WO2024120343A1 - 通信方法、装置及通信设备 - Google Patents

通信方法、装置及通信设备 Download PDF

Info

Publication number
WO2024120343A1
WO2024120343A1 PCT/CN2023/136177 CN2023136177W WO2024120343A1 WO 2024120343 A1 WO2024120343 A1 WO 2024120343A1 CN 2023136177 W CN2023136177 W CN 2023136177W WO 2024120343 A1 WO2024120343 A1 WO 2024120343A1
Authority
WO
WIPO (PCT)
Prior art keywords
data
pilot
oddm
ofdm
domain
Prior art date
Application number
PCT/CN2023/136177
Other languages
English (en)
French (fr)
Inventor
袁璞
秦飞
刘昊
刘劲
姜大洁
Original Assignee
维沃移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 维沃移动通信有限公司 filed Critical 维沃移动通信有限公司
Publication of WO2024120343A1 publication Critical patent/WO2024120343A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/0202Channel estimation
    • H04L25/0224Channel estimation using sounding signals
    • H04L25/0226Channel estimation using sounding signals sounding signals per se
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2602Signal structure
    • H04L27/261Details of reference signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2602Signal structure
    • H04L27/261Details of reference signals
    • H04L27/2613Structure of the reference signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2697Multicarrier modulation systems in combination with other modulation techniques
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • H04L5/0007Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT

