WO2020192573A1 - 定位参考信号配置方法、网络设备及终端 - Google Patents

定位参考信号配置方法、网络设备及终端 Download PDF

Info

Publication number
WO2020192573A1
WO2020192573A1 PCT/CN2020/080367 CN2020080367W WO2020192573A1 WO 2020192573 A1 WO2020192573 A1 WO 2020192573A1 CN 2020080367 W CN2020080367 W CN 2020080367W WO 2020192573 A1 WO2020192573 A1 WO 2020192573A1
Authority
WO
WIPO (PCT)
Prior art keywords
positioning reference
resource
reference signal
frequency domain
parameter item
Prior art date
Application number
PCT/CN2020/080367
Other languages
English (en)
French (fr)
Inventor
司晔
孙鹏
邬华明
孙晓东
Original Assignee
维沃移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 维沃移动通信有限公司 filed Critical 维沃移动通信有限公司
Priority to EP20777836.6A priority Critical patent/EP3944683A4/en
Priority to MX2021011558A priority patent/MX2021011558A/es
Priority to CA3134406A priority patent/CA3134406A1/en
Priority to JP2021556947A priority patent/JP7282202B2/ja
Priority to BR112021018866A priority patent/BR112021018866A2/pt
Priority to KR1020217033098A priority patent/KR20210141556A/ko
Priority to AU2020246590A priority patent/AU2020246590B2/en
Priority to SG11202110435TA priority patent/SG11202110435TA/en
Publication of WO2020192573A1 publication Critical patent/WO2020192573A1/zh
Priority to US17/481,594 priority patent/US20220007354A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • H04L5/005Allocation of pilot signals, i.e. of signals known to the receiver of common pilots, i.e. pilots destined for multiple users or terminals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/51Allocation or scheduling criteria for wireless resources based on terminal or device properties
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0091Signaling for the administration of the divided path
    • H04L5/0094Indication of how sub-channels of the path are allocated
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W64/00Locating users or terminals or network equipment for network management purposes, e.g. mobility management
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0446Resources in time domain, e.g. slots or frames
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0453Resources in frequency domain, e.g. a carrier in FDMA
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • H04L5/0007Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0014Three-dimensional division
    • H04L5/0023Time-frequency-space
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0026Division using four or more dimensions
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/02Services making use of location information

