WO2020052419A1 - 参考信号及序列配置方法和装置 - Google Patents

参考信号及序列配置方法和装置 Download PDF

Info

Publication number
WO2020052419A1
WO2020052419A1 PCT/CN2019/102057 CN2019102057W WO2020052419A1 WO 2020052419 A1 WO2020052419 A1 WO 2020052419A1 CN 2019102057 W CN2019102057 W CN 2019102057W WO 2020052419 A1 WO2020052419 A1 WO 2020052419A1
Authority
WO
WIPO (PCT)
Prior art keywords
reference signal
code division
division multiplexing
sequence
terminal
Prior art date
Application number
PCT/CN2019/102057
Other languages
English (en)
French (fr)
Inventor
刘永
龚名新
曲秉玉
周永行
毕晓艳
戎璐
黄甦
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN201811186140.7A external-priority patent/CN110912666B/zh
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to KR1020217010758A priority Critical patent/KR20210058897A/ko
Priority to BR112021004759-0A priority patent/BR112021004759A2/pt
Priority to JP2021514319A priority patent/JP7206375B2/ja
Priority to EP19859340.2A priority patent/EP3852462A4/en
Publication of WO2020052419A1 publication Critical patent/WO2020052419A1/zh
Priority to US17/199,050 priority patent/US11973578B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L41/00Arrangements for maintenance, administration or management of data switching networks, e.g. of packet switching networks
    • H04L41/08Configuration management of networks or network elements
    • H04L41/0803Configuration setting
    • H04L41/0806Configuration setting for initial configuration or provisioning, e.g. plug-and-play
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2602Signal structure
    • H04L27/261Details of reference signals
    • H04L27/2613Structure of the reference signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J13/00Code division multiplex systems
    • H04J13/0003Code application, i.e. aspects relating to how codes are applied to form multiplexed channels
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J13/00Code division multiplex systems
    • H04J13/16Code allocation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J13/00Code division multiplex systems
    • H04J13/16Code allocation
    • H04J13/18Allocation of orthogonal codes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2614Peak power aspects
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2614Peak power aspects
    • H04L27/262Reduction thereof by selection of pilot symbols
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0014Three-dimensional division
    • H04L5/0016Time-frequency-code
    • H04L5/0021Time-frequency-code in which codes are applied as a frequency-domain sequences, e.g. MC-CDMA
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • H04L5/0051Allocation of pilot signals, i.e. of signals known to the receiver of dedicated pilots, i.e. pilots destined for a single user or terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/51Allocation or scheduling criteria for wireless resources based on terminal or device properties
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J13/00Code division multiplex systems
    • H04J13/0007Code type
    • H04J13/0022PN, e.g. Kronecker
    • H04J13/0025M-sequences
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J13/00Code division multiplex systems
    • H04J13/0007Code type
    • H04J13/004Orthogonal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0014Three-dimensional division
    • H04L5/0023Time-frequency-space