Definitions

  • the present application belongs to the field of communication technology, and specifically relates to a communication method, apparatus and communication equipment.
  • modulation technologies for different scenarios are provided in related technologies, such as Orthogonal frequency division multiplexing (OFDM) modulation technology, Orthogonal Delay-Doppler Domain Modulation (ODDM) modulation technology, etc.
  • OFDM Orthogonal frequency division multiplexing
  • ODDM Orthogonal Delay-Doppler Domain Modulation
  • the related technology can use a hybrid framing modulation method (i.e., a hybrid frame structure) to perform mixed transmission of ODDM data and OFDM data, thereby not only meeting the low latency requirements of OFDM, but also increasing the latency and Doppler resolution of ODDM users without wasting additional time-frequency domain resources, thereby meeting the high mobility requirements of ODDM users.
  • a hybrid framing modulation method i.e., a hybrid frame structure
  • the embodiments of the present application provide a communication method, an apparatus and a communication device, which can provide an effective pilot configuration scheme for channel estimation, etc.
  • a communication method comprising: a first device transmits target data; wherein the target data includes orthogonal delay Doppler domain modulation (ODDM) data, orthogonal frequency division multiplexing (OFDM) data, and a pilot signal determined in a predetermined manner, wherein the predetermined manner includes the ODDM data and the OFDM data using independent pilots respectively, or the ODDM data and the OFDM data using a common pilot.
  • ODDM orthogonal delay Doppler domain modulation
  • OFDM orthogonal frequency division multiplexing
  • a communication method comprising: a second device receives target data transmitted by a first device; wherein the target data includes orthogonal delay Doppler domain modulation ODDM data, orthogonal frequency division multiplexing OFDM data and a pilot signal determined in a predetermined manner, and the predetermined manner includes the ODDM data and the OFDM data using independent pilots respectively, or the ODDM data and the OFDM data using a common pilot.
  • a communication device comprising: a first processing module, configured to transmit target data; wherein the target data includes orthogonal delay Doppler domain modulation (ODDM) data, orthogonal frequency division multiplexing (OFDM) data, and
  • ODDM orthogonal delay Doppler domain modulation
  • OFDM orthogonal frequency division multiplexing
  • the pilot signal is determined in a predetermined manner, wherein the predetermined manner includes that the ODDM data and the OFDM data use independent pilots respectively, or that the ODDM data and the OFDM data use a common pilot.
  • a communication device comprising: a transmission module, used to receive target data transmitted by a first device; wherein the target data includes orthogonal delay Doppler domain modulation ODDM data, orthogonal frequency division multiplexing OFDM data and a pilot signal determined in a predetermined manner, and the predetermined manner includes the ODDM data and the OFDM data using independent pilots respectively, or the ODDM data and the OFDM data using a common pilot.
  • a communication device which includes a processor and a memory, wherein the memory stores a program or instruction that can be run on the processor, and when the program or instruction is executed by the processor, the steps of the method described in the first aspect or the second aspect are implemented.
  • a communication device comprising a processor and a communication interface, wherein the communication interface is coupled to the processor, and the processor is used to run a program or instruction to implement the steps of the method described in the first aspect, or to implement the steps of the method described in the second aspect.
  • a wireless communication system comprising: a first device and a second device, wherein the first device can be used to execute the steps of the method described in the first aspect, and the second device can be used to execute the steps of the method described in the second aspect.
  • a readable storage medium on which a program or instruction is stored.
  • the program or instruction is executed by a processor, the steps of the method described in the first aspect are implemented, or the steps of the method described in the second aspect are implemented.
  • a chip comprising a processor and a communication interface, wherein the communication interface is coupled to the processor, and the processor is used to run a program or instructions to implement the steps of the method described in the first aspect, or to implement the steps of the method described in the second aspect.
  • a computer program product/program product is provided, wherein the computer program/program product is stored in a storage medium, and the computer program/program product is executed by at least one processor to implement the steps of the method described in the first aspect or the second aspect.
  • the first device when transmitting ODDM data and OFDM data, determines the pilot signals used by the ODDM data and the OFDM data in a predetermined manner, wherein the predetermined manner includes the ODDM data and the OFDM data using independent pilots, respectively, or the ODDM data and the OFDM data using common pilots.
  • the predetermined manner includes the ODDM data and the OFDM data using independent pilots, respectively, or the ODDM data and the OFDM data using common pilots.
  • FIG1 is a schematic diagram of the structure of a wireless communication system provided by an exemplary embodiment of the present application.
  • FIG. 2 is one of the flowchart diagrams of a communication method provided by an exemplary embodiment of the present application.
  • FIG3 is a schematic diagram of a hybrid frame structure provided by an exemplary embodiment of the present application.
  • FIG. 4 is a second flowchart of a communication method provided by an exemplary embodiment of the present application.
  • FIG. 5 a is one of the pilot structure schematic diagrams provided by an exemplary embodiment of the present application.
  • FIG5b is a second schematic diagram of a pilot structure provided by an exemplary embodiment of the present application.
  • FIG5c is a third pilot structure schematic diagram provided by an exemplary embodiment of the present application.
  • FIG5d is a fourth schematic diagram of a pilot structure provided by an exemplary embodiment of the present application.
  • FIG5e is a fifth schematic diagram of a pilot structure provided by an exemplary embodiment of the present application.
  • FIG5f is a sixth schematic diagram of a pilot structure provided by an exemplary embodiment of the present application.
  • FIG5g is a seventh schematic diagram of a pilot structure provided by an exemplary embodiment of the present application.
  • FIG5h is an eighth schematic diagram of a pilot structure provided by an exemplary embodiment of the present application.
  • FIG. 5i is a ninth schematic diagram of a pilot structure provided by an exemplary embodiment of the present application.
  • FIG. 6 is a third flowchart of a communication method provided by an exemplary embodiment of the present application.
  • FIG. 7 is one of the structural schematic diagrams of a communication device provided by an exemplary embodiment of the present application.
  • FIG. 8 is a second schematic diagram of the structure of a communication device provided by an exemplary embodiment of the present application.
  • FIG. 9 is a schematic diagram of the structure of a communication device provided by an exemplary embodiment of the present application.
  • FIG. 10 is a schematic diagram of the structure of a terminal provided by an exemplary embodiment of the present application.
  • FIG. 11 is a schematic diagram of the structure of a network-side device provided by an exemplary embodiment of the present application.
  • first, second, etc. in the specification and claims of the present application are used to distinguish similar objects, and are not used to describe a specific order or sequence. It should be understood that the terms used in this way are interchangeable under appropriate circumstances, so that the embodiments of the present application can be implemented in an order other than those illustrated or described here, and the objects distinguished by “first” and “second” are generally of the same type, and the number of objects is not limited.
  • the first object can be one or more.
  • “and/or” in the specification and claims represents at least one of the connected objects, and the character “/" generally represents that the objects associated with each other are in an "or” relationship.
  • LTE Long Term Evolution
  • LTE-A Long Term Evolution-Advanced
  • CDMA Code Division Multiple Access
  • TDMA Time Division Multiple Access
  • FDMA Frequency Division Multiple Access
  • OFDMA Orthogonal Frequency Division Multiple Access
  • SC-FDMA Single-carrier Frequency-Division Multiple Access
  • NR New Radio
  • 6G 6th Generation
  • FIG1 shows a block diagram of a wireless communication system applicable to an embodiment of the present application.
  • the wireless communication system includes a terminal 11 and a network side device 12 .
  • the terminal 11 can be a mobile phone, a tablet computer (Tablet Personal Computer), a laptop computer (Laptop Computer) or a notebook computer, a personal digital assistant (Personal Digital Assistant, PDA), a handheld computer, a netbook, an ultra-mobile personal computer (ultra-mobile personal computer, UMPC), a mobile Internet device (Mobile Internet Device, MID), augmented reality (augmented reality, AR)/virtual reality (virtual reality, VR) equipment, a robot, a wearable device (Wearable Device), a vehicle-mounted device (VUE), a pedestrian terminal (PUE), a smart home (home appliances with wireless communication functions, such as refrigerators, televisions, washing machines or furniture, etc.), a game console, a personal computer (personal computer, PC), an ATM or a self-service machine and other terminal side devices, and the wear
  • the network side device 12 may include an access network device or a core network device, wherein the access network device may also be referred to as a radio access network device, a radio access network (RAN), a radio access network function or a radio access network unit.
  • the access network device 12 may include a base station, a WLAN access point or a WiFi node, etc.
  • the base station may be referred to as a node B, an evolved node B (eNB), an access point, a base transceiver station (BTS), a radio base station, a radio transceiver, a basic service set (BSS), an extended service set (ESS), a home node B, a home evolved node B, a transmission reception point (TRP) or other appropriate terms in the field.
  • eNB evolved node B
  • BTS base transceiver station
  • ESS basic service set
  • ESS basic service set
  • home node B a home evolved node B
  • TRP transmission reception point
  • FIG2 it is a flow chart of a communication method 200 provided by an exemplary embodiment of the present application, and the method can be, but is not limited to, executed by a first device (such as a terminal or a network side device), and can be specifically executed by hardware and/or software installed in the first device.
  • the method can at least include the following steps.
  • the first device transmits target data.
  • this embodiment takes the NR system and the hybrid frame structure as an example to briefly describe the transmission process of the ODDM data and the OFDM data.
  • each frame structure of the NR system remains unchanged, that is, each time slot has 14 OFDM symbols (or OFDM modulation symbols), of which 1 to 2 symbols are mapped to the ODDM symbol (or ODDM modulation symbol) in the time-frequency (TF) domain.
  • the transformation symbol (referred to as the transformation symbol, such as orthogonal time frequency space (Orthogonal Time Frequency Space, OTFS)), and the OFDM modulation symbol is mapped to other symbols except the transformation symbol. Therefore, The purpose of transmitting the ODDM data and OFDM data based on a mixed frame structure is achieved.
  • two mapping types are provided in FIG3, namely, mapping type 1 (Type 1Mapping) and mapping type 2 (Type 2Mapping), and the difference between mapping type 1 and mapping type 2 is that the resource ratios occupied by the ODDM data and the OFDM data are different.
  • the ODDM data and the OFDM data are data of different users, such as the ODDM data is data of an ODDM user, and the OFDM data is data of at least one OFDM user.
  • the target data includes, in addition to the ODDM data and the OFDM data, a pilot signal determined in a predetermined manner.
  • the predetermined manner may include that the ODDM data and the OFDM data use independent pilots respectively.
  • “the ODDM data and the OFDM data use independent pilots respectively” is understood as: the pilot used by the ODDM data and the pilot used by the OFDM data are independent of each other, but the two may be the same or different.
  • the pilot configuration method in the related technology may be reused, thereby making the implementation of the pilot configuration method simpler.
  • the predetermined method may also include that the ODDM data and the OFDM data use a common pilot, in other words, the ODDM data and the OFDM data share a pilot.
  • pilot resources can be saved by using a common pilot.
  • pilot signal is used as a reference signal, such as for channel estimation, frame synchronization, etc.
  • the pilot signal used by the ODDM data and the OFDM data is determined in a predetermined manner, wherein the predetermined manner includes the ODDM data and the OFDM data using independent pilots, or the ODDM data and the OFDM data using common pilots.
  • the predetermined manner includes the ODDM data and the OFDM data using independent pilots, or the ODDM data and the OFDM data using common pilots.
  • FIG4 it is a flow chart of a communication method 400 provided by an exemplary embodiment of the present application, and the method can be, but is not limited to, executed by a first device (such as a terminal or a network side device), and can be specifically executed by hardware and/or software installed in the first device.
  • the method can at least include the following steps.
  • the first device transmits target data.
  • the target data includes ODDM data and OFDM data and a pilot signal determined in a predetermined manner, and the predetermined manner includes that the ODDM data and the OFDM data use independent pilots respectively, or that the ODDM data and the OFDM data use a common pilot.
  • the ODDM data and the OFDM data use independent pilots respectively, which may include: the ODDM data uses a delay Doppler domain (DD) domain pilot, the OFDM data uses a frequency domain (Frequency) pilot (also referred to as a TF domain pilot); the ODDM data uses a time domain (Time) pilot. Pilot: the OFDM data uses a frequency domain pilot.
  • DD delay Doppler domain
  • Frequency frequency domain
  • time time domain
  • Pilot the OFDM data uses a frequency domain pilot.
  • the common pilot is configured in the time domain.
  • the process of the first device transmitting the target data may include the following (11)-(12), as follows.
  • the ODDM data and the DD domain pilot corresponding to the ODDM data are replicated and mapped multiple times in the DD domain, and then frequency domain transformation is performed to obtain first data.
  • the DD domain pilot changes from a single copy to multiple copies, such as the 4 copies in Figure 5a.
  • the part indicated by "a1" is the pilot pulse/sequence
  • the part indicated by "a2" is the protection interval of the pilot.
  • the first data is obtained, which can form a mixed frame structure with the OFDM data and the DD domain pilot corresponding to the ODDM data.
  • the ODDM data is replicated (duplication) mapped K times (K is greater than or equal to 2) times in the delay/Doppler dimension of the DD domain, its transformation to the frequency/time dimension of the frequency domain (also referred to as the TF domain) will be reflected as the insertion of K-1 zero samples between the data of the corresponding dimension, so as to facilitate the insertion of the OFDM data and its corresponding frequency domain pilot.
  • K is greater than or equal to 2
  • the ODDM data is replicated (duplication) mapped 4 times in the delay/Doppler dimension of the DD domain, then its transformation to the frequency/time dimension of the TF domain will be reflected as the insertion of 3 zero samples between the data of the corresponding dimension.
  • the OFDM data and the frequency domain pilot corresponding to the OFDM data can be inserted into the first data in a comb form according to relevant protocol rules, wherein the part indicated by "b1" in Figure 5d is the frequency domain pilot used by the OFDM data, and the part indicated by "b2" is the OFDM data.
  • the channel estimation can be performed in the DD domain for the ODDM data of the target data, and the channel estimation is performed in the frequency domain for the OFDM data.
  • the channel estimation of the ODDM data can be performed in any of the replication areas of Figures 5a and 5b, or a plurality of replication areas can be comprehensively considered, that is, a combined channel estimation is performed to further improve the accuracy of the channel estimation.
  • pilot configuration scheme of the ODDM system mentioned in Example 1 can be indicated by downlink control information (Downlink Control Information, DCI) and/or radio resource control (Radio Resource Control, RRC) signaling.
  • DCI Downlink Control Information
  • RRC Radio Resource Control
  • the process of the first device transmitting the target data may include the following (21)-(23), the content is as follows.
  • K-1 zero symbols can be inserted between the data of the corresponding dimensions (that is, K-1 zero symbols are inserted between the data in the second data), so as to be used for inserting the OFDM data and its corresponding frequency domain pilot when transmitting the second data, the OFDM data and its corresponding frequency domain pilot based on a mixed frame structure, as shown in Figure 5e.
  • the time domain pilot corresponding to the ZP-ODDM data is configured in the ZP region of the second data to obtain third data (such as the ODDM data corresponding to the ODDM user in FIG. 5e ).
  • the ZP-ODDM data is a special symbol mapping method of ODDM, that is, no valid signal is placed in several symbols at the end of the delay dimension, so that the DD domain equivalent channel forms a strip matrix, so that the receiving end (or receiver, such as the second device) can use a low-complexity iterative (Iterative)-RAKE demodulation algorithm to demodulate the ODDM data.
  • the pilot design in the ZP-ODDM still follows the ODDM paradigm, that is, the pilot pulse/sequence + protection interval mode in the DD domain, but this design method has a large pilot overhead.
  • the ZP area also called the zero point area
  • the ZP-ODDM can be used to place the time domain pilot symbol to reduce the pilot overhead, for example, as indicated by the resource "c1" in Figure 5e.
  • the pilot mapping method of OFDM data in this Example 2 can refer to Figure 5d.
  • the part indicated by "c2" in Figure 5e represents that the OFDM data (or OFDM symbol) corresponding to the time tap here is mapped with the frequency domain pilot used by the OFDM data.
  • the interference degree of the pilot added in the ZP area to the ODDM data increases with the increase of the resources occupied by the pilot, that is, the less resources the pilot occupies, the less interference to the ODDM data; at the same time, the accuracy of the channel estimation of the pilot also increases with the increase of the resources occupied by the pilot.
  • an optional pilot configuration mode i.e., the first pilot configuration information
  • the communication system such as the network side device or the terminal
  • the first device can configure the time domain pilot corresponding to the ZP-ODDM data in the ZP area of the second data according to the first pilot configuration information.
  • the first pilot configuration information can be configured with at least one of the first information, the second information, and the third information, and the first information is the number of resources occupied by the time domain pilot on each of the time domain taps.
  • the second information is the index value of the time domain tap that needs to be configured for the time domain pilot
  • the third information is the density of the time domain pilot.