Definitions

  • the present disclosure relates to the field of communication technologies, and in particular, to a positioning reference signal configuration method, network equipment and terminal.
  • a positioning reference signal is a reference signal (Reference Signal, RS) used for downlink positioning.
  • the terminal measures the PRS sent from multiple cells or multiple transmission points, and obtains the Reference Signal Time Difference (RSTD) between multiple cells or transmission points, and then the terminal sends the measured RSTD information to The positioning server, the positioning server calculates the terminal position.
  • RSTD Reference Signal Time Difference
  • PRS can be transmitted in the resource block of the downlink subframe configured for positioning reference signal transmission.
  • PRS has strong autocorrelation and orthogonality characteristics, and the signal It is easier to determine the highest correlation peak during correlation detection, thereby eliminating signal interference from neighboring cells and ensuring the accuracy of Observed Time Difference Of Arrival (OTDOA) measurement.
  • OTDOA Observed Time Difference Of Arrival
  • the time-frequency resource mapping formula of PRS is as follows:
  • l represents the OFDM symbol number in a time slot
  • n s represents the time slot number in a wireless frame
  • v shift represents the cell-specific frequency shift, which is determined by Calculated, Indicates the cell ID.
  • PRS is generally sent periodically.
  • the sending period can be configured to 160, 320, 640, 1280 subframes.
  • PRS can be transmitted in multiple consecutive downlink subframes, and the first subframe satisfies the following formula:
  • ⁇ PRS represents the subframe offset of the PRS
  • T PRS represents the transmission period of the PRS.
  • the embodiments of the present disclosure provide a positioning reference signal configuration method, network equipment, and terminal to solve the configuration problem of the PRS resource pattern in the NR system.
  • embodiments of the present disclosure provide a positioning reference signal configuration method, which is applied to the network device side, and includes:
  • the resource configuration information includes at least one parameter item, and the value of the parameter item is one of at least two optional values corresponding to the parameter item. Value related.
  • the embodiments of the present disclosure also provide a positioning reference signal configuration method applied to a terminal, including:
  • the resource configuration information includes at least one parameter item, and the value of the parameter item is one of at least two optional values corresponding to the parameter item;
  • the positioning reference signal is received.
  • the embodiments of the present disclosure provide a network device, including:
  • the first sending module is configured to send resource configuration information of positioning reference signals
  • the second sending module is configured to send a positioning reference signal according to the resource pattern indicated by the resource configuration information; wherein the resource configuration information includes at least one parameter item, and the value of the parameter item is one of at least two optional values corresponding to the parameter item , The resource pattern is related to the value of the parameter item.
  • a terminal including:
  • the first receiving module is configured to receive resource configuration information of the positioning reference signal; wherein the resource configuration information includes at least one parameter item, and the value of the parameter item is one of at least two optional values corresponding to the parameter item;
  • the determining module is used to determine the resource pattern of the positioning reference signal according to the value of the parameter item in the resource configuration information
  • the second receiving module is configured to receive positioning reference signals according to the resource pattern.
  • inventions of the present disclosure provide a network device.
  • the network device includes a processor, a memory, and a program stored in the memory and running on the processor.
  • the processor executes the program to implement the positioning described in the first aspect above. Refer to the steps of the signal configuration method.
  • embodiments of the present disclosure also provide a terminal.
  • the terminal includes a processor, a memory, and a program stored in the memory and running on the processor.
  • the program is executed by the processor to realize the positioning described in the second aspect above. Refer to the steps of the signal configuration method.
  • embodiments of the present disclosure provide a computer-readable storage medium with a program stored on the computer-readable storage medium, and when the program is executed by a processor, the positioning reference signal configuration method described in the first or second aspect is implemented A step of.
  • the network device in the embodiment of the present disclosure configures the resource configuration information of the positioning reference signal for the terminal, and the value of the parameter item in the resource configuration information is one of at least two optional values selected by the network device, so that the system can support configurable Positioning reference signal resource allocation can support more flexible resource configuration and improve resource utilization.
  • Figures 1a and 1b show schematic diagrams of PRS resource patterns for normal cyclic prefixes
  • 2a and 2b show schematic diagrams of PRS resource patterns of extended cyclic prefix
  • Figure 3 shows a block diagram of a mobile communication system to which the embodiments of the present disclosure can be applied;
  • FIG. 4 shows a schematic flowchart of a positioning reference signal configuration method on the network device side according to an embodiment of the present disclosure
  • 5a and 5b show schematic diagrams of resource patterns of positioning reference signals in Example 1 of an embodiment of the present disclosure
  • 6a to 6f show schematic diagrams of resource patterns of positioning reference signals in Example 2 of an embodiment of the present disclosure
  • FIG. 7a to 7d show schematic diagrams of resource patterns of positioning reference signals in Example 3 of an embodiment of the present disclosure
  • FIGS. 8a and 8b show schematic diagrams of resource patterns of positioning reference signals in Example 4 of an embodiment of the present disclosure
  • 9a and 9b show schematic diagrams of resource patterns of positioning reference signals in Example 5 of an embodiment of the present disclosure
  • FIG. 10 is a schematic diagram of a resource pattern of a positioning reference signal of Example 6 in an embodiment of the present disclosure
  • FIG. 11 shows a schematic diagram of a resource pattern including at least two discontinuous symbols in an embodiment of the present disclosure
  • FIG. 12 shows a schematic diagram of a module structure of a network device in an embodiment of the present disclosure
  • Figure 13 shows a block diagram of a network device according to an embodiment of the present disclosure
  • FIG. 14 shows a schematic flowchart of a positioning reference signal configuration method on the terminal side in an embodiment of the present disclosure
  • FIG. 15 shows a schematic diagram of a module structure of a terminal in an embodiment of the present disclosure
  • FIG. 16 shows a block diagram of a terminal according to an embodiment of the present disclosure.
  • LTE Long Term Evolution
  • LTE-A Long Term Evolution
  • CDMA Code Division Multiple Access
  • TDMA Time Division Multiple Access
  • FDMA Frequency Division Multiple Access
  • OFDMA Orthogonal Frequency Division Multiple Access
  • SC-FDMA Single Carrier Frequency Division multiple access
  • SC-FDMA Single Carrier Frequency Division multiple access
  • the wireless communication system includes a terminal 31 and a network device 32.
  • the terminal 31 may also be referred to as a terminal device or a user terminal (User Equipment, UE), and the terminal 31 may be a mobile phone, a tablet (Personal Computer), a laptop (Laptop Computer), or a personal digital assistant (Personal Digital Assistant).
  • PDA mobile Internet device
  • MID mobile Internet Device
  • Wearable Device wearable device
  • vehicle-mounted equipment it should be noted that the specific type of terminal 31 is not limited in the embodiments of the present disclosure .
  • the network device 32 may be a base station or a core network, where the above-mentioned base station may be a base station of 5G and later versions (for example: gNB, 5G NR NB, etc.), or a base station in other communication systems (for example: eNB, WLAN access point, Or other access points, etc.), where the base station can be called Node B, Evolved Node B, Access Point, Base Transceiver Station (BTS), Radio Base Station, Radio Transceiver, Basic Service Set (Basic Service Set) Service Set (BSS), Extended Service Set (ESS), Node B, Evolved Node B (eNB), Home Node B, Home Evolved Node B, WLAN Access Point, WiFi Node or in the field
  • B Basic Service Set
  • BSS Basic Service Set
  • ESS Extended Service Set
  • Node B Evolved Node B
  • eNB Home Node B, Home Evolved Node B, WLAN Access Point, WiFi Node or in the field
  • the base station may communicate with the terminal 31 under the control of the base station controller.
  • the base station controller may be a part of a core network or some base stations. Some base stations can communicate control information or user data with the core network through the backhaul. In some examples, some of these base stations may directly or indirectly communicate with each other through a backhaul link, which may be a wired or wireless communication link.
  • the wireless communication system can support operations on multiple carriers (waveform signals of different frequencies). Multi-carrier transmitters can simultaneously transmit modulated signals on these multiple carriers. For example, each communication link may be a multi-carrier signal modulated according to various radio technologies. Each modulated signal can be sent on a different carrier and can carry control information (for example, reference signals, control channels, etc.), overhead information, data, and so on.
  • the base station can wirelessly communicate with the terminal 31 via one or more access point antennas. Each base station can provide communication coverage for its corresponding coverage area. The coverage area of an access point can be divided into sectors that constitute only a part of the coverage area.
  • the wireless communication system may include different types of base stations (for example, macro base stations, micro base stations, or pico base stations).
  • the base station can also utilize different radio technologies, such as cellular or WLAN radio access technologies.
  • the base stations can be associated with the same or different access networks or operator deployments.
  • the coverage areas of different base stations may overlap.
  • the communication link in the wireless communication system may include an uplink for carrying uplink (UL) transmission (for example, from the terminal 31 to the network device 32), or for carrying a downlink (DL) Transmission (for example, from the network device 32 to the terminal 31) downlink.
  • UL transmission may also be referred to as reverse link transmission
  • DL transmission may also be referred to as forward link transmission.
  • Downlink transmission can use licensed frequency bands, unlicensed frequency bands, or both.
  • uplink transmission can be performed using licensed frequency bands, unlicensed frequency bands, or both.
  • the embodiment of the present disclosure provides a positioning reference signal configuration method, which is applied to the network device side. As shown in FIG. 4, the method may include the following steps 41 and 42.
  • Step 41 Send resource configuration information of the positioning reference signal.
  • the positioning reference signal PRS is used for downlink positioning, and the PRS can be configured in the resource block of the downlink subframe.
  • the network device configures transmission resources for the positioning reference signal, it sends the resource configuration information of the positioning reference signal to the terminal, where the resource configuration information is used to indicate the transmission resources of the positioning reference signal, such as frequency domain resources, time domain resources, and space domain resources. At least one of code domain resources, etc.
  • Step 42 Send a positioning reference signal according to the resource pattern indicated by the resource configuration information; wherein the resource configuration information includes at least one parameter item, the value of the parameter item is one of at least two optional values corresponding to the parameter item, and the resource pattern is The value of the parameter item is related.
  • the resource configuration information may include at least one parameter item related to positioning reference signal transmission resources, a resource pattern (pattern), or a pattern called PRS resource, which is related to the value of the parameter item, and different values of a certain parameter item
  • the corresponding resource patterns are different.
  • at least one parameter item corresponds to at least two optional values.
  • the parameter items carried in the resource configuration information include: parameter item 1 and parameter item 2, among which, parameter item 1 and parameter item 2 At least one parameter item corresponds to multiple optional values, for example, parameter item 1 corresponds to more than 2 optional values, parameter item 2 corresponds to more than 2 optional values, or parameter item 1 and parameter item 2 both correspond to Two or more optional values; in this way, in the resource configuration information sent by the network device, the values of parameter item 1 and parameter item 2 are respectively one of their corresponding optional values.
  • the resource pattern is used to indicate the mapping relationship between the positioning reference signal and the time-frequency domain resource. After the network device configures the time-frequency domain resource for the positioning reference signal, it sends the positioning reference signal through the corresponding time-frequency domain resource to realize the terminal Positioning measurement.
  • step 42 does not limit the time sequence between step 41 and step 42, and step 42 can be performed before step 41 or after step 41.
  • the parameter items included in the resource configuration information may include: the frequency domain density of the resource pattern, the frequency domain density is used to indicate that the positioning reference signal is separated by N subcarriers in the frequency domain, and N is the frequency domain density One of the corresponding first optional values. That is, the resource pattern of the positioning reference signal is related to the frequency domain density of the positioning reference signal.
  • the frequency domain density can be the frequency domain density of the positioning reference signal on each physical resource block (Physical Resource Block, PRB).
  • the frequency domain density can be represented by a comb (such as comb-N) structure, which means that the positioning reference signal is The frequency domain is equally spaced, and the interval is N sub-carriers.
  • N is one of the first optional values corresponding to the frequency domain density.
  • the first optional value may include at least one of 1, 2, 3, 4, 6, and 12. It is assumed that the first optional value includes 1. , 2, 3, 4, 6, and 12, then N can be 1, 2, 3, 4, 6, or 12.
  • the frequency domain density represented by the comb-N structure can be equivalent to a density of 12/N, which represents the number of equally spaced resource elements (Resource Elements, RE) contained in a resource block (Resource Block, RB).
  • N 1, 2, 3, 4, 6, or 12 is equivalent to a density of 12, 6, 4, 3, 2, or 1, respectively.
  • the parameter item in the resource configuration information may further include: the frequency domain offset of adjacent symbols in the resource pattern, and the second optional value corresponding to the frequency domain offset is related to the first optional value .
  • the resource pattern of the positioning reference signal may also be related to the frequency domain offset of the positioning reference signal in the adjacent symbol (symbol).
  • the frequency domain offset can be RE shift (shift), which is used to indicate the RE level offset (frequency domain offset) of the positioning reference signal in adjacent symbols, then the positioning reference signal is in the latter one.
  • the RE position of a symbol can be calculated from the RE position on the previous adjacent symbol and the configured RE offset.
  • the second optional value corresponding to the frequency domain offset is related to the first optional value corresponding to the frequency domain density, such as the size of the RE offset (the second optional value) and the comb-N structure (the first optional) Value) related.
  • the second optional value may be a factor of the first optional value, and the second optional value is different from the first optional value, that is, the factors of the first optional value are in addition to the first optional value
  • the value of, such as the size of RE offset can be a factor of N in addition to N itself.
  • the second optional value may be the same as the first optional value.
  • the RE offset can be at least one of 1, 2, 3, 4, and 6; for N is 6 (comb-6), the RE offset can be 1, 2 and 3 At least one item; for N is 4 (comb-4), RE offset can be 1 and/or 2; for N is 3 (comb-3), RE offset can be 1; for N is 2 (comb -2), RE offset can be 1; for N is 1 (comb-1), RE offset is not configured.
  • the frequency domain offset mentioned in the embodiment of the present disclosure may be a positive offset, or the frequency domain offset may be a negative offset.
  • a positive offset refers to an offset to a higher frequency
  • a negative offset refers to an offset to a lower frequency.
  • the frequency domain position of the positioning reference signal is: the position after modulo the first frequency domain position according to a specific value .
  • the specific value may be the maximum number of frequency domain granularities included in an RB.
  • the frequency domain granularity is RE
  • the specific value may be the maximum number of REs included in an RB, that is, 12. Then when the RE position on a symbol exceeds the range of 1 RB according to the RE offset calculation, the modulus value (mod 12) can be used to make the frequency domain position of the positioning reference signal on the symbol fall within the RB range Inside.
  • the parameter item in the resource configuration information may include: the number of symbols included in the resource pattern, which is used to indicate the number of symbols occupied by the positioning reference signal.
  • the number of symbols occupied by the positioning reference signal is greater than 1, the symbols occupied by the positioning reference signal may be continuous or non-continuous.
  • the third optional value corresponding to the number of symbols may be greater than or equal to the quotient of the first optional value and the second optional value, that is, the number of symbols occupied by the positioning reference signal is not less than N/frequency domain offset.
  • the frequency domain density is 2
  • the frequency domain offset is 1
  • the number of symbols is greater than or equal to 2.
  • the frequency domain density is 3
  • the frequency domain offset is 1, and the number of symbols is greater than or equal to 3.
  • the frequency domain density is 4 and the frequency domain offset is 1, the number of symbols can be greater than or equal to 4; when the frequency domain offset is 2, the number of symbols can be greater than or equal to 2.
  • the frequency domain density is 6, when the frequency domain offset is 1, the number of symbols can be greater than or equal to 6; when the frequency domain offset is 2, the number of symbols can be greater than or equal to 3; when the frequency domain offset is 3, the number of symbols can be Greater than or equal to 2.
  • the frequency domain density is 12 and the frequency domain offset is 1, the number of symbols can be greater than or equal to 12; when the frequency domain offset is 2, the number of symbols can be greater than or equal to 6; when the frequency domain offset is 3, the number of symbols can be Greater than or equal to 4; when the frequency domain offset is 4, the number of symbols can be greater than or equal to 3; when the frequency domain offset is 6, the number of symbols can be greater than or equal to 2.
  • the third optional value corresponding to the number of symbols may be less than or equal to the maximum number of symbols in the time domain transmission unit where the positioning reference signal is located.
  • the time domain transmission unit as a slot as an example, the position occupied by the positioning reference signal
  • the number of symbols is not greater than the maximum number of symbols contained in the slot. Assuming that the frequency domain density is 1, the frequency domain offset can only be 0, and the number of symbols can be 1-12 or 1-14.
  • the third optional value corresponding to the number of symbols is related to the Cyclic Prefix (CP) type of the positioning reference signal, that is, the resource pattern of the positioning reference signal is related to the CP type, where the CP type of the positioning reference signal can be It is configured by the network device.
  • CP Cyclic Prefix
  • the number of symbols occupied by the positioning reference signal does not exceed the maximum number of symbols contained in a time domain transmission unit (such as slot) under the normal CP, such as 14.
  • extended CP Extended CP
  • positioning The number of symbols occupied by the reference signal does not exceed the maximum number of symbols contained in a time domain transmission unit (such as slot) under Extended CP, such as 12.
  • the parameter item in the resource configuration information may further include: the position of the first symbol in the resource pattern, which is used to indicate the position of the first symbol of the positioning reference signal in a time domain transmission unit (such as a slot).
  • the range of the fourth optional value corresponding to the first symbol position is: a subset or full set of [0, M], and M is the maximum number of symbols in the time domain transmission unit where the positioning reference signal is located and the resource pattern included The difference in the number of symbols.
  • the first symbol position in the resource pattern may be the position where the symbol sequence number is 0, 1, ..., M-1, or M.
  • the parameter item in the resource configuration information may also include: the lowest frequency domain position in the first symbol of the resource pattern, and the range of the fifth optional value corresponding to the lowest frequency domain position is: [0, N-1 ] Subset or Complete Works. That is to say, the lowest position of the positioning reference signal in the frequency domain in the first symbol is related to the comb-N structure. Taking the range of the fifth optional value of [0, N-1] as an example, the first one in the resource pattern
  • the lowest frequency domain position in the symbol may be the position with the RE number 0, 1, ..., N-2, or N-1. For example, the frequency domain density is 6, and the lowest frequency domain position is one of 0-5.
  • the resource configuration information may include: the frequency domain density of the positioning reference signal, the frequency domain offset of the positioning reference signal in adjacent symbols (such as RE offset), the number of symbols occupied by the positioning reference signal, At least one of the first symbol position occupied by the positioning reference signal, and the lowest frequency domain position in the first symbol occupied by the positioning reference signal.
  • the parameter items included in the resource configuration information there is at least one parameter item corresponding to multiple optional values, and different values of the parameter items determine different resource patterns.
  • the following embodiments of the present disclosure will further describe the resource pattern of the positioning reference signal configured by the network device in combination with specific examples.
  • Example 1 Frequency domain density indicator comb-12, take normal CP as an example
  • the frequency domain density indicator comb-12 in the resource configuration information configured by the network device is 1, the number of symbols included is 12, the first symbol position is 2, and the lowest frequency in the first symbol The domain position is 0.
  • the frequency domain density indicator comb-12 in the resource configuration information configured by the network device is 2
  • the number of symbols included is 6
  • the first symbol position is 2, and the lowest frequency in the first symbol The domain position is 0.
  • Example 2 Frequency domain density indicator comb-6, take normal CP as an example
  • the frequency domain density indicator comb-6 in the resource configuration information configured by the network device is 1, the number of symbols included is 6, the first symbol position is 3, and the lowest frequency in the first symbol The domain position is 0.
  • the frequency domain density indicator comb-6 in the resource configuration information configured by the network device is 1, the number of symbols included is 10, the first symbol position is 3, and the lowest frequency in the first symbol The domain position is 0.
  • the frequency domain density indicator comb-6 in the resource configuration information configured by the network device is 2, the number of symbols included is 3, the first symbol position is 3, and the lowest frequency in the first symbol The domain position is 0.
  • the frequency domain density indicator comb-6 in the resource configuration information configured by the network device is 2, the number of symbols included is 6, the first symbol position is 3, and the lowest frequency in the first symbol The domain position is 0.
  • the frequency domain density indicator comb-6 in the resource configuration information configured by the network device is 3, the number of symbols included is 2, the first symbol position is 3, and the lowest frequency in the first symbol The domain position is 0.
  • the frequency domain density indicator comb-6 in the resource configuration information configured by the network device is 3, the number of symbols included is 6, the first symbol position is 3, and the lowest frequency in the first symbol The domain position is 0.
  • Example 3 Frequency domain density indicator comb-4, taking normal CP as an example
  • the frequency domain density indicator comb-4 in the resource configuration information configured by the network device is 1, the number of symbols included is 4, the first symbol position is 3, and the lowest frequency in the first symbol The domain position is 0.
  • the frequency domain density indicator comb-4 in the resource configuration information configured by the network device is 1, the number of symbols included is 8, the first symbol position is 3, and the lowest frequency in the first symbol The domain position is 0.
  • the frequency domain density indicator comb-4 in the resource configuration information configured by the network device is 2
  • the number of symbols included is 2
  • the first symbol position is 3, and the lowest frequency in the first symbol The domain position is 0.
  • the frequency domain density indicator comb-4 in the resource configuration information configured by the network device is 2
  • the number of symbols included is 4
  • the first symbol position is 3, and the lowest frequency in the first symbol The domain position is 0.
  • Example 4 Frequency domain density indicator comb-3, taking normal CP as an example
