置方法、网络设备及终端
JP7135101B2 (ja) チャネル伝送方法、端末及びネットワーク機器
CN109660324B (zh) 解调参考信号传输方法、网络设备及终端
WO2020164594A1 (zh) 测量处理方法、参数配置方法、终端和网络设备
CN110474745B (zh) 一种准共址配置方法、终端及网络设备
WO2021023061A1 (zh) 准共址qcl信息确定方法、配置方法及相关设备
CN110278574B (zh) 测量方法、测量配置方法、终端及网络设备
CN113517965B (zh) 信道状态信息报告的获取方法及终端
WO2019238111A1 (zh) 同步信号块的传输方法、网络设备及终端
WO2020134188A1 (zh) 上行信号发送方法及设备
WO2021057904A1 (zh) 定位参考信号的映射方法、终端及网络侧设备
CN110868240A (zh) Pusch重复传输时的跳频方法、终端及网络设备
CN112787780B (zh) Srs发射设置方法、信息配置方法、定位方法和相关设备
CA3107136A1 (en) Determining method, terminal, and network device
WO2020038241A1 (zh) 功率控制方法、终端及网络设备
CN111148232A (zh) 信息传输方法及通信设备
CN110858999B (zh) 探测参考信号srs功率控制方法、终端及网络设备
CN110875808B (zh) 系统信息传输方法、网络设备及终端
WO2020151706A1 (zh) 随机接入传输方法及终端
CN112825578B (zh) 收发能力上报方法及装置、通信设备
CN111263393B (zh) 无线链路监测方法、终端及网络设备
CN110708764B (zh) 一种信息传输方法、网络设备及终端
CN111800861A (zh) 功率控制方法及设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19824468

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19824468

Country of ref document: EP

Kind code of ref document: A1