  • the size of the ZP region in ZP-ODDM is greater than or equal to L.
  • the pilot and data intervals in the current time tap such as the ODDM data column corresponding to each ODDM user in Figure 5e
  • the time domain pilot of ZP-ODDM exists on the time domain tap occupied by each ODDM data, and the starting position starts from the last resource unit of the time domain tap (column), as shown in Figure 5f.
  • the first pilot configuration information can be configured to include only the first information, so that the first device configures the time domain pilot corresponding to the ZP-ODDM data in the ZP region of the second data according to the first information.
  • the density of the pilot can be reduced.
  • the time domain pilot exists on the time domain taps occupied by some ODDM users, and the starting position starts from the last resource unit of the time domain tap (column), and the pilot density is 2.
  • the first device can perform pilot configuration based on the indication value, where n p is the number of resource units occupied by the pilot, and k p is the index value of the time domain tap (column), that is, the first pilot configuration information can be configured to include the second information, or the first pilot configuration information can be configured to include the first information and the second information.
  • the pilot density shown in FIG. 5 f is 3, that is, the pilot density is reduced.
  • the time domain pilot exists on the time domain taps occupied by some ODDM users, and the starting position starts from the last resource unit of the time domain tap (column).
  • the first pilot configuration information may include the third information, or include the second information and the third information, or include the first information, the second information and the third information.
  • the first pilot configuration information mentioned in the above example 2 may be implemented by protocol agreement, high-level configuration, or network-side configuration.
  • the first device may receive second indication information, and the second indication information is used to configure the first pilot configuration information.
  • the second indication information may be DCI or RRC signaling, a system information block (SIB), etc.
  • SIB system information block
  • the first pilot configuration information may be directly indicated by RRC or DCI.
  • a pilot configuration information may also first indicate multiple groups of pilot configuration information through RRC signaling, and then indicate the index of the pilot configuration information through DCI, so as to select a group of pilot configuration information from the multiple groups of pilot configuration information as the first pilot configuration information.
  • the process of the first device transmitting the target data may include the following (31)-(33), as follows.
  • the ZP-ODDM data is copied and mapped multiple times in the DD domain and then transformed to the DT domain to obtain fourth data.
  • K-1 zero symbols can be inserted between the data of the corresponding dimensions (that is, K-1 zero symbols are inserted between the data of the fourth data), so as to be used for the insertion of the OFDM data when the fourth data and the OFDM data are transmitted based on a mixed frame structure, as shown in Figure 5i.
  • the common pilot is configured in the ZP region of the fourth data to obtain fifth data.
  • this example 3 is similar to example 2.
  • the similarity between example 3 and example 2 is that in this example 3, the zero point at the end of ZP-ODDM can be used to place the time domain pilot symbol, but the difference is that the OFDM user does not need to place additional pilot signals in the frequency domain. As shown in FIG5i, no pilot is placed on the OFDM symbol corresponding to the OFDM user.
  • the first device configures the common pilot in the ZP area of the fourth data
  • the process of obtaining the fifth data may include: configuring the common pilot in the ZP area of the fifth data according to the second pilot configuration information; wherein the second pilot configuration information is configured with at least one of the fourth information, the fifth information, and the sixth information, the fourth information is the number of resources occupied by the time domain pilot on each of the time domain taps, the fifth information is the index value of the time domain tap on which the time domain pilot configuration is required, and the sixth information is the density of the time domain pilot.
  • the second pilot configuration information is the same as or different from the first pilot configuration information
  • the relevant description of the second pilot configuration information may refer to the aforementioned relevant description of the first pilot configuration information
  • the relevant description of configuring the common pilot in the ZP area of the fifth data according to the second pilot configuration information may refer to the aforementioned Example 2 "configuring the time domain pilot corresponding to the ZP-ODDM data in the ZP area of the second data", and achieve the same technical effect. To avoid repetition, it will not be repeated here.
  • the common pilot may be generated using a common pilot identity (ID) instead of using a private ID of the UE.
  • ID common pilot identity
  • the acquisition process of the common pilot ID includes: the first device selects from a preconfigured pilot ID pool according to the received first indication information (such as DCI or RRC, etc.), wherein the pilot ID pool can be dedicated to the Data transmission of hybrid frame structure. That is, the generation of the common pilot may be based on a common pilot ID pool (such as a pilot ID pool) dedicated to a hybrid frame structure, and the generation of the pilot sequence is based on the pilot ID in the pilot ID pool.
  • a common pilot ID pool such as a pilot ID pool
  • the pilot ID may be related to the initial value of the shift register, the offset value when intercepting the pilot sequence from the shift register output sequence, and the cyclic shift value when generating the Gold sequence.
  • PN pseudo-random sequence
  • the pilot ID may be related to a root coefficient of the ZC sequence.
  • the pilot ID pool may be implemented by protocol pre-configuration, high-level configuration, or network-side configuration.
  • the first device may determine based on the received second indication information, that is, the second indication information indicates the pilot ID pool.
  • the second indication information may be a system information block (SIB), RRC, DCI, etc.
  • SIB system information block
  • RRC Radio Resource Control
  • DCI DCI
  • the second indication information may be sent by the second device, etc.
  • the pilot ID pool may be configured through SIB or RRC, and the pilot ID may be indicated through RRC or DCI, so that the first device selects a pilot ID from the pilot ID pool based on the pilot ID to generate a common pilot.
  • the first device may first determine the working mode of the ODDM user and the OFDM user; and when the working mode is to perform data transmission of the ODDM user and the OFDM user based on a mixed frame structure, execute the step of transmitting the target data.
  • the input-output relationship of the data part in ZP-ODDM may be destroyed, resulting in the error floor of the Iterative-RAKE demodulation algorithm.
  • the damage of the ZP-ODDM time domain pilot to the data can be reduced by the following implementations (41)-(43), that is, the interference elimination step is introduced in the Iterative-RAKE demodulation algorithm, as follows.
  • the OFDM data uses a time domain pilot
  • the OFDM data uses a frequency domain pilot
  • the ODDM data is ZP-ODDM data
  • the time domain pilot of the ZP area in the target data is extracted to perform channel estimation to obtain the first channel information.
  • (42) Determine pilot interference information based on the designated pilot and the first channel information.
  • the designated pilot is a pilot signal of a format (such as a specific value, a mapping mode, etc.) known to both the data transceiver (such as the first device and the second device).
  • a pilot configuration method for mixed transmission of ODDM data and OFDM data is provided, and several optional configuration methods are provided for different scenarios of independent pilots and common pilots.
  • a time domain pilot design scheme that saves overhead is proposed in combination with the ZP-ODDM system, which can effectively ensure data transmission performance.
  • FIG6 it is a flow chart of a communication method 600 provided by an exemplary embodiment of the present application, and the method 600 can be, but is not limited to, executed by a second device (such as a terminal or a network side device), and can be specifically executed by hardware and/or software installed in the second device.
  • the method 600 can at least include the following steps.
  • S610 The second device receives target data transmitted by the first device.
  • the target data includes orthogonal delay Doppler domain modulation (ODDM) data, orthogonal frequency division multiplexing (OFDM) data and a pilot signal determined in a predetermined manner.
  • the predetermined manner includes the ODDM data and the OFDM data using independent pilots respectively, or the ODDM data and the OFDM data using a common pilot.
  • the ODDM data and OFDM data use independent pilots respectively, including: the ODDM data uses a delayed Doppler domain DD domain pilot, and the OFDM data uses a frequency domain pilot; the ODDM data uses a time domain pilot, and the OFDM data uses a frequency domain pilot.
  • the common pilot is configured in the time-frequency domain.
  • the method further includes: when the ODDM data uses a delayed Doppler domain (DD) domain pilot and the OFDM data uses a frequency domain pilot, performing channel estimation on the ODDM data by extracting a pilot corresponding to the ODDM data based on the DD domain.
  • DD delayed Doppler domain
  • the method also includes: when the ODDM data uses a time domain pilot, the OFDM data uses a frequency domain pilot, and the ODDM data is ZP-ODDM data, or when the ODDM data and the OFDM data use a common pilot, based on the time domain, extracting the time domain pilot in the ZP area of the target data to perform channel estimation to obtain first channel information; determining pilot interference information based on a known designated pilot and the first channel information; and removing the pilot interference information from the target data.
  • the method also includes at least one of the following: sending first indication information, the first indication information is used to indicate information of the pilot ID; sending second indication information, the second indication information is used to configure at least one of the following: first pilot configuration information, the first pilot configuration information is used to indicate the configuration method of the time domain pilot corresponding to the ODDM data; second pilot configuration information, the second pilot configuration information is used to indicate the configuration method of the common pilot; the pilot ID pool, the pilot ID pool is configured with at least one pilot ID, and the pilot ID is used to generate a common pilot.
  • each implementation in the method embodiment 600 has the same or corresponding technical features as the aforementioned method embodiments 200-400, the implementation process of each implementation in the method embodiment 600 can refer to the aforementioned method embodiments.
  • the relevant descriptions in Examples 200-400 achieve the same or corresponding technical effects and will not be repeated here to avoid repetition.
  • the communication methods 200-600 provided in the embodiments of the present application may be executed by a communication device.
  • a communication device executing a communication method is taken as an example to illustrate the communication device provided in the embodiments of the present application.
  • FIG. 7 it is a structural diagram of a communication device 700 provided for an exemplary embodiment of the present application, and the communication device 700 includes a first processing module 710, which is used to transmit target data; wherein the target data includes orthogonal delay Doppler domain modulation ODDM data, orthogonal frequency division multiplexing OFDM data and a pilot signal determined in a predetermined manner, and the predetermined manner includes the ODDM data and the OFDM data using independent pilots respectively, or the ODDM data and the OFDM data using a common pilot.
  • the target data includes orthogonal delay Doppler domain modulation ODDM data, orthogonal frequency division multiplexing OFDM data and a pilot signal determined in a predetermined manner, and the predetermined manner includes the ODDM data and the OFDM data using independent pilots respectively, or the ODDM data and the OFDM data using a common pilot.
  • the device 700 further includes a determination module for determining a pilot signal in a predetermined manner.
  • the ODDM data and the OFDM data use independent pilots respectively, including: the ODDM data uses a delayed Doppler domain DD domain pilot, and the OFDM data uses a frequency domain pilot; the ODDM data uses a time domain pilot, and the OFDM data uses a frequency domain pilot.
  • the common pilot is configured in the time domain.
  • the first processing module 710 transmits target data, including: when the ODDM data uses a DD domain pilot and the OFDM data uses a frequency domain pilot, the ODDM data and the DD domain pilot corresponding to the ODDM data are replicated and mapped multiple times in the DD domain, and then frequency domain transformation is performed to obtain first data; and the first data, the OFDM data, and the frequency domain pilot corresponding to the OFDM data are transmitted.
  • the first processing module 710 transmits target data, including: when the ODDM data uses a time domain pilot, the OFDM data uses a frequency domain pilot, and the ODDM data is zero-filled ZP-ODDM data, copying and mapping the ZP-ODDM data in the DD domain for multiple times and then transforming it to the delayed time DT domain to obtain second data; configuring the time domain pilot corresponding to the ZP-ODDM data in the ZP area of the second data to obtain third data; and transmitting the third data, the OFDM data, and the frequency domain pilot corresponding to the OFDM data.
  • the first processing module 710 configures the time domain pilot corresponding to the ODDM data in the ZP area of the second data to obtain third data, including: configuring the time domain pilot corresponding to the ODDM data in the ZP area of the second data according to the first pilot configuration information; wherein the first pilot configuration information is configured with at least one of the first information, the second information, and the third information, the first information is the number of resources occupied by the time domain pilot on each of the time domain taps, the second information is the index value of the time domain tap for which the time domain pilot needs to be configured, and the third information is the density of the time domain pilot.
  • the first processing module 710 transmits target data, including: when the ODDM data and the OFDM data use a common pilot and the ODDM data is ZP-ODDM data, copying and mapping the ZP-ODDM data in the DD domain for multiple times and then transforming it to the DT domain to obtain fourth data; configuring the common pilot in the ZP area of the fourth data to obtain fifth data; and transmitting the fifth data and the OFDM data.
  • the first processing module 710 configures the common pilot in the ZP area of the fourth data to obtain the fifth data, including: configuring the common pilot in the ZP area of the fifth data according to the second pilot configuration information domain; wherein, the second pilot configuration information is configured with at least one of the fourth information, the fifth information, and the sixth information, the fourth information is the number of resources occupied by the time domain pilot on each of the time domain taps, the fifth information is the index value of the time domain tap that needs to be configured with the time domain pilot, and the sixth information is the density of the time domain pilot.
  • the common pilot is determined based on a common pilot identification ID; wherein the common pilot ID is related to an initial value of a shift register, an offset value when intercepting a pilot sequence from an output sequence of the shift register, and a cyclic shift value when generating a Gold sequence; or, the common pilot ID is related to a root coefficient of a ZC sequence.
  • the process of acquiring the common pilot ID includes: selecting the common pilot ID from a pre-configured pilot ID pool according to the received first indication information.
  • the device 700 also includes a first transmission module, used to receive second indication information, where the second indication information is used to configure at least one of the following: the first pilot configuration information; the second pilot configuration information; the pilot ID pool.
  • the first processing module 710 is further used to determine the working mode of the ODDM user and the OFDM user, and to perform the step of transmitting the target data when the working mode is to perform data transmission between the ODDM user and the OFDM user based on a mixed frame structure.
  • FIG. 8 it is a structural diagram of a communication device 800 provided for an exemplary embodiment of the present application, wherein the communication device 800 includes a second transmission module 810, which is used to receive target data transmitted by a first device; wherein the target data includes orthogonal delay Doppler domain modulation ODDM data, orthogonal frequency division multiplexing OFDM data and a pilot signal determined in a predetermined manner, and the predetermined manner includes the ODDM data and the OFDM data using independent pilots respectively, or the ODDM data and the OFDM data using a common pilot.
  • the target data includes orthogonal delay Doppler domain modulation ODDM data, orthogonal frequency division multiplexing OFDM data and a pilot signal determined in a predetermined manner, and the predetermined manner includes the ODDM data and the OFDM data using independent pilots respectively, or the ODDM data and the OFDM data using a common pilot.
  • the device 800 further includes: a demodulation module, configured to demodulate the target data.
  • a demodulation module configured to demodulate the target data.
  • the ODDM data and OFDM data use independent pilots respectively, including: the ODDM data uses a delayed Doppler domain DD domain pilot, and the OFDM data uses a frequency domain pilot; the ODDM data uses a time domain pilot, and the OFDM data uses a frequency domain pilot.
  • the common pilot is configured in the time-frequency domain.
  • the device 800 also includes: a second processing module, used to perform channel estimation on the ODDM data by extracting the pilot corresponding to the ODDM data based on the DD domain when the ODDM data uses a delayed Doppler domain DD domain pilot and the OFDM data uses a frequency domain pilot.
  • a second processing module used to perform channel estimation on the ODDM data by extracting the pilot corresponding to the ODDM data based on the DD domain when the ODDM data uses a delayed Doppler domain DD domain pilot and the OFDM data uses a frequency domain pilot.
  • the device 800 also includes: a third processing module, which is used to extract the time domain pilot in the ZP area of the target data based on the time domain to perform channel estimation to obtain first channel information when the ODDM data uses a time domain pilot, the OFDM data uses a frequency domain pilot, and the ODDM data is ZP-ODDM data, or when the ODDM data and the OFDM data use a common pilot; determine pilot interference information based on a known designated pilot and the first channel information; and remove the pilot interference information from the target data.
  • a third processing module which is used to extract the time domain pilot in the ZP area of the target data based on the time domain to perform channel estimation to obtain first channel information when the ODDM data uses a time domain pilot, the OFDM data uses a frequency domain pilot, and the ODDM data is ZP-ODDM data, or when the ODDM data and the OFDM data use a common pilot; determine pilot interference information based on a known designated pilot and the first channel information; and remove the pilot interference information from the target data