  • the frequency domain density indicator comb-3 in the resource configuration information configured by the network device is 1, the number of symbols included is 3, the first symbol position is 3, and the lowest frequency in the first symbol The domain position is 0.
  • the frequency domain density indicator comb-3 in the resource configuration information configured by the network device is 1, the number of symbols included is 6, the first symbol position is 3, and the lowest frequency in the first symbol The domain position is 0.
  • Example 5 Frequency domain density indicator comb-2, taking normal CP as an example
  • the frequency domain density indicator comb-2 in the resource configuration information configured by the network device is 1, the number of symbols included is 2, the first symbol position is 3, and the lowest frequency in the first symbol The domain position is 0.
  • the frequency domain density indicator comb-2 in the resource configuration information configured by the network device is 1, the number of symbols included is 4, the first symbol position is 3, and the lowest frequency in the first symbol The domain position is 0.
  • Example 6 Frequency domain density indicator comb-1, take normal CP as an example
  • the frequency domain density in the resource configuration information configured by the network device indicates comb-1
  • the frequency domain offset is 0 (that is, the frequency domain is not offset)
  • the number of symbols included is 1
  • the first symbol position is 3.
  • the lowest frequency domain position in the first symbol is 0.
  • the positioning reference signal in the embodiment of the present disclosure may occupy one symbol, or may occupy multiple symbols.
  • the occupied multiple symbols may be continuous or non-continuous. That is, when the resource pattern contains more than two symbols, these symbols may be continuous or discontinuous.
  • the resource pattern occupies at least one resource element RE on every P subcarriers, and P is 1, 2 or 3. That is, in a resource pattern with discontinuous symbols, the resource pattern has at least one RE on each subcarrier of the PRB where it is located. Or in a resource pattern with discontinuous symbols, the resource pattern has at least one RE on every 2 or 3 subcarriers on the PRB where it is located.
  • the symbols contained in the resource pattern are distributed at equal intervals, that is, the symbols occupied by the positioning reference signal may be distributed at equal intervals in the time domain.
  • the resource pattern on the at least two discontinuous symbols is obtained by truncating the resource pattern on the continuous symbol. That is, the resource pattern with discontinuous symbols may be obtained after truncating the resource pattern with continuous symbols in the time domain.
  • the first symbol position occupied by the positioning reference signal is 3
  • the time domain interval is 2 symbols
  • the actual number of symbols included is 6
  • the frequency domain density is comb-6
  • the frequency domain offset is 1.
  • the lowest frequency domain position of the first symbol is 0.
  • the resource configuration information in the embodiment of the present disclosure may include not only the parameter items for determining the resource pattern described above, but also indication information indicating different ports. Among them, the resource pattern may correspond to one port, or correspond to at least two ports.
  • the resource patterns on different ports may be the same, or the resource patterns on different ports may be time division multiplexed, or the resource patterns on different ports may be frequency division multiplexed. That is, the resource pattern of the positioning reference signal is related to the port information of the positioning reference signal. If the positioning reference signal is configured with more than one port, the resource patterns of different ports can be the same or frequency division multiplexing or time division multiplexing.
  • the positioning reference signal generation sequence on different ports is different, or the frequency domain orthogonal code (Frequency Domain Orthogonal Covering Code, FD) of the positioning reference signal on different ports -OCC) is different.
  • FD Frequency Domain Orthogonal Covering Code
  • the initial value of the generation sequence is related to the port number of the port. Assuming that the resource patterns of the two ports are the same, the positioning reference signal generation sequences of the two ports are different.
  • the initial value (such as the generation parameter) of the generation sequence of the positioning reference signal on the port t is related to the serial number of the port t.
  • the generation sequence of the positioning reference signal may be a Gold sequence, and the generation parameters of the Gold sequence may be obtained through port number calculation.
  • the generation parameters of the positioning reference signal generation sequence are also related to the resource identification (PRS resource ID), CP type, cell/receive point (Transmit Receive Point, TRP) identification or virtual cell identification of the positioning reference signal. related.
  • the frequency domain orthogonal codes of the positioning reference signals on different ports are different.
  • the positioning reference signals of the two ports are distinguished by FD-OCC.
  • the sequence of the positioning reference signal of port 1 is c(m), which can be directly mapped to the RE corresponding to a certain symbol.
  • the PRS sequence of port 2 can be c(m)*occ(m) and then mapped to the same RE position as port 1.
  • occ(m) is the FD-OCC sequence, which can be expressed as (1,-1,1,-1...,1,-1,1,-1).
  • the resource patterns on different ports can be frequency division multiplexed.
  • the network device can first configure the resource pattern of one port, and the resource pattern of the other port can be configured by configuring the frequency Domain offset (frequency offset) is obtained.
  • the frequency domain offset may be an RE-level offset.
  • the resource patterns on different ports can be time-division multiplexed.
  • the network device can first configure the resource pattern of one port, and the resource pattern of the other port can be configured by time domain offset (time offset) obtained.
  • the time domain offset may be a symbol level offset.
  • the embodiments of the present disclosure introduce the relationship of resource patterns on different ports and resource configuration information related to the resource patterns.
  • the resource pattern determined by the resource configuration information may be determined by the values of parameter items in one set of resource configuration information, or may be determined by the values of parameter items in multiple sets of resource configuration information.
  • the resource pattern may include: at least two sub-resource patterns, and the at least two sub-resource patterns are related to the value of the parameter item.
  • a sub-resource pattern can be determined according to the value of the parameter item in a set of resource configuration information.
  • the network device configures a periodic positioning reference signal resource pattern (first sub-resource pattern) for the terminal for downlink positioning.
  • the previously configured periodic resource pattern is not enough to support higher-precision positioning.
  • the network device triggers another aperiodic positioning reference signal through a certain signaling, and the network device configures a new resource pattern (second sub-resource pattern) for the aperiodic positioning reference signal.
  • the terminal may jointly configure the first sub-resource pattern and the second sub-resource pattern for positioning measurement. Specifically, the terminal may use the periodic first sub-resource pattern and the non-periodic second sub-resource pattern to form a resource pattern. Perform positioning measurement.
  • the frequency domain offsets of the resource patterns of different cells are different.
  • the resource patterns of positioning reference signals of different cells can be distinguished by frequency domain offset, which is RE-level offset, and the value of frequency domain offset is related to the cell ID.
  • the resource patterns of different cells are time-division multiplexed.
  • the resource patterns of positioning reference signals of different cells can be distinguished by time division multiplexing.
  • the resource patterns of positioning reference signals of different cells may occupy different symbols or time slots.
  • the cell mentioned in the embodiment of the present disclosure may be a physical cell (Physical cell) or a virtual cell.
  • the cell ID may be at least one of a physical cell ID, a sending and receiving point ID, a transfer point (Transfer Point, TP) ID, a global cell ID, and so on.
  • TP Transfer Point
  • the network device configures the resource configuration information of the positioning reference signal for the terminal, and the value of the parameter item in the resource configuration information is one of at least two optional values selected by the network device, so that the system It can support configurable positioning reference signal resource allocation, which can support more flexible resource configuration and improve resource utilization.
  • the network device 1200 of the embodiment of the present disclosure can send the resource configuration information of the positioning reference signal in the embodiment; send the positioning reference signal according to the resource pattern indicated by the resource configuration information; wherein, the resource configuration information includes at least A parameter item.
  • the value of the parameter item is one of at least two optional values corresponding to the parameter item.
  • the resource pattern and the value of the parameter item are related to the details of the method and achieve the same effect.
  • the network device 1200 specifically includes the following functional modules :
  • the first sending module 1210 is configured to send resource configuration information of positioning reference signals
  • the second sending module 1220 is configured to send the positioning reference signal according to the resource pattern indicated by the resource configuration information; wherein the resource configuration information includes at least one parameter item, and the value of the parameter item corresponds to the parameter item One of at least two optional values, and the resource pattern is related to the value of the parameter item.
  • the parameter item includes: the frequency domain density of the resource pattern, the frequency domain density is used to indicate that the positioning reference signal is separated by N subcarriers in the frequency domain, and N is one of the first optional values corresponding to the frequency domain density.
  • the first optional value includes: at least one of 1, 2, 3, 4, 6, and 12.
  • the parameter item further includes: a frequency domain offset of adjacent symbols in the resource pattern, and the second optional value corresponding to the frequency domain offset is related to the first optional value.
  • the second optional value is a factor of the first optional value, and the second optional value is different from the first optional value.
  • the frequency domain offset is a positive offset, or the frequency domain offset is a negative offset.
  • the frequency domain position of the positioning reference signal is: the first frequency domain position modulo the specific value position.
  • the parameter item further includes: the number of symbols included in the resource pattern, and the third optional value corresponding to the number of symbols is greater than or equal to the quotient of the first optional value and the second optional value.
  • the parameter item includes: the number of symbols included in the resource pattern, and the third optional value corresponding to the number of symbols is less than or equal to the maximum number of symbols in the time domain transmission unit where the positioning reference signal is located.
  • the parameter item includes: the number of symbols included in the resource pattern, and the third optional value corresponding to the number of symbols is related to the cyclic prefix CP type of the positioning reference signal.
  • the parameter item also includes: the first symbol position of the resource pattern, the range of the fourth optional value corresponding to the first symbol position is: [0, M], and M is the time domain transmission unit where the positioning reference signal is located The difference between the maximum number of symbols in and the number of symbols contained in the resource pattern.
  • the parameter item further includes: the lowest frequency domain position in the first symbol of the resource pattern, and the range of the fifth optional value corresponding to the lowest frequency domain position is: [0, N-1].
  • the resource patterns on different ports are the same, or the resource patterns on different ports are time division multiplexed, or the resource patterns on different ports are frequency division multiplexed.
  • the generation sequences of the positioning reference signals on different ports are different, or the frequency domain orthogonal codes of the positioning reference signals on different ports are different.
  • the initial value of the generated sequence is related to the port number of the port.
  • the resource pattern occupies at least one resource element RE on each P subcarriers, and P is 1, 2 or 3.
  • the symbols contained in the resource pattern are distributed at equal intervals.
  • the resource pattern on the at least two discontinuous symbols is obtained by truncating the resource pattern on the continuous symbol.
  • the resource pattern includes at least two sub-resource patterns, and the at least two sub-resource patterns are related to the value of the parameter item.
  • the frequency domain offsets of the resource patterns of different cells are different.
  • the resource patterns of different cells are time division multiplexed.
  • the network device in the embodiment of the present disclosure configures the resource configuration information of the positioning reference signal for the terminal, and the value of the parameter item in the resource configuration information is one of at least two optional values selected by the network device, so that the system can support Configurable positioning reference signal resource allocation can support more flexible resource configuration and improve resource utilization.
  • the embodiments of the present disclosure also provide a network device.
  • the network device includes a processor, a memory, and a program stored in the memory and running on the processor.
  • the processor executes the program.
  • the embodiment of the invention also provides a computer-readable storage medium with a program stored on the computer-readable storage medium, and the program is executed by a processor to implement the steps of the positioning reference signal configuration method as described above.
  • the embodiment of the present disclosure also provides a network device.
  • the network device 1300 includes: an antenna 131, a radio frequency device 132, and a baseband device 133.
  • the antenna 131 is connected to the radio frequency device 132.
  • the radio frequency device 132 receives information through the antenna 131 and sends the received information to the baseband device 133 for processing.
  • the baseband device 133 processes the information to be sent and sends it to the radio frequency device 132, and the radio frequency device 132 processes the received information and sends it out via the antenna 131.
  • the foregoing frequency band processing device may be located in the baseband device 133, and the method executed by the network device in the foregoing embodiment may be implemented in the baseband device 133.
  • the baseband device 133 includes a processor 134 and a memory 135.
  • the baseband device 133 may include, for example, at least one baseband board, and multiple chips are arranged on the baseband board, as shown in FIG. 13, one of the chips is, for example, a processor 134, which is connected to the memory 135 to call programs in the memory 135 and execute The network device shown in the above method embodiment operates.
  • the baseband device 133 may further include a network interface 136 for exchanging information with the radio frequency device 132, and the interface is, for example, a common public radio interface (CPRI).
  • CPRI common public radio interface
  • the processor here may be a processor or a collective term for multiple processing elements.
  • the processor may be a CPU or an ASIC, or it may be configured to implement one or more of the methods executed by the above network devices.
  • An integrated circuit for example: one or more microprocessor DSP, or, one or more field programmable gate array FPGA, etc.
  • the storage element can be a memory or a collective term for multiple storage elements.
  • the memory 135 may be a volatile memory or a non-volatile memory, or may include both volatile and non-volatile memory.
  • the non-volatile memory can be read-only memory (Read-Only Memory, ROM), programmable read-only memory (Programmable ROM, PROM), erasable programmable read-only memory (Erasable PROM, EPROM), and electrically available Erase programmable read-only memory (Electrically EPROM, EEPROM) or flash memory.
  • the volatile memory may be a random access memory (Random Access Memory, RAM), which is used as an external cache.
  • RAM static random access memory
  • DRAM dynamic random access memory
  • DRAM synchronous dynamic random access memory
  • DDRSDRAM Double Data Rate Synchronous Dynamic Random Access Memory
  • Enhanced SDRAM, ESDRAM Synchronous Link Dynamic Random Access Memory
  • Synchlink DRAM Synchronous Link Dynamic Random Access Memory
  • DRRAM Direct Rambus RAM
  • the network device of the embodiment of the present disclosure further includes: a program stored in the memory 135 and running on the processor 134, and the processor 134 calls the program in the memory 135 to execute the method executed by each module shown in FIG. 12.
  • the program when the program is called by the processor 134, it can be used to execute: send the resource configuration information of the positioning reference signal; send the positioning reference signal according to the resource pattern indicated by the resource configuration information; wherein the resource configuration information includes at least one parameter item.
  • the value of is one of at least two optional values corresponding to the parameter item, and the resource pattern is related to the value of the parameter item.
  • the network device in the embodiment of the present disclosure configures the resource configuration information of the positioning reference signal for the terminal, and the value of the parameter item in the resource configuration information is one of at least two optional values selected by the network device, so that the system can support
  • the configured positioning reference signal resource allocation can support more flexible resource configuration and improve resource utilization.
  • the positioning reference signal configuration method is applied to a terminal, and the method may include the following steps 141 to 143.
  • Step 141 Receive resource configuration information of the positioning reference signal.
  • the resource configuration information includes at least one parameter item, and the value of the parameter item is one of at least two optional values corresponding to the parameter item.
  • the positioning reference signal PRS is used for downlink positioning.
  • the network device configures transmission resources for the positioning reference signal, it sends the resource configuration information of the positioning reference signal to the terminal, where the resource configuration information is used to indicate the transmission resource of the positioning reference signal, such as the frequency domain. At least one of resources, time domain resources, air domain resources, code domain resources, etc.
  • Step 142 Determine the resource pattern of the positioning reference signal according to the value of the parameter item in the resource configuration information.
  • the resource configuration information may include at least one parameter item related to positioning reference signal transmission resources, a resource pattern (pattern), or a pattern called PRS resource, which is related to the value of the parameter item, and different values of a certain parameter item
  • the corresponding resource patterns are different.
  • the network device After configuring the time-frequency domain resource for the positioning reference signal, the network device sends the positioning reference signal through the corresponding time-frequency domain resource.
  • Step 143 According to the resource pattern, receive the positioning reference signal.
  • the terminal After determining the resource pattern according to the resource configuration information, the terminal receives positioning signals according to the resource pattern to implement subsequent positioning measurement.
  • the parameter items included in the resource configuration information may include: the frequency domain density of the resource pattern, the frequency domain density is used to indicate that the positioning reference signal is separated by N subcarriers in the frequency domain, and N is the first optional value corresponding to the frequency domain density one of the. That is, the resource pattern of the positioning reference signal is related to the frequency domain density of the positioning reference signal.
  • the frequency domain density can be the frequency domain density of the positioning reference signal on each physical resource block, and the frequency domain density can be represented by the comb-N structure, which means that the positioning reference signal is equally spaced in the frequency domain, and the interval is N subcarriers .
  • N is one of the first optional values corresponding to the frequency domain density.
  • the first optional value may include at least one of 1, 2, 3, 4, 6, and 12. It is assumed that the first optional value includes 1. , 2, 3, 4, 6, and 12, then N can be 1, 2, 3, 4, 6, or 12.
  • the frequency domain density represented by the comb-N structure can be equivalent to a density of 12/N, which represents the number of REs at equal intervals included in one RB.
  • the parameter item in the resource configuration information may further include: the frequency domain offset of adjacent symbols in the resource pattern, and the second optional value corresponding to the frequency domain offset is related to the first optional value.
  • the resource pattern of the positioning reference signal may also be related to the frequency domain offset of the positioning reference signal in adjacent symbols.
  • the frequency domain offset may be an RE offset
  • the RE position of the positioning reference signal in the last symbol may be obtained by calculating the RE position on the first adjacent symbol and the configured RE offset.
  • the second optional value corresponding to the frequency domain offset is related to the first optional value corresponding to the frequency domain density, such as the size of the RE offset (the second optional value) and the comb-N structure (the first optional) Value) related.
  • the second optional value may be a factor of the first optional value, and the second optional value is different from the first optional value, that is, the factors of the first optional value are in addition to the first optional value
  • the value of, such as the size of RE offset can be a factor of N in addition to N itself.
  • the RE offset can be at least one of 1, 2, 3, 4, and 6; for N is 6 (comb-6), the RE offset can be 1, 2 and 3 At least one item in; For N is 4 (comb-4), RE offset can be 1 and/or 2; For N is 3 (comb-3), RE offset can be 1; For N is 2 (comb -2), RE offset can be 1; for N is 1 (comb-1), RE offset is not configured.
  • the frequency domain offset mentioned in the embodiment of the present disclosure may be a positive offset, or the frequency domain offset may be a negative offset.
  • a positive offset refers to an offset to a higher frequency
  • a negative offset refers to an offset to a lower frequency.
  • the frequency domain position of the positioning reference signal is: the position after modulo the first frequency domain position according to a specific value .
  • the specific value may be the maximum number of frequency domain granularities included in an RB.
  • the frequency domain granularity is RE
  • the specific value may be the maximum number of REs included in an RB, that is, 12. Then when the RE position on a symbol exceeds the range of 1 RB according to the RE offset calculation, the modulus value (mod 12) can be used to make the frequency domain position of the positioning reference signal on the symbol fall within the RB range Inside.
  • the parameter item in the resource configuration information may include: the number of symbols included in the resource pattern, which is used to indicate the number of symbols occupied by the positioning reference signal.
  • the number of symbols occupied by the positioning reference signal is greater than 1, the symbols occupied by the positioning reference signal may be continuous or non-continuous.
  • the third optional value corresponding to the number of symbols may be greater than or equal to the quotient of the first optional value and the second optional value, that is, the number of symbols occupied by the positioning reference signal is not less than N/frequency domain offset.
  • the third optional value corresponding to the number of symbols may be less than or equal to the maximum number of symbols in the time domain transmission unit where the positioning reference signal is located. Taking the time domain transmission unit as a slot as an example, the position occupied by the positioning reference signal The number of symbols is not greater than the maximum number of symbols contained in the slot.
  • the third optional value corresponding to the number of symbols is related to the CP type of the positioning reference signal, that is, the resource pattern of the positioning reference signal is related to the CP type, where the CP type of the positioning reference signal may be configured by the network device.
  • the number of symbols occupied by the positioning reference signal does not exceed the maximum number of symbols contained in a time domain transmission unit (such as slot) under normal CP, such as 14.
  • the number of symbols occupied by the positioning reference signal does not exceed The maximum number of symbols contained in a time domain transmission unit (such as slot) under Extended CP, such as 12.
  • the parameter item in the resource configuration information may further include: the position of the first symbol in the resource pattern, which is used to indicate the position of the first symbol of the positioning reference signal in a time domain transmission unit (such as a slot).
  • the range of the fourth optional value corresponding to the first symbol position is: a subset or full set of [0, M], and M is the maximum number of symbols in the time domain transmission unit where the positioning reference signal is located and the resource pattern included The difference in the number of symbols.
  • the first symbol position in the resource pattern may be the position where the symbol sequence number is 0, 1, ..., M-1, or M.
  • the parameter item in the resource configuration information may also include: the lowest frequency domain position in the first symbol of the resource pattern, and the range of the fifth optional value corresponding to the lowest frequency domain position is: [0, N-1 ] Subset or Complete Works. That is to say, the lowest position of the positioning reference signal in the frequency domain in the first symbol is related to the comb-N structure. Taking the range of the fifth optional value of [0, N-1] as an example, the first one in the resource pattern