Definitions

  • the present application relates to the field of communication technologies, and in particular, to a method and a device for configuring reference signals and sequences.
  • each transmitting antenna (such as a logical antenna or a physical antenna) has an independent data channel.
  • the receiving end device (such as a network device or terminal) usually performs channel estimation for each transmitting antenna based on the predicted reference signal, and restores the data signal transmitted through the data channel based on the channel estimation result. Therefore, how to configure the reference signal or how to configure the sequence used to generate the reference signal is critical.
  • the embodiments of the present application provide a reference signal and a sequence configuration method and device, which help reduce a peak-to-average power ratio (PAPR), thereby improving the transmission performance of the system.
  • PAPR peak-to-average power ratio
  • an embodiment of the present application provides a reference signal configuration method, including: generating and sending at least two reference signals.
  • the at least two reference signals are reference signals corresponding to at least two antenna ports allocated by the network device to the same terminal, the at least two reference signals are reference signals of the same type, and the at least two reference signals include a first reference signal and a first reference signal.
  • Two reference signals Two reference signals.
  • the sequence of the first reference signal is different from the sequence of the second reference signal.
  • the reference signal sequence refers to a sequence used to obtain a reference signal, and may also be referred to as a reference signal generation sequence or a local sequence of the reference signal.
  • the reference signal may be a demodulation reference signal (DMRS) or a channel state information reference signal (channel-information reference signal (CSI-RS)).
  • DMRS demodulation reference signal
  • CSI-RS channel-information reference signal
  • the sequence of different reference signals corresponding to the antenna ports allocated by the network device to the terminal may be different; in this way, it helps to implement that the reference signals generated by the network device and the terminal and mapped to the same resource unit are different, that is, It is helpful to realize that different reference signals mapped on a time-domain symbol are different, which increases the randomness of sequence value or sequence mapping, that is, it helps to avoid the problem of sequence frequency domain repetition, so it can reduce PAPR, thereby improving the system's Transmission performance.
  • the sequence of the first reference signal and the sequence of the second reference signal are generated simultaneously.
  • “Simultaneous” here can be understood as the same time point, or the same time period.
  • the time period is less than or equal to the scheduling period, and may be, for example, one or more time domain symbols, or one or more mini-slots, or one or more time slots, or a subframe.
  • sequence of the first reference signal and the sequence of the second reference signal are both sequences generated based on the reference signal level, or both are sequences generated based on the time domain symbol level.
  • generating at least two reference signals includes: generating at least two reference signals according to M sequences; wherein the M sequences include a sequence of a first reference signal and a sequence of a second reference signal, M is an integer greater than or equal to 2; M is the number of code division multiplexing groups occupied by the antenna port allocated by the network device to the terminal, or the number of antenna ports allocated by the network device to the terminal.
  • the M sequences are generated at the same time.
  • “simultaneous” refer to the above.
  • an embodiment of the present application provides a reference signal configuration method, including: receiving at least two reference signals.
  • the at least two reference signals are reference signals corresponding to at least two antenna ports allocated by the network device to the same terminal, the at least two reference signals are reference signals of the same type, and the at least two reference signals include a first reference signal and a first reference signal.
  • Two reference signals The sequence of the first reference signal is different from the sequence of the second reference signal.
  • the reference signal sequence refers to a sequence used to obtain a reference signal, and may also be referred to as a reference signal generation sequence or a local sequence of the reference signal.
  • the execution subject of the method provided by the first aspect is a network device
  • the execution subject of the method may be a terminal; when the execution subject of the method provided by the first aspect is a terminal, the method may be a network device.
  • the method further includes: generating at least two reference signals according to M sequences; wherein the M sequences include a sequence of a first reference signal and a sequence of a second reference signal, and M is greater than or An integer equal to 2; M is the number of code division multiplexing groups occupied by the antenna port allocated by the network device to the terminal, or the number of antenna ports allocated by the network device to the terminal.
  • the M sequences are generated at the same time.
  • “simultaneous” refer to the above.
  • the technical solution provided in the second aspect corresponds to the method provided in the first aspect. Therefore, for the related content and beneficial effects in the second aspect, reference may be made to the first aspect.
  • the sequence of the reference signal is based on a formula Get; where, Represents the nth element in the sequence of the reference signal, r (n) represents the nth element in the reference sequence, n ⁇ 0, n is an integer, f (n CDM_m ) represents a function related to n CDM_m , and n CDM_m An index of a code division multiplexing group to which the antenna port corresponding to the reference signal belongs, or an offset value corresponding to the code division multiplexing group or a scrambling factor corresponding to the code division multiplexing group.
  • k represents The index of the mapped frequency domain unit.
  • M 2
  • the antenna port corresponding to the first reference signal and the antenna port corresponding to the second reference signal belong to different code division multiplexing groups; different code division multiplexing groups correspond to different orthogonal coverage codes OCC. That is, by setting different code division multiplexing groups to correspond to different OCCs, different code division multiplexing groups correspond to different sequences.
  • each frequency of the first code division multiplexing group The OCC corresponding to the domain unit is a matrix a, and the OCC corresponding to each frequency domain unit of the second code division multiplexing group is -a; or, the OCC corresponding to each frequency domain unit of the first code division multiplexing group is It is a matrix a, and one of the two frequency domain units of the adjacent two frequency domain units of the second code division multiplexing group is an OCC corresponding to the matrix a, and the other OCC corresponding to the frequency domain unit is -a.
  • the three code division multiplexing groups include a first code division multiplexing group, a second code division multiplexing group, and a third code division multiplexing group:
  • the OCC corresponding to each frequency domain unit of the code division multiplexing group is a matrix a
  • the OCC corresponding to each frequency domain unit of the second code division multiplexing group is a * exp (j * x)
  • the first code division The OCC corresponding to each frequency domain unit of the multiplexing group is matrix a;
  • the OCC corresponding to one frequency domain unit of the two adjacent frequency domain units of the second code division multiplexing group is matrix a, and the other frequency domain
  • the OCC corresponding to the unit is a * exp (j * x
  • an embodiment of the present application provides a reference signal configuration method, including: generating and sending at least two reference signals; wherein the at least two reference signals correspond to at least two antenna ports allocated by a network device to a same terminal
  • the at least two reference signals are reference signals of the same type.
  • the at least two reference signals include a first reference signal and a second reference signal, and a sequence of the first reference signal is different from a sequence of the second reference signal.
  • the method may be performed by the network device or the terminal.
  • the sequence of the reference signal refers to a sequence composed of elements included in the reference signal.
  • sequence of the first reference signal and the sequence of the second reference signal are both sequences generated based on the reference signal level, or both are sequences generated based on the time domain symbol level.
  • generating at least two reference signals includes: generating the at least two reference signals according to a sequence (also referred to as a mother sequence). Based on this, the sequence of the first reference signal is different from the sequence of the second reference signal, and may include: a set of positions of modulation symbols included in the first reference signal in the mother sequence, and modulation symbols included in the second reference signal The set of positions in the parent sequence is different.
  • an embodiment of the present application provides a reference signal configuration method, including: receiving at least two reference signals; wherein the at least two reference signals are references corresponding to at least two antenna ports allocated by a network device to a same terminal Signal, the at least two reference signals are reference signals of the same type, the at least two reference signals include a first reference signal and a second reference signal, and a sequence of the first reference signal is different from a sequence of the second reference signal.
  • the method may be performed by the network device or the terminal.
  • the reference signal sequence refers to a sequence composed of elements included in the reference signal.
  • the method further includes: generating the at least two reference signals according to a sequence (also referred to as a mother sequence).
  • the technical solution provided in the fourth aspect corresponds to the method provided in the third aspect. Therefore, for the explanation of the related content and beneficial effects in the fourth aspect, reference may be made to the third aspect.
  • an embodiment of the present application provides a sequence configuration method, including: generating and sending configuration information, where the configuration information is used to configure M code division multiplexes occupied by at least two antenna ports allocated by a network device to a terminal The sequence corresponding to each code division multiplexing group in the group; M is an integer greater than or equal to 2.
  • an embodiment of the present application provides a sequence configuration method, including: receiving configuration information, which is used to configure M code division multiplexing groups occupied by at least two antenna ports allocated by a network device to a terminal The sequence corresponding to each code division multiplexing group; M is an integer greater than or equal to 2; and the sequence corresponding to each code division multiplexing group is configured according to the configuration information.
  • the sequence corresponding to the code division multiplexing group refers to a sequence “for obtaining a reference signal corresponding to each antenna port in the code division multiplexing group”, such as the local sequence described above.
  • one code division multiplexing group corresponds to one sequence.
  • the configuration information is specifically configured to configure a generation parameter of the sequence corresponding to each code division multiplexing group, where the generation parameter includes the code division multiplexing group Or the offset value corresponding to the code division multiplexing group or the scrambling factor corresponding to the code division multiplexing group.
  • the configuration information may be, for example, but not limited to, radio resource control (radio resource control (RRC) signaling, medium access control (MAC) )
  • RRC radio resource control
  • MAC medium access control
  • DCI downlink control information
  • the configuration information may be carried in the DCI.
  • an embodiment of the present application provides a sequence configuration method, including: generating and sending configuration information, where the configuration information is used to configure a sequence corresponding to each antenna port of at least two antenna ports allocated by a network device to a terminal .
  • an embodiment of the present application provides a sequence configuration method, including: receiving configuration information, where the configuration information is used to configure a sequence corresponding to each antenna port of at least two antenna ports allocated by a network device to a terminal. According to the configuration information, a sequence corresponding to each antenna port is configured.
  • the sequence corresponding to the antenna port refers to a sequence “for obtaining a reference signal corresponding to the antenna port”.
  • one antenna port corresponds to one sequence.
  • the configuration information is specifically configured to configure a generation parameter of the sequence corresponding to each code division multiplexing group, and the generation parameter includes the code division multiplexing group. Or the offset value corresponding to the code division multiplexing group or the scrambling factor corresponding to the code division multiplexing group.
  • the configuration information may be implemented by, for example, but not limited to, one or a combination of at least two of RRC signaling, MAC signaling, and DCI.
  • the configuration information may be carried in the DCI.
  • sequence configuration methods provided in the foregoing fifth to eighth aspects provide a basis for the reference signal configuration methods provided in the first to second aspects, and therefore, the beneficial effects that can be achieved can refer to the first aspect or the second aspect above. Description. Of course, these sequence configuration methods can also be applied in other scenarios.
  • an embodiment of the present application provides a reference signal configuration method, including: generating instruction information for indicating a first version of a reference signal; and at least to a plurality of terminals scheduled in a same scheduling period.
  • One terminal sends the indication information; the multiple terminals all support the first version, and the at least one terminal also supports other versions than the first version.
  • all terminals that help to achieve the same scheduling period use the same reference signal version, thereby helping to solve the compatibility problem of terminals that support different versions of reference signals that are scheduled in the same scheduling period.
  • an embodiment of the present application provides a reference signal configuration method, including: receiving indication information, where the indication information is used to indicate a first version of the reference signal; and according to the indication information, determining a reference signal transmitted within the current scheduling period.
  • the version is the first version.
  • the execution body of the method may be a terminal.
  • the terminal supports at least two versions of reference signals.
  • the reference signals of the at least two versions are reference signals of the same type.
  • the indication information may be implemented by, for example, but not limited to, one or a combination of at least two of RRC signaling, MAC signaling, and DCI.
  • the indication information may be carried in the DCI.
  • an embodiment of the present application provides a reference signal configuration method, including: receiving capability information sent by a terminal, where the capability information is used to indicate whether the terminal supports version switching of a reference signal, and the terminal supports at least two versions A reference signal; determining whether to instruct the terminal to switch the version of the reference signal according to the capability information.
  • the method may be performed by a network device.
  • the terminal supports at least two versions of reference signals.
  • the reference signals of the at least two versions are reference signals of the same type.
  • this application supports that the terminal reports the version switching capability information of the reference signal to the network device, which helps the network device to indicate the version of the reference signal to the terminal through signaling, and thus helps to solve the problem of scheduling support in the same scheduling cycle Compatibility issues with different versions of the reference signal terminal.
  • an embodiment of the present application provides a reference signal configuration method, which includes: a terminal sends capability information; the capability information indicates whether the terminal supports version switching of a reference signal, and is used by a network device to determine whether to instruct the terminal to perform Reference signal version switching.
  • the terminal supports at least two versions of reference signals.
  • the reference signals of the at least two versions are reference signals of the same type.
  • the capability information may be implemented by, for example, but not limited to, one or a combination of at least two of RRC signaling, MAC signaling, and DCI.
  • the capability information may be carried in the DCI.
  • an embodiment of the present application provides a reference signal configuration method, including: for a first terminal and a second terminal scheduled within a same scheduling period, a network device generates a first reference signal and a second terminal of the first terminal A second reference signal of which the versions of the first reference signal and the second reference signal are different, and the first reference signal and the second reference signal are non-code division multiplexed time-frequency resources; the network device sends the first reference signal to the first within a scheduling period.
  • the terminal sends a first reference signal and sends a second reference signal to a second terminal.
  • the manner in which the reference signals of the two terminals multiplex time-frequency resources does not include the code division multiplexing method. It is helpful to realize the scheduling of terminals with different versions of reference signals supported in the same scheduling period, thereby solving the compatibility problem of terminals supporting different versions of reference signals scheduled in the same scheduling period.
  • an embodiment of the present application provides a reference signal configuration method, including: for at least two terminals scheduled in a first scheduling period, a network device generates a corresponding reference signal for each terminal, wherein the first scheduling The versions of the reference signals of at least two terminals scheduled in the period are the same, and the versions are different from the versions of the reference signals of at least two terminals scheduled in the second scheduling period. The versions of the reference signals are the same; the network equipment sends corresponding reference signals to the at least two terminals scheduled in the first scheduling period in the first scheduling period.
  • the versions of the reference signals of at least two terminals scheduled in the same scheduling period of the network device are the same, and the versions of the reference signals transmitted in different scheduling periods are different, thereby solving the compatibility problem of terminals supporting different versions of the reference signal.
  • an embodiment of the present application provides a reference signal configuration device, and the reference signal configuration device may be configured to perform any one of the foregoing aspects (such as the first to fourth aspects, the ninth to fourteenth aspects). Any aspect, etc.) or any possible design reference method provided by the design.
  • the reference signal configuration device may be divided according to a reference signal configuration method provided based on any one of the foregoing aspects or any possible design.
  • each function may be divided into corresponding functions.
  • Module, or two or more functions can be integrated in a processing module.
  • the reference signal configuration device includes a processor and a transceiver.
  • the processor may be used to perform steps other than sending and receiving.
  • the transceiver is used to perform the receiving and / or transmitting steps.
  • the reference signal configuration device includes a transceiver for performing receiving and / or transmitting steps.
  • the reference signal configuration device includes a processor and a transceiver.
  • the processor is configured to generate at least two reference signals.
  • the at least two reference signals are reference signals corresponding to at least two antenna ports allocated by the network device to the same terminal, and the at least two reference signals are reference signals of the same type.
  • the at least two reference signals include a first reference signal and a second reference signal, and a sequence of the first reference signal is different from a sequence of the second reference signal.
  • the transceiver is configured to send the at least two reference signals.
  • the reference signal configuration device includes a transceiver.
  • the transceiver is configured to receive at least two reference signals.
  • the at least two reference signals are reference signals corresponding to at least two antenna ports allocated by a network device to the same terminal.
  • the at least two reference signals are reference signals of the same type.
  • the at least two reference signals include a first reference signal and a second reference signal, and a sequence of the first reference signal is different from a sequence of the second reference signal.
  • the reference signal configuration device includes a processor and a transceiver.
  • the processor generates instruction information, and the instruction information is used to indicate a first version of the reference signal.
  • the transceiver is configured to send the indication information to at least one terminal among a plurality of terminals scheduled in the same scheduling period; the multiple terminals support the first version, and the at least one terminal also supports other versions except the first version.
  • the reference signal configuration device includes a processor and a transceiver.
  • the transceiver is configured to receive instruction information, and the instruction information is used to indicate a first version of the reference signal.
  • the processor is configured to determine, according to the instruction information, that a version of the reference signal transmitted in the current scheduling period is a first version.
  • the reference signal configuration device includes a processor and a transceiver.
  • the transceiver is used to receive capability information sent by the terminal, and the capability information is used to indicate whether the terminal supports version switching of reference signals, and the terminal supports at least two versions of reference signals.
  • the processor is configured to determine whether to instruct the terminal to switch the version of the reference signal according to the capability information.
  • the reference signal configuration device includes a transceiver.
  • the transceiver is used to send capability information; the capability information indicates whether the terminal supports version switching of the reference signal, and is used by the network device to determine whether to instruct the terminal to perform version switching of the reference signal.
  • the reference signal configuration device may specifically be a terminal.
  • the reference signal configuration device includes a processor and a transceiver.
  • the processor is configured to generate a first reference signal of the first terminal and a second reference signal of the second terminal for the first terminal and the second terminal scheduled in the same scheduling period; wherein the first reference signal and the second reference signal The versions are different, and the first reference signal and the second reference signal are non-code division multiplexed time-frequency resources.
  • the transceiver is configured to send a first reference signal to the first terminal and a second reference signal to the second terminal within the scheduling period.
  • the reference signal configuration apparatus may specifically be a network device.
  • the reference signal configuration device includes a processor and a transceiver.
  • the processor is configured to generate a corresponding reference signal for each terminal for at least two terminals scheduled in the first scheduling period, wherein the versions of the reference signals of the at least two terminals scheduled in the first scheduling period are the same, and the The version is different from the versions of the reference signals of the at least two terminals in the second scheduling period, and the versions of the reference signals of the at least two terminals scheduled in the second scheduling period are the same.
  • the transceiver is configured to send corresponding reference signals to the at least two terminals scheduled in the first scheduling period within the first scheduling period.
  • the reference signal configuration apparatus may specifically be a network device.
  • an embodiment of the present application provides a reference signal configuration device.
  • the reference signal configuration device includes a memory and a processor.
  • the memory is used to store a computer program.
  • the computer program is executed by the processor, the foregoing Any one of the reference signal configuration methods is performed.
  • the device may be a network device or a terminal or a chip.
  • an embodiment of the present application provides a sequence configuration device, and the sequence configuration device may be configured to execute any one of the foregoing aspects (such as any one of the fifth to eighth aspects) or any possible Design the provided sequence configuration method.
  • each functional module may be divided corresponding to each function. It is also possible to integrate two or more functions in one processing module.
  • the sequence configuration device includes a processor and a transceiver.
  • the processor may be used to perform steps other than sending and receiving.
  • the transceiver is used to perform the receiving and / or transmitting steps.
  • the sequence configuration apparatus includes a transceiver for performing receiving and / or transmitting steps.
  • the processor is configured to generate configuration information, and the configuration information is used to configure a sequence corresponding to each of the M code division multiplexing groups occupied by at least two antenna ports allocated by the network device to the terminal; Let M be an integer greater than or equal to two.
  • the transceiver is used to send the configuration information.
  • the transceiver is configured to receive configuration information, and the configuration information is used to configure a sequence corresponding to each code division multiplexing group among the M code division multiplexing groups occupied by at least two antenna ports allocated by the network device to the terminal; Let M be an integer greater than or equal to two.
  • the processor is configured to configure a sequence corresponding to each code division multiplexing group according to the configuration information.
  • the processor is configured to generate configuration information, and the configuration information is used to configure a sequence corresponding to each antenna port of the at least two antenna ports allocated by the network device to the terminal.
  • the transceiver is used to send the configuration information.
  • the transceiver is configured to receive configuration information, and the configuration information is configured to configure a sequence corresponding to each of the at least two antenna ports allocated by the network device to the terminal.
  • the processor is configured to configure a sequence corresponding to each antenna port according to the configuration information.
  • an embodiment of the present application provides a sequence configuration apparatus.
  • the sequence configuration apparatus includes a memory and a processor.
  • the memory is configured to store a computer program.
  • the computer program is executed by the processor, any one of the foregoing provides A sequence configuration method is performed.
  • the apparatus may be a network device or a terminal or a chip.
  • an embodiment of the present application provides a processor, which is configured to execute a method provided by any one of the foregoing or any possible design (including a reference signal configuration method or a sequence configuration method).
  • the processor is configured to generate at least two reference signals and output the at least two reference signals.
  • the at least two reference signals reference may be made to the foregoing first aspect or the third aspect, and details are not described herein again.
  • the processor is configured to input at least two reference signals.
  • the at least two reference signals reference may be made to the foregoing second aspect or the fourth aspect, and details are not described herein again.
  • the steps performed by the processor can be obtained based on the above two examples and the reasoning of the method, and are not repeated here. Specifically, the sending step in the method is replaced with a processor for an output step, and / or the receiving step in the method is replaced with an input step.
  • the processor may be used to perform, for example, but not limited to, baseband related processing, and the receiver and the transmitter may be respectively used to perform, such as, but not limited to, radio frequency transceiver.
  • the above devices may be provided on separate chips, or at least partly or entirely on the same chip.
  • the receiver and the transmitter may be provided on the receiver chip and the transmitter chip that are independent of each other. It can be integrated into a transceiver and then set on the transceiver chip.
  • the processor may be further divided into an analog baseband processor and a digital baseband processor.
  • the analog baseband processor and the transceiver may be integrated on the same chip, and the digital baseband processor may be provided on a separate chip.
  • digital baseband processors can be used with multiple application processors (such as, but not limited to, graphics processors, multimedia processors, etc.) Integrated on the same chip.
  • application processors such as, but not limited to, graphics processors, multimedia processors, etc.
  • Such a chip may be referred to as a system chip. Whether each device is independently set on a different chip or integrated on one or more chips often depends on the specific needs of the product design. The embodiment of the present application does not limit the specific implementation form of the device.
  • An embodiment of the present application further provides a computer-readable storage medium on which a computer program is stored.
  • the computer is caused to execute the reference provided by any one of the foregoing or any possible design.
  • Signal configuration method Any reference signal configuration method provided by the first to fourth aspects, the ninth to fourteenth aspects, or any one of these possible designs provided above.
  • An embodiment of the present application further provides a computer-readable storage medium on which a computer program is stored.
  • the computer program runs on the computer, the computer is caused to execute any one of the foregoing or any possible design to provide a sequence configuration. method. Any of the sequence configuration methods provided in the fifth to eighth aspects or any one of these possible designs provided above.
  • An embodiment of the present application further provides a computer program product, which, when run on a computer, causes a reference signal configuration method provided by any one of the foregoing or any possible design to be executed. Any reference signal configuration method provided by the first to fourth aspects, the ninth to fourteenth aspects, or any one of these possible designs provided above.
  • the embodiment of the present application further provides a computer program product, which, when run on a computer, causes a sequence configuration method provided by any one of the foregoing or any possible design to be executed. Any of the sequence configuration methods provided in the fifth to eighth aspects or any one of these possible designs provided above.
  • the present application also provides a communication chip in which instructions are stored, which when executed on a network device / terminal, causes the network device to execute the corresponding reference signal configuration method described above. Any reference signal configuration method provided by the first to fourth aspects, the ninth to fourteenth aspects, or any one of these possible designs provided above.
  • the present application also provides a communication chip in which instructions are stored, which when executed on a network device / terminal, causes the network device to execute the corresponding sequence configuration method described above. Any of the sequence configuration methods provided in the fifth to eighth aspects or any one of these possible designs provided above.
  • Another aspect of the present invention provides a method for obtaining a reference signal, including:
  • the present invention also provides a communication device, including:
  • An obtaining module configured to obtain the reference signal according to the initialization factor.
  • the present invention also provides a communication device, which is characterized by including:
  • a processor configured to execute the foregoing method for obtaining a reference signal.
  • the present invention also provides a communication device, which is characterized by including:
  • the present invention also provides a computer-readable storage medium on which a computer program is stored, and when the computer program is run on the computer, the computer is caused to execute the above-mentioned method for obtaining a reference signal.
  • the present invention also provides a computer program product that, when running on a computer, causes the above method for obtaining a reference signal to be executed.
  • the present invention also provides a communication chip, in which instructions are stored, which when executed on the communication device, causes the communication device to perform the above-mentioned method for obtaining a reference signal.
  • the above initialization factors may be:
  • the above initialization factors may also be:
  • Y is any positive integer greater than or equal to log 2 (n CDM_m * 2 X ) +1, and X is greater than or equal to Any positive integer of.
  • the above initialization factors may also be:
  • c init_m is an initialization factor
  • n CDM_m is an index indicating a code division multiplexing group to which the antenna port corresponding to the reference signal belongs, or an offset value corresponding to the code division multiplexing group, or the code division complex
  • Is the number of symbols in a slot Is an index of a subframe or a slot
  • l is an index of a symbol
  • n SCID is a scrambling factor, Sequence ID (ID).
  • n SCID may be, for example, but not limited to, 0 or 1.
  • the value of n SCID may be indicated by 1 bit in the DCI.
  • the value can be, for example, but not limited to, 0-65535.
  • This parameter can be configured by, for example, but not limited to, RRC signaling.
  • c init_m is an initialization factor of a reference signal sequence, Is the number of symbols in a time slot, such as, but not limited to, the number of symbols in a time slot carrying the reference signal.
  • l is an index of a symbol, such as, but not limited to, an index of a symbol carrying the reference signal. l can be equal to 0 to 5 or 0 to 6.
  • a reference signal may be obtained by referring to the prior art.
  • the following methods can be used to obtain the reference signal:
  • x 1 (n + 31) (x 1 (n + 3) + x 1 (n)) mod 2
  • x 2 (n + 31) (x 2 (n + 3) + x 2 (n + 2) + x 2 (n + 1) + x 2 (n)) mod 2
  • the above reference signal is a DMRS or a CSI-RS.
  • the obtaining the reference signal may be obtaining the reference signal in various ways, such as, but not limited to, obtaining the reference signal by calculating according to a preset formula, or obtaining the reference signal by querying a table.
  • the preset formula is, for example, but not limited to, a sequence generation formula of a reference signal
  • the formula is a formula related to the foregoing initialization factor.
  • parameters included in the preset formula include the initialization factor.
  • the foregoing preset formulas can be referred to, for example, but not limited to, a reference signal sequence generation formula mentioned in an existing LTE standard or a 5G standard.
  • n CDM_m represents the index of the code division multiplexing group to which the antenna port corresponding to the reference signal belongs, or the offset value corresponding to the code division multiplexing group, or the interference corresponding to the code division multiplexing group. Code factor, or other information that can be used to identify the code division multiplexing group.
  • the above method may further include sending the reference signal. More specifically, before the reference signal is sent, other processing may be performed, such as, but not limited to, processing through an OCC code, and then sending through a time-frequency resource corresponding to the reference signal.
  • the above method may further include that the receiving end device performs data demodulation based on the reference signal and the reference signal from the transmitting end device.
  • the above reference signal is DMRS.
  • the reference signal generated by the receiving end device and the reference signal generated by the transmitting end device are the same reference signal. In this way, after the reference signal generated by the transmitting end device is transmitted through the transmitting end device and transmitted through the channel, the receiving end When the device receives, the receiving device can perform data demodulation based on the received reference signal from the transmitting device and the reference signal obtained by the receiving device according to the initialization factor.
  • the receiving device may determine, for example, a channel parameter (such as, but not limited to, an equivalent channel matrix) based on the reference signal from the transmitting device and the reference signal obtained by the receiving device according to the initialization factor, and perform Data demodulation.
  • a channel parameter such as, but not limited to, an equivalent channel matrix
  • the sending device may be a network device, and the receiving device may be a terminal.
  • the sending device sends a reference signal to the receiving device, and the receiving device is based on the received reference from the transmitting device.
  • the data and the reference signal generated by the receiving end device are used for data demodulation, which corresponds to the downlink communication process.
  • the sending device may be a terminal, and the receiving device may be a network device.
  • the sending device sends a reference signal to the receiving device, and the receiving device receives the reference from the transmitting device based on the received reference.
  • the signal and the reference signal generated by the receiving end device perform data demodulation, and the corresponding process is the uplink communication process.
  • the above communication device may be a transmitting-end device or a receiving-end device.
  • the transmitting-end device and the receiving-end device may also include devices such as a transceiver module or a transceiver.
  • any one of the devices or processors, or computer-readable storage media, computer program products, or communication chips provided above is used to execute the corresponding methods provided above. Therefore, the beneficial effects it can achieve Reference may be made to the beneficial effects in the corresponding method, which will not be repeated here.
  • the above-mentioned devices for storing computer instructions or computer programs provided in the embodiments of the present application such as, but not limited to, the above-mentioned memory, computer-readable storage medium, and communication chip are non-transitory .
  • FIG. 1 is a schematic diagram of a process of configuring a reference signal provided by 5G NR and R15;
  • FIG. 2 is a schematic diagram of a communication system applicable to an embodiment of the present application.
  • FIG. 3 is a schematic diagram of a hardware structure of a communication device applicable to an embodiment of the present application.
  • FIG. 4 is a schematic diagram of a reference signal configuration method according to an embodiment of the present application.
  • FIG. 5 is a schematic diagram of mapping a reference signal to a time-frequency resource according to an embodiment of the present application
  • FIG. 6 is a schematic diagram of a process of configuring a reference signal according to an embodiment of the present application.
  • FIG. 7 is a schematic diagram of another process of configuring a reference signal according to an embodiment of the present application.
  • FIG. 8 is a schematic diagram of a sequence configuration method according to an embodiment of the present application.
  • FIG. 9 is a schematic diagram of another sequence configuration method according to an embodiment of the present application.
  • FIG. 10 is a schematic diagram of another reference signal configuration method according to an embodiment of the present application.
  • FIG. 11 is a schematic diagram of another reference signal configuration method according to an embodiment of the present application.
  • FIG. 12 is a schematic diagram of another reference signal configuration method according to an embodiment of the present application.
  • 13A is a schematic diagram of mapping reference signals of different terminals to time-frequency resources in a same scheduling period according to an embodiment of the present application
  • 13B is a schematic diagram of mapping reference signals of different terminals to time-frequency resources in a same scheduling period according to another embodiment of the present application;
  • FIG. 14 is a schematic diagram of another reference signal configuration method according to an embodiment of the present application.
  • FIG. 15 is a schematic diagram of mapping reference signals of different terminals in different scheduling periods to time-frequency resources according to an embodiment of the present application.
  • 16 is a schematic structural diagram of a reference signal configuration device according to an embodiment of the present application.
  • FIG. 17 is a schematic structural diagram of another reference signal configuration apparatus according to an embodiment of the present application.
  • FIG. 18 is a schematic diagram of a frequency domain unit applicable to the embodiments of the present application.
  • one antenna port corresponds to one reference signal.
  • a reference signal is a sequence obtained by arranging multiple modulation symbols (or constellation symbols) in a certain order.
  • the embodiments of the present application are also applicable to a scenario where a reference signal includes a modulation symbol.
  • the process of configuring a reference signal may include: generating one or more sequences, where each sequence includes multiple modulation symbols; and then generating a reference signal based on the one or more sequences, such as modulating each modulation in the generated sequence.
  • the symbols are sequentially used as each modulation symbol in a reference signal, or a part of the modulation symbols in a generated sequence are used as each modulation symbol in a reference signal in sequence.
  • the generated reference signal may be mapped to the time-frequency resource, and the reference signal mapped to the time-frequency resource may be sent.
  • the reference signal can also be received on the corresponding time-frequency resource.
  • the sending end device may be a network device, and the receiving end device may be a terminal.
  • the sending device can be a terminal and the receiving device can be a network device.
  • the rules for configuring the reference signal may include: a unique sequence is used for each DMRS port allocated by the network device for the same terminal, and a unique sequence is used for each CSI-RS port corresponding to the CSI-RS resource allocated by the network device for the same terminal.
  • the antenna The sequence used by the port can also be referred to as the sequence corresponding to the antenna port, that is, the sequence used to obtain the reference signal corresponding to the antenna port.
  • FIG. 1 a schematic diagram of a process of configuring a reference signal for 5G NR and R15 is provided.
  • R15 2-ports (ports) DMRS (port0, 2) type1 (type 1) is used as an example for description.
  • the time-frequency resource in FIG. 1 represents a time-frequency resource corresponding to a time-domain symbol in a resource block (RB), and each small square in the time-frequency resource represents a resource element (RE).
  • RE resource element
  • the sequences corresponding to DMRS ports 0 and 2 are sequences composed of modulation symbols r (0) to r (5). This sequence can be used as a reference signal corresponding to DMRS port 0 and as a reference signal corresponding to DMRS port 2.
  • the network device / terminal may sequentially map each modulation symbol in the sequence to a time-frequency resource, where the modulation symbols correspond to the REs one-to-one.
  • embodiments of the present application provide a reference signal configuration method and device, and a sequence configuration method and device.
  • the technical solutions provided in the embodiments of the present application can be applied to various communication systems.
  • the technical solutions provided in the embodiments of the present application can be applied to a 5G communication system such as a 5G NR system, a future evolution system or multiple communication convergence systems, etc., and can also be applied to an existing communication system, etc.
  • the application scenarios of the technical solutions provided in this application may include multiple types, for example, machine-to-machine (M2M), macro communication, enhanced mobile Internet (eMBB), ultra-high reliability and ultra-low Time-delay communication (ulreliable & low latency communication (uRLLC)) and massive Internet of Things communication (mass machine type communication (mMTC)).
  • M2M machine-to-machine
  • eMBB enhanced mobile Internet
  • uRLLC ultra-high reliability and ultra-low Time-delay communication
  • mMTC massive Internet of Things communication
  • These scenarios may include, but are not limited to, a communication scenario between a terminal and a terminal, a communication scenario between a network device and a network device, a communication scenario between a network device and a terminal, and the like. The following descriptions are all based on the scenario of network device and terminal communication.
  • FIG. 2 is a schematic diagram of a communication system applicable to an embodiment of the present application.
  • the communication system may include one or more network devices 10 (only one is shown) and one or more network devices 10 connected to each. Terminal 20.
  • FIG. 2 is only a schematic diagram, and does not constitute a limitation on an application scenario of the technical solution provided by the present application.
  • the network device 10 may be a transmission receiving node (TRP), a base station, a relay station, or an access point.