  • the second transmission module 810 is further used for at least one of the following: sending first indication information, where the first indication information is used to indicate information of the pilot ID; sending second indication information, where the second indication information is used to configure the following At least one item: first pilot configuration information, the first pilot configuration information is used to indicate the configuration method of the time domain pilot corresponding to the ODDM data; second pilot configuration information, the second pilot configuration information is used to indicate the configuration method of the common pilot; the pilot ID pool, the pilot ID pool is configured with at least one pilot ID, and the pilot ID is used to generate a common pilot.
  • the communication devices 700-800 in the embodiments of the present application may be electronic devices, such as electronic devices with an operating system, or components in electronic devices, such as integrated circuits or chips.
  • the electronic device may be a terminal or a network-side device, or may be other devices other than a terminal or a network-side device.
  • the terminal may include but is not limited to the types of the terminal 11 listed above, and the network-side device may include but is not limited to the types of the network-side device 12 listed above, which are not specifically limited in the embodiments of the present application.
  • the communication devices 700-800 provided in the embodiments of the present application can implement the various processes implemented in the method embodiments of Figures 2 to 6 and achieve the same technical effects. To avoid repetition, they will not be described here.
  • the embodiment of the present application further provides a communication device 900, including a processor 901 and a memory 902, wherein the memory 902 stores a program or instruction that can be run on the processor 901.
  • the communication device 900 is a terminal
  • the program or instruction is executed by the processor 901 to implement the various steps of the above method embodiments 200-600, and can achieve the same technical effect.
  • the communication device 900 is a network side device
  • the program or instruction is executed by the processor 901 to implement the various steps of the above method embodiments 200-600, and can achieve the same technical effect. To avoid repetition, it will not be repeated here.
  • the embodiment of the present application also provides a terminal, including a processor and a communication interface, the communication interface is coupled to the processor, and the processor is used to run a program or instruction to implement the steps of the method described in method embodiments 200-600.
  • This terminal embodiment corresponds to the above-mentioned terminal side method embodiment, and each implementation process and implementation method of the above-mentioned method embodiment can be applied to the terminal embodiment and can achieve the same technical effect.
  • Figure 10 is a schematic diagram of the hardware structure of a terminal implementing an embodiment of the present application.
  • the terminal 1000 includes but is not limited to: a radio frequency unit 1001, a network module 1002, an audio output unit 1003, an input unit 1004, a sensor 1005, a display unit 1006, a user input unit 1007, an interface unit 1008, a memory 1009, and at least some of the components of a processor 1010.
  • the terminal 1000 may also include a power source (such as a battery) for supplying power to each component, and the power source may be logically connected to the processor 1010 through a power management system, so as to implement functions such as managing charging, discharging, and power consumption management through the power management system.
  • a power source such as a battery
  • the terminal structure shown in FIG10 does not constitute a limitation on the terminal, and the terminal may include more or fewer components than shown in the figure, or combine certain components, or arrange components differently, which will not be described in detail here.
  • the input unit 1004 may include a graphics processing unit (GPU) 1041 and a microphone 10042, and the graphics processor 10041 processes the image data of the static picture or video obtained by the image capture device (such as a camera) in the video capture mode or the image capture mode.
  • the display unit 1006 may include a display panel 10061, which may be configured in the form of a liquid crystal display, an organic light emitting diode, etc.
  • the user input unit 1007 includes a touch panel 10071 and other input devices 10072 At least one of the above.
  • the touch panel 10071 is also called a touch screen.
  • the touch panel 10071 may include two parts: a touch detection device and a touch controller.
  • Other input devices 10072 may include, but are not limited to, a physical keyboard, function keys (such as a volume control key, a switch key, etc.), a trackball, a mouse, and a joystick, which will not be described in detail here.
  • the RF unit 1001 can transmit the data to the processor 1010 for processing; in addition, the RF unit 1001 can send uplink data to the network side device.
  • the RF unit 1001 includes but is not limited to an antenna, an amplifier, a transceiver, a coupler, a low noise amplifier, a duplexer, etc.
  • the memory 1009 can be used to store software programs or instructions and various data.
  • the memory 1009 may mainly include a first storage area for storing programs or instructions and a second storage area for storing data, wherein the first storage area may store an operating system, an application program or instruction required for at least one function (such as a sound playback function, an image playback function, etc.), etc.
  • the memory 1009 may include a volatile memory or a non-volatile memory, or the memory 1009 may include both volatile and non-volatile memories.
  • the non-volatile memory may be a read-only memory (ROM), a programmable read-only memory (PROM), an erasable programmable read-only memory (EPROM), an electrically erasable programmable read-only memory (EEPROM), or a flash memory.
  • the volatile memory may be a random access memory (RAM), a static random access memory (SRAM), a dynamic random access memory (DRAM), a synchronous dynamic random access memory (SDRAM), a double data rate synchronous dynamic random access memory (DDRSDRAM), an enhanced synchronous dynamic random access memory (ESDRAM), a synchronous link dynamic random access memory (SLDRAM) and a direct memory bus random access memory (DRRAM).
  • the memory 1009 in the embodiment of the present application includes but is not limited to these and any other suitable types of memory.
  • the processor 1010 may include one or more processing units; optionally, the processor 1010 integrates an application processor and a modem processor, wherein the application processor mainly processes operations related to an operating system, a user interface, and application programs, and the modem processor mainly processes wireless communication signals, such as a baseband processor. It is understandable that the modem processor may not be integrated into the processor 1010.
  • the processor 1010 when the terminal acts as a transmitter of target data, the processor 1010 is used to transmit the target data; wherein the target data includes orthogonal delay Doppler domain modulation ODDM data, orthogonal frequency division multiplexing OFDM data and a pilot signal determined in a predetermined manner, and the predetermined manner includes the ODDM data and the OFDM data using independent pilots respectively, or the ODDM data and the OFDM data using a common pilot.
  • the ODDM data and the OFDM data use independent pilots respectively, including: the ODDM data uses a delayed Doppler domain DD domain pilot, and the OFDM data uses a frequency domain pilot; the ODDM data uses a time domain pilot, and the OFDM data uses a frequency domain pilot.
  • the common pilot is configured in the time domain.
  • the processor 1010 transmits the target data, including: when the ODDM data uses a DD domain pilot and the OFDM data uses a frequency domain pilot,
  • the DD domain pilot is replicated and mapped multiple times in the DD domain and then transformed in the frequency domain to obtain first data; and the first data, the OFDM data, and the frequency domain pilot corresponding to the OFDM data are transmitted.
  • the processor 1010 transmits target data, including: when the ODDM data uses a time domain pilot, the OFDM data uses a frequency domain pilot, and the ODDM data is zero-filled ZP-ODDM data, copying and mapping the ZP-ODDM data in the DD domain for multiple times and then transforming it to the delayed time DT domain to obtain second data; configuring the time domain pilot corresponding to the ZP-ODDM data in the ZP area of the second data to obtain third data; and transmitting the third data, the OFDM data, and the frequency domain pilot corresponding to the OFDM data.
  • the processor 1010 configures the time domain pilot corresponding to the ODDM data in the ZP area of the second data to obtain third data, including: configuring the time domain pilot corresponding to the ODDM data in the ZP area of the second data according to the first pilot configuration information; wherein the first pilot configuration information is configured with at least one item of the first information, the second information, and the third information, the first information is the number of resources occupied by the time domain pilot on each of the time domain taps, the second information is the index value of the time domain tap for which the time domain pilot needs to be configured, and the third information is the density of the time domain pilot.
  • the processor 1010 transmits target data, including: when the ODDM data and the OFDM data use a common pilot and the ODDM data is ZP-ODDM data, copying and mapping the ZP-ODDM data in the DD domain for multiple times and then transforming it to the DT domain to obtain fourth data; configuring the common pilot in the ZP area of the fourth data to obtain fifth data; and transmitting the fifth data and the OFDM data.
  • the processor 1010 configures the common pilot in the ZP area of the fourth data to obtain fifth data, including: configuring the common pilot in the ZP area of the fifth data according to the second pilot configuration information; wherein the second pilot configuration information is configured with at least one of the fourth information, the fifth information, and the sixth information, the fourth information is the number of resources occupied by the time domain pilot on each of the time domain taps, the fifth information is the index value of the time domain tap on which the time domain pilot configuration is required, and the sixth information is the density of the time domain pilot.
  • the common pilot is determined based on a common pilot identification ID; wherein the common pilot ID is related to an initial value of a shift register, an offset value when intercepting a pilot sequence from an output sequence of the shift register, and a cyclic shift value when generating a Gold sequence; or, the common pilot ID is related to a root coefficient of a ZC sequence.
  • the process of acquiring the common pilot ID includes: selecting the common pilot ID from a pre-configured pilot ID pool according to the received first indication information.
  • the radio frequency unit 1001 is used to receive second indication information, and the second indication information is used to configure at least one of the following: the first pilot configuration information; the second pilot configuration information; the pilot ID pool.
  • the processor 1010 is further used to determine a working mode of the ODDM user and the OFDM user, and to perform the step of transmitting the target data when the working mode is to perform data transmission of the ODDM user and the OFDM user based on a mixed frame structure.
  • the radio frequency unit 1001 is used to receive the target data transmitted by the first device; wherein the target data includes orthogonal delay Doppler domain modulation ODDM data, orthogonal frequency division multiplexing OFDM data and a pilot signal determined in a predetermined manner, and the predetermined manner includes the The ODDM data and the OFDM data use independent pilots respectively, or the ODDM data and the OFDM data use a common pilot.
  • the ODDM data and OFDM data use independent pilots respectively, including: the ODDM data uses a delayed Doppler domain DD domain pilot, and the OFDM data uses a frequency domain pilot; the ODDM data uses a time domain pilot, and the OFDM data uses a frequency domain pilot.
  • the common pilot is configured in the time-frequency domain.
  • the device also includes: a processor 1010, which is used to perform channel estimation on the ODDM data by extracting the pilot corresponding to the ODDM data based on the DD domain when the ODDM data uses a delayed Doppler domain DD domain pilot and the OFDM data uses a frequency domain pilot.
  • a processor 1010 which is used to perform channel estimation on the ODDM data by extracting the pilot corresponding to the ODDM data based on the DD domain when the ODDM data uses a delayed Doppler domain DD domain pilot and the OFDM data uses a frequency domain pilot.
  • the device also includes: a processor 1010, which is used to extract the time domain pilot in the ZP area of the target data based on the time domain to perform channel estimation to obtain first channel information when the ODDM data uses a time domain pilot, the OFDM data uses a frequency domain pilot, and the ODDM data is ZP-ODDM data, or when the ODDM data and the OFDM data use a common pilot; determine pilot interference information based on a known designated pilot and the first channel information; and remove the pilot interference information from the target data.
  • a processor 1010 which is used to extract the time domain pilot in the ZP area of the target data based on the time domain to perform channel estimation to obtain first channel information when the ODDM data uses a time domain pilot, the OFDM data uses a frequency domain pilot, and the ODDM data is ZP-ODDM data, or when the ODDM data and the OFDM data use a common pilot; determine pilot interference information based on a known designated pilot and the first channel information; and remove the pilot interference information from the target data.
  • the radio frequency unit 1001 is also used for at least one of the following: sending first indication information, the first indication information is used to indicate information of a pilot ID; sending second indication information, the second indication information is used to configure at least one of the following: first pilot configuration information, the first pilot configuration information is used to indicate a configuration method of a time domain pilot corresponding to the ODDM data; second pilot configuration information, the second pilot configuration information is used to indicate a configuration method of a common pilot; the pilot ID pool, the pilot ID pool is configured with at least one pilot ID, and the pilot ID is used to generate a common pilot.
  • the embodiment of the present application also provides a network side device, including a processor and a communication interface, the communication interface is coupled to the processor, and the processor is used to run a program or instruction to implement the steps of the method described in embodiments 200-600.
  • the network side device embodiment corresponds to the above network side device method embodiment, and each implementation process and implementation method of the above method embodiment can be applied to the network side device embodiment, and can achieve the same technical effect.
  • the embodiment of the present application also provides a network side device.
  • the network side device 1100 includes: an antenna 1101, a radio frequency device 1102, a baseband device 1103, a processor 1104 and a memory 1105.
  • the antenna 1101 is connected to the radio frequency device 1102.
  • the radio frequency device 1102 receives information through the antenna 1101 and sends the received information to the baseband device 1103 for processing.
  • the baseband device 1103 processes the information to be sent and sends it to the radio frequency device 1102.
  • the radio frequency device 1102 processes the received information and sends it out through the antenna 1101.
  • the method executed by the network side device in the above embodiment can be implemented in the baseband device 1103. Package baseband processor.
  • the baseband device 1103 may include, for example, at least one baseband board, on which multiple chips are arranged, as shown in Figure 11, one of which is, for example, a baseband processor, which is connected to the memory 1105 through a bus interface to call the program in the memory 1105 and execute the network device operations shown in the above method embodiment.
  • the network side device may also include a network interface 1106, which is, for example, a common public radio interface (CPRI).
  • a network interface 1106, which is, for example, a common public radio interface (CPRI).
  • CPRI common public radio interface
  • the network side device 1100 of the embodiment of the present application also includes: instructions or programs stored in the memory 1105 and executable on the processor 1104.
  • the processor 1104 calls the instructions or programs in the memory 1105 to execute the method executed by each module shown in Figure 7 or Figure 8, and achieves the same technical effect. To avoid repetition, it will not be repeated here.
  • An embodiment of the present application also provides a readable storage medium, on which a program or instruction is stored.
  • a program or instruction is stored.
  • the various processes of the above-mentioned method embodiments 200-600 are implemented and the same technical effect can be achieved. To avoid repetition, it will not be repeated here.
  • the processor is the processor in the terminal described in the above embodiment.
  • the readable storage medium includes a computer readable storage medium, such as a computer read-only memory ROM, a random access memory RAM, a magnetic disk or an optical disk.
  • An embodiment of the present application further provides a chip, which includes a processor and a communication interface, wherein the communication interface is coupled to the processor, and the processor is used to run network-side device programs or instructions to implement the various processes of the above-mentioned method embodiments 200-600, and can achieve the same technical effect. To avoid repetition, it will not be repeated here.
  • the chip mentioned in the embodiments of the present application can also be called a system-level chip, a system chip, a chip system or a system-on-chip chip, etc.
  • An embodiment of the present application also provides a computer program product, which includes a processor, a memory, and a program or instruction stored in the memory and executable on the processor.
  • a computer program product which includes a processor, a memory, and a program or instruction stored in the memory and executable on the processor.
  • An embodiment of the present application also provides a wireless communication system, including: a first device and a second device, wherein the first device can be used to execute each process of the above-mentioned method embodiments 200-400, and the second device can be used to execute each process of the above-mentioned method embodiment 600, and can achieve the same technical effect. To avoid repetition, it will not be repeated here.
  • the technical solution of the present application can be embodied in the form of a computer software product, which is stored in a storage medium (such as ROM/RAM, a magnetic disk, or an optical disk), and includes a number of instructions for enabling a terminal (which can be a mobile phone, a computer, a server, an air conditioner, or a network device, etc.) to execute the methods described in each embodiment of the present application.
  • a storage medium such as ROM/RAM, a magnetic disk, or an optical disk
  • a terminal which can be a mobile phone, a computer, a server, an air conditioner, or a network device, etc.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Power Engineering (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请公开了一种通信方法、装置及通信设备,属于通信技术领域,本申请实施例的通信方法包括:第一设备传输目标数据;其中,所述目标数据中包括正交延迟多普勒域调制ODDM数据、正交频分复用OFDM数据以及按照预定方式确定的导频信号,所述预定方式包括所述ODDM数据与所述OFDM数据分别使用独立导频,或者,所述ODDM数据与所述OFDM数据使用公共导频。