  • the lowest frequency domain position in the symbol may be the position with the RE number 0, 1, ..., N-2, or N-1. For example, the frequency domain density is 6, and the lowest frequency domain position is one of 0-5.
  • the resource configuration information may include: the frequency domain density of the positioning reference signal, the frequency domain offset of the positioning reference signal in adjacent symbols (such as RE offset), and the occupation of the positioning reference signal. At least one of the number of symbols, the first symbol position occupied by the positioning reference signal, and the lowest frequency domain position in the first symbol occupied by the positioning reference signal.
  • the parameter items included in the resource configuration information there is at least one parameter item corresponding to multiple optional values. Different values of the parameter items determine different resource patterns. Those skilled in the art should be able to understand the use of the above resource configuration information.
  • the resource patterns determined by the configuration method belong to the embodiments of the present disclosure, so they will not be listed here.
  • the positioning reference signal in the embodiment of the present disclosure may occupy one symbol, or may occupy multiple symbols.
  • the occupied multiple symbols may be continuous or non-continuous. That is, when the resource pattern contains more than two symbols, these symbols may be continuous or discontinuous.
  • the resource pattern occupies at least one resource element RE on every P subcarriers, and P is 1, 2 or 3. That is, in a resource pattern with discontinuous symbols, the resource pattern has at least one RE on each subcarrier of the PRB where it is located. Or in a resource pattern with discontinuous symbols, the resource pattern has at least one RE on every 2 or 3 subcarriers on the PRB where it is located.
  • the symbols contained in the resource pattern are distributed at equal intervals, that is, the symbols occupied by the positioning reference signal may be distributed at equal intervals in the time domain.
  • the resource pattern on the at least two discontinuous symbols is obtained by truncating the resource pattern on the continuous symbol. That is, the resource pattern with discontinuous symbols may be obtained after truncating the resource pattern with continuous symbols in the time domain.
  • the resource configuration information in the embodiments of the present disclosure may include not only the parameter items for determining the resource pattern described above, but also indication information indicating different ports.
  • the resource pattern may correspond to one port, or correspond to at least two ports.
  • the resource patterns on different ports may be the same, or the resource patterns on different ports may be time division multiplexed, or the resource patterns on different ports may be frequency division multiplexed. That is, the resource pattern of the positioning reference signal is related to the port information of the positioning reference signal. If the positioning reference signal is configured with more than one port, the resource patterns of different ports can be the same or frequency division multiplexing or time division multiplexing.
  • the embodiments of the present disclosure introduce the relationship between resource patterns on different ports and resource configuration information related to the resource patterns.
  • the resource pattern determined by the resource configuration information may be determined by the values of parameter items in one set of resource configuration information, or may be determined by the values of parameter items in multiple sets of resource configuration information.
  • the resource pattern may include: at least two sub-resource patterns, and the at least two sub-resource patterns are related to the value of the parameter item.
  • a sub-resource pattern can be determined according to the value of the parameter item in a set of resource configuration information.
  • the frequency domain offsets of the resource patterns of different cells are different.
  • the resource patterns of positioning reference signals of different cells can be distinguished by frequency domain offset, which is RE-level offset, and the value of frequency domain offset is related to the cell ID.
  • the resource patterns of different cells are time-division multiplexed.
  • the resource patterns of positioning reference signals of different cells can be distinguished by time division multiplexing.
  • the resource patterns of positioning reference signals of different cells may occupy different symbols or time slots.
  • the cell mentioned in the embodiment of the present disclosure may be a physical cell or a virtual cell.
  • the cell ID may be at least one of a physical cell ID, a sending and receiving point ID, a transmission point ID, a global cell ID, and the like.
  • the terminal receives the resource configuration information of the positioning reference signal from the network device side, and the value of the parameter item in the resource configuration information is one of at least two optional values selected by the network device.
  • the system can support configurable positioning reference signal resource allocation, which can support more flexible resource configuration and improve resource utilization.
  • the terminal 1500 of the embodiment of the present disclosure can realize the resource configuration information of the positioning reference signal received in the above embodiment; wherein, the resource configuration information includes at least one parameter item, and the value of the parameter item is at least corresponding to the parameter item.
  • the resource configuration information includes at least one parameter item, and the value of the parameter item is at least corresponding to the parameter item.
  • the terminal 1500 specifically includes The following functional modules:
  • the first receiving module 1510 is configured to receive resource configuration information of positioning reference signals; wherein the resource configuration information includes at least one parameter item, and the value of the parameter item is one of at least two optional values corresponding to the parameter item;
  • the determining module 1520 is configured to determine the resource pattern of the positioning reference signal according to the value of the parameter item in the resource configuration information
  • the second receiving module 1530 is configured to receive positioning reference signals according to the resource pattern.
  • the parameter item includes: the frequency domain density of the resource pattern, the frequency domain density is used to indicate that the positioning reference signal is separated by N subcarriers in the frequency domain, and N is one of the first optional values corresponding to the frequency domain density.
  • the first optional value includes: at least one of 1, 2, 3, 4, 6, and 12.
  • the parameter item further includes: a frequency domain offset of adjacent symbols in the resource pattern, and the second optional value corresponding to the frequency domain offset is related to the first optional value.
  • the second optional value is a factor of the first optional value, and the second optional value is different from the first optional value.
  • the frequency domain offset is a positive offset, or the frequency domain offset is a negative offset.
  • the frequency domain position of the positioning reference signal is: the first frequency domain position modulo the specific value position.
  • the parameter item further includes: the number of symbols included in the resource pattern, and the third optional value corresponding to the number of symbols is greater than or equal to the quotient of the first optional value and the second optional value.
  • the parameter item includes: the number of symbols included in the resource pattern, and the third optional value corresponding to the number of symbols is less than or equal to the maximum number of symbols in the time domain transmission unit where the positioning reference signal is located.
  • the parameter item includes: the number of symbols included in the resource pattern, and the third optional value corresponding to the number of symbols is related to the cyclic prefix CP type of the positioning reference signal.
  • the parameter item also includes: the first symbol position of the resource pattern, the range of the fourth optional value corresponding to the first symbol position is: [0, M], and M is the time domain transmission unit where the positioning reference signal is located The difference between the maximum number of symbols in and the number of symbols contained in the resource pattern.
  • the parameter item further includes: the lowest frequency domain position in the first symbol of the resource pattern, and the range of the fifth optional value corresponding to the lowest frequency domain position is: [0, N-1].
  • the resource patterns on different ports are the same, or the resource patterns on different ports are time division multiplexed, or the resource patterns on different ports are frequency division multiplexed.
  • the generation sequences of the positioning reference signals on different ports are different, or the frequency domain orthogonal codes of the positioning reference signals on different ports are different.
  • the initial value of the generated sequence is related to the port number of the port.
  • the resource pattern occupies at least one resource element RE on each P subcarriers, and P is 1, 2 or 3.
  • the symbols contained in the resource pattern are distributed at equal intervals.
  • the resource pattern on the at least two discontinuous symbols is obtained by truncating the resource pattern on the continuous symbol.
  • the resource pattern includes at least two sub-resource patterns, and the at least two sub-resource patterns are related to the value of the parameter item.
  • the frequency domain offsets of the resource patterns of different cells are different.
  • the resource patterns of different cells are time division multiplexed.
  • the terminal of the embodiment of the present disclosure receives the resource configuration information of the positioning reference signal from the network device side, and the value of the parameter item in the resource configuration information is one of the at least two optional values selected by the network device, so that the system can Support configurable positioning reference signal resource allocation, which can support more flexible resource configuration and improve resource utilization.
  • the division of the various modules of the above network devices and terminals is only a division of logical functions. In actual implementation, it can be fully or partially integrated into one physical entity, or physically separated. And these modules can all be implemented in the form of software called by processing elements; they can also be implemented in the form of hardware; some modules can be implemented in the form of calling software by processing elements, and some of the modules can be implemented in the form of hardware.
  • the determining module may be a separately established processing element, or it may be integrated into a certain chip of the above-mentioned device for implementation.
  • each step of the above method or each of the above modules can be completed by hardware integrated logic circuits in the processor element or instructions in the form of software.
  • the above modules may be one or more integrated circuits configured to implement the above methods, such as: one or more application specific integrated circuits (ASIC), or one or more microprocessors (digital signal processor, DSP), or one or more Field Programmable Gate Array (FPGA), etc.
  • ASIC application specific integrated circuit
  • DSP digital signal processor
  • FPGA Field Programmable Gate Array
  • the processing element may be a general-purpose processor, such as a central processing unit (CPU) or other processors that can call program codes.
  • CPU central processing unit
  • these modules can be integrated together and implemented in the form of a system-on-a-chip (SOC).
  • SOC system-on-a-chip
  • FIG. 16 is a schematic diagram of the hardware structure of a terminal for implementing various embodiments of the present disclosure.
  • the terminal 160 includes but is not limited to: a radio frequency unit 161, a network module 162, an audio output unit 163, Input unit 164, sensor 165, display unit 166, user input unit 167, interface unit 168, memory 169, processor 1610, power supply 1611 and other components.
  • a radio frequency unit 161 for implementing various embodiments of the present disclosure.
  • the terminal 160 includes but is not limited to: a radio frequency unit 161, a network module 162, an audio output unit 163, Input unit 164, sensor 165, display unit 166, user input unit 167, interface unit 168, memory 169, processor 1610, power supply 1611 and other components.
  • the terminal structure shown in FIG. 16 does not constitute a limitation on the terminal, and the terminal may include more or fewer components than those shown in the figure, or combine certain components, or arrange different components.
  • terminals include, but are not limited to, mobile phones
  • the radio frequency unit 161 is configured to receive resource configuration information of the positioning reference signal; wherein the resource configuration information includes at least one parameter item, and the value of the parameter item is one of at least two optional values corresponding to the parameter item;
  • the processor 1610 is configured to determine the resource pattern of the positioning reference signal according to the value of the parameter item in the resource configuration information
  • the radio frequency unit 161 is also used to receive positioning reference signals according to the resource pattern.
  • the terminal of the embodiment of the present disclosure receives the resource configuration information of the positioning reference signal from the network device side.
  • the value of the parameter item in the resource configuration information is one of at least two optional values selected by the network device, so that the system can support configurable positioning Reference signal resource allocation can support more flexible resource configuration and improve resource utilization.
  • the radio frequency unit 161 can be used for receiving and sending signals in the process of sending and receiving information or talking. Specifically, the downlink data from the base station is received and processed by the processor 1610; in addition, Uplink data is sent to the base station.
  • the radio frequency unit 161 includes, but is not limited to, an antenna, at least one amplifier, a transceiver, a coupler, a low noise amplifier, a duplexer, and the like.
  • the radio frequency unit 161 can also communicate with the network and other devices through a wireless communication system.
  • the terminal provides users with wireless broadband Internet access through the network module 162, such as helping users to send and receive emails, browse web pages, and access streaming media.
  • the audio output unit 163 may convert the audio data received by the radio frequency unit 161 or the network module 162 or stored in the memory 169 into audio signals and output them as sounds. Moreover, the audio output unit 163 may also provide audio output related to a specific function performed by the terminal 160 (for example, call signal reception sound, message reception sound, etc.).
  • the audio output unit 163 includes a speaker, a buzzer, a receiver, and the like.
  • the input unit 164 is used to receive audio or video signals.
  • the input unit 164 may include a graphics processing unit (GPU) 1641 and a microphone 1642.
  • the graphics processor 1641 is configured to monitor images of still pictures or videos obtained by an image capture device (such as a camera) in the video capture mode or the image capture mode. Data is processed.
  • the processed image frame may be displayed on the display unit 166.
  • the image frame processed by the graphics processor 1641 may be stored in the memory 169 (or other storage medium) or sent via the radio frequency unit 161 or the network module 162.
  • the microphone 1642 can receive sound, and can process such sound into audio data.
  • the processed audio data can be converted into a format that can be sent to a mobile communication base station via the radio frequency unit 161 in the case of a telephone call mode for output.
  • the terminal 160 also includes at least one sensor 165, such as a light sensor, a motion sensor, and other sensors.
  • the light sensor includes an ambient light sensor and a proximity sensor.
  • the ambient light sensor can adjust the brightness of the display panel 1661 according to the brightness of the ambient light.
  • the proximity sensor can close the display panel 1661 and/or when the terminal 160 is moved to the ear. Or backlight.
  • the accelerometer sensor can detect the magnitude of acceleration in various directions (usually three-axis), and can detect the magnitude and direction of gravity when stationary, and can be used to identify terminal posture (such as horizontal and vertical screen switching, related games, Magnetometer posture calibration), vibration recognition related functions (such as pedometer, percussion), etc.; sensor 165 can also include fingerprint sensors, pressure sensors, iris sensors, molecular sensors, gyroscopes, barometers, hygrometers, thermometers, infrared Sensors, etc., will not be repeated here.
  • the display unit 166 is used to display information input by the user or information provided to the user.
  • the display unit 166 may include a display panel 1661, and the display panel 1661 may be configured in the form of a liquid crystal display (Liquid Crystal Display, LCD), an organic light-emitting diode (Organic Light-Emitting Diode, OLED), etc.
  • LCD Liquid Crystal Display
  • OLED Organic Light-Emitting Diode
  • the user input unit 167 may be used to receive inputted number or character information, and generate key signal input related to user settings and function control of the terminal.
  • the user input unit 167 includes a touch panel 1671 and other input devices 1672.
  • the touch panel 1671 also called a touch screen, can collect user touch operations on or near it (for example, the user uses any suitable objects or accessories such as fingers, stylus, etc.) on the touch panel 1671 or near the touch panel 1671. operating).
  • the touch panel 1671 may include two parts: a touch detection device and a touch controller.
  • the touch detection device detects the user's touch position, detects the signal brought by the touch operation, and transmits the signal to the touch controller; the touch controller receives the touch information from the touch detection device, converts it into contact coordinates, and then sends it To the processor 1610, the command sent by the processor 1610 is received and executed.
  • the touch panel 1671 can be implemented in multiple types such as resistive, capacitive, infrared, and surface acoustic wave.
  • the user input unit 167 may also include other input devices 1672.
  • other input devices 1672 may include, but are not limited to, a physical keyboard, function keys (such as volume control buttons, switch buttons, etc.), trackball, mouse, and joystick, which will not be repeated here.
  • the touch panel 1671 can cover the display panel 1661.
  • the touch panel 1671 detects a touch operation on or near it, it transmits it to the processor 1610 to determine the type of the touch event, and then the processor 1610 determines the type of the touch event according to the touch.
  • the type of event provides corresponding visual output on the display panel 1661.
  • the touch panel 1671 and the display panel 1661 are used as two independent components to implement the input and output functions of the terminal, in some embodiments, the touch panel 1671 and the display panel 1661 can be integrated. Realize the input and output functions of the terminal, which are not limited here.
  • the interface unit 168 is an interface for connecting an external device with the terminal 160.
  • the external device may include a wired or wireless headset port, an external power source (or battery charger) port, a wired or wireless data port, a memory card port, a port for connecting a device with an identification module, audio input/output (I/O) port, video I/O port, headphone port, etc.
  • the interface unit 168 may be used to receive input (for example, data information, power, etc.) from an external device and transmit the received input to one or more elements in the terminal 160 or may be used to communicate between the terminal 160 and the external device. Transfer data between.
  • the memory 169 can be used to store software programs and various data.
  • the memory 169 may mainly include a storage program area and a storage data area.
  • the storage program area may store an operating system, an application program required by at least one function (such as a sound playback function, an image playback function, etc.), etc.; Data (such as audio data, phone book, etc.) created by the use of mobile phones.
  • the memory 169 may include a high-speed random access memory, and may also include a non-volatile memory, such as at least one magnetic disk storage device, a flash memory device, or other volatile solid-state storage devices.
  • the processor 1610 is the control center of the terminal. It uses various interfaces and lines to connect various parts of the entire terminal. It executes by running or executing software programs and/or modules stored in the memory 169, and calling data stored in the memory 169. Various functions of the terminal and processing data, so as to monitor the terminal as a whole.
  • the processor 1610 may include one or more processing units; optionally, the processor 1610 may integrate an application processor and a modem processor, where the application processor mainly processes the operating system, user interface, and application programs, etc.
  • the adjustment processor mainly deals with wireless communication. It can be understood that the above modem processor may not be integrated into the processor 1610.
  • the terminal 160 may also include a power supply 1611 (such as a battery) for supplying power to various components.
  • a power supply 1611 such as a battery
  • the power supply 1611 may be logically connected to the processor 1610 through a power management system, so as to manage charging, discharging, and power consumption management through the power management system. And other functions.
  • the terminal 160 includes some functional modules not shown, which will not be repeated here.
  • an embodiment of the present disclosure further provides a terminal, including a processor 1610, a memory 169, and a program stored on the memory 169 and running on the processor 1610.
  • the terminal can be a wireless terminal or a wired terminal.
  • the wireless terminal can be a device that provides voice and/or other service data connectivity to the user, a handheld device with wireless connection function, or other processing equipment connected to a wireless modem .
  • a wireless terminal can communicate with one or more core networks via a radio access network (RAN).
  • RAN radio access network
  • the wireless terminal can be a mobile terminal, such as a mobile phone (or "cellular" phone) and a computer with a mobile terminal
  • a mobile terminal such as a mobile phone (or "cellular" phone) and a computer with a mobile terminal
  • they can be portable, pocket-sized, handheld, computer-built or vehicle-mounted mobile devices, which exchange language and/or data with the wireless access network.
  • PCS personal communication service
  • SIP Session Initiation Protocol
  • WLL Wireless Local Loop
  • PDA Personal Digital Assistant
  • Wireless terminals can also be called systems, subscriber units (Subscriber Unit), subscriber stations (Subscriber Station), mobile stations (Mobile Station), mobile stations (Mobile), remote stations (Remote Station), remote terminals (Remote Terminal), The access terminal (Access Terminal), user terminal (User Terminal), user agent (User Agent), and user equipment (User Device or User Equipment) are not limited here.
  • the embodiments of the present disclosure also provide a computer-readable storage medium, and a program is stored on the computer-readable storage medium.
  • a program is stored on the computer-readable storage medium.
  • the program is executed by a processor, each process of the above-mentioned positioning reference signal configuration method embodiment is realized, and the same technology can be achieved. The effect, in order to avoid repetition, will not be repeated here.
  • the computer-readable storage medium such as read-only memory (Read-Only Memory, ROM), random access memory (Random Access Memory, RAM), magnetic disk or optical disk, etc.
  • the disclosed device and method may be implemented in other ways.
  • the device embodiments described above are only illustrative.
  • the division of the units is only a logical function division, and there may be other divisions in actual implementation, for example, multiple units or components can be combined or It can be integrated into another system, or some features can be ignored or not implemented.
  • the displayed or discussed mutual coupling or direct coupling or communication connection may be indirect coupling or communication connection through some interfaces, devices or units, and may be in electrical, mechanical or other forms.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, they may be located in one place, or they may be distributed on multiple network units. Some or all of the units may be selected according to actual needs to achieve the objectives of the solutions of the embodiments.
  • the functional units in the various embodiments of the present disclosure may be integrated into one processing unit, or each unit may exist alone physically, or two or more units may be integrated into one unit.
  • the function is implemented in the form of a software functional unit and sold or used as an independent product, it can be stored in a computer readable storage medium.
  • the technical solution of the present disclosure essentially or the part that contributes to the related technology or the part of the technical solution can be embodied in the form of a software product.
  • the computer software product is stored in a storage medium, including several
  • the instructions are used to make a computer device (which may be a personal computer, a server, or a network device, etc.) execute all or part of the steps of the methods described in the various embodiments of the present disclosure.
  • the aforementioned storage media include: U disk, mobile hard disk, ROM, RAM, magnetic disk or optical disk and other media that can store program codes.
  • each component or each step can be decomposed and/or recombined.
  • decomposition and/or recombination should be regarded as equivalent solutions of the present disclosure.
  • the steps of performing the above series of processing can naturally be performed in a time sequence in the order of description, but do not necessarily need to be performed in a time sequence, and some steps can be performed in parallel or independently of each other.
  • the purpose of the present disclosure can also be realized by running a program or a group of programs on any computing device.
  • the computing device may be a well-known general-purpose device. Therefore, the purpose of the present disclosure can also be achieved only by providing a program product containing program code for implementing the method or device. That is, such a program product also constitutes the present disclosure, and a storage medium storing such a program product also constitutes the present disclosure.
  • the storage medium may be any well-known storage medium or any storage medium developed in the future. It should also be pointed out that, in the device and method of the present disclosure, obviously, each component or each step can be decomposed and/or recombined.