  • the network device 10 may be a network device in a 5G communication system or a network device in a future evolved network; it may also be a wearable device or a vehicle-mounted device.
  • it can be: a global system for mobile communications (GSM) or a code division multiple access (CDMA) network, or a base transceiver station (BTS), or a broadband NB (NodeB) in wideband code division multiple access (WCDMA) can also be eNB or eNodeB (evolutional NodeB) in long term evolution (LTE).
  • GSM global system for mobile communications
  • CDMA code division multiple access
  • BTS base transceiver station
  • NodeB broadband NB
  • WCDMA wideband code division multiple access
  • WCDMA wideband code division multiple access
  • the network device 10 may also be a wireless controller in a cloud radio access network (CRAN)
  • the terminal 20 may be a user equipment (UE), an access terminal, a UE unit, a UE station, a mobile station, a mobile station, a remote station, a remote terminal, a mobile device, a UE terminal, a wireless communication device, a UE agent, or a UE device Wait.
  • the access terminal can be a cellular phone, a cordless phone, a session initiation protocol (SIP) phone, a wireless local loop (WLL) station, a personal digital processing (PDA), and wireless communication.
  • each network element (such as network device 10 and terminal 20, etc.) in FIG. 2 may be implemented by one device, may also be implemented by multiple devices, or may be a function module within one device.
  • This application implements Examples do not specifically limit this. It can be understood that the foregoing functions may be network elements in hardware devices, software functions running on dedicated hardware, or virtualized functions instantiated on a platform (for example, a cloud platform).
  • each network element in FIG. 2 may be implemented by the communication device 200 in FIG. 3.
  • FIG. 3 is a schematic diagram of a hardware structure of a communication device applicable to an embodiment of the present application.
  • the communication device 200 includes at least one processor 201, a communication line 202, a memory 203, and at least one communication interface 204.
  • the processor 201 may be a general-purpose central processing unit (CPU), a microprocessor, an application-specific integrated circuit (ASIC), or one or more processors for controlling the execution of the program of the solution of the present application. integrated circuit.
  • CPU central processing unit
  • ASIC application-specific integrated circuit
  • the communication line 202 may include a path for transmitting information between the aforementioned components.
  • the communication interface 204 uses any device such as a transceiver to communicate with other devices or communication networks, such as Ethernet, RAN, wireless local area networks (WLAN), and the like.
  • a transceiver to communicate with other devices or communication networks, such as Ethernet, RAN, wireless local area networks (WLAN), and the like.
  • the memory 203 may be a read-only memory (ROM) or other type of static storage device that can store static information and instructions, a random access memory (random access memory, RAM), or other types that can store information and instructions
  • the dynamic storage device can also be electrically erasable programmable read-only memory (EEPROM-ready-only memory (EEPROM)), compact disc (read-only memory (CD-ROM)) or other optical disk storage, optical disk storage (Including compact discs, laser discs, optical discs, digital versatile discs, Blu-ray discs, etc.), magnetic disk storage media or other magnetic storage devices, or can be used to carry or store desired program code in the form of instructions or data structures and can be used by a computer Any other media accessed, but not limited to this.
  • EEPROM-ready-only memory EEPROM
  • CD-ROM compact disc
  • optical disk storage including compact discs, laser discs, optical discs, digital versatile discs, Blu-ray discs, etc.
  • magnetic disk storage media or other magnetic storage devices or can be used to carry
  • the memory may exist independently, and is connected to the processor through the communication line 202.
  • the memory can also be integrated with the processor.
  • the memory provided in the embodiments of the present application may generally be non-volatile.
  • the memory 203 is configured to store a computer execution instruction for executing the solution of the present application, and the processor 201 controls execution.
  • the processor 201 is configured to execute computer execution instructions stored in the memory 203, so as to implement the method provided in the following embodiments of the present application.
  • the computer-executable instructions in the embodiments of the present application may also be referred to as application program codes, which are not specifically limited in the embodiments of the present application.
  • the processor 201 may include one or more CPUs, such as CPU0 and CPU1 in FIG. 3.
  • the communication device 200 may include multiple processors, such as the processor 201 and the processor 207 in FIG. 3. Each of these processors may be a single-CPU processor or a multi-CPU processor.
  • a processor herein may refer to one or more devices, circuits, and / or processing cores for processing data (such as computer program instructions).
  • the communication device 200 may further include an output device 205 and an input device 206.
  • the output device 205 is in communication with the processor 201 and can display information in a variety of ways.
  • the output device 205 may be a liquid crystal display (LCD), a light emitting diode (LED) display device, a cathode ray tube (CRT) display device, or a projector. Wait.
  • the input device 206 is in communication with the processor 201 and can receive user input in a variety of ways.
  • the input device 206 may be a mouse, a keyboard, a touch screen device, or a sensing device.
  • the above-mentioned communication device 200 may be a general-purpose device or a special-purpose device.
  • the communication device 200 may be a desktop computer, a portable computer, a network server, a personal digital assistant (PDA), a mobile phone, a tablet computer, a wireless terminal device, an embedded device, or a device having a similar structure in FIG. 3. device.
  • PDA personal digital assistant
  • the embodiment of the present application does not limit the type of the communication device 200.
  • any of the technical solutions provided in the embodiments of the present application can be applied to a downlink transmission scenario and also to an uplink transmission scenario.
  • the sending device can be a network device and the receiving device can be a terminal.
  • the sending device can be a terminal, and the receiving device can be a network device.
  • the sending-end device (or receiving-end device) when the sending-end device (or receiving-end device) is replaced with a network device, the network device involved in this embodiment and the sending-end device (or receiving-end device) are replaced Network devices can represent the same network device.
  • the transmitting device (or receiving device) is replaced with a terminal, the terminal involved in this embodiment and the terminal after the transmitting device (or receiving device) is replaced may represent the same terminal, which is described collectively here. , Will not repeat them below.
  • the "resource unit” in the embodiment of the present application is a basic unit of a scheduling terminal.
  • the resource unit is composed of a plurality of continuous subcarriers in the frequency domain and a time interval (TI) in the time domain.
  • TI can be a transmission time interval (TTI) in the LTE system, or a short TTI at the symbol level, or a short TTI with a large subcarrier interval in a high-frequency system, or a time slot in a 5G system ( slot) or mini-slot. This embodiment of the present application does not limit this.
  • one resource unit may include one or more RBs, one or more RB pairs (RB pairs), etc., and may also be half RBs, etc.
  • it may be other time-frequency resources, which is not limited in the embodiment of the present application. It should be noted that, if no explanation is provided, or in the case of no conflict, the specific examples in the following are all described by taking the resource unit as the RB in the LTE system as an example.
  • the "scheduling period" in the embodiment of the present application is a time interval TI.
  • time domain symbol in the embodiment of the present application may include, but is not limited to, any of the following: OFDM symbol, universal filtered multi-carrier (UFMC) signal, filter-band multi-carrier (filter-band multi-carrier) carrier (FBMC) symbols, generalized frequency-division multiplexing (GFDM) symbols, etc.
  • OFDM symbol universal filtered multi-carrier (UFMC) signal
  • filter-band multi-carrier (filter-band multi-carrier) carrier (FBMC) symbols filter-band multi-carrier (filter-band multi-carrier) carrier (FBMC) symbols
  • GFDM generalized frequency-division multiplexing
  • At least one (species) in the embodiments of the present application includes one (species) or a plurality (species).
  • Multiple (species) means two (species) or two or more.
  • at least one of A, B, and C includes: A alone, B alone, A and B simultaneously, A and C, B and C, and A, B, and C.
  • the term “and / or” in the embodiments of the present application is only an association relationship describing an associated object, and indicates that there can be three types of relationships. For example, A and / or B can mean: A exists alone, and A and B, there are three cases of B alone.
  • character "/" in the embodiments of the present application generally indicates that the related objects are an "or” relationship; in addition, in the formula, the character "/" indicates that the related objects are a division relationship, such as A / B can represent A divided by B.
  • the terms “first” and “second” in the embodiments of the present application are used to distinguish different objects, and the order of the different objects is not limited.
  • FIG. 4 it is a schematic diagram of a reference signal configuration method according to an embodiment of the present application.
  • the method includes:
  • the transmitting device generates at least two reference signals.
  • the at least two reference signals are reference signals corresponding to at least two antenna ports allocated by a network device to a same terminal.
  • the at least two reference signals are reference signals of the same type.
  • the at least two reference signals include a first reference signal and a second reference signal, and a sequence of the first reference signal is different from a sequence of the second reference signal.
  • a network device can schedule one or more terminals within a scheduling period. For each terminal scheduled, the network device may assign one or more antenna ports to the terminal.
  • the terminal described in S101 may be any terminal whose number of antenna ports allocated to each terminal scheduled by a network device within one scheduling period is greater than or equal to two.
  • the at least two reference signals are reference signals of the same type.
  • the at least two reference signals are both DMRS or CSI-RS, and the embodiments of the present application are not limited thereto.
  • One antenna port corresponds to one reference signal.
  • the number of time domain symbols occupied by one reference signal on one resource unit may be one or more.
  • FIG. 5 a schematic diagram of mapping a reference signal to a time-frequency resource according to an embodiment of the present application is shown.
  • the number of time-domain symbols occupied by the reference signal shown in (a) in FIG. 5 on one resource unit is one, and the number of time-domain symbols is two.
  • the number of time domain symbols occupied by the reference signal shown in (b) in FIG. 5 on one resource unit is two, and the number of time domain symbols is two and three.
  • the sequence of the reference signal refers to a sequence used to obtain a modulation symbol in the reference signal.
  • the sequence of the reference signal may be referred to as a generation sequence of the reference signal or a local sequence of the reference signal.
  • the modulation symbols in the reference signal are selected from a sequence of reference signals.
  • the sequence of the reference signal may be a sequence obtained by arranging multiple modulation symbols in a certain order.
  • the embodiments of the present application are also applicable to a scenario in which a sequence of a reference signal includes a modulation symbol.
  • the sequences of different reference signals may be the same or different.
  • the sequence of the first reference signal is different from the sequence of the second reference signal, and may include: elements contained in the sequence of the first reference signal and elements contained in the sequence of the second reference signal are different, and / or, the sequence of the first reference signal is The order of the elements is different from that of the sequence of the second reference signal.
  • the elements included in the sequence of the first reference signal are different from the elements included in the sequence of the second reference signal, which can be understood as: the set of modulation symbols included in the sequence of the first reference signal and the modulation included in the sequence of the second reference signal The set of symbols is different.
  • the sequence of the first reference signal and the sequence of the second reference signal are generated simultaneously.
  • “Simultaneous” here can be understood as the same time point, or the same time period. This time period is less than or equal to the scheduling period.
  • the time period may be, for example, but not limited to, one or more time domain symbols, or one or more micro time slots, or one or more time slots, or a subframe.
  • the manner of generating the reference signal sequence may include, for example but not limited to, the following two manners:
  • the sequence of the reference signal is a sequence generated based on the reference signal level (or antenna port level). For example, reference may be made to a manner of generating a local sequence in the LTE system.
  • a sequence of reference signals can be generated at the beginning of a scheduling period.
  • one scheduling period is one subframe.
  • a scheduling period can be a time slot or a micro time slot.
  • the sequence of the first reference signal and the sequence of the second reference signal are generated at the same time, and may include: the sequence of the first reference signal and the sequence of the second reference signal are at the beginning of the same scheduling period Generated.
  • the length of a reference signal sequence (that is, the number of modulation symbols included in the sequence) may be greater than or equal to the length of a reference signal (that is, the number of modulation symbols included in the reference signal). number).
  • the length of a reference signal sequence can be greater than Or equal to 120.
  • the length of a sequence of a reference signal can be Greater than or equal to 240.
  • the sequence can be directly used as a reference signal.
  • a sequence composed of some modulation symbols in the sequence can be used as a reference signal.
  • the length of the sequence of the reference signal is 10 and the length of the reference signal is 8, then 8 values can be selected from the 10 values in the sequence and the 8 values can be used as a reference signal.
  • the order of the eight values in the reference signal is the same as the order in the sequence of the reference signal, of course, the embodiment of the present application is not limited thereto.
  • the second method the sequence of the reference signal is a sequence generated based on the time domain symbol level. For example, you can refer to the method for generating a local sequence in 5G NR and R15.
  • a sequence of reference signals can be generated at the beginning of the time-domain symbol.
  • the time domain symbol here refers to a time domain symbol occupied by a reference signal.
  • it may be a sequence that generates a reference signal at the beginning of the time domain symbol 2.
  • a sequence of generating a reference signal at the beginning of the time domain symbol 2 and a sequence of generating a reference signal at the beginning of the time domain symbol 3 may be used.
  • the sequence of the first reference signal and the sequence of the second reference signal are generated at the same time, which may include: the sequence of the first reference signal and the sequence of the second reference signal are generated at the beginning of the same time domain symbol .
  • the length of a sequence of a reference signal may be greater than or equal to the number of modulation symbols of a reference signal on a time-domain symbol. For example, assuming that the maximum number of resource units that can be supported by the bandwidth is 20, since the number of modulation symbols on a time domain symbol of the reference signal as shown in (a) or (b) in FIG. 5 is 6, one The length of the sequence of the reference signal may be greater than or equal to 120.
  • the above-mentioned first manner and second manner are merely examples, and they do not limit the manner of generating the reference signal sequence applicable in the embodiment of the present application.
  • the above-mentioned second manner may be extended as follows: the sequence of the reference signal is generated based on a time domain unit, and the time domain unit is shorter than a scheduling period.
  • a scheduling period is a sub-frame
  • a time domain unit may be a time slot or a micro time slot or a time domain symbol.
  • the length of the sequence of the reference signal may be greater than or equal to the number of modulation symbols of one reference signal on one time-domain unit.
  • S101 may include: the transmitting device generates M sequences, and generates at least two reference signals according to the M sequences.
  • M is an integer greater than or equal to two.
  • the M sequences include a sequence of a first reference signal and a sequence of a second reference signal.
  • the transmitting device generates a first reference signal according to a sequence of the first reference signal, and generates a second reference signal according to the sequence of the second reference signal.
  • the M sequences are generated simultaneously.
  • the M sequences are generated simultaneously
  • FIG. 6 it is a schematic diagram of a process of configuring a reference signal according to an embodiment of the present application.
  • the time-frequency resources in FIG. 6 represent time-frequency resources corresponding to one time-domain symbol in one RB.
  • the transmitting device can first generate sequence 0 and sequence 2, and the elements in sequence 0 are modulation symbols r (0) to r (5) in sequence, and the elements in sequence 2 are modulation symbol r (6) to r (11); then, use sequence 0 as the first reference signal (that is, the reference signal corresponding to DMRS port 0 in FIG. 6), and use sequence 2 as the second reference signal (that is, the reference signal corresponding to DMRS port 2 in FIG. 6) ; Then, sequentially mapping each modulation symbol in the first reference signal to the time-frequency resource corresponding to the first reference signal, and sequentially mapping each modulation symbol in the second reference signal to the time-frequency resource corresponding to the second reference signal on.
  • S102 The receiving end device generates the at least two reference signals.
  • S102 reference may be made to the description of the specific implementation of S101 above, and details are not described herein again.
  • the transmitting device sends the at least two reference signals to the receiving device.
  • S102 and S103 may be executed first, S103 and S102 may be executed first, or S102 and S103 may be executed simultaneously.
  • S104 The receiving device receives the at least two reference signals.
  • the at least two reference signals received by the receiving end device are reference signals obtained by transmitting at least two reference signals generated in S101 through a channel. Subsequently, the receiving end device may perform channel estimation and the like according to the generated at least two reference signals and the received at least two reference signals transmitted through the channel.
  • different reference signal sequences corresponding to antenna ports allocated by a network device to a terminal may be different, where the different reference signals are reference signals of the same type, and optionally, the different reference signals The sequences are generated simultaneously.
  • the reference signals generated by the network device and the terminal mapped to the same resource unit are different, that is, different reference signals mapped to a time domain symbol are different, which increases the sequence value Or the randomness of sequence mapping, so it helps to avoid the problem of sequence frequency domain repetition, which helps to reduce PAPR, which in turn helps to improve the transmission performance of the system.
  • the reference signal sequence refers to a sequence composed of modulation symbols selected from one or more positions in the mother sequence, and the number of selected modulation symbols is equal to the modulation symbols included in the reference signal. Number of.
  • the sequence of the reference signal refers to a sequence composed of elements in the reference signal.
  • S101 may include: the transmitting device generates a mother sequence, and then generates the at least two reference signals according to the mother sequence.
  • the mother sequence may be generated based on a reference signal level, or may be generated based on a time domain unit (such as a time domain symbol). It should be noted that, unlike the sequence generation method described above, if the mother sequence is generated based on the reference signal level, the length of the mother sequence is greater than the length of a reference signal. If the mother sequence is generated based on a time-domain unit, the length of the sequence of the reference signal is greater than the number of modulation symbols of a reference signal on a time-domain unit. This is to ensure that different reference signals can be generated based on the mother sequence.
  • the sequence of the first reference signal is different from the sequence of the second reference signal, and may include: a set of positions of modulation symbols included in the first reference signal in a mother sequence, and a set included in the second reference signal
  • the positions of the modulation symbols in the mother sequence constitute different sets.
  • FIG. 7 it is a schematic diagram of a process of configuring a reference signal according to an embodiment of the present application.
  • the time-frequency resources in FIG. 7 represent time-frequency resources corresponding to one time-domain symbol in one RB.
  • the transmitting device may first generate a mother sequence, and the elements in the mother sequence are modulation symbols r (0) to r (11) in order, and then r (0), r (2), The sequence composed of the elements of r (4), r (6), r (8), r (10) is used as the first reference signal (that is, the reference signal corresponding to DMRS port 0 in FIG.
  • each modulation symbol in the reference signal is sequentially mapped to the time-frequency resource corresponding to the first reference signal
  • each modulation symbol in the second reference signal is sequentially mapped to the time-frequency resource corresponding to the second reference signal.
  • c init_m f (n CDM_m ).
  • f (n CDM_m ) represents a function related to n CDM_m
  • n CDM_m represents an index of a code division multiplexing group to which the antenna port corresponding to the reference signal belongs, or an offset value corresponding to the code division multiplexing group or the code division complex
  • the scrambling factor corresponding to the group is used.
  • c init_m represents the initialization factor of the sequence corresponding to the code division multiplexing group.
  • Method 2 For any one of the first reference signal and the second reference signal, the sequence of the reference signal is based on a formula Get; where, Represents the nth element in the sequence of the reference signal, r (n) represents the nth element in the reference sequence, n ⁇ 0, n is an integer, f (n CDM_m ) represents a function related to n CDM_m , and n CDM_m An index of a code division multiplexing group to which the antenna port corresponding to the reference signal belongs, or an offset value corresponding to the code division multiplexing group or a scrambling factor corresponding to the code division multiplexing group.
  • f (n CDM_m ) can be implemented in one of the following ways 2A ⁇ 2C:
  • n PRB is PRB index information
  • n subcarrier is subcarrier index information.
  • the sequence corresponding to multiple reference signals can also be considered as a deformation of the same reference signal sequence, such as mapping deformation (the "mapping" deformation in the instant frequency resource mapping step), or multiplexing deformation (that is, multiplexing time-frequency resources Way of deformation) and so on.
  • k represents The index of the mapped frequency domain unit.
  • the rounding operation symbol Or round up operation symbol It may be replaced with other operation symbols, which is not limited in the embodiment of the present application.
  • the frequency domain unit (or granularity of frequency domain resources) to which the reference signal is mapped is 4, that is, a frequency domain unit includes 4 subcarriers. Therefore, the first terminal configured
  • the index of the frequency domain unit in the RB may be 0, 1, 2, and the index of the frequency domain unit in the second RB may be 3, 4, 5, ....
  • subcarriers 0 to 3 constitute a frequency domain unit
  • subcarriers 4 to 7 constitute a frequency domain unit 1
  • subcarriers 8 to 11 constitute a frequency domain unit 2.
  • the frequency domain unit to which the reference signal is mapped is 6, that is, one frequency domain unit includes 6 subcarriers. Therefore, the index of the frequency domain unit in the first RB configured by the terminal can 0, 1, and the index of the frequency domain unit in the second RB may be 2, 3.
  • subcarriers 0 to 5 thereof constitute a frequency domain unit
  • subcarriers 6 to 11 constitute a frequency domain unit 1.
  • FIG. 18 it is a schematic diagram of a frequency domain unit applicable to the embodiment of the present application.
  • the frequency domain resources to which the reference signal corresponding to the code division multiplexing group 2 is mapped are: the 6kth subcarrier and the 6k + 1th subcarrier;
  • the frequency domain resources to which the reference signal corresponding to the code division multiplexing group 1 is mapped are: 6k + 2 subcarriers and 6k + 3 subcarriers;
  • the frequency domain resources to which the reference signal corresponding to the code division multiplexing group 0 is mapped are: 6k + 4 subcarriers and 6k + 5 subcarriers.
  • k is an integer greater than or equal to 0.
  • n CDM_m may specifically be an index of a code division multiplexing group to which an antenna port corresponding to the first reference signal or the second reference signal belongs.
  • Method 2C may be determined according to the number of code division multiplexing groups M.
  • M is the number of code division multiplexing groups occupied by the antenna port allocated by the network device to the terminal.
  • M is an integer greater than or equal to two.
  • n CDM_m may specifically be an index of a code division multiplexing group to which an antenna port corresponding to the first reference signal or the second reference signal belongs.
  • Method 2C can be understood as: the sequences corresponding to different code division multiplexing groups generate different phase rotations based on the same reference sequence, so that the sequences corresponding to different code division multiplexing groups are different.
  • the coverage codes (OCCs) corresponding to any two code division multiplexing groups in the M code division multiplexing groups may be the same.
  • the reference sequence may be a sequence generated by a sequence generator, or a sequence obtained by multiplying a sequence generated by the sequence generator by an OCC.
  • Method 3 the antenna port corresponding to the first reference signal and the antenna port corresponding to the second reference signal belong to different code division multiplexing groups; the different code division multiplexing groups correspond to different OCCs.
  • the receiving end device and / or the transmitting end device can first generate a reference sequence, and then for each code division multiplexing group supported by the system, multiply the reference sequence by OCC to obtain the sequence corresponding to the code division multiplexing group, wherein at least two code division multiplexing groups of the M code division multiplexing groups have different OCCs.
  • the OCC corresponding to each frequency domain unit of the first code division multiplexing group is a
  • the OCC corresponding to each frequency domain unit of the second code division multiplexing group is -a (matrix a Matrix multiplied by -1).
  • Table 1 An example can be shown in Table 1.
  • each row in a represents an RE, and each column represents an antenna port.
  • "a" in each of the embodiments based on the mode 3 represents the matrix a.
  • the matrix a may be a one-dimensional vector or a multi-dimensional matrix. It is unified here and will not be described in detail below.
  • the OCC corresponding to each frequency domain unit of the first code division multiplexing group is a, and one frequency domain unit of two adjacent frequency domain units of the second code division multiplexing group.
  • the corresponding OCC is a, and the other OCC is -a.
  • the OCC corresponding to frequency domain units 0 to 3 of the first code division multiplexing group is a; the OCC corresponding to frequency domain units 0 to 3 of the second code division multiplexing group. They are a, -a, a, and -a respectively.
  • One example can be shown in Table 2.
  • the OCCs corresponding to frequency domain units 0 to 3 of the second code division multiplexing group are -a, a, and -a, a.
  • An example can be shown in Table 2B.
  • M code division multiplexing groups include a first code division multiplexing group, a second code division multiplexing group, and a third code division multiplexing group. Then, among the three code division multiplexing groups, The OCCs corresponding to at least two code division multiplexing groups are different.
  • the OCC corresponding to each frequency domain unit of the first code division multiplexing group is a
  • the OCC corresponding to each frequency domain unit of the second code division multiplexing group is a * exp (j * x)
  • the OCC corresponding to each frequency domain unit of the third code division multiplexing group is a * exp (j * y)
  • x + y 2 ⁇
  • x + y -2 ⁇
  • j is an imaginary number unit.
  • the OCC corresponding to each frequency domain unit of the first code division multiplexing group is a; one of the frequency domain units of two adjacent frequency domain units of the second code division multiplexing group The corresponding OCC is a, and the OCC corresponding to the other frequency domain unit is a * exp (j * x); the OCC corresponding to one of the two frequency domain units of the third frequency division multiplexing group is a, the OCC corresponding to another frequency domain unit is a * exp (j * y).
  • x + y 2 ⁇
  • j is an imaginary unit.
  • the OCCs corresponding to frequency domain units 0 to 3 of the first code division multiplexing group are all a;
  • the OCs corresponding to frequency domain units 0 to 3 of the second code division multiplexing group are a, a * exp (j * x ), A, a * exp (j * x);
  • the OCC corresponding to frequency domain units 0 to 3 of the third code division multiplexing group are a, a * exp (j * y), a, a * exp (j * y), an example can be shown in Table 4A.
  • the OCCs corresponding to frequency domain units 0 to 3 of the first code division multiplexing group are all a; the OCCs corresponding to frequency domain units 0 to 3 of the second code division multiplexing group are a * exp (j * x), respectively.
  • A a * exp (j * x), a;
  • OCC corresponding to frequency domain units 0 to 3 of the third code division multiplexing group are a * exp (j * y), a, a * exp (j * y), a, an example can be shown in Table 4B.
  • the OCC corresponding to frequency domain units 0 to 3 of the first code division multiplexing group are all a;
  • the OCC corresponding to frequency domain units 0 to 3 of the second code division multiplexing group are a, a * exp (j * x), a, a * exp (j * x);
  • the OCC corresponding to frequency domain units 0 to 3 of the third code division multiplexing group are a * exp (j * y), a, a * exp (j * y), a, an example can be shown in Table 4C.
  • the OCCs corresponding to frequency domain units 0 to 3 of the first code division multiplexing group are all a; the OCCs corresponding to frequency domain units 0 to 3 of the second code division multiplexing group are a * exp (j * x), respectively.
  • A a * exp (j * x), a;
  • OCC corresponding to frequency domain units 0 to 3 of the third code division multiplexing group are a, a * exp (j * y), a, a * exp ( j * y), an example can be shown in Table 4D.
  • At least two code division multiplexing groups in the M code division multiplexing groups have different OCCs, and there may be other implementations.
  • M the implementation manner of the OCC corresponding to one code division multiplexing group can refer to the prior art.
  • the sequence configuration method provided in the embodiment of the present application is described below.
  • the sequence herein refers to a sequence used to obtain a reference signal, such as the M sequences described above.
  • the sending-end device in this embodiment is specifically a network device, and the receiving-end device is specifically a terminal.
  • FIG. 8 it is a schematic diagram of a sequence configuration method according to an embodiment of the present application.
  • the method includes:
  • the sending end device generates first configuration information, where the first configuration information is used to configure each code division multiplexing group corresponding to each of the M code division multiplexing groups occupied by at least two antenna ports allocated by the network device to the terminal.
  • M is an integer greater than or equal to two.
  • a code division multiplexing group includes multiple antenna ports, and reference signal code division multiplexing (code division multiplexing, CDM) time-frequency resources corresponding to the multiple antenna ports.
  • CDM code division multiplexing
  • the code division multiplexing group here may specifically be a time domain code division multiplexing group, a frequency domain code division multiplexing group, or time Frequency code division multiplexing group. If the sequence corresponding to the code division multiplexing group is generated based on the time domain symbol level, the code division multiplexing group here may specifically be a frequency domain code division multiplexing group.
  • the sequence corresponding to the code division multiplexing group refers to a sequence “used to obtain a reference signal corresponding to each antenna port in the code division multiplexing group”, such as the local sequence described above.
  • one code division multiplexing group corresponds to one sequence.
  • code division multiplexing groups 0 to 3 can correspond to sequences 0 to 3, respectively.
  • the transmitting device can configure the receiving device with a sequence 0 corresponding to code division multiplexing group 0 and a sequence corresponding to code division multiplexing group 1.
  • the terminal may not need to obtain the antenna ports allocated by the network device to the terminal first, and then obtain the M code division multiplexing groups occupied by at least two antenna ports allocated by the network device to the terminal.
  • the sequence corresponding to each code division multiplexing group For example, the terminal may first obtain the sequence corresponding to each code division multiplexing group supported by the system, and then after determining the antenna ports allocated by the network device to the terminal, directly use the corresponding codes of each code division multiplexing group occupied by these antenna ports. Sequential transmit / receive reference signal.
  • S202 The sending device sends the first configuration information.
  • the information configured by the first configuration information is referred to as the information to be configured.
  • the configuration information there are many ways to configure the configuration information. For example, but not limited to, directly configuring the information to be configured, such as the information to be configured or the Index of configuration information, etc .; or indirectly configure information to be configured by configuring other information, where there is an association relationship between the other information and the information to be configured. It is also possible to configure only a part of the information to be configured, while other parts of the information to be configured are known or agreed in advance.
  • the arrangement of specific information can also be implemented by means of the arrangement order of the various information agreed in advance (such as stipulated in the protocol), thereby reducing the configuration overhead to a certain extent. At the same time, it can also identify the common parts of each information and uniformly configure it to reduce the configuration overhead caused by individually configuring the same information.
  • the specific configuration mode may also be various existing configuration modes.
  • the required configuration mode can be selected according to specific needs.
  • the embodiment of this application does not limit the selected configuration mode.
  • the configuration modes involved in the embodiments of this application should be understood as covering the Various methods for the party to know the information to be configured.
  • the information to be configured may be sent together as a whole, or may be divided into multiple sub-messages and sent separately, and the sending cycle and / or timing of these sub-messages may be the same or different.
  • the specific sending method is not limited in this application.
  • the sending period and / or sending timing of these sub-informations may be predefined, for example, predefined according to a protocol, or may be configured by a transmitting device by sending configuration information to a receiving device.
  • the first configuration information may be implemented by, for example, but not limited to, one or a combination of at least two of RRC signaling, MAC signaling, and DCI.
  • the first configuration information is carried by adding an independent indication field to the RRC signaling / MAC signaling / DCI, or the first configuration information may be carried by extending the size of the sequence indication field.
  • the sequence indication field may include, but is not limited to, at least one of a sequence initialization field, a sequence generation field, and a scrambling code ID field.
  • the size of the sequence indication field refers to the number of bits occupied by the sequence indication field.
  • the first configuration information is specifically configured to configure a generation parameter of a sequence corresponding to each of the M code division multiplexing groups.
  • the generation parameters of a sequence corresponding to a code division multiplexing group include an index of the code division multiplexing group or an offset value corresponding to the code division multiplexing group or a scrambling factor corresponding to the code division multiplexing group.
  • the first configuration information may include indexes of the M code division multiplexing groups.
  • the antenna ports allocated by the network device to the terminal occupy four code division multiplexing groups, and the indexes of the four code division multiplexing groups may be code division multiplexing groups 0 to 3, respectively.
  • the first configuration information may include indexes 0 to 3 of the code division multiplexing group.
  • the index of the code division multiplexing group may be predefined or obtained based on an implicit relationship with other configuration information such as port configuration information.
  • the first configuration information does not need to indicate the predefined information.
  • the generation parameter includes an offset value corresponding to a code division multiplexing group:
  • the first configuration information may include offset values corresponding to the M code division multiplexing groups. For example, if the antenna ports allocated by the network device to the terminal occupy four code division multiplexing groups, and the corresponding offset values of the four code division multiplexing groups are 100, 200, 300, and 400, respectively, the first configuration information Can include offset values of 100, 200, 300, 400.
  • the first configuration information may include an offset unit and an offset value corresponding to one of the M code division multiplexing groups.
  • the offset value here may be the maximum offset value or the minimum offset value among the offset values corresponding to the M code division multiplexing groups.
  • the maximum offset value or the minimum offset value may be a predefined value.
  • the sending end device may also send a signaling indication to the receiving end device, which is not limited in the embodiment of the present application.
  • the first configuration information For example, assuming that the antenna port allocated by the network device to the terminal occupies 4 code division multiplexing groups, and the corresponding offset values of the four code division multiplexing groups are 100, 200, 300, and 400 respectively; then the first configuration information
  • the offset unit 100 and the offset value 100 may be included, or the first configuration information may include the offset unit 100 and the offset value 400 (that is, the maximum offset value).
  • the offset unit or offset value here may also be predefined. In this case, the first configuration information does not need to indicate the predefined information.
  • the receiving device may determine the network device as a terminal according to the correspondence between the offset unit and a predefined offset unit and each offset value.
  • Other examples are not listed one by one.
  • the generation parameter includes scrambling code information (such as a scrambling factor) corresponding to the code division multiplexing group:
  • the first configuration information may include a scrambling factor corresponding to the M code division multiplexing groups.
  • the first configuration information may include the scrambling code. Factors 0 to 3.
  • the scrambling code information corresponding to the code division multiplexing group herein may also be predefined.
  • the first configuration information does not need to indicate the predefined information.
  • S203 The receiving end device receives the first configuration information.
  • the receiving end device obtains the first configuration information in a manner predefined by the protocol.
  • the receiving end device configures a sequence corresponding to each code division multiplexing group according to the first configuration information.
  • S204 may be implemented, for example, but not limited to, in one of the following ways:
  • Method 1 The receiving end device determines an initialization parameter of a sequence corresponding to each code division multiplexing group in the M code division multiplexing groups according to the first configuration information. Then, for each sequence, the sequence is obtained according to the initialization parameters of the sequence.
  • a sequence initialization parameter corresponds to a code division multiplexing group.
  • the initialization parameter of a sequence refers to an initialization parameter used in the process of generating the sequence.
  • the initialization parameter may be an initialization factor.
  • c init_m represents an initialization factor of a sequence corresponding to the m-th code division multiplexing group
  • n CDM_m represents information related to the m-th code division multiplexing group, for example, the related information may be the m-th code division multiplexing Use the group's identity (indentfy, ID).
  • the ID of the code division multiplexing group may be an index of the code division multiplexing group or an offset value corresponding to the code division multiplexing group or scrambling code information (such as a scrambling factor) corresponding to the code division multiplexing group.
  • m 1, 2, 3 ... M.
  • Is the index of the slot l is the symbol index
  • Is the sequence generation factor n SCID is the scrambling factor.
  • This formula is determined based on the initialization factor generated in 5G NR R15. For the explanation of the relevant content in the formula, please refer to 5G NR R15, which will not be repeated here.
  • Manner 2 The receiving end device generates a reference sequence, and then transforms the reference sequence (also referred to as processing or deformation) according to the first configuration information to obtain a sequence corresponding to each code division multiplexing group.
  • one transformation process corresponds to one code division multiplexing group.
  • Transform to obtain the nth element in the sequence corresponding to the mth code division multiplexing group in the M code division multiplexing groups
  • r (n) represents the n-th element in the reference sequence
  • the reference sequence may be, for example, but not limited to, a sequence generated to obtain a reference signal according to a solution provided in the prior art, such as the existing 5G NR R15.
  • the meaning of n CDM_m and m can refer to the above. Understandably, n is an integer greater than or equal to zero.
  • the formula It can be expressed as: more specific, or Wait.
  • n PRB is PRB index information
  • n subcarrier is subcarrier index information.
  • the sequence corresponding to multiple reference signals can also be considered as a deformation of the same reference signal sequence, such as mapping deformation (the "mapping" deformation in the instant frequency resource mapping step), or multiplexing deformation (that is, multiplexing time-frequency resources). Way of deformation) and so on.
  • mapping deformation the "mapping" deformation in the instant frequency resource mapping step
  • multiplexing deformation that is, multiplexing time-frequency resources. Way of deformation
  • the sending device can also generate the at least two reference signals by using a similar method, which is no longer described here. To repeat.
  • the sequence configuration method provided in this embodiment is described by using a signaling method to configure a sequence corresponding to each code division multiplexing group as an example.
  • the sequence corresponding to each code division multiplexing group may also be predefined, for example, predetermined through a protocol.
  • a sequence corresponding to each code division multiplexing group may be predefined. For example, by predefining the information carried by the first configuration information above, a sequence corresponding to each code division multiplexing group is pre-defined, and the like.
  • sequence configuration method provided in this embodiment provides a basis for implementing the configuration method shown in FIG. 4. Therefore, for the beneficial effects that can be achieved in this embodiment, reference may be made to the beneficial effects described in the embodiment shown in FIG. 4. Of course, the sequence configuration method provided in this embodiment can also be applied to other scenarios.
  • FIG. 9 it is a schematic diagram of a sequence configuration method according to an embodiment of the present application.
  • the method includes:
  • the transmitting device generates second configuration information, and the second configuration information is used to configure a sequence corresponding to each antenna port of the at least two antenna ports allocated by the network device to the terminal.
  • the sequence corresponding to the antenna port refers to a sequence “for obtaining a reference signal corresponding to the antenna port”.