Description

通信方法、装置及通信设备
交叉引用
本申请要求在2022年12月06日提交中国专利局、申请号为202211558416.6、发明名称为“通信方法、装置及通信设备”的中国专利申请的优先权,该申请的全部内容通过引用结合在本申请中。
技术领域
本申请属于通信技术领域,具体涉及一种通信方法、装置及通信设备。
背景技术
随着通信技术的不断发展,相关技术中提供了应对不同场景的调制技术,如正交频分复用(Orthogonal frequency division multiplexing,OFDM)调制技术、正交延迟多普勒域调制(Orthogonal Delay-Doppler Domain Modulation,ODDM)调制技术等。其中,以多用户并发场景为例,相关技术中可通过采用混合组帧调制方式(即混合帧结构)等进行ODDM数据和OFDM数据的混合传输,由此,不但可以满足OFDM的低时延需求,还可以在不浪费额外时频域资源的情况下增加ODDM用户的延迟和多普勒分辨率,满足ODDM用户的高移动性需求。
但是,对于ODDM数据和OFDM数据的混合传输,相关技术中还缺乏一种有效的导频配置方案,以用于信道估计等。
发明内容
本申请实施例提供一种通信方法、装置及通信设备,能够提供有效的导频配置方案,以用于信道估计等。
第一方面,提供了一种通信方法,包括:第一设备传输目标数据;其中,所述目标数据中包括正交延迟多普勒域调制ODDM数据、正交频分复用OFDM数据以及按照预定方式确定的导频信号,所述预定方式包括所述ODDM数据与所述OFDM数据分别使用独立导频,或者,所述ODDM数据与所述OFDM数据使用公共导频。
第二方面,提供了一种通信方法,包括:第二设备接收第一设备传输的目标数据;其中,所述目标数据中包括正交延迟多普勒域调制ODDM数据、正交频分复用OFDM数据以及按照预定方式确定的导频信号,所述预定方式包括所述ODDM数据与所述OFDM数据分别使用独立导频,或者,所述ODDM数据与所述OFDM数据使用公共导频。
第三方面,提供了一种通信装置,包括:第一处理模块,用于传输目标数据;其中,所述目标数据中包括正交延迟多普勒域调制ODDM数据、正交频分复用OFDM数据以及 按照预定方式确定的导频信号,所述预定方式包括所述ODDM数据与所述OFDM数据分别使用独立导频,或者,所述ODDM数据与所述OFDM数据使用公共导频。
第四方面,提供了一种通信装置,包括:传输模块,用于接收第一设备传输的目标数据;其中,所述目标数据中包括正交延迟多普勒域调制ODDM数据、正交频分复用OFDM数据以及按照预定方式确定的导频信号,所述预定方式包括所述ODDM数据与所述OFDM数据分别使用独立导频,或者,所述ODDM数据与所述OFDM数据使用公共导频。
第五方面,提供了一种通信设备,该通信设备包括处理器和存储器,所述存储器存储可在所述处理器上运行的程序或指令,所述程序或指令被所述处理器执行时实现如第一方面或第二方面所述的方法的步骤。
第六方面,提供了一种通信设备,包括处理器及通信接口,其中,所述通信接口和所述处理器耦合,所述处理器用于运行程序或指令,实现如第一方面所述的方法的步骤,或实现如第二方面所述的方法的步骤。
第七方面,提供了一种无线通信系统,包括:第一设备及第二设备,所述第一设备可用于执行如第一方面所述的方法的步骤,所述第二设备可用于执行如第二.方面所述的方法的步骤。
第八方面,提供了一种可读存储介质,所述可读存储介质上存储程序或指令,所述程序或指令被处理器执行时实现如第一方面所述的方法的步骤,或者实现如第二方面所述的方法的步骤。
第九方面,提供了一种芯片,所述芯片包括处理器和通信接口,所述通信接口和所述处理器耦合,所述处理器用于运行程序或指令,实现如第一方面所述的方法的步骤,或实现如第二方面所述的方法的步骤。
第十方面,提供了一种计算机程序产品/程序产品,所述计算机程序/程序产品被存储在存储介质中,所述计算机程序/程序产品被至少一个处理器执行以实现如第一方面或第二方面所述的方法的步骤。
在本申请实施例中,所述第一设备在传输ODDM数据和OFDM数据时,按照预定方式确定ODDM数据和OFDM数据所使用的导频信号,其中,所述预定方式包括所述ODDM数据与所述OFDM数据分别使用独立导频,或者,所述ODDM数据与所述OFDM数据使用公共导频。由此,一方面,能够提供一种有效的导频配置方式,以用于数据传输过程中的信道估计等;另一方面,通过所述ODDM数据与所述OFDM数据分别使用独立导频,还能够复用相关技术中的导频配置方式,使得导频配置方式的实现更加简单,或者,通过所述ODDM数据与所述OFDM数据使用公共导频,能够节省导频资源。
附图说明
图1是本申请一示例性实施例提供的无线通信系统的结构示意图。
图2是本申请一示例性实施例提供的通信方法的流程示意图之一。
图3是本申请一示例性实施例提供的混合帧结构示意图。
图4是本申请一示例性实施例提供的通信方法的流程示意图之二。
图5a是本申请一示例性实施例提供的导频结构示意图之一。
图5b是本申请一示例性实施例提供的导频结构示意图之二。
图5c是本申请一示例性实施例提供的导频结构示意图之三。
图5d是本申请一示例性实施例提供的导频结构示意图之四。
图5e是本申请一示例性实施例提供的导频结构示意图之五。
图5f是本申请一示例性实施例提供的导频结构示意图之六。
图5g是本申请一示例性实施例提供的导频结构示意图之七。
图5h是本申请一示例性实施例提供的导频结构示意图之八。
图5i是本申请一示例性实施例提供的导频结构示意图之九。
图6是本申请一示例性实施例提供的通信方法的流程示意图之三。
图7是本申请一示例性实施例提供的通信装置的结构示意图之一。
图8是本申请一示例性实施例提供的通信装置的结构示意图之二。
图9是本申请一示例性实施例提供的通信设备的结构示意图。
图10是本申请一示例性实施例提供的终端的结构示意图。
图11是本申请一示例性实施例提供的网络侧设备的结构示意图。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚地描述,显然,所描述的实施例是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员所获得的所有其他实施例,都属于本申请保护的范围。
本申请的说明书和权利要求书中的术语“第一”、“第二”等是用于区别类似的对象,而不用于描述特定的顺序或先后次序。应该理解这样使用的术语在适当情况下可以互换,以便本申请的实施例能够以除了在这里图示或描述的那些以外的顺序实施,且“第一”、“第二”所区别的对象通常为一类,并不限定对象的个数,例如第一对象可以是一个,也可以是多个。此外,说明书以及权利要求中“和/或”表示所连接对象的至少其中之一,字符“/”一般表示前后关联对象是一种“或”的关系。
值得指出的是,本申请实施例所描述的技术不限于长期演进型(Long Term Evolution,LTE)/LTE的演进(LTE-Advanced,LTE-A)系统,还可用于其他无线通信系统,诸如码分多址(Code Division Multiple Access,CDMA)、时分多址(Time Division Multiple Access,TDMA)、频分多址(Frequency Division Multiple Access,FDMA)、正交频分多址(Orthogonal Frequency Division Multiple Access,OFDMA)、单载波频分多址(Single-carrier Frequency-Division Multiple Access,SC-FDMA)和其他系统。本申请实施例中的术语“系统”和“网络”常被可互换地使用,所描述的技术既可用于以上提及的系统和无线电技术, 也可用于其他系统和无线电技术。以下描述出于示例目的描述了新空口(New Radio,NR)系统,并且在以下大部分描述中使用NR术语,但是这些技术也可应用于NR系统应用以外的应用,如第6代(6th Generation,6G)通信系统。
图1示出本申请实施例可应用的一种无线通信系统的框图。无线通信系统包括终端11和网络侧设备12。其中,终端11可以是手机、平板电脑(Tablet Personal Computer)、膝上型电脑(Laptop Computer)或称为笔记本电脑、个人数字助理(Personal Digital Assistant,PDA)、掌上电脑、上网本、超级移动个人计算机(ultra-mobile personal computer,UMPC)、移动上网装置(Mobile Internet Device,MID)、增强现实(augmented reality,AR)/虚拟现实(virtual reality,VR)设备、机器人、可穿戴式设备(Wearable Device)、车载设备(VUE)、行人终端(PUE)、智能家居(具有无线通信功能的家居设备,如冰箱、电视、洗衣机或者家具等)、游戏机、个人计算机(personal computer,PC)、柜员机或者自助机等终端侧设备,可穿戴式设备包括:智能手表、智能手环、智能耳机、智能眼镜、智能首饰(智能手镯、智能手链、智能戒指、智能项链、智能脚镯、智能脚链等)、智能腕带、智能服装等。需要说明的是,在本申请实施例并不限定终端11的具体类型。网络侧设备12可以包括接入网设备或核心网设备,其中,接入网设备也可以称为无线接入网设备、无线接入网(Radio Access Network,RAN)、无线接入网功能或无线接入网单元。接入网设备12可以包括基站、WLAN接入点或WiFi节点等,基站可被称为节点B、演进节点B(eNB)、接入点、基收发机站(Base Transceiver Station,BTS)、无线电基站、无线电收发机、基本服务集(Basic Service Set,BSS)、扩展服务集(Extended Service Set,ESS)、家用B节点、家用演进型B节点、发送接收点(Transmission Reception Point,TRP)或所述领域中其他某个合适的术语,只要达到相同的技术效果,所述基站不限于特定技术词汇,需要说明的是,在本申请实施例中仅以NR系统中的基站为例进行介绍,并不限定基站的具体类型。下面结合附图,通过一些实施例及其应用场景对本申请实施例提供的技术方案进行详细地说明。
如图2所示,为本申请一示例性实施例提供的通信方法200的流程示意图,该方法可以但不限于由第一设备(如终端或网络侧设备)执行,具体可由安装于第一设备中的硬件和/或软件执行。本实施例中,所述方法至少可以包括如下步骤。
S210,第一设备传输目标数据。
其中,所述第一设备在进行目标数据传输时,可以但不限于基于混合帧结构实现所述目标数据的传输。为便于理解,如图3所示,本实施例以NR系统、以及混合帧结构为例,对所述ODDM数据与所述OFDM数据的传输过程进行简要说明。其中,假设所述NR系统的每个帧结构不变,即每个时隙(slot)有14个OFDM符号(或称作OFDM调制符号),其中某1~2个符号上映射的是ODDM符号(或称作ODDM调制符号)在时频(Time Frequency,TF)域的变换符号(简称变换符号,如正交时频空(Orthogonal Time Frequency Space,OTFS)),而除变换符号之外的其他符号上映射的是OFDM调制符号,由此, 实现基于混合帧结构传输所述ODDM数据和OFDM数据的目的。其中,图3中提供了两种映射类型,即映射类型1(Type 1Mapping)和映射类型2(Type 2Mapping),且映射类型1、映射类型2的不同点在于:ODDM数据和OFDM数据所占据的资源比例不同。其中,所述ODDM数据和OFDM数据分别为不同的用户的数据,如所述ODDM数据为ODDM用户的数据,所述OFDM数据为至少一个OFDM用户的数据。
基于此,在本实施例中,所述目标数据中除了包括ODDM数据和OFDM数据之外,还包括按照预定方式确定的导频信号。所述预定方式可以包括所述ODDM数据与所述OFDM数据分别使用独立导频。其中,此外,“所述ODDM数据与所述OFDM数据分别使用独立理解为:所述ODDM数据所使用的导频与所述OFDM数据所使用的导频相互独立,但二者可以相同或不同。当然,本实施例中,在所述ODDM数据与所述OFDM数据分别使用独立导频时,可以复用相关技术中的导频配置方式,进而使得导频配置方式的实现更加简单。
或者,所述预定方式也可以包括所述ODDM数据与所述OFDM数据使用公共导频,换言之,所述ODDM数据与所述OFDM数据共用导频。其中,本实施例中在进行导频配置上时,通过使用公共导频能够节省导频资源。
需要注意的是,前述的导频信号是作为参考信号使用,如进行信道估计、帧同步等。
本实施例中,所述第一设备在传输ODDM数据和OFDM数据时,按照预定方式确定ODDM数据和OFDM数据所使用的导频信号,其中,所述预定方式包括所述ODDM数据与所述OFDM数据分别使用独立导频,或者,所述ODDM数据与所述OFDM数据使用公共导频。由此,一方面,能够提供一种有效的导频配置方式,以用于数据传输过程中的信道估计等;另一方面,通过所述ODDM数据与所述OFDM数据分别使用独立导频,还能够复用相关技术中的导频配置方式,使得导频配置方式的实现更加简单,或者,通过所述ODDM数据与所述OFDM数据使用公共导频,能够节省导频资源。
如图4所示,为本申请一示例性实施例提供的通信方法400的流程示意图,该方法可以但不限于由第一设备(如终端或网络侧设备)执行,具体可由安装于第一设备中的硬件和/或软件执行。本实施例中,所述方法至少可以包括如下步骤。
S410,第一设备传输目标数据。
其中,所述目标数据中包括ODDM数据和OFDM数据以及按照预定方式确定的导频信号,所述预定方式包括所述ODDM数据与所述OFDM数据分别使用独立导频,或者,所述ODDM数据与所述OFDM数据使用公共导频。
可以理解,S410的实现过程除了可参照方法实施例200中的相关描述之外,作为一种可能的实现方式,所述ODDM数据与所述OFDM数据分别使用独立导频,可以包括:所述ODDM数据使用延迟多普勒域(Delay Doppler,DD)域导频,所述OFDM数据使用频域(Frequency)导频(也可称作TF域导频);所述ODDM数据使用时域(Time) 导频,所述OFDM数据使用频域导频。
以及,在所述ODDM数据与所述OFDM数据使用公共导频的情况下,所述公共导频被配置在时域。
在此情况下,基于所述导频信号的不同,下面以混合帧结构为例,并结合示例1-示例3对所述第一设备传输目标数据的过程进行说明,内容如下。
示例1
在所述ODDM数据使用DD域导频,所述OFDM数据使用频域导频的情况下,所述第一设备传输目标数据的过程可以包括如下(11)-(12),内容如下。
(11)将所述ODDM数据以及所述ODDM数据对应的DD域导频在DD域复制映射多次后进行频域变换,得到第一数据。
例如,请结合参阅图5a和图5b,所述ODDM数据和其所对应的DD域导频在DD域进行复制映射后,DD域导频由单份变成了多份,如图5a中的4份,对于其中的一份导频来说,“a1”所指示的部分为导频脉冲/序列,“a2”所指示的部分为导频的保护间隔。
图5a和图5b中所示的ODDM数据和DD域导频变换到TF域后,得到第一数据,可以与OFDM数据以及所述ODDM数据对应的DD域导频组成混合帧结构。其中可以理解,当所述ODDM数据在DD域的延迟/多普勒维度进行K(K大于或等于2)次(倍)的复制(Duplication)映射时,其变换到频域(也可称作TF域)的频率/时间维度会体现为对应维度的数据间进行K-1个零点符号(Zero sample)的插入,以便于OFDM数据及其对应的频域导频的插入。如图5c所示,所述ODDM数据在DD域的延迟/多普勒维度进行4倍的复制(Duplication)映射,那么,其变换到TF域的频率/时间维度会体现为对应维度的数据间进行3个零点符号的插入。
(12)传输所述第一数据、所述OFDM数据以及所述OFDM数据对应的频域导频。
其中,如图5d所示,在图5a或图5b中的ODDM数据和其对应的DD域导频变换到TF域后,得到第一数据时,那么OFDM数据以及所述OFDM数据对应的频域导频可按照相关协议规则,以梳状形式插入第一数据中,其中图5d中的“b1”所指示的部分为OFDM数据所使用的频域导频,“b2”所指示的部分为OFDM数据。
相应的,在所述第二设备接收到所述第一设备发送的目标数据的情况下,对于所述目标数据的中ODDM数据可在DD域进行信道估计,而OFDM数据在频域进行信道估计。此外,对于ODDM数据的信道估计,其可以在图5a、图5b的任一复制区域内进行,也可以综合考虑多个复制区域,即进行合并式信道估计,以进一步提高信道估计的准确性。
此外,示例1中提及的ODDM系统的导频配置方案可以由下行控制信息(Downlink Control Information,DCI)和/或无线资源控制(Radio Resource Control,RRC)信令指示。
示例2
在所述ODDM数据使用时域导频、所述OFDM数据使用频域导频的情况下,所述第一设备传输目标数据的过程可以包括如下(21)-(23),内容如下。
(21)在所述ODDM数据为零填充(zero padding,ZP)-ODDM数据的情况下,将所述ZP-ODDM数据在DD域复制映射多次后变换至延迟时间(Delay Time,DT)域,得到第二数据。
其中,与示例1类似,通过将所述ZP-ODDM数据在DD域复制映射多次(如K次)后变换至DT域,能够对应维度的数据间存在K-1个零点符号的插入(即第二数据中的数据间存在K-1个零点符号的插入),以在基于混合帧结构等传输所述第二数据、所述OFDM数据及其对应的频域导频时,用于所述OFDM数据及其对应的频域导频的插入,如图5e所示。