Abstract

本公开公开了一种定位参考信号配置方法、网络设备及终端,该方法包括:发送定位参考信号的资源配置信息;按照资源配置信息指示的资源图样,发送定位参考信号;其中,资源配置信息包括至少一个参数项,参数项的值为参数项对应的至少两个可选值中的一个,资源图样与参数项的值相关。

Description

定位参考信号配置方法、网络设备及终端
相关申请的交叉引用
本申请主张在2019年3月22日在中国提交的中国专利申请No.201910222312.X的优先权,其全部内容通过引用包含于此。
技术领域
本公开涉及通信技术领域,尤其涉及一种定位参考信号配置方法、网络设备及终端。
背景技术
定位参考信号(Positioning Reference Signal,PRS)是用来做下行定位的参考信号(Reference Signal,RS)。终端测量来自多个小区(cell)或多个传输点发送的PRS,获取多个cell或传输点之间的参考信号时间差(Reference Signal Time Difference,RSTD)之后,终端将测量得到的RSTD信息发送给定位服务器,定位服务器计算得到终端位置。
在长期演进型(Long Term Evolution,LTE)系统中,PRS能在配置用于定位参考信号传输的下行链路子帧的资源块中传输,PRS具有较强的自相关和正交特性,信号进行相关检测时比较容易判断最高相关峰,从而消除邻小区的信号干扰,保证观察到达时间差(Observed Time Difference Of Arrival,OTDOA)测量的精度。
在LTE系统中,PRS的时频资源映射公式如下:
Figure PCTCN2020080367-appb-000001
其中,对于正常循环前缀,PRS的时频资源映射,或称为PRS资源图样(pattern)如图1a和1b所示:
Figure PCTCN2020080367-appb-000002
Figure PCTCN2020080367-appb-000003
对于扩展循环前缀,PRS的时频资源映射如图2a和2b所示:
Figure PCTCN2020080367-appb-000004
其中,l表示一个时隙中的时域符号(OFDM symbol)编号,n s表示一个无线帧中的时隙号,
Figure PCTCN2020080367-appb-000005
表示下行带宽,或称为下行资源所包含的资源块(Resource Block,RB)数,
Figure PCTCN2020080367-appb-000006
表示定位参考信号的带宽,或称为所包含的资源块数,
Figure PCTCN2020080367-appb-000007
由高层配置;v shift表示小区专用频率偏移,由
Figure PCTCN2020080367-appb-000008
Figure PCTCN2020080367-appb-000009
计算得出,
Figure PCTCN2020080367-appb-000010
表示小区标识。
PRS一般周期性发送,发送周期可配置为160、320、640、1280个子帧,PRS可在多个连续下行子帧中传输,且第一个子帧满足如下公式:
(10×n f+n s/2-Δ PRS)mod T PRS
其中,Δ PRS表示PRS的子帧偏移量,T PRS表示PRS的发送周期。
在LTE系统仅支持上述PRS资源pattern,在新空口(New Radio,NR)系统中需要支持可配置的下行(Downlink,DL)PRS时频资源分配(Configurable NR DL PRS frequency and time allocation),因此LTE系统中的PRS资源图样不再适用。
发明内容
本公开实施例提供了一种定位参考信号配置方法、网络设备及终端,以解决NR系统中的PRS资源图样的配置问题。
第一方面,本公开实施例提供了一种定位参考信号配置方法,应用于网络设备侧,包括:
发送定位参考信号的资源配置信息;
按照资源配置信息指示的资源图样,发送定位参考信号;其中,资源配置信息包括至少一个参数项,参数项的值为参数项对应的至少两个可选值中的一个,资源图样与参数项的值相关。
第二方面,本公开实施例还提供了一种定位参考信号配置方法,应用于终端,包括:
接收定位参考信号的资源配置信息;其中,资源配置信息包括至少一个参数项,参数项的值为参数项对应的至少两个可选值中的一个;
根据资源配置信息中参数项的值,确定定位参考信号的资源图样;
按照资源图样,接收定位参考信号。
第三方面,本公开实施例提供了一种网络设备,包括:
第一发送模块,用于发送定位参考信号的资源配置信息;
第二发送模块,用于按照资源配置信息指示的资源图样,发送定位参考信号;其中,资源配置信息包括至少一个参数项,参数项的值为参数项对应的至少两个可选值中的一个,资源图样与参数项的值相关。
第四方面,本公开实施例提供了一种终端,包括:
第一接收模块,用于接收定位参考信号的资源配置信息;其中,资源配置信息包括至少一个参数项,参数项的值为参数项对应的至少两个可选值中的一个;
确定模块,用于根据资源配置信息中参数项的值,确定定位参考信号的资源图样;
第二接收模块,用于按照资源图样,接收定位参考信号。
第五方面,本公开实施例提供了一种网络设备,网络设备包括处理器、存储器以及存储于存储器上并在处理器上运行的程序,处理器执行程序时实现如上第一方面所述的定位参考信号配置方法的步骤。
第六方面,本公开实施例还提供了一种终端,终端包括处理器、存储器以及存储于存储器上并在处理器上运行的程序,程序被处理器执行时实现如上第二方面所述的定位参考信号配置方法的步骤。
第七方面,本公开实施例提供了一种计算机可读存储介质,计算机可读存储介质上存储有程序,程序被处理器执行时实现如上第一或第二方面所述 的定位参考信号配置方法的步骤。
这样,本公开实施例的网络设备为终端配置定位参考信号的资源配置信息,资源配置信息中参数项的值是网络设备在至少两个可选值中选择的一个,这样系统可支持可配置的定位参考信号资源分配,从而可支持更灵活的资源配置,提高资源利用率。
附图说明
为了更清楚地说明本公开实施例的技术方案,下面将对本公开实施例的描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本公开的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。
图1a和1b表示正常循环前缀的PRS资源图样示意图;
图2a和2b表示扩展循环前缀的PRS资源图样示意图;
图3表示本公开实施例可应用的一种移动通信系统框图;
图4表示本公开实施例网络设备侧的定位参考信号配置方法的流程示意图;
图5a和5b表示本公开实施例中示例一的定位参考信号的资源图样的示意图;
图6a~6f表示本公开实施例中示例二的定位参考信号的资源图样的示意图;
图7a~7d表示本公开实施例中示例三的定位参考信号的资源图样的示意图;
图8a和8b表示本公开实施例中示例四的定位参考信号的资源图样的示意图;
图9a和9b表示本公开实施例中示例五的定位参考信号的资源图样的示意图;
图10表示本公开实施例中示例六的定位参考信号的资源图样的示意图;
图11表示本公开实施例中资源图样包含至少两个不连续符号的示意图;
图12表示本公开实施例中网络设备的模块结构示意图;
图13表示本公开实施例的网络设备框图;
图14表示本公开实施例中终端侧的定位参考信号配置方法的流程示意图;
图15表示本公开实施例中终端的模块结构示意图;
图16表示本公开实施例的终端框图。
具体实施方式
下面将参照附图更详细地描述本公开的示例性实施例。虽然附图中显示了本公开的示例性实施例,然而应当理解,可以以各种形式实现本公开而不应被这里阐述的实施例所限制。相反,提供这些实施例是为了能够更透彻地理解本公开,并且能够将本公开的范围完整的传达给本领域的技术人员。
本申请的说明书和权利要求书中的术语“第一”、“第二”等是用于区别类似的对象,而不必用于描述特定的顺序或先后次序。应该理解这样使用的数据在适当情况下可以互换,以便这里描述的本申请的实施例能够以除了在这里图示或描述的那些以外的顺序实施。此外,术语“包括”和“具有”以及他们的任何变形,意图在于覆盖不排他的包含,例如,包含了一系列步骤或单元的过程、方法、系统、产品或设备不必限于清楚地列出的那些步骤或单元,而是可包括没有清楚地列出的或对于这些过程、方法、产品或设备固有的其它步骤或单元。说明书以及权利要求中“和/或”表示所连接对象的至少其中之一。
本文所描述的技术不限于长期演进型(Long Term Evolution,LTE)/LTE的演进(LTE-Advanced,LTE-A)系统,并且也可用于各种无线通信系统,诸如码分多址(Code Division Multiple Access,CDMA)、时分多址(Time Division Multiple Access,TDMA)、频分多址(Frequency Division Multiple Access,FDMA)、正交频分多址(Orthogonal Frequency Division Multiple Access,OFDMA)、单载波频分多址(Single-carrier Frequency-Division Multiple Access,SC-FDMA)和其他系统。术语“系统”和“网络”常被可互换地使用。本文所描述的技术既可用于以上提及的系统和无线电技术,也可用于其他系统和无线电技术。然而,以下描述出于示例目的描述了NR系统,并且在以下大部分描述中使用NR术语,尽管这些技术也可应用于NR系统应用以外的应用。
以下描述提供示例而并非限定权利要求中阐述的范围、适用性或者配置。可以对所讨论的要素的功能和布置作出改变而不会脱离本公开的精神和范围。各种示例可恰适地省略、替代、或添加各种规程或组件。例如,可以按不同于所描述的次序来执行所描述的方法,并且可以添加、省去、或组合各种步骤。另外,参照某些示例所描述的特征可在其他示例中被组合。
请参见图3,图3示出本公开实施例可应用的一种无线通信系统的框图。无线通信系统包括终端31和网络设备32。其中,终端31也可以称作终端设备或者用户终端(User Equipment,UE),终端31可以是手机、平板电脑(Tablet Personal Computer)、膝上型电脑(Laptop Computer)、个人数字助理(Personal Digital Assistant,PDA)、移动上网装置(Mobile Internet Device,MID)、可穿戴式设备(Wearable Device)或车载设备等终端侧设备,需要说明的是,在本公开实施例中并不限定终端31的具体类型。网络设备32可以是基站或核心网,其中,上述基站可以是5G及以后版本的基站(例如:gNB、5G NR NB等),或者其他通信系统中的基站(例如:eNB、WLAN接入点、或其他接入点等),其中,基站可被称为节点B、演进节点B、接入点、基收发机站(Base Transceiver Station,BTS)、无线电基站、无线电收发机、基本服务集(Basic Service Set,BSS)、扩展服务集(Extended Service Set,ESS)、B节点、演进型B节点(eNB)、家用B节点、家用演进型B节点、WLAN接入点、WiFi节点或所述领域中其他某个合适的术语,只要达到相同的技术效果,所述基站不限于特定技术词汇,需要说明的是,在本公开实施例中仅以NR系统中的基站为例,但是并不限定基站的具体类型。
基站可在基站控制器的控制下与终端31通信,在各种示例中,基站控制器可以是核心网或某些基站的一部分。一些基站可通过回程与核心网进行控制信息或用户数据的通信。在一些示例中,这些基站中的一些可以通过回程链路直接或间接地彼此通信,回程链路可以是有线或无线通信链路。无线通信系统可支持多个载波(不同频率的波形信号)上的操作。多载波发射机能同时在这多个载波上传送经调制信号。例如,每条通信链路可以是根据各种无线电技术来调制的多载波信号。每个已调信号可在不同的载波上发送并且可携带控制信息(例如,参考信号、控制信道等)、开销信息、数据等。
基站可经由一个或多个接入点天线与终端31进行无线通信。每个基站可以为各自相应的覆盖区域提供通信覆盖。接入点的覆盖区域可被划分成仅构成该覆盖区域的一部分的扇区。无线通信系统可包括不同类型的基站(例如宏基站、微基站、或微微基站)。基站也可利用不同的无线电技术,诸如蜂窝或WLAN无线电接入技术。基站可以与相同或不同的接入网或运营商部署相关联。不同基站的覆盖区域(包括相同或不同类型的基站的覆盖区域、利用相同或不同无线电技术的覆盖区域、或属于相同或不同接入网的覆盖区域)可以交叠。
无线通信系统中的通信链路可包括用于承载上行链路(Uplink,UL)传输(例如,从终端31到网络设备32)的上行链路,或用于承载下行链路(Downlink,DL)传输(例如,从网络设备32到终端31)的下行链路。UL传输还可被称为反向链路传输,而DL传输还可被称为前向链路传输。下行链路传输可以使用授权频段、非授权频段或这两者来进行。类似地,上行链路传输可以使用有授权频段、非授权频段或这两者来进行。
本公开实施例提供了一种定位参考信号配置方法,应用于网络设备侧,如图4所示,该方法可以包括以下步骤41和42。
步骤41:发送定位参考信号的资源配置信息。
定位参考信号PRS用于下行定位,PRS可配置在下行链路子帧的资源块中。网络设备为定位参考信号配置传输资源后,将定位参考信号的资源配置信息发送给终端,其中,资源配置信息用于指示定位参考信号的传输资源,如频域资源、时域资源、空域资源和码域资源等中的至少一项。
步骤42:按照资源配置信息指示的资源图样,发送定位参考信号;其中,资源配置信息包括至少一个参数项,参数项的值为参数项对应的至少两个可选值中的一个,资源图样与参数项的值相关。
其中,资源配置信息可以包括至少一个与定位参考信号传输资源相关的参数项,资源图样(pattern),或称为PRS资源的图样,与参数项的取值相关,某个参数项的不同取值对应的资源图样不同。资源配置信息所携带的参数项中有至少一个参数项对应至少两个可选值,假设资源配置信息所携带的参数项包括:参数项1和参数项2,其中,参数项1和参数项2中至少有一个参 数项对应的可选值为多个,例如参数项1对应2个以上的可选值,参数项2对应2个以上的可选值,或参数项1和参数项2均对应2个以上的可选值;这样网络设备发送的资源配置信息中,参数项1和参数项2的值分别为各自对应的可选值中的一个。资源图样用于指示定位参考信号与时频域资源之间的映射关系,网络设备在为定位参考信号配置了时频域资源后,通过相应的时频域资源发送定位参考信号,以实现终端的定位测量。
其中,值得指出的是,本公开实施例并不限定步骤41和步骤42之间的时序顺序,步骤42可在步骤41之前执行,亦可在步骤41之后执行。
本公开的一种实施例中,资源配置信息所包含的参数项可以包括:资源图样的频域密度,频域密度用于指示定位参考信号在频域上间隔N个子载波,N为频域密度对应的第一可选值中的一个。也就是说,定位参考信号的资源图样与定位参考信号的频域密度相关。
其中,频域密度可以是定位参考信号在每个物理资源块(Physical Resource Block,PRB)上的频域密度,频域密度可以用梳状(如comb-N)结构表示,表示定位参考信号在频域上等间隔分布,间隔为N个子载波。其中,N为频域密度对应的第一可选值中的一个,第一可选值可以包括1、2、3、4、6和12中的至少一项,假设第一可选值包括1、2、3、4、6和12,那么N可以为1、2、3、4、6或12。以comb-N结构表示的频域密度可以等效为密度为12/N,表示1个资源块(Resource Block,RB)中包含的等间隔的资源元素(Resource Element,RE)个数。N=1、2、3、4、6或12分别等效为密度为12、6、4、3、2或1。
本公开的一种实施例中,资源配置信息中的参数项还可以包括:资源图样中相邻符号的频域偏移,频域偏移对应的第二可选值与第一可选值相关。也就是说,定位参考信号的资源图样还可以与定位参考信号在相邻符号(symbol)中的频域偏移相关。
其中,频域偏移可以是RE偏移(shift),用于指示定位参考信号在相邻的符号中的RE级的偏移量(频域偏移量),那么定位参考信号在后1个符号的RE位置可以通过在前1个相邻的符号上的RE位置和配置的RE偏移计算得到。
其中,频域偏移对应的第二可选值与频域密度对应的第一可选值相关,如:RE偏移的大小(第二可选值)与comb-N结构(第一可选值)有关。可选地,第二可选值可以为第一可选值的因数,且第二可选值与第一可选值不同,即第一可选值的因数中除了第一可选值之外的值,如RE偏移的大小可以是除了N本身的N的因数。或者,第二可选值可以与第一可选值相同。对于N为12(comb-12),RE偏移可以是1、2、3、4和6中的至少一项;对于N为6(comb-6),RE偏移可以是1、2和3中的至少一项;对于N为4(comb-4),RE偏移可以是1和/或2;对于N为3(comb-3),RE偏移可以是1;对于N为2(comb-2),RE偏移可以是1;对于N为1(comb-1),不配置RE偏移。
可选地,本公开实施例所说的频域偏移可以为正偏移,或者,频域偏移为负偏移。其中,正偏移指的是向频率更高的方向进行偏移,负偏移指的是向频率更低的方向进行偏移。
进一步地,在根据频域偏移计算得到第一频域位置超出资源块RB频域范围的情况下,定位参考信号的频域位置为:按照特定值对第一频域位置取模后的位置。其中,特定值可以是一个RB中最多所包含的频域粒度数,假设频域粒度为RE,那么特定值为一个RB最多所包含的RE数量,即12。那么当某个符号上的RE位置根据RE偏移计算要超出1个RB的范围时,可通过取模值(mod 12)使得定位参考信号的在该符号上的频域位置落在该RB范围内。
可选地,资源配置信息中的参数项可以包括:资源图样所包含的符号数,用于指示定位参考信号所占符号数。其中,在定位参考信号所占符号数大于1的情况下,定位参考信号所占用的多个符号可以是连续的,也可以是非连续的。
其中,符号数对应的第三可选值可以为:大于或等于第一可选值与第二可选值的商值,即定位参考信号所占用的符号数不小于N/频域偏移。假设频域密度为2,频域偏移为1,符号数大于或等于2。假设频域密度为3,频域偏移为1,符号数大于或等于3。假设频域密度为4,频域偏移为1时,符号数可以大于或等于4;频域偏移为2时,符号数可以大于或等于2。假设频域 密度为6,频域偏移为1时,符号数可以大于或等于6;频域偏移为2时,符号数可以大于或等于3;频域偏移为3时,符号数可以大于或等于2。假设频域密度为12,频域偏移为1时,符号数可以大于或等于12;频域偏移为2时,符号数可以大于或等于6;频域偏移为3时,符号数可以大于或等于4;频域偏移为4时,符号数可以大于或等于3;频域偏移为6时,符号数可以大于或等于2。
或者,符号数对应的第三可选值可以为小于或等于定位参考信号所在时域传输单元中的最大符号数,以时域传输单位为时隙(slot)为例,定位参考信号所占用的符号数不大于该slot包含的最大符号数。假设频域密度为1,频域偏移只能为0,符号数可以是1~12或1~14。
或者,符号数对应的第三可选值与定位参考信号的循环前缀(Cyclic Prefix,CP)类型相关,也就是说定位参考信号的资源图样与CP类型有关,其中,定位参考信号的CP类型可以是网络设备配置的。例如,对于正常CP(normal CP),定位参考信号占用的符号数不超过normal CP下1个时域传输单元(如slot)包含的最大符号数,如14;对于扩展CP(Extended CP),定位参考信号占用的符号数不超过Extended CP下1个时域传输单元(如slot)包含的最大符号数,如12。
可选地,资源配置信息中的参数项还可以包括:资源图样中的第一个符号位置,用于指示定位参考信号的第一个符号在时域传输单元(如slot)内的位置。其中,第一个符号位置对应的第四可选值的范围为:[0,M]的子集或全集,M为定位参考信号所在时域传输单元中的最大符号数与资源图样所包含的符号数的差值。以第四可选值的范围为[0,M]为例,资源图样中的第一个符号位置可以是符号序号为0、1、...、M-1或M处的位置。
可选地,资源配置信息中的参数项还可以包括:资源图样的第一个符号中的最低频域位置,最低频域位置对应的第五可选值的范围为:[0,N-1]的子集或全集。也就是说,定位参考信号在第1个符号中频域最低的位置与comb-N结构有关,以第五可选值的范围为[0,N-1]为例,资源图样中的第一个符号中最低频域位置可以是RE编号为0、1、...、N-2或N-1的位置。例如,频域密度为6,最低频域位置为0~5中的一个。
其中,值得指出的是,资源配置信息可以包括:定位参考信号的频域密度、定位参考信号在相邻符号中的频域偏移(如RE偏移)、定位参考信号所占的符号数、定位参考信号的所占的第1个符号位置、定位参考信号所占第1个符号中的最低频域位置等中的至少一项。其中,资源配置信息所包含的参数项中,存在至少一个对应多个可选值的参数项,参数项的值不同所确定的资源图样不同。下面本公开实施例将结合具体示例,对网络设备配置的定位参考信号的资源图样做进一步说明。
示例一、频域密度指示comb-12,以正常CP为例
如图5a所示,网络设配置的资源配置信息中频域密度指示comb-12,频域偏移为1,所包含符号数是12,第一个符号位置为2,第一个符号中最低频域位置为0。