  • one antenna port corresponds to one sequence.
  • antenna ports 0 to 7 may correspond to sequences 0 to 7 respectively. Based on this, if the antenna port allocated by the network device to the terminal is antenna ports 0 to 3, the transmitting device may configure the receiving device with the reference signal sequences 0 to 3 corresponding to the antenna ports 0 to 3.
  • S302 The sending device sends the second configuration information.
  • the second configuration information may be implemented by, for example, but not limited to, one or a combination of at least two of RRC signaling, MAC signaling, and DCI.
  • the second configuration information is carried by adding an independent indication field to RRC signaling / MAC signaling / DCI, or the second configuration information may be carried by extending the size of the sequence indication field.
  • the second configuration information is specifically configured to configure a generation parameter of a sequence corresponding to each of the at least two antenna ports.
  • the generation parameters of a sequence corresponding to an antenna port include an index of the antenna port or an offset value corresponding to the antenna port or a scrambling factor corresponding to the antenna port.
  • the second configuration information may include the index of the antenna port allocated by the network device to the terminal.
  • the second configuration information may include an offset value corresponding to the antenna port allocated by the network device to the terminal; or, the second configuration information may include an offset unit or An offset value corresponding to one antenna port of the at least two antenna ports.
  • the offset value here may be the maximum offset value or the minimum offset value among the offset values corresponding to the at least two antenna ports.
  • the maximum offset value or the minimum offset value may be a predefined value such as The protocol is predetermined, or the sending end device may send a signaling instruction to the receiving end device, which is not limited in the embodiment of the present application.
  • the offset unit or offset value herein may also be predefined. In this case, the second configuration information does not need to indicate the predefined information.
  • the receiving end device may determine the network device as a terminal according to the correspondence between the offset unit and a predefined offset unit and each offset value.
  • the offset value corresponding to the code division multiplexing group occupied by the allocated antenna port is obtained by referring to the example reasoning in the embodiment shown in FIG. 8, and details are not described herein again.
  • the second configuration information may include a scrambling factor corresponding to the antenna port allocated by the network device to the terminal.
  • the scrambling code information corresponding to the antenna port herein may be predefined. In this case, the second configuration information does not need to indicate the predefined information.
  • Specific examples of the second configuration information may be obtained by referring to the specific examples of the first configuration information above, and are not described herein again.
  • S303 The receiving end device receives the second configuration information.
  • the receiving end device obtains the second configuration information in a manner predefined by the protocol.
  • the receiving end device configures the sequence corresponding to each antenna port according to the second configuration information.
  • S304 can be implemented, for example, but not limited to, in one of the following ways:
  • Manner 1 The receiving end device determines a sequence initialization parameter corresponding to each antenna port of the at least two antenna ports according to the second configuration information. Then, for each sequence, the sequence is generated according to the initialization parameters of the sequence. Optionally, a sequence of initialization parameters corresponds to an antenna port.
  • the initialization parameters of the sequence can be initialization factors and the like.
  • c init_m represents an initialization factor of a sequence corresponding to the m-th antenna port
  • n p_m represents information related to the m-th antenna port, for example, the related information may be an ID of the m-th antenna port.
  • the ID of the antenna port may be an index of the antenna port or an offset value corresponding to the antenna port.
  • m 1, 2, 3 ... M, where M is the number of antenna ports allocated by the network device to the terminal.
  • Method 2 The receiving end device generates a reference sequence, and then transforms the reference sequence (also called processing or deformation, etc.) according to the second configuration information to obtain the sequence corresponding to each antenna port.
  • one conversion process corresponds to one antenna port.
  • Transform to get the nth element in the sequence corresponding to the mth antenna port
  • r (n), n p_m and m can be referred to above.
  • n PRB PRB index information
  • n subcarrier subcarrier index information.
  • a sequence corresponding to multiple reference signals may also be considered as a deformation of the same reference signal sequence, such as a mapping deformation or a multiplexing mode deformation.
  • the sequence configuration method provided in this embodiment is described by using a signaling instruction to configure a sequence corresponding to each antenna port as an example.
  • the sequence corresponding to each antenna port may also be predefined, for example, predetermined through a protocol.
  • a sequence corresponding to each antenna port may be predefined. For example, by predefining the information carried in the second configuration information above, the sequence corresponding to each antenna port is pre-defined, and so on.
  • sequence configuration method provided in this embodiment provides a basis for implementing the configuration method shown in FIG. 4. Therefore, for the beneficial effects that can be achieved in this embodiment, reference may be made to the beneficial effects described in the embodiment shown in FIG. 4. Of course, the sequence configuration method provided in this embodiment can also be applied to other scenarios.
  • a reference signal configured based on the existing sequence design method described in 5G NR R15 may be referred to as version 1, and will be configured based on the sequence design method provided in the embodiment of the present application
  • the reference signal is called version 2.
  • a terminal supporting version 2 may support version 1 at the same time, and a terminal supporting version 1 may not support version 2.
  • the foregoing description is based on the configuration of a reference signal for a terminal based on a network device as an example.
  • a network device schedules multiple terminals at the same time (specifically, scheduling within a scheduling period), and the multiple terminals Some terminals support only version 1 and some terminals support version 2. How to realize the scheduling of the multiple terminals by the network equipment has become an urgent problem.
  • the embodiments of the present application provide the following reference signal configuration methods.
  • FIG. 10 it is a schematic diagram of a reference signal configuration method according to an embodiment of the present application.
  • the method includes:
  • the network device generates indication information, where the indication information is used to indicate a first version of a reference signal.
  • the first version may be any one of the reference signal versions supported by multiple terminals scheduled by the network device in the same scheduling period.
  • the reference signal may be, for example, but not limited to, DMRS or CSI-RS.
  • the network device may execute the method provided in this embodiment in units of one or more scheduling periods, for example, the method provided in this embodiment may be performed in each or multiple consecutive scheduling periods.
  • the indication information is used to indicate the first version of the reference signal, and can be understood as: the indication information is used to indicate that the version of the reference signal (including the uplink reference signal or the downlink reference signal) transmitted in one or more scheduling periods is the first version.
  • the one or more scheduling periods may include: the current scheduling period, or multiple scheduling periods starting from the current scheduling period (such as multiple consecutive scheduling periods), or multiple scheduling periods after the current scheduling period (such as Multiple consecutive scheduling cycles) and so on.
  • the network device and some or all terminals scheduled by the network device have generated at least two versions of reference signals according to versions of reference signals that can be supported by the network device.
  • the at least two versions of the reference signal include at least two versions of the reference signal generated based on a method provided in the prior art (for example, but not limited to including a method provided by 5GNR15).
  • the at least two versions of the reference signal include: at least one version of the reference signal generated based on a method provided in the prior art (for example, but not limited to including the method provided by 5GNR15), and based on the method provided above A version of the reference signal was generated.
  • the reference signals of the at least two versions may also include reference signals generated based on future versions (such as 5G NR R16 or 5G NR R17).
  • the network device sends the instruction information to at least one terminal among the multiple terminals scheduled in the same scheduling period; the multiple terminals support the first version, and the at least one terminal also supports versions other than the first version.
  • the at least one terminal supports the first version and other versions except the first version.
  • the first version and other versions refer to the version of the same type of reference signal, and optionally, the first version
  • the sequence of the reference signal and the sequence of other versions of the reference signal are generated at the same time.
  • “simultaneous generation” please refer to the above.
  • the indication information may be carried in one or a combination of at least two of RRC signaling, MAC signaling, and DCI and sent by the network device to the terminal.
  • the indication information is carried by adding an independent indication field to RRC signaling or MAC signaling or DCI.
  • the first version described in this embodiment may be version 2 above.
  • the other versions described in this embodiment may be version 1 above.
  • At least one terminal in S402 may be a terminal supporting version 2.
  • This example uses two terminals that are dispatched by network equipment to support two versions as an example. It is extensible. When multiple terminals that are dispatched by network equipment support two or more versions, it can also pass The method of signaling the version of the reference signal enables the configuration of the reference signal.
  • S403 The at least one terminal receives the indication information.
  • Each terminal of the at least one terminal determines that the version of the reference signal transmitted (including receiving and / or transmitting) in the current scheduling period is the first version according to the indication information.
  • the network device may send the reference signal of the first version to the terminal, and the terminal receives the reference signal of the first version.
  • the terminal may send the first version of the reference signal to the network device, and the network device receives the first version of the reference signal.
  • the network device indicates the version of the reference signal to terminals (such as some or all terminals) scheduled in the same scheduling period through signaling, so that all terminals scheduled in the same scheduling period can help.
  • terminals such as some or all terminals
  • the use of the same version of the reference signal helps to solve the compatibility problem of terminals supporting different versions of the reference signal scheduled in the same scheduling cycle.
  • FIG. 11 it is a schematic diagram of a reference signal configuration method according to an embodiment of the present application.
  • the method includes:
  • S501 The terminal sends capability information to a network device, where the capability information is used to indicate whether the terminal supports version switching of reference signals, and the terminal supports at least two versions of reference signals.
  • the at least two versions of the reference signal herein refer to the same type of reference signal.
  • the sequences of the at least two versions of the reference signal are generated simultaneously.
  • reference may be made to the foregoing, and of course, embodiments of the present application are not limited thereto.
  • the capability information may be used to indicate whether the terminal supports version switching of the uplink reference signal. If the terminal supports at least two versions of the downlink reference signal, the capability information may be used to indicate whether the terminal supports version switching of the downlink reference signal. In addition, if the terminal supports at least two versions of uplink reference signals and supports at least two versions of downlink reference signals, the capability information may be used to indicate whether the terminal supports version switching of uplink reference signals and / or versions of downlink reference signals. Switch.
  • the capability information may be carried in one or a combination of at least two of RRC signaling, MAC signaling, and DCI and sent by the network device to the terminal.
  • the indication information is carried by adding an independent indication field to RRC signaling or MAC signaling or DCI.
  • the capability information may also indicate that the version switching of reference signals supported by the terminal is one or more of the following switching methods: dynamic switching (for example, support indication information It is carried in DCI, etc.), semi-static handover (for example, support indication information is carried in MAC signaling, etc.), and static handover (for example, support indication information is carried in RRC signaling, etc.).
  • dynamic switching for example, support indication information It is carried in DCI, etc.
  • semi-static handover for example, support indication information is carried in MAC signaling, etc.
  • static handover for example, support indication information is carried in RRC signaling, etc.
  • S502 The network device receives the capability information.
  • S503 The network device determines whether to instruct the terminal to perform version switching of the reference signal according to the capability information.
  • the terminal may be instructed to perform version switching of the reference signal according to the capability information.
  • One application scenario may be As described above, the network device indicates the first version to the terminal.
  • the terminal may not instruct the terminal to perform version switching of the reference signal.
  • the embodiment of the present application does not limit what kind of operation the network device performs according to the capability information. That is, the above S503 is an optional step.
  • the reference signal configuration method provided in this embodiment supports a terminal to report version switching capability information of a reference signal to a network device, which helps the network device to indicate the reference signal version to the terminal through signaling, thereby helping to solve the same scheduling cycle. Compatibility issues with terminals that support different versions of reference signals.
  • FIG. 12 it is a schematic diagram of a reference signal configuration method according to an embodiment of the present application.
  • the method includes:
  • the network device For the first terminal and the second terminal scheduled in the same scheduling period, the network device generates a first reference signal of the first terminal and a second reference signal of the second terminal; where the first reference signal and the second reference signal are The versions are different, and the first reference signal and the second reference signal are non-code division multiplexed time-frequency resources. That is, the first reference signal and the second reference signal cannot be code division multiplexed with time-frequency resources.
  • the first reference signal and the second reference signal are reference signals of the same type. Such as DMRS or CSI-RS.
  • the first reference signal and the second reference signal may be time-division multiplexed with time-frequency resources.
  • FIG. 13A it is a schematic diagram of mapping reference signals of different terminals to time-frequency resources in the same scheduling period according to an embodiment of the present application.
  • the different terminals here specifically refer to terminals that support different versions of reference signals.
  • the first reference signal and the second reference signal may be frequency-division multiplexed with time-frequency resources.
  • FIG. 13B it is a schematic diagram of mapping reference signals of different terminals to time-frequency resources in the same scheduling period according to an embodiment of the present application.
  • the different terminals here specifically refer to terminals that support different versions of reference signals.
  • 13A and 13B are described by taking one scheduling period and one time slot as an example, and each shows a reference signal mapped on an RB.
  • the network device sends a first reference signal to the first terminal, and sends a second reference signal to the second terminal. For example, after both the first reference signal and the second reference signal are mapped to the time-frequency resource, the first reference signal and the second reference signal mapped to the time-frequency resource are simultaneously transmitted.
  • the first terminal receives a first reference signal.
  • the second terminal receives a second reference signal.
  • the sequence corresponding to any antenna port scheduled by the terminal is the same as the sequence corresponding to other antenna ports in the code division multiplexing group where the antenna port is located; Alternatively, it can be assumed that there are no other antenna ports whose corresponding sequences are different from the corresponding sequence of the antenna port in the current scheduling period.
  • the manner in which the reference signals of the two terminals multiplex time-frequency resources may be non-code division multiplexing. In this way, in this way, it is helpful to realize that terminals with different versions of supported reference signals are scheduled in the same scheduling period, thereby solving the compatibility problem of terminals that support different versions of reference signals scheduled in the same scheduling period.
  • FIG. 14 it is a schematic diagram of a reference signal configuration method according to an embodiment of the present application.
  • the method includes:
  • the network device For at least two terminals scheduled in the first scheduling period, the network device generates a corresponding reference signal for each terminal, wherein the versions of the reference signals of the at least two terminals scheduled in the first scheduling period are the same (for example, the first The versions of the reference signals of all terminals scheduled in the period are the same), and this version is different from the versions of the reference signals of at least two terminals in the second scheduling period, and the reference of at least two terminals scheduled in the second scheduling period
  • the versions of the signals are the same (for example, the versions of the reference signals of all terminals scheduled in the second period are the same).
  • any terminal scheduled in the first scheduling period and any terminal scheduled in the second scheduling period may support one or more versions of the reference signal.
  • the reference signals of the at least two terminals can be time-division, frequency-division, or code-division multiplexing time-frequency resources in the first scheduling period.
  • the reference signals of at least two terminals scheduled in the second scheduling period may be time-division, frequency-division, or code-division multiplexing time-frequency resources.
  • the network device sends corresponding reference signals to at least two terminals scheduled in the first scheduling period in the first scheduling period.
  • the sequence corresponding to any antenna port scheduled by the terminal is the same as the sequence corresponding to other antenna ports in the code division multiplexing group where the antenna port is located; or, It can be assumed that there are no other antenna ports whose corresponding sequence is different from the sequence corresponding to the antenna port in the current scheduling period.
  • FIG. 15 a schematic diagram of mapping reference signals of different terminals in different scheduling periods to time-frequency resources according to an embodiment of the present application is shown.
  • the different terminals here specifically refer to terminals that support different versions of reference signals.
  • FIG. 15 is described by using an example in which one scheduling period is one slot, and each of the reference signals mapped on one RB is shown.
  • This embodiment can be understood as supporting time-division multiplexing of time-frequency resources of reference signals of terminals of different versions.
  • time-frequency multiplexing of time-frequency resources can be performed in units of a scheduling period (such as a subframe or a time slot or a mini time slot).
  • the versions of the reference signals of at least two terminals scheduled in the same scheduling period of the network device are the same, and the versions of the reference signals transmitted in different scheduling periods are different, thereby solving the compatibility problem of terminals supporting different versions of the reference signal.
  • function module division may be performed on a parameter signal configuration device (including a network device or terminal) or a sequence configuration device (including a network device or terminal) according to the foregoing method example.
  • each function module may be divided corresponding to each function, or Integrate two or more functions into one processing module.
  • the above integrated modules may be implemented in the form of hardware or software functional modules. It should be noted that the division of the modules in the embodiments of the present application is schematic, and is only a logical function division. In actual implementation, there may be another division manner.
  • FIG. 16 it is a schematic structural diagram of a reference signal configuration device 160 according to an embodiment of the present application.
  • the reference signal configuration device 160 may be configured to execute any one of the reference signal configuration methods provided above.
  • the reference signal configuration device 160 may include a processing unit 1601 and a transceiving unit 1602.
  • the reference signal configuration device 160 may include a transceiver unit 1602, and optionally further includes a processing unit 1601.
  • the specific description is as follows:
  • the reference signal configuration device 160 may include a processing unit 1601 and a transceiving unit 1602.
  • a processing unit 1601 is configured to generate at least two reference signals; the at least two reference signals are reference signals corresponding to at least two antenna ports allocated by a network device to a same terminal, and the at least two reference signals are references of the same type Signal, the at least two reference signals include a first reference signal and a second reference signal, and a sequence of the first reference signal is different from a sequence of the second reference signal.
  • the transceiver unit 1602 is configured to send the at least two reference signals.
  • the reference signal configuration device 160 may be a transmitting device, the processing unit 1601 may be used to execute S101, and the transceiver unit 1602 may be used to execute S103.
  • the reference signal sequence refers to a sequence used to obtain a reference signal, and may also be referred to as a reference signal generation sequence or a local sequence of the reference signal.
  • the processing unit 1601 is specifically configured to generate the at least two reference signals according to M sequences; where the M sequences include a sequence of the first reference signal and a sequence of the second reference signal, and M is greater than or equal to 2 An integer of M; M is the number of code division multiplexing groups occupied by the antenna port allocated by the network device to the terminal, or the number of antenna ports allocated by the network device to the terminal.
  • the reference signal configuration device 160 may include a transceiver unit 1602 for receiving at least two reference signals.
  • the at least two reference signals are at least two allocated by the network device for the same terminal. Reference signals corresponding to the two antenna ports.
  • the at least two reference signals are reference signals of the same type.
  • the at least two reference signals include a first reference signal and a second reference signal. The sequence of the first reference signal and the second reference signal. The sequence of the signals is different.
  • the reference signal configuration device 160 may be a receiving-end device, and the transceiver unit 1602 may be configured to execute S104.
  • the reference signal configuration device 160 further includes a processing unit 1601, configured to generate the at least two reference signals according to M sequences, where the M sequences include a sequence of a first reference signal and a sequence of a second reference signal, M is an integer greater than or equal to 2; M is the number of code division multiplexing groups occupied by the antenna port allocated by the network device to the terminal, or the number of antenna ports allocated by the network device to the terminal.
  • the processing unit 1601 may be used to execute S102.
  • the sequence of the reference signal is based on a formula Get; where, Represents the nth element in the sequence of the reference signal, r (n) represents the nth element in the reference sequence, n ⁇ 0, n is an integer, f (n CDM_m ) represents a function related to n CDM_m , and n CDM_m An index of a code division multiplexing group to which the antenna port corresponding to the reference signal belongs, or an offset value corresponding to the code division multiplexing group or a scrambling factor corresponding to the code division multiplexing group.
  • k represents The index of the mapped frequency domain unit.
  • the antenna port corresponding to the first reference signal and the antenna port corresponding to the second reference signal belong to different code division multiplexing groups; different code division multiplexing groups correspond to different orthogonal coverage codes OCC.
  • each frequency of the first code division multiplexing group The OCC corresponding to the domain unit is a matrix a, and the OCC corresponding to each frequency domain unit of the second code division multiplexing group is -a; or, the OCC corresponding to each frequency domain unit of the first code division multiplexing group is It is a matrix a, and one of the two frequency domain units of the adjacent two frequency domain units of the second code division multiplexing group is an OCC corresponding to the matrix a, and the other OCC corresponding to the frequency domain unit is -a.
  • the three code division multiplexing groups include a first code division multiplexing group, a second code division multiplexing group, and a third code division multiplexing group:
  • the OCC corresponding to each frequency domain unit of the code division multiplexing group is a matrix a
  • the OCC corresponding to each frequency domain unit of the second code division multiplexing group is a * exp (j * x)
  • the first code division The OCC corresponding to each frequency domain unit of the multiplexing group is matrix a;
  • the OCC corresponding to one frequency domain unit of the two adjacent frequency domain units of the second code division multiplexing group is matrix a, and the other frequency domain
  • the OCC corresponding to the unit is a * exp (j * x
  • the reference signal configuration device 160 may include a processing unit 1601 and a transceiving unit 1602.
  • the processing unit 1601 is configured to generate instruction information, where the instruction information is used to indicate a first version of the reference signal.
  • the transceiver unit 1602 is configured to send the instruction information to at least one terminal among the multiple terminals scheduled in the same scheduling period; the multiple terminals support the first version, and at least one terminal also supports other versions except the first version.
  • the reference signal configuration device 160 may be a network device, the processing unit 1601 may be used to execute S401, and the transceiver unit 1602 may be used to execute S402.
  • the reference signal configuration device 160 may include a processing unit 1601 and a transceiving unit 1602.
  • the transceiver unit 1602 is configured to receive instruction information, where the instruction information is used to indicate a first version of the reference signal.
  • the processing unit 1601 is configured to determine, according to the instruction information, that a version of the reference signal transmitted in the current scheduling period is a first version.
  • the reference signal configuration device 160 may be any one of at least one terminal, the transceiver unit 1602 may be used to execute S403, and the processing unit 1601 may be used to execute S404.
  • the reference signal configuration device 160 may include a processing unit 1601 and a transceiving unit 1602.
  • the transceiver unit 1602 is configured to receive capability information sent by the terminal.
  • the capability information is used to indicate whether the terminal supports version switching of reference signals, and the terminal supports at least two versions of reference signals.
  • the processing unit 1601 is configured to determine whether to instruct the terminal to switch the version of the reference signal according to the capability information.
  • the reference signal configuration device 160 may be a network device, the processing unit 1601 may be used to execute S502, and the transceiver unit 1602 may be used to execute S503.
  • the reference signal configuration device 160 may include a transceiving unit 1602.
  • the transceiver unit 1602 is configured to send capability information.
  • the capability information indicates whether the terminal supports version switching of the reference signal, and is used by the network device to determine whether to instruct the terminal to perform version switching of the reference signal.
  • the reference signal configuration device 160 may be a terminal, and the transceiver unit 1602 may be configured to execute S501.
  • the reference signal configuration device 160 may include a processing unit 1601 and a transceiving unit 1602.
  • the processing unit 1601 is configured to generate, for the first terminal and the second terminal scheduled in the same scheduling period, a first reference signal of the first terminal and a second reference signal of the second terminal; wherein the first reference signal and the second reference signal The versions are different, and the first reference signal and the second reference signal are non-code division multiplexed time-frequency resources.
  • the transceiver unit 1602 is configured to send a first reference signal to a first terminal and a second reference signal to a second terminal within a scheduling period.
  • the reference signal configuration device 160 may be a network device, the processing unit 1601 may be used to execute S601, and the transceiver unit 1602 may be used to execute S602.
  • the reference signal configuration device 160 may include a processing unit 1601 and a transceiving unit 1602.
  • the processing unit 1601 is configured to generate a corresponding reference signal for each terminal for at least two terminals scheduled in the first scheduling period, wherein the versions of the reference signals of the at least two terminals scheduled in the first scheduling period are the same, and The version is different from the versions of the reference signals of the at least two terminals in the second scheduling period, and the versions of the reference signals of the at least two terminals scheduled in the second scheduling period are the same.
  • the transceiver unit 1602 is configured to send corresponding reference signals to the at least two terminals scheduled in the first scheduling period in the first scheduling period.
  • the reference signal configuration device 160 may be a network device, the processing unit 1601 may be used to execute S701, and the transceiver unit 1602 may be used to execute S702.
  • the reference signal configuration device 160 may include a processing unit 1601 and a transceiving unit 1602.
  • the processing unit 1601 is configured to generate at least two reference signals, where the at least two reference signals are reference signals corresponding to at least two antenna ports allocated by a network device to the same terminal, and the at least two reference signals are reference signals of the same type.
  • the at least two reference signals include a first reference signal and a second reference signal, and a sequence of the first reference signal is different from a sequence of the second reference signal.
  • the transceiver unit 1602 is configured to send the at least two reference signals.
  • the sequence of the reference signal refers to a sequence composed of elements included in the reference signal.
  • sequence of the first reference signal and the sequence of the second reference signal are both sequences generated based on the reference signal level, or both are sequences generated based on the time domain symbol level.
  • the processing unit 1602 is specifically configured to generate the at least two reference signals according to a sequence (also referred to as a mother sequence).
  • the reference signal configuration device 160 may include a transceiving unit 1602.
  • the transceiver unit 1602 is configured to receive at least two reference signals.
  • the at least two reference signals are reference signals corresponding to at least two antenna ports allocated by a network device to the same terminal, and the at least two reference signals are reference signals of the same type.
  • the at least two reference signals include a first reference signal and a second reference signal, and a sequence of the first reference signal is different from a sequence of the second reference signal.
  • the sequence of the reference signal refers to a sequence composed of elements included in the reference signal.
  • the reference signal configuration device 160 further includes a processing unit 1601, configured to generate the at least two reference signals according to a sequence (also referred to as a mother sequence).
  • a processing unit 1601 configured to generate the at least two reference signals according to a sequence (also referred to as a mother sequence).
  • the foregoing processing unit 1601 may be implemented by the processor 201 or the processor 207 in FIG. 3.
  • the transceiver unit 1602 may be implemented through the communication interface 204 in FIG. 3.
  • FIG. 17 it is a schematic structural diagram of a sequence configuration device 170 according to an embodiment of the present application.
  • the sequence configuration device 170 may be configured to execute any one of the reference signal configuration methods provided above.
  • the sequence configuration device 170 may include a processing unit 1701 and a transceiving unit 1702. The specific description is as follows:
  • the processing unit 1701 is configured to generate configuration information, where the configuration information is used to configure each code division multiplexing in the M code division multiplexing groups occupied by at least two antenna ports allocated by the network device to the terminal. Use the sequence corresponding to the group; M is an integer greater than or equal to 2.
  • the transceiver unit 170 is configured to send the configuration information.
  • the sequence configuration device 170 may be a transmitting device, the processing unit 1701 may be used to execute S201, and the transceiver unit 1702 may be used to execute S202.
  • the configuration information is specifically used to configure generation parameters of the sequence corresponding to each code division multiplexing group, and the generation parameters include an index of the code division multiplexing group or an offset value corresponding to the code division multiplexing group or The scrambling factor corresponding to the code division multiplexing group.
  • the transceiver unit 1702 is configured to receive configuration information, where the configuration information is used to configure each code division multiplexing in the M code division multiplexing groups occupied by at least two antenna ports allocated by the network device to the terminal. Use the sequence corresponding to the group; M is an integer greater than or equal to 2.
  • the processing unit 1701 is configured to configure a sequence corresponding to each code division multiplexing group according to the configuration information.
  • the sequence configuration device 170 may be a receiving end device, the transceiver unit 1702 may be used to execute S203, and the processing unit 1701 may be used to execute S204.
  • the configuration information is specifically used to configure generation parameters of the sequence corresponding to each code division multiplexing group, and the generation parameters include an index of the code division multiplexing group or an offset value corresponding to the code division multiplexing group or The scrambling factor corresponding to the code division multiplexing group.
  • the processing unit 1701 is configured to generate configuration information that is used to configure a sequence corresponding to each antenna port of the at least two antenna ports allocated by the network device to the terminal.
  • the transceiver unit 1702 is configured to send the configuration information.
  • the sequence configuration device 170 may be a transmitting device, the processing unit 1701 may be used to execute S301, and the transceiver unit 1702 may be used to execute S302.
  • the configuration information is specifically used to configure generation parameters of the sequence corresponding to each antenna port, and the generation parameters include an index of the antenna port or an offset value corresponding to the antenna port or a scrambling factor corresponding to the antenna port.
  • the transceiver unit 1702 is configured to receive configuration information, where the configuration information is used to configure a sequence corresponding to each antenna port of the at least two antenna ports allocated by the network device to the terminal.
  • the processing unit 1701 is configured to configure a sequence corresponding to each antenna port according to the configuration information.
  • the sequence configuration device 170 may be a receiving end device, the transceiver unit 1702 may be used to execute S303, and the processing unit 1701 may be used to execute S304.
  • the configuration information is specifically used to configure a generation parameter of the sequence corresponding to each antenna port, and the generation parameter includes an index of the antenna port or an offset value corresponding to the antenna port or a scrambling factor corresponding to the antenna port .
  • the foregoing processing unit 1701 may be implemented by the processor 201 or the processor 207 in FIG. 3.
  • the transceiver unit 1702 may be implemented through the communication interface 204 in FIG. 3.
  • Another aspect of the present invention provides a method for obtaining a reference signal, including:
  • the present invention also provides a communication device, including:
  • An obtaining module configured to obtain the reference signal according to the initialization factor.
  • the present invention also provides a communication device, which is characterized by including:
  • a processor configured to execute the foregoing method for obtaining a reference signal.
  • the present invention also provides a communication device, which is characterized by including:
  • the present invention also provides a computer-readable storage medium on which a computer program is stored, and when the computer program is run on the computer, the computer is caused to execute the above-mentioned method for obtaining a reference signal.
  • the present invention also provides a computer program product that, when running on a computer, causes the above method for obtaining a reference signal to be executed.
  • the present invention also provides a communication chip, in which instructions are stored, which when executed on the communication device, causes the communication device to perform the above-mentioned method for obtaining a reference signal.
  • the above initialization factors may be:
  • the above initialization factors may also be:
  • Y is any positive integer greater than or equal to log 2 (n CDM_m * 2 X ) +1, and X is greater than or equal to Any positive integer of.
  • the above initialization factors may also be:
  • c init_m is an initialization factor
  • n CDM_m is an index indicating a code division multiplexing group to which the antenna port corresponding to the reference signal belongs, or an offset value corresponding to the code division multiplexing group, or the code division complex
  • Is the number of symbols in a slot Is an index of a subframe or a slot
  • l is an index of a symbol
  • n SCID is a scrambling factor, Sequence ID (ID).
  • n SCID may be, for example, but not limited to, 0 or 1.
  • the value of n SCID may be indicated by 1 bit in the DCI.
  • the value can be, for example, but not limited to, 0-65535.
  • This parameter can be configured by, for example, but not limited to, RRC signaling.
  • c init_m is an initialization factor of a reference signal sequence, Is the number of symbols in a time slot, such as, but not limited to, the number of symbols in a time slot carrying the reference signal.
  • l is an index of a symbol, such as, but not limited to, an index of a symbol that carries the reference signal. l can be equal to 0 to 5 or 0 to 6.
  • a reference signal may be obtained by referring to the prior art.
  • the following methods can be used to obtain the reference signal:
  • the reference signal sequence can also be obtained by a lookup table based on the above formula, where:
  • x 1 (n + 31) (x 1 (n + 3) + x 1 (n)) mod 2
  • x 2 (n + 31) (x 2 (n + 3) + x 2 (n + 2) + x 2 (n + 1) + x 2 (n)) mod 2
  • the above reference signal is a DMRS or a CSI-RS.
  • the obtaining the reference signal may be obtaining the reference signal in various ways, such as, but not limited to, obtaining the reference signal by calculating according to a preset formula, or obtaining the reference signal by querying a table.
  • the preset formula is, for example, but not limited to, a sequence generation formula of a reference signal
  • the formula is a formula related to the foregoing initialization factor.
  • parameters included in the preset formula include the initialization factor.
  • the foregoing preset formulas can be referred to, for example, but not limited to, a reference signal sequence generation formula mentioned in an existing LTE standard or a 5G standard.
  • n CDM_m represents the index of the code division multiplexing group to which the antenna port corresponding to the reference signal belongs, or the offset value corresponding to the code division multiplexing group, or the interference corresponding to the code division multiplexing group. Code factor, or other information that can be used to identify the code division multiplexing group.
  • the above method may further include sending the reference signal. More specifically, before the reference signal is sent, other processing may be performed, such as, but not limited to, processing through an OCC code, and then sending through a time-frequency resource corresponding to the reference signal.
  • the above method may further include that the receiving end device performs data demodulation based on the reference signal and the reference signal from the transmitting end device.
  • the above reference signal is DMRS.
  • the reference signal generated by the receiving end device and the reference signal generated by the transmitting end device are the same reference signal. In this way, after the reference signal generated by the transmitting end device is transmitted through the transmitting end device and transmitted through the channel, the receiving end When the device receives, the receiving device can perform data demodulation based on the received reference signal from the transmitting device and the reference signal obtained by the receiving device according to the initialization factor.
  • the receiving device may determine, for example, a channel parameter (such as, but not limited to, an equivalent channel matrix) based on the reference signal from the transmitting device and the reference signal obtained by the receiving device according to the initialization factor, and perform Data demodulation.
  • a channel parameter such as, but not limited to, an equivalent channel matrix
  • the sending device may be a network device, and the receiving device may be a terminal.
  • the sending device sends a reference signal to the receiving device, and the receiving device is based on the received reference from the transmitting device.
  • the data and the reference signal generated by the receiving end device are used for data demodulation, which corresponds to the downlink communication process.
  • the sending device may be a terminal, and the receiving device may be a network device.
  • the sending device sends a reference signal to the receiving device, and the receiving device receives the reference from the transmitting device based on the received reference.
  • the signal and the reference signal generated by the receiving end device perform data demodulation, and the corresponding process is the uplink communication process.
  • the above communication device may be a transmitting-end device or a receiving-end device.
  • the transmitting-end device and the receiving-end device may also include devices such as a transceiver module or a transceiver.
  • the above embodiments it may be implemented in whole or in part by software, hardware, firmware, or any combination thereof.
  • a software program it may be implemented in whole or in part in the form of a computer program product.
  • the computer program product includes one or more computer instructions.
  • a computer executes instructions loaded and executed on a computer, the processes or functions according to the embodiments of the present application are wholly or partially generated.
  • the computer may be a general purpose computer, a special purpose computer, a computer network, or other programmable device.
  • the computer instructions may be stored in or transmitted from one computer-readable storage medium to another computer-readable storage medium, for example, the computer instructions may be transmitted from a website site, computer, server, or data center via a wired (for example, Coaxial cable, optical fiber, digital subscriber line (DSL), or wireless (such as infrared, wireless, microwave, etc.) to transmit to another website site, computer, server, or data center.
  • the computer-readable storage medium may be any available medium that can be accessed by a computer or a data storage device including one or more servers, data centers, and the like that can be integrated with the medium.
  • the usable medium may be a magnetic medium (for example, a floppy disk, a hard disk, a magnetic tape), an optical medium (for example, a DVD), or a semiconductor medium (for example, a solid state disk (SSD)), or the like.
  • a magnetic medium for example, a floppy disk, a hard disk, a magnetic tape
  • an optical medium for example, a DVD
  • a semiconductor medium for example, a solid state disk (SSD)