(22)将与所述ZP-ODDM数据对应的时域导频配置在所述第二数据的ZP区域,得到第三数据(如图5e中的ODDM用户对应的ODDM数据)。
其中,所述ZP-ODDM数据是一种ODDM的特殊符号映射方式,即在延时维度的末尾的若干个符号不放置有效信号,以使得DD域等效信道形成带状矩阵,进而使得接收端(或称为接收机,如第二设备)可以利用低复杂度的迭代(Iterative)-RAKE解调算法对ODDM数据进行解调。相关技术中,所述ZP-ODDM中的导频设计还是沿用ODDM的范式,即DD域的导频脉冲/序列+保护间隔的模式,但该设计方式存在导频开销大的问题,对此,在本示例2中,考虑到在ZP-ODDM数据中,DD域符号在延迟维度末尾的零点经过Doppler维度的IDFT变换到DT域后,仍然为零点,因此可以利用ZP-ODDM中末尾的ZP区域(也可称作零点区域)放置时域导频符号,以降低导频开销,例如,如图5e中“c1”所指示的资源。
(23)传输所述第三数据、所述OFDM数据以及所述OFDM数据对应的频域导频(如图5e中的OFDM用户所对应的数据)。
可以理解,本示例2中的OFDM数据的导频映射方式可以参考图5d所示。其中,图5e中“c2”所指示的部分代表此处时间抽头对应的OFDM数据(或称为OFDM符号)上映射有OFDM数据所使用的频域导频。
一种实现方式中,在实现前述(21)-(23)的过程中,考虑到在ZP区域中加入的导频对ODDM数据的干扰程度随导频所占的资源的增加而增加,即导频所占资源越少,对ODDM数据的干扰越小;与此同时,导频的信道估计准确程度亦随导频所占的资源的增加而增加。对此,本示例2中将从如何平衡(trade off)或优化信道估计精度和残留干扰大小这一角度出发,提供一种可选的导频配置模式(即第一导频配置信息),以供通信系统(如网络侧设备或终端)根据所在场景的信道条件的不同,对导频进行灵活的配置。
例如,对于前述(22)中所述的将与所述ZP-ODDM数据对应的时域导频配置在所述第二数据的ZP区域,得到第三数据这一过程,通过配置第一导频配置信息,可以使得所述第一设备按照第一导频配置信息将所述ZP-ODDM数据对应的时域导频配置在所述第二数据的ZP区域。其中,所述第一导频配置信息中可配置有第一信息、第二信息、第三信息中的至少一项,所述第一信息为所述时域导频在每个所述时域抽头上所占的资源的数 量,所述第二信息为需要进行所述时域导频的配置的时域抽头的索引值,所述第三信息为所述时域导频的密度。
下面根据第一导频配置信息中所包括的信息的不同,对其实现过程进行说明。
第一种实现方式
假定信道的最大时延扩展为L,则ZP-ODDM中的ZP区域大小为大于或等于L。为了尽可能保证信道估计的精确,即尽量避免信号对导频的干扰,需要使当前时间抽头(Time tap)(如图5e中每一个ODDM用户对应的ODDM数据列)中的导频和数据间隔尽量远。对此,可默认ZP-ODDM的时域导频存在于每个ODDM数据所占据的时域抽头上,且起始位置从所述时域抽头(列)的最后一个资源单位开始,如图5f所示。在此情况下,在指示第一设备进行导频配置时,只需要指示每个时域抽头上,导频所占的资源单位数量或个数np即可,其中,np小于或等于L。也就是说,可配置所述第一导频配置信息中仅包括第一信息,使得所述第一设备根据第一信息将与所述ZP-ODDM数据对应的时域导频配置在所述第二数据的ZP区域。
第二种实现方式
在前述第一种实现方式的基础上,假设信道环境较优,那么可以减少导频的密度。例如图5g所示,时域导频存在于部分ODDM用户所占据的时域抽头上,且起始位置从所述时域抽头(列)的最后一个资源单位开始,且导频密度为2。那么,可通过指示一组指示值<kp,np>,或<kp>(即第一导频配置信息),使得第一设备可基于该指示值进行导频配置,其中np为导频所占的资源单位数量或个数,kp是时域抽头(列)的索引值,即可配置所述第一导频配置信息包括第二信息,或配置所述第一导频配置信息包括第一信息以及第二信息。
需要注意的是,相对于图5f中所示的导频密度为2,图5f中的所示的导频密度为3,即减少了导频密度。
第三种实现方式
在前述第一种实现方式和/或第二种实现方式的基础上,当导频为非连续配置时,如图5h所示,时域导频存在于部分ODDM用户所占据的时域抽头上,且起始位置从所述时域抽头(列)的最后一个资源单位开始。那么,可以通过指示一组指示值<kp,np,dp>,或<dp>,,<kp,dp>,<np,dp>,其中,,np为导频所占的资源单位数量或个数,kp是时域抽头(列)的索引值,dp为导频密度,dp与np的乘积小于或等于L。即所述第一导频配置信息可以包括第三信息,或者,包括第二信息和第三信息,或者,包括第一信息、第二信息和第三信息。
对于前述示例2中提及的第一导频配置信息可以由协议约定、高层配置或网络侧配置实现。例如,在一种实现方式中,所述第一设备可以接收第二指示信息,所述第二指示信息用于配置所述第一导频配置信息。其中,所述第二指示信息可以DCI或RRC信令、系统信息块(System Information Block,SIB)等。例如,可以直接通过RRC或DCI指示第 一导频配置信息,也可以先通过RRC信令指示多组导频配置信息,再通过DCI指示导频配置信息的索引,以用于从多组导频配置信息中选取一组导频配置信息作为第一导频配置信息。
示例3
在所述ODDM数据与所述OFDM数据使用公共导频的情况下,所述第一设备传输目标数据的过程可以包括如下(31)-(33),内容如下。
(31)在所述ODDM数据为ZP-ODDM数据的情况下,将所述ZP-ODDM数据在DD域复制映射多次后变换至DT域,得到第四数据。
其中,与示例1、示例2类似,通过将所述ZP-ODDM数据在DD域复制映射多次(如K次)后变换至DT域,能够使得对应维度的数据间存在K-1个零点符号的插入(即第四数据的数据间存在K-1个零点符号的插入),以在基于混合帧结构等传输所述第四数据和所述OFDM数据时,用于所述OFDM数据的插入,如图5i所示。
(32)将所述公共导频配置在所述第四数据的ZP区域,得到第五数据。
其中,与示例2类似,通过将公共导频配置在所述第四数据的ZP区域,能够降低导频开销。
(33)传输所述第五数据和所述OFDM数据。
其中,本示例3与示例2类似。例如,示例3与示例2相同之处在于:本示例3中可以利用ZP-ODDM中末尾的零点放置时域导频符号,而不同之处在于,OFDM用户无需在频域额外放置导频信号。如图5i所示,OFDM用户对应的OFDM符号上没有放置任何导频。
一种实现方式中,所述第一设备将所述公共导频配置在所述第四数据的ZP区域,得到第五数据的过程可以包括:按照第二导频配置信息将所述公共导频配置在所述第五数据的ZP区域;其中,所述第二导频配置信息中配置有第四信息、第五信息、第六信息中的至少一项,所述第四信息为所述时域导频在每个所述时域抽头上所占的资源的数量,所述第五信息为需要进行所述时域导频配置的时域抽头的索引值,所述第六信息为所述时域导频的密度。
可选的,所述第二导频配置信息和所述第一导频配置信息相同或不同,且关于所述第二导频配置信息的相关描述可参照前述关于所述第一导频配置信息的相关描述,以及按照第二导频配置信息将所述公共导频配置在所述第五数据的ZP区域的相关描述可参照前述示例2中“将与所述ZP-ODDM数据对应的时域导频配置在所述第二数据的ZP区域”,并达到相同的技术效果,为避免重复,在此不再赘述。
进一步,对于本示例3中需要使用公共导频的场景,考虑到网络安全,所述公共导频可以使用公共导频标识(ID)生成,而非用UE的私有ID生成。
可选的,所述公共导频ID的获取过程包括:第一设备根据接收到的第一指示信息(如DCI或RRC等)从预配置的导频ID池中选取,其中,所述导频ID池可以为专用于所述 混合帧结构的数据传输。也就是说,所述公共导频的生成可以基于一个混合帧结构专有的公共导频ID池(如导频ID池),而导频序列的生成基于导频ID池中的导频ID生成。
例如,如果导频采用伪随机序列(Pseudo—Noise Code,PN)序列,则导频ID可能与移位寄存器的初始值,从移位寄存器输出序列中截取导频序列时的偏移值,以及生成Gold序列时的循环位移值有关。
又例如,如果导频采用ZC(Zadoff-Chu)序列,则导频ID可能与ZC序列的根系数有关。
基于此,在一种实现方式中,所述导频ID池可以是协议预配置、高层配置或网络侧配置等实现。例如,所述第一设备可以根据接收到的第二指示信息确定,即所述第二指示信息中指示有所述导频ID池。其中,所述第二指示信息可以是系统信息块(System Information Block,SIB)、RRC、DCI等。可选的,所述第二指示信息可以由第二设备发送等。
例如,可通过SIB或者RRC配置所述导频ID池,再通过RRC或DCI指示导频ID,以使得第一设备基于导频ID从导频ID池中选取导频ID,以进行公共导频的生成。
对于前述示例3中的实现方式,本实施例中也可以定义一个布尔量Fmod来表征ODDM用户和OFDM用户的工作模态。其中,当Fmod=0时,确定所述ODDM用户和OFDM用户的工作模态为单一帧结构,此时的导频生成和映射按照相关技术中的ODDM数据和OFDM数据的传输方式进行。当Fmod=1时,确定所述ODDM用户和OFDM用户的工作模态为混合帧结构,此时的ODDM数据和OFDM数据的传输方式为本申请中的给出的传输方式,如导频生成和映射需要按照混合帧结构的方式进行等,即当Fmod=1时,公共导频的生成基于一个混合帧结构专有的导频ID池生成。
也就是说,在一种实现方式中,所述第一设备可以先确定ODDM用户和OFDM用户的工作模态;以及在所述工作模态为基于混合帧结构进行所述ODDM用户和所述OFDM用户的数据传输的情况下,执行所述传输目标数据的步骤。
进一步,对于前述示例2和示例3中提供的实现方式中,考虑到在ZP-ODDM的ZP部分放置导频符号的方案,可能会破坏ZP-ODDM中数据部分的输入输出关系,导致Iterative-RAKE解调算法的误差平层(error floor)。为此,在本实施例中,在所述第二设备(即接收端)接收到所述第一设备传输的目标数据时,可通过如下(41)-(43)的实现减轻ZP-ODDM时域导频对数据的损害,即在Iterative-RAKE解调算法中引入干扰消除的步骤,内容如下。
(41)所述ODDM数据使用时域导频,所述OFDM数据使用频域导频、且所述ODDM数据为ZP-ODDM数据的情况下,或者,在所述ODDM数据与所述OFDM数据使用公共导频的情况下,基于时域,提取所述目标数据中ZP区域的时域导频进行信道估计得到第一信道信息。
(42)根据指定导频和所述第一信道信息确定导频干扰信息。
其中,所述指定导频是数据收发端(如第一设备、第二设备)均已知格式(如具体值、映射模式等)的导频信号。
(43)从所述目标数据中去除所述导频干扰信息,由此,
通过前述(41)-(43)的实现,可假装接收到的ZP-ODDM数据中不存在导频的干扰,从而继续利用现有的Iterative-RAKE解调算法对其进行解调,以提高数据解调性能。
本实施例中,提供了一种ODDM数据和OFDM数据混合传输时的导频配置方法,且针对独立导频和公共导频的不同场景,提供了几种可选配置方式,并结合ZP-ODDM系统提出了节省开销的时域导频设计方案,能够有效确保数据传输性能。
如图6所示,为本申请一示例性实施例提供的通信方法600的流程示意图,该方法600可以但不限于由第二设备(如终端或网络侧设备)执行,具体可由安装于第二设备中的硬件和/或软件执行。本实施例中,所述方法600至少可以包括如下步骤。
S610,第二设备接收第一设备传输的目标数据。
其中,所述目标数据中包括正交延迟多普勒域调制ODDM数据、正交频分复用OFDM数据以及按照预定方式确定的导频信号,所述预定方式包括所述ODDM数据与所述OFDM数据分别使用独立导频,或者,所述ODDM数据与所述OFDM数据使用公共导频。
可选的,所述ODDM数据与OFDM数据分别使用独立导频,包括:所述ODDM数据使用延迟多普勒域DD域导频,所述OFDM数据使用频域导频;所述ODDM数据使用时域导频,所述OFDM数据使用频域导频。
可选的,在所述ODDM数据与所述OFDM数据使用公共导频的情况下,所述公共导频被配置在时频域。
可选的,所述方法还包括:在所述ODDM数据使用延迟多普勒域DD域导频,所述OFDM数据使用频域导频的情况下,针对所述ODDM数据,基于DD域提取所述ODDM数据对应的导频进行信道估计。
可选的,所述方法还包括:所述ODDM数据使用时域导频,所述OFDM数据使用频域导频、且所述ODDM数据为ZP-ODDM数据的情况下,或者,在所述ODDM数据与所述OFDM数据使用公共导频的情况下,基于时域,提取所述目标数据中ZP区域的时域导频进行信道估计得到第一信道信息;根据已知的指定导频和所述第一信道信息确定导频干扰信息;从所述目标数据中去除所述导频干扰信息。
可选的,所述方法还包括以下至少一项:发送第一指示信息,所述第一指示信息用于指示导频ID的信息;发送第二指示信息,所述第二指示信息用于配置以下至少一项:第一导频配置信息,所述第一导频配置信息用于指示时所述ODDM数据对应的时域导频的配置方式;第二导频配置信息,所述第二导频配置信息用于指示公共导频的配置方式;所述导频ID池,所述导频ID池中配置有至少一个导频ID,所述导频ID用于生成公共导频。
可以理解,由于方法实施例600中的各实现方式与前述方法实施例200-400具有相同或相应的技术特征,因此,方法实施例600中的各实现方式的实现过程可参照前述方法实 施例200-400中的相关描述,并达到相同或相应的技术效果,为避免重复,在此不再赘述。
本申请实施例提供的通信方法200-600,执行主体可以为通信装置。本申请实施例中以通信装置执行通信方法为例,说明本申请实施例提供的通信装置。
如图7所示,为本申请一示例性实施例提供的通信装置700的结构示意图,该通信装置700包括第一处理模块710,用于传输目标数据;其中,所述目标数据中包括正交延迟多普勒域调制ODDM数据、正交频分复用OFDM数据以及按照预定方式确定的导频信号,所述预定方式包括所述ODDM数据与所述OFDM数据分别使用独立导频,或者,所述ODDM数据与所述OFDM数据使用公共导频。
可选的,所述装置700还包括确定模块,用于按照预定方式确定的导频信号。可选的,所述ODDM数据与所述OFDM数据分别使用独立导频,包括:所述ODDM数据使用延迟多普勒域DD域导频,所述OFDM数据使用频域导频;所述ODDM数据使用时域导频,所述OFDM数据使用频域导频。
可选的,在所述ODDM数据与所述OFDM数据使用公共导频的情况下,所述公共导频被配置在时域。
可选的,所述第一处理模块710传输目标数据,包括:在所述ODDM数据使用DD域导频、所述OFDM数据使用频域导频的情况下,将所述ODDM数据以及所述ODDM数据对应的DD域导频在DD域复制映射多次后进行频域变换,得到第一数据;传输所述第一数据、所述OFDM数据以及所述OFDM数据对应的频域导频。
可选的,所述第一处理模块710传输目标数据,包括:在所述ODDM数据使用时域导频、所述OFDM数据使用频域导频、且所述ODDM数据为零填充ZP-ODDM数据的情况下,将所述ZP-ODDM数据在DD域复制映射多次后变换至延迟时间DT域,得到第二数据;将与所述ZP-ODDM数据对应的时域导频配置在所述第二数据的ZP区域,得到第三数据;传输所述第三数据、所述OFDM数据以及所述OFDM数据对应的频域导频。
可选的,所述第一处理模块710将与所述ODDM数据对应的时域导频配置在所述第二数据的ZP区域,得到第三数据,包括:按照第一导频配置信息将所述ODDM数据对应的时域导频配置在所述第二数据的ZP区域;其中,所述第一导频配置信息中配置有第一信息、第二信息、第三信息中的至少一项,所述第一信息为所述时域导频在每个所述时域抽头上所占的资源的数量,所述第二信息为需要进行所述时域导频的配置的时域抽头的索引值,所述第三信息为所述时域导频的密度。
可选的,所述第一处理模块710传输目标数据,包括:所述ODDM数据与所述OFDM数据使用公共导频、且所述ODDM数据为ZP-ODDM数据的情况下,将所述ZP-ODDM数据在DD域复制映射多次后变换至DT域,得到第四数据;将所述公共导频配置在所述第四数据的ZP区域,得到第五数据;传输所述第五数据和所述OFDM数据。
可选的,所述第一处理模块710将所述公共导频配置在所述第四数据的ZP区域,得到第五数据,包括:按照第二导频配置信息将所述公共导频配置在所述第五数据的ZP区 域;其中,所述第二导频配置信息中配置有第四信息、第五信息、第六信息中的至少一项,所述第四信息为所述时域导频在每个所述时域抽头上所占的资源的数量,所述第五信息为需要进行所述时域导频配置的时域抽头的索引值,所述第六信息为所述时域导频的密度。
可选的,所述公共导频根据公共导频标识ID确定;其中,所述公共导频ID与移位寄存器的初始值、从所述移位寄存器输出序列中截取导频序列时的偏移值以及生成Gold序列时的循环位移值相关;或者,所述公共导频ID与ZC序列的根系数相关。
可选的,所述公共导频ID的获取过程包括:根据接收到的第一指示信息从预配置的导频ID池中选取所述公共导频ID。
可选的,所述装置700还包括第一传输模块,用于接收第二指示信息,所述第二指示信息用于配置以下至少一项:所述第一导频配置信息;所述第二导频配置信息;所述导频ID池。
可选的,所述第一处理模块710还用于确定ODDM用户和OFDM用户的工作模态,以及在所述工作模态为基于混合帧结构进行所述ODDM用户和所述OFDM用户的数据传输的情况下,执行所述传输目标数据的步骤。