如图5b所示,网络设配置的资源配置信息中频域密度指示comb-12,频域偏移为2,所包含符号数是6,第一个符号位置为2,第一个符号中最低频域位置为0。
示例二、频域密度指示comb-6,以正常CP为例
如图6a所示,网络设配置的资源配置信息中频域密度指示comb-6,频域偏移为1,所包含符号数是6,第一个符号位置为3,第一个符号中最低频域位置为0。
如图6b所示,网络设配置的资源配置信息中频域密度指示comb-6,频域偏移为1,所包含符号数是10,第一个符号位置为3,第一个符号中最低频域位置为0。
如图6c所示,网络设配置的资源配置信息中频域密度指示comb-6,频域偏移为2,所包含符号数是3,第一个符号位置为3,第一个符号中最低频域位置为0。
如图6d所示,网络设配置的资源配置信息中频域密度指示comb-6,频域偏移为2,所包含符号数是6,第一个符号位置为3,第一个符号中最低频域位置为0。
如图6e所示,网络设配置的资源配置信息中频域密度指示comb-6,频域偏移为3,所包含符号数是2,第一个符号位置为3,第一个符号中最低频域 位置为0。
如图6f所示,网络设配置的资源配置信息中频域密度指示comb-6,频域偏移为3,所包含符号数是6,第一个符号位置为3,第一个符号中最低频域位置为0。
示例三、频域密度指示comb-4,以正常CP为例
如图7a所示,网络设配置的资源配置信息中频域密度指示comb-4,频域偏移为1,所包含符号数是4,第一个符号位置为3,第一个符号中最低频域位置为0。
如图7b所示,网络设配置的资源配置信息中频域密度指示comb-4,频域偏移为1,所包含符号数是8,第一个符号位置为3,第一个符号中最低频域位置为0。
如图7c所示,网络设配置的资源配置信息中频域密度指示comb-4,频域偏移为2,所包含符号数是2,第一个符号位置为3,第一个符号中最低频域位置为0。
如图7d所示,网络设配置的资源配置信息中频域密度指示comb-4,频域偏移为2,所包含符号数是4,第一个符号位置为3,第一个符号中最低频域位置为0。
示例四、频域密度指示comb-3,以正常CP为例
如图8a所示,网络设配置的资源配置信息中频域密度指示comb-3,频域偏移为1,所包含符号数是3,第一个符号位置为3,第一个符号中最低频域位置为0。
如图8b所示,网络设配置的资源配置信息中频域密度指示comb-3,频域偏移为1,所包含符号数是6,第一个符号位置为3,第一个符号中最低频域位置为0。
示例五、频域密度指示comb-2,以正常CP为例
如图9a所示,网络设配置的资源配置信息中频域密度指示comb-2,频域偏移为1,所包含符号数是2,第一个符号位置为3,第一个符号中最低频域位置为0。
如图9b所示,网络设配置的资源配置信息中频域密度指示comb-2,频 域偏移为1,所包含符号数是4,第一个符号位置为3,第一个符号中最低频域位置为0。
示例六、频域密度指示comb-1,以正常CP为例
如图10所示,网络设配置的资源配置信息中频域密度指示comb-1,频域偏移为0(即频域不偏移),所包含符号数是1,第一个符号位置为3,第一个符号中最低频域位置为0。
其中,值得说明的是,以上示例只给出了资源配置信息中不同参数项取不同可选值所确定出的部分资源图样,本领域技术人员应该能够理解采用上述资源配置信息的配置方式所确定出的资源图样均属于本公开的实施例,故在此不再一一列举。
其中,本公开实施例的定位参考信号可占用一个符号,也可占用多个符号。在定位参考信号占用多个符号时,占用的多个符号可以是连续的,也可以是非连续的。即资源图样包含符号数超过2个时,这些符号可以连续也可以不连续。
在资源图样包含至少两个不连续符号的情况下,资源图样在每P个子载波上均占用至少一个资源元素RE,P为1、2或3。也就是说,符号不连续的资源图样中,资源图样在所在PRB的每一个子载波上都有至少一个RE。或者符号不连续的资源图样中,资源图样在所在PRB上每2或3个子载波上有至少一个RE。
可选地,在资源图样包含至少两个不连续符号的情况下,资源图样所包含的符号等间隔分布,即定位参考信号占用的符号在时域上可以等间隔分布。
可选地,在资源图样包含至少两个不连续符号的情况下,至少两个不连续符号上的资源图样是截断连续符号上资源图样后得到的。即符号不连续的资源图样可以是从符号连续的资源图样在时域上截断后获得的。
其中,符号不连续的资源图样比较适用于多普勒扩展影响较大的场景。如图11所示,定位参考信号所占的第一个符号位置为3,时域间隔为2个符号,实际包含的符号数为6,频域密度为comb-6,频域偏移为1,第1个符号的最低频域位置为0。
本公开实施例的资源配置信息除了可以包括上述确定资源图样的参数项 外,还可以包括指示不同端口的指示信息。其中,资源图样可以对应一个端口,或对应至少两个端口。
其中,在资源图样对应至少两个端口的情况下,不同端口上的资源图样可相同,或者不同端口上的资源图样可以时分复用,或者不同端口上的资源图样频分复用。也就是说,定位参考信号的资源图样与定位参考信号的端口信息有关,如果定位参考信号被配置多于1个端口,则不同的端口的资源图样可以相同或频分复用或时分复用。
进一步地,在不同端口上的资源图样相同的情况下,不同端口上的定位参考信号的生成序列不同,或者,不同端口上的定位参考信号的频域正交码(Frequency Domain Orthogonal Covering Code,FD-OCC)不同。
以不同端口上的定位参考信号的生成序列不同为例,生成序列的初始值与端口的端口序号相关。假设2个端口的资源图样相同,那么这2个端口的定位参考信号的生成序列不同。例如端口t上的定位参考信号的生成序列的初始值(如生成参数)与端口t序号有关。其中,定位参考信号的生成序列可以为Gold序列,其中Gold序列的生成参数可以通过端口序号计算获得。除了端口序号,定位参考信号的生成序列的生成参数还与定位参考信号的资源标识(PRS resource ID)、CP类型、小区(cell)/接收发送点(Transmit Receive Point,TRP)标识或虚拟小区标识有关。
不同端口上的定位参考信号的频域正交码不同为例,假设2个端口的资源图样相同,那么这2个端口的定位参考信号通过FD-OCC区分。具体地,端口1的定位参考信号的序列为c(m),可直接映射到某符号对应的RE上。端口2的PRS序列可为c(m)*occ(m)之后映射到与端口1相同的RE位置。其中,occ(m)为FD-OCC序列,可表示为(1,-1,1,-1…,1,-1,1,-1)。
进一步地,不同端口上的资源图样可以频分复用,假设定位参考信号被配置了2个端口,网络设备可以先配置1个端口的资源图样,另1个端口的资源图用可通过配置频域偏移(frequency offset)获得。具体地,该频域偏移可以是RE级的偏移。
进一步地,不同端口上的资源图样可以时分复用,假设定位参考信号被配置了2个端口,网络设备可以先配置1个端口的资源图样,另1端口的资 源图样可通过配置时域偏移(time offset)获得。具体的,时域偏移可以是符号级别的偏移。
进一步地,本公开实施例介绍了不同端口上资源图样的关系,以及与资源图样相关的资源配置信息。值得指出的是,资源配置信息确定的资源图样可以是由一套资源配置信息中的参数项取值确定的,也可以是由多套资源配置信息中的参数项取值确定的。以多套为例,资源图样可以包括:至少两个子资源图样,至少两个子资源图样与参数项的值相关。也就是说,根据一套资源配置信息中的参数项取值,可确定一个子资源图样。例如网络设备为终端配置了周期性的定位参考信号的资源图样(第一子资源图样)用于下行定位。但在某些特定情况和特定时刻,之前配置好的周期性资源图样不足以支持更高精度的定位。网络设备通过某信令触发了另1个非周期的定位参考信号,且网络设备为该非周期定位参考信号配置了新的资源图样(第二子资源图样)。终端可以联合配置好的第一子资源图样与第二子资源图样一起用于定位测量,具体地,终端可以使用周期的第一子资源图样与非周期的第二子资源图样组合为一个资源图样进行定位测量。
在本公开实施例中,不同小区的资源图样的频域偏移不同。具体地,不同的小区的定位参考信号的资源图样可以通过频域偏移区分,频域偏移为RE级偏移,频域偏移的值与小区ID有关。
在本公开实施例中,不同小区的资源图样是时分复用的。具体地,不同的小区的定位参考信号的资源图样可以通过时分复用区分,如不同小区的定位参考信号的资源图样可以占用不同的符号或者时隙。
其中,本公开实施例中所说的小区可以为:物理小区(Physical cell)或虚拟小区。小区ID可以为物理小区ID、发送接收点ID、传输点(Transfer Point,TP)ID、全球小区(global cell)ID等至少其中之一。
本公开实施例的定位参考信号配置方法中,网络设备为终端配置定位参考信号的资源配置信息,资源配置信息中参数项的值是网络设备在至少两个可选值中选择的一个,这样系统可支持可配置的定位参考信号资源分配,从而可支持更灵活的资源配置,提高资源利用率。
以上实施例分别详细介绍了不同场景下的定位参考信号配置方法,下面 本实施例将结合附图对其对应的网络设备做进一步介绍。
如图12所示,本公开实施例的网络设备1200,能实现实施例中发送定位参考信号的资源配置信息;按照资源配置信息指示的资源图样,发送定位参考信号;其中,资源配置信息包括至少一个参数项,参数项的值为参数项对应的至少两个可选值中的一个,资源图样与参数项的值相关方法的细节,并达到相同的效果,该网络设备1200具体包括以下功能模块:
第一发送模块1210,用于发送定位参考信号的资源配置信息;
第二发送模块1220,用于按照所述资源配置信息指示的资源图样,发送所述定位参考信号;其中,所述资源配置信息包括至少一个参数项,所述参数项的值为参数项对应的至少两个可选值中的一个,所述资源图样与所述参数项的值相关。
可选地,参数项包括:资源图样的频域密度,频域密度用于指示定位参考信号在频域上间隔N个子载波,N为频域密度对应的第一可选值中的一个。
可选地,第一可选值包括:1、2、3、4、6和12中的至少一项。
可选地,参数项还包括:资源图样中相邻符号的频域偏移,频域偏移对应的第二可选值与第一可选值相关。
可选地,第二可选值为第一可选值的因数,第二可选值与第一可选值不同。
可选地,频域偏移为正偏移,或者,频域偏移为负偏移。
可选地,在根据频域偏移计算得到第一频域位置超出资源块RB频域范围的情况下,定位参考信号的频域位置为:按照特定值对第一频域位置取模后的位置。
可选地,参数项还包括:资源图样所包含的符号数,符号数对应的第三可选值为:大于或等于第一可选值与第二可选值的商值。
可选地,参数项包括:资源图样所包含的符号数,符号数对应的第三可选值为:小于或等于定位参考信号所在时域传输单元中的最大符号数。
可选地,参数项包括:资源图样所包含的符号数,符号数对应的第三可选值与定位参考信号的循环前缀CP类型相关。
可选地,参数项还包括:资源图样的第一个符号位置,第一个符号位置 对应的第四可选值的范围为:[0,M],M为定位参考信号所在时域传输单元中的最大符号数与资源图样所包含的符号数的差值。
可选地,参数项还包括:资源图样的第一个符号中的最低频域位置,最低频域位置对应的第五可选值的范围为:[0,N-1]。
可选地,在资源图样对应至少两个端口的情况下,不同端口上的资源图样相同,或,不同端口上的资源图样时分复用,或,不同端口上的资源图样频分复用。
可选地,在不同端口上的资源图样相同的情况下,不同端口上的定位参考信号的生成序列不同,或者,不同端口上的定位参考信号的频域正交码不同。
可选地,生成序列的初始值与端口的端口序号相关。
可选地,在资源图样包含至少两个不连续符号的情况下,资源图样在每P个子载波上均占用至少一个资源元素RE,P为1、2或3。
可选地,在资源图样包含至少两个不连续符号的情况下,资源图样所包含的符号等间隔分布。
可选地,在资源图样包含至少两个不连续符号的情况下,至少两个不连续符号上的资源图样是截断连续符号上资源图样后得到的。
可选地,资源图样包括至少两个子资源图样,至少两个子资源图样与参数项的值相关。
可选地,不同小区的资源图样的频域偏移不同。
可选地,不同小区的资源图样是时分复用的。
值得指出的是,本公开实施例的网络设备为终端配置定位参考信号的资源配置信息,资源配置信息中参数项的值是网络设备在至少两个可选值中选择的一个,这样系统可支持可配置的定位参考信号资源分配,从而可支持更灵活的资源配置,提高资源利用率。
为了更好的实现上述目的,本公开的实施例还提供了一种网络设备,该网络设备包括处理器、存储器以及存储于存储器上并可在处理器上运行的程序,处理器执行程序时实现如上所述的定位参考信号配置方法中的步骤。发明实施例还提供了一种计算机可读存储介质,该计算机可读存储介质上存储 有程序,程序被处理器执行时实现如上所述的定位参考信号配置方法的步骤。
具体地,本公开的实施例还提供了一种网络设备。如图13所示,该网络设备1300包括:天线131、射频装置132、基带装置133。天线131与射频装置132连接。在上行方向上,射频装置132通过天线131接收信息,将接收的信息发送给基带装置133进行处理。在下行方向上,基带装置133对要发送的信息进行处理,并发送给射频装置132,射频装置132对收到的信息进行处理后经过天线131发送出去。
上述频带处理装置可以位于基带装置133中,以上实施例中网络设备执行的方法可以在基带装置133中实现,该基带装置133包括处理器134和存储器135。
基带装置133例如可以包括至少一个基带板,该基带板上设置有多个芯片,如图13所示,其中一个芯片例如为处理器134,与存储器135连接,以调用存储器135中的程序,执行以上方法实施例中所示的网络设备操作。
该基带装置133还可以包括网络接口136,用于与射频装置132交互信息,该接口例如为通用公共无线接口(common public radio interface,CPRI)。
这里的处理器可以是一个处理器,也可以是多个处理元件的统称,例如,该处理器可以是CPU,也可以是ASIC,或者是被配置成实施以上网络设备所执行方法的一个或多个集成电路,例如:一个或多个微处理器DSP,或,一个或者多个现场可编程门阵列FPGA等。存储元件可以是一个存储器,也可以是多个存储元件的统称。
存储器135可以是易失性存储器或非易失性存储器,或可包括易失性和非易失性存储器两者。其中,非易失性存储器可以是只读存储器(Read-Only Memory,ROM)、可编程只读存储器(Programmable ROM,PROM)、可擦除可编程只读存储器(Erasable PROM,EPROM)、电可擦除可编程只读存储器(Electrically EPROM,EEPROM)或闪存。易失性存储器可以是随机存取存储器(Random Access Memory,RAM),其用作外部高速缓存。通过示例性但不是限制性说明,许多形式的RAM可用,例如静态随机存取存储器(Static RAM,SRAM)、动态随机存取存储器(Dynamic RAM,DRAM)、同步动态随机存取存储器(Synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储 器(Double Data Rate SDRAM,DDRSDRAM)、增强型同步动态随机存取存储器(Enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(Synchlink DRAM,SLDRAM)和直接内存总线随机存取存储器(Direct Rambus RAM,DRRAM)。本申请描述的存储器135旨在包括但不限于这些和任意其它适合类型的存储器。
具体地,本公开实施例的网络设备还包括:存储在存储器135上并可在处理器134上运行的程序,处理器134调用存储器135中的程序执行图12所示各模块执行的方法。
具体地,程序被处理器134调用时可用于执行:发送定位参考信号的资源配置信息;按照资源配置信息指示的资源图样,发送定位参考信号;其中,资源配置信息包括至少一个参数项,参数项的值为参数项对应的至少两个可选值中的一个,资源图样与参数项的值相关。
其中,本公开实施例中的网络设备,为终端配置定位参考信号的资源配置信息,资源配置信息中参数项的值是网络设备在至少两个可选值中选择的一个,这样系统可支持可配置的定位参考信号资源分配,从而可支持更灵活的资源配置,提高资源利用率。
以上实施例从网络设备侧介绍了本公开的定位参考信号配置方法,下面本实施例将结合附图对终端侧的定位参考信号配置方法做进一步介绍。
如图14所示,本公开实施例的定位参考信号配置方法,应用于终端,该方法可以包括以下步骤141至143。
步骤141:接收定位参考信号的资源配置信息;其中,资源配置信息包括至少一个参数项,参数项的值为参数项对应的至少两个可选值中的一个。
定位参考信号PRS用于下行定位,网络设备为定位参考信号配置传输资源后,将定位参考信号的资源配置信息发送给终端,其中,资源配置信息用于指示定位参考信号的传输资源,如频域资源、时域资源、空域资源和码域资源等中的至少一项。
步骤142:根据资源配置信息中参数项的值,确定定位参考信号的资源图样。
其中,资源配置信息可以包括至少一个与定位参考信号传输资源相关的 参数项,资源图样(pattern),或称为PRS资源的图样,与参数项的取值相关,某个参数项的不同取值对应的资源图样不同。网络设备在为定位参考信号配置了时频域资源后,通过相应的时频域资源发送定位参考信号。
步骤143:按照资源图样,接收定位参考信号。
终端在根据资源配置信息确定资源图样后,按照资源图样接收定位信号,以实现后续的定位测量。
其中,资源配置信息所包含的参数项可以包括:资源图样的频域密度,频域密度用于指示定位参考信号在频域上间隔N个子载波,N为频域密度对应的第一可选值中的一个。也就是说,定位参考信号的资源图样与定位参考信号的频域密度相关。
其中,频域密度可以是定位参考信号在每个物理资源块上的频域密度,频域密度可以用comb-N结构表示,表示定位参考信号在频域上等间隔分布,间隔为N个子载波。其中,N为频域密度对应的第一可选值中的一个,第一可选值可以包括1、2、3、4、6和12中的至少一项,假设第一可选值包括1、2、3、4、6和12,那么N可以为1、2、3、4、6或12。以comb-N结构表示的频域密度可以等效为密度为12/N,表示1个RB中包含的等间隔的RE个数。N=1、2、3、4、6或12分别等效为密度为12、6、4、3、2或1。
进一步地,资源配置信息中的参数项还可以包括:资源图样中相邻符号的频域偏移,频域偏移对应的第二可选值与第一可选值相关。也就是说,定位参考信号的资源图样还可以与定位参考信号在相邻符号中的频域偏移相关。其中,频域偏移可以是RE偏移,定位参考信号在后1个符号的RE位置可以通过在前1个相邻的符号上的RE位置和配置的RE偏移计算得到。
其中,频域偏移对应的第二可选值与频域密度对应的第一可选值相关,如:RE偏移的大小(第二可选值)与comb-N结构(第一可选值)有关。可选地,第二可选值可以为第一可选值的因数,且第二可选值与第一可选值不同,即第一可选值的因数中除了第一可选值之外的值,如RE偏移的大小可以是除了N本身的N的因数。对于N为12(comb-12),RE偏移可以是1、2、3、4和6中的至少一项;对于N为6(comb-6),RE偏移可以是1、2和3中的至少一项;对于N为4(comb-4),RE偏移可以是1和/或2;对于N 为3(comb-3),RE偏移可以是1;对于N为2(comb-2),RE偏移可以是1;对于N为1(comb-1),不配置RE偏移。
可选地,本公开实施例所说的频域偏移可以为正偏移,或者,频域偏移为负偏移。其中,正偏移指的是向频率更高的方向进行偏移,负偏移指的是向频率更低的方向进行偏移。
进一步地,在根据频域偏移计算得到第一频域位置超出资源块RB频域范围的情况下,定位参考信号的频域位置为:按照特定值对第一频域位置取模后的位置。其中,特定值可以是一个RB中最多所包含的频域粒度数,假设频域粒度为RE,那么特定值为一个RB最多所包含的RE数量,即12。那么当某个符号上的RE位置根据RE偏移计算要超出1个RB的范围时,可通过取模值(mod 12)使得定位参考信号的在该符号上的频域位置落在该RB范围内。
可选地,资源配置信息中的参数项可以包括:资源图样所包含的符号数,用于指示定位参考信号所占符号数。其中,在定位参考信号所占符号数大于1的情况下,定位参考信号所占用的多个符号可以是连续的,也可以是非连续的。
其中,符号数对应的第三可选值可以为:大于或等于第一可选值与第二可选值的商值,即定位参考信号所占用的符号数不小于N/频域偏移。
或者,符号数对应的第三可选值可以为小于或等于定位参考信号所在时域传输单元中的最大符号数,以时域传输单位为时隙(slot)为例,定位参考信号所占用的符号数不大于该slot包含的最大符号数。
或者,符号数对应的第三可选值与定位参考信号的CP类型相关,也就是说定位参考信号的资源图样与CP类型有关,其中,定位参考信号的CP类型可以是网络设备配置的。例如,对于normal CP,定位参考信号占用的符号数不超过normal CP下1个时域传输单元(如slot)包含的最大符号数,如14;对于Extended CP,定位参考信号占用的符号数不超过Extended CP下1个时域传输单元(如slot)包含的最大符号数,如12。