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请公开了参考信号及序列配置方法和装置,涉及通信技术领域,有助于提高系统整体性能。参考信号配置方法包括生成至少两个参考信号;其中,该至少两个参考信号是网络设备为同一终端分配的至少两个天线端口对应的参考信号,该至少两个参考信号是同一类型的参考信号,该至少两个参考信号包括第一参考信号和第二参考信号,第一参考信号的序列与第二参考信号的序列不同。发送该至少两个参考信号。

Description

参考信号及序列配置方法和装置
本申请要求于2018年9月14日提交中国国家知识产权局、申请号为201811084471.X、发明名称为“参考信号及序列配置方法和装置”的中国专利申请的优先权,和2018年9月28日提交中国国家知识产权局、申请号为201811146964.1、发明名称为“参考信号及序列配置方法和装置”的中国专利申请的优先权,以及2018年10月11日提交中国国家知识产权局、申请号为201811186140.7、发明名称为“参考信号及序列配置方法和装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及通信技术领域,尤其涉及参考信号及序列配置方法和装置。
背景技术
在多输入多输出(multi-input multi-output)系统中,各根发送天线(如逻辑天线或物理天线)具有独立的数据信道。接收端设备(如网络设备或终端)通常基于预知的参考信号,针对每根发送天线进行信道估计,并基于信道估计结果还原经数据信道传输的数据信号。因此,如何配置参考信号或如何配置用于生成参考信号的序列至关重要。
发明内容
本申请实施例提供了参考信号及序列配置方法和装置,有助于降低峰均值功率比(peak-to-average power ratio,PAPR),从而提高系统的传输性能。
第一方面,本申请实施例提供了一种参考信号配置方法,包括:生成并发送至少两个参考信号。该至少两个参考信号是网络设备为同一终端分配的至少两个天线端口对应的参考信号,该至少两个参考信号是同一类型的参考信号,该至少两个参考信号包括第一参考信号和第二参考信号,第一参考信号的序列与第二参考信号的序列不同。可选的,参考信号的序列是指用于获得参考信号的序列,也可以被称为参考信号的生成序列或参考信号的本地序列。
该方法的执行主体可以是该网络设备或该终端。可选的,参考信号可以是解调参考信号(demodulation reference signal,DMRS)或信道状态信息参考信号(channel state information reference signal,CSI-RS)等。
该技术方案中,网络设备为终端分配的天线端口对应的不同参考信号的序列可以不同;这样,有助于实现网络设备和终端所生成的映射至同一资源单元的参考信号不同,也就是说,有助于实现映射在一个时域符号上的不同参考信号不同,这增加了序列取值或序列映射的随机性,即有助于避免序列频域重复问题,因此可以降低PAPR,从而提高系统的传输性能。
可选的,第一参考信号的序列和第二参考信号的序列是同时生成的。这里的“同时”可以理解为是同一个时间点,或者是同一个时间段。该时间段小于或等于调度周期,例如可以是一个或多个时域符号,或者一个或多个微时隙,或者一个或多个时隙,或者一个子 帧。
可选的,第一参考信号的序列和第二参考信号的序列均是基于参考信号级别生成的序列,或者均是基于时域符号级别生成的序列。
在一种可能的设计中,生成至少两个参考信号,包括:根据M个序列,生成至少两个参考信号;其中,该M个序列包括第一参考信号的序列和第二参考信号的序列,M是大于或等于2的整数;M是网络设备为该终端分配的天线端口所占用的码分复用组的个数,或者是网络设备为该终端分配的天线端口的个数。
可选的,该M个序列是同时生成的,这里的“同时”的解释可以参考上文。
第二方面,本申请实施例提供了一种参考信号配置方法,包括:接收至少两个参考信号。该至少两个参考信号是网络设备为同一终端分配的至少两个天线端口对应的参考信号,该至少两个参考信号是同一类型的参考信号,该至少两个参考信号包括第一参考信号和第二参考信号,第一参考信号的序列与第二参考信号的序列不同。其中,参考信号的序列是指用于获得参考信号的序列,也可以被称为参考信号的生成序列或参考信号的本地序列。该方案的有益效果可以参考上述第一方面,此处不再赘述。
当第一方面提供的方法的执行主体是网络设备时,该方法的执行主体可以是终端;当第一方面提供的方法的执行主体是终端时,该方法的执行主体可以是网络设备。
在一种可能的设计中,该方法还包括:根据M个序列,生成至少两个参考信号;其中,该M个序列包括第一参考信号的序列和第二参考信号的序列,M是大于或等于2的整数;M是网络设备为该终端分配的天线端口所占用的码分复用组的个数,或者是网络设备为该终端分配的天线端口的个数。
可选的,该M个序列是同时生成的,这里的“同时”的解释可以参考上文。
第二方面提供的技术方案与第一方面提供的方法对应,因此,第二方面中的相关内容及有益效果的解释均可以参考上述第一方面。
基于上述第一方面和第二方面中的任一种技术方案,以下提供几种可能的设计:
在一种可能的设计中,对于第一参考信号和第二参考信号中的任一参考信号来说,该参考信号的序列是基于公式
Figure PCTCN2019102057-appb-000001
得到的;其中,
Figure PCTCN2019102057-appb-000002
表示该参考信号的序列中的第n个元素,r(n)表示参考序列中的第n个元素,n≥0,n是整数,f(n CDM_m)表示与n CDM_m相关的函数,n CDM_m表示该参考信号对应的天线端口所属的码分复用组的索引,或者该码分复用组对应的偏移值或者该码分复用组对应的扰码因子。
例如,
Figure PCTCN2019102057-appb-000003
或者
Figure PCTCN2019102057-appb-000004
其中,k表示
Figure PCTCN2019102057-appb-000005
所映射的频域单元的索引。
又如,当M=2时,f(n CDM_m)=-1 CDM_m;或者,当M=3时,
Figure PCTCN2019102057-appb-000006
Figure PCTCN2019102057-appb-000007
其中,M是网络设备为终端分配的天线端口所占用的码分复用组的个数。也就是说,不同码分复用组对应的序列在同一参考序列的基础上产生了不同的相位旋转,使得不同码分复用组对应的序列不同。
在另一种可能的设计中,第一参考信号对应的天线端口与第二参考信号对应的天线端 口所属不同的码分复用组;不同码分复用组对应不同的正交覆盖码OCC。也就是说,通过设置不同码分复用组对应不同的OCC,使得不同码分复用组对应不同的序列。
例如,若系统支持2个码分复用组,2个码分复用组包括第一码分复用组和第二码分复用组,则:第一码分复用组的每个频域单元对应的OCC均是矩阵a,第二码分复用组的每个频域单元对应的OCC均是-a;或者,第一码分复用组的每个频域单元对应的OCC均是矩阵a,第二码分复用组的相邻两个频域单元中的其中一个频域单元对应的OCC是矩阵a,另一个频域单元对应的OCC是-a。
又如,若系统支持3个码分复用组,3个码分复用组包括第一码分复用组、第二码分复用组和第三码分复用组,则:第一码分复用组的每个频域单元对应的OCC均是矩阵a,第二码分复用组的每个频域单元对应的OCC均是a*exp(j*x),第三码分复用组的每个频域单元对应的OCC均是a*exp(j*y),其中,x+y=2π,或者x+y=-2π,j是虚数单位;或者,第一码分复用组的每个频域单元对应的OCC均是矩阵a;第二码分复用组的相邻两个频域单元中的其中一个频域单元对应的OCC是矩阵a,另一个频域单元对应的OCC是a*exp(j*x);第三码分复用组的相邻两个频域单元中的其中一个频域单元对应的OCC是矩阵a,另一个频域单元对应的OCC是a*exp(j*y);其中,x+y=2π,或者x+y=-2π,j是虚数单位。
第三方面,本申请实施例提供了一种参考信号配置方法,包括:生成并发送至少两个参考信号;其中,该至少两个参考信号是网络设备为同一终端分配的至少两个天线端口对应的参考信号,该至少两个参考信号是同一类型的参考信号,该至少两个参考信号包括第一参考信号和第二参考信号,第一参考信号的序列与第二参考信号的序列不同。该方法的执行主体可以是该网络设备或该终端。可选的,参考信号的序列是指参考信号包含的元素构成的序列。
可选的,第一参考信号的序列和第二参考信号的序列均是基于参考信号级别生成的序列,或者均是基于时域符号级别生成的序列。
在一种可能的设计中,生成至少两个参考信号,包括:根据一个序列(也可以称为母序列),生成该至少两个参考信号。基于此,第一参考信号的序列和第二参考信号的序列不同,可以包括:第一参考信号中包含的调制符号在母序列中的位置构成的集合,与第二参考信号中包含的调制符号在母序列中的位置构成的集合不同。
第四方面,本申请实施例提供了一种参考信号配置方法,包括:接收至少两个参考信号;其中,该至少两个参考信号是网络设备为同一终端分配的至少两个天线端口对应的参考信号,该至少两个参考信号是同一类型的参考信号,该至少两个参考信号包括第一参考信号和第二参考信号,第一参考信号的序列与第二参考信号的序列不同。该方法的执行主体可以是该网络设备或该终端。其中,参考信号的序列是指参考信号包含的元素构成的序列。
在一种可能的设计中,该方法还包括:根据一个序列(也可以称为母序列),生成该至少两个参考信号。
第四方面提供的技术方案与第三方面提供的方法对应,因此,第四方面中的相关内容及有益效果的解释均可以参考上述第三方面。
第五方面,本申请实施例提供了一种序列配置方法,包括:生成并发送配置信息,该 配置信息用于配置网络设备为终端分配的至少两个天线端口所占用的M个码分复用组中的每个码分复用组对应的序列;M是大于或等于2的整数。
第六方面,本申请实施例提供了一种序列配置方法,包括:接收配置信息,该配置信息用于配置网络设备为终端分配的至少两个天线端口所占用的M个码分复用组中的每个码分复用组对应的序列;M是大于或等于2的整数;根据该配置信息配置该每个码分复用组对应的序列。
基于上述第五方面或第六方面,码分复用组对应的序列,是指“用于获得该码分复用组中的各天线端口对应的参考信号”的序列,如上文中描述的本地序列。可选的,一个码分复用组对应一个序列。
基于上述第五方面或第六方面,在一种可能的设计中,该配置信息具体用于配置该每个码分复用组对应的序列的生成参数,该生成参数包括该码分复用组的索引或者该码分复用组对应的偏移值或该码分复用组对应的扰码因子。
基于上述第五方面或第六方面,在一种可能的设计中,该配置信息可以例如但不限于通过无线资源控制(radio resource control,RRC)信令、媒体接入控制(medium access control,MAC)信令和下行控制信息(downlink control information,DCI)中的一种或者至少两种的组合实现。例如,该配置信息可以携带在DCI中。
第七方面,本申请实施例提供了一种序列配置方法,包括:生成并发送配置信息,该配置信息用于配置网络设备为终端分配的至少两个天线端口中的每个天线端口对应的序列。
第八方面,本申请实施例提供了一种序列配置方法,包括:接收配置信息,该配置信息用于配置网络设备为终端分配的至少两个天线端口中的每个天线端口对应的序列。根据该配置信息,配置该每个天线端口对应的序列。
基于上述第七方面或第八方面,天线端口对应的序列,是指“用于获得该天线端口对应的参考信号”的序列。可选的,一个天线端口对应一个序列。
基于上述第七方面或第八方面,在一种可能的设计中,该配置信息具体用于配该每个码分复用组对应的序列的生成参数,该生成参数包括该码分复用组的索引或者该码分复用组对应的偏移值或该码分复用组对应的扰码因子。
基于上述第七方面或第八方面,在一种可能的设计中,该配置信息可以例如但不限于通过RRC信令、MAC信令和DCI中的一种或者至少两种的组合实现。例如,该配置信息可以携带在DCI中。
上述第五至第八方面提供的序列配置方法为上述第一方面至第二方面提供的参考信号配置方法提供了基础,因此,其所能达到的有益效果可以参考上文第一方面或第二方面中的描述。当然这些序列配置方法还可以应用于其他场景中。
第九方面,本申请实施例提供了一种参考信号配置方法,包括:生成指示信息,该指示信息用于指示参考信号的第一版本;向在同一调度周期中调度的多个终端中的至少一个终端发送该指示信息;该多个终端均支持第一版本,该至少一个终端还支持除第一版本外的其他版本。这样,有助于实现同一调度周期调度的所有终端均使用同一种参考信号版本,从而有助于解决同一调度周期调度的支持不同版本的参考信号的终端的兼容性问题。
第十方面,本申请实施例提供了一种参考信号配置方法,包括:接收指示信息,指示 信息用于指示参考信号的第一版本;根据指示信息,确定本次调度周期内传输的参考信号的版本是第一版本。该方法的执行主体可以是终端,可选的,该终端支持至少两个版本的参考信号。可选的,该至少两种版本的参考信号是同一类型的参考信号。该方法所能达到的有益效果可以参考第九方面,此处不再赘述。
基于第九方面或第十方面,在一种可能的设计中,该指示信息可以例如但不限于通过RRC信令、MAC信令和DCI中的一种或者至少两种的组合实现。例如,该指示信息可以携带在DCI中。
第十一方面,本申请实施例提供了一种参考信号配置方法,包括:接收终端发送的能力信息,该能力信息用于指示该终端是否支持参考信号的版本切换,该终端支持至少两种版本的参考信号;根据该能力信息,确定是否指示该终端进行参考信号的版本切换。该方法的执行主体可以是网络设备。可选的,该终端支持至少两种版本的参考信号。可选的,该至少两种版本的参考信号是同一类型的参考信号。也就是说,本申请支持终端向网络设备上报参考信号的版本切换能力信息,这有助于实现网络设备通过信令向该终端指示参考信号版本,从而有助于解决同一调度周期内调度的支持不同版本的参考信号的终端的兼容性问题。
第十二方面,本申请实施例提供了一种参考信号配置方法,包括:终端发送能力信息;该能力信息指示该终端是否支持参考信号的版本切换,以用于网络设备确定是否指示该终端进行参考信号的版本切换。可选的,该终端支持至少两种版本的参考信号。可选的,该至少两种版本的参考信号是同一类型的参考信号。该方法所能达到的有益效果可以参考第十一方面,此处不再赘述。
基于第十一方面或第十二方面,在一种可能的设计中,该能力信息可以例如但不限于通过RRC信令、MAC信令和DCI中的一种或者至少两种的组合实现。例如,该能力信息可以携带在DCI中。
第十三方面,本申请实施例提供了一种参考信号配置方法,包括:对于同一调度周期内调度的第一终端和第二终端,网络设备生成第一终端的第一参考信号和第二终端的第二参考信号;其中,第一参考信号与第二参考信号的版本不同,且第一参考信号与第二参考信号非码分复用时频资源;网络设备在调度周期内,向第一终端发送第一参考信号,且向第二终端发送第二参考信号。该技术方案中,网络设备同一调度周期内调度的任意两个终端的参考信号的版本不同时,这两个终端的参考信号复用时频资源的方式不包含码分复用方式,这样,有助于实现在同一调度周期内调度所支持的参考信号的版本不同的终端,从而实现解决同一调度周期内调度的支持不同版本的参考信号的终端的兼容性问题。
第十四方面,本申请实施例提供了一种参考信号配置方法,包括:对于第一调度周期内调度的至少两个终端,网络设备为每个终端生成对应的参考信号,其中,第一调度周期内调度的至少两个终端的参考信号的版本相同,且该版本不同于在第二调度周期内的至少两个终端的参考信号的版本,在第二调度周期内调度的至少两个终端的参考信号的版本相同;网络设备在第一调度周期内向第一调度周期内调度的该至少两个终端发送对应的参考信号。该技术方案通过网络设备同一调度周期内调度的至少两个终端的参考信号的版本相同,不同调度周期内传输的参考信号的版本不同,解决支持不同版本的参考信号的终端的兼容性问题。
第十五方面,本申请实施例提供了一种参考信号配置装置,该参考信号配置装置可以用于执行上文中任意一方面(如第一至第四方面、第九至第十四方面中的任意一方面等)或任意一种可能的设计提供的参考信号配置方法。
在一种可能的设计中,可以根据基于上述任意一方面或任意一种可能的设计提供的参考信号配置方法,对该参考信号配置装置进行功能模块的划分,例如,可以对应各个功能划分各个功能模块,也可以将两个或两个以上的功能集成在一个处理模块中。
在另一种可能的设计中,该参考信号配置装置包括处理器和收发器。其中,处理器可以用于执行除收发之外的步骤。收发器用于执行接收和/或发送步骤。可替换的,在一些实现方式中,该参考信号配置装置包括收发器,用于执行接收和/或发送步骤。
例如,该参考信号配置装置包括处理器和收发器。其中,处理器用于生成至少两个参考信号;其中,该至少两个参考信号是网络设备为同一终端分配的至少两个天线端口对应的参考信号,该至少两个参考信号是同一类型的参考信号,该至少两个参考信号包括第一参考信号和第二参考信号,第一参考信号的序列与第二参考信号的序列不同。收发器用于发送该至少两个参考信号。
例如,该参考信号配置装置包括收发器。其中,收发器用于接收至少两个参考信号,该至少两个参考信号是网络设备为同一终端分配的至少两个天线端口对应的参考信号,该至少两个参考信号均是同一类型的参考信号,该至少两个参考信号包括第一参考信号和第二参考信号,第一参考信号的序列与第二参考信号的序列不同。
例如,该参考信号配置装置包括处理器和收发器。其中,处理器生成指示信息,该指示信息用于指示参考信号的第一版本。收发器用于向在同一调度周期中调度的多个终端中的至少一个终端发送该指示信息;多个终端均支持第一版本,该至少一个终端还支持除第一版本外的其他版本。
例如,该参考信号配置装置包括处理器和收发器。其中,收发器用于接收指示信息,该指示信息用于指示参考信号的第一版本。处理器用于根据该指示信息,确定本次调度周期内传输的参考信号的版本是第一版本。
例如,该参考信号配置装置包括处理器和收发器。其中,收发器用于接收终端发送的能力信息,能力信息用于指示该终端是否支持参考信号的版本切换,该终端支持至少两种版本的参考信号。处理器用于根据能力信息,确定是否指示该终端进行参考信号的版本切换。
例如,该参考信号配置装置包括收发器。其中,收发器用于发送能力信息;能力信息指示该终端是否支持参考信号的版本切换,以用于网络设备确定是否指示该终端进行参考信号的版本切换。该参考信号配置装置具体可以是终端。
例如,该参考信号配置装置包括处理器和收发器。其中,处理器用于对于同一调度周期内调度的第一终端和第二终端,生成第一终端的第一参考信号和第二终端的第二参考信号;其中,第一参考信号与第二参考信号的版本不同,且第一参考信号与第二参考信号非码分复用时频资源。收发器用于在该调度周期内,向第一终端发送第一参考信号,且向第二终端发送第二参考信号。该参考信号配置装置具体可以是网络设备。
例如,该参考信号配置装置包括处理器和收发器。其中,处理器用于对于第一调度周期内调度的至少两个终端,为每个终端生成对应的参考信号,其中,第一调度周期内调度 的至少两个终端的参考信号的版本相同,且该版本不同于在第二调度周期内的至少两个终端的参考信号的版本,在第二调度周期内调度的至少两个终端的参考信号的版本相同。收发器用于在第一调度周期内向第一调度周期内调度的该至少两个终端发送对应的参考信号。该参考信号配置装置具体可以是网络设备。
第十六方面,本申请实施例提供了一种参考信号配置装置,该参考信号配置装置包括存储器和处理器,存储器用于存储计算机程序,该计算机程序被处理器执行时,使得上文提供的任意一种参考信号配置方法被执行。例如该装置可以是网络设备或者终端或者是芯片。
第十七方面,本申请实施例提供了一种序列配置装置,该序列配置装置可以用于执行上文中任一方面(如第五至第八方面中的任一方面)或任一种可能的设计提供的序列配置方法。
在一种可能的设计中,可以根据基于上述任意一方面或任意一种可能的设计提供的序列配置方法,对该序列配置装置进行功能模块的划分,例如,可以对应各个功能划分各个功能模块,也可以将两个或两个以上的功能集成在一个处理模块中。
在另一种可能的设计中,该序列配置装置包括处理器和收发器。其中,处理器可以用于执行除收发之外的步骤。收发器用于执行接收和/或发送步骤。可替换的,在一些实现方式中,该序列配置装置包括收发器,用于执行接收和/或发送步骤。
例如,处理器用于生成配置信息,该配置信息用于配置网络设备为终端分配的至少两个天线端口所占用的M个码分复用组中的每个码分复用组对应的序列;所述M是大于或等于2的整数。收发器用于发送该配置信息。
例如,收发器用于接收配置信息,该配置信息用于配置网络设备为终端分配的至少两个天线端口所占用的M个码分复用组中的每个码分复用组对应的序列;所述M是大于或等于2的整数。处理器用于根据该配置信息,配置所述每个码分复用组对应的序列。
例如,处理器用于生成配置信息,该配置信息用于配置网络设备为终端分配的至少两个天线端口中的每个天线端口对应的序列。收发器用于发送该配置信息。
例如,收发器用于接收配置信息,该配置信息用于配置网络设备为终端分配的至少两个天线端口中的每个天线端口对应的序列。处理器用于根据该配置信息,配置所述每个天线端口对应的序列。
第十八方面,本申请实施例提供了一种序列配置装置,该序列配置装置包括存储器和处理器,存储器用于存储计算机程序,该计算机程序被处理器执行时,使得上文提供的任意一种序列配置方法被执行。作为一个示例,该装置可以是网络设备或者终端或者是芯片。
第十九方面,本申请实施例提供了一种处理器,该处理器用于执行上文中任意一方面或任意一种可能的设计提供的方法(包括参考信号配置方法或序列配置方法)。
例如,该处理器用于生成至少两个参考信号,并输出该至少两个参考信号。该至少两个参考信号的相关描述可以参考上述第一方面或第三方面,此处不再赘述。
又如,该处理器用于输入至少两个参考信号。该至少两个参考信号的相关描述可以参考上述第二方面或第四方面,此处不再赘述。
关于处理器执行其他任意一个方面或任意一中可能的设计提供的方法,该处理器所执行的步骤可以基于上述两个示例并结合该方法推理得到,此处不再赘述。具体的,将该方 法中的发送步骤替换为处理器用于输出步骤,和/或,将该方法中的接收步骤替换为输入步骤等。
在具体实现过程中,处理器可用于进行,例如但不限于,基带相关处理,接收器和发送器可分别用于进行,例如但不限于,射频收发。上述器件可以分别设置在彼此独立的芯片上,也可以至少部分的或者全部的设置在同一块芯片上,例如,接收器和发送器可以设置在彼此独立的接收器芯片和发送器芯片上,也可以整合为收发器继而设置在收发器芯片上。又例如,处理器可以进一步划分为模拟基带处理器和数字基带处理器,其中模拟基带处理器可以与收发器集成在同一块芯片上,数字基带处理器可以设置在独立的芯片上。随着集成电路技术的不断发展,可以在同一块芯片上集成的器件越来越多,例如,数字基带处理器可以与多种应用处理器(例如但不限于图形处理器,多媒体处理器等)集成在同一块芯片之上。这样的芯片可以称为系统芯片(system on chip)。将各个器件独立设置在不同的芯片上,还是整合设置在一个或者多个芯片上,往往取决于产品设计的具体需要。本申请实施例对上述器件的具体实现形式不做限定。
本申请实施例还提供了一种计算机可读存储介质,其上储存有计算机程序,当该计算机程序在计算机上运行时,使得计算机执行上文中任意一方面或任意一种可能的设计提供的参考信号配置方法。如上文中第一至第四方面、第九至第十四方面或这些方面的任意一种可能的设计提供的任意一种参考信号配置方法。
本申请实施例还提供了一种计算机可读存储介质,其上储存有计算机程序,当该计算机程序在计算机上运行时,使得计算机执行上文中任意一方面或任意一种可能的设计提供序列配置方法。如上文中第五至第八方面或这些方面的任意一种可能的设计提供的任意一种序列配置方法。
本申请实施例还提供了一种计算机程序产品,当其在计算机上运行时,使得上文中任意一方面或任意一种可能的设计提供的参考信号配置方法被执行。如上文中第一至第四方面、第九至第十四方面或这些方面的任意一种可能的设计提供的任意一种参考信号配置方法。
本申请实施例还提供了一种计算机程序产品,当其在计算机上运行时,使得上文中任意一方面或任意一种可能的设计提供的序列配置方法被执行。如上文中第五至第八方面或这些方面的任意一种可能的设计提供的任意一种序列配置方法。
本申请还提供了一种通信芯片,其中存储有指令,当其在网络设备/终端上运行时,使得网络设备执行上文中相应的参考信号配置方法。如上文中第一至第四方面、第九至第十四方面或这些方面的任意一种可能的设计提供的任意一种参考信号配置方法。
本申请还提供了一种通信芯片,其中存储有指令,当其在网络设备/终端上运行时,使得网络设备执行上文中相应的序列配置方法。如上文中第五至第八方面或这些方面的任意一种可能的设计提供的任意一种序列配置方法。
本发明的又一方面提供了一种获得参考信号的方法,包括:
确定参考信号的初始化因子,该初始化因子的取值可以根据下文中的各个公式来确定;
根据所述初始化因子获得所述参考信号。
相应的,本发明还提供了一种通信装置,包括:
确定模块,用于确定参考信号的初始化因子;
获得模块,用于根据所述初始化因子获得所述参考信号。
相应的,本发明还提供了一种通信装置,其特征在于,包括:
处理器,用于执行上述获得参考信号的方法。
相应的,本发明还提供了一种通信装置,其特征在于,包括:
存储器,用于存储计算机程序;
处理器,用于读取存储器中存储的计算机程序,以执行上述获得参考信号的方法。
相应的,本发明还提供了一种计算机可读存储介质,其上储存有计算机程序,当该计算机程序在计算机上运行时,使得计算机执行上述获得参考信号的方法。
相应的,本发明还提供了一种计算机程序产品,当其在计算机上运行时,使得上述获得参考信号的方法被执行。
相应的,本发明还提供了一种通信芯片,其中存储有指令,当其在通信装置上运行时,使得通信装置执行上述获得参考信号的方法。
在具体实现过程中,上述初始化因子可以为:
Figure PCTCN2019102057-appb-000008
或者
Figure PCTCN2019102057-appb-000009
更为具体的,当初始化因子通过上述公式一或者公式二计算得到时,
Figure PCTCN2019102057-appb-000010
或者
Figure PCTCN2019102057-appb-000011
或者
Figure PCTCN2019102057-appb-000012
或者
Figure PCTCN2019102057-appb-000013
或者
Figure PCTCN2019102057-appb-000014
或者
Figure PCTCN2019102057-appb-000015
在具体实现过程中,上述初始化因子还可以为:
Figure PCTCN2019102057-appb-000016
其中Y为大于等于log 2(n CDM_m*2 X)+1的任意正整数,X为大于等于
Figure PCTCN2019102057-appb-000017
的任意正整数。
在具体实现过程中,上述初始化因子还可以为:
Figure PCTCN2019102057-appb-000018
更为具体的,当初始化因子通过上述公式四计算得到时,
Figure PCTCN2019102057-appb-000019
或者
Figure PCTCN2019102057-appb-000020
在上述公式中,c init_m为初始化因子,n CDM_m为表示该参考信号对应的天线端口所属的码分复用组的索引,或者该码分复用组对应的偏移值,或者该码分复用组对应的扰码因子,或者可以用于标识该码分复用组的其他信息,
Figure PCTCN2019102057-appb-000021
为一个时隙(slot)中的符号(symbol)的个数,
Figure PCTCN2019102057-appb-000022
为一个子帧或者一个时隙(slot)的索引,l为符号(symbol)的索引,n SCID为扰码因子,
Figure PCTCN2019102057-appb-000023
为序列扰码标识(ID)。
在具体实现过程中,n SCID的取值可以为,例如但不限于,0或者1,在这种情况下,可以通过DCI中的1个比特(bit)来指示n SCID的取值,
Figure PCTCN2019102057-appb-000024
的取值范围可以为,例如但不限于,0-65535,该参数可以通过例如但不限于RRC信令配置,n CDM_m与DMRS端口(port)存在对应关系。
上述参数的含义和取值范围可以参考本文以及现有技术(例如但不限于各种通信标准,例如,LTE和5G标准等)中的定义。举例来说,在LTE标准或者5G标准中,c init_m为参考信号序列的初始化因子,
Figure PCTCN2019102057-appb-000025
为时隙中符号的个数,例如但不限于,承载有该参考信号的时隙中符号的个数,例如,在LTE标准中,
Figure PCTCN2019102057-appb-000026
可以等于6或者7,
Figure PCTCN2019102057-appb-000027
为子帧的索引,例如但不限于,承载有该参考信号的子帧的索引,或者
Figure PCTCN2019102057-appb-000028
为时隙的索引,例如但不限于,承载有该参考信号的时隙的索引,l为符号的索引,例如但不限于,承载有该参考信号的符号的索引,例如,在LTE标准中,l可以等于0~5或者0~6。
不难理解,上述公式可以与本文提到的其他相同功能的公式(例如但不限于下文将要描述的生成初始化因子的公式)相互替换或者结合。
在具体实现过程中,可以参考现有技术来获得参考信号。例如,可采用如下方式来获得参考信号:
获取参考信号序列,其中参考信号序列可由如下公式生成:
Figure PCTCN2019102057-appb-000029
其中,
c(n)=(x 1(n+N C)+x 2(n+N C))mod 2
x 1(n+31)=(x 1(n+3)+x 1(n))mod 2
x 2(n+31)=(x 2(n+3)+x 2(n+2)+x 2(n+1)+x 2(n))mod 2
c(n)为二进制Gold序列,其长度可以为,例如但不限于M PN,其中n=0,1,...,M PN-1,N C=1600,且:
x 1(0)=1,x 1(n)=0,n=1,2,...,30
Figure PCTCN2019102057-appb-000030
在具体实现过程中,上述参考信号为DMRS,或者CSI-RS。
所述获得参考信号可以是通过各种方式得到参考信号,例如但不限于,根据预设公式计算得到参考信号,或者通过查表方式查询得到参考信号等。更为具体的,所述预设公式是例如但不限于参考信号的序列生成公式,该公式为与上述初始化因子有关的公式,例如但不限于,该预设公式涉及的参数中包含该初始化因子。在具体实现过程中,上述预设公式可以参考,例如但不限于,现有LTE标准或者5G标准中提到的参考信号序列生成公式。同时,如本文所述,n CDM_m表示该参考信号对应的天线端口所属的码分复用组的索引,或者该码分复用组对应的偏移值,或者该码分复用组对应的扰码因子,或者可以用于标识该码分复用组的其他信息。
若上述方法的执行设备为发送端设备,则上述方法还可以包括,发送所述参考信号。更为具体的,上述参考信号在发送之前还可以进行其他处理,例如但不限于,通过OCC码进行处理,然后通过该参考信号对应的时频资源进行发送。
若上述方法的执行设备为接收端设备,则上述方法还可以包括,接收端设备基于所述参考信号,以及来自发送端设备的参考信号,进行数据解调。不难理解,在这种情况下,上述参考信号为DMRS。具体来说,接收端设备生成的参考信号和发送端设备生成的参考信号是相同的参考信号,如此一来,发射端设备生成的参考信号经由发射端设备发送并经过信道传输之后,由接收端设备接收,接收端设备便可基于收到的来自发射端设备的参考信号和接收端设备根据初始化因子获得的参考信号进行数据解调。基于来自发射端设备的参考信号和接收端设备根据初始化因子获得的参考信号进行数据解调的过程可以参考现有技术,本文不再详细赘述。例如但不限于,接收端设备可以基于来自发射端设备的参考信号和接收端设备根据初始化因子获得的参考信号确定例如信道参数(例如但不限于,等效信道矩阵),并基于该信道参数进行数据解调。在进行数据解调之前,还可能需要对来自发射端设备的参考信号和接收端设备根据初始化因子获得的参考信号进行其他的处理。
另一方面,上述发送端设备可以是网络设备,上述接收端设备可以为终端,如此一来,发送端设备向接收端设备发送参考信号,以及接收端设备基于收到的来自发射端设备的参考信号和接收端设备生成的参考信号进行数据解调,对应的就是下行通信过程。
又一方面,上述发送端设备可以是终端,上述接收端设备可以是网络设备,如此一来,发送端设备向接收端设备发送参考信号,以及接收端设备基于收到的来自发射端设备的参考信号和接收端设备生成的参考信号进行数据解调,对应的就是上行通信过程。
不难理解,上述通信装置可以为发送端设备,也可以为接收端设备。同时,该发送端设备和接收端设备还可以包含收发模块或者收发器等器件。
上述模块、处理器、存储器、收发器等器件的相关内容可以参考本文其他部分的描述。
可以理解地,上述提供的任一种装置或处理器或计算机可读存储介质或计算机程序产品或通信芯片等均用于执行上文所提供的对应的方法,因此,其所能达到的有益效果可参考对应的方法中的有益效果,此处不再赘述。
应注意,本申请实施例提供的上述用于存储计算机指令或者计算机程序的器件,例如但不限于,上述存储器、计算机可读存储介质和通信芯片等,均具有非易失性(non-transitory)。
附图说明
图1为5G NR R15提供的一种配置参考信号的过程示意图;
图2为可适用于本申请一实施例的通信系统的示意图;
图3为可适用于本申请一实施例的通信设备的硬件结构示意图;
图4为本申请实施例提供的一种参考信号配置方法的示意图;
图5为本申请实施例提供的一种参考信号映射至时频资源的示意图;
图6为本申请实施例提供的一种配置参考信号的过程示意图;
图7为本申请实施例提供的另一种配置参考信号的过程示意图;
图8为本申请实施例提供的一种序列配置方法的示意图;
图9为本申请实施例提供的另一种序列配置方法的示意图;
图10为本申请实施例提供的另一种参考信号配置方法的示意图;
图11为本申请实施例提供的另一种参考信号配置方法的示意图;
图12为本申请实施例提供的另一种参考信号配置方法的示意图;
图13A为本申请实施例提供的一种同一调度周期内的不同终端的参考信号映射至时频资源的示意图;
图13B为本申请实施例提供的另一种同一调度周期内的不同终端的参考信号映射至时频资源的示意图;
图14为本申请实施例提供的另一种参考信号配置方法的示意图;
图15为本申请实施例提供的一种不同调度周期内的不同终端的参考信号映射至时频资源的示意图;
图16为本申请实施例提供的一种参考信号配置装置的结构示意图;
图17为本申请实施例提供的另一种参考信号配置装置的结构示意图;
图18为可适用于本申请实施例的一种频域单元的示意图。
具体实施方式
通常,一个天线端口对应一个参考信号。一个参考信号是多个调制符号(或称为星座符号)按照一定的顺序排列后得到的序列。另外,本申请实施例也适用于一个参考信号包括一个调制符号的场景。
配置参考信号的过程可以包括:生成一个或多个序列,其中,每个序列包含多个调制符号;然后,根据该一个或多个序列生成参考信号,例如将所生成的一个序列中的各调制符号依次作为一个参考信号中的各调制符号,或者将所生成的一个序列中的部分调制符号依次作为一个参考信号中的各调制符号等。另外,对于发送端设备来说,还可以将所生成的参考信号映射至时频资源上,并发送映射至时频资源上的参考信号。对于接收端设备来说,还可以在相应时频资源上接收参考信号。
其中,在下行传输场景中,发送端设备可以是网络设备,接收端设备可以是终端。在上行传输场景中,发送端设备可以是终端,接收端设备可以是网络设备。
在5G新空口(新空口(new radio,NR)R15中,对于CSI-RS和循环前缀(cyclic prefix,CP)正交频分复用(orthogonal frequency division multiplexing,OFDM)波形下的DMRS而言,配置参考信号遵循的规则可以包括:网络设备为同一终端分配的各DMRS端口采用唯一的序列,网络设备为同一终端分配的CSI-RS资源对应的各CSI-RS端口采用唯一的序列。其中,天线端口采用的序列,也可以称为天线端口对应的序列,即用于获得该天线端口对应的参考信号的序列。
如图1所示,为5G NR R15提供的一种配置参考信号的过程示意图。其中,图1中是以“R15 2-ports(端口)DMRS(port0,2)type1(类型1)”为例进行说明的。图1中的时频资源表示一个资源块(resource block,RB)中的一个时域符号对应的时频资源,时频资源中的每个小方格表示一个资源元素(resource element,RE)。参见图1可知,网络设备为终端分配的DMRS端口是DMRS端口0、2,图1中斜线阴影所表示的RE是DMRS端口0对应的参考信号所映射的RE,横线阴影所表示的RE是DMRS端口2对应的参考所映射的RE。DMRS端口0、2对应的序列均是调制符号r(0)~r(5)构成的序列。该序列可作为DMRS端口0对应的参考信号,且可作为DMRS端口2对应的参考信号。网络设备/终端可以将该序列中的每个调制符号依次映射至时频资源上,其中,调制符号与RE一一对应。
由图1可知,依据现有5G NR R15配置参考信号,会使得同一时域符号上映射的两个参考信号完全相同,而频域上的序列重复会引起PAPR的提升,从而影响系统的传输性能。
基于此,本申请实施例提供了参考信号配置方法和装置,以及序列配置方法和装置。
本申请实施例提供的技术方案可以应用于各种通信系统。本申请实施例提供的技术方案可以应用于5G通信系统如5G NR系统中,未来演进系统或多种通信融合系统等中,也可以应用于在现有通信系统等。本申请提供的技术方案的应用场景可以包括多种,例如,机器对机器(machine to machine,M2M)、宏微通信、增强型移动互联网(enhanced mobile broadband,eMBB)、超高可靠性与超低时延通信(ultra reliable&low latency communication,uRLLC)以及海量物联网通信(massive machine type communication,mMTC)等场景。 这些场景可以包括但不限于:终端与终端之间的通信场景,网络设备与网络设备之间的通信场景,网络设备与终端之间的通信场景等。下文中均是以应用于网络设备和终端通信的场景中为例进行说明的。
图2为可适用于本申请一实施例的通信系统的示意图,该通信系统可以包括一个或多个网络设备10(仅示出了1个)以及与每一网络设备10连接的一个或多个终端20。图2仅为示意图,并不构成对本申请提供的技术方案的适用场景的限定。
网络设备10可以是传输接收节点(transmission reception point,TRP)、基站、中继站或接入点等。网络设备10可以是5G通信系统中的网络设备或未来演进网络中的网络设备;还可以是可穿戴设备或车载设备等。另外还可以是:全球移动通信系统(global system for mobile communication,GSM)或码分多址(code division multiple access,CDMA)网络中的基站收发信台(base transceiver station,BTS),也可以是宽带码分多址(wideband code division multiple access,WCDMA)中的NB(NodeB),还可以是长期演进(long term evolution,LTE)中的eNB或eNodeB(evolutional NodeB)。网络设备10还可以是云无线接入网络(cloud radio access network,CRAN)场景下的无线控制器。