如图8所示,为本申请一示例性实施例提供的通信装置800的结构示意图,该通信装置800包括第二传输模块810,用于接收第一设备传输的目标数据;其中,所述目标数据中包括正交延迟多普勒域调制ODDM数据、正交频分复用OFDM数据以及按照预定方式确定的导频信号,所述预定方式包括所述ODDM数据与所述OFDM数据分别使用独立导频,或者,所述ODDM数据与所述OFDM数据使用公共导频。
可选的,所述装置800还包括:解调模块,用于对所述目标数据进行解调。
可选的,所述ODDM数据与OFDM数据分别使用独立导频,包括:所述ODDM数据使用延迟多普勒域DD域导频,所述OFDM数据使用频域导频;所述ODDM数据使用时域导频,所述OFDM数据使用频域导频。
可选的,在所述ODDM数据与所述OFDM数据使用公共导频的情况下,所述公共导频被配置在时频域。
可选的,所述装置800还包括:第二处理模块,用于在所述ODDM数据使用延迟多普勒域DD域导频,所述OFDM数据使用频域导频的情况下,针对所述ODDM数据,基于DD域提取所述ODDM数据对应的导频进行信道估计。
可选的,所述装置800还包括:第三处理模块,用于在所述ODDM数据使用时域导频,所述OFDM数据使用频域导频、且所述ODDM数据为ZP-ODDM数据的情况下,或者,在所述ODDM数据与所述OFDM数据使用公共导频的情况下,基于时域,提取所述目标数据中ZP区域的时域导频进行信道估计得到第一信道信息;根据已知的指定导频和所述第一信道信息确定导频干扰信息;从所述目标数据中去除所述导频干扰信息。
可选的,所述第二传输模块810还用于以下至少一项:发送第一指示信息,所述第一指示信息用于指示导频ID的信息;发送第二指示信息,所述第二指示信息用于配置以下 至少一项:第一导频配置信息,所述第一导频配置信息用于指示所述ODDM数据对应的时域导频的配置方式;第二导频配置信息,所述第二导频配置信息用于指示公共导频的配置方式;所述导频ID池,所述导频ID池中配置有至少一个导频ID,所述导频ID用于生成公共导频。
本申请实施例中的通信装置700-800可以是电子设备,例如具有操作系统的电子设备,也可以是电子设备中的部件,例如集成电路或芯片。该电子设备可以是终端或网络侧设备,也可以为除终端、网络侧设备之外的其他设备。其中,终端可以包括但不限于上述所列举的终端11的类型,网络侧设备可以包括但不限于上述所列举的网络侧设备12的类型,本申请实施例不作具体限定。
本申请实施例提供的通信装置700-800能够实现图2至图6的方法实施例实现的各个过程,并达到相同的技术效果,为避免重复,这里不再赘述。
可选的,如图9所示,本申请实施例还提供一种通信设备900,包括处理器901和存储器902,存储器902存储有可在所述处理器901上运行的程序或指令,例如,该通信设备900为终端时,该程序或指令被处理器901执行时实现上述方法实施例200-600的各个步骤,且能达到相同的技术效果。该通信设备900为网络侧设备时,该程序或指令被处理器901执行时实现上述方法实施例200-600的各个步骤,且能达到相同的技术效果,为避免重复,这里不再赘述。
本申请实施例还提供一种终端,包括处理器和通信接口,所述通信接口和所述处理器耦合,所述处理器用于运行程序或指令,实现如方法实施例200-600中所述的方法的步骤。该终端实施例是与上述终端侧方法实施例对应的,上述方法实施例的各个实施过程和实现方式均可适用于该终端实施例中,且能达到相同的技术效果。具体地,图10为实现本申请实施例的一种终端的硬件结构示意图。
该终端1000包括但不限于:射频单元1001、网络模块1002、音频输出单元1003、输入单元1004、传感器1005、显示单元1006、用户输入单元1007、接口单元1008、存储器1009、以及处理器1010等中的至少部分部件。
本领域技术人员可以理解,终端1000还可以包括给各个部件供电的电源(比如电池),电源可以通过电源管理系统与处理器1010逻辑相连,从而通过电源管理系统实现管理充电、放电、以及功耗管理等功能。图10中示出的终端结构并不构成对终端的限定,终端可以包括比图示更多或更少的部件,或者组合某些部件,或者不同的部件布置,在此不再赘述。
应理解的是,本申请实施例中,输入单元1004可以包括图形处理单元(Graphics Processing Unit,GPU)1041和麦克风10042,图形处理器10041对在视频捕获模式或图像捕获模式中由图像捕获装置(如摄像头)获得的静态图片或视频的图像数据进行处理。显示单元1006可包括显示面板10061,可以采用液晶显示器、有机发光二极管等形式来配置显示面板10061。用户输入单元1007包括触控面板10071以及其他输入设备10072 中的至少一种。触控面板10071,也称为触摸屏。触控面板10071可包括触摸检测装置和触摸控制器两个部分。其他输入设备10072可以包括但不限于物理键盘、功能键(比如音量控制按键、开关按键等)、轨迹球、鼠标、操作杆,在此不再赘述。
本申请实施例中,射频单元1001接收来自网络侧设备的下行数据后,可以传输给处理器1010进行处理;另外,射频单元1001可以向网络侧设备发送上行数据。通常,射频单元1001包括但不限于天线、放大器、收发信机、耦合器、低噪声放大器、双工器等。
存储器1009可用于存储软件程序或指令以及各种数据。存储器1009可主要包括存储程序或指令的第一存储区和存储数据的第二存储区,其中,第一存储区可存储操作系统、至少一个功能所需的应用程序或指令(比如声音播放功能、图像播放功能等)等。此外,存储器1009可以包括易失性存储器或非易失性存储器,或者,存储器1009可以包括易失性和非易失性存储器两者。其中,非易失性存储器可以是只读存储器(Read-Only Memory,ROM)、可编程只读存储器(Programmable ROM,PROM)、可擦除可编程只读存储器(Erasable PROM,EPROM)、电可擦除可编程只读存储器(Electrically EPROM,EEPROM)或闪存。易失性存储器可以是随机存取存储器(Random Access Memory,RAM),静态随机存取存储器(Static RAM,SRAM)、动态随机存取存储器(Dynamic RAM,DRAM)、同步动态随机存取存储器(Synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(Double Data Rate SDRAM,DDRSDRAM)、增强型同步动态随机存取存储器(Enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(Synch link DRAM,SLDRAM)和直接内存总线随机存取存储器(Direct Rambus RAM,DRRAM)。本申请实施例中的存储器1009包括但不限于这些和任意其它适合类型的存储器。
处理器1010可包括一个或多个处理单元;可选的,处理器1010集成应用处理器和调制解调处理器,其中,应用处理器主要处理涉及操作系统、用户界面和应用程序等的操作,调制解调处理器主要处理无线通信信号,如基带处理器。可以理解的是,上述调制解调处理器也可以不集成到处理器1010中。
其中,在所述终端作为目标数据的发送端的情况下,处理器1010,用于传输目标数据;其中,所述目标数据中包括正交延迟多普勒域调制ODDM数据、正交频分复用OFDM数据以及按照预定方式确定的导频信号,所述预定方式包括所述ODDM数据与所述OFDM数据分别使用独立导频,或者,所述ODDM数据与所述OFDM数据使用公共导频。
可选的,所述ODDM数据与所述OFDM数据分别使用独立导频,包括:所述ODDM数据使用延迟多普勒域DD域导频,所述OFDM数据使用频域导频;所述ODDM数据使用时域导频,所述OFDM数据使用频域导频。
可选的,在所述ODDM数据与所述OFDM数据使用公共导频的情况下,所述公共导频被配置在时域。
可选的,所述处理器1010传输目标数据,包括:在所述ODDM数据使用DD域导频,所述OFDM数据使用频域导频的情况下,将所述ODDM数据以及所述ODDM数据对应 的DD域导频在DD域复制映射多次后进行频域变换,得到第一数据;传输所述第一数据、所述OFDM数据以及所述OFDM数据对应的频域导频。
可选的,所述处理器1010传输目标数据,包括:在所述ODDM数据使用时域导频、所述OFDM数据使用频域导频、且所述ODDM数据为零填充ZP-ODDM数据的情况下,将所述ZP-ODDM数据在DD域复制映射多次后变换至延迟时间DT域,得到第二数据;将与所述ZP-ODDM数据对应的时域导频配置在所述第二数据的ZP区域,得到第三数据;传输所述第三数据、所述OFDM数据以及所述OFDM数据对应的频域导频。
可选的,所述处理器1010将与所述ODDM数据对应的时域导频配置在所述第二数据的ZP区域,得到第三数据,包括:按照第一导频配置信息将所述ODDM数据对应的时域导频配置在所述第二数据的ZP区域;其中,所述第一导频配置信息中配置有第一信息、第二信息、第三信息中的至少一项,所述第一信息为所述时域导频在每个所述时域抽头上所占的资源的数量,所述第二信息为需要进行所述时域导频的配置的时域抽头的索引值,所述第三信息为所述时域导频的密度。
可选的,所述处理器1010传输目标数据,包括:所述ODDM数据与所述OFDM数据使用公共导频、且所述ODDM数据为ZP-ODDM数据的情况下,将所述ZP-ODDM数据在DD域复制映射多次后变换至DT域,得到第四数据;将所述公共导频配置在所述第四数据的ZP区域,得到第五数据;传输所述第五数据和所述OFDM数据。
可选的,所述处理器1010将所述公共导频配置在所述第四数据的ZP区域,得到第五数据,包括:按照第二导频配置信息将所述公共导频配置在所述第五数据的ZP区域;其中,所述第二导频配置信息中配置有第四信息、第五信息、第六信息中的至少一项,所述第四信息为所述时域导频在每个所述时域抽头上所占的资源的数量,所述第五信息为需要进行所述时域导频配置的时域抽头的索引值,所述第六信息为所述时域导频的密度。
可选的,所述公共导频根据公共导频标识ID确定;其中,所述公共导频ID与移位寄存器的初始值、从所述移位寄存器输出序列中截取导频序列时的偏移值以及生成Gold序列时的循环位移值相关;或者,所述公共导频ID与ZC序列的根系数相关。
可选的,所述公共导频ID的获取过程包括:根据接收到的第一指示信息从预配置的导频ID池中选取所述公共导频ID。
可选的,所述射频单元1001用于接收第二指示信息,所述第二指示信息用于配置以下至少一项:所述第一导频配置信息;所述第二导频配置信息;所述导频ID池。
可选的,所述处理器1010还用于确定ODDM用户和OFDM用户的工作模态,以及在所述工作模态为基于混合帧结构进行所述ODDM用户和所述OFDM用户的数据传输的情况下,执行所述传输目标数据的步骤。
或者,在所述终端作为目标数据的接收端的情况下,射频单元1001用于接收第一设备传输的目标数据;其中,所述目标数据中包括正交延迟多普勒域调制ODDM数据、正交频分复用OFDM数据以及按照预定方式确定的导频信号,所述预定方式包括所述 ODDM数据与所述OFDM数据分别使用独立导频,或者,所述ODDM数据与所述OFDM数据使用公共导频。
可选的,所述ODDM数据与OFDM数据分别使用独立导频,包括:所述ODDM数据使用延迟多普勒域DD域导频,所述OFDM数据使用频域导频;所述ODDM数据使用时域导频,所述OFDM数据使用频域导频。
可选的,在所述ODDM数据与所述OFDM数据使用公共导频的情况下,所述公共导频被配置在时频域。
可选的,所述装置还包括:处理器1010,用于在所述ODDM数据使用延迟多普勒域DD域导频,所述OFDM数据使用频域导频的情况下,针对所述ODDM数据,基于DD域提取所述ODDM数据对应的导频进行信道估计。
可选的,所述装置还包括:处理器1010,用于在所述ODDM数据使用时域导频,所述OFDM数据使用频域导频、且所述ODDM数据为ZP-ODDM数据的情况下,或者,在所述ODDM数据与所述OFDM数据使用公共导频的情况下,基于时域,提取所述目标数据中ZP区域的时域导频进行信道估计得到第一信道信息;根据已知的指定导频和所述第一信道信息确定导频干扰信息;从所述目标数据中去除所述导频干扰信息。
可选的,所述射频单元1001还用于以下至少一项:发送第一指示信息,所述第一指示信息用于指示导频ID的信息;发送第二指示信息,所述第二指示信息用于配置以下至少一项:第一导频配置信息,所述第一导频配置信息用于指示所述ODDM数据对应的时域导频的配置方式;第二导频配置信息,所述第二导频配置信息用于指示公共导频的配置方式;所述导频ID池,所述导频ID池中配置有至少一个导频ID,所述导频ID用于生成公共导频。
可以理解,由于本实施例中的各实现方式与前述方法实施例200-600具有相同或相应的技术特征,因此,本实施例中的各实现方式的实现过程可参照前述方法实施例200-600中的相关描述,并达到相同或相应的技术效果,为避免重复,在此不再赘述。
本申请实施例还提供一种网络侧设备,包括处理器和通信接口,所述通信接口和所述处理器耦合,所述处理器用于运行程序或指令,实现如实施例200-600中所述的方法的步骤。该网络侧设备实施例是与上述网络侧设备方法实施例对应的,上述方法实施例的各个实施过程和实现方式均可适用于该网络侧设备实施例中,且能达到相同的技术效果。
具体地,本申请实施例还提供了一种网络侧设备。如图11所示,该网络侧设备1100包括:天线1101、射频装置1102、基带装置1103、处理器1104和存储器1105。天线1101与射频装置1102连接。在上行方向上,射频装置1102通过天线1101接收信息,将接收的信息发送给基带装置1103进行处理。在下行方向上,基带装置1103对要发送的信息进行处理,并发送给射频装置1102,射频装置1102对收到的信息进行处理后经过天线1101发送出去。
以上实施例中网络侧设备执行的方法可以在基带装置1103中实现,该基带装置1103 包基带处理器。
基带装置1103例如可以包括至少一个基带板,该基带板上设置有多个芯片,如图11所示,其中一个芯片例如为基带处理器,通过总线接口与存储器1105连接,以调用存储器1105中的程序,执行以上方法实施例中所示的网络设备操作。
该网络侧设备还可以包括网络接口1106,该接口例如为通用公共无线接口(common public radio interface,CPRI)。
具体地,本申请实施例的网络侧设备1100还包括:存储在存储器1105上并可在处理器1104上运行的指令或程序,处理器1104调用存储器1105中的指令或程序执行图7或图8所示各模块执行的方法,并达到相同的技术效果,为避免重复,故不在此赘述。
本申请实施例还提供一种可读存储介质,所述可读存储介质上存储有程序或指令,该程序或指令被处理器执行时实现上述方法实施例200-600的各个过程,且能达到相同的技术效果,为避免重复,这里不再赘述。
其中,所述处理器为上述实施例中所述的终端中的处理器。所述可读存储介质,包括计算机可读存储介质,如计算机只读存储器ROM、随机存取存储器RAM、磁碟或者光盘等。
本申请实施例另提供了一种芯片,所述芯片包括处理器和通信接口,所述通信接口和所述处理器耦合,所述处理器用于运行网络侧设备程序或指令,实现上述方法实施例200-600的各个过程,且能达到相同的技术效果,为避免重复,这里不再赘述。
应理解,本申请实施例提到的芯片还可以称为系统级芯片,系统芯片,芯片系统或片上系统芯片等。
本申请实施例还提供了一种计算机程序产品,该计算机程序产品包括处理器、存储器及存储在所述存储器上并可在所述处理器上运行的程序或指令,所述程序或指令被所述处理器执行时,实现上述方法实施例200-600的各个过程,且能达到相同的技术效果,为避免重复,这里不再赘述。
本申请实施例还提供了一种无线通信系统,包括:第一设备及第二设备,所述第一设备可用于执行上述方法实施例200-400的各个过程,所述第二设备可用于执行上述方法实施例600的各个过程,且能达到相同的技术效果,为避免重复,这里不再赘述。
需要说明的是,在本文中,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者装置不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者装置所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括该要素的过程、方法、物品或者装置中还存在另外的相同要素。此外,需要指出的是,本申请实施方式中的方法和装置的范围不限按示出或讨论的顺序来执行功能,还可包括根据所涉及的功能按基本同时的方式或按相反的顺序来执行功能,例如,可以按不同于所描述的次序来执行所描述的方法,并且还可以添加、省去、或组合各种步骤。另外,参照某 些示例所描述的特征可在其他示例中被组合。
通过以上的实施方式的描述,本领域的技术人员可以清楚地了解到上述实施例方法可借助软件加必需的通用硬件平台的方式来实现,当然也可以通过硬件,但很多情况下前者是更佳的实施方式。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分可以以计算机软件产品的形式体现出来,该计算机软件产品存储在一个存储介质(如ROM/RAM、磁碟、光盘)中,包括若干指令用以使得一台终端(可以是手机,计算机,服务器,空调器,或者网络设备等)执行本申请各个实施例所述的方法。
上面结合附图对本申请的实施例进行了描述,但是本申请并不局限于上述的具体实施方式,上述的具体实施方式仅仅是示意性的,而不是限制性的,本领域的普通技术人员在本申请的启示下,在不脱离本申请宗旨和权利要求所保护的范围情况下,还可做出很多形式,均属于本申请的保护之内。