可选地,资源配置信息中的参数项还可以包括:资源图样中的第一个符号位置,用于指示定位参考信号的第一个符号在时域传输单元(如slot)内的 位置。其中,第一个符号位置对应的第四可选值的范围为:[0,M]的子集或全集,M为定位参考信号所在时域传输单元中的最大符号数与资源图样所包含的符号数的差值。以第四可选值的范围为[0,M]为例,资源图样中的第一个符号位置可以是符号序号为0、1、...、M-1或M处的位置。
可选地,资源配置信息中的参数项还可以包括:资源图样的第一个符号中的最低频域位置,最低频域位置对应的第五可选值的范围为:[0,N-1]的子集或全集。也就是说,定位参考信号在第1个符号中频域最低的位置与comb-N结构有关,以第五可选值的范围为[0,N-1]为例,资源图样中的第一个符号中最低频域位置可以是RE编号为0、1、...、N-2或N-1的位置。例如,频域密度为6,最低频域位置为0~5中的一个。
其中,同上述网络设备侧实施例类似,资源配置信息可以包括:定位参考信号的频域密度、定位参考信号在相邻符号中的频域偏移(如RE偏移)、定位参考信号所占的符号数、定位参考信号的所占的第1个符号位置、定位参考信号所占第1个符号中的最低频域位置等中的至少一项。其中,资源配置信息所包含的参数项中,存在至少一个对应多个可选值的参数项,参数项的值不同所确定的资源图样不同,本领域技术人员应该能够理解采用上述资源配置信息的配置方式所确定出的资源图样均属于本公开的实施例,故在此不再一一列举。
其中,本公开实施例的定位参考信号可占用一个符号,也可占用多个符号。在定位参考信号占用多个符号时,占用的多个符号可以是连续的,也可以是非连续的。即资源图样包含符号数超过2个时,这些符号可以连续也可以不连续。
在资源图样包含至少两个不连续符号的情况下,资源图样在每P个子载波上均占用至少一个资源元素RE,P为1、2或3。也就是说,符号不连续的资源图样中,资源图样在所在PRB的每一个子载波上都有至少一个RE。或者符号不连续的资源图样中,资源图样在所在PRB上每2或3个子载波上有至少一个RE。
可选地,在资源图样包含至少两个不连续符号的情况下,资源图样所包含的符号等间隔分布,即定位参考信号占用的符号在时域上可以等间隔分布。
可选地,在资源图样包含至少两个不连续符号的情况下,至少两个不连续符号上的资源图样是截断连续符号上资源图样后得到的。即符号不连续的资源图样可以是从符号连续的资源图样在时域上截断后获得的。
本公开实施例的资源配置信息除了可以包括上述确定资源图样的参数项外,还可以包括指示不同端口的指示信息。其中,资源图样可以对应一个端口,或对应至少两个端口。在资源图样对应至少两个端口的情况下,不同端口上的资源图样可相同,或者不同端口上的资源图样可以时分复用,或者不同端口上的资源图样频分复用。也就是说,定位参考信号的资源图样与定位参考信号的端口信息有关,如果定位参考信号被配置多于1个端口,则不同的端口的资源图样可以相同或频分复用或时分复用。
本公开实施例介绍了不同端口上资源图样的关系,以及与资源图样相关的资源配置信息。值得指出的是,资源配置信息确定的资源图样可以是由一套资源配置信息中的参数项取值确定的,也可以是由多套资源配置信息中的参数项取值确定的。以多套为例,资源图样可以包括:至少两个子资源图样,至少两个子资源图样与参数项的值相关。也就是说,根据一套资源配置信息中的参数项取值,可确定一个子资源图样。
在本公开实施例中,不同小区的资源图样的频域偏移不同。具体地,不同的小区的定位参考信号的资源图样可以通过频域偏移区分,频域偏移为RE级偏移,频域偏移的值与小区ID有关。
在本公开实施例中,不同小区的资源图样是时分复用的。具体地,不同的小区的定位参考信号的资源图样可以通过时分复用区分,如不同小区的定位参考信号的资源图样可以占用不同的符号或者时隙。
其中,本公开实施例中所说的小区可以为:物理小区或虚拟小区。小区ID可以为物理小区ID、发送接收点ID、传输点ID、全球小区ID等至少其中之一。
本公开实施例的定位参考信号配置方法中,终端从网络设备侧接收定位参考信号的资源配置信息,资源配置信息中参数项的值是网络设备在至少两个可选值中选择的一个,这样系统可支持可配置的定位参考信号资源分配,从而可支持更灵活的资源配置,提高资源利用率。
以上实施例介绍了不同场景下的定位参考信号配置方法,下面将结合附图对与其对应的终端做进一步介绍。
如图15所示,本公开实施例的终端1500,能实现上述实施例中接收定位参考信号的资源配置信息;其中,资源配置信息包括至少一个参数项,参数项的值为参数项对应的至少两个可选值中的一个;根据资源配置信息中参数项的值,确定定位参考信号的资源图样;按照资源图样,接收定位参考信号方法的细节,并达到相同的效果,该终端1500具体包括以下功能模块:
第一接收模块1510,用于接收定位参考信号的资源配置信息;其中,资源配置信息包括至少一个参数项,参数项的值为参数项对应的至少两个可选值中的一个;
确定模块1520,用于根据资源配置信息中参数项的值,确定定位参考信号的资源图样;
第二接收模块1530,用于按照资源图样,接收定位参考信号。
可选地,参数项包括:资源图样的频域密度,频域密度用于指示定位参考信号在频域上间隔N个子载波,N为频域密度对应的第一可选值中的一个。
可选地,第一可选值包括:1、2、3、4、6和12中的至少一项。
可选地,参数项还包括:资源图样中相邻符号的频域偏移,频域偏移对应的第二可选值与第一可选值相关。
可选地,第二可选值为第一可选值的因数,第二可选值与第一可选值不同。
可选地,频域偏移为正偏移,或者,频域偏移为负偏移。
可选地,在根据频域偏移计算得到第一频域位置超出资源块RB频域范围的情况下,定位参考信号的频域位置为:按照特定值对第一频域位置取模后的位置。
可选地,参数项还包括:资源图样所包含的符号数,符号数对应的第三可选值为:大于或等于第一可选值与第二可选值的商值。
可选地,参数项包括:资源图样所包含的符号数,符号数对应的第三可选值为:小于或等于定位参考信号所在时域传输单元中的最大符号数。
可选地,参数项包括:资源图样所包含的符号数,符号数对应的第三可 选值与定位参考信号的循环前缀CP类型相关。
可选地,参数项还包括:资源图样的第一个符号位置,第一个符号位置对应的第四可选值的范围为:[0,M],M为定位参考信号所在时域传输单元中的最大符号数与资源图样所包含的符号数的差值。
可选地,参数项还包括:资源图样的第一个符号中的最低频域位置,最低频域位置对应的第五可选值的范围为:[0,N-1]。
可选地,在资源图样对应至少两个端口的情况下,不同端口上的资源图样相同,或,不同端口上的资源图样时分复用,或,不同端口上的资源图样频分复用。
可选地,在不同端口上的资源图样相同的情况下,不同端口上的定位参考信号的生成序列不同,或者,不同端口上的定位参考信号的频域正交码不同。
可选地,生成序列的初始值与端口的端口序号相关。
可选地,在资源图样包含至少两个不连续符号的情况下,资源图样在每P个子载波上均占用至少一个资源元素RE,P为1、2或3。
可选地,在资源图样包含至少两个不连续符号的情况下,资源图样所包含的符号等间隔分布。
可选地,在资源图样包含至少两个不连续符号的情况下,至少两个不连续符号上的资源图样是截断连续符号上资源图样后得到的。
可选地,资源图样包括至少两个子资源图样,至少两个子资源图样与参数项的值相关。
可选地,不同小区的资源图样的频域偏移不同。
可选地,不同小区的资源图样是时分复用的。
值得指出的是,本公开实施例的终端从网络设备侧接收定位参考信号的资源配置信息,资源配置信息中参数项的值是网络设备在至少两个可选值中选择的一个,这样系统可支持可配置的定位参考信号资源分配,从而可支持更灵活的资源配置,提高资源利用率。
需要说明的是,应理解以上网络设备和终端的各个模块的划分仅仅是一种逻辑功能的划分,实际实现时可以全部或部分集成到一个物理实体上,也 可以物理上分开。且这些模块可以全部以软件通过处理元件调用的形式实现;也可以全部以硬件的形式实现;还可以部分模块通过处理元件调用软件的形式实现,部分模块通过硬件的形式实现。例如,确定模块可以为单独设立的处理元件,也可以集成在上述装置的某一个芯片中实现,此外,也可以以程序代码的形式存储于上述装置的存储器中,由上述装置的某一个处理元件调用并执行以上确定模块的功能。其它模块的实现与之类似。此外这些模块全部或部分可以集成在一起,也可以独立实现。这里所述的处理元件可以是一种集成电路,具有信号的处理能力。在实现过程中,上述方法的各步骤或以上各个模块可以通过处理器元件中的硬件的集成逻辑电路或者软件形式的指令完成。
例如,以上这些模块可以是被配置成实施以上方法的一个或多个集成电路,例如:一个或多个特定集成电路(Application Specific Integrated Circuit,ASIC),或,一个或多个微处理器(digital signal processor,DSP),或,一个或者多个现场可编程门阵列(Field Programmable Gate Array,FPGA)等。再如,当以上某个模块通过处理元件调度程序代码的形式实现时,该处理元件可以是通用处理器,例如中央处理器(Central Processing Unit,CPU)或其它可以调用程序代码的处理器。再如,这些模块可以集成在一起,以片上系统(system-on-a-chip,SOC)的形式实现。
为了更好的实现上述目的,进一步地,图16为实现本公开各个实施例的一种终端的硬件结构示意图,该终端160包括但不限于:射频单元161、网络模块162、音频输出单元163、输入单元164、传感器165、显示单元166、用户输入单元167、接口单元168、存储器169、处理器1610、以及电源1611等部件。本领域技术人员可以理解,图16中示出的终端结构并不构成对终端的限定,终端可以包括比图示更多或更少的部件,或者组合某些部件,或者不同的部件布置。在本公开实施例中,终端包括但不限于手机、平板电脑、笔记本电脑、掌上电脑、车载终端、可穿戴设备、以及计步器等。
其中,射频单元161,用于接收定位参考信号的资源配置信息;其中,资源配置信息包括至少一个参数项,参数项的值为参数项对应的至少两个可选值中的一个;
处理器1610,用于根据资源配置信息中参数项的值,确定定位参考信号的资源图样;
射频单元161还用于:按照资源图样,接收定位参考信号。
本公开实施例的终端从网络设备侧接收定位参考信号的资源配置信息,资源配置信息中参数项的值是网络设备在至少两个可选值中选择的一个,这样系统可支持可配置的定位参考信号资源分配,从而可支持更灵活的资源配置,提高资源利用率。
应理解的是,本公开实施例中,射频单元161可用于收发信息或通话过程中,信号的接收和发送,具体的,将来自基站的下行数据接收后,给处理器1610处理;另外,将上行的数据发送给基站。通常,射频单元161包括但不限于天线、至少一个放大器、收发信机、耦合器、低噪声放大器、双工器等。此外,射频单元161还可以通过无线通信系统与网络和其他设备通信。
终端通过网络模块162为用户提供了无线的宽带互联网访问,如帮助用户收发电子邮件、浏览网页和访问流式媒体等。
音频输出单元163可以将射频单元161或网络模块162接收的或者在存储器169中存储的音频数据转换成音频信号并且输出为声音。而且,音频输出单元163还可以提供与终端160执行的特定功能相关的音频输出(例如,呼叫信号接收声音、消息接收声音等等)。音频输出单元163包括扬声器、蜂鸣器以及受话器等。
输入单元164用于接收音频或视频信号。输入单元164可以包括图形处理器(Graphics Processing Unit,GPU)1641和麦克风1642,图形处理器1641对在视频捕获模式或图像捕获模式中由图像捕获装置(如摄像头)获得的静态图片或视频的图像数据进行处理。处理后的图像帧可以显示在显示单元166上。经图形处理器1641处理后的图像帧可以存储在存储器169(或其它存储介质)中或者经由射频单元161或网络模块162进行发送。麦克风1642可以接收声音,并且能够将这样的声音处理为音频数据。处理后的音频数据可以在电话通话模式的情况下转换为可经由射频单元161发送到移动通信基站的格式输出。
终端160还包括至少一种传感器165,比如光传感器、运动传感器以及其 他传感器。具体地,光传感器包括环境光传感器及接近传感器,其中,环境光传感器可根据环境光线的明暗来调节显示面板1661的亮度,接近传感器可在终端160移动到耳边时,关闭显示面板1661和/或背光。作为运动传感器的一种,加速计传感器可检测各个方向上(一般为三轴)加速度的大小,静止时可检测出重力的大小及方向,可用于识别终端姿态(比如横竖屏切换、相关游戏、磁力计姿态校准)、振动识别相关功能(比如计步器、敲击)等;传感器165还可以包括指纹传感器、压力传感器、虹膜传感器、分子传感器、陀螺仪、气压计、湿度计、温度计、红外线传感器等,在此不再赘述。
显示单元166用于显示由用户输入的信息或提供给用户的信息。显示单元166可包括显示面板1661,可以采用液晶显示器(Liquid Crystal Display,LCD)、有机发光二极管(Organic Light-Emitting Diode,OLED)等形式来配置显示面板1661。
用户输入单元167可用于接收输入的数字或字符信息,以及产生与终端的用户设置以及功能控制有关的键信号输入。具体地,用户输入单元167包括触控面板1671以及其他输入设备1672。触控面板1671,也称为触摸屏,可收集用户在其上或附近的触摸操作(比如用户使用手指、触笔等任何适合的物体或附件在触控面板1671上或在触控面板1671附近的操作)。触控面板1671可包括触摸检测装置和触摸控制器两个部分。其中,触摸检测装置检测用户的触摸方位,并检测触摸操作带来的信号,将信号传送给触摸控制器;触摸控制器从触摸检测装置上接收触摸信息,并将它转换成触点坐标,再送给处理器1610,接收处理器1610发来的命令并加以执行。此外,可以采用电阻式、电容式、红外线以及表面声波等多种类型实现触控面板1671。除了触控面板1671,用户输入单元167还可以包括其他输入设备1672。具体地,其他输入设备1672可以包括但不限于物理键盘、功能键(比如音量控制按键、开关按键等)、轨迹球、鼠标、操作杆,在此不再赘述。
进一步的,触控面板1671可覆盖在显示面板1661上,当触控面板1671检测到在其上或附近的触摸操作后,传送给处理器1610以确定触摸事件的类型,随后处理器1610根据触摸事件的类型在显示面板1661上提供相应的视觉输出。虽然在图16中,触控面板1671与显示面板1661是作为两个独立的 部件来实现终端的输入和输出功能,但是在某些实施例中,可以将触控面板1671与显示面板1661集成而实现终端的输入和输出功能,具体此处不做限定。
接口单元168为外部装置与终端160连接的接口。例如,外部装置可以包括有线或无线头戴式耳机端口、外部电源(或电池充电器)端口、有线或无线数据端口、存储卡端口、用于连接具有识别模块的装置的端口、音频输入/输出(I/O)端口、视频I/O端口、耳机端口等等。接口单元168可以用于接收来自外部装置的输入(例如,数据信息、电力等等)并且将接收到的输入传输到终端160内的一个或多个元件或者可以用于在终端160和外部装置之间传输数据。
存储器169可用于存储软件程序以及各种数据。存储器169可主要包括存储程序区和存储数据区,其中,存储程序区可存储操作系统、至少一个功能所需的应用程序(比如声音播放功能、图像播放功能等)等;存储数据区可存储根据手机的使用所创建的数据(比如音频数据、电话本等)等。此外,存储器169可以包括高速随机存取存储器,还可以包括非易失性存储器,例如至少一个磁盘存储器件、闪存器件、或其他易失性固态存储器件。
处理器1610是终端的控制中心,利用各种接口和线路连接整个终端的各个部分,通过运行或执行存储在存储器169内的软件程序和/或模块,以及调用存储在存储器169内的数据,执行终端的各种功能和处理数据,从而对终端进行整体监控。处理器1610可包括一个或多个处理单元;可选地,处理器1610可集成应用处理器和调制解调处理器,其中,应用处理器主要处理操作系统、用户界面和应用程序等,调制解调处理器主要处理无线通信。可以理解的是,上述调制解调处理器也可以不集成到处理器1610中。
终端160还可以包括给各个部件供电的电源1611(比如电池),可选地,电源1611可以通过电源管理系统与处理器1610逻辑相连,从而通过电源管理系统实现管理充电、放电、以及功耗管理等功能。
另外,终端160包括一些未示出的功能模块,在此不再赘述。
可选地,本公开实施例还提供一种终端,包括处理器1610,存储器169,存储在存储器169上并可在所述处理器1610上运行的程序,该程序被处理器 1610执行时实现上述定位参考信号配置方法实施例的各个过程,且能达到相同的技术效果,为避免重复,这里不再赘述。其中,终端可以是无线终端也可以是有线终端,无线终端可以是指向用户提供语音和/或其他业务数据连通性的设备,具有无线连接功能的手持式设备、或连接到无线调制解调器的其他处理设备。无线终端可以经无线接入网(Radio Access Network,RAN)与一个或多个核心网进行通信,无线终端可以是移动终端,如移动电话(或称为“蜂窝”电话)和具有移动终端的计算机,例如,可以是便携式、袖珍式、手持式、计算机内置的或者车载的移动装置,它们与无线接入网交换语言和/或数据。例如,个人通信业务(Personal Communication Service,PCS)电话、无绳电话、会话发起协议(Session Initiation Protocol,SIP)话机、无线本地环路(Wireless Local Loop,WLL)站、个人数字助理(Personal Digital Assistant,PDA)等设备。无线终端也可以称为系统、订户单元(Subscriber Unit)、订户站(Subscriber Station),移动站(Mobile Station)、移动台(Mobile)、远程站(Remote Station)、远程终端(Remote Terminal)、接入终端(Access Terminal)、用户终端(User Terminal)、用户代理(User Agent)、用户设备(User Device or User Equipment),在此不作限定。
本公开实施例还提供一种计算机可读存储介质,计算机可读存储介质上存储有程序,该程序被处理器执行时实现上述定位参考信号配置方法实施例的各个过程,且能达到相同的技术效果,为避免重复,这里不再赘述。其中,所述的计算机可读存储介质,如只读存储器(Read-Only Memory,ROM)、随机存取存储器(Random Access Memory,RAM)、磁碟或者光盘等。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本公开的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的实施例中,应该理解到,所揭露的装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本公开各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
所述功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本公开的技术方案本质上或者说对相关技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本公开各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、ROM、RAM、磁碟或者光盘等各种可以存储程序代码的介质。
此外,需要指出的是,在本公开的装置和方法中,显然,各部件或各步骤是可以分解和/或重新组合的。这些分解和/或重新组合应视为本公开的等效方案。并且,执行上述系列处理的步骤可以自然地按照说明的顺序按时间顺序执行,但是并不需要一定按照时间顺序执行,某些步骤可以并行或彼此独立地执行。对本领域的普通技术人员而言,能够理解本公开的方法和装置的全部或者任何步骤或者部件,可以在任何计算装置(包括处理器、存储介质等)或者计算装置的网络中,以硬件、固件、软件或者它们的组合加以实现,这是 本领域普通技术人员在阅读了本公开的说明的情况下运用他们的基本编程技能就能实现的。
因此,本公开的目的还可以通过在任何计算装置上运行一个程序或者一组程序来实现。所述计算装置可以是公知的通用装置。因此,本公开的目的也可以仅仅通过提供包含实现所述方法或者装置的程序代码的程序产品来实现。也就是说,这样的程序产品也构成本公开,并且存储有这样的程序产品的存储介质也构成本公开。显然,所述存储介质可以是任何公知的存储介质或者将来所开发出来的任何存储介质。还需要指出的是,在本公开的装置和方法中,显然,各部件或各步骤是可以分解和/或重新组合的。这些分解和/或重新组合应视为本公开的等效方案。并且,执行上述系列处理的步骤可以自然地按照说明的顺序按时间顺序执行,但是并不需要一定按照时间顺序执行。某些步骤可以并行或彼此独立地执行。
以上所述的是本公开的可选实施方式,应当指出对于本技术领域的普通人员来说,在不脱离本公开所述的原理前提下还可以作出若干改进和润饰,这些改进和润饰也在本公开的保护范围内。