终端20可以是用户设备(user equipment,UE)、接入终端、UE单元、UE站、移动站、移动台、远方站、远程终端、移动设备、UE终端、无线通信设备、UE代理或UE装置等。接入终端可以是蜂窝电话、无绳电话、会话发起协议(session initiation protocol,SIP)电话、无线本地环路(wireless local loop,WLL)站、个人数字处理(personal digital assistant,PDA)、具有无线通信功能的手持设备、计算设备或连接到无线调制解调器的其它处理设备、车载设备、可穿戴设备,5G网络中的终端或未来演进的公共陆地移动网络(public land mobile network,PLMN)网络中的终端等。
可选的,图2中的各网元(例如网络设备10和终端20等)可以由一个设备实现,也可以由多个设备共同实现,还可以是一个设备内的一个功能模块,本申请实施例对此不作具体限定。可以理解的是,上述功能既可以是硬件设备中的网络元件,也可以是在专用硬件上运行的软件功能,或者是平台(例如,云平台)上实例化的虚拟化功能。
例如,图2中的各网元均可以通过图3中的通信设备200来实现。图3所示为可适用于本申请一实施例的通信设备的硬件结构示意图。该通信设备200包括至少一个处理器201,通信线路202,存储器203以及至少一个通信接口204。
处理器201可以是一个通用中央处理器(central processing unit,CPU),微处理器,特定应用集成电路(application-specific integrated circuit,ASIC),或一个或多个用于控制本申请方案程序执行的集成电路。
通信线路202可包括一通路,在上述组件之间传送信息。
通信接口204,使用任何收发器一类的装置,用于与其他设备或通信网络通信,如以太网,RAN,无线局域网(wireless local area networks,WLAN)等。
存储器203可以是只读存储器(read-only memory,ROM)或可存储静态信息和指令的其他类型的静态存储设备,随机存取存储器(random access memory,RAM)或者可存储信息和指令的其他类型的动态存储设备,也可以是电可擦可编程只读存储器(electrically erasable programmable read-only memory,EEPROM)、只读光盘(compact disc read-only memory,CD-ROM)或其他光盘存储、光碟存储(包括压缩光碟、激光碟、光碟、数字 通用光碟、蓝光光碟等)、磁盘存储介质或者其他磁存储设备、或者能够用于携带或存储具有指令或数据结构形式的期望的程序代码并能够由计算机存取的任何其他介质,但不限于此。存储器可以是独立存在,通过通信线路202与处理器相连接。存储器也可以和处理器集成在一起。本申请实施例提供的存储器通常可以具有非易失性。其中,存储器203用于存储执行本申请方案的计算机执行指令,并由处理器201来控制执行。处理器201用于执行存储器203中存储的计算机执行指令,从而实现本申请下述实施例提供的方法。
可选的,本申请实施例中的计算机执行指令也可以称之为应用程序代码,本申请实施例对此不作具体限定。
在具体实现中,作为一种实施例,处理器201可以包括一个或多个CPU,例如图3中的CPU0和CPU1。
在具体实现中,作为一种实施例,通信设备200可以包括多个处理器,例如图3中的处理器201和处理器207。这些处理器中的每一个可以是一个单核(single-CPU)处理器,也可以是一个多核(multi-CPU)处理器。这里的处理器可以指一个或多个设备、电路、和/或用于处理数据(例如计算机程序指令)的处理核。
在具体实现中,作为一种实施例,通信设备200还可以包括输出设备205和输入设备206。输出设备205和处理器201通信,可以以多种方式来显示信息。例如,输出设备205可以是液晶显示器(liquid crystal display,LCD),发光二级管(light emitting diode,LED)显示设备,阴极射线管(cathode ray tube,CRT)显示设备,或投影仪(projector)等。输入设备206和处理器201通信,可以以多种方式接收用户的输入。例如,输入设备206可以是鼠标、键盘、触摸屏设备或传感设备等。
上述的通信设备200可以是一个通用设备或者是一个专用设备。在具体实现中,通信设备200可以是台式机、便携式电脑、网络服务器、掌上电脑(personal digital assistant,PDA)、移动手机、平板电脑、无线终端设备、嵌入式设备或有图3中类似结构的设备。本申请实施例不限定通信设备200的类型。
需要说明的是,本申请实施例提供的任一种技术方案均可以应用于下行传输场景中,也可以应用于上行传输场景中。应用于下行传输场景中时,发送端设备可以是网络设备,接收端设备可以是终端。应用于上行传输场景中时,发送端设备可以是终端,接收端设备以是网络设备。对于以下任一实施例来说,当发送端设备(或接收端设备)被替代为网络设备后,该实施例中所涉及到的网络设备与该发送端设备(或接收端设备)被替代后的网络设备可以表示同一网络设备。当发送端设备(或接收端设备)被替代为终端后,该实施例中所涉及到的终端与该发送端设备(或接收端设备)被替代后的终端可以表示同一终端,在此统一说明,下文不再赘述。
本申请实施例中的“资源单元”是调度终端的基本单元。资源单元由频域上连续的多个子载波和时域上的一个时间间隔(time interval,TI)组成。不同调度过程中,资源单元的大小可以相同,也可以不同。TI可以是LTE系统中的传输时间间隔(transmission time interval,TTI),也可以是符号级短TTI,或高频系统中的大子载波间隔的短TTI,也可以是5G系统中的时隙(slot)或微型时隙(mini-slot)等。本申请实施例对此不进行限定。可选的,一个资源单元可以包括一个或多个RB,一个或多个RB对(RB pair)等,另外还可以是半个RB等。另外还可以是其他的时频资源,本申请实施例对此不进行限定。需 要说明的是,如果不加说明,或者在不冲突的情况下,下文中的具体示例均是以资源单元是LTE系统中的RB为例进行说明的。
本申请实施例中的“调度周期”是一个时间间隔TI。
本申请实施例中的“时域符号”可以包括但不限于以下任一种:OFDM符号、通用滤波多载波(universal filtered multi-carrier,UFMC)信号,滤波器组多载波(filter-band multi-carrier,FBMC)符号,广义频分多工(generalized frequency-division multiplexing,GFDM)符号等。
本申请实施例中的术语“至少一个(种)”包括一个(种)或多个(种)。“多个(种)”是指两个(种)或两个(种)以上。例如,A、B和C中的至少一种,包括:单独存在A、单独存在B、同时存在A和B、同时存在A和C、同时存在B和C,以及同时存在A、B和C。本申请实施例中的术语“和/或”,仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。本申请实施例中的术语字符“/”,一般表示前后关联对象是一种“或”的关系;另外,在公式中,字符“/”表示前后关联对象是一种相除的关系,例如A/B可以表示A除以B。本申请实施例中的术语“第一”、“第二”等是为了区分不同的对象,并不限定该不同对象的顺序。
以下,结合附图对本申请实施例提供的技术方案进行说明。
如图4所示,为本申请实施例提供的一种参考信号配置方法的示意图。该方法包括:
S101:发送端设备生成至少两个参考信号。其中,该至少两个参考信号是网络设备为同一终端分配的至少两个天线端口对应的参考信号。该至少两个参考信号是同一类型的参考信号。该至少两个参考信号包括第一参考信号和第二参考信号,第一参考信号的序列与第二参考信号的序列不同。
可以理解的,在一个调度周期内,网络设备可以调度一个或多个终端。对于所调度的每个终端来说,网络设备可以为该终端分配一个或多个天线端口。S101中描述的终端可以是网络设备在一个调度周期内调度的各终端中被分配的天线端口的个数大于或等于2的任意一个终端。
上述至少两个参考信号是同一类型的参考信号,例如,上述至少两个参考信号均是DMRS,或者均是CSI-RS等,当然本申请实施例不限于此。一个天线端口对应一个参考信号。
在本申请实施例中,一个参考信号在一个资源单元上所占的时域符号的个数可以是一个或多个。例如,如图5所示,为本申请实施例提供的一种参考信号映射至时频资源的示意图。图5中的(a)所示的参考信号在一个资源单元上所占的时域符号的个数是1,且时域符号的编号是2。图5中的(b)所示的参考信号在一个资源单元上所占的时域符号的个数是2,且时域符号的编号是2、3。
在本申请的一些实施例中,参考信号的序列,是指用于获得参考信号中的调制符号的序列。参考信号的序列可以被称为参考信号的生成序列或参考信号的本地序列。参考信号中的调制符号选自参考信号的序列。参考信号的序列可以是多个调制符号按照一定的顺序排列后得到的序列。本申请实施例也适用于一个参考信号的序列包括一个调制符号的场景。
不同参考信号的序列可以相同,也可以不相同。第一参考信号的序列和第二参考信号 的序列不同,可以包括:第一参考信号的序列包含的元素与第二参考信号的序列包含的元素不同,和/或,第一参考信号的序列中元素的顺序与第二参考信号的序列的元素的顺序不同。其中,第一参考信号的序列包含的元素与第二参考信号的序列包含的元素不同,可以理解为:第一参考信号的序列包含的调制符号构成的集合与第二参考信号的序列包含的调制符号构成的集合不同。
可选的,第一参考信号的序列和第二参考信号的序列是同时生成的。这里的“同时”可以理解为是同一个时间点,或者是同一个时间段。该时间段小于或等于调度周期。该时间段可以例如但不限于是:一个或多个时域符号,或者一个或多个微时隙,或者一个或多个时隙,或者一个子帧。
参考信号的序列的生成方式可以例如但不限于包括如下两种方式:
第一种方式:参考信号的序列是基于参考信号级别(或天线端口级别)生成的序列。例如,可以参考LTE系统中的生成本地序列的方式。
基于第一种方式,可以在一个调度周期的起始处生成参考信号的序列。例如,在LTE系统中,一个调度周期是一个子帧。在5G NR系统时,一个调度周期可以是一个时隙或者一个微时隙等。
基于此,上文中的第一参考信号的序列和第二参考信号的序列是同时生成的,可以包括:第一参考信号的序列和第二参考信号的序列是在同一个调度周期的起始处生成的。
需要说明的是,基于第一种方式,一个参考信号的序列的长度(即该序列包含的调制符号的个数)可以大于或等于一个参考信号的长度(即该参考信号包含的调制符号的个数)。作为一个示例,一个参考信号的长度等于该参考信号在一个资源单元中所占的RE的个数乘以带宽可支持的最大资源单元数。例如,假设带宽可支持的最大资源单元数是20,则如图5中的(a)所示的参考信号的长度是6*20=120,该示例中,一个参考信号的序列的长度可以大于或等于120。又如,假设带宽可支持的最大资源单元数是20,则如图5中的(b)所示的参考信号的长度是12*20=240,该示例中,一个参考信号的序列的长度可以大于或等于240。
可选的,假设一个参考信号的序列的长度等于参考信号的长度,则可以将该序列直接作为一个参考信号。假设一个参考信号的序列的长度大于参考信号的长度,则可以将该序列中的部分调制符号构成的序列作为一个参考信号。例如,若参考信号的序列的长度是10,且参考信号的长度8,则可以从该序列中的10个值中选择出8个值,并将该8个值作为一个参考信号。通常,该8个值在参考信号中的顺序与在参考信号的序列中的顺序一致,当然本申请实施例不限于此。
第二种方式:参考信号的序列是基于时域符号级别生成的序列。例如,可以参考5G NR R15中的生成本地序列的方式。
基于第二种方式,可以在时域符号的起始处生成参考信号的序列。其中,这里的时域符号是指参考信号所占的时域符号。例如,结合图5中的(a)所示的参考信号,可以是在时域符号2的起始处生成参考信号的序列。又如,结合图5中的(b)所示的参考信号,可以是在时域符号2的起始处生成参考信号的序列,以及在时域符号3的起始处生成参考信号的序列。
基于此,第一参考信号的序列和第二参考信号的序列是同时生成的,可以包括:第一 参考信号的序列和第二参考信号的序列是在同一个时域符号的起始处生成的。
需要说明的是,基于第二种方式,一个参考信号的序列的长度可以大于或等于一个参考信号在一个时域符号上的调制符号的个数。例如,假设带宽可支持的最大资源单元数是20,则由于如图5中的(a)或(b)所示的参考信号在一个时域符号上的调制符号的个数是6,因此一个参考信号的序列的长度可以大于或等于120。
需要说明的是,上述第一种方式和第二种方式仅为示例,其不对本申请实施例可适用的参考信号的序列的生成方式构成限定。例如,上述第二种方式可扩展为:参考信号的序列是基于时域单元生成的,该时域单元小于调度周期。例如,假设一个调度周期是一个子帧,则一个时域单元可以是一个时隙或者一个微时隙或者一个时域符号等。该情况下,参考信号的序列的长度可以大于或等于一个参考信号在一个时域单元上的调制符号的个数。
S101可以包括:发送端设备生成M个序列,根据该M个序列生成上述至少两个参考信号。M是大于或等于2的整数。
具体的:该M个序列包含第一参考信号的序列和第二参考信号的序列。发送端设备根据第一参考信号的序列生成第一参考信号,根据第二参考信号的序列生成第二参考信号。
可选的,该M个序列是同时生成的。关于“该M个序列是同时生成的”的相关解释可以参考上文中对“第一参考信号的序列和第二参考信号的序列是同时生成的”的解释,此处不再赘述。
如图6所示,为本申请实施例提供的一种配置参考信号的过程示意图。图6中的时频资源表示一个RB中的一个时域符号对应的时频资源。基于图6,发送端设备可以先生成序列0和序列2,且序列0中的元素依次为调制符号r(0)~r(5),序列2中的元素依次为调制符号r(6)~r(11);然后,将序列0作为第一参考信号(即图6中DMRS端口0对应的参考信号),将序列2作为第二参考信号(即图6中DMRS端口2对应的参考信号);接着,将第一参考信号中的各调制符号依次映射至第一参考信号对应的时频资源上,并将第二参考信号中的各调制符号依次映射至第二参考信号对应的时频资源上。
需要说明的是,配置上述M个序列的具体实现方式可以参考下文图8或图9所示的实施例,当然本申请实施例不限于此。
S102:接收端设备生成该至少两个参考信号。S102的具体实现方式可以参考上文对S101的具体实现方式的描述,此处不再赘述。
S103:发送端设备向接收端设备发送该至少两个参考信号。
本申请实施例对S102和S103的执行顺序不进行限定,例如可以先执行S102再执行S103,也可以先执行S103再执行S102,或者同时执行S102和S103。
S104:接收端设备接收该至少两个参考信号。
可以理解的,接收端设备接收到的至少两个参考信号是S101中生成的至少两个参考信号经信道传输后得到的参考信号。后续,接收端设备可以根据所生成的该至少两个参考信号和接收到的经信道传输的该至少两个参考信号,进行信道估计等。
本实施例提供的参考信号配置方法中,网络设备为终端分配的天线端口对应的不同参考信号的序列可以不同,其中,该不同参考信号是同一类型的参考信号,可选的,该不同参考信号的序列是同时生成的。这样,有助于实现网络设备和终端所生成的映射至同一资源单元的参考信号不同,也就是说,有助于实现映射在一个时域符号上的不同参考信号不 同,这增加了序列取值或序列映射的随机性,因此有助于避免序列频域重复问题,从而有助于降低PAPR,进而有助于提高系统的传输性能。
在本申请的另一些实施例中,参考信号的序列,是指选自母序列中的一个或多个位置的调制符号构成的序列,所选择的调制符号的个数等于参考信号包含的调制符号的个数。换句话说,参考信号的序列是指参考信号中的元素构成的序列。基于此,S101可以包括:发送端设备生成一个母序列,然后根据该母序列生成上述至少两个参考信号。
可选的,该母序列的可以是基于参考信号级别生成的,也可以是基于时域单位(如时域符号)生成的。需要说明的是,与上文中所描述的序列的生成方式不同的是,如果母序列是基于参考信号级别生成的,则母序列的长度大于一个参考信号的长度。如果母序列是基于时域单位生成的,则参考信号的序列的长度大于一个参考信号在一个时域单元上的调制符号的个数。这是为了保证基于母序列可以生成不同的参考信号。
该实施例中,第一参考信号的序列和第二参考信号的序列不同,可以包括:第一参考信号中包含的调制符号在母序列中的位置构成的集合,与第二参考信号中包含的调制符号在母序列中的位置构成的集合不同。
如图7所示,为本申请实施例提供的一种配置参考信号的过程示意图。图7中的时频资源表示一个RB中的一个时域符号对应的时频资源。参见图7可知,发送端设备可以先生成母序列,母序列中的元素依次为调制符号r(0)~r(11),然后可以将母序列中的r(0)、r(2)、r(4)、r(6)、r(8)、r(10)的元素构成的序列作为第一参考信号(即图7中的DMRS端口0对应的参考信号),并将r(1)、r(3)、r(5)、r(7)、r(9)、r(11)作为第二参考信号(即图7中的DMRS端口2对应的参考信号);接着,将第一参考信号中的各调制符号依次映射至第一参考信号对应的时频资源上,并将第二参考信号中的各调制符号依次映射至第二参考信号对应的时频资源上。
以下说明参考信号的序列的具体实现方式:
方式1:对于第一参考信号和第二参考信号中的任一参考信号来说,该参考信号的序列是基于公式c init_m=f(n CDM_m)得到的。f(n CDM_m)表示与n CDM_m相关的函数,n CDM_m表示该参考信号对应的天线端口所属的码分复用组的索引,或者该码分复用组对应的偏移值或者该码分复用组对应的扰码因子。c init_m表示该码分复用组对应的序列的初始化因子。关于c init_m=f(n CDM_m)的具体示例可以参考下文,此处不再赘述。
方式2:对于第一参考信号和第二参考信号中的任一参考信号来说,该参考信号的序列是基于公式
Figure PCTCN2019102057-appb-000031
得到的;其中,
Figure PCTCN2019102057-appb-000032
表示该参考信号的序列中的第n个元素,r(n)表示参考序列中的第n个元素,n≥0,n是整数,f(n CDM_m)表示与n CDM_m相关的函数,n CDM_m表示该参考信号对应的天线端口所属的码分复用组的索引,或者该码分复用组对应的偏移值或者该码分复用组对应的扰码因子。
其中,f(n CDM_m)可以通过如下方式2A~2C的其中之一实现:
方式2A:
Figure PCTCN2019102057-appb-000033
Figure PCTCN2019102057-appb-000034
等。其中,n PRB为PRB索引信息,n subcarrier为子载波索引信息。当然本申请实施例不限于此。此时,多个参考信号对应的序列也可认为是同一参考信号序列的变形,如映射变形(即时频资源映射步骤中的“映射”变形),或者复用方式变形(即复用时频资源的方式变形)等。
方式2B:
Figure PCTCN2019102057-appb-000035
Figure PCTCN2019102057-appb-000036
或者
Figure PCTCN2019102057-appb-000037
其中,k表示
Figure PCTCN2019102057-appb-000038
所映射的频域单元的索引。其中,向下取整运算符号
Figure PCTCN2019102057-appb-000039
或向上取整运算符号
Figure PCTCN2019102057-appb-000040
可以替换为其他运算符号,本申请实施例对此不进行限定。
以下,以应用于R15 2-ports DMRS type1或R15 2-ports DMRS type2场景为例,说明本申请实施例中描述的频域单元的概念。
以R15 2-ports DMRS type1为例,参考信号被映射的频域单元(或称为频域资源的粒度)是4,即一个频域单元包括4个子载波,因此,终端被配置的第1个RB中的频域单元的索引可以是0、1、2,第2个RB中的频域单元的索引可以是3、4、5……。例如,对于第1个RB来说,其中的子载波0~3构成一个频域单元0,子载波4~7构成一个频域单元1,子载波8~11构成一个频域单元2。
以R15 2-ports DMRS type2为例,参考信号被映射的频域单元是6,即一个频域单元包括6个子载波,因此,终端被配置的第1个RB中的频域单元的索引可以是0、1,第2个RB中的频域单元的索引可以是2、3。例如,对于第1个RB来说,其中的子载波0~5构成一个频域单元0,子载波6~11构成一个频域单元1。参见图18,为可适用于本申请实施例的一种频域单元的示意图。
其中,图18中的一个小方格表示一个RE,数字0~11表示子载波的编号,一个时域符号对应3个码分复用组(分别标记为码分复用组0、1、2)。基于此,k=0和k=1所对应的子载波的编号如图18所示。
以下,结合图18,通过说明码分复用组对应的参考信号的频域资源的位置说明本申请实施例中描述的k或频域单元的概念。具体的,基于图18可以得出:
码分复用组2对应的参考信号所映射的频域资源是:第6k个子载波和第6k+1个子载波;
码分复用组1对应的参考信号所映射的频域资源是:第6k+2个子载波和第6k+3个子载波;
码分复用组0对应的参考信号所映射的频域资源是:第6k+4个子载波和第6k+5个子载波。
其中,k是大于或等于0的整数。
以此类推,可以清楚的获知本申请实施例提供的频域单元的概念。
可选的,基于方式2B,n CDM_m具体可以是第一参考信号或第二参考信号对应的天线端口所属的码分复用组的索引。
方式2C:f(n CDM_m)可以是依据码分复用组数M确定的。M是网络设备为终端分配的天线端口所占用的码分复用组的个数。M是大于或等于2的整数。
例如,M=2时,
Figure PCTCN2019102057-appb-000041
又如,M=3时,
Figure PCTCN2019102057-appb-000042
或者
Figure PCTCN2019102057-appb-000043
其中,j是虚数单位。
当然本申请实施例不限于此。
上文中均是以M≥2为例进行说明的,实际实现的过程中,当M=1时,
Figure PCTCN2019102057-appb-000044
或者,当M=1时,
Figure PCTCN2019102057-appb-000045
的具体实现方式可以参考现有技术。
可选的,基于方式2C,n CDM_m具体可以是第一参考信号或第二参考信号对应的天线端口所属的码分复用组的索引。
方式2C可以理解为:不同码分复用组对应的序列在同一参考序列的基础上产生了不同的相位旋转,使得不同码分复用组对应的序列不同。
基于上述方式2A至方式2C任一种,M个码分复用组中的任意两个码分复用组对应的覆盖码(orthogonal cover code,OCC)可以相同。该情况下,参考序列可以是序列发生器生成的序列,也可以是序列发生器生成的序列乘以OCC得到的序列。
方式3:第一参考信号对应的天线端口与第二参考信号对应的天线端口所属不同的码分复用组;所述不同码分复用组对应不同的OCC。
具体实现的过程中,接收端设备和/或发送端设备均可以先生成参考序列,然后对于系统支持的每个码分复用组来说,将参考序列乘以该码分复用组对应的OCC,得到该码分复用组对应的序列,其中,M个码分复用组中的至少两个码分复用组对应的OCC不同。
当M=2时,假设M个码分复用组包括第一码分复用组和第二码分复用组,那么:
在一种实施方式中,第一码分复用组的每个频域单元对应的OCC均是a,第二码分复用组的每个频域单元对应的OCC均是-a(矩阵a乘以-1得到的矩阵)。一种示例可以如表1所示。
需要说明的是,下述表格(如表1~表4D)中均以应用于2-ports DMRS type2,且
Figure PCTCN2019102057-appb-000046
a中的每一行表示一个RE,每一列表示一个天线端口为例进行说明,并且,下述表格中均是基于终端被分配的RB中的第1个RB(即k=0、1)和第2个RB(即k=2、3)为例进行说明的。在此统一说明,下文不再赘述。另外,如果不加说明,基于方式3的每一个实施例中的“a”均表示矩阵a。其中,矩阵a可以是一维向量,也可以是一个多维矩阵。在此统一说明,下文不再赘述。
表1
Figure PCTCN2019102057-appb-000047
在另一种实施方式中,第一码分复用组的每个频域单元对应的OCC均是a,第二码分复用组的相邻两个频域单元中的其中一个频域单元对应的OCC是a,另一个频域索引对应的OCC是-a。
具体的,以2-ports DMRS type2为例,第一码分复用组的频域单元0~3对应的OCC均是a;第二码分复用组的频域单元0~3对应的OCC分别是a、-a、a、-a,一种示例可以如表2所示;或者第二码分复用组的频域单元0~3对应的OCC分别是-a、a、-a,a,一种示例可以如表2B所示。
表2A
Figure PCTCN2019102057-appb-000048
表2B
Figure PCTCN2019102057-appb-000049
当M=3时,假设M个码分复用组包括第一码分复用组、第二码分复用组和第三码分复用组,那么,这3个码分复用组中的至少两个码分复用组对应的OCC均不同。
在一种实施方式中,第一码分复用组的每个频域单元对应的OCC均是a,第二码分复用组的每个频域单元对应的OCC均是a*exp(j*x),第三码分复用组的每个频域单元对应的OCC均是a*exp(j*y),其中,x+y=2π,或者x+y=-2π,j是虚数单位。一种示例可以如表3所示,表3中是以x=2π/3,y=4π/3为例进行说明的。
表3
Figure PCTCN2019102057-appb-000050
在另一种实施方式中,第一码分复用组的每个频域单元对应的OCC均是a;第二码分复用组的相邻两个频域单元中的其中一个频域单元对应的OCC是a,另一个频域单元对应的OCC是a*exp(j*x);第三码分复用组的相邻两个频域单元中的其中一个频域单元对应的OCC是a,另一个频域单元对应的OCC是a*exp(j*y)。其中,x+y=2π,j是虚数单位。
具体的,以2-ports DMRS type2为例:
第一码分复用组的频域单元0~3对应的OCC均是a;第二码分复用组的频域单元0~3对应的OC C分别是a、a*exp(j*x)、a、a*exp(j*x);第三码分复用组的频域单元0~3对应的OCC分别是a、a*exp(j*y)、a、a*exp(j*y),一种示例可以如表4A所示。
或者,第一码分复用组的频域单元0~3对应的OCC均是a;第二码分复用组的频域单元0~3对应的OCC分别是a*exp(j*x)、a、a*exp(j*x)、a;第三码分复用组的频域单元0~3对应的OCC分别是a*exp(j*y)、a、a*exp(j*y)、a,一种示例可以如表4B所示。
或者,第一码分复用组的频域单元0~3对应的OCC均是a;第二码分复用组的频域单元0~3对应的OCC分别是a、a*exp(j*x)、a、a*exp(j*x);第三码分复用组的频域单元0~3对应的OCC分别是a*exp(j*y)、a、a*exp(j*y)、a,一种示例可以如表4C所示。
或者,第一码分复用组的频域单元0~3对应的OCC均是a;第二码分复用组的频域单元0~3对应的OCC分别是a*exp(j*x)、a、a*exp(j*x)、a;第三码分复用组的频域单元0~3对应的OCC分别是a、a*exp(j*y)、a、a*exp(j*y),一种示例可以如表4D所示。
其中,表4A~表4D中均是以x=2π/3,y=4π/3为例进行说明的。
表4A
Figure PCTCN2019102057-appb-000051
表4B
Figure PCTCN2019102057-appb-000052
Figure PCTCN2019102057-appb-000053
表4C
Figure PCTCN2019102057-appb-000054
表4D
Figure PCTCN2019102057-appb-000055
需要说明的是,具体实现时,M个码分复用组中的至少两个码分复用组对应的OCC不同,还可以有其他的实现方式,例如,上述任一实施例中“相邻的两个频域单元”可以替换为“相邻的两组频域单元,其中每组频域单元包括至少两个频域单元”等。另外,上文中均是以M≥2为例进行说明的,实际实现的过程中,当M=1时,1个码分复用组对应的OCC的实现方式可以参考现有技术。
另外需要说明的是,上文中的具体示例均是以R15 2-ports DMRS type2,且终端被配置的第1个RB和第2个RB中的频域单元对应的OCC为例进行说明的,实际实现的过程中,本领域技术人员可以据此在不付出创造性劳动的情况下,合理推断应用于其他类型的参考信号,以及终端被配置的RB的索引是其他索引时,所对应的OCC,此处不再描述。
以下,说明本申请实施例提供的序列配置方法,这里的序列是指用于获得参考信号的序列,如上文中的M个序列。可选的,本实施例中的发送端设备具体是网络设备,接收 端设备具体是终端。
如图8所示,为本申请实施例提供的一种序列配置方法的示意图。该方法包括:
S201:发送端设备生成第一配置信息,第一配置信息用于配置网络设备为终端分配的至少两个天线端口所占用的M个码分复用组中的每个码分复用组对应的序列,M是大于或等于2的整数。
一个码分复用组包括多个天线端口,该多个天线端口对应的参考信号码分复用(code division multiplexing,CDM)时频资源。
需要说明的是,如果码分复用组对应的序列是基于参考信号级别生成的,则这里的码分复用组具体可以是时域码分复用组、频域码分复用组或者时频码分复用组。如果码分复用组对应的序列是基于时域符号级别生成的,则这里的码分复用组具体可以是频域码分复用组。
码分复用组对应的序列,是指“用于获得该码分复用组中的各天线端口对应的参考信号”的序列,如上文中描述的本地序列等。可选的,一个码分复用组对应一个序列。
例如,假设系统支持8个天线端口(分别标记为天线端口0~7),且天线端口0、1属于码分复用组0,天线端口2、3属于码分复用组1,天线端口4、5属于码分复用组2,天线端口6、7属于码分复用组3,那么,码分复用组0~3可以分别对应序列0~3。基于此,若网络设备为终端分配的天线端口是天线端口0~3,则发送端设备可以为接收端设备配置码分复用组0对应的序列0,以及码分复用组1对应的序列1。
可以理解的,具体实现的过程中,终端可以不需要先获得网络设备为终端分配的天线端口,再获得网络设备为终端分配的至少两个天线端口所占用的M个码分复用组中的每个码分复用组对应的序列。例如,终端可以先获得系统支持的每个码分复用组对应的序列,然后在确定网络设备为终端分配的天线端口之后,直接使用这些天线端口所占用的每个码分复用组对应的序列发送/接收参考信号。
S202:发送端设备发送第一配置信息。
将第一配置信息所配置的信息称为待配置信息,则具体实现过程中,对待配置信息进行配置的方式有很多种,例如但不限于,直接配置待配置信息如待配置信息本身或者该待配置信息的索引等;或者通过配置其他信息来间接配置待配置信息,其中该其他信息与待配置信息之间存在关联关系。还可以仅仅配置待配置信息的一部分,而待配置信息的其他部分则是已知的或者提前约定的。例如,还可以借助预先约定(例如协议规定)的各个信息的排列顺序来实现对特定信息的配置,从而在一定程度上降低配置开销。同时,还可以识别各个信息的通用部分并统一配置,以降低单独配置同样的信息而带来的配置开销。
此外,具体的配置方式还可以是现有各种配置方式。具体实现过程中,可以根据具体的需要选择所需的配置方式,本申请实施例对选择的配置方式不做限定,如此一来,本申请实施例涉及的配置方式应理解为涵盖可以使得待配置方获知待配置信息的各种方法。
此外,待配置信息可能存在其他等价形式。本申请实施例提供的技术方案应理解为涵盖各种形式。举例来说,本申请实施例涉及的部分或者全部特性,应理解为涵盖该特性的各种表现形式。
待配置信息可以作为一个整体一起发送,也可以分成多个子信息分开发送,而且这些子信息的发送周期和/或发送时机可以相同,也可以不同。具体发送方法本申请不进行限 定。其中,这些子信息的发送周期和/或发送时机可以是预先定义的,例如根据协议预先定义的,也可以是发射端设备通过向接收端设备发送配置信息来配置的。
需要说明的是,下文中描述的第二配置信息或指示信息等的具体实现方式,均可以根据此处对第一配置信息的描述推理得到,因此下文不再赘述。
可选的,第一配置信息可以例如但不限于通过RRC信令、MAC信令和DCI中的一种或者至少两种的组合实现。例如,通过在RRC信令/MAC信令/DCI中增加独立指示域来携带第一配置信息,或者可以通过扩展序列指示域的尺寸(size)来携带第一配置信息。其中,序列指示域可以包括但不限于序列初始化域、序列生成域和扰码ID域中的至少一种。序列指示域的尺寸是指序列指示域所占的比特数。
可选的,第一配置信息具体用于配置上述M个码分复用组中的每个码分复用组对应的序列的生成参数。一个码分复用组对应的序列的生成参数包括该码分复用组的索引或该码分复用组对应的偏移值或该码分复用组对应的扰码因子。
当该生成参数包括码分复用组的索引时:
可选的,第一配置信息可以包含该M个码分复用组的索引。例如,假设网络设备为终端分配的天线端口占用了4个码分复用组,这4个码分复用组的索引可以分别是码分复用组0~3。第一配置信息可以包含码分复用组的索引0~3。
可替换的,这里的码分复用组的索引也可以是预定义或者依据与其他配置信息如端口配置信息的隐含关系得到,该情况下,第一配置信息不需要指示该预定义的信息。
当该生成参数包括码分复用组对应的偏移值时:
可选的,第一配置信息可以包含该M个码分复用组对应的偏移值。例如,若网络设备为终端分配的天线端口占用了4个码分复用组,这4个码分复用组的对应的偏移值分别是100、200、300、400,则第一配置信息可以包含偏移值100、200、300、400。
可选的,第一配置信息可以包含偏移单位和该M个码分复用组中的一个码分复用组对应的偏移值。这里的偏移值可以是该M个码分复用组所对应的各偏移值中的最大偏移值或最小偏移值,具体是最大偏移值还是最小偏移值可以是预定义的如通过协议预定的,也可以是发送端设备向接收端设备发送信令指示的,本申请实施例对此不进行限定。例如,假设网络设备为终端分配的天线端口占用了4个码分复用组,这4个码分复用组的对应的偏移值分别是100、200、300、400;则第一配置信息可以包含偏移单位100和偏移值100(即最小偏移值),或者第一配置信息可以包含偏移单位100和偏移值400(即最大偏移值)。可替换的,这里的偏移单位或偏移值也可以是预定义的,该情况下,第一配置信息不需要指示该预定义的信息。
需要说明的是,在第一配置信息指示偏移单位的情况下,接收端设备可以根据该偏移单位和预定义的偏移单位与各偏移值之间的对应关系,确定网络设备为终端分配的天线端口所占用的码分复用组对应的偏移值。例如,该对应关系可以是△ m=△ 1+(m-1)*a,其中,△ m表示M个码分复用组中的第m个码分复用组对应的偏移值,△ 1表示M个码分复用组中的第1个码分复用组对应的偏移值,且△ 1是最小偏移值,a表示偏移单位。其他示例不再一一列举。
当该生成参数包括码分复用组对应的扰码信息(如扰码因子)时:
可选的,第一配置信息可以包含该M个码分复用组对应的扰码因子。例如,假设网 络设备为终端分配的天线端口占用了4个码分复用组,这4个码分复用组的对应的扰码因子分别是0~3,则第一配置信息可以包含扰码因子0~3。
可替换的,这里的码分复用组对应的扰码信息也可以是预定义,该情况下,第一配置信息不需要指示该预定义的信息。
S203:接收端设备接收第一配置信息。
可替换的,接收端设备通过协议预定义的方式获知第一配置信息。
S204:接收端设备根据第一配置信息配置该每个码分复用组对应的序列。
S204可以例如但不限于通过如下方式之一实现:
方式1:接收端设备根据第一配置信息,确定M个码分复用组中的每个码分复用组对应的序列的初始化参数。然后,对于每个序列,根据该序列的初始化参数得到该序列。可选的,一个序列的初始化参数对应一个码分复用组。其中,序列的初始化参数是指生成该序列的过程中所使用的初始化参数,例如该初始化参数可以是初始化因子等。
例如,接收端设备根据公式c init_m=f(n CDM_m)确定M个码分复用组中的第m个码分复用组对应的序列的初始化因子。其中,c init_m表示第m个码分复用组对应的序列的初始化因子,n CDM_m表示与第m个码分复用组相关的信息,例如,该相关的信息可以是第m个码分复用组的身份标识(indentfy,ID)。码分复用组的ID可以是码分复用组的索引或码分复用组对应的偏移值或码分复用组对应的扰码信息(如扰码因子)等。m=1、2、3……M。
例如,上述公式c init_m=f(n CDM_m)可以表示为:
Figure PCTCN2019102057-appb-000056
当然本申请实施例不限于此。其中,
Figure PCTCN2019102057-appb-000057
表示时隙中的符号个数,
Figure PCTCN2019102057-appb-000058
是时隙的索引,l是符号索引,
Figure PCTCN2019102057-appb-000059
是序列生成因子,n SCID是扰码因子。该公式是基于5G NR R15中生成初始化因子确定的,因子该公式中相关内容的解释可以参考5G NR R15,此处不再赘述。
方式2:接收端设备生成一个参考序列,然后根据第一配置信息对该参考序列进行变换(或称为处理或变形等),得到上述每个码分复用组对应的序列。
可选的,一次变换过程对应一个码分复用组。例如,根据公式
Figure PCTCN2019102057-appb-000060
变换得到M个码分复用组中的第m个码分复用组对应的序列中的第n个元素
Figure PCTCN2019102057-appb-000061
其中,r(n)表示参考序列中的第n个元素,参考序列可以例如但不限于是按照现有技术如现有5G NR R15提供的方案,生成的用于获得参考信号的序列。n CDM_m和m的含义可以参考上文。可以理解的,n是大于或等于0的整数。例如,公式
Figure PCTCN2019102057-appb-000062
具体可以表示为:
Figure PCTCN2019102057-appb-000063
更具体的,
Figure PCTCN2019102057-appb-000064
Figure PCTCN2019102057-appb-000065
Figure PCTCN2019102057-appb-000066
等。其中,n PRB为PRB索引信息,n subcarrier为子载波索引信息。当然本申请实施例不限于此。此时,多个参考信号对应的序列也可认为是同一参考信号序列的变形,如映射变形(即时频资源映射步骤中的“映射”变形),或者复用方式变形(即复用时频资源的方式变形)等。需要说明的是,此处仅描述了接收端设备生成上述至少两个参考信号的过程,具体实现的过程中,发送端设备也可以按照类似的方法生成上述至少两个参考信号,此处不再赘述。
本实施例提供的序列配置方法是通过信令方式配置每个码分复用组对应的序列为例进行说明的。可替换的,每个码分复用组对应的序列也可以是预定义的,例如通过协议预定的。另外,在终端与网络设备之间建立RRC连接(比如终端还未收到任何RRC配置参 数)之前,可以预定义每个码分复用组对应的序列。例如,通过预定义上文中第一配置信息所携带的信息,来预定义每个码分复用组对应的序列等。
本实施例提供的序列配置方法,为实现图4所示的配置方法提供了基础。因此,本实施例能够达到的有益效果可以参考图4所示的实施例中描述的有益效果。当然,本实施例提供的序列配置方法还可以应用于其他场景中。
如图9所示,为本申请实施例提供的一种序列配置方法的示意图。本实施例中相关内容的解释可以参考上文。该方法包括:
S301:发送端设备生成第二配置信息,第二配置信息用于配置网络设备为终端分配的至少两个天线端口中的每个天线端口对应的序列。
天线端口对应的序列,是指“用于获得该天线端口对应的参考信号”的序列。可选的,一个天线端口对应一个序列。
例如,假设系统支持8个天线端口(分别标记为天线端口0~7),那么,天线端口0~7可以分别对应序列0~7。基于此,若网络设备为该终端分配的天线端口是天线端口0~3,则发送端设备可以为接收端设备配置天线端口0~3对应的参考信号的序列0~3。