Claims (30)

  1. 一种通信方法,包括:
    第一设备传输目标数据;
    其中,所述目标数据中包括正交延迟多普勒域调制ODDM数据、正交频分复用OFDM数据以及按照预定方式确定的导频信号,所述预定方式包括所述ODDM数据与所述OFDM数据分别使用独立导频,或者,所述ODDM数据与所述OFDM数据使用公共导频。
  2. 如权利要求1所述的方法,其中,所述ODDM数据与所述OFDM数据分别使用独立导频,包括:
    所述ODDM数据使用延迟多普勒DD域导频,所述OFDM数据使用频域导频;
    所述ODDM数据使用时域导频,所述OFDM数据使用频域导频。
  3. 如权利要求1所述的方法,其中,在所述ODDM数据与所述OFDM数据使用公共导频的情况下,所述公共导频被配置在时域。
  4. 如权利要求2所述的方法,其中,所述第一设备传输目标数据,包括:
    在所述ODDM数据使用DD域导频、所述OFDM数据使用频域导频的情况下,将所述ODDM数据以及所述ODDM数据对应的DD域导频在DD域复制映射多次后进行频域变换,得到第一数据;
    传输所述第一数据、所述OFDM数据以及所述OFDM数据对应的频域导频。
  5. 如权利要求2所述的方法,其中,所述第一设备传输目标数据,包括:
    在所述ODDM数据使用时域导频、所述OFDM数据使用频域导频、且所述ODDM数据为零填充ZP-ODDM数据的情况下,将所述ZP-ODDM数据在DD域复制映射多次后变换至延迟时间DT域,得到第二数据;
    将与所述ZP-ODDM数据对应的时域导频配置在所述第二数据的零填充ZP区域,得到第三数据;
    传输所述第三数据、所述OFDM数据以及所述OFDM数据对应的频域导频。
  6. 如权利要求5所述的方法,其中,将与所述ODDM数据对应的时域导频配置在所述第二数据的ZP区域,得到第三数据,包括:
    按照第一导频配置信息将所述ZP-ODDM数据对应的时域导频配置在所述第二数据的ZP区域;
    其中,所述第一导频配置信息中配置有第一信息、第二信息、第三信息中的至少一项,所述第一信息为所述时域导频在每个所述时域抽头上所占的资源的数量,所述第二信息为需要进行所述时域导频的配置的时域抽头的索引值,所述第三信息为所述时域导频的密度。
  7. 如权利要求3所述的方法,其中,所述第一设备传输目标数据,包括:
    所述ODDM数据与所述OFDM数据使用公共导频、且所述ODDM数据为ZP-ODDM数据的情况下,将所述ZP-ODDM数据在DD域复制映射多次后变换至DT域,得到第四 数据;
    将所述公共导频配置在所述第四数据的ZP区域,得到第五数据;
    传输所述第五数据和所述OFDM数据。
  8. 如权利要求7所述的方法,其中,所述将所述公共导频配置在所述第四数据的ZP区域,得到第五数据,包括:
    按照第二导频配置信息将所述公共导频配置在所述第五数据的ZP区域;
    其中,所述第二导频配置信息中配置有第四信息、第五信息、第六信息中的至少一项,所述第四信息为所述时域导频在每个所述时域抽头上所占的资源的数量,所述第五信息为需要进行所述时域导频配置的时域抽头的索引值,所述第六信息为所述时域导频的密度。
  9. 如权利要求1-8中任一项所述的方法,其中,所述公共导频根据公共导频标识ID确定;
    其中,所述公共导频ID与移位寄存器的初始值、从所述移位寄存器输出序列中截取导频序列时的偏移值以及生成Gold序列时的循环位移值相关;或者,所述公共导频ID与ZC序列的根系数相关。
  10. 如权利要求9所述的方法,其中,所述公共导频ID的获取过程包括:
    根据接收到的第一指示信息从预配置的导频ID池中选取所述公共导频ID。
  11. 如权利要求1-10中任一项所述的方法,其中,所述方法还包括:
    接收第二指示信息,所述第二指示信息用于配置以下至少一项:
    所述第一导频配置信息;
    所述第二导频配置信息;
    所述导频ID池。
  12. 如权利要求1-11中任一项所述的方法,其中,所述方法还包括:
    确定ODDM用户和OFDM用户的工作模态;
    在所述工作模态为基于混合帧结构进行所述ODDM用户和所述OFDM用户的数据传输的情况下,执行所述传输目标数据的步骤。
  13. 一种通信方法,包括:
    第二设备接收第一设备传输的目标数据;
    其中,所述目标数据中包括正交延迟多普勒域调制ODDM数据、正交频分复用OFDM数据以及按照预定方式确定的导频信号,所述预定方式包括所述ODDM数据与所述OFDM数据分别使用独立导频,或者,所述ODDM数据与所述OFDM数据使用公共导频。
  14. 如权利要求13所述的方法,其中,所述ODDM数据与OFDM数据分别使用独立导频,包括:
    所述ODDM数据使用DD域导频,所述OFDM数据使用频域导频;
    所述ODDM数据使用时域导频,所述OFDM数据使用频域导频。
  15. 如权利要求13所述的方法,其中,在所述ODDM数据与所述OFDM数据使用公共导频的情况下,所述公共导频被配置在时频域。
  16. 如权利要求14所述的方法,其中,所述方法还包括:
    在所述ODDM数据使用延迟多普勒域DD域导频,所述OFDM数据使用频域导频的情况下,针对所述ODDM数据,基于DD域提取所述ODDM数据对应的导频进行信道估计。
  17. 如权利要求14所述的方法,其中,所述方法还包括:
    所述ODDM数据使用时域导频,所述OFDM数据使用频域导频、且所述ODDM数据为ZP-ODDM数据的情况下,或者,在所述ODDM数据与所述OFDM数据使用公共导频的情况下,基于时域,提取所述目标数据中ZP区域的时域导频进行信道估计得到第一信道信息;
    根据指定导频和所述第一信道信息确定导频干扰信息;
    从所述目标数据中去除所述导频干扰信息。
  18. 如权利要求13-17中任一项所述的方法,其中,所述方法还包括以下至少一项:
    发送第一指示信息,所述第一指示信息用于指示导频ID的信息;
    发送第二指示信息,所述第二指示信息用于配置以下至少一项:
    第一导频配置信息,所述第一导频配置信息用于指示所述ODDM数据对应的时域导频的配置方式;
    第二导频配置信息,所述第二导频配置信息用于指示所述公共导频的配置方式;
    所述导频ID池,所述导频ID池中配置有至少一个导频ID,所述导频ID用于生成公共导频。
  19. 一种通信装置,包括:
    第一处理模块,用于传输目标数据;
    其中,所述目标数据中包括正交延迟多普勒域调制ODDM数据、正交频分复用OFDM数据以及按照预定方式确定的导频信号,所述预定方式包括所述ODDM数据与所述OFDM数据分别使用独立导频,或者,所述ODDM数据与所述OFDM数据使用公共导频。
  20. 如权利要求19所述的装置,其中,所述ODDM数据与所述OFDM数据分别使用独立导频,包括:
    所述ODDM数据使用延迟多普勒域DD域导频,所述OFDM数据使用频域导频;
    所述ODDM数据使用时域导频,所述OFDM数据使用频域导频。
  21. 如权利要求19所述的装置,其中,在所述ODDM数据与所述OFDM数据使用公共导频的情况下,所述公共导频被配置在时域。
  22. 如权利要求20所述的装置,其中,所述第一处理模块传输目标数据,包括:
    在所述ODDM数据使用DD域导频、所述OFDM数据使用频域导频的情况下,将所述ODDM数据以及所述ODDM数据对应的DD域导频在DD域复制映射多次后进行频域 变换,得到第一数据;
    传输所述第一数据、所述OFDM数据以及所述OFDM数据对应的频域导频。
  23. 如权利要求20所述的装置,其中,所述第一处理模块传输目标数据,包括:
    在所述ODDM数据使用时域导频、所述OFDM数据使用频域导频、且所述ODDM数据为零填充ZP-ODDM数据的情况下,将所述ZP-ODDM数据在DD域复制映射多次后变换至延迟时间DT域,得到第二数据;
    将与所述ZP-ODDM数据对应的时域导频配置在所述第二数据的ZP区域,得到第三数据;
    传输所述第三数据、所述OFDM数据以及所述OFDM数据对应的频域导频。
  24. 如权利要求21所述的装置,其中,所述第一处理模块传输目标数据,包括:
    所述ODDM数据与所述OFDM数据使用公共导频、且所述ODDM数据为ZP-ODDM数据的情况下,将所述ZP-ODDM数据在DD域复制映射多次后变换至DT域,得到第四数据;
    将所述公共导频配置在所述第四数据的ZP区域,得到第五数据;
    传输所述第五数据和所述OFDM数据。
  25. 如权利要求19-24中任一项所述的装置,其中,所述第一处理模块还用于确定ODDM用户和OFDM用户的工作模态,以及在所述工作模态为基于混合帧结构进行所述ODDM用户和所述OFDM用户的数据传输的情况下,执行所述传输目标数据的步骤。
  26. 一种通信装置,包括:
    第二传输模块,用于接收第一设备传输的目标数据;
    其中,所述目标数据中包括正交延迟多普勒域调制ODDM数据、正交频分复用OFDM数据以及按照预定方式确定的导频信号,所述预定方式包括所述ODDM数据与所述OFDM数据分别使用独立导频,或者,所述ODDM数据与所述OFDM数据使用公共导频。
  27. 如权利要求26所述的装置,其中,所述ODDM数据与OFDM数据分别使用独立导频,包括:
    所述ODDM数据使用延迟多普勒域DD域导频,所述OFDM数据使用频域导频;
    所述ODDM数据使用时域导频,所述OFDM数据使用频域导频。
  28. 如权利要求27所述的装置,其中,所述装置还包括:
    第三处理模块,用于在所述ODDM数据使用时域导频,所述OFDM数据使用频域导频、且所述ODDM数据为ZP-ODDM数据的情况下,或者,在所述ODDM数据与所述OFDM数据使用公共导频的情况下,基于时域,提取所述目标数据中ZP区域的时域导频进行信道估计得到第一信道信息;
    根据已知的指定导频和所述第一信道信息确定导频干扰信息;
    从所述目标数据中去除所述导频干扰信息。
  29. 一种通信设备,包括处理器和存储器,所述存储器存储可在所述处理器上运行的程序或指令,所述程序或指令被所述处理器执行时实现如权利要求1至12任一项所述的方法的步骤,或实现如权利要求13至18任一项所述的方法的步骤。
  30. 一种可读存储介质,所述可读存储介质上存储程序或指令,所述程序或指令被处理器执行时实现如权利要求1至12任一项所述的方法的步骤,或实现如权利要求13至18任一项所述的方法的步骤。
PCT/CN2023/136177 2022-12-06 2023-12-04 通信方法、装置及通信设备 WO2024120343A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202211558416.6 2022-12-06
CN202211558416.6A CN118157828A (zh) 2022-12-06 2022-12-06 通信方法、装置及通信设备

Publications (1)

Publication Number Publication Date
WO2024120343A1 true WO2024120343A1 (zh) 2024-06-13

Family

ID=91287582

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/136177 WO2024120343A1 (zh) 2022-12-06 2023-12-04 通信方法、装置及通信设备

Country Status (2)

Country Link
CN (1) CN118157828A (zh)
WO (1) WO2024120343A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108283025A (zh) * 2015-09-08 2018-07-13 科希尔技术股份有限公司 正交时频空间通信系统中的多址访问
CN108370355A (zh) * 2015-07-12 2018-08-03 凝聚技术公司 对多个窄带子载波的正交时间频率空间调制
CN114916039A (zh) * 2021-02-10 2022-08-16 维沃移动通信有限公司 接入方法、装置、通信设备及可读存储介质
WO2022217529A1 (en) * 2021-04-15 2022-10-20 Qualcomm Incorporated Air to ground signaling enhancement for cross-waveform interference measurement and reporting

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108370355A (zh) * 2015-07-12 2018-08-03 凝聚技术公司 对多个窄带子载波的正交时间频率空间调制
CN108283025A (zh) * 2015-09-08 2018-07-13 科希尔技术股份有限公司 正交时频空间通信系统中的多址访问
CN114916039A (zh) * 2021-02-10 2022-08-16 维沃移动通信有限公司 接入方法、装置、通信设备及可读存储介质
WO2022217529A1 (en) * 2021-04-15 2022-10-20 Qualcomm Incorporated Air to ground signaling enhancement for cross-waveform interference measurement and reporting

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
SAMSUNG: "Proposed set of numerologies for NR", 3GPP DRAFT; R1-163998 PROPOSED SET OF NUMEROLOGIES FOR NR, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, no. Nanjing, China; 20160523 - 20160527, 13 May 2016 (2016-05-13), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , XP051090303 *

Also Published As

Publication number Publication date
CN118157828A (zh) 2024-06-07

Similar Documents

Publication Publication Date Title
CN114765863A (zh) 传输处理方法及相关设备
WO2023198024A1 (zh) 信号传输方法、网络侧设备及终端
WO2024120343A1 (zh) 通信方法、装置及通信设备
WO2023125906A1 (zh) 资源传输方向确定方法、装置及终端
CN116367312A (zh) 传输确定方法、装置、终端、网络侧设备和存储介质
CN114641013A (zh) 信息传输方法、装置、终端及网络侧设备
WO2023231924A1 (zh) 信号发送方法、发送设备及接收设备
WO2024156271A1 (zh) 信道估计方法、装置、终端及可读存储介质
CN114070507B (zh) 确定目标时域位置的方法、装置及通信设备
CN115134048B (zh) 上行传输方法及装置、终端及可读存储介质
WO2024169891A1 (zh) 信号处理方法、装置及通信设备
WO2023116905A1 (zh) 定位参考信号的处理方法、设备及可读存储介质
WO2024099190A1 (zh) 能力指示方法、装置、终端、网络侧设备及可读存储介质
WO2023138633A1 (zh) 信息传输方法、装置、网络侧设备及终端
WO2023186156A1 (zh) Dmrs端口信息的指示方法、终端及网络侧设备
WO2023109678A1 (zh) 资源冲突处理方法、装置及终端
WO2023151628A1 (zh) Pusch传输方法、装置、终端、及网络侧设备
WO2024099181A1 (zh) 上行传输时间的确定方法、终端及网络侧设备
WO2023116831A1 (zh) 资源选择方法、装置及终端
WO2024169890A1 (zh) 信道状态信息的获取方法、终端及网络侧设备
WO2024140555A1 (zh) 定位参考信号资源的传输方法及通信设备
WO2023186158A1 (zh) 解调参考信号传输方法、装置、终端及网络侧设备
WO2024012558A1 (zh) Srs与上行资源的冲突处理方法、终端及网络侧设备
WO2024146482A1 (zh) 一种传输参数配置方法、装置及终端设备
WO2024094015A1 (zh) 传输方法、ue及可读存储介质

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23899920

Country of ref document: EP

Kind code of ref document: A1