Claims (27)

  1. 一种定位参考信号配置方法,应用于网络设备侧,包括:
    发送定位参考信号的资源配置信息;
    按照所述资源配置信息指示的资源图样,发送所述定位参考信号;其中,所述资源配置信息包括至少一个参数项,所述资源配置信息所携带的所述至少一个参数项中有一个或多个参数项对应至少两个可选值,所述参数项的值为所述参数项对应的至少两个可选值中的一个,所述资源图样与所述参数项的值相关。
  2. 一种定位参考信号配置方法,应用于终端,包括:
    接收定位参考信号的资源配置信息;其中,所述资源配置信息包括至少一个参数项,所述资源配置信息所携带的所述至少一个参数项中有一个或多个参数项对应至少两个可选值,所述参数项的值为所述参数项对应的至少两个可选值中的一个;
    根据所述资源配置信息中参数项的值,确定所述定位参考信号的资源图样;
    按照所述资源图样,接收所述定位参考信号。
  3. 根据权利要求1或2所述的定位参考信号配置方法,其中,所述参数项包括:所述资源图样的频域密度,所述频域密度用于指示所述定位参考信号在频域上间隔N个子载波,所述N为所述频域密度对应的第一可选值中的一个。
  4. 根据权利要求3所述的定位参考信号配置方法,其中,所述第一可选值包括:1、2、3、4、6和12中的至少一项。
  5. 根据权利要求3所述的定位参考信号配置方法,其中,所述参数项还包括:所述资源图样中相邻符号的频域偏移,所述频域偏移对应的第二可选值与所述第一可选值相关。
  6. 根据权利要求5所述的定位参考信号配置方法,其中,所述第二可选值为所述第一可选值的因数,所述第二可选值与所述第一可选值不同。
  7. 根据权利要求5所述的定位参考信号配置方法,其中,所述频域偏移 为正偏移,或者,所述频域偏移为负偏移。
  8. 根据权利要求5所述的定位参考信号配置方法,其中,在根据所述频域偏移计算得到第一频域位置超出资源块RB频域范围的情况下,所述定位参考信号的频域位置为:按照特定值对所述第一频域位置取模后的位置。
  9. 根据权利要求5所述的定位参考信号配置方法,其中,所述参数项还包括:所述资源图样所包含的符号数,所述符号数对应的第三可选值为:大于或等于所述第一可选值与所述第二可选值的商值。
  10. 根据权利要求1或2所述的定位参考信号配置方法,其中,所述参数项包括:所述资源图样所包含的符号数,所述符号数对应的第三可选值为:小于或等于所述定位参考信号所在时域传输单元中的最大符号数。
  11. 据权利要求1或2所述的定位参考信号配置方法,其中,所述参数项包括:所述资源图样所包含的符号数,所述符号数对应的第三可选值与所述定位参考信号的循环前缀CP类型相关。
  12. 根据权利要求9至11任一项所述的定位参考信号配置方法,其中,所述参数项还包括:所述资源图样的第一个符号位置,所述第一个符号位置对应的第四可选值的范围为:[0,M],所述M为所述定位参考信号所在时域传输单元中的最大符号数与所述资源图样所包含的符号数的差值。
  13. 根据权利要求3所述的定位参考信号配置方法,其中,所述参数项还包括:所述资源图样的第一个符号中的最低频域位置,所述最低频域位置对应的第五可选值的范围为:[0,N-1]。
  14. 根据权利要求1或2所述的定位参考信号配置方法,其中,在所述资源图样包含至少两个不连续符号的情况下,所述资源图样在每P个子载波上均占用至少一个资源元素RE,P为1、2或3。
  15. 根据权利要求1或2所述的定位参考信号配置方法,其中,在所述资源图样包含至少两个不连续符号的情况下,所述资源图样所包含的符号等间隔分布。
  16. 根据权利要求1或2所述的定位参考信号配置方法,其中,在所述资源图样包含至少两个不连续符号的情况下,所述至少两个不连续符号上的资源图样是截断连续符号上资源图样后得到的。
  17. 根据权利要求1或2所述的定位参考信号配置方法,其中,在所述资源图样对应至少两个端口的情况下,不同端口上的资源图样相同,或,不同端口上的资源图样时分复用,或,不同端口上的资源图样频分复用。
  18. 根据权利要求17所述的定位参考信号配置方法,其中,在不同端口上的资源图样相同的情况下,不同端口上的定位参考信号的生成序列不同,或者,不同端口上的定位参考信号的频域正交码不同。
  19. 根据权利要求18所述的定位参考信号配置方法,其中,所述生成序列的初始值与所述端口的端口序号相关。
  20. 根据权利要求1或2所述的定位参考信号配置方法,其中,所述资源图样包括至少两个子资源图样,所述至少两个子资源图样与所述参数项的值相关。
  21. 根据权利要求1或2所述的定位参考信号配置方法,其中,不同小区的资源图样的频域偏移不同。
  22. 根据权利要求1或2所述的定位参考信号配置方法,其中,不同小区的资源图样是时分复用的。
  23. 一种网络设备,包括:
    第一发送模块,用于发送定位参考信号的资源配置信息;
    第二发送模块,用于按照所述资源配置信息指示的资源图样,发送所述定位参考信号;其中,所述资源配置信息包括至少一个参数项,所述资源配置信息所携带的所述至少一个参数项中有一个或多个参数项对应至少两个可选值,所述参数项的值为所述参数项对应的至少两个可选值中的一个,所述资源图样与所述参数项的值相关。
  24. 一种终端,包括:
    第一接收模块,用于接收定位参考信号的资源配置信息;其中,所述资源配置信息包括至少一个参数项,所述资源配置信息所携带的所述至少一个参数项中有一个或多个参数项对应至少两个可选值,所述参数项的值为所述参数项对应的至少两个可选值中的一个;
    确定模块,用于根据所述资源配置信息中参数项的值,确定所述定位参考信号的资源图样;
    第二接收模块,用于按照所述资源图样,接收所述定位参考信号。
  25. 一种网络设备,所述网络设备包括处理器、存储器以及存储于所述存储器上并在所述处理器上运行的程序,其中,所述处理器执行所述程序时实现如权利要求1、3至22中任一项所述的定位参考信号配置方法的步骤。
  26. 一种终端,所述终端包括处理器、存储器以及存储于所述存储器上并在所述处理器上运行的程序,其中,所述程序被所述处理器执行时实现如权利要求2至22中任一项所述的定位参考信号配置方法的步骤。
  27. 一种计算机可读存储介质,其中,所述计算机可读存储介质上存储有程序,所述程序被处理器执行时实现如权利要求1至22中任一项所述的定位参考信号配置方法的步骤。
PCT/CN2020/080367 2019-03-22 2020-03-20 定位参考信号配置方法、网络设备及终端 WO2020192573A1 (zh)

Priority Applications (9)

Application Number Priority Date Filing Date Title
EP20777836.6A EP3944683A4 (en) 2019-03-22 2020-03-20 METHOD OF CONFIGURING POSITIONING REFERENCE SIGNAL, NETWORK DEVICE AND TERMINAL
MX2021011558A MX2021011558A (es) 2019-03-22 2020-03-20 Método para configurar una señal de referencia de posicionamiento, un dispositivo de red y un terminal.
CA3134406A CA3134406A1 (en) 2019-03-22 2020-03-20 Method for configuring positioning reference signal, network device, and terminal
JP2021556947A JP7282202B2 (ja) 2019-03-22 2020-03-20 ポジショニングリファレンス信号配置方法、ネットワーク機器及び端末
BR112021018866A BR112021018866A2 (pt) 2019-03-22 2020-03-20 Método para configuração do sinal de referência de posicionamento, dispositivo de rede e terminal
KR1020217033098A KR20210141556A (ko) 2019-03-22 2020-03-20 측위 기준 신호 구성 방법, 네트워크 장비 및 단말
AU2020246590A AU2020246590B2 (en) 2019-03-22 2020-03-20 Method for Configuring Positioning Reference Signal, Network Device, and Terminal
SG11202110435TA SG11202110435TA (en) 2019-03-22 2020-03-20 Method for configuring positioning reference signal, network device, and terminal
US17/481,594 US20220007354A1 (en) 2019-03-22 2021-09-22 Method for configuring positioning reference signal, network device, and terminal

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910222312.XA CN111277385B (zh) 2019-03-22 2019-03-22 定位参考信号配置方法、网络设备及终端
CN201910222312.X 2019-03-22

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/481,594 Continuation US20220007354A1 (en) 2019-03-22 2021-09-22 Method for configuring positioning reference signal, network device, and terminal

Publications (1)

Publication Number Publication Date
WO2020192573A1 true WO2020192573A1 (zh) 2020-10-01

Family

ID=71000029

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/080367 WO2020192573A1 (zh) 2019-03-22 2020-03-20 定位参考信号配置方法、网络设备及终端

Country Status (11)

Country Link
US (1) US20220007354A1 (zh)
EP (1) EP3944683A4 (zh)
JP (1) JP7282202B2 (zh)
KR (1) KR20210141556A (zh)
CN (1) CN111277385B (zh)
AU (1) AU2020246590B2 (zh)
BR (1) BR112021018866A2 (zh)
CA (1) CA3134406A1 (zh)
MX (1) MX2021011558A (zh)
SG (1) SG11202110435TA (zh)
WO (1) WO2020192573A1 (zh)

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111869156B (zh) * 2020-06-16 2023-10-03 北京小米移动软件有限公司 参考信号资源的配置方法、装置、通信设备及存储介质
US20230232370A1 (en) * 2020-07-14 2023-07-20 Beijing Xiaomi Mobile Software Co., Ltd. Relative positioning method, terminal, and base station
CN114007213B (zh) * 2020-07-28 2023-01-24 维沃移动通信有限公司 干扰协调处理方法及相关设备
CN114070502B (zh) * 2020-07-31 2023-04-18 维沃移动通信有限公司 定位参考信号传输方法、装置及设备
WO2022077399A1 (zh) * 2020-10-15 2022-04-21 华为技术有限公司 一种下行定位方法及通信装置
CN114598986B (zh) * 2020-12-04 2023-05-26 维沃移动通信有限公司 副链路sl上的定位方法、装置及终端
KR20230128528A (ko) * 2021-01-15 2023-09-05 지티이 코포레이션 다중 주파수 계층을 사용한 포지셔닝
WO2023050056A1 (zh) * 2021-09-28 2023-04-06 北京小米移动软件有限公司 资源配置方法、装置、设备及存储介质
CN115865286A (zh) * 2021-11-08 2023-03-28 中兴通讯股份有限公司 参考信号接收、发送方法、第一、第二通信节点及介质
CN116418643A (zh) * 2021-12-30 2023-07-11 维沃移动通信有限公司 定位参考信号端口区分方法、装置及通信设备
CN116707730A (zh) * 2022-02-28 2023-09-05 华为技术有限公司 一种通信方法和装置
CN117200952A (zh) * 2022-05-28 2023-12-08 华为技术有限公司 侧行定位参考信号资源分配方法、装置、系统及存储介质
CN117500046A (zh) * 2022-07-20 2024-02-02 中国移动通信有限公司研究院 一种资源分配方法、装置、终端和存储介质
CN117651341A (zh) * 2022-08-18 2024-03-05 展讯半导体(南京)有限公司 资源分配方法、装置及设备

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103874207A (zh) * 2012-12-14 2014-06-18 华为技术有限公司 资源映射的方法、基站和用户设备
CN107660343A (zh) * 2015-05-12 2018-02-02 高通股份有限公司 用于多发射天线系统的定位参考信号prs产生
WO2018093835A1 (en) * 2016-11-16 2018-05-24 Qualcomm Incorporated Systems and methods to support multiple configurations for positioning reference signals in a wireless network
WO2018144146A1 (en) * 2017-02-02 2018-08-09 Qualcomm Incorporated Method and/or system for acquisition of a positioning signal
CN109327901A (zh) * 2017-08-01 2019-02-12 北京三星通信技术研究有限公司 分配定位资源的方法及设备
CN109479255A (zh) * 2016-07-15 2019-03-15 高通股份有限公司 用于使用窄带定位参考信号来定位设备的技术

Family Cites Families (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107465497B (zh) * 2016-06-03 2021-08-06 中兴通讯股份有限公司 定位参考信号的传输方法和装置
JP6773945B2 (ja) 2016-08-04 2020-10-21 シャープ株式会社 基地局装置、ロケーションサーバ装置、および通信方法
AU2017337034B2 (en) * 2016-09-30 2022-06-23 Qualcomm Incorporated Scheduling for positioning reference signal (PRS) in narrowband-internet of things (NB-IoT)
CN108964856B (zh) * 2017-05-27 2022-10-04 中兴通讯股份有限公司 一种参考信号配置信息的应用方法及装置
CN107911203B (zh) * 2017-08-11 2023-11-14 华为技术有限公司 发送和接收参考信号的方法、网络设备、终端设备和系统
CN115021879A (zh) * 2017-08-21 2022-09-06 中兴通讯股份有限公司 参考信号传输方法及装置、终端、基站和存储介质
EP3706482B1 (en) * 2017-11-16 2024-01-03 Beijing Xiaomi Mobile Software Co., Ltd. Physical layer resource mapping method and device, user equipment and base station
WO2019107547A1 (ja) * 2017-12-01 2019-06-06 株式会社Nttドコモ ユーザ端末及び無線通信方法
US11936578B2 (en) * 2018-09-27 2024-03-19 Nokia Technologies Oy Method and apparatus for resource configuration for positioning reference signals
US20210351887A1 (en) * 2018-09-28 2021-11-11 Samsung Electronics Co., Ltd. Positioning reference signal
US20210392642A1 (en) * 2018-10-31 2021-12-16 Zhicong Kong Ventilated, stackable, pressing molds
US20210410097A1 (en) * 2018-11-02 2021-12-30 Telefonaktiebolaget Lm Ericsson (Publ) Methods, Apparatus and Machine-Readable Mediums Relating to Reference Signals for Positioning in a Wireless Network
EP3874664A4 (en) * 2018-11-02 2021-12-29 Telefonaktiebolaget LM Ericsson (publ) Srs switching for ul positioning signal transmission
EP3878223B1 (en) * 2018-11-06 2023-09-13 Telefonaktiebolaget Lm Ericsson (Publ) Method and user equipement for reference symbol transmission
EP3681226A1 (en) * 2019-01-10 2020-07-15 Fraunhofer Gesellschaft zur Förderung der angewandten Forschung e.V. Methods and apparatuses for resource allocation in a telecomunications network
EP3909326A2 (en) * 2019-01-11 2021-11-17 Telefonaktiebolaget LM Ericsson (publ) Methods and apparatuses for positioning based on the sounding reference signal
WO2020146820A1 (en) * 2019-01-11 2020-07-16 Apple Inc. Resource allocation, reference signal design, and beam management for new radio (nr) positioning
US20220086787A1 (en) * 2019-01-11 2022-03-17 Telefonaktiebolaget Lm Ericsson (Publ) Wireless device, network node and methods performed therein for time of arrival estimation
US20200235877A1 (en) * 2019-01-21 2020-07-23 Qualcomm Corporated Bandwidth part operation and downlink or uplink positioning reference signal scheme
US11375549B2 (en) * 2019-01-28 2022-06-28 Qualcomm Incorporated Leveraging positioning reference signal and positioning measurements to enhance random access
CN113711555A (zh) * 2019-02-14 2021-11-26 苹果公司 下行链路(dl)定位参考信号(prs)带宽部分(bwp)配置参考信号设计和用于新无线电(nr)定位的基于用户装备(ue)的定位增强
CN112583564B (zh) * 2019-09-29 2022-03-08 维沃移动通信有限公司 定位参考信号的映射方法、终端及网络侧设备

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103874207A (zh) * 2012-12-14 2014-06-18 华为技术有限公司 资源映射的方法、基站和用户设备
CN107660343A (zh) * 2015-05-12 2018-02-02 高通股份有限公司 用于多发射天线系统的定位参考信号prs产生
CN109479255A (zh) * 2016-07-15 2019-03-15 高通股份有限公司 用于使用窄带定位参考信号来定位设备的技术
WO2018093835A1 (en) * 2016-11-16 2018-05-24 Qualcomm Incorporated Systems and methods to support multiple configurations for positioning reference signals in a wireless network
WO2018144146A1 (en) * 2017-02-02 2018-08-09 Qualcomm Incorporated Method and/or system for acquisition of a positioning signal
CN109327901A (zh) * 2017-08-01 2019-02-12 北京三星通信技术研究有限公司 分配定位资源的方法及设备

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
INTEL CORPORATION: "Summary for NR-Positioning AI - 7.2.10.1.1 DL only Based Positioning", 3GPP DRAFT; R1-1903394, 1 March 2019 (2019-03-01), Athens, Greece, pages 1 - 21, XP051601069 *
QUALCOMM INCORPORATED: "RAT-dependent DL-only NR positioning techniques", 3GPP DRAFT; R1-1903018, 1 March 2019 (2019-03-01), Athens, Greece, pages 1 - 11, XP051600715 *
See also references of EP3944683A4 *

Also Published As

Publication number Publication date
US20220007354A1 (en) 2022-01-06
AU2020246590B2 (en) 2023-01-19
JP7282202B2 (ja) 2023-05-26
EP3944683A4 (en) 2022-09-14
BR112021018866A2 (pt) 2021-12-14
CA3134406A1 (en) 2020-10-01
CN111277385A (zh) 2020-06-12
EP3944683A1 (en) 2022-01-26
KR20210141556A (ko) 2021-11-23
CN111277385B (zh) 2021-10-22
MX2021011558A (es) 2021-10-26
SG11202110435TA (en) 2021-10-28
AU2020246590A1 (en) 2021-10-28
JP2022527742A (ja) 2022-06-06

Similar Documents

Publication Publication Date Title
WO2020192573A1 (zh) 定位参考信号配置方法、网络设备及终端
WO2020164593A1 (zh) 混合自动重传请求harq反馈方法、终端及网络设备
WO2020001380A1 (zh) 定位参考信号传输方法、终端及网络设备
WO2020147817A1 (zh) 随机接入过程的信息传输方法及终端
WO2019072077A1 (zh) 解调参考信号传输方法、网络设备及终端
US11601902B2 (en) Synchronization signal block transmission method, network device, and terminal
WO2021057904A1 (zh) 定位参考信号的映射方法、终端及网络侧设备
JP7408681B2 (ja) ランダムアクセスプロセスの情報伝送方法及び端末
JP7241186B2 (ja) ランダムアクセス伝送方法及び端末
JP7210708B2 (ja) 伝送指示信号の伝送方法、ネットワーク装置及び端末
WO2021088705A1 (zh) 定位参考信号的配置方法及装置
CN113473611A (zh) 资源调度方法、装置及ue
CN111278056A (zh) 信息传输方法、终端及网络设备
WO2020125399A1 (zh) 信号资源测量方法及终端
JP7216832B2 (ja) ランダムアクセス伝送方法及び端末
CN111182635B (zh) 非授权频段信息传输方法、终端及网络设备
CN112825578B (zh) 收发能力上报方法及装置、通信设备
WO2020151706A1 (zh) 随机接入传输方法及终端
CN110708764B (zh) 一种信息传输方法、网络设备及终端
WO2021147765A1 (zh) 旁链路参考信号处理方法及装置、通信设备
RU2796662C2 (ru) Способ настройки опорного сигнала позиционирования, сетевое устройство и оконечное устройство
WO2021129506A1 (zh) 旁链路参考信号接收功率的测量方法及装置、通信设备
CN111315015B (zh) 非授权频段信息传输方法、终端及网络设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20777836

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 3134406

Country of ref document: CA

ENP Entry into the national phase

Ref document number: 2021556947

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112021018866

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 20217033098

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2020777836

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2020246590

Country of ref document: AU

Date of ref document: 20200320

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 112021018866

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20210922