S302:发送端设备发送第二配置信息。
可选的,第二配置信息可以例如但不限于通过RRC信令、MAC信令和DCI中的一种或者至少两种的组合实现。例如,通过在RRC信令/MAC信令/DCI中增加独立指示域来携带第二配置信息,或者可以通过扩展序列指示域的尺寸来携带第二配置信息。
可选的,第二配置信息具体用于配置上述至少两个天线端口中的每个天线端口对应的序列的生成参数。一个天线端口对应的序列的生成参数包括该天线端口的索引或该天线端口对应的偏移值或该天线端口对应的扰码因子。
当该生成参数包括天线端口的索引时,可选的,第二配置信息可以包含网络设备为终端分配的天线端口的索引。
当该生成参数包括天线端口对应的偏移值时,可选的,第二配置信息可以包含网络设备为终端分配的天线端口对应的偏移值;或者,第二配置信息可以包含偏移单位或该至少两个天线端口中的一个天线端口对应的偏移值。这里的偏移值可以是该至少两个天线端口所对应的各偏移值中的最大偏移值或最小偏移值,具体是最大偏移值还是最小偏移值可以是预定义的如通过协议预定的,也可以是发送端设备向接收端设备发送信令指示的,本申请实施例对此不进行限定。可替换的,这里的偏移单位或偏移值也可以是预定义的,该情况下,第二配置信息不需要指示该预定义的信息。
需要说明的是,在第二配置信息指示偏移单位的情况下,接收端设备可以根据该偏移单位和预定义的偏移单位与各偏移值之间的对应关系,确定网络设备为终端分配的天线端口所占用的码分复用组对应的偏移值。具体示例参考图8所示的实施例中的示例推理得到,此处不再赘述。
当该生成参数包括天线端口对应的扰码信息(如扰码因子)时,可选的,第二配置信息可以包含网络设备为终端分配的天线端口对应的扰码因子。可替换的,这里的天线端口对应的扰码信息可以是预定义的,该情况下,第二配置信息不需要指示该预定义的信息。
第二配置信息的具体示例可参考上述第一配置信息的具体示例推理得到,此处不再赘述。
S303:接收端设备接收第二配置信息。
可替换的,接收端设备通过协议预定义的方式获知第二配置信息。
S304:接收端设备根据第二配置信息配置该每个天线端口对应的序列。
S304可以例如但不限于通过如下方式之一实现:
方式1:接收端设备根据第二配置信息,确定该至少两个天线端口中的每个天线端口对应的序列的初始化参数。然后,对于每个序列,根据该序列的初始化参数生成该序列。可选的,一个序列的初始化参数对应一个天线端口。序列的初始化参数可以是初始化因子等。
例如,接收端设备根据公式c init_m=f(n p_m)确定该至少两个天线端口中的第m个天线端口对应的序列的初始化参数。其中,c init_m表示第m个天线端口对应的序列的初始化因子,n p_m表示与第m个天线端口相关的信息,例如,该相关的信息可以是第m个天线端口的ID。天线端口的ID可以是天线端口的索引或天线端口对应的偏移值等。m=1、2、3……M,M是网络设备为终端分配的天线端口的个数。
例如,上述公式c init_m=f(n p_m)可以表示为:
Figure PCTCN2019102057-appb-000067
当然本申请实施例不限于此。该公式中的参数的解释可以参考上文,此处不再赘述。
方式2:接收端设备生成一个参考序列,然后根据第二配置信息对该参考序列进行变换(或称为处理或变形等),得到上述每个天线端口对应的序列。
可选的,一次变换过程对应一个天线端口。例如,根据公式
Figure PCTCN2019102057-appb-000068
变换得到第m个天线端口对应的序列中的第n个元素
Figure PCTCN2019102057-appb-000069
其中,r(n)、n p_m和m的含义可以参考上文。
例如,
Figure PCTCN2019102057-appb-000070
具体可以表示为
Figure PCTCN2019102057-appb-000071
Figure PCTCN2019102057-appb-000072
或者
Figure PCTCN2019102057-appb-000073
等,其中,n PRB为PRB索引信息,n subcarrier为子载波索引信息。当然本申请实施例不限于此。此时,多个参考信号对应的序列也可认为是同一参考信号序列的变形,如,映射变形或者复用方式变形等。
本实施例提供的序列配置方法是通过信令指示方式配置每个天线端口对应的序列为例进行说明的。可替换的,每个天线端口对应的序列也可以是预定义的,例如通过协议预定的。另外,在终端与网络设备之间建立RRC连接(比如终端还未收到任何RRC配置参数)之前,可以预定义每个天线端口对应的序列。例如,通过预定义上文中第二配置信息所携带的信息,来预定义每个天线端口对应的序列等。
本实施例提供的序列配置方法,为实现图4所示的配置方法提供了基础。因此,本实施例能够达到的有益效果可以参考图4所示的实施例中描述的有益效果。当然,本实施例提供的序列配置方法还可以应用于其他场景中。
具体实现的过程中,应用于5G NR系统中时,可以将基于现有5G NR R15中描述的序列设计方式配置的参考信号称为版本1,将基于本申请实施例中提供的序列设计方式配置的参考信号称为版本2。考虑到兼容性问题,在一种实现方式中,支持版本2的终端可以同时支持版本1,支持版本1的终端可以不支持版本2。
上文中均是以基于网络设备为一个终端配置参考信号为例进行说明的,具体实现的过程中,如果网络设备同时调度(具体是指在一个调度周期内调度)多个终端,且该多个终端中的一部分终端仅支持一个版本1,另一部分终端支持版本2。则如何实现网络设备对该多个终端的调度,成为亟待解决的问题。
基于此,本申请实施例提供了以下参考信号配置方法。
如图10所示,为本申请实施例提供的一种参考信号配置方法的示意图。该方法包括:
S401:网络设备生成指示信息,该指示信息用于指示参考信号的第一版本。
可选的,第一版本可以是网络设备在同一调度周期内调度的多个终端均支持的任意一个参考信号版本。参考信号可以例如但不限于是DMRS或CSI-RS等。
具体实现的过程中,网络设备可以以一个或多个调度周期为单位,执行本实施例提供的方法,例如,在每个或连续多个调度周期中执行本实施例提供的方法。
指示信息用于指示参考信号的第一版本,可以理解为:指示信息用于指示一个或多个调度周期内所传输的参考信号(包括上行参考信号或下行参考信号)的版本是第一版本。该一个或多个调度周期可以包括:本次调度周期,或者从本次调度周期开始的多个调度周期(如多个连续的调度周期),或者本次调度周期之后的多个调度周期(如多个连续的调度周期)等。
在一种可能的实现方式中,在执行S401之前,网络设备和该网络设备所调度的部分或全部终端均已根据自身可支持的参考信号的版本生成了至少两种版本的参考信号。例如,该至少两种版本的参考信号包括:基于现有技术提供的方法(例如但不限于包含5G NR R15提供的方法)生成的至少两种版本的参考信号。再如,该至少两种版本的参考信号包括:基于现有技术提供的方法(例如但不限于包含5G NR R15提供的方法)生成的至少一种版本的参考信号,以及基于上文提供的方法生成了一种版本的参考信号。另外,该至少两种版本的参考信号中也可以包含基于未来版本(如5G NR R16或5G NR R17等)生成的参考信号。
S402:网络设备向在同一调度周期中调度的多个终端中的至少一个终端发送该指示信息;该多个终端均支持第一版本,该至少一个终端还支持除第一版本外的其他版本。
需要说明的是,该至少一个终端支持第一版本和除第一版本外的其他版本,这里的第一版本和其他版本均是指同一类型的参考信号的版本,可选的,第一版本的参考信号的序列和其他版本的参考信号的序列是同时生成的,关于“同时生成”的描述可以参考上文。
具体实现的过程中,该指示信息可以携带在RRC信令、MAC信令和DCI中的一种或至少两种的组合由网络设备发送给终端。例如,通过在RRC信令或MAC信令或DCI中增加独立指示域来携带该指示信息。
作为一个示例,本实施例中描述的第一版本可以是上文中的版本2。本实施例中描述的其他版本可以是上文中的版本1。S402中的至少一个终端可以是支持版本2的终端。该示例以网络设备调度的多个终端共支持2个版本为例进行说明的,可扩展的,当网络设备调度的多个终端共支持2个以上版本时,也可通过本实施例提供的通过信令指示参考信号的版本的方法实现对参考信号的配置。
S403:该至少一个终端接收该指示信息。
S404:该至少一个终端中的每个终端根据该指示信息确定本次调度周期内传输(包 括接收和/或发送)的参考信号的版本是第一版本。
后续,应用于下行传输场景中时,网络设备可以向终端发送第一版本的参考信号,终端接收第一版本的参考信号。应用于上行传输场景中时,终端可以向网络设备发送第一版本的参考信号,网络设备接收第一版本的参考信号。
本实施例提供的参考信号配置方法中,网络设备通过信令向同一调度周期调度的终端(如部分或全部终端)指示参考信号的版本,这样,有助于实现同一调度周期调度的所有终端均使用同一种版本的参考信号,从而有助于解决同一调度周期调度的支持不同版本的参考信号的终端的兼容性问题。
如图11所示,为本申请实施例提供的一种参考信号配置方法的示意图。该方法包括:
S501:终端向网络设备发送能力信息,该能力信息用于指示该终端是否支持参考信号的版本切换,该终端支持至少两种版本的参考信号。
其中,这里的至少两种版本的参考信号是指同一类型的参考信号。可选的,该至少两种版本的参考信号的序列是同时生成的。该至少两种版本的参考信号的具体示例可以参考上文,当然本申请实施例不限于此。
具体的,若终端支持至少两种版本的上行参考信号,则该能力信息可以用于指示该终端是否支持上行参考信号的版本切换。若终端支持至少两种版本的下行参考信号,则该能力信息可以用于指示该终端是否支持下行参考信号的版本切换。另外,若终端支持至少两种版本的上行参考信号,且支持至少两种版本的下行参考信号,则能力信息可以用于指示该终端是否支持上行参考信号的版本切换和/或下行参考信号的版本切换。
具体实现的过程中,能力信息可以携带在RRC信令、MAC信令和DCI中的一种或至少两种的组合中由网络设备发送给终端。例如,通过在RRC信令或MAC信令或DCI中增加独立指示域来携带指示信息。
可选的,如果该终端支持参考信号的版本切换,则该能力信息还可以指示该终端所支持的参考信号的版本切换是以下切换方式中的一种或多种:动态切换(例如支持指示信息携带在DCI中等)、半静态切换(例如支持指示信息携带在MAC信令中等)、静态切换(例如支持指示信息携带在RRC信令中等)。后续,网络设备可以进一步基于该能力信息,确定参考信号的版本切换的切换方式。
S502:网络设备接收该能力信息。
S503:网络设备根据该能力信息确定是否指示该终端进行参考信号的版本切换。
例如,当该能力信息指示该终端支持参考信号的版本切换时,后续,当网络设备需要调度该终端时,可以根据该能力信息向该终端指示进行参考信号的版本切换,其中一种应用场景可以如上文中描述的,网络设备向终端指示第一版本。
又如,当该能力信息指示该终端不支持参考信号的版本切换时,后续,当网络设备需要调度该终端时,可以不向终端指示进行参考信号的版本切换。
需要说明的是,本申请实施例对网络设备根据该能力信息执行何种操作不进行限定。也就是说,上述S503是可选的步骤。
本实施例提供的参考信号配置方法,支持终端向网络设备上报参考信号的版本切换能力信息,这有助于实现网络设备通过信令向该终端指示参考信号版本,从而有助于解决同一调度周期内调度的支持不同版本的参考信号的终端的兼容性问题。
如图12所示,为本申请实施例提供的一种参考信号配置方法的示意图。该方法包括:
S601:对于同一调度周期内调度的第一终端和第二终端,网络设备生成第一终端的第一参考信号和第二终端的第二参考信号;其中,第一参考信号与第二参考信号的版本不同,且第一参考信号与第二参考信号非码分复用时频资源。也就是说,第一参考信号与第二参考信号不能码分复用时频资源。
第一参考信号和第二参考信号是同一类型的参考信号。如均是DMRS或均是CSI-RS等。
可选的,第一参考信号和第二参考信号可以时分复用时频资源。如图13A所示,为本申请实施例提供的一种同一调度周期内的不同终端的参考信号映射至时频资源的示意图。这里的不同终端具体是指支持不同版本的参考信号的终端。
可选的,第一参考信号和第二参考信号可以频分复用时频资源。如图13B所示,为本申请实施例提供的一种同一调度周期内的不同终端的参考信号映射至时频资源的示意图。这里的不同终端具体是指支持不同版本的参考信号的终端。
图13A和图13B中均是以一个调度周期是一个时隙为例进行说明的,且均示出了一个RB上所映射的参考信号。
S602:网络设备在该调度周期内,向第一终端发送第一参考信号,且向第二终端发送第二参考信号。例如,将第一参考信号和第二参考信号均映射至时频资源之后,同时发送映射至时频资源上的第一参考信号和第二参考信号。
S603:第一终端接收第一参考信号。第二终端接收第二参考信号。
对于第一终端和第二终端中的任一终端来说,可以假设其所调度的任一天线端口对应的序列与该天线端口所在的码分复用组中的其他天线端口对应的序列相同;或者,可以假设当前调度周期内不存在其他的所对应的序列与该天线端口对应的序列不同的天线端口。
本实施例提供的参考信号配置方法中,网络设备同一调度周期内调度的任意两个终端的参考信号的版本不同时,这两个终端的参考信号复用时频资源的方式可以是非码分复用方式,这样,有助于实现在同一调度周期内调度所支持的参考信号的版本不同的终端,从而实现解决同一调度周期内调度的支持不同版本的参考信号的终端的兼容性问题。
如图14所示,为本申请实施例提供的一种参考信号配置方法的示意图。该方法包括:
S701:对于第一调度周期内调度的至少两个终端,网络设备为每个终端生成对应的参考信号,其中,第一调度周期内调度的至少两个终端的参考信号的版本相同(例如第一周期内调度的所有终端的参考信号的版本相同),且该版本不同于在第二调度周期内的至少两个终端的参考信号的版本,在第二调度周期内调度的至少两个终端的参考信号的版本相同(例如第二周期内调度的所有终端的参考信号的版本相同),。
可选的,第一调度周期内调度的任意一个终端和第二调度周期内调度的任意一个终端均可以支持一种或多种版本的参考信号。
由于第一调度周期内调度的至少两个终端的参考信号的版本相同,因此,在第一调度周期内,该至少两个终端的参考信号可以时分、频分或码分复用时频资源。同理,第二调度周期内调度的至少两个终端的参考信号可以时分、频分或码分复用时频资源。
S702:网络设备在第一调度周期内向第一调度周期内调度的至少两个终端发送对应的参考信号。
S703:在第一调度周期内,该至少两个终端接收对应的参考信号。
对于该至少两个终端中的任一终端来说,可以假设其所调度的任一天线端口对应的序列与该天线端口所在的码分复用组中的其他天线端口对应的序列相同;或者,可以假设当前调度周期内不存在其他的所对应的序列与该天线端口对应的序列不同的天线端口。
如图15所示,为本申请实施例提供的一种不同调度周期内的不同终端的参考信号映射至时频资源的示意图。这里的不同终端具体是指支持不同版本的参考信号的终端。图15中是以一个调度周期是一个时隙为例进行说明的,且均示出了一个RB上所映射的参考信号。
本实施例可以理解为支持不同版本的终端的参考信号时分复用时频资源,具体的,可以以调度周期(如子帧或时隙或微型时隙等)为单位时分复用时频资源。本实施例通过网络设备同一调度周期内调度的至少两个终端的参考信号的版本相同,不同调度周期内传输的参考信号的版本不同,解决支持不同版本的参考信号的终端的兼容性问题。
上述主要从方法的角度对本申请实施例提供的方案进行了介绍。为了实现上述功能,其包含了执行各个功能相应的硬件结构和/或软件模块。本领域技术人员应该很容易意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,本申请能够以硬件或硬件和计算机软件的结合形式来实现。某个功能究竟以硬件还是计算机软件驱动硬件的方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
本申请实施例可以根据上述方法示例对参数信号配置装置(包括网络设备或终端)或序列配置装置(包括网络设备或终端)进行功能模块的划分,例如可以对应各个功能划分各个功能模块,也可以将两个或两个以上的功能集成在一个处理模块中。上述集成的模块既可以采用硬件的形式实现,也可以采用软件功能模块的形式实现。需要说明的是,本申请实施例中对模块的划分是示意性的,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式。
如图16所示,为本申请实施例提供的一种参考信号配置装置160的结构示意图。参考信号配置装置160可以用于执行上文中提供的任意一种参考信号配置方法。参考信号配置装置160可以包括处理单元1601和收发单元1602。或者,参考信号配置装置160可以包括收发单元1602,可选的还包括处理单元1601。以下进行具体说明:
在一些实施例(下文中标记为实施例一)中,参考信号配置装置160可以包括处理单元1601和收发单元1602。处理单元1601,用于生成至少两个参考信号;其中,该至少两个参考信号是网络设备为同一终端分配的至少两个天线端口对应的参考信号,该至少两个参考信号是同一类型的参考信号,该至少两个参考信号包括第一参考信号和第二参考信号,第一参考信号的序列与第二参考信号的序列不同。收发单元1602,用于发送该至少两个参考信号。
例如,结合图4,参考信号配置装置160可以是发送端设备,处理单元1601可以用于执行S101,收发单元1602可以用于执行S103。
可选的,参考信号的序列是指用于获得参考信号的序列,也可以被称为参考信号的生成序列或参考信号的本地序列。
可选的,处理单元1601具体用于:根据M个序列,生成该至少两个参考信号;其中, M个序列包括第一参考信号的序列和第二参考信号的序列,M是大于或等于2的整数;M是网络设备为该终端分配的天线端口所占用的码分复用组的个数,或者是网络设备为该终端分配的天线端口的个数。
在一些实施例(下文中标记为实施例二)中,参考信号配置装置160可以包括收发单元1602,用于接收至少两个参考信号,该至少两个参考信号是网络设备为同一终端分配的至少两个天线端口对应的参考信号,该至少两个参考信号均是同一类型的参考信号,该至少两个参考信号包括第一参考信号和第二参考信号,第一参考信号的序列与第二参考信号的序列不同。
例如,结合图4,参考信号配置装置160可以是接收端设备,收发单元1602可以用于执行S104。
可选的,参考信号配置装置160还包括处理单元1601,用于根据M个序列,生成该至少两个参考信号;其中,M个序列包括第一参考信号的序列和第二参考信号的序列,M是大于或等于2的整数;M是网络设备为该终端分配的天线端口所占用的码分复用组的个数,或者是网络设备为该终端分配的天线端口的个数。例如,结合图4,处理单元1601可以用于执行S102。
基于上文实施例一或实施例二,以下提供几种可选的实现方式:
可选的,对于第一参考信号和第二参考信号中的任一参考信号来说,该参考信号的序列是基于公式
Figure PCTCN2019102057-appb-000074
得到的;其中,
Figure PCTCN2019102057-appb-000075
表示该参考信号的序列中的第n个元素,r(n)表示参考序列中的第n个元素,n≥0,n是整数,f(n CDM_m)表示与n CDM_m相关的函数,n CDM_m表示该参考信号对应的天线端口所属的码分复用组的索引,或者该码分复用组对应的偏移值或者该码分复用组对应的扰码因子。
例如,
Figure PCTCN2019102057-appb-000076
或者
Figure PCTCN2019102057-appb-000077
其中,k表示
Figure PCTCN2019102057-appb-000078
所映射的频域单元的索引。
又如,当M=2时,f(n CDM_m)=-1 CDM_m;或者,当M=3时,
Figure PCTCN2019102057-appb-000079
Figure PCTCN2019102057-appb-000080
M是网络设备为终端分配的天线端口所占用的码分复用组的个数。
可选的,第一参考信号对应的天线端口与第二参考信号对应的天线端口所属不同的码分复用组;不同码分复用组对应不同的正交覆盖码OCC。
例如,若系统支持2个码分复用组,2个码分复用组包括第一码分复用组和第二码分复用组,则:第一码分复用组的每个频域单元对应的OCC均是矩阵a,第二码分复用组的每个频域单元对应的OCC均是-a;或者,第一码分复用组的每个频域单元对应的OCC均是矩阵a,第二码分复用组的相邻两个频域单元中的其中一个频域单元对应的OCC是矩阵a,另一个频域单元对应的OCC是-a。
又如,若系统支持3个码分复用组,3个码分复用组包括第一码分复用组、第二码分复用组和第三码分复用组,则:第一码分复用组的每个频域单元对应的OCC均是矩阵a,第二码分复用组的每个频域单元对应的OCC均是a*exp(j*x),第三码分复用组的每个频域单元对应的OCC均是a*exp(j*y),其中,x+y=2π,或者x+y=-2π,j是虚数单位; 或者,第一码分复用组的每个频域单元对应的OCC均是矩阵a;第二码分复用组的相邻两个频域单元中的其中一个频域单元对应的OCC是矩阵a,另一个频域单元对应的OCC是a*exp(j*x);第三码分复用组的相邻两个频域单元中的其中一个频域单元对应的OCC是矩阵a,另一个频域单元对应的OCC是a*exp(j*y);其中,x+y=2π,或者x+y=-2π,j是虚数单位。
在一些实施例中,参考信号配置装置160可以包括处理单元1601和收发单元1602。处理单元1601,用于生成指示信息,该指示信息用于指示参考信号的第一版本。收发单元1602,用于向在同一调度周期中调度的多个终端中的至少一个终端发送该指示信息;多个终端均支持第一版本,至少一个终端还支持除第一版本外的其他版本。
例如,结合图10,参考信号配置装置160可以是网络设备,处理单元1601可以用于执行S401,收发单元1602可以用于执行S402。
在一些实施例中,参考信号配置装置160可以包括处理单元1601和收发单元1602。收发单元1602,用于接收指示信息,该指示信息用于指示参考信号的第一版本。处理单元1601,用于根据该指示信息,确定本次调度周期内传输的参考信号的版本是第一版本。
例如,结合图10,参考信号配置装置160可以是至少一个终端中的任意一个终端,收发单元1602可以用于执行S403,处理单元1601可以用于执行S404。
在一些实施例中,参考信号配置装置160可以包括处理单元1601和收发单元1602。收发单元1602,用于接收终端发送的能力信息,能力信息用于指示该终端是否支持参考信号的版本切换,该终端支持至少两种版本的参考信号。可选的,处理单元1601用于根据能力信息,确定是否指示该终端进行参考信号的版本切换。
例如,结合图11,参考信号配置装置160可以是网络设备,处理单元1601可以用于执行S502,收发单元1602可以用于执行S503。
在一些实施例中,参考信号配置装置160可以包括收发单元1602。收发单元1602,用于发送能力信息;能力信息指示终端是否支持参考信号的版本切换,以用于网络设备确定是否指示该终端进行参考信号的版本切换。
例如,结合图11,参考信号配置装置160可以是终端,收发单元1602可以用于执行S501。
在一些实施例中,参考信号配置装置160可以包括处理单元1601和收发单元1602。处理单元1601用于对于同一调度周期内调度的第一终端和第二终端,生成第一终端的第一参考信号和第二终端的第二参考信号;其中,第一参考信号与第二参考信号的版本不同,且第一参考信号与第二参考信号非码分复用时频资源。收发单元1602用于在调度周期内,向第一终端发送第一参考信号,且向第二终端发送第二参考信号。
例如,结合图12,参考信号配置装置160可以是网络设备,处理单元1601可以用于执行S601,收发单元1602可以用于执行S602。
在一些实施例中,参考信号配置装置160可以包括处理单元1601和收发单元1602。处理单元1601用于对于第一调度周期内调度的至少两个终端,为每个终端生成对应的参考信号,其中,第一调度周期内调度的至少两个终端的参考信号的版本相同,且该版本不同于在第二调度周期内的至少两个终端的参考信号的版本,在第二调度周期内调度的至少两个终端的参考信号的版本相同。收发单元1602用于在第一调度周期内向第一调度周期 内调度的该至少两个终端发送对应的参考信号。
例如,结合图14,参考信号配置装置160可以是网络设备,处理单元1601可以用于执行S701,收发单元1602可以用于执行S702。
在一些实施例中,参考信号配置装置160可以包括处理单元1601和收发单元1602。处理单元1601用于生成至少两个参考信号;其中,该至少两个参考信号是网络设备为同一终端分配的至少两个天线端口对应的参考信号,该至少两个参考信号是同一类型的参考信号,该至少两个参考信号包括第一参考信号和第二参考信号,第一参考信号的序列与第二参考信号的序列不同。收发单元1602用于发送该至少两个参考信号。可选的,参考信号的序列是指参考信号包含的元素构成的序列。
可选的,第一参考信号的序列和第二参考信号的序列均是基于参考信号级别生成的序列,或者均是基于时域符号级别生成的序列。
可选的,处理单元1602具体用于:根据一个序列(也可以称为母序列),生成该至少两个参考信号。
在一些实施例中,参考信号配置装置160可以包括收发单元1602。收发单元1602用于接收至少两个参考信号;其中,该至少两个参考信号是网络设备为同一终端分配的至少两个天线端口对应的参考信号,该至少两个参考信号是同一类型的参考信号,该至少两个参考信号包括第一参考信号和第二参考信号,第一参考信号的序列与第二参考信号的序列不同。可选的,参考信号的序列是指参考信号包含的元素构成的序列。
可选的,参考信号配置装置160还包括处理单元1601,用于根据一个序列(也可以称为母序列),生成该至少两个参考信号。
上述提供的任一种参考信号配置装置160中相关内容的解释以及有益效果的描述等均可参考上述对应的方法实施例,此处不再赘述。
作为一示例,结合图3所示的通信设备,上述处理单元1601可以通过图3中的处理器201或处理器207实现。收发单元1602可以通过图3中的通信接口204实现。
如图17所示,为本申请实施例提供的一种序列配置装置170的结构示意图。序列配置装置170可以用于执行上文中提供的任意一种参考信号配置方法。序列配置装置170可以包括处理单元1701和收发单元1702。以下进行具体说明:
在一些实施例中,处理单元1701,用于生成配置信息,该配置信息用于配置网络设备为终端分配的至少两个天线端口所占用的M个码分复用组中的每个码分复用组对应的序列;M是大于或等于2的整数。收发单元170用于发送该配置信息。
例如,结合图8,序列配置装置170可以是发送端设备,处理单元1701可以用于执行S201,收发单元1702可以用于执行S202。
可选的,该配置信息具体用于配置该每个码分复用组对应的序列的生成参数,生成参数包括该码分复用组的索引或者该码分复用组对应的偏移值或该码分复用组对应的扰码因子。
在一些实施例中,收发单元1702,用于接收配置信息,该配置信息用于配置网络设备为终端分配的至少两个天线端口所占用的M个码分复用组中的每个码分复用组对应的序列;M是大于或等于2的整数。处理单元1701,用于根据该配置信息,配置每个码分复用组对应的序列。
例如,结合图8,序列配置装置170可以是接收端设备,收发单元1702可以用于执行S203,处理单元1701可以用于执行S204。
可选的,该配置信息具体用于配置该每个码分复用组对应的序列的生成参数,生成参数包括该码分复用组的索引或者该码分复用组对应的偏移值或该码分复用组对应的扰码因子。在一些实施例中,处理单元1701,用于生成配置信息,该配置信息用于配置网络设备为终端分配的至少两个天线端口中的每个天线端口对应的序列。收发单元1702,用于发送该配置信息。
例如,结合图9,序列配置装置170可以是发送端设备,处理单元1701可以用于执行S301,收发单元1702可以用于执行S302。
可选的,该配置信息具体用于配置该每个天线端口对应的序列的生成参数,生成参数包括该天线端口的索引或者该天线端口对应的偏移值或者该天线端口对应的扰码因子。
在一些实施例中,收发单元1702,用于接收配置信息,该配置信息用于配置网络设备为终端分配的至少两个天线端口中的每个天线端口对应的序列。处理单元1701,用于根据该配置信息,配置该每个天线端口对应的序列。
例如,结合图9,序列配置装置170可以是接收端设备,收发单元1702可以用于执行S303,处理单元1701可以用于执行S304。
可选的,该配置信息具体用于配置该每个天线端口对应的序列的生成参数,该生成参数包括该天线端口的索引或者该天线端口对应的偏移值或者该天线端口对应的扰码因子。
上述提供的任一种序列配置装置170中相关内容的解释以及有益效果的描述等均可参考上述对应的方法实施例,此处不再赘述。
作为一示例,结合图3所示的通信设备,上述处理单元1701可以通过图3中的处理器201或处理器207实现。收发单元1702可以通过图3中的通信接口204实现。
以下描述本发明的另一个实施例,本实施例中的相应特征可以参考上文描述的各个实施例中的相关描述。
本发明的又一方面提供了一种获得参考信号的方法,包括:
确定参考信号的初始化因子,该初始化因子的取值可以根据下文中的各个公式来确定;
根据所述初始化因子获得所述参考信号。
相应的,本发明还提供了一种通信装置,包括:
确定模块,用于确定参考信号的初始化因子;
获得模块,用于根据所述初始化因子获得所述参考信号。
相应的,本发明还提供了一种通信装置,其特征在于,包括:
处理器,用于执行上述获得参考信号的方法。
相应的,本发明还提供了一种通信装置,其特征在于,包括:
存储器,用于存储计算机程序;
处理器,用于读取存储器中存储的计算机程序,以执行上述获得参考信号的方法。
相应的,本发明还提供了一种计算机可读存储介质,其上储存有计算机程序,当该计算机程序在计算机上运行时,使得计算机执行上述获得参考信号的方法。
相应的,本发明还提供了一种计算机程序产品,当其在计算机上运行时,使得上述获得参考信号的方法被执行。
相应的,本发明还提供了一种通信芯片,其中存储有指令,当其在通信装置上运行时,使得通信装置执行上述获得参考信号的方法。
在具体实现过程中,上述初始化因子可以为:
Figure PCTCN2019102057-appb-000081
或者
Figure PCTCN2019102057-appb-000082
更为具体的,当初始化因子通过上述公式一或者公式二计算得到时,
Figure PCTCN2019102057-appb-000083
或者
Figure PCTCN2019102057-appb-000084
或者
Figure PCTCN2019102057-appb-000085
或者
Figure PCTCN2019102057-appb-000086
或者
Figure PCTCN2019102057-appb-000087
或者
Figure PCTCN2019102057-appb-000088
在具体实现过程中,上述初始化因子还可以为:
Figure PCTCN2019102057-appb-000089
其中Y为大于等于log 2(n CDM_m*2 X)+1的任意正整数,X为大于等于
Figure PCTCN2019102057-appb-000090
的任意正整数。
在具体实现过程中,上述初始化因子还可以为:
Figure PCTCN2019102057-appb-000091
更为具体的,当初始化因子通过上述公式四计算得到时,
Figure PCTCN2019102057-appb-000092
Figure PCTCN2019102057-appb-000093
在上述公式中,c init_m为初始化因子,n CDM_m为表示该参考信号对应的天线端口所属的码分复用组的索引,或者该码分复用组对应的偏移值,或者该码分复用组对应的扰码因子,或者可以用于标识该码分复用组的其他信息,
Figure PCTCN2019102057-appb-000094
为一个时隙(slot)中的符号(symbol) 的个数,
Figure PCTCN2019102057-appb-000095
为一个子帧或者一个时隙(slot)的索引,l为符号(symbol)的索引,n SCID为扰码因子,
Figure PCTCN2019102057-appb-000096
为序列扰码标识(ID)。
在具体实现过程中,n SCID的取值可以为,例如但不限于,0或者1,在这种情况下,可以通过DCI中的1个比特(bit)来指示n SCID的取值,
Figure PCTCN2019102057-appb-000097
的取值范围可以为,例如但不限于,0-65535,该参数可以通过例如但不限于RRC信令配置,n CDM_m与DMRS端口(port)存在对应关系。
上述参数的含义和取值范围可以参考本文以及现有技术(例如但不限于各种通信标准,例如,LTE和5G标准等)中的定义。举例来说,在LTE标准或者5G标准中,c init_m为参考信号序列的初始化因子,
Figure PCTCN2019102057-appb-000098
为时隙中符号的个数,例如但不限于,承载有该参考信号的时隙中符号的个数,例如,在LTE标准中,
Figure PCTCN2019102057-appb-000099
可以等于6或者7,
Figure PCTCN2019102057-appb-000100
为子帧的索引,例如但不限于,承载有该参考信号的子帧的索引,或者
Figure PCTCN2019102057-appb-000101
为时隙的索引,例如但不限于,承载有该参考信号的时隙的索引,l为符号的索引,例如但不限于,承载有该参考信号的符号的索引,例如,在LTE标准中,l可以等于0~5或者0~6。
不难理解,上述公式可以与本文提到的其他相同功能的公式(例如但不限于上文描述的生成初始化因子的公式)相互替换或者结合。
在具体实现过程中,可以参考现有技术来获得参考信号。例如,可采用如下方式来获得参考信号:
获取参考信号序列,其中参考信号序列可由如下公式生成:
Figure PCTCN2019102057-appb-000102
在这种情况下,参考信号序列也可以通过基于上述公式得到的查找表来获得,其中:
c(n)=(x 1(n+N C)+x 2(n+N C))mod 2
x 1(n+31)=(x 1(n+3)+x 1(n))mod 2
x 2(n+31)=(x 2(n+3)+x 2(n+2)+x 2(n+1)+x 2(n))mod 2
c(n)为二进制Gold序列,其长度可以为,例如但不限于M PN,其中n=0,1,...,M PN-1,N C=1600,且:
x 1(0)=1,x 1(n)=0,n=1,2,...,30
Figure PCTCN2019102057-appb-000103
在具体实现过程中,上述参考信号为DMRS,或者CSI-RS。
所述获得参考信号可以是通过各种方式得到参考信号,例如但不限于,根据预设公式计算得到参考信号,或者通过查表方式查询得到参考信号等。更为具体的,所述预设公式是例如但不限于参考信号的序列生成公式,该公式为与上述初始化因子有关的公式,例如但不限于,该预设公式涉及的参数中包含该初始化因子。在具体实现过程中,上述预设公式可以参考,例如但不限于,现有LTE标准或者5G标准中提到的参考信号序列生成公式。同时,如本文所述,n CDM_m表示该参考信号对应的天线端口所属的码分复用组的索引,或者该码分复用组对应的偏移值,或者该码分复用组对应的扰码因子,或者可以用于标识该码分复用组的其他信息。
若上述方法的执行设备为发送端设备,则上述方法还可以包括,发送所述参考信号。更为具体的,上述参考信号在发送之前还可以进行其他处理,例如但不限于,通过OCC码进行处理,然后通过该参考信号对应的时频资源进行发送。
若上述方法的执行设备为接收端设备,则上述方法还可以包括,接收端设备基于所述参考信号,以及来自发送端设备的参考信号,进行数据解调。不难理解,在这种情况下,上述参考信号为DMRS。具体来说,接收端设备生成的参考信号和发送端设备生成的参考信号是相同的参考信号,如此一来,发射端设备生成的参考信号经由发射端设备发送并经过信道传输之后,由接收端设备接收,接收端设备便可基于收到的来自发射端设备的参考信号和接收端设备根据初始化因子获得的参考信号进行数据解调。基于来自发射端设备的参考信号和接收端设备根据初始化因子获得的参考信号进行数据解调的过程可以参考现有技术,本文不再详细赘述。例如但不限于,接收端设备可以基于来自发射端设备的参考信号和接收端设备根据初始化因子获得的参考信号确定例如信道参数(例如但不限于,等效信道矩阵),并基于该信道参数进行数据解调。在进行数据解调之前,还可能需要对来自发射端设备的参考信号和接收端设备根据初始化因子获得的参考信号进行其他的处理。
另一方面,上述发送端设备可以是网络设备,上述接收端设备可以为终端,如此一来,发送端设备向接收端设备发送参考信号,以及接收端设备基于收到的来自发射端设备的参考信号和接收端设备生成的参考信号进行数据解调,对应的就是下行通信过程。
又一方面,上述发送端设备可以是终端,上述接收端设备可以是网络设备,如此一来,发送端设备向接收端设备发送参考信号,以及接收端设备基于收到的来自发射端设备的参考信号和接收端设备生成的参考信号进行数据解调,对应的就是上行通信过程。
不难理解,上述通信装置可以为发送端设备,也可以为接收端设备。同时,该发送端设备和接收端设备还可以包含收发模块或者收发器等器件。
上述模块、处理器、存储器、收发器等器件的相关内容可以参考本文其他部分的描述。
简单的说,上述公式可以为:
Figure PCTCN2019102057-appb-000104
或者
Figure PCTCN2019102057-appb-000105
在上述实施例中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件程序实现时,可以全部或部分地以计算机程序产品的形式来实现。该计算机程序产品包括一个或多个计算机指令。在计算机上加载和执行计算机执行指令时,全部或部分地产生按照本申请实施例的流程或功能。计算机可以是通用计算机、专用计算机、计算机网络、或者其他可编程装置。计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,计算机指令可以从一个网站站点、计算机、服务器或者数据中心通过有线(例如同轴电缆、光纤、数字用户线(digital subscriber line,DSL))或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。计算机可读存储介质可以是计算机能够存取的任何可用介质或者是包含一个或多个可以用介质集成的服务器、数据中心等数据存储设备。可用介质可以是磁性介质(例如,软盘、硬盘、磁带),光介质(例如,DVD)、或者半导体介质(例如固态硬盘(solid state disk,SSD))等。
尽管在此结合各实施例对本申请进行了描述,然而,在实施所要求保护的本申请过程中,本领域技术人员通过查看附图、公开内容、以及所附权利要求书,可理解并实现公开实施例的其他变化。在权利要求中,“包括”(comprising)一词不排除其他组成部分或步骤,“一”或“一个”不排除多个的情况。单个处理器或其他单元可以实现权利要求中列举的若干项功能。相互不同的从属权利要求中记载了某些措施,但这并不表示这些措施不能组合起来产生良好的效果。
尽管结合具体特征及其实施例对本申请进行了描述,显而易见的,在不脱离本申请的精神和范围的情况下,可对其进行各种修改和组合。相应地,本说明书和附图仅仅是所附权利要求所界定的本申请的示例性说明,且视为已覆盖本申请范围内的任意和所有修改、变化、组合或等同物。显然,本领域的技术人员可以对本申请进行各种改动和变型而不脱离本申请的精神和范围。这样,倘若本申请的这些修改和变型属于本申请权利要求及其等同技术的范围之内,则本申请也意图包含这些改动和变型在内。

Claims (56)

  1. 一种参考信号配置方法,其特征在于,包括:
    生成至少两个参考信号;其中,所述至少两个参考信号是网络设备为同一终端分配的至少两个天线端口对应的参考信号,所述至少两个参考信号是同一类型的参考信号,所述至少两个参考信号包括第一参考信号和第二参考信号,所述第一参考信号的序列与所述第二参考信号的序列不同;
    发送所述至少两个参考信号。
  2. 根据权利要求1所述的参考信号配置方法,其特征在于,所述生成至少两个参考信号,包括:
    根据M个序列,生成所述至少两个参考信号;其中,所述M个序列包括所述第一参考信号的序列和所述第二参考信号的序列,所述M是大于或等于2的整数;所述M是所述网络设备为所述终端分配的天线端口所占用的码分复用组的个数,或者是所述网络设备为所述终端分配的天线端口的个数。
  3. 根据权利要求1所述的参考信号配置方法,其特征在于,对于所述第一参考信号和所述第二参考信号中的任一参考信号来说,该参考信号的序列是基于公式
    Figure PCTCN2019102057-appb-100001
    得到的;其中,所述
    Figure PCTCN2019102057-appb-100002
    表示该参考信号的序列中的第n个元素,所述r(n)表示参考序列中的第n个元素,n≥0,n是整数,所述f(n CDM_m)表示与所述n CDM_m相关的函数,所述n CDM_m表示该参考信号对应的天线端口所属的码分复用组的索引,或者该码分复用组对应的偏移值或者该码分复用组对应的扰码因子。
  4. 根据权利要求3所述的参考信号配置方法,其特征在于,
    Figure PCTCN2019102057-appb-100003
    或者
    Figure PCTCN2019102057-appb-100004
    其中,所述k表示
    Figure PCTCN2019102057-appb-100005
    所映射的频域单元的索引;
    或者,当M=2时,f(n CDM_m)=-1 CDM_m;或者,当M=3时,
    Figure PCTCN2019102057-appb-100006
    Figure PCTCN2019102057-appb-100007
    其中,所述M是所述网络设备为所述终端分配的天线端口所占用的码分复用组的个数。
  5. 根据权利要求1所述的参考信号配置方法,其特征在于,所述第一参考信号对应的天线端口与所述第二参考信号对应的天线端口所属不同的码分复用组;所述不同码分复用组对应不同的正交覆盖码OCC。
  6. 根据权利要求5所述的参考信号配置方法,其特征在于,若系统支持2个码分复用组,所述2个码分复用组包括第一码分复用组和第二码分复用组,则:
    所述第一码分复用组的每个频域单元对应的OCC均是矩阵a,所述第二码分复用组的每个频域单元对应的OCC均是-a;
    或者,所述第一码分复用组的每个频域单元对应的OCC均是矩阵a,所述第二码分复用组的相邻两个频域单元中的其中一个频域单元对应的OCC是所述矩阵a,另一个频域单元对应的OCC是-a。
  7. 根据权利要求5所述的序列配置方法,其特征在于,若系统支持3个码分复用组, 所述3个码分复用组包括第一码分复用组、第二码分复用组和第三码分复用组,则:
    所述第一码分复用组的每个频域单元对应的OCC均是矩阵a,所述第二码分复用组的每个频域单元对应的OCC均是a*exp(j*x),所述第三码分复用组的每个频域单元对应的OCC均是a*exp(j*y),其中,x+y=2π,或者x+y=-2π,所述j是虚数单位;
    或者,所述第一码分复用组的每个频域单元对应的OCC均是矩阵a;所述第二码分复用组的相邻两个频域单元中的其中一个频域单元对应的OCC是所述矩阵a,另一个频域单元对应的OCC是a*exp(j*x);所述第三码分复用组的相邻两个频域单元中的其中一个频域单元对应的OCC是所述矩阵a,另一个频域单元对应的OCC是a*exp(j*y);其中,x+y=2π,或者x+y=-2π,所述j是虚数单位。
  8. 一种参考信号配置方法,其特征在于,包括:
    接收至少两个参考信号,所述至少两个参考信号是网络设备为同一终端分配的至少两个天线端口对应的参考信号,所述至少两个参考信号均是同一类型的参考信号,所述至少两个参考信号包括第一参考信号和第二参考信号,所述第一参考信号的序列与所述第二参考信号的序列不同。
  9. 根据权利要求8所述的参考信号配置方法,其特征在于,所述方法还包括:
    根据M个序列,生成所述至少两个参考信号;其中,所述M个序列包括所述第一参考信号的序列和所述第二参考信号的序列,所述M是大于或等于2的整数;所述M是所述网络设备为所述终端分配的天线端口所占用的码分复用组的个数,或者是所述网络设备为所述终端分配的天线端口的个数。
  10. 根据权利要求8所述的参考信号配置方法,其特征在于,对于所述第一参考信号和所述第二参考信号中的任一参考信号来说,该参考信号的序列是基于公式
    Figure PCTCN2019102057-appb-100008
    得到的;其中,所述
    Figure PCTCN2019102057-appb-100009
    表示该参考信号的序列中的第n个元素,所述r(n)表示参考序列中的第n个元素,n≥0,n是整数,所述f(n CDM_m)表示与所述n CDM_m相关的函数,所述n CDM_m表示该参考信号对应的天线端口所属的码分复用组的索引,或者该码分复用组对应的偏移值或者该码分复用组对应的扰码因子。
  11. 根据权利要求10所述的参考信号配置方法,其特征在于,
    Figure PCTCN2019102057-appb-100010
    或者
    Figure PCTCN2019102057-appb-100011
    其中,所述k表示
    Figure PCTCN2019102057-appb-100012
    所映射的频域单元的索引;
    或者,当M=2时,f(n CDM_m)=-1 CDM_m;或者,当M=3时,
    Figure PCTCN2019102057-appb-100013
    Figure PCTCN2019102057-appb-100014
    其中,所述M是所述网络设备为所述终端分配的天线端口所占用的码分复用组的个数。
  12. 根据权利要求8所述的参考信号配置方法,其特征在于,所述第一参考信号对应的天线端口与所述第二参考信号对应的天线端口所属不同的码分复用组;所述不同码分复用组对应不同的正交覆盖码OCC。
  13. 根据权利要求12所述的参考信号配置方法,其特征在于,若系统支持2个码分复用组,所述2个码分复用组包括第一码分复用组和第二码分复用组,则:
    所述第一码分复用组的每个频域单元对应的OCC均是矩阵a,所述第二码分复用组的每个频域单元对应的OCC均是-a;
    或者,所述第一码分复用组的每个频域单元对应的OCC均是矩阵a,所述第二码分复用组的相邻两个频域单元中的其中一个频域单元对应的OCC是所述矩阵a,另一个频域单元对应的OCC是-a。
  14. 根据权利要求12所述的序列配置方法,其特征在于,若系统支持3个码分复用组,所述3个码分复用组包括第一码分复用组、第二码分复用组和第三码分复用组,则:
    所述第一码分复用组的每个频域单元对应的OCC均是矩阵a,所述第二码分复用组的每个频域单元对应的OCC均是a*exp(j*x),所述第三码分复用组的每个频域单元对应的OCC均是a*exp(j*y),其中,x+y=2π,或者x+y=-2π,所述j是虚数单位;
    或者,所述第一码分复用组的每个频域单元对应的OCC均是矩阵a;所述第二码分复用组的相邻两个频域单元中的其中一个频域单元对应的OCC是所述矩阵a,另一个频域单元对应的OCC是a*exp(j*x);所述第三码分复用组的相邻两个频域单元中的其中一个频域单元对应的OCC是所述矩阵a,另一个频域单元对应的OCC是a*exp(j*y);其中,x+y=2π,或者x+y=-2π,所述j是虚数单位。
  15. 一种序列配置方法,其特征在于,包括:
    生成配置信息,所述配置信息用于配置网络设备为终端分配的至少两个天线端口所占用的M个码分复用组中的每个码分复用组对应的序列;所述M是大于或等于2的整数;
    发送所述配置信息。
  16. 根据权利要求15所述的序列配置方法,其特征在于,所述配置信息具体用于配置所述每个码分复用组对应的序列的生成参数,所述生成参数包括该码分复用组对应的偏移值或该码分复用组对应的扰码因子。
  17. 一种序列配置方法,其特征在于,包括:
    接收配置信息,所述配置信息用于配置网络设备为终端分配的至少两个天线端口所占用的M个码分复用组中的每个码分复用组对应的序列;所述M是大于或等于2的整数;
    根据所述配置信息,配置所述每个码分复用组对应的序列。
  18. 根据权利要求17所述的序列配置方法,其特征在于,所述配置信息具体用于配置所述每个码分复用组对应的序列的生成参数,所述生成参数包括该码分复用组的索引或者该码分复用组对应的偏移值或该码分复用组对应的扰码因子。
  19. 一种序列配置方法,其特征在于,包括:
    生成配置信息,所述配置信息用于配置网络设备为终端分配的至少两个天线端口中的每个天线端口对应的序列;
    发送所述配置信息。
  20. 根据权利要求19所述的序列配置方法,其特征在于,所述配置信息具体用于配置所述每个天线端口对应的序列的生成参数,所述生成参数包括该天线端口的索引或者该天线端口对应的偏移值或者该天线端口对应的扰码因子。
  21. 一种序列配置方法,其特征在于,包括:
    接收配置信息,所述配置信息用于配置网络设备为终端分配的至少两个天线端口中的每个天线端口对应的序列;
    根据所述配置信息,配置所述每个天线端口对应的序列。
  22. 根据权利要求21所述的序列配置方法,其特征在于,所述配置信息具体用于配置所述每个天线端口对应的序列的生成参数,所述生成参数包括该天线端口的索引或者该天线端口对应的偏移值或者该天线端口对应的扰码因子。
  23. 一种参考信号配置方法,其特征在于,包括:
    生成指示信息,所述指示信息用于指示参考信号的第一版本;
    向在同一调度周期中调度的多个终端中的至少一个终端发送所述指示信息;所述多个终端均支持所述第一版本,所述至少一个终端还支持除所述第一版本外的其他版本。
  24. 一种参考信号配置方法,其特征在于,包括:
    接收指示信息,所述指示信息用于指示参考信号的第一版本;
    根据所述指示信息,确定本次调度周期内传输的参考信号的版本是所述第一版本。
  25. 一种参考信号配置方法,其特征在于,包括:
    接收终端发送的能力信息,所述能力信息用于指示所述终端是否支持参考信号的版本切换,所述终端支持至少两种版本的参考信号;
    根据所述能力信息,确定是否指示所述终端进行参考信号的版本切换。
  26. 一种参考信号配置方法,其特征在于,包括:
    终端发送能力信息;所述能力信息指示所述终端是否支持参考信号的版本切换,以用于网络设备确定是否指示所述终端进行参考信号的版本切换。
  27. 一种参考信号配置方法,其特征在于,包括:
    对于同一调度周期内调度的第一终端和第二终端,网络设备生成所述第一终端的第一参考信号和所述第二终端的第二参考信号;其中,所述第一参考信号与所述第二参考信号的版本不同,且所述第一参考信号与所述第二参考信号非码分复用时频资源;
    所述网络设备在所述调度周期内,向所述第一终端发送所述第一参考信号,且向所述第二终端发送所述第二参考信号。
  28. 一种参考信号配置方法,其特征在于,包括:
    对于第一调度周期内调度的至少两个终端,网络设备为每个终端生成对应的参考信号,其中,所述第一调度周期内调度的至少两个终端的参考信号的版本相同,且该版本不同于在第二调度周期内的至少两个终端的参考信号的版本,在所述第二调度周期内调度的至少两个终端的参考信号的版本相同;
    所述网络设备在所述第一调度周期内向所述第一调度周期内调度的所述至少两个终端发送对应的参考信号。
  29. 一种参考信号配置装置,其特征在于,包括:
    处理单元,用于生成至少两个参考信号;其中,所述至少两个参考信号是网络设备为同一终端分配的至少两个天线端口对应的参考信号,所述至少两个参考信号是同一类型的参考信号,所述至少两个参考信号包括第一参考信号和第二参考信号,所述第一参考信号的序列与所述第二参考信号的序列不同;
    收发单元,用于发送所述至少两个参考信号。
  30. 根据权利要求29所述的参考信号配置装置,其特征在于,
    所述处理单元具体用于:根据M个序列,生成所述至少两个参考信号;其中,所述 M个序列包括所述第一参考信号的序列和所述第二参考信号的序列,所述M是大于或等于2的整数;所述M是所述网络设备为所述终端分配的天线端口所占用的码分复用组的个数,或者是所述网络设备为所述终端分配的天线端口的个数。
  31. 根据权利要求29所述的参考信号配置装置,其特征在于,对于所述第一参考信号和所述第二参考信号中的任一参考信号来说,该参考信号的序列是基于公式
    Figure PCTCN2019102057-appb-100015
    得到的;其中,所述
    Figure PCTCN2019102057-appb-100016
    表示该参考信号的序列中的第n个元素,所述r(n)表示参考序列中的第n个元素,n≥0,n是整数,所述f(n CDM_m)表示与所述n CDM_m相关的函数,所述n CDM_m表示该参考信号对应的天线端口所属的码分复用组的索引,或者该码分复用组对应的偏移值或者该码分复用组对应的扰码因子。
  32. 根据权利要求31所述的参考信号配置装置,其特征在于,
    Figure PCTCN2019102057-appb-100017
    或者
    Figure PCTCN2019102057-appb-100018
    其中,所述k表示
    Figure PCTCN2019102057-appb-100019
    所映射的频域单元的索引;
    或者,当M=2时,f(n CDM_m)=-1 CDM_m;或者,当M=3时,
    Figure PCTCN2019102057-appb-100020
    Figure PCTCN2019102057-appb-100021
    其中,所述M是所述网络设备为所述终端分配的天线端口所占用的码分复用组的个数。
  33. 根据权利要求29所述的参考信号配置装置,其特征在于,所述第一参考信号对应的天线端口与所述第二参考信号对应的天线端口所属不同的码分复用组;所述不同码分复用组对应不同的正交覆盖码OCC。
  34. 根据权利要求33所述的参考信号配置装置,其特征在于,若系统支持2个码分复用组,所述2个码分复用组包括第一码分复用组和第二码分复用组,则:
    所述第一码分复用组的每个频域单元对应的OCC均是矩阵a,所述第二码分复用组的每个频域单元对应的OCC均是-a;
    或者,所述第一码分复用组的每个频域单元对应的OCC均是矩阵a,所述第二码分复用组的相邻两个频域单元中的其中一个频域单元对应的OCC是所述矩阵a,另一个频域单元对应的OCC是-a。
  35. 根据权利要求33所述的序列配置装置,其特征在于,若系统支持3个码分复用组,所述3个码分复用组包括第一码分复用组、第二码分复用组和第三码分复用组,则:
    所述第一码分复用组的每个频域单元对应的OCC均是矩阵a,所述第二码分复用组的每个频域单元对应的OCC均是a*exp(j*x),所述第三码分复用组的每个频域单元对应的OCC均是a*exp(j*y),其中,x+y=2π,或者x+y=-2π,所述j是虚数单位;
    或者,所述第一码分复用组的每个频域单元对应的OCC均是矩阵a;所述第二码分复用组的相邻两个频域单元中的其中一个频域单元对应的OCC是所述矩阵a,另一个频域单元对应的OCC是a*exp(j*x);所述第三码分复用组的相邻两个频域单元中的其中一个频域单元对应的OCC是所述矩阵a,另一个频域单元对应的OCC是a*exp(j*y);其中,x+y=2π,或者x+y=-2π,所述j是虚数单位。
  36. 一种参考信号配置装置,其特征在于,包括:
    收发单元,用于接收至少两个参考信号,所述至少两个参考信号是网络设备为同一终端分配的至少两个天线端口对应的参考信号,所述至少两个参考信号均是同一类型的参考信号,所述至少两个参考信号包括第一参考信号和第二参考信号,所述第一参考信号的序列与所述第二参考信号的序列不同。
  37. 根据权利要求36所述的参考信号配置装置,其特征在于,所述装置还包括:
    处理单元,用于根据M个序列,生成所述至少两个参考信号;其中,所述M个序列包括所述第一参考信号的序列和所述第二参考信号的序列,所述M是大于或等于2的整数;所述M是所述网络设备为所述终端分配的天线端口所占用的码分复用组的个数,或者是所述网络设备为所述终端分配的天线端口的个数。
  38. 根据权利要求36所述的参考信号配置装置,其特征在于,对于所述第一参考信号和所述第二参考信号中的任一参考信号来说,该参考信号的序列是基于公式
    Figure PCTCN2019102057-appb-100022
    得到的;其中,所述
    Figure PCTCN2019102057-appb-100023
    表示该参考信号的序列中的第n个元素,所述r(n)表示参考序列中的第n个元素,n≥0,n是整数,所述f(n CDM_m)表示与所述n CDM_m相关的函数,所述n CDM_m表示该参考信号对应的天线端口所属的码分复用组的索引,或者该码分复用组对应的偏移值或者该码分复用组对应的扰码因子。
  39. 根据权利要求38所述的参考信号配置装置,其特征在于,
    Figure PCTCN2019102057-appb-100024
    或者
    Figure PCTCN2019102057-appb-100025
    其中,所述k表示
    Figure PCTCN2019102057-appb-100026
    所映射的频域单元的索引;
    或者,当M=2时,f(n CDM_m)=-1 CDM_m;或者,当M=3时,
    Figure PCTCN2019102057-appb-100027
    Figure PCTCN2019102057-appb-100028
    其中,所述M是所述网络设备为所述终端分配的天线端口所占用的码分复用组的个数。
  40. 根据权利要求36所述的参考信号配置装置,其特征在于,所述第一参考信号对应的天线端口与所述第二参考信号对应的天线端口所属不同的码分复用组;所述不同码分复用组对应不同的正交覆盖码OCC。
  41. 根据权利要求40所述的参考信号配置装置,其特征在于,若系统支持2个码分复用组,所述2个码分复用组包括第一码分复用组和第二码分复用组,则:
    所述第一码分复用组的每个频域单元对应的OCC均是矩阵a,所述第二码分复用组的每个频域单元对应的OCC均是-a;
    或者,所述第一码分复用组的每个频域单元对应的OCC均是矩阵a,所述第二码分复用组的相邻两个频域单元中的其中一个频域单元对应的OCC是所述矩阵a,另一个频域单元对应的OCC是-a。
  42. 根据权利要求40所述的序列配置装置,其特征在于,若系统支持3个码分复用组,所述3个码分复用组包括第一码分复用组、第二码分复用组和第三码分复用组,则:
    所述第一码分复用组的每个频域单元对应的OCC均是矩阵a,所述第二码分复用组的每个频域单元对应的OCC均是a*exp(j*x),所述第三码分复用组的每个频域单元对应的OCC均是a*exp(j*y),其中,x+y=2π,或者x+y=-2π,所述j是虚数单位;
    或者,所述第一码分复用组的每个频域单元对应的OCC均是矩阵a;所述第二码分复用组的相邻两个频域单元中的其中一个频域单元对应的OCC是所述矩阵a,另一个频域单元对应的OCC是a*exp(j*x);所述第三码分复用组的相邻两个频域单元中的其中一个频域单元对应的OCC是所述矩阵a,另一个频域单元对应的OCC是a*exp(j*y);其中,x+y=2π,或者x+y=-2π,所述j是虚数单位。
  43. 一种序列配置装置,其特征在于,包括:
    处理单元,用于生成配置信息,所述配置信息用于配置网络设备为终端分配的至少两个天线端口所占用的M个码分复用组中的每个码分复用组对应的序列;所述M是大于或等于2的整数;
    收发单元,用于发送所述配置信息。
  44. 根据权利要求43所述的序列配置装置,其特征在于,所述配置信息具体用于配置所述每个码分复用组对应的序列的生成参数,所述生成参数包括该码分复用组的索引或者该码分复用组对应的偏移值或该码分复用组对应的扰码因子。
  45. 一种序列配置装置,其特征在于,包括:
    收发单元,用于接收配置信息,所述配置信息用于配置网络设备为终端分配的至少两个天线端口所占用的M个码分复用组中的每个码分复用组对应的序列;所述M是大于或等于2的整数;
    处理单元,用于根据所述配置信息,配置所述每个码分复用组对应的序列。
  46. 根据权利要求45所述的序列配置装置,其特征在于,所述配置信息具体用于配置所述每个码分复用组对应的序列的生成参数,所述生成参数包括该码分复用组的索引或者该码分复用组对应的偏移值或该码分复用组对应的扰码因子。
  47. 一种序列配置装置,其特征在于,包括:
    处理单元,用于生成配置信息,所述配置信息用于配置网络设备为终端分配的至少两个天线端口中的每个天线端口对应的序列;
    收发单元,用于发送所述配置信息。
  48. 根据权利要求47所述的序列配置装置,其特征在于,所述配置信息具体用于配置所述每个天线端口对应的序列的生成参数,所述生成参数包括该天线端口的索引或者该天线端口对应的偏移值或者该天线端口对应的扰码因子。
  49. 一种序列配置装置,其特征在于,包括:
    收发单元,用于接收配置信息,所述配置信息用于配置网络设备为终端分配的至少两个天线端口中的每个天线端口对应的序列;
    处理单元,用于根据所述配置信息,配置所述每个天线端口对应的序列。
  50. 根据权利要求49所述的序列配置装置,其特征在于,所述配置信息具体用于配置所述每个天线端口对应的序列的生成参数,所述生成参数包括该天线端口的索引或者该天线端口对应的偏移值或者该天线端口对应的扰码因子。
  51. 一种参考信号配置装置,其特征在于,包括:
    处理单元,用于生成指示信息,所述指示信息用于指示参考信号的第一版本;
    收发单元,用于向在同一调度周期中调度的多个终端中的至少一个终端发送所述指示信息;所述多个终端均支持所述第一版本,所述至少一个终端还支持除所述第一版本外的 其他版本。
  52. 一种参考信号配置装置,其特征在于,包括:
    收发单元,用于接收指示信息,所述指示信息用于指示参考信号的第一版本;
    处理单元,用于根据所述指示信息,确定本次调度周期内传输的参考信号的版本是所述第一版本。
  53. 一种网络设备,其特征在于,包括:
    收发单元,用于接收终端发送的能力信息,所述能力信息用于指示所述终端是否支持参考信号的版本切换,所述终端支持至少两种版本的参考信号;
    处理单元,用于根据所述能力信息,确定是否指示所述终端进行参考信号的版本切换。
  54. 一种终端,其特征在于,包括:
    收发单元,用于发送能力信息;所述能力信息指示所述终端是否支持参考信号的版本切换,以用于网络设备确定是否指示所述终端进行参考信号的版本切换。
  55. 一种网络设备,其特征在于,包括:
    处理单元,用于对于同一调度周期内调度的第一终端和第二终端,生成所述第一终端的第一参考信号和所述第二终端的第二参考信号;其中,所述第一参考信号与所述第二参考信号的版本不同,且所述第一参考信号与所述第二参考信号非码分复用时频资源;
    收发单元,用于在所述调度周期内,向所述第一终端发送所述第一参考信号,且向所述第二终端发送所述第二参考信号。
  56. 一种网络设备,其特征在于,包括:
    处理单元,用于对于第一调度周期内调度的至少两个终端,为每个终端生成对应的参考信号,其中,所述第一调度周期内调度的至少两个终端的参考信号的版本相同,且该版本不同于在第二调度周期内的至少两个终端的参考信号的版本,在所述第二调度周期内调度的至少两个终端的参考信号的版本相同;
    收发单元,用于在所述第一调度周期内向所述第一调度周期内调度的所述至少两个终端发送对应的参考信号。
PCT/CN2019/102057 2018-09-14 2019-08-22 参考信号及序列配置方法和装置 WO2020052419A1 (zh)

Priority Applications (5)

Application Number Priority Date Filing Date Title
KR1020217010758A KR20210058897A (ko) 2018-09-14 2019-08-22 참조 신호 구성 방법 및 장치와, 시퀀스 구성 방법 및 장치
BR112021004759-0A BR112021004759A2 (pt) 2018-09-14 2019-08-22 Método e aparelho de configuração de sinal de referência, método e aparelho de configuração de sequência, dispositivo de rede, terminal, aparelho de comunicações, chip de comunicações, e meio de armazenamento legível por computador
JP2021514319A JP7206375B2 (ja) 2018-09-14 2019-08-22 参照信号構成方法及び装置並びに系列構成方法及び装置
EP19859340.2A EP3852462A4 (en) 2018-09-14 2019-08-22 REFERENCE SIGNAL AND SEQUENCE CONFIGURATION METHOD AND APPARATUS
US17/199,050 US11973578B2 (en) 2018-09-14 2021-03-11 Reference signal configuration method and apparatus, and sequence configuration method and apparatus

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
CN201811084471.X 2018-09-14
CN201811084471 2018-09-14
CN201811146964 2018-09-28
CN201811146964.1 2018-09-28
CN201811186140.7 2018-10-11
CN201811186140.7A CN110912666B (zh) 2018-09-14 2018-10-11 参考信号及序列配置方法和装置

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/199,050 Continuation US11973578B2 (en) 2018-09-14 2021-03-11 Reference signal configuration method and apparatus, and sequence configuration method and apparatus

Publications (1)

Publication Number Publication Date
WO2020052419A1 true WO2020052419A1 (zh) 2020-03-19

Family

ID=69776612

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/102057 WO2020052419A1 (zh) 2018-09-14 2019-08-22 参考信号及序列配置方法和装置

Country Status (5)

Country Link
EP (1) EP3852462A4 (zh)
JP (1) JP7206375B2 (zh)
CN (1) CN115473617A (zh)
BR (1) BR112021004759A2 (zh)
WO (1) WO2020052419A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022504608A (ja) * 2018-10-10 2022-01-13 テレフオンアクチーボラゲット エルエム エリクソン(パブル) Dm-rs信号のピーク対平均電力低減のための方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE112018008045T5 (de) * 2018-11-01 2021-08-05 Nec Corporation Referenzsignalübertragung

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101931485A (zh) * 2009-06-19 2010-12-29 北京三星通信技术研究有限公司 一种专用参考信号生成方法和装置
CN102202027A (zh) * 2010-03-26 2011-09-28 中兴通讯股份有限公司 一种导频序列的产生方法和装置
WO2018126399A1 (en) * 2017-01-05 2018-07-12 Nec Corporation Methods and apparatuses for reference signal transmission and receiving

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2802423C (en) * 2010-06-16 2022-05-31 Telefonaktiebolaget L M Ericsson (Publ) Methods and arrangements for transmitting and decoding reference signals
US9357535B2 (en) * 2011-11-13 2016-05-31 Lg Electronics Inc. Method and device for transmitting reference signal in wireless communication system
WO2014046516A1 (en) * 2012-09-24 2014-03-27 Lg Electronics Inc. Method and apparatus for transmitting or receiving reference signal in wireless communication system
CN108282322A (zh) * 2017-01-06 2018-07-13 华为技术有限公司 一种配置参考信号的方法和装置
JP7025423B2 (ja) * 2017-01-09 2022-02-24 エルジー エレクトロニクス インコーポレイティド 無線通信システムにおいて、参照信号を送信する方法及びそのための装置
CN108809587B (zh) * 2017-05-05 2021-06-08 华为技术有限公司 确定参考信号序列的方法、终端设备、网络设备
WO2019018973A1 (en) * 2017-07-24 2019-01-31 Nec Corporation METHODS AND DEVICES FOR CONFIGURING REFERENCE SIGNAL
CN108111273B (zh) * 2017-08-11 2021-11-02 中兴通讯股份有限公司 参考信号的传输方法及装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101931485A (zh) * 2009-06-19 2010-12-29 北京三星通信技术研究有限公司 一种专用参考信号生成方法和装置
CN102202027A (zh) * 2010-03-26 2011-09-28 中兴通讯股份有限公司 一种导频序列的产生方法和装置
WO2018126399A1 (en) * 2017-01-05 2018-07-12 Nec Corporation Methods and apparatuses for reference signal transmission and receiving

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
HUAWEI ET AL.: "Feature lead summary #2 of CSI-RS", 3GPP TSG RAN WGI AD HOC MEETING R1-1801096, 29 January 2018 (2018-01-29), XP051385359 *
QUALCOMM INC.: "Maintenance for DMRS", 3GPP TSG RAN WGI MEETING #92 R1-1802828, 17 February 2018 (2018-02-17), XP051398241 *
See also references of EP3852462A4

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022504608A (ja) * 2018-10-10 2022-01-13 テレフオンアクチーボラゲット エルエム エリクソン(パブル) Dm-rs信号のピーク対平均電力低減のための方法
US11876657B2 (en) 2018-10-10 2024-01-16 Telefonaktiebolaget Lm Ericsson (Publ) Method for peak to average power reduction of DM-RS signals
JP7444868B2 (ja) 2018-10-10 2024-03-06 テレフオンアクチーボラゲット エルエム エリクソン(パブル) Dm-rs信号のピーク対平均電力低減のための方法

Also Published As

Publication number Publication date
BR112021004759A2 (pt) 2021-08-31
JP7206375B2 (ja) 2023-01-17
JP2022500925A (ja) 2022-01-04
CN115473617A (zh) 2022-12-13
EP3852462A4 (en) 2022-03-09
EP3852462A1 (en) 2021-07-21

Similar Documents

Publication Publication Date Title
US11777683B2 (en) Method and apparatus for transmitting DMRS
WO2019237983A1 (zh) 预编码矩阵的配置方法和装置
US10841055B2 (en) Method and apparatus for obtaining resource indication value
WO2017092697A1 (zh) 通信系统中处理通信信号的方法和装置
WO2018228416A1 (zh) 一种通信方法、网络设备及终端设备
TWI688234B (zh) 資訊傳輸方法、終端及基地台
US11973578B2 (en) Reference signal configuration method and apparatus, and sequence configuration method and apparatus
WO2019029348A1 (zh) 数据传输方法、终端和基站
KR20200120620A (ko) 짧은 물리적 업링크 제어 채널 구조
WO2018090259A1 (zh) 上行信号的传输方法和装置
JP2022531274A (ja) 通信方法及び通信装置
WO2018137460A1 (zh) 一种参考信号配置方法、基站和终端
TW201818751A (zh) 傳輸信號的方法、終端設備和網路設備
WO2020052419A1 (zh) 参考信号及序列配置方法和装置
TW201826747A (zh) 資源映射的方法和通訊設備
WO2018228496A1 (zh) 一种指示方法、处理方法及装置
WO2020098594A1 (zh) 一种序列的生成及处理方法和装置
US11824801B2 (en) Parameter configuration method and apparatus
WO2022143868A1 (zh) 资源映射方法、装置及设备
EP4221110A1 (en) Symbol application method and communication apparatus
WO2023051173A1 (zh) 数据传输方法及相关装置
WO2023011110A1 (zh) 一种通信方法及装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19859340

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021514319

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112021004759

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 20217010758

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2019859340

Country of ref document: EP

Effective date: 20210414

REG Reference to national code

Ref country code: BR

Ref legal event code: B01E

Ref document number: 112021004759

Country of ref document: BR

Free format text: APRESENTAR, EM ATE 60 (SESSENTA) DIAS, NOVAS PAGINAS DAS REIVINDICACOES EMENDADAS UMA VEZ QUE O CONTEUDO ENVIADO NA PETICAO NO 870210023782 DE 12/03/2021 ENCONTRA-SE FORA DA NORMA. A PAGINA DEVE SER IDENTIFICADA SOMENTE POR REIVINDICACOES..

REG Reference to national code

Ref country code: BR

Ref legal event code: B01Y

Ref document number: 112021004759

Country of ref document: BR

Kind code of ref document: A2

Free format text: ANULADA A PUBLICACAO CODIGO 1.5 NA RPI NO 2639 DE 03/08/2021 POR TER SIDO INDEVIDA.

ENP Entry into the national phase

Ref document number: 112021004759

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